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We solve the equations of predictive relativistic mechanics for the electromagnetic inter-
action of two structureless point charges, up to second order in the coupling constant g= e&e2,
using as a subsidiary condition the Libnard-Wiechert formulas, for both the advanced and the
retarded potentials, separately or in the time-reversal-invariant combination. Our general
results reduce in the case of one-dimensional rectilinear motion to those obtained previously
by Hill, which, as shown recently by Andersen and von Baeyer, are reliable in the low energy
regime. In the time-reversal-invariant combination, if g & 0, concentric circular motion is
possible; and assuming that both charges have equal masses we compare the speed-vs-radius
relation obtained in this theory to that obtained in the Breit-Darwin approximation and in
%heeler -Feynman electrodynamic s.

I. INTRGDUCTIGN

The equations of predictive relativistic mechan-
ics (P.R.M. ) can be written in a time-symmetric
formalism, ' or in a manifestly covariant one. '
Up to now no physically meaningful exact solution
of the equations of P.R.M. has been obtained iq
either formalism. In this paper we develop a per-
turbation technique which permits the recurrent
calculation of the four-accelerations of the mani-
festly covariant formalism in the case of two point-
like structureless particles, by assuming that
these functions can be expanded into power series
of a coupling constant. From them we obtain very

easily the corresponding three-accelerations of the
time-symmetric formalism.

We had to solve at each order a very simple lin-
ear partial differential equation for each unknown
function, whose solutions, after a suitable change
of variables, can be obtained by quadratures.
This leaves the problem still undetermined be-
cause a choice of a subsidiary condition is still
possible.

We have considered the interaction of two point
charges and used as subsidiary conditions the
Li6nard-Wiechert formulas for both the advanced
and retarded potentials, separately or in the time-
reversal-invariant combination.
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The first two terms of the series expansions
have thus been obtained. The results, if the inte-
grations are actually performed, appear as very
cumbersome functions of the independent vari-
ables. They take, however, very simple forms,
in some cases corresponding to simple relations
between the relative position and the velocities of
the particles. When these relations are in fact
constraints which hold along the motion, the three-
accelerations also take simple forms. These
cases are the one-dimensional rectilinear motion,
using any of the subsidiary conditions mentioned
before, and the circular plane concentric motion
when g& 0 and the time-reversal-invariant combi-
nation is used. In the first case our general re-
sults reduce to those obtained previously by Hill. '
In the second case we obtain, assuming that both
charges have equal masses, the speed-vs-radius
relation, and we compare this relation to the cor-
responding ones obtained from the Breit-Darwin
approximation and from Wheeler- Feynman electro-
dynamic s."

y."(L,'(x,p, -A~), L.&'u,„r)
'(g,"(xoB„u,~„T) A—"]

(o = ~') (2.4)

and

),u, „=0 .

(aeb; no summation over a) (2.5)

(2.6)

Obviously (2.6) implies that u, u, „is constant along
each trajectory of (2.2).

Let us consider a predictive P.I.S. for two par-
ticles (N=2). In the generic case where x -=x,"
—x, , the relative position, and u, and u, , the
tangent vectors to the world lines of the particles,
are three linearly independent vectors, the follow-
ing decomposition is always possiblt. and unique:

for each Poincare transformation (La", A~). Sys-
tem (2.1) is a predictive system if and only if

)eg yes

II. PREDICTIVE RELATIVISTIC MECHANICS
$, = a, x + b„u,"+b,2u, + c, n",

(2.7)

dx:

' =$,"(x~, u~),
(2 1)

(o., P, y, . . . =0, 1, 2, 3; a, b, c, . . . =1, 2, . . . , N),
whose general solution is

x~ = $ (xo~ q uoqq &) ~

This section is a general review of those defini-
tions and results of P.R.M. which will be needed
later.

(a) Manifestly covariant formalism. " Let us
consider in the Minkowskian space-time M4 the
autonomous ordinary first-order system of differ-
ential equations:

where q is the Levi-Civita tensor. If x, u, , and

u,
"are not linearly independent, decomposition

(2.7) is not unique, but this case can always be
considered as a continuous limit of the generic
one.

As a consequence of Poincare invariance, the
coefficients a, b, and c, which we shall call ge-
nerically a, must be scalar invariants; therefore,

a(L~ 'x~, L„8'u,",I „~'u,') = a(x, u8, u,~) . (2.8)

A necessary and sufficient condition for (2.8) to
hold is that the a's be functions only of the six
scalar s

x' -=x"x, u, -=+ (-u, u„)'", u, =+ (-u,"u,„)'"

(2.9)

n d c 8u, =, (xa„ug„~),
dT

with

g (xob, uo, 0) —xo

CX

(x,bi u, , 0) —u,4a 8 y.
T

System (2.1) is a Poincar6-invariant system
(P.I.S.) if and only if

(2.2)

(2.3)

(xu, )=-x u, „, (xu, )=-x u, „, k=--u, u, „.
(We use the signature +2 for M4. ) Since uP and

u,
"will be taken as future-oriented (u,'& 0, u,'& 0),

timelike vectors, u, and u, are real and k is posi-
tive.

Unless the $,"'s are homogeneous functions of
degree two of the ua's and homogeneous functions
of degree zero of the u~&'s (boa), the worM-line
solutions of (2.1) depend on the initial values of
the u, 's and not only on the slopes. It is a matter
of conjecture whether it is possible in general to
identify u, and m, , the mass of the particle a.
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We shall take in the next sections a conservative
point of view by taking u, =1 and introducing the
masses I, explicitly in the formalism. These
constraints can be used from the outset and cause
no trouble when solving Eqs. (2.5) because of Eqs.
(2.6) and the scalar character of the coefficients
of (2."t).

(b) The time-symmetric formalism. ' Let us
consider in Euclidean space E, the ordinary sys-
tem of differential equations:

reciprocal formulas to obtain the $,"'s from the
p, ,"s are more involved. We shall not need them.

III. THE TV'-BODY PROBLEM: RECURRENT
METHOD TO OBTAIN THE ACCELERATIONS

In order to determine the $,
' s for N = 2, an

algorithm of perturbations will be used. We shall
assume that these functions can be expanded into
power series of a coupling constant g:

dv'
(2.10)

~n gg~(n)n
n=l

(3 1)

(i,j, 0=1, 2, 3; a, b, c=1,2, . . . , N) whose general
solution is

~i g gn~(n)i
n=l

Substituting (3.1) into (2.5) and equating each term
of the series we obtain

v, = (x,„,v„;t),

with

(2.11) D i~"~"=nt"~"
(D

—= u~ . ash)
8

b a a ' ex~'

where

A(l) n 0a

(3.2)

(3.3)
() (xoi ~ vo ) 0) xo

d|a ~ u
(Xobt on& ) On

'

System (2.10) is a Poincarh-invariant system
(P.I.S.) if and only if

e,'(R, "(x,', —A'), R„'v"„;t) =R,"[e',(x,'„v,', ; t) —A']

(2.12)

S~(n) ~
A(n)n ~ g(p) p a

2 ggP
2

p +e=n

S((n) ~
A(n)n g g(P)P 2 (u)1)

BQ&
p+q=n

Similarly to (2. t) we can write

A(")& =A(") ~f)t+&("&uf)t+ jg(") go + g(')no'
a a al 1 a2 2

(3.4)

(3.5)

for each Euclidean transformation (R,', A'), and

(2.13')

and then from (3.2) and (2.6), supposed to hold
order by order, we get

= 2J b V b~ + V bI b~

D a(") =A(")
b a a

D b(n)

D ~() g()
b a a

b" = y '[(xu, )a," —b "]

(3.6)

(2.14)

)).' = (1 —v.')(&.' —A.*),
2= i

Va —Va Vat

(2.15)

(summation over a is assumed).
It can be proved that there is a local equivalence

between the definition of predictive P.I.S. given in

(a) and the preceding one. The functions )).,' are
obtained from the t,"'s by the formulas

[The equation D, b,", +a," =B,"j is a consequence
of (3.6) and therefore can be omitted. ] Since the
right-hand terms depend on lower-order coeffi-
cients, these equations are the basis of a recur-
rent method to obtain each unknown to any order.

Equations (3.6) may be simplified by a change of
variables. Instead of using the four scalars (2.9)
(we take u, =1), it is more convenient to choose
a set of independent solutions of equations Db = 0,
e.g.,

where in the $, 's we have to take xo —xo = 0, u',

=(1-v.') '", and u,'=(1 —v,') '"v.'. (c, the speed
of light in vacuum, is taken equal to unity. ) The

= [x2+ (xu )2]i&2

si, =(xu, }-k(xui, },
(3.7)
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8

s(xu, )
'

and equations (3.6) are readily solved. We shall
write the general solution in two different forms
(e =+I):

(gu~)
a(n)(~) ~(n) dy+ a(n)*(~)

(-1) erg

(xu~)

f)',",'(e) = — B,",' y+,"",'*(e),
(-1)'+'~rg

(guy)

c (n) (& ) c (n) d c (n) s
(

(-1)'+'&r~

(3.8)

b(" (e) =k '[(xu, )a," (e) —b,",(e)].

together with (xu, ), which is not a solution. With
these new variables we have

a(") =Xa(" (-1)+(1 -)).)a'"'(+I), (3.11)

where )). is any function of (3.7).
We have thus formally solved the interesting

equations of P.H.M. Whether or not the series
c'onverge is of course an open question.

In Sec. Dt we shall consider the problem of ob-
taining the a(") (e) and the remaining arbitrary
functions, by applying, up to the second order,
this general method to a particular problem.

IV. THE ELECTROMAGNETIC INTERACTION

Having selected two particular sets of functions
a'," *(e), and so on, the general solution can also
be written

In these formulas the integrands are considered
as functions of (3.7) and (xu, ), the former being
kept constant during the integration. a," *(e),
k(",)*(e), and c(")*(e), are arbitrary functions of
(3 'I)

Using the notation f„(e; e'), or f„,(e; e'), or
fo„(e; e') to indicate the values of given functions

f,(e) or f„(e), or f,~(e) when the vector (-1)"'x
is null and future-oriented(e'=-1) or null and
past-oriented(e'=+1), from (3.8) there follows

(tl) ((. () a(B)4((. ()

Co~(E' E) = C (6' 6)

(-1) rg
ao(",)(e; -e}= — X(")dy+ ao(",)*(e; -e),

(-1) qr&

(-1) er)
k(",),(e; -e) = — a(.",) dy+ f)o(",),*(~; -e),

(-1)
(3.10)

( 1)acr~
c(")(e; -~) = — c(")dy+ c(".)*(E'; E). '

( 1) &rg

The problem of constructing numerical solutions
for the electromagnetic interaction of two charges
using a conjecture by Synge has been considered
recently by Andersen and von Baeyer in the very
particular case of one-dimensional rectilinear
motion. Further progress on this field may come
from extending these results and from the elabora-
tion of constructive theoretical methods. In this
paper we follow this second course using tech-
niques of P.H.M. as previously developed.

Until now we have not specified any kind of inter-
action between the particles; henceforth we shall
consider the electromagnetic interaction between
two structureless pointlike particles with charges
e,. %'e shall take g=e, e, .

(a) In order to determine a~")*(e) and the re-
maining arbitrary functions, we require that
when (-1) "x is a future- (past-) oriented null
vector, the values of $,", to each order, agree
with those obtained from the retarded (advanced)
Lienard-Wiechert potentials.

The retarded, e=-l, and the advanced, e =+1,
electromagnetic field at x, is

F,„a=we,r, '[x„),8 -x()$,„—er, '(I +x~$, p)( „x u, 8—xsu, „)],
where x"x„=0, xo=-e~xo. ~. Taking into account the equations of motion

(4.1)

8=m1 e1I', Su, ,d7

the four-accelerations in each case are

g=egm, 'r, '[($,('u, z)x" er, g+ er, '-(1+x~&,z)(kx" + er~u2)]. (4.2)

Substituting the expressions (2.7) into (4.2), expanding into power series of g, and equating the correspond-
ing terms, there follows
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a~'&*(e e) =m 'kr
01 y 1 2

a~"&*(e e) = e m 'r '(kr, r, ' —1)b~" 1&(e' -c)

b '„*(c;e) = 0, b~"&*(e; e) = -m ' r, r 'b~" '&(e; e-) (&2& 1), (4.3)

b012(e 6) E' m1 r11 2 bo12(e; 6) = m1 r1 r2 b221 (E;-'E')

c~' *(E', E) = 0,01 CO1 (E~ E) = 0,

where use has been made of (3.9). The corresponding quantities for particle 2 would be obtained by sys-
tematically interchanging subindices 1 and 2, (xu, ) with —'(xu, ), and changing the sign in the expression of
002 This symmetry transformation will be used next several times, without mentioning it explic itly.

Dropping the constraint x x„=0and substituting in the starred quantities of (4.3) r, for es2+kr, , and

s, for -[ks, + er(k' —1)], and substituting in the analogs to (4.3) for particle 2, r, for es, +kr, and s for
-[ks, +er2(k2 —1)], we obtain a recurrent system of equations to calculate the arbitrary functions a," *(e) and
b',"2& (e) of Sec. III.

(b)Let us now apply our general method to calculate)1~' ~ and )I2&". From (3.3), (3.8), and (4.3) we get

a ' (e) =m 'r 'k b ' (E) =0,

b ' (E) =m 'r, '(xu, ), c ' (e) =0
(4.4)

g)1~1& ", which proves to be independent of e, is precisely the four-acceleration of particle 1 moving in the
retarded or advanced field of particle 2 if the motion of the latter were rectilinear and uniform.

To calculate )~&2 we need first to calculate AI", B1~12', and C~&2&. From (3.4), (3.5), and the expressions
for (~'&" and $&'&" already known, we get

A„"&=+m, 'm, 'r, 'r, 2(xu2){3k[(xu, )(xu2)+kx2] —r2''f,

Bll 1 2 2 1 ( 1)( 2) &

g(2) 0

(4.5)

These quantities are used in (3.8) as integrands where k, r„and s, are kept fixed and (xu, ) is the variable
of integration. Therefore the relevant expressions to be used in (3.8) are

A~'& =m 'm 'r '[r '+ s '+2ks y+ (k' —1)y') "'[3ks,y'+ (3k' —1)r 'y]

B =-m 'm 'r [r '+s '+2ks y+(k —l)y'] '(s +ky)y.

Finally from (3.8), (4.6), and (4.3), after the substitution of r, for es2+kr, , we obtain

(xu2)
aI2 (e) = m, 'm-, 'r, ' [r22+s22+2ks2y+(k' —1)y'] 2~2[3ks2y2+(3k2-1)r22y]dy

6y2

m, 'm, 'r-, '[(k' —l)r, +cks, ](kr, +os, ) ',
(xu2)

b1~,
' (e) =m, 'm, 'r, [r,'+s, '+2ks, y+(k' —1)y'] ' '(ky'+s2y)dy+cm1 'm, 'r, '(kr, +es2) ',

6r2

and

b"'(e) = k '[a"(~)(xu ) —b"'(e)] c"(~) = o

(4.6)

(4 7)

(4.8)

(4.9)

from which we know (1~2" and $22 ". The integrals of (4.7) and (4.8) can be easily calculated but the re-
sulting expressions are rather cumbersome.

(c) Once we know $," to a given order, formulas (2.15) give us immediately the three-accelerations to
the same order. In our particular case, it is obvious that C{" =0, and the p, ," ' 's take the simpler form

&&"1(&)e= (I —v ') [a&"&(c)x2+b&"&(e)(I -v )
' (v2- v2)] (b 4 a)

or
&1~,"&"(e)=(1- v ')[a~"&(e)x'+k '[(xu, )a~"&(e) —b~"&(e)](1 —v ') '"(v,2 —v, ')],

where in the expressions of a~"& and b~,"& as functions of the variables (2.9) we have to take

x =x'x (xu, ) =(I —v ') '"(x v )

k=(I-v )» (I v 2)»2[1 (v .v }]

(4.10)

(4.11)
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V. ONE-DIMENSIONAL RECTILINEAR MOTION

Let us consider the simple problem where because of appropiate initial conditions the two charges move
along a straight line. Then

x Qcv ccv

In this case (4.11) becomes

x =+(x'x,.)'", (xu, ) =xv, (1 —v,') '",
k=(1 —v ') '"(1—v ') '"(1—v, v, ),

(5.1)

(5.2)

where x and e, are here considered as algebraic quantities on the oriented straight line. Using these ex-
pressions in (4.4) and in (4.10), reduced to one dimension, we get

p, (e) = m '(1 —v ')' '(1 —v ')x
~

x
~

The particular relations (5.2) brought into (3.7) give

s, =nr, (k' —1)'", n =sgn[x(v, —v,)].

(5.3)

(5.4)

These constraints greatly simplify the integrals of (4.7), (4.8), and their analogs for particle 2, because
the radicand becomes

The explicit expressions which are thus obtained are

a~ ~(e) =-m 'm 'r [3(1—k ') 'M+3(k' —1)k '(1 —k ')N-P +P ]

b '(e) =m 'm 'r 'k '[o.(1 —k ') "'M+n(1 —k ') '"N+eP ']
where

M—= ln(SP ')+2(S ' —P ') ——,'(S ' —P '), N= -S '+P '+ —,(S —'-P '),

(5.5)

(5.6)
P = 1+e n(1 —k-')"', S ——I + ~r &(I k &)~~2(x~ )

Substituting (5.5) into (4.10) with partial use of (5.2) gives

2m ~m (1 v ) (1 v 2)s/2(v v ) [ln(SP ~) + (S P )]x

and further use of (5.2) to evaluate the bracket yields

p, "'(~)= -2m 'm '(1 —v ')"'(1-v ')"'(v, —v, )
'

&&{e(l —v, ') '(1+ev, ) '(1 —v, v, )(v, —v, )+in[(1+ev, )(1+@v,) '])x '. (5.7)

Formulas (5.3) and (5.7) coincide with those obtained by Hill using a quite independent method and give
confidence in the general expressions (4.7) and (4.8).

VI. CIRCULAR MOTION

(a) Let us consider now particular initial conditions for which we have

X 'V~ =X 'V2 = 0.
In this case from (4.11) we get (xu, ) =0. Using this result in (4.4) and in (4.10), we get

p~,'~'(e) = m, '(1 —v, ')kx 'x".

(6.1)

(6.2)

Since (xu, ) =0, from (3.7) we get s, =0. This greatly simplifies the integrals of (4.7) and (4.8). The final
results for a,' (e) and b,', (e) are

~&»(e) m -&m -&x-4k-&(k+1) ~(3k k 2k +k+1)

b (c) =pm, 'm 'x 'k '(k' —1) 'f 2k' —1 —k'(k' —1) ' 'ln[k+(O' I)'"]] (6.3)

Using again (xu, ) = 0, (4.10) becomes
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(6.4)p&2& "(&)=(I v )[a& ~(z)x~+k ~Q~ ~(&)(1 v 2) '~ (v" v~)].

Therefore, instead of what happens with J[L,
' ', p. ,' has in general a radial and a tangential component.

(b} Let us examine now the possibility of having particular solutions of (2.10), up to the second order,
corresponding to uniform concentric circular motion. More precisely, let us assume that

v, =const, p' = const, ~x, ~= const. (6 5)

These conditions can hold only if (6.1) are satisfied and if the tangential component of (6.4) is zero
Therefore (6.5) can hold only if k,', (e) is zero. This condition is meaningless for small velocities where
eb~,',~(e) & 0 and we shall not consider it further. We conclude, then, that whatever the value of e, uniform
concentric circular motion is not possible. This result is in agreement with an exact result of Schild.

If instead of (6.3) we consider the time-reversal-invariant solutions given by (3.11)with A. =-,', then a~'~

=a,'(e), and 5,', =0. Therefore in this case p'," does not have a tangential component. More explicitly

= m, 'm, 'k '(k+1) '(3k' —k' —2k'+k+1)(1 —v, '}x ~x',

where k, as in the corresponding formula (6.2), takes the value

k=(1 —v ') ' '(1 —v') " (1+v,v, ).

(6.6)

(6.7)

When the speed of light c is restored in (6.2), (6.6), and (6.7), the expansions into the power series of 1/c
up to the second order yield

p, ,'=+gm, 'x '([I+(1/2c')(2v, v, —v, '+v, ')]+(1/c )gm, 'x '}x (6.8)

This result coincides with that obtained in the Breit-Darwin approximation.
For (6.5) to hold at any time p. , has to be opposite to x, and therefore g has to be negative, and its abso-

lute value has to be v, '/~x, j. This last condition gives the speed-vs-radius relation. We give this relation
below for the m, = m, —= m case, which implies v, =v, =—P and (x, (= ~x, (—=R. We list also the analogous rela-
tion obtained from the Breit-Darwin approximation and the exact one obtained by Schild using %heeler-
Feynman electrodynamics:

first order: R~'~ =-(—,')gm 'P '(1+P'),
second order: R~'~ = -(-,')gm 'P '(1 + P') f 1 + [1 —8(1 + P') '(1 —P')P'(1 + 2P' + 14P'+ 6P' + P')]"'].,
Breit-Darwin: R~ v =-(-,')gm 'P '(1 —P'),

(6.9)

(6.10)

(6.11)

Wheeler-Feynman: R~ „=-gm 'P(1 —P')'~'(8+P'sin8) ' [(1+cos8)(1—P')'+(8+sin8)(8+P'sin8)]

[where 2P' = 8'/(1+cos8)]. (6.12)

The positive sign in the square root of (6.10) has been chosen to ensure the correct limit for small P. The
radicand of this equation becomes negative for P'= 0.19 and becomes again positive for P'= 0.6. But any-
way, the expression (6.10) is reliable at most for values of P' smaller than 0.19.

VII. CONCLUDING REMARKS

Up to now, numerical solutions of the relativis-
tic two-body problem have been discussed only in
two particular cases: the uniform circular mo-
tion case, which is possible only with the time-
reversal-invariant version of the theories that have
been considered, and the one-dimensional recti-
linear motion case for the electromagnetic inter-
action of two charges. ' The results of this paper
will permit the numerical study of this problem in
the general case for a given range of the velocities.
The numerical result mentioned before, as well as
the recent calculation of Andersen and von Baeyer,
iridicate, that at least for the equal-mass case,
the approximation considered in this paper will be

reliable at most for squared center-of-mass veloc-
ities P' smaller than 0.19. Nevertheless, veloci-
ties approaching this order might already justify
the relativistic, but classical, calculation of scat-
tering cross sections. It would be most interesting
to obtain these cross sections in the three cases:
the retarded, the advanced, and the time-reversal-
invariant version of electrodynamics.

It is, of course, not difficult to go to higher or-
ders in the perturbation calculations. This does
not introduce new concepts and it is only a matter
of writing, even though the numerical calculations
will certainly become more involved.

%e have taken in this paper, as an example, the
electromagnetic interaction. The application of
our general method to a massless scalar field is,
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of course, obvious. Instead, a similar discussion
with massive fields, vector or scalar, will cer-
tainly need more consideration.

In some cases it might be better to use the ratio
m, /m, as the parameter in the perturbation calcu-

lation, if m, is much greater than rn, . This intro-
duces a few, but not major, difficulties, at least
at the theoretical level. The results will be pub-
lished in a separate paper.
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In previous papers a fundamental field Q„{x)was determined giving a nonperturbative solu-
tion of a nonlinear field equation of motion. In one work it was shown how the observable scat-
tering processes corresponding to the fundamental field could be determined in general by
applying unitarity to the function D+„8 (x-y) = (OI Q„(x)Q &(y)I 0). In particular the contribution
of the fundamental field components with positive mass-squared values to the direct channel
of the elastic scattering amplitude was determined. In the present paper it is shown how the
contribution of the fundamental tachyon field component {with negative mass-squared values)
to the momentum-transfer channel of the elastic scattering amplitude may be determined.

In previous papers" we determined a funda-
mental field Q (x) giving a nonperturbative solution
of a nonlinear field equation of motion. ' The solu-
tion of a nonlinear field equation of motion does
not obey the superposition principle, and hence
Q„(x) should be consideredin toto, whereas its
separate parts have no relevant meaning and are
not expected to be directly observable, in general.
Since Q (x) was written as an infinite-component
sum of free fields, it automatically obeys unitar-
ity. Hence its observable consequences can be in-
directly determined from Q„(x) by applying ' uni-
tarity to the function

&'a(x -y) =«IA. (x)(tat(y)10)

To do this one forms a complete set of scattering
states having all possible numbers of particles
with mass and spin m, and 0, respectively, cor-
responding to the stable component of the funda-
mental field, in both the direct in-channel and the
momentum-transfer "in" -channel. If one uses the
complete set of scattering states as intermediate
states in. the unitarity sum for b, ' a (x -y) one can

kinematically disentangle the individual contribu-
tions and hence determine all the vertex functions '
between the scattering states and the fundamental
field. A econd application of unitarity, in terms
of the fundamental field, now yields the scattering
amplitudes. In this way, using two-particle in-
states in the direct channel, such as Ip, ,p,)",
where the two particles have momenta p, and p,
and both have mass and spin m, and 0, respective-
ly, we determined' the direct-channel contribu-
tion to the elastic scattering of two particles of
mass and spin m, and 0, respectively. States such
as

I p, , p,)."only couple to the positive mass-
squared continuum of Q„(x), called ' Q'(x). To
couple to the fundamental tachyon field, called'
Q„"'(x), or the negative mass-squared continuum
contribution to b. '„8 (x -y), one must use scattering
states in the momentum-transfer "in" -channel,
such as Ip, , p,). ', as intermediate states in the
unitarity calculation a

I p, ,p,). ' has an incoming
particle with momentum p, and an outgoing parti-
cle of momentum p, , both with mass and spin mo
and 0, respectively. This will contribute then (as


