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Renormalizable coupled scalar and Dirac field theories are quantized in equal-x* surfaces
(called light fronts). Schwinger’s action principle is employed to deduce the correct canon-
ical equal-x* (anti-) commutation relations. These theories are shown to be Lorentz-invari-
ant. Generalized Schwinger conditions for a quantum field theory to be Lorentz-invariant
are given and discussed in an appendix. Spectral sum rules are derived. Leading singulari-
ties of Green’s functions and products of field operators near the light cone are studied and
the implications to current algebra sum rules are discussed. We also discuss some of the

delicate features of the light-front formulation.

I. INTRODUCTION

Using the variables suggested by Susskind,® and

Bardakci and Halpern,? and Chang and Ma,?
xr=x"4 %3,
p * =p 0 +p 8 )

in coordinate and momentum space, respectively;
Kogut and Soper,* Bjorken, Kogut, and Soper,5 and
Neville and Rohrlich® showed that quantum electro-
dynamics can be formulated consistently by quan-
tizing on an x* =constant surface, called a light
front.” Dynamics is assumed to evolve in x* rather
than in time. The first few terms in the x*-or-
dered perturbation series*:® are shown to repro-
duce automatically Weinberg’s rule® for ordinary
old-fashioned time-ordered perturbation series in
the infinite-momentum limit. This work raises
the interesting possibility of quantizing field the-
ories on a nonspacelike surface, and provides a
possible theoretical basis for the wide applica-
tions of infinite-momentum technique to current
algebra,® deep-inelastic lepton-induced processes'®
and others.!' It is also relevant to the recent in-
terest in the singular behavior of current com-
mutators near the light cone.!? In view of the
great importance of the problem, we have re-

(1.1)

examined all popular renormalizable field theories
in this new quantization scheme and searched for
a selfcontained framework for this formalism. To
indicate the kind of questions we have in mind we
make the following remarks. Firstly, the mere
change of variables (1.1) alters the fundamental
character of the field equations. Consider a clas-
sical free scalar field ¢(x) as an example. It
satisfies the familiar Klein-Gordon equation

(8,2 = V2+u2)p(x) =0, (1.2)

To solve for ¢(x), both ¢(x) and its first time de-
rivative ¢(x) have to be specified at a given time.

In terms of the new variables (1.1) the differential
equation (1.2) becomes

] <] =
(4'8—96—_‘_'8—;{—_-—V_L2+M2>(p(x)=0. (1.3)

Now only ¢(x) need be specified at a given x* in
order to solve ¢(x). This difference is reflected
in the canonical commutation relations to be im-
posed in the two quantization schemes. In the con-
ventional quantization, ¢(x) and @(x) are the quan-
tum analogs of p and ¢ in classical mechanics.

The equal-time commutation relations are pro-
vided by the canonical quantization rule derived
from the correspondence principle. In the light-
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front quantization, however, no such analogy ex-
ists. Naive application of the canonical quantiza-
tion rule gives incorrect commutation relations.
Secondly, the canonical equal-time commutation
relations remain the same as in free-field the-
ories if no derivative couplings are introduced.
This need not be true in the new quantization
scheme since a light front contains a line tangent
to the light cone which is not spacelike, and con-
sequently interaction can in principle affect the
commutation relations. An interesting example is
the interacting system of a spin-3 field and a spin-
1 field studied in a separate paper.'* Thirdly, if

a consistent quantum field theory can be formu-
lated using light-front quantization, its equivalence
to the conventional formalism is yet to be estab-
lished. We have found that Schwinger’s quantum
action principle'* provides a natural framework
for studying these questions. It supplies correct
commutation relations even in the presence of
interactions. Furthermore, with the aid of
Schwinger’s functional method,® the covariant per-
turbation theory in the new quantization can be
shown to give the same S matrix to all orders as
in the ordinary formulation.

In this and the following papers we treat the
self-interacting scalar field theories and the sys-
tem of spinless field and spin-3 field interacting
via a scalar or pseudoscalar coupling. The inter-
acting system of a Dirac and a vector field is
studied separately’® since it possesses many fea-
tures not present in systems involving spin-0 and
spin-3 fields. In the present paper we study the
quantization and related formal aspects, leaving
the study of the S matrix and perturbation theory
to the following paper.'®

In Sec. II, Schwinger’s action principle is intro-
duced to study the conventional quantization of a
free scalar field. In Schwinger’s formalism, Bose
and Fermi fields are treated on the same footing;
canonical quantization is carried out in a form in-
dependent of the nature of the quantization surface.

The action principle is then applied to the light-
front quantization of scalar fields with nonderiva-
tive couplings. The light-front commutator rela-
tions among the scalar fields are found to be the
same as those of the noninteracting systems. In
particular, we demonstrate that the interacting
systems based on the light-front quantization are
Jormally Lorentz-invariant. These results are
not affected by the introduction of isospin or any
other internal quantum numbers.

Analysis of these questions is much more com-
plicated for systems involving Dirac fields. In
Sec. II, we consider specifically the interacting
system of a scalar and a Dirac field given by £,,
=-gPTPp with I'=1 or iy,. Application of the

action principle shows that the light-front (anti-)
commutation relations among the independent com-
ponents of the Dirac field, 3(*)=3(1 +q%y and y™®7,
and the scalar field ¢ are still not modified by the
interactions. We then proceed to show that the
light-front quantization indeed leads to Lorentz-
invariant theories (at least formally).

Sec. IV is devoted to the derivation of some for-
mal results in quantum field theory from the light-
front formulation. These include spectral sum
rules, and the asymptotic behavior of the Green’s
functions at small distance. It should be pointed
out that in these derivations we have relied heavily
on physical arguments rather than on mathematical
rigor.

In Appendixes A and B, some simple commutation
relations which constitute the sufficient conditions
for a theory to be Lorentz-invariant are given.
These sufficient conditions are indeed satisfied by
all the field theories studied inthis paper. The
commutation relations given in Appendix B are the
generalizations of Schwinger’s conditions for
Lorentz covariance'” to the light-front formulation.
Finally, in Appendix C 2, we study briefly the
classical analog of the light-front formulation.

II. INTERACTING SCALAR FIELDS

In this section, we shall study the interaction
among scalar fields. We restrict ourselves to non-
derivative couplings. We begin with a very brief
introduction to Schwinger’s action principle.

A. Schwinger’s Action Principle

Schwinger’s action principle will be illustrated
with the example of conventional quantization of a
free spin-0 (scalar) field. In Schwinger’s original
formalism Bose and Fermi fields are treated on
the same footing so that all field equations are
first-order differential equations. A spin-0 sys-
tem is described by a five-component field com-
prised of a Lorentz scalar ¢(x) and a four-vector
@ ,(x). The Lagrange function in its standard form
for this system is

L=3(0"8,p - 93,0") - 30,0" ~ 320,  (2.1)
where u is the mass of the field quanta. Field

equations follow from the principle of stationary
action that the action integral

Wa= [ (@920 (), 0,(1) 2.2)

be stationary with respect to variations of ¢ and
@, tnside the volume bounded by the two spacelike
surfaces o, and 0,. They are



| =3

9, 0=¢y,

(2.3)
30" +12p=0.
Elimination of ¢, recovers the Klein-Gordon equa-

tion
@%+p?)e@=0. (2.4)

An important aspect of Schwinger’s action princi-
ple is that it also supplies canonical commutation
relations. This is provided by the surface terms
of the variation of W, which are ignored in the
conventional classical action principle. These sur-
face terms are interpreted by Schwinger as the
generators for the unitary transformations which
induce the variations 6¢ and 6¢,. Thus

6W2 =G(oy) = G(oy), (2.5)
where

G(°)=%f do,(¢"d¢ — pdpt) (2.8)
or

G(t)=3 f Bx (p°69 — pd¢°) . 2.7

The latter form is appropriate for a flat equal-
time surface. The equal-time commutation re-
lations

x=x2: [o(x), °(x)]=i83(x = x'),
[o(x), (x)]=[¢°x), °(x")] =0,

follow from the relations between the field varia-
tions and the generator

(2.8)

3169(x) =[p(x), G())],

3160°(%) =[0°(x), G(N)], (2.9)

provided the variations d¢ and 5¢° are postulated
to be commuting ¢ numbers in accordance with the
Bose statistics of integer-spin fields. The factor
% in (2.9) stems from the treatment'*!8 of all field
components appearing in the generator on the same
footing. In the present case it is possible to

divide these fields into two sets of which one is
fixed and the other varied. This, for example,

can be achieved by adding a total divergence
%au(gaqp ) to the Lagrange function (2.1) giving

£=9",0 - 30,0" - 22p°. (2.10)

This addition does not change the field equations
but alters the surface term to G'(¢).

G'(1) = f Fx %0, (2.11)
which corresponds to fixing ¢° while varying ¢.
The canonical commutation relation now follows
from
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i6¢(x) =[p(x), G'(1)] (2.12)
without a factor 3 on the left-hand side. For a
more detailed discussion concerning the proper in-
terpretation of G(o) the reader is referred to the
original paper by Schwinger.!® It should be em-
phasized, however, that the possibility of dividing
the dynamical variables into two independent sets
cannot be determined a priori. It depends on the
nature of the field equations. In the case of a
Hermitian spin-3 field, the conjugate momentum to
the field operator ¥ is ¥ itself, and such a division
is not possible. Thus the interpretation (2.7) and
(2.9) is more generally valid than that of (2.11) and
(2.12). As will be seen later, in light-front quan-
tization the field operators and their conjugate
momenta are related by constrained equations and
therefore the symmetrized Lagrange function (2.1)
and the interpretation (2.9) must be adopted.

In the following sections for the sake of notation-
al simplicity we shall use the quadratic Lagrange
function for scalar fields. However, when we cal-
culate the canonical commutator relations by the
action principle, proper symmetrizations among
the independent fields in G are understood.

B. Light-Front Quantization

We now introduce the new variables?®
xt=x0+x%,
x™=x° = x3, (2.13)
X=(x x%).
The scalar product of two 4-vectors becomes
a-b=a"b,
=3a*b” +3a"b* —a;b;, (2.14)

where the Latin indices run from 1 to 2. In par-
ticular

¥, =20t +30 7" 0,0, (2.15)
where 8* are defined as
9
+ _
9 -Zax; . (2.16)

The 4-dimensional volume element appears as
(dx) = 3dx*dx~d>x. (2.17)

The Lagrange function for a self-interacting
scalar field can be written as
£=3[6,0) - 0|+ Lm(9), (2.18)

where £i,(¢) is a polynomial function of ¢. By
action principle, we obtain both the field equation
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(8% +p2)p=(8%0" = V2 +12)p

EYR
- Eumlo) (2.19)
d¢p
and the generator on a light front x* =const,
G=3 f Bxdx~ 8 p(x)dp(x) . (2.20)

Note that the nonderivative nature of £, is crucial
for deriving (2.20).

The commutation relation is implicit in the re-
lation

2i6p(x) =[o(x), G(x")], (2.21)
i.e.,
xt=x""
[@x), @*(x)]=46(x = x"~)6%(x = x') . (2.22)

C. Lorentz Invariance

To demonstrate that the quantization on the light
front leads to a Lorentz-invariant theory, we
should first construct the generators of the Lo-
rentz group, and hence the stress tensor. The
stress tensor TH*” can be obtained from (2.18)
through the standard method, giving

TH =8kpd’p — gh’ & . (2.23)

The requirement of Lorentz invariance implies
that the energy-momentum and angular momentum
operators, defined by

Ph=3 f Axdx T*H(x), (2.24)

T =4 f Pxdx~ (MT* — 7 TH) (2.25)
should generate the correct commutation relations
with respect to ¢ as well as among themselves.
Since only T** enters the definitions of P* and J*"?,
we shall concentrate on it. According to (2.23), we
have

T =(3%9)?>0, (2.26)
T =8%paly (i=1,2) (2.27)
and
T~ =8%9po~¢p -28
= (Vo) +12¢? = 28 (0) . (2.28)

T*~ is positive-definite if 3¢, = -8, is. Note

that only 7%~ depends on £i; T** and T*% are in-
teraction-independent and are the same as those
of a free field. Hence, the operators P*, P! E'
=J*! and L®=J', which depend only on T** and
T**, behave exactly like those of a free field under
commutations. Thus, they generate the correct

commutation relations with respect to ¢ and among
themselves.

The remaining operators, P~, F'=J~!, and K3
==3J*"(=J%), depend on T*- explicitly. To study
their commutation relations, we need to know the
following equal-x* commutator,
i7" (x), p(x")]

=3V @(x) V(8%(x = ")e(x™ = x'7))

+ %é,tz(p(x) - %) 3 (x~ =x')e(x™ = x"7).
(2.29)
By the use of (2.19), we can rewrite (2.29) as
AT (x), p(x")] = =288~ (x)8%(x - x")e(x™ = x'7)
+39 [Vo(0) 2 (x = x")e(x~ = x'7)].
(2.30)

Equations (2.29) and (2.30) can be readily integrat-
ed, giving

i[P~, o(x)]=0""p(x'), (2.31)
i[Ff, o(x")]=(x"a~ —x78") o(x"), (2.32)
(K3, o(x)]==3(x*8a" =x"9%) 0(x") . (2.33)

These relations, together with the analogous re-
lations for P*, P*, E*, and L3, constitute the
transformation laws of ¢ under P* and J*?,

[o(x), PF]=id"p(x), (2.34)

[o(x),J* ] =i(x"8Y — x"0")p(x) . (2.35)

Given (2.34) and (2.35), the transformation law of
T»? under P* and J*” can be computed easily as

[T*°(x), P¥] =0 T (), (2.36)
[T (x), T ] =i (xH8” — x” 0 ¥)T°
+ i(g“'T"o _gx:/Tuo
+g°“T)‘v _gou T)‘“) . (2'37)

As demonstrated in Appendix A, Eqgs. (2.36) and
(2.37) imply the correct commutation relations
among the P, and J Ao  and hence the Lorentz in-
variance. A direct verification of the Lorentz co-
variance in terms of the equal -x* commutators
among the densities 7** are also given in Appen-
dix B. These commutation relations are the gen-
eralizations of Schwinger relations to the light-
front formulation.



1I. YTy THEORY, QUANTIZATION

In this section we shall investigate the formal
structure of the canonical quantization on the light
front and the Lorentz invariance of the scalar and
the pseudoscalar coupling theory described by

Line = =g W (3.1)
and
Lint = —ighysdo, (3.2)

respectively. Since the formal structure of these
two theories are similar, we shall treat them col-
lectively as

Lint=-gUITYgp, (3.3)
with
I'=1or iy,. (3.4)

A. Light-Front Quantization

The Lagrange function for the coupled scalar and
Dirac system is

£=3[(8,0) - 12?] + W(if = m)y - g¥Tvep . (3.5)

By the action principle, we obtain both the field
equations

(% +1)p + gyry=0, (3.6)

3 p(x) =~ f déx’ 36(x* = x'+)8%(x = x")e(x™ = x7) (U2 = V) (x’) + gd(x)T¥(x")].
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(¢7 ~m)y - gT9p =0, (3.7)
U(=if ~m) - g¥re =0, (3.8)

and the generator

G=3% f Axdx™ (8% @b + i Py* oY)

= f Exdx~[ 5% 909 + 1P o). (3.9)

The field variations 639, 63(¥* are now assumed
to be anticommuting ¢ numbers in accordance with
the Fermi statistics of half-integer-spin fields.
Also

YO = AWy
A® =31 £9%58) = 3(1 +a°).

Note that only ¢, ™, and ¢V enter the generator
suggesting that they are the only independent com-
ponents in the present formulation. As we men-
tioned earlier, the number of independent vari-
ables in the light-front formulation is only one-
half of that given in the conventional formulation.
For the scalar field ¢ is concerned, this is due to
the fact that (3.6) is only linear, rather than quad-
ratic, in the “time” derivative 8~

8%8"p(x) = =[ (1 = V)@ + gYTY].

Hence, we have

(3.10)

(3.11)

(3.12)

It is only slightly more complicated to see that ¥(~ and (@ are no longer independent variables. To see
this explicitly in the present case, we separate Eq. (3.7) or (3.8) into two two-component equations,

87 = (ia -V +y MY =0,
0 = (i - V +y° MY =0,
where

M=m+glop.

(3.13)
(3.14)

(3.15)

It is easy to see that y°91 is Hermitian. Equation (3.14) indicates that (7 is a function of ¥(*) and ¢ on the

light front x* =const .

PN (x) = - 5i f Bx'dx'~ 8%(x — x")e(x™ = %) (& - V' +9° M) (') .

(3.16)

After verifying that only ¢, ¥, and ¥ are indeed the independent components, we can determine the
canonical commutation (or anticommutation) relations among them easily. From the generator function

(3.9), we obtain at x* =x'*
i[o(x), p(x)] =16%(x = x")e(x~ = x""),
{90, POT(x")}= A8 (x = x')8(x™ = x'7),
and
{0, ¥ ={pD M), ¥ T (2} =0,
[#(), @(x)] =[P (x), @(x")]=0.

(3.17)
(3.18)

(3.19)
(3.20)
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These commutation relations (3.17)—(3.20) are identical to those of free fields. The commutation relations
(3.17)—(3.20) and the field equations (3.6)—(3.8) specify our system completely.

B. Lorentz Invariance

The stress tensor 7" of the system can be computed by the standard method. It gives

TH =9k pd” g + zi[ Py Ho” )Y — 8 Py Y] = 3gHV[(8,9)? - 120?]. (3.21)
A symmetrization for the indices pu, v in the parenthesis is understood.
The components which are important for the verification of Lorentz invariance are
T = (0* )2 + i (P Ta Y = a+y(MTy(+) (3.22)

T+ =8+<pa"<p + i(¢(+)’rai¢(+)_35¢(+)1‘¢(+)) +15V .[d)(’r)w‘(aia _aai)¢(+)] — ot (PNt POV T i) ,
(3.23)
and

T~ = (Vo)? +129% + 5[99 Ta 94 — 0= g(OTy() 4 g Ta+ g —p+ gty (3.24)

In deriving (3.23), we have used the constraint equation (3.14). Note that operators 7** and T** given in
(3.22) and (3.23) are of the same form as in the noninteracting system. In particular, the integrated opera-
tors P*, P, E*, and L? contain the independent components ¢, ¥*, and ¥(*)* only. Hence, they give rise
to the same commutator relations among themselves and with respect to ¥, ¢* and ¢ as in the case of
free fields. Thus, Lorentz covariance is manifest for these transformations.

The remaining generators of the Lorentz group can be computed straightforwardly. With the help of the

field equations (3.13) and (3.14), we have

P-=%fdzxdx-[(v(p)z+“2¢2+i(w(’r)'fa—zp(ﬂ_a-¢(+)f¢(+))],

K3= _%f Pxdx {x+[($(p)2 +U~2(P2] —x'(3+(p)2 +2i(x+lp(+)'ra-d)(+) _ x-¢(+)1'a+zp(+) - Z/J“”ZP(”)},

and

Fi= %f @xdx~{x78*p8'p = & [(V)? +20?] + 2i[ 9P T (x~0% = xP =)y P + YT},

In deriving these equations, we have made use of
the integration by parts freely and dropped all sur-
face terms. The validity of these operations are
based on the assertion that the field operator prod-
ucts in the Lorentz generators are interpreted as
distributions, and their operations have meaning
only after they are smeared by proper test func-
tions.

From (3.25)—(3.27), we obtain, after some rath-
er complicated algebra, that

lo(x),P-]=i8"¢(x), (3.28a)
[@(x), K%)= =3i(x*0" —x"8%)g(x), (3.28b)
[o(x), Fl=i(x8* = x'87)p(x), (3.28¢)
[¥(x), P =i8"9M(x), (3.292)
[¥9(x), K3 = =3i(x*8™ = x~9*)P(9(x)

+219I(x), (3.29D)

(3.25)
(3.26)
(3.27)
[w(ﬂ(x); F‘] = i(x'ai —xia“)zp("')(x)
+ ’Zaizp(")(x), (3.29¢)

where ¥(-) is given by (3.16). It is easy to see
that (3.28) and (3.29) are indeed the correct trans-
formation law of ¢ and ¥¥ under P-, K° and F’.
Equations (3.28) and (3:29), together the trans-
formation law of ¢, ¥ and ¥Y* under P*, P?,
E, and L%, describe the entire Lorentz trans-
formation properties of the independent field op-
erators. The transformation law of the dependent
field () can be obtained from the constraint equa-
tion (3.16). These transformation properties can
be combined into simple covariant forms,

[o(x), P*]=i8"¢(x), (3.30a)

[o(x), JH]=i(xF8” - x”8") (), (3.30Db)
and

[#(x), PH]=i8"Y(x), (3.31a)
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[¥(x), TH" ] =[i(x*8" = x"8") + 30" | Y(x). (3.31b)

Knowing (3.30), (3.31), and the definition of T*?,
we can derive the transformation laws of the stress
tensor under any Lorentz transformation. It is now
easy to see that the transformation laws are indeed
given by Eqgs. (2.36) and (2.37). According to the
derivation given in Appendix A, we can proceed to
verify the commutator relations among P* and J"”,
and thereby complete the verification of the Lo-
rentz invariance of the theory.

As demonstrated in Appendix 'B, we can also es-
tablish the Lorentz invariance by verifying a set of
generalized Schwinger relations. These relations
are verified explicitly in the present theory.

IV. VACUUM EXPECTATION VALUES
AND ALGEBRAIC PROPERTIES
ON THE LIGHT FRONT

In this section we wish to mention that many im-
portant results in quantum field theory can be es-
tablished in the light-front formulation as well.
Among these we will discuss the spectral sum
rules, and the asymptotic behavior of the Green’s
functions at small distances.

A. Spectral Sum Rules and the Leading
Light-Cone Singularities

To derive the spectral sum rule for a scalar
field, we consider the spectral representation of
the vacuum expectation value of the commutator

A'(x)=—=i{0|[o(x), ¢(0)]10)
= [ @ p)at, 1), @.1)

where ¢(x) is a neutral scalar field, p(p?) is,a non-
negative spectral function, and A(x, p?) is the in-
variant function for a free particle of mass u. The
important fact is that the invariant function A(x, p2)
has a p?-independent value on the light front

A(x: “2) l xt =0~ —%62(37)5(95-) . (42)

Then, the light-front canonical commutation re-
lation

1
7Le(), 9(0)]l %0 = -10%(x)e(x7) (4.3)
leads easily to the spectral sum rule
f du?p(u?)=1. (4.4)
0

The spectral sum rule for a Dirac field ¥(x) can
be obtained analogously.

Now, we consider the small x* behavior of the
operator commutator function Agp(x)
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=-i[¢(x), (0)] and the Green’s function
8p0) = [ @ oA (5, 1), (4.5)
V]

where Ap(x, ) is the propagator function for a
free particle with mass u. At small % the lead-
ing behavior of Ag(x, u?) is

i 1
Aplx, 1) 7

4772 xz_ i€ ) (4-6)

independent of p?. Using (5.6) and the spectral
sum rule, we obtain the leading asymptotic be-
havior of AL(x) as

i 1

Ar(¥)le2s0™ T3 mf dp?p(p?) =
0

S S
47% x2-ie
4.7)

i.e., AL (x) behaves as a free-particle Green’s
function near the light cone, (i.e., near x*=0).
Similarly, we can compute the leading behavior of
Aop(x) near x®=0. Note that as x>~ 0, we can al-
ways choose a frame such that x*, -0, and x~
remains finite. In this frame, we can use the
light-front quantization relation (4.3) to obtain®

’

AOP(x) lxz 0™ —%ﬁz(x)e(x-)lop = A(x) l,,z_,o 1op )
(4.8)

where 1o, is the unit operator in the physical Hil-
bert space.

The above method can be applied equally well to
study the leading behavior of the anticommutator
Sop(x) ={¥(x), ¥(0)} and the fermion Green’s func-
tion Si(x).

In the theory of a charged scalar particle or a
Dirac particle interacting with a neutral vector
gluon field A, the small-distance behaviors of
the (anti-) commutators are known to be modified.
These modifications should be reflected in the
quantization rules. In a subsequent paper it will
be shown in detail how the canonical commutation
relations on the light front between the charged
fields,'® ¢ and/or ¥ can acquire an A* dependence.
Here, we simply summarize our findings: Ina
charged-scalar-meson theory with the interaction

Ly = i8Q¥DPQA , + g2p*QAMA (4.9)
we find that the canonical commutator relations at

x* =const are simple only between the modified
charged fields

@'(x) = o(x)exp [—igfdx" se(x™ —x A (x, X, x"')]

(4.10)

and its adjoint ¢'*(x), giving
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[o"*(x), p"(¥)] = —5i6%(x - y)e(x~ =), (4.11a)
[o'(x), o'W ]=[@"*(x), " *(¥)]
=0. (4.11b)

Similar modification occurs in the theory of a

Aop(x =) = =il (x), 9*(¥)]

=exp[igf dx'~ ze(x™ = x'")A*(x*, %, x'7)

I3

Dirac field interacting with a vector-gluon field.
The (anti-) commutator relations and the Green’s
functions associated with the new fields ¢’ and ¥’
behave as those of free fields near the light front
x*=y* and as (x —y)*~0. Thus, we conclude that
as x* - y*, ¥-§-0 but with a finite x~ -y~

—ig [ ay it =y A6, T, 90| D[99 )]

_.exp(igf: dZ“Au(Z)> Alx—-y),

and similarly

Sop (x = y) = =i{3(x), P(»)}
-~ exp <igfx dz“Au(z)> S(x-y),

(4.13)

where the line integral dz" is along a straight
lightlike path from y to x. In deriving (4.12) and
(4.13), we have used the fact that at x* =const, A*
commutes among itself as well as with ¢’ and
P’'® 2 Equation (4.13) is precisely the expression
obtained by Gross and Treiman.!? Similarly, in
the presence of an external A field, the Green’s
function will be modified by a phase just as in
(4.12). It is interesting to point out that this phase
factor is precisely the eikonal phase which appears
in the relativistic potential scattering. As x* —y*,
%X~y -0 and with a finite x~ - y~, the space-time
points x and y can still be linked by a high-energy
particle moving in the path of z#. It is known that
the eikonal phase of a charged particle moving in
an external vector gluon field A u approaches an
energy -independent value given by (4.12) at very
high energy; while the eikonal phase picked up by
a particle moving in an external scalar field will
vanish as the energy of the charged particle tends
to infinity. This supplies a simple physical reason
why the canonical (anti-) commutator relations and
the Green’s functions on the light cone in the Jrngo
theory are not changed by the interaction, while
the corresponding expressions in the vector~gluon
model are modified.

We shall conclude this section by mentioning that
many of the important current-algebra results —
e.g., the Adler-Weisberger relation,??:2% the Ad-
ler’s sum rules on neutrino scatterings,?* and more
generally, the Fubini-Dashen-Gell-Mann sum
rules® —originally obtained from the infinite-mo-

(4.12)

mentum technique, can be obtained from the light-
front commutator rules without referring to the
infinite-momentum limit. For many interesting ap-
plications of the light-front current algebra, we
refer the readers to the work of Brandt, Cornwall,
and Jackiw,?® and Dicus, Jackiw, and Teplitz.?®

V. DISCUSSION

In this paper, formally consistent quantum field
theories of interacting scalar and Dirac systems
are formulated by light-front formulation. The
scattering matrix in this formulation can be shown
to reproduce the well-known results. Thus, light-
front formulation of quantum field theories can be
taken as an alternative to the equal-time formula-
tion as the basis for general studies of relativistic
quantum systems. In this formulation dynamics is
organized in a very novel fashion. Consequently,
many nontrivial predictions which follow immedi-
ately here are not readily accessible in the con-
ventional formalism, such as current algebra sum
rules mentioned before; it is also particularly
suited for study of deep-inelastic processes.?®:2¢

However, this new formulation is not without its
delicate features. Operator products near the
light cone are highly singular. Previous experi-
ence with equal-time formulation shows that re-
sults obtained by formal manipulation often cannot
be verified by explicit perturbation calculations.?”
As the exact solution to a complete theory is not
available, it is still controversial whether the for-
mal results or the perturbation calculations should
be trusted. This is acutely so in view of the Bjor-
ken’s scaling behavior®® found in deep-inelastic
electron scattering experiments which follows
from naive light-cone current algebra but is vio-
lated in perturbation calculation of any renormal-
izable field theories.?® We can only emphasize
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that the formal results obtained here, as any for-
mal result obtained anywhere else, must be treated
with due caution.

To conclude we make two remarks. Firstly,
light-front formulation shares the failure of equal-
time formulation to produce the necessary Schwing-
er terms in the commutation relations of fermion
currents. Secondly, it is generally believed that
use of the infinite-momentum limit to provide cur-
rent-algebra sum rules is equivalent to the as-
sumption of unsubtracted dispersion relations. In
the light-front formulation, these sum rules follow
without reference to any infinite-momentum limit.
Although the light-front formulation is not identical
to the infinite-momentum limit, where does the
need of unsubtracted dispersion relations enter in
the derivations ?%°
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APPENDIX A

Knowing the transformation properties of the
stress tensor T#”, we can establish the correct
commutation relations among the generators of the
Lorentz group.

Assume that T"” has the following properties

TH =TV H, (A1)

8,T" =0, (A2)

[T*°,PF]=dokT™O, (A3)
and

[T)‘O,J“"]= i(xpav _xvap)TXc

+2'g“°T>‘v - igou Txu

or a light-front surface

PH=3 f dPxdx™ T, (A7)

JW =4 f Bxdx™ (x* T =5V T*). (A8)

Since the stress tensor is conserved, Egs. (A5) and
(A6) and Eqgs. (A7) and (A8) give the same genera-
tors. For simplicity, let us use the definitions
(A5) and (AS).

To demonstrate that (A1)—(A8) imply the correct
commutator relations among the Lorentz genera-
tors, we work out the commutator between a J and
aP:

[g*°,PH]=i f d3x (xMoH 100 — xO9HTON) (A9)

For u =k+0, we have immediately
[J"",Pk]=if dPx (—gM*T0% 4+ goRTON)
=ig®P* - ighP°. (A10)

For u =0, we can use (A2) to simplify our integra-
tion, giving

[J)‘ o,PO] = Zf d3x (x)\ameo - xoameX)
= Zf dax(_gm)\Tmc_,_gome)\)

=Z~fdsx(T)\o_go)\TOO_To)\+g00T0)\)
= —igOApO | 200D
=—ig®"P°+ig°°P* | (A11)

Equations (A10) and (A11) can be written covari-
antly as
[7*o,PH]=i(g"P* = g*HPO). (A12)

The commutators between two P’s and two J’s

+ig MTVO = gV ThO (A4) can be worked out in a similar way, giving

The Lorentz generators P" and J"” can be obtained [P P*]=0, (A13)
from the stress tensor by integrating over either
a spacelike surface [Jro,TH ] = igh kv — ighVgHoe

Pu:f dBx T, (A5) +ighoJN — jgVogiE (A14)

Equations (A12)—(A14) are the required commu-
JH = fdsx (x*T% = x"T°M), (AB) tators among the Lorentz generators.
APPENDIX B

Since the stress tensor 7" is symmetric and conserved, the generators P* and J*” defined in Appendix
A, Eqgs. (A7) and (A8), are independent of x*. The commutators of P¥ and J*” may be evaluated once we
know the commutators of the stress tensor on the light front. We wish to point out that J*” and P* will
satisfy the commutation relations for the generators of the Lorentz group if the equal-x* commutators for
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the densities obey the generalized Schwinger conditions!’

[T (x), T ()] =2i(T*" (x)8f = T*H(y)a} ) 6%(x = y)o(x~ = y7), (B1)
(77 (x), T~ ()] =2i( T~ (x)a] + T*~(y)85 = 2T ()8]) 0%(x - y)(x~ = y7), (B2)
(7% (%), T+~ ()] =24 T+~ (29} 6%(x = y)0(x™ = y7), (B3)
[T*~(x), T*~ ()] =0. (B4)

In the above expressions, as well as throughout the rest of this appendix, unless explicitly stated other-
wise, 4, v, 0, and p may take on any value but “—,” while 7, k, j, and [ are transverse components. We
must hasten to emphasize that (B1)—(B4) are sufficient conditions for Lorentz covariance, and in general
there are extra terms which do not contribute to the commutators of the Lorentz generators. Existence of
these extra terms will be demonstrated in free-field theories and their properties will be discussed.

The derivation of the Lorentz group commutator relations from (B1)-(B4) is tedious but straightforward.
Hence we omit it. The detailed derivation will be given in the thesis of one of the authors (R.G.R.).

In any specific theory, the stress tensor commutators at x* =y* can be calculated from the known com-
mutators among the fields. As an example, consider the free scalar field where the stress tensor is given
by

" (x) =[o* (%), (B5a)
(%) = 9" ()9 (%), (B5b)
T (x) = (¢*)? + 12 2(x) . ‘ (B5c¢)
Then the equal-x* commutators of the stress tensor components are:
LT7* (), T (9] =2i(T** ()25 = T**()8]) 6%(x = y)8(x~ = y7), (B6)
[T+ (x), T ()] =2i( T+ (x)0} - T (9)8}) 8% (x = y)d(x~ = y7), (B7)
[T (x), T*~(9)]=2i( T~ (x)3] + T+~ ()8} =27+ ()8l ) 6%(x — y)8(x~ = y7), (B8)
[T (x), T (y)] =24(TH (x)8) = T (y)8]) 6%(x = p)b(x~ = y~) +878} ati(x, y) +8L A% (x, y) =8I Al(y, %), (B9)
(700, T~ (0)] =24 T~ (x)01 8%(x = y)6(x™ = y7) = 28785 a™*(x, y) +207 B (v, y) +0% 7™ (x, ) +2: B(x,y),  (B10)
LT*7(x), T* ()] =0 +493 8} o™ (x, y) + 40 B'(y, x) — 405 B*(x, y) +9} C(x, y) =8 C(y, %), (B11)
where
a'(x, y) =@ (D)@’ (y) [ -aie(x™ = y7)o%(x = )], (B12a)
Bi(x, ) =@ (0)[8385 ()] [ i e(x™ = y7)o%(x ~ y)], (B12b)
vH(x, ¥) =410 (0)@"(9)6%(x = )5(x™ = y7), (B12c)

and
Al(x, y)==8}0i {p(x)p(v) [ —1ie(x™ = y7)8%(x — )|}
=0i[* (M@ ()i 6% (x = y)6(x~ = y7)] +8 [ (%)@ (x)i6%(x = ¥)6(x™ = 37)]

+295 03[0 (M@(»)16%(x = )8(x~ = y7) ]+ 3070300 (x)p(y) [~Fie(x™ = y7) 8% (x =) [}, (B13a)

B(x, y) =287 {p(x)[ 9785 p(y)][~1ie(x™ = y7)8%(x = y)| }
+20305 { ()" () [ ~xi€(x™ = y7)0*(x = y)] } = 20%[ 9 ()" (1) 6%(x = y)b(x~ = y7)], (B13b)
Clx, y)=2[8; 9] [958 0(¥)|[~1ie(x™ =y7)6%(x = y)]. (B13c)

The commutation relations (B6)—(B11) contain not only the terms in (B1)—(B4) which are required for
Lorentz covariance, but also extra total derivative terms which do not contribute when we integrate to find
the commutators among the generators.

For the self-interacting scalar field with no derivative coupling, the stress-tensor components are the
same as in (B5a)—-(B5c) except for

T*(x) =[@*(2) P + 12¢%(x) = 2Lim(x) . (B14)
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The commutators are still given by (B6)—(B11), the interaction being contained entirely in [0 ¢(x)].

We have also checked the free Dirac field, and the interaction of a Dirac field with a scalar field through
g¥TYp where T is either 1 or iy®. The basic structure of Eqs. (B1)—(B4) remains, but with nontrivial ex-
tra terms which do not contribute after integrations to obtain the generators. The details of the calcula-

tion will appear elsewhere.

It is worth mentioning that among all the interacting field theories we have investigated, only the equal-
x* commutator of TH* with itself is simple as stated in (B1), free of extra terms. It is

[T (%), T**(9)] =20 ( T** (%) + T** () 8} 8%(x — )8(x~ = y7).

APPENDIX C (added in proof)

In this appendix we first discuss and explain in
more detail why the initial-value problem differs
in the light-front and equal-time formulations, we
study briefly the classical analog of the light-front
formulation, and finally we consider some special
features of the zero-mass particles in the light-
front formulation.

1. Initial-Value Problem in the Light-Front
and Equal-Time Formulations

It was pointed out in the text that the number of
independent variables describing a dynamical sys-
tem is reduced by 3 in the light-front formulation
as compared with the conventional equal-time
quantization. This is reflected in the initial con-
ditions required to determine the solutions of the
corresponding wave equations. In the case of a
spinless particle this can be understood, as men-
tioned in the Introduction, by the fact that the
Klein-Gordon equation is second order in the time
variable but only first order in x*. It is less ob-
vious why the reduction of variables should also
occur in the case of a spin-3 particle since the
Dirac equation is first order in both sets of vari-
ables.

We would like to discuss this point further in the
context of the initial-value problem. We will see
that this phenomenon is intimately connected with
the fact that the mass-shell condition

pr=m? (c1)
fixes the energy p° only up to a sign for a given p:

PO (F+ )2 (c2)
but it uniquely determines p- in terms of P, and

p*:

- _Dulem?
= T
Let us begin our discussion by writing the gener-~

al solution of the Klein-Gordon equation as

p (c3)

¢(x)=f A% 6(k% - n2) a(k)e** . (ca)

The question is: How much information does one
need in order to determine a(k)? To see this we
invert Eq. (C4) to obtain

é(kz—uz)a(k)=(2—1ﬂ? [ awe o). (C5)

Because of the mass-shell § function on the left-
hand side, one does not have to know ¢(x) for all
x to fit a(k). For example, if the information is
given on the surface x°=0, we can integrate over
£° on both sides. Making use of

8(k% = w?) = 5%[6(k°-w)+a(k°+w)], (C6)
we obtain
o Lalk, +0) +a(E, o)) = s [ dxem ™0, 0),

(c)
where
w=+K2+p2)2 (c8)

It is clear that Eq. (C'7) alone is not sufficient to
solve for a(E, +w) and a(l?, —-w) separately. To ob-
tain another, equation we multiply Eq. (C5) by 2°
and then integrate; we get

La(E, +w) -a(E, -w)]=(2+;)3f P e (F, 0).

(C9)
Combining Egs. (C7) and (C9) we have

a(E, +w) = (élﬂ-)3 f d’x e”k'x.a.od)(x) 005 (C10)

a(-k, -w)=(—21Wf % e ** B, (x) oo . (C11)

Thus we need both ¢(x) and cf)(x) at x2=0 to de-
termine a(k).

Alternatively, if the information is given on the
surface x* =0, we can integrate (C5) over 2~. The
result is



1144 CHANG, ROOT, AND YAN 1

1 > k.2 2
—a<k+, kL’ %t_—&—)
1 T LT
= Gy | xR, 1 <0),

(C12)

which determines a(k) uniquely if ¢(x) is known at
x*=0.

It is now an easy matter to understand the spin-3
case. The Dirac equation

(y*id, - M)¥=0 (C13)

implies that ¥(x) must also satisfy the Klein-
Gordon equation

(82 + M?)9=0. (C14)

The general solution for ¥ can then be written as

W)= [ dpo(p® - Mu(p, 9(p, s)e~,

(C15)

where u(p, s) is the properly normalized solution
of the Dirac equation in momentum space,
(*py=Mu(p,s)=0, p>-M?=0. (C16)
As in the spin-0 case, Eq. (C15) can be inverted
to obtain 5(p, s). If ¥(x) is known at x°=0, then
we need all the four components of ¥(x) to project
out the b(p, s) associated with p°=+(p%+M?)/% and
s=z3 for a given momentum . On the other hand,
if Y(x) is given at x* =0, we need only two com-
ponents of Y(x) to separate out the b(p, s) associ-
ated with the two spin states since p~=(5,%+ M?)/
p* is single valued for an assigned set of p, and

p +
2. Classical Analog of the Light-Front Formulation

We now investigate the classical analogs of the
light-front formulation of quantum field theories,
namely, those systems for which the conjugate
pairs of variables are functions of each other. For
theories in which p; and ¢; are independent, the
Hamilton equations are

. OH . oH
Qi-@:, pi_—aq,-' (c1m)
For systems in which p; and g; are related and
not independent, the Hamiltonian is actually a
function of g only (or of p only). The question is:
What are the analogs of Eq. (C17) in such a case?
Consider the following example®!:

£=19B8¢ -wqq, (C18)

where ¢ is a column vector and B is an antisym-
metric matrix with the properties

gr=-8, @=1. (C19)
The conjugate momentum to q is
_og
9g
=1iqp
==iBq. (C20)

p is obviously linearly related to ¢q. The equa-
tion of motion is

iBg =wq (c21)
from which it follows that
G +w?q=0. (C22)

Thus, £ of Eq. (C18) describes a system of un-
coupled harmonic oscillators. The Hamiltonian is
constructed by the standard formula

H=pg -2
=wqq, (c23)

which is a function of q only.

It can be readily verified that the Hamilton equa-
tions Eq. (C17) are not satisfied. They are re-
placed by

-3,
1 6H 1 oH 9q (C24)
992 %p ~28q 8p’
where
9q/3p=1ip (C25)
and similarly
ap/dq=—iB . (C26)

We now define the modified Poisson bracket as

1 8A 8B 9A 8B
Wst i (5o an = o 5a)> (2D

where A and B are expressed as functions of ¢
only, and

B4 5~ 94 Bg;
0p; 5 9q; ¥p;’

Z 9B 9g; (C28)
3121 9g; 31’.
In partlcular,

{an pi}=20, (c29)



=3

{gwait= _%iﬁkl . (C30)

The factor 3 should be noticed. Now

dF BF
P )

OF oF .
=%t T2 5p, i (c31)

L]
The two versions follow from regarding F as
either a function of ¢ or a function of p. The sym-
metrized form is

dF o8F 1 oF . 9F .
@i 1L (s g B)
1
OF 1 OF OH OF oH
o i (57 3™ ;)
or

dF aF
ST +{F,H}. (C33)

Thus, the particular definition, Eq. (C27), of the
modified Poisson bracket is designed to preserve
the familiar formal structure (C33) as in the case
where p and g are independent. For a quantum-
mechanical system, one can simply replace the
Poisson brackets by the corresponding commuta-
tors.

3. Special Features of the Massless Case

We discuss here the special features of the
massless case. Let us start with the 1+1 dimen-
sional space-time. The Klein-Gordon equation
degenerates into the one-dimensional wave equa-
tion

(852 —8,*)¢(x)=0; (C34)
the general solution is
o(x) = f(x*) +g(x7), (C35)

where x*=x°+x! and f and g are arbitrary func-
tions. The information on ¢ and 4) at a particular
time, say x°=0, determines f and g completely.
But suppose only ¢(x) is specified at x* =0,
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x*=0, o(x)=h(x"), (C36)
then
¢(x) =n(x")+ f(x*) = £(0) (C37)

satisfies the boundary condition (C36) but it leaves
f(x*) arbitrary. To specify ¢(x) uniquely, one can
require that the acceptable solution must vanish
as x~ -, Then

d(x)=h(x7). (C38)

Half of the solutions to the wave equation (C34) are
lost. There are only waves advancing in the posi-
tive x! axis but not those advancing in the negative
x* axis.

Since the one-dimensional waves also satisfy
the two-dimensional or three-dimensional wave
equation, the arbitrariness mentioned above also
exists in higher dimensions for zero-mass parti-
cles. The additional boundary condition that ¢(x)
must vanish as x~, X, -« must be imposed in or-
der to remove the arbitrariness.

This arbitrariness associated with massless par-
ticles can easily be understood in momentum
space. The mass-shell condition

k2=0 (C39)
becomes
E*E~=0 (C40)

in 1+1 dimension. As long as k* =0 (or £~ =0),

k™ (or £*) can be arbitrary, i.e., there is no
unique relation between £* and ~. This arbitrari-
ness occurs in higher dimension if k, =0, since
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