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The problem of generating nonrelativistic three-body scattering amplitudes which satisfy
unitarity exactly, at all energies, is studied in the context of an effective-potential theory.
It is shown how the nonlinear unitarity relations can be replaced by linear integral equations,
simpler in structure than the original Faddeev equations, such that for any set of input am-
plitudes satisfying standing-wave boundary conditions the output will be unitary. Variational
principles for these input amplitudes are derived from the Faddeev equations which define
them, so that approximations can be systematically improved. Attention is drawn to a partic-
ular class of approximations for which the integral equations to be solved are all of the two-
body type. These approximations have the additional virtue that the trial functions which
enter into the Schwinger-type variational expression are square-integrable. This property
allows for a choice of trial functions based on an "effective-range" type of argument. The
Schwinger principle can then be thought of as providing an analytic continuation of the effec-
tive potential from an energy domain below the breakup threshold to a limited range above it.

I. INTRODUCTION

An effective-potential approach to the few-body
nonrelativistic scattering problem has been studied
in some detail during the past few years. For en-
ergies below the threshold for target breakup this
method benefits significantly from the existence of
rigorous maximum and minimum principles for the
construction of the effective potential. " The scat-
tering amplitude can be obtained from a given ap-
proximation to the effective potential by numerical
solution of a Lippmann-Schwinger equation of the
two-body type. Several applications of this ap-
proach have been reported recently, in which upper
and lower bounds on phase shifts for certain low-
energy three-body scattering problems have been
obtained. ' '

In the present study we are concerned with devel-
oping variational methods which preserve the uni-
tarity of the scattering matrix. The effective po-
tential can be thought of as a scattering matrix as-
sociated with a modified Hamiltonian with two-par-
ticle bound states removed. (The precise definition
is given in Sec. II.) It therefore satisfies "unitar-
ity" relations differing from those satisfied by the
physical scattering matrix in the absence of sums
over intermediate states with a pair bound. Any
approximation to the effective potential which sat-
isfies "unitarity" relations of the proper form will
lead to a unitary scattering matrix, as shown in
Sec. IG. It is possible to continue the reduction one
step further by introducing an amplitude which is

Hermitian (both two- and three-body intermediate
states removed) from which the effective potential
is obtained by solution of a Heitler-type integral
equation. (For energies below the breakup thresh-
old the effective potential is itself Hermitian. We
are interested here in the general case where all
channels are open. ) Variational principles for this
Hermitian amplitude, of the Kohn and Schwinger
types, can then be written down and the correct re-
ality properties imposed without difficulty, as
shown in Sec. IV. The Schwinger-type principle
can be put in a form which involves only square-
integrable trial functions, a property which should
prove useful in practice.

In general, three-body (energy-conserving)
states appear in the kernel of the above-mentioned
Heitler integral equation. Present computational
methods may be adequate to deal with equations of
this type. It is of interest nevertheless to observe
that a simplified model can be defined in which the
integral equation can be replaced by integrals over
known functions without sacrificing the exact uni-
tarity relations for the scattering matrix. In addi-
tion the variational nature of the approximation is
retained for the elastic and rearrangement compo-
nents. This model is described in Sec. V and a
procedure for choosing trial functions in the spirit
of effective-range theory is indicated.

For simplicity we confine our attention through-
out to the three-body problem in which the parti-
cles interact by means of short-ranged local two-

body potentials. The Faddeev equations can then
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be used to provide rigorous derivations of the vari-
ational principles. The derivations are based on
techniques introduced previously for variational
treatment of the breakup problem' and are suitably
modified here to apply to elements of the effective
potential rather than to the scattering matrix. The
basic approach can be characterized as follows.
We take the separable-potential model' as a
zeroth-order approximation, treating the residual
interaction variationally. Unitarity is preserved
by formulating this problem in terms of a Heitler
equation. The particular virtues of variational
principles of the Schwinger type become apparent
in this analysis.

II. METHOD OF EFFECTIVE POTENTIALS

For ease of reference and to establish notation
the effective-potential formalism previously de-
scribed' will be reviewed here. The starting point
is the set of Faddeev equations' for the operators
'T~(E) (i,j = 1, 2, 3), in terms of which the physical
scattering amplitudes for energy E can be con-
structed. These equations can be written in matrix
form as

T(Z) = T'(E)+ T'(Z)C, (F)T(Z) .
Here

(2 1)

(2.2)

with G, expressed in terms of the total kinetic-en-
ergy operator as

parts of elements of the effective-potential matrix.
We also introduce the propagator

9;=(&x; IV; Ix;& —&x;v;lc; Ivx &) ',
where

c,„=(E-z —v, „)-'.
We then can write'

D DTia ='Uoi~i'Uio

(2.9)

(2.10)

(2.11)

3

~ij +ij + Z U&0 90 &0g t 2& 2 = li 2i 3 ' (2.12)

The effective-potential matrix elements %);& can be
constructed in terms of the matrix T„, defined by
Faddeev equations which have been modified by the
replacement of T with T„. Explicitly, we have

'0;; = '0)~CO'U~~(1 —5)~)

When the above decomposition of T, is inserted
into Eqs. (2.1) the result can be expressed as a set
of integral equations for the scattering operators
whose momentum-space matrix elements give the
physical scattering amplitudes. ' " Our notation is
such that the elastic and rearrangement ampli-
tudes, with pair j bound in the initial state and pair
i bound in the final state, are represented as
(k; l 9;, lk,.), where k,. is the momentum of the cen-
ter of mass of pair j relative to the third particle.
We find coupled equations for the operators W;~ in
the form of tmo-body Lippmann-Schwinger equa-
tions:

c,=(z-z)-'. (2.3)
+ + Z'U 0C0'TAC0'Uo~.

l &ik&j
(2.13)

The disconnected part is given by

LT'],, = T, 5,, (2.4)

The two-body transition operator T; is defined by

Ti = Vi + Vi GOT i ~ (2.5)

where V; is the potential for pair i. If pair i sup-
ports a bound state (for simplicity we assume that
no more than one bound state exists for each pair)
we write Vi = Vi&+ V;&, where

With the operators W;, known the remaining ele-
ments of the physical scattering matrix can be ob-
tained by quadratures. The amplitudes for the
breakup process and its inverse are represented
as (K, l

V'„
l k;& and (k; l I,O l K,), respectively,

where K, is a six-dimensional momentum vector
for the state of three free particles in the center-
of-mass frame. The 3-3 amplitude is repre-
sented as (K,'l 9;0lK,&. Let us define the effective-
potential matrix elements

v ~x;&&x;~v;
&x~~v;~x&

' (2.6) +Ol +Ol + TA 0 Oft
%&i

(2.14)

~;; =(1+T,„c,) I v; x;& (2.7)

and y; is the bound-state wave function. Then
T; = Ti ~ + Ti ~, where Ti ~ satisfies an equation of
the form (2.5) with V; replaced by V,„, and T;~
contains the bound-state pole. It will be convenient
to express T;8 in terms of the operators

+$0 ~so + lOCO TA t
l&i

(2.15)

OD=T~~ (2.16)

where we use the notation P', , T„=T„, etc. Then
the equations which determine the complete scat-
tering matrix take the form

&';.=(x;v; l(1+c.T; ), (2.6)
3

9' 8='U 0+ Q '0 08„90g, n, P=1, 2, 3, 0.
4=1

which, as will be seen, represent disconnected (2.17)
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Gw = Go+ GOT~GO. (2.19)

Similarly, we have in place of Eqs. (2.14) and
(2.15)

and

'Uo» = (I + T~Go) I Vi xi&

'Ui, =()(iVi I(1+G,T„),

(2.20)

(2.21)

respectively.

III. UNITARITY PROPERTIES

It is clear that Eqs. (2.17) generate a unitary
scattering matrix since they are equivalent to the
original Faddeev equations. This unitarity proper-
ty may be verified directly, as shown below. One
identifies in this way the properties of the effective
potential and propagator which, if satisfied in any
given approximation, will necessarily result in a
scattering matrix which satisfies unitarity exactly.

For notational convenience we write Eqs. (2.17)
in the matrix form

(3.1)

or, equivalently,

v'=v +v 8u. (3.2)

The 4&&4 matrix 9 has as its only nonvanishing
elements

[9];;=9;, i=1, 2, 3. (3.3)

In fact Eqs. (3.1) and (3.2) define two matrices,
1 (+) and g ), the superscript indicating the sign of
the infinitesimal imaginary part of the energy vari-
able. (When in the following no sign is indicated,
the positive sign will be understood. ) The identity

q'+ —P [1yc( (-)g(-)] [/( ) g(-) j [1+9(+)q (+)]

+g(-) [ g(+) g(-)] g-(+) (3.4)

is then readily established. From the relation

Note that '0;„given by Eq. (2.13), has no discon-
nected part. This property can be maintained in
any approximation generated from Eq. (2.13) by in-
serting an approximate form for T„. Similar ap-
proximations based on Eqs. (2.14) and (2.15) will
guarantee the correct disconnected parts given by
the leading terms. However, in studying the uni-
tarity properties of the effective potential (in Sec.
III) we find it convenient to express the effective
potential in a different form" with the aid of the
Faddeev equations satisfied by T„. It is easily
verified that Eq. (2.13) is equivalent to

&ig = &xi vi I GA I vi x/& (xivi I GiAI v~ xi»0 ~

(2.18)

where

T(„' —T(„)= -(2((i)T(„)5(E -K)T(„'), (3.5)

which is also satisfied by the disconnected compo-
nents T;„, the discontinuity'0 ' -'0 ' can be de-
termined. Thus, from Eq. (2.18) we find

The discontinuity relations for the remaining com-
ponents 9 0 'Uo~ and 00 may be summarized as

u(„'8) —v(„-,) = -(2~i)~(.-,) 5(z -K)v( ). (3.8)

We observe for future reference that matrix ele-
ments of the discontinuity shown in Eq. (3.7) vanish
on the energy shell. This may be seen by writing
K+ V;„=X;+H&» where 3'.; is the kinetic-energy
operator of the third particle relative to the center
of mass of pair i, and H, „=K,+ V;„ is the Hamil-
tonian for pair i. Then, with E; representing the
bound-state energy, the resolvent equation for G&&

becomes

(E-X;-If;„)-'=(E, H,„)-
—(z, -a,„)-'(E-x, —E,)

x (E -x, -If,.„)-'. (3.9)

Now the first term on the right is independent of
E, and the second term annihilates states on the
energy shell due to the factor (E -X; E;), so th-e

above contention is proved.
The discontinuity 9(') —g( ) in Eq. (3.4) has two

contributions, arising from the branch points at
the elastic and breakup thresholds. These two
contributions can be computed by using Eq. (3.9),
along with the relation

(Ei -If; )-'v; Ix;) =
I x;& (3.10)

(which follows from the homogeneous integral
equation satisfied by X; and the fact that V;„I)(;)
= 0), to express Eq. (2.9) in the form

1-(x, IG,„v, Ix,&

&xil vilxi& —&xil viGiAv; Ixi&
'

(3.11)

When evaluated in momentum space the first term
on the right-hand side will have a branch point at
E =E; which is absent from the second term. The
branch point at E =0 arises from the singularity of
G&„, agd the associated discontinuity can be com-

i j =1, 2, 3 (3.6)

where the subscript c indicates that only the con-
nected part is to be retained. In arriving at this
form we used the relation

(x,V; I
G'~ —G;~ I V; x;& = -(»i)~', ,"5(E-K)eo',".

(3.7)
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puted directly from Eq. (2.9). In this way we find
that

(2((i)9(-)g(-)j)5(E K)~(+)D 9(+)

(3.12)

where we have used Eq. (3.7) in writing the second
term.

The above discontinuity relations can now be used
in Eq. (3.4), with the result (for o. , P=1, 2, 3, 0)

&,'j =&xjvj IGAI vj xj& -&xjv; IG';~I V;x,)5,„
80, ——(1+ v„G~) I vj xj) i

Q', , = &x, v; I(1+Gatv~),
P P
oo

—Vw+ VAGAV

(3.19)

(3.20)

(3.21)

(3.22)

When Eqs. (3.17) and (3.18) are used in the expres-
sions for the effective-potential matrix given at the
end of Sec. II we obtain the equations

V,j = uj'j —i))[a,',5(Z —K)u„]„ (3.23)

—(2&i) Q 9'„;5(E -X; Ej)E -(j

(3.13)

plus terms which vanish when on-shell matrix ele-
ments of these operator relations are constructed.
Equations (3.13) are equivalent to the usual unitar-
ity relations since W( 8

= d()„)t.
The preceding discussion shows that the problem

of preserving unitarity, i.e., of satisfying Eqs.
(3.13) in a given approximation, can be transferred
to the problem of finding solutions to Eqs. (3.6),
(3.8), and (3.12). The advantage oi this reformula-
tion lies in the simpler structure of Eqs. (3.6) and
(3.8); the elastic and rearrangement components
do not appear on the right-hand sides.

We can think of Eqs. (2.17}as representing a
partial linearization of the unitarity relations.
This process can be completed by the introduction
of a Heitler-type transformation of the equations
which define the effective potential. To do this it
is convenient to express Eq. (2.19) in the form

for i, j=1,2, 3, while the remaining elements „-,
~;„and 'Uoo satisfy

'U„8 -—'0„()—i 7(V~05( Z —K)U08 . (3.24)

The usual property of Heitler-type equations hold
here: Given any set 'U

8 with no discontinuity, the
correct discontinuity relations are guaranteed for
solutions of the above set of linear integral equa-
tions.

The operators 'U~a may be determined from
equations of the form (2.13)-(2.16), in which all
singularities have been evaluated with the princi-
pal-value prescription. The leading terms in the
expansion of the Faddeev T matrix in these equa-
tions may provide a reasonable approximation at
high energies. " In the next section we set up a
more general scheme for generating approxima-
tions for 'U 8.

Different methods for constructing unitary three-
body theories can be found in the work of Kowalski"
and Cahill. '

GA = ~o+ GoV~G (3.14) IV. VARIATIONAL PRINCIPLES

with

3
V~= Q Vj„.

If we write

Go = Go —ij(5(E -K),
and introduce G„as the solution of

G~ = Go +G~V~Go

we have the identity

(3.1s)

(3.16)

G„=G„—i7((G~V„+ 1)5(E-K)(1+V„G~). (3.17)

Similarly, we see that

G;„=G,„—((((G;„V,„+1)5(E-K)(1+V;„Gj„}.
(3.18)

The effective-potential matrix associated with the
"standing wave" resolvent G„can be defined as
follows:

The equations which determine the effective-po-
tential matrix can be put in variational form. Since
the derivations closely follow the methods devel-
oped in an earlier study of the breakup problem'
we need only sketch the procedure here. When the
trial functions introduced below are chosen to sat-
isfy standing-wave boundary conditions the varia-
tional principles apply to the elements 'U„B which
appear in Eqs. (3.23) and (3.24). This provides a
systematic procedure for generating approxima-
tions to the scattering matrix which are variational
in nature and which satisfy unitarity exactly.

We first consider the elastic and rearrangement
elements of the effective potential, defined by Eq.
(2.13) or, equivalently, by Eq. (2.18). While both
definitions can be put in stationary form we shall
work here with Eq. (2.13); the correct connected-
ness property is then incorporated at the outset.
[Precisely the same result is obtained if, in the
variational principle based on Eq. (2.18), the trial
functions are constrained to have the correct dis-
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connected parts. ]
For energies below the breakup threshold a

Kohn-type variational principle for i~ has been
derived with the aid of a variational principle for
the resolvent G„.' That derivation breaks down,
however, for positive energy scattering (since G„
is no longer a two-sided inverse of E -HA). Instead
we work with a variational formulation of the Fad-
deev equations which define the matrix T„ in Eq.
(2.13). We have the identity"

IP';, '& = &G.TA', lx", ;I,&, (4.2)

&0'~ 'I= 2 &xg ', I)i'TAG. ,
k&i

(4.3)

where

where T„, is some estimate of T„. The result of
combining Eqs. (4.1) and (2.13) can be expressed ir.

convenient form with the definitions

A A+ A p A8 A p
D D D

TgGpT~g + T~GpTgGpT~g 7 (4.1)

IX"';k&=G"v Ix &lk &.

After some algebra we arrive at the identity

(4.4)

(4.5)

(4.6)

&k Iv, ; lh~& =&x'; ';k; l(E-If')IX", ;k~&(1 —«, )+ 2 &x'~ '~k; Iv»lx~~'~k~&+ Z &x'; ';&; lv Alp~~'~'&

+ 2 &o'~ 'Iv»lx~&'~&&&+&Pi 'l(IfA E)l-e'j't'&
l&j

When P ~ is replaced by an estimate, $~;,~, the resultant expression is stationary with respect to indepen-
dent variations of the trial functions P~~',

~ and P, ,~ about the correct values.
Similarly, by combining Eqs. (4.1) and (2.14) we can derive the identity

«.I&0, lk;&=«ol(E-I~) IX';ki&+ 2 «0 lv~AIX'i', I ~&

l &i

+ 2 &y~o 'Iv/Alxl'~ii&+«olvAIO'~'~'&+&y~o ' l(IfA-E)IP'i'~'&~

where

& 0o
'

I
= «o I TAGo (4.7)

A Kohn-type variational expression is obtained by
replacing g', ' by a trial function p', ,'. Variational
expressions for 'U;, and 'Upp can be written down in
a similar way.

We remark in passing that the next-to-last term
on the right-hand side of Eq. (4.6) is given by a
convergent integral in configuration space, while
the analogous term which appears in the expres-
sion for the breakup scattering amplitude diverges
due to the oscillatory behavior of the integrand at
infinity. (The origin and ultimate removal of this
divergence is discussed in detail in Ref. 6.) The
improved convergence in the case of the effective
potential, which can be traced to the absence of
two-body bound-state contributions to the asymp-
totic form of the scattered wave P~', ~, is a simpli-
fying feature of the effective-potential approach.
Similar remarks hold for Schwinger-type versions
of the variational expressions, to which we now

turn our attention.
Given a variational expression of the Kohn type,

the Schwinger version can be derived by using a
once-iterated trial function in the Kohn form. ' We
follow this prescription in the case at hand by
writing the exact version of Eq. (4.2) as

lc' &= Z G.T.'Ix", ;k,&.
k&j

Now the exact amplitude satisfies

T~ = ~k~+ ~~GpT~ ~

so that

If&'&= Z GovaAlxy"~hg&+GovAIII'&
k&j

(4.8)

(4.9)

(4.10)

Then, given a trial function P~~'s~ (the subscript S
anticipates that it will appear as a trial function in
a Schwinger-type variational expression) the once-
iterated trial function is

I kg't'& = + GoVaA I X&'i hg&+ GoVA I
A's' & (4.11)

If we combine Eqs. (4.11) and (4.5), and define

I
~ps+ & =(1 r )6~lAVIXJ ikj&+ V»lk';+s &, (4 12)

«", -'l=&x';-';k;
I v.(1 —6, ~)+& v'~-' iv... (4.»)

we obtain the identity

&~ lui~ lk&& =&x'; ';h; I(E-I~) Ix~~" h~&(1 —6;,)+ Z &x'; ';k; IviAIX';k, &

l &i,j
+ZZ &~", -'IG. I~l' &

—&l';-'Iv. ll~ &. (4.14)
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It is one of the virtues of a Schwinger-type variational principle, such as the one shown above, that trial
functions appear multiplied by potentials and therefore need only be estimated in the region where these
potentials are nonvanishing. If the potentials are local and short-ranged one can define a new trial func-
tion as the product of the potential and the original trial function. If this new function is square-integrable
it can be expanded in a conveniently chosen set of basis functions. "'" The transformation used in Ref. 16
is not immediately applicable to Eq. (4.14) since the potentials V;„are nonlocal and cannot be easily in-
verted. This difficulty can be surmounted, however, in the following way. Let us define functions W,'~'
and W';~ ~ by replacing V» with V, in Eqs. (4.12) and (4.13), respectively. Now by definition

~tA —+r ~r —~r&t ~

where

vg I x(& ( x( I

(x, lv, Ix,)

Equation (4.14) then takes the form

(4.15)

(4.16)

&k I«;lk~&=&8 "k I(E-K)lx';k&&(1 —5&, )+ 2&x'; ';k~l~iliv ~s&
l vei

+ 2 &lVl' '
I
~i'

I xg", k,&+ &2 &lVl' '
I ~i'Go»s

I 1V,"s'& —Z &1V" '
I V '»s

I
iV"'&

With the W'; replaced by trial functions W';~, one can demonstrate the stationary property of the re-
sultant expression. The independent trial functions W~~ are all square-integrable. As mentioned above,
oscillatory contributions to the asymptotic form corresponding to configurations in which a pair is bound

appear in the analogous study of the scattering matrix (or K matrix) but are absent here, thus simplifying
the variational calculation.

Variational principles of the Schwinger type for the remaining elements of the effective-potential matrix
can be written down in a similar way.

V. A SIMPLIFIED MODEL

With the use of standing-wave boundary condi-
tions the variational methods of the previous sec-
tion can be applied to construct a matrix 'UPs (the
bar indicates that it differs from the exact 'O~s) to
be inserted in Eqs. (3.23) and (3.24). These are
linear integral equations in momentum space in-
volving energy-conserving three-body intermedi-
ate states. While numerical solutions of such
equations may now be feasible, '4 we observe that
a simplifying assumption exists which reduces
these equations to quadratures. Thus, with 'U„= 0,
Eq. (3.24) gives 6»=0, 9« ='U„, and 'U„='U~o.

Then Eq. (3.23) becomes

&tf 'I=&x', ';k-, l+&y' -I, (5.3)

then Eq. (4.14) can be written, after some algebra,
as

exactly. To be able to state this assumption clear-
ly we must return to Eq. (4.14) and rewrite that
identity for the elastic and rearrangement compo-
nents '0;~ in a different form.

We first observe that Q, ( U&' '
I can be identified

as the connected part (k; I 8;,—(k& I
'0&,. Similarly,

Q, I
U&~z'~& can be replaced in Eq. (4.14) by 'U»sly&

-'U,
~ lk;). If we define

ls",,'&=IX,";k,& ly,",'& (5.2)

U, , =8,, —inly„5(E K)8;,j, . (5.1) &ki I «~ Ik&&= &k& I «OGoU»s Ik~&. —(t'i-'
I V„ I y,",'&. .

The correct form of discontinuity relation for the
'U

8 is preserved in this approximation. The ap-
proximation 'Goo = 0 also appears in the separable-
potential model, ' defined by setting V;„=0 for each
pair. The remaining elements of the effective-po-
tential matrix are treated more realistically in the
present model.

There is another simplifying assumption con-
cerning the choice of input amplitudes 'V„6 that can
be made at this stage. This involves identifying
Q„and 'U;0 with trial functions in a variational cal-
culation of '0&&,' unitarity is of course still satisfied

(5.4)

Returning now to Eq. (5.1) we make the varia-
tiona1 choice

&k; IU;g le& = &k; I
U'.s G.'"ois

I k~&. &0*'s I V~ I e~'s&—'
(5.5)

r+ermore~ we take U;0='U;0~ and
that Eq. (5.1) becomes

&k, IUo l~g&= &k* IUfos~.U.';sl.&~&. &e*'sl V~I e~'s—&'

(5.6)
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This is a variational expression of the Schwinger
type, but restricted to real trial functions. The
discontinuity can then be read directly from Eq.
(5.6) since only G, is complex. The choice of ap-
proximate propagator 9; is governed by the unitar-
ity considerations of Sec. III. Equation (3.12) must
be replaced by

—(2&')+9 'U 5(E -K)U 9' (5 7)

A solution of this discontinuity relation is easily
obtained if we use Eq. (3.18) to express the exact
propagator, defined by Eq. (2.9), in the form

(5 8)

If we define 8& by an expression differing from this
by the appearance of 'U~; in place of 'U~; then Eq.
(5.7) may be verified in a manner similar to the
derivation of Eq. (3.12). Unitarity is then assured.
As in the derivation of Eq. (4.16), Eq. (5.6) can be
written in terms of square-integrable trial func-
tions.

For energies not too far above the breakup
threshold Eq. (5.6) can be used as the basis for an
approximation similar in spirit to that made in the
familiar effective-range theory. We recall" that
the effective-range expansion for low-energy nu-

cleon-nucleon scattering can be derived from the
Schwinger variational principle by choosing as tri-
al function the exact zero-energy wave function.
This js a reasonable choice since the interior re-
gion is of greatest importance in the variational
expression and there the wave function will be
fairly insensitive to changes in the energy when
the potential term dominates the total energy term
in the Schrodinger equation. In the present prob-
lem the assumption of weak energy dependence of
the real, square-integrable trial functions sug-
gests the following procedure for choosing these
functions.

Consider a variational calculation based on the
negative-energy version of Eq. (4.5); the form is
the same except that the trial functions are real
and decay asymptotically. ' Since the variational
principle is in fact a minimum principle for nega-
tive energies the trial functions can be systemati-
cally improved. These trial functions may now be
used in the Schwinger form with G, evaluated at
the correct positive energy. In this way one has
effectively performed an analytic continuation of
the amplitude from a negative energy to a limited
range of positive energies. The correct singular-
ity structure is guaranteed, as it must be for a
unitary approximation, by the presence of the free
Green's function. Calculations are now being
planned to test this procedure.
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