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By working in the Heisenberg picture, one of the present authors has previously given a
general treatment of the charge-space Zitterbezeegung of the coordinate in theories involving
a Hamiltonian that factorizes the Klein-Gordon equation. In the present paper, this treatment
is expanded, with particular emphasis being placed on the peculiar doubling of the dimension
of the Hamiltonian due to Zitterbeseegu ng. The two-component Weyl theory of the neutrino
and the four-component Dirac and two-component Sakata- Taketani theories for massive
particles of spin 2 and 0, respectively, are discussed from the above viewpoint. The recent
two-component theory of Biedenharn, Han, and van Dam (BHV) for massive spin-2 particles
is analyzed. From our viewpoint, a Poincare-invariant theory of this type necessarily has
four components. We offer a two-component interpretation of the BHV theory at the expense
of Poincare invariance. This version cannot be generalized for an arbitrary electromagnetic
field, in contrast to the four-component version, We also discuss the relation of the (first
order in the time derivative) four-component BHV theory to the (second order) two-component
Kramers theory.

I. INTRODUCTION

The question of the dimensionality of equations
describing relativistic particles with spin is an
interesting one, and the spin--,' case provides some
pertinent observations. To describe a massless
spin=,' particle one commonly employs the two-
component first-order Weyl equation, whereas
massive spin-& particles can be described by the
four-component first-order Dirac equation or by
the two-component second-order Kramers equa-
tion."Many authors have been concerned with
this apparent distinction between the massive and
massless cases, ' since there appears to be a
"doubling" of the spin space or of the time deriva-
tive in the former but not in the latter. Recently
this question has been taken up in several interest-
ing papers by Biedenharn, Han, and van Dam '
(BHV), who have introduced an equation which is
of first order in the time derivative, which de-
scribes massive spin- —, particles, and which they
formally consider as a two-component equation.
One of the purposes of the present paper is to em-
phasize that a Poincare-invariant theory based on
the BHV equations is a four-component one. The
description of a particle in an arbitrary electro-
magnetic field also requires four-component BHV
equations, and we find that an alternative inter-
pretation of the physical situation is required if a
two-component formalism is employed.

The difference in dimension of the Dirac and
Weyl equations can be understood by examining
the different role that spin plays in massive and
massless theories. Let us recall that the four
solutions of the free Dirac equation for each mo-

mentum value include both signs of the energy and
both signs of the helicity, whereas the two solu-
tions of the Weyl equation have opposite signs of
both the energy and the helicity. It is well known
that an irreducible representation of the proper
orthochronous Poincare group describing either
massive or massless particles has a fixed sign of
the energy. " If this representation describes a
massive spinJ particle then there are 2J+1 helic-
ity states for each value of the momentum, but if
it describes a massless spin-J particle there is
only one helicity, '+J or -J. Thus, in both the
Dirac and Weyl equations there is a doubling of
the space by the inclusion of both positive- and
negative-energy representations of the proper
orthochronous Poincare group, and the Weyl equa-
tion provides no motivation for seeking a first-
order two-component massive spin-& equation.

By considering the spin-0 case one can illustrate
the role that the sign of the energy plays in the
doubling, while avoiding any complications due to
the presence of spin. A massive spin-0 particle
can be described by either the one-component sec-
ond-order Klein-Gordon equation or by the two-
component Sakata-Taketani equation, '"which is
of first order in the time derivative. In the latter,
the dimensionality accounts for the 2 degrees of
freedom in the "charge" space of positive and
negative energies, whereas in the former this
freedom is accounted for by the second-order
time derivative. Feshbach and pillars" have
shown the equivalence of the two theories in the
presence of an arbitrary electromagnetic field.
Brown' has stressed that there is a similar rela-
tionship between the Dirac equation and the
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Kramers equation, pointing out that the latter
"separates the spin and charge degrees of free-
dom, describing the former by the familiar Pauli
spin matrices and the latter by the space-time de-
pendence of the wave function. "

In this paper we shall continue the earlier de-
velopment by one of the present authors of a uni-
fied Hamiltonian theory of relativistic free-parti-
cle equations. " By working in the Heisenberg
picture, we are able to show the relationship of
the doubling of the spin space that is present in a
large class of such Hamiltonians to rapid oscilla-
tions or "Zitterbemegung" of the canonical co-
ordinate between states of positive and negative
energies. The free Weyl, Dirac, Sakata-Taketani
spin-0, and BHV Hamiltonians provide particular
examples of such theories. Our approach serves
to illustrate that the origin of the doubling in the
BHV theory is the same as in the other theories.

%e begin in Sec. II by confining our attention to
theories that provide a representation of the prop-
er orthochronous Poincare group and define what
we mean by a Hamiltonian that factorizes the
Klein-Gordon operator. In addition to the usual
canonical quantization rules in the Heisenberg
picture, we assume that the angular momentum
operator is expressible as the sum of a spin&
and an orbital part. In such theories the Hamil-
tonian, the canonical momentum, and the canoni-
cal helicity are mutually commuting —we find that
the matrix elements of the canonical coordinate
between simultaneous eigenstates of all three ex-
hibit rapid oscillations between states having the
same values of the canonical momentum but op-
posite signs of the energy (there is a certain ex-
ception that does not include the equations with
which we are concerned). The presence of both
positive- and negative-energy states is then seen
to require that the Hamiltonian for a massive par-
ticle be a 2(2J'+1) by 2(2J+1) matrix operator.
Further observations concerning the nature of the
Zitterbt. zvegung are made for theories that are in-
variant under spatial inversion. To specifically
illustrate our results we then consider the Dirac
and the Sakata-Taketani spin-0 Hamiltonians. By
examining their Heisenberg equations of motion,
we find that in the Sakata-Taketani theory a set of
operators called the 7. matrices plays a role simi-
lar to that of the familiar p matrices in the Dirac
theory. Finally, we discuss the extension of our
approach to the Weyl equation.

In Sec. III we discuss the Poincare-invariant
theory based on the BHV equations and show' why
it is a four-component one. Although two-com-
ponent operators II, and H that separately fac-
torize the Klein-Gordon operator exist, a four-
component Hamiltonian formed from them is re-

quired to obtain a Poincare-invariant theory.
This doubling of the spin space is explained by
showing that the theory satisfies the general re-
quirements of Sec. II; in particular, the Zitte~-
bezvet, ung of the canonical coordinate connects the
subspaces associated with H, and II . After finding
the operators that play the same role in the BHV
theory that the p matrices do in the Dirac theory,
we discuss the equivalence of these two free-par-
ticle theories, employing a nonlocal unitary op-
erator given by BHV. '

A possible interpretation of the two-component
BHV equations in a vanishing electromagnetic
field, a theory which is not Poincare-invariant,
is provided in Sec. IV." It appears that one ob-
tains a genuine splitting into two two-component
subspaces, each possessing its own Hamiltonian,
by adding to the free Dirac Hamiltonian a particu-
lar potential term.

In Sec. V the electromagnetic four-potential is
introduced into the (four-component) free BHV
equations in the usual gauge-invariant manner,
and we once more obtain a theory equivalent to
that of Dirac. By treating the even and odd parts
(under spatial inversion) of the potentials as the
components of a matrix in the "stigma" space of
BHV, we rewrite our equations in a form that
BHV formally regard as two-component. To em-
phasize the four-component nature of the BHV
theory we consider the limit of a vanishing field
and also the special case of electromagnetic po-
tentials that yield an "even environment. " After
going to the Schrodinger picture, we review the
relationship of the BHV equations to the Kramers
equation for a spin-& particle in an electromag-
netic field. Finally, we discuss the impossibility
of introducing the electromagnetic potentials into
the two-component interpretation of Sec. IV.

Our treatment is confined entirely to the one-
particle interpretation of the various equations
and no attempt is made to consider second quan-
tization. The possibility that the BHV theory
might lead to different results than the Dirac the-
ory in certain cases is reviewed in Sec. VI.

II. FACTORIZATIONS OF THE KLEIN-GORDON
EQUATION FOR FREE RELATIVISTIC
'PARTICLES AND ZITTERBEWEGUNG

Let us consider a relativistic free-particle the-
ory in which the generator of time displacements
(Hamiltonian) is II, and the generator of spatial
displacements (canonical momentum) is p, . In
addition, let J, be the generator of rotations and
K, the generator of "boosts." These operators
are required to satisfy the Lie algebra of the
proper orthochronous Poincare group"'.
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[p„., p„]=0,

[p„,H, ]=0,

[Jc» I Pc)] 2 ~
» jkPck I

[J„,H, ] =0,

[J„,'J„.] =ipse»»J,
k

[p„,K,»]
= -i 6» ) H, ,

[H„SC., ] = -ip„. ,

(2.la)

(2.lb)

(2.lc)

(2.1d)

(2.1e)

(2.1f)

(2.1g)

[x„,p„]=i5,, (2.4c)

To avoid any ambiguity, we shall take x, to be x
when p, =p; in other cases we require that x,' =x '.

We confine our attention to representations in
which the generator of rotations has the form

J,=x,xp, +S"'
=x ~p+S«&. (2.5)

Here the S' ' are the usual 2J+1 by 2J+1 ma-
trices satisfying the algebra

[Jc» &+cg] tZ~»»kHck» (2.1h)
[$(J) $(J)] ig k $(J)

k

(2.6)

[E„,K„]=-i L).e»» Jc (2.1i)

As a result of these equations, the transforma-
tion properties of the Hamiltonian under finite
proper orthochronous Poincare transfor mations
are expressed by the relations

exp (i d p, )H, exp (-i d p, ) =H, ,

exp(-i DH, )H, exp(iDH, ) =H, ,

e«p(-i8 J,)H, exp(i8 J,) =H, ,

exp(-iA ~ K,)H, exp(iA. ~ K, )

(2.2a)

(2.2b)

(2.2c)

=H coshlXI + ' sinhl&l ~

(2.2d)

(2.3)H 2=p2+m~

where m & 0. A Hamiltonian satisfying (2.3) is
said to "factorize the Klein-Gordon equation. "

We assume the usual canonical commutation
relations for p, and the canonical coordinate x, :

[x„,x,»] =0,

[p.» p.g]=o,

(2.4a)

(2.4b)

Here the components of the displacement param-
eters d and D are numbers that commute with all
the operators of the theory. Likewise, the com-
ponents of 0, which indicate both the magnitude of
the angle and the direction of the axis of rotation,
and the components of A. , which indicate both the
magnitude and direction of the boost, are numbers
that commute with each of the operators. The pa-
rameters also commute with the discrete sym-
metry operators when the latter are included.

Since H, ' -p, ' commutes with each of the gen-
erators in (2.1}, we can take it to be a positive
multiple of the unit matrix. Our actual concern
wiQ be only with cases for which p,'=p', where p
is the familiar operator that takes on the form
-iV in a coordinate representation. Then

This assures that the theory describes massive
particles of spin J. From (2.1b}, (2.1d), and (2.5)
we see that in general none of the three compo-
nents of S' ' commutes with H, but that

$(J')(g ) S(J) . pc
II I

' (2 'I)

which we call the canonical helicity operator,
does. Therefore, we can find simultaneous eigen-
states of H„p„and $(~) (p, ), the latter of which
has 2J +1 eigenvalues.

As usual, the Hamiltonian is to be expressed as
a function of the canonical momentum. Aside
from the infinite dimensionality associated with
the operator p„what is the "dimension" of 8,?
It is clear that (2.5) and the commutation relations
(2.1) require H, to be at least a 2J'+1 by 2J'+1 ma-
trix operator having the spin degrees of freedom,
but are there any compelling reasons for the
space of this operator to be even larger?

In seeking the answer to our question, let us
follow the advice of Dirac, '~ "to get a physical
understanding of any quantum theory, it is best to
use the Heisenberg equations of motion. . . ."
Therefore, we assume the Heisenberg equations
of motion for any dynamical variable 6, :

6, =i[H, , 6,]+
86

(2.8)

The consistency of (2.1b) with (2.8) requires that

p, =0, as should be the case for a free particle.
One of the authors" has shown elsewhere that,

as a consequence of (2.1b), (2.3), (2.4), and (2.8),
we have

~ ~

ix, = -2H, x, +2p,

2xc IIc 2pc (2.9)

+ p, H, 't+x, (0) . (2.10)

With the aid of this result, the solution of the equa-
tion of motion for x, is found to be"

«, (t) =-,' «, (0)[l —exp(-i2H, t)]H, '
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We also find that

[x„,p„.] = 0.
Then from (2.9) and (2.11)we have

xciHc = Hc Xci &

(2.11)

(2.12a)
~ ~ ~ ~

&ciPcg = Pcg&.i .

Only in the special case x, =H, p, [e.g., if H,
= (p'+ m')'"] does x, vanish identically and there-
fore make no contribution to (2.10). In other cases
one finds from (2.12) that the only nonvanishing
matrix elements of x, between simultaneous eigen-
states of p, and H, a're those that have the same
canonical three-momentum and opposite signs of
the energy. Thus, for each value of the canonical
three-momentum and each of the 2J+ 1 values of
the canonical helicity, both positive- and negative-
energy solutions occur and there is a "doubling"
of the space of the Hamiltonian to 2 (2J + 1) dimen-
sions. Since the eigenvalues of H, have absolute
values greater than or equal to m, we find from
(2.10) that x, exhibits rapid oscillations of fre-
quency ~ ~ 2' between states of positive and nega-
tive energy; following Schrodinger" we refer to
this phenomenon as "gittexbezvegung" in the
"charge space" of positive- and negative-energy
states.

It is interesting to note that the spin operator
S' ' also exhibits rapid oscillations in charge
space. From (2.1d), (2.5), and (2.8),

~ ~

S&~) =-x,xp, , (2.13)

with the solution
~ 0

S'~'(t) =—,'S' '(0)[1 —exp(-i2H, t)]H, '+S' '(0).

(2.14)

(2.1.7b)

Thus, when the theory is invariant under spatial
inversion, the only nonvanishing matrix elements
of x, between simultaneous eigenstates of J,', H„
ance 8, are those between states having the same
total angular momentum and the same absolute
value of the energy but opposite signs of both the
energy and the relativistic parity. This provides
another way of viewing the rapid oscillations of
the coordinate in (2.10).

The simplest form that a Hamiltonian meeting
our requirements can have is"

H, =bx, p, +g, (2.18)

where x, is either independent of p, or is linear in

p, . Here 5 is a numerical factor having the value
1 in the former case and —,

' in the latter case. Al-
though it commutes with x, and p, , g need not
commute with x, .

Upon substituting p, =p, bxc=p, o, andg=p~
into (2.18), one obtains the Dirac Hamiltonian

HD= p&o' 'p+ p&m, (2.19)

As is well known, HD, pD =p, and the operators
]Jo=x xp+20, (2.20a)

An eigenstate of 8, will be said to have "relativis-
tic parity" +1 or -1 corresponding to its eigen-
value. Since Sc commutes with H, and J„rela-
tivistic parity is invariant under time translations
and rotations in three-space. It is not, however,
invariant under spatial translations or boosts.

Qne can find simultaneous eigenstates of H„
J,', J,s, and S, . From (2.5), (2.8), (2.9), and
(2.16a)-(2.16c) it follows that

S,x, =-x,S, , (2.17a)

x,J, =J, x, .

It follows from (2.12) and (2.13) that
~ ~ ~0

S"'H =-H S"'
c c (2.15)

so the states connected by the "Spinbesuegung" in-
deed have the same four-momentum and opposite
signs of the energy.

Some further interesting observations concern-
ing the Zitterbeavegung can be made if the 2(2J +1)-
component operators of our theory are invariant
under spatial inversion. In this case, there exists
an operator 8, satisfying""

&~=xHD-tp -ip,—,'o

= -, (XHD + HDX) —t p (2.20b)

~cxc~c -Xc s

~cpc~c pc ~

SQ,S, =H, ,

ScJcSc=J, ,

ScKc~c = -Kc
&

8 2

(2.16a)

(2.16b)

(2.16c)

(2.16d)

(2.16e)

(2.16f)

satisfy the PoincarS algebra (2.1) and describe
spin- —,

' particles. "
On the other hand, in (2.18) we can make the

identification p, =p, bx, = (2m) r+p, andg =v, m,
where 7,= 7, +iv2. Here v„~„and ~, have for-
mally the same multiplicative properties as the
Pauli matrices and may be represented by them
at t =0. The result is the Sakata-Taketani Hamil-
tonian'"

Hg T + T37%
p

'2m (2.21)

describing spin-0 particles. In this case the Poin-
care algebra (2.1) is satisfied by H~, p~ =p, and
the operators

. Js =x Xp& (2.22a)
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K~ = ,' (x-H, +Hex) f-p . (2.22b)
Similarly we obtain

All observables 6, in the present theory are
pseudo-Hermitian, satisfying

6s —%36s T3 (2.23)

p~ = -2 mp~,

p~ —-z2p~HD ~

p~ = 2(x' pp~

(2.29a)

(2.29b)

(2.29c)

We see that HD is a result of choosing the Ham-
iltonian to be linear in the canonical momentum,
whereas Hs is a consequence of choosing it to be
of second order in this operator —in both Hamil-
tonians the remaining operators are required to
be independent of space-time. One easily verifies
that z w 0 in each case; i.e., for the Dirac theory

~ ~

xD = -20'~ p —2mp~o', (2.24a)

and for the Sakata-Taketani theory
~ 0

xs z2Tzp (2.24b)

Therefore, the charge-space Zitterbeuegung of
the coordinate is present and explains why the di-
mension of the Hamiltonian in each case is twice
that required by the spin degrees of freedom.
Since, as we shall see below, both theories are
invariant under spatial inversion, the remarks
following (2.1V) concerning relativistic parity also
apply to the Zitterbeseegung.

To verify spatial inversion invariance we intro-
duce the familiar operator 6' that inverts x and p:

(Px(P = -x,
(Pp(P = -p,

(2.25a)

(2.25b)

but which commutes with cr,. p, , and y, and
with the parameters d, D, 8, and A, in (2.2). The
spatial inversion operators consistent with Eqs.
(2.16) are

s =pd'

for the Dirac theory and

(2.26a)

(2.26b)

for the Sakata-Taketani theory.
It is instructive to demonstrate the similar role

that the p and ~ matrices play in the Dirac and the
Sakata- Taketani theories by examining their
Heisenberg equations of motion.

We find that

T~Hs ——-Hs7 ~ (2.31a)

(2.31b)

Equations (2.31) and the fact that both v, and p,
commute with p show that the rapid osciQations
in (2.28) and (2.30) occur between states having
the same three-momentum but opposite signs of
the energy.

In the general discussion at the beginning of this
section, only Eqs. (2.1a), (2.1b), (2.3), (2.4), and
(2.8) were necessary to obtain Eqs. (2.10) and
(2.12) demonstrating the coordinate Zitterbecoe
gung. Our result is therefore applicable to the
case of zero mass, except that now the oscilla-
tions occur for all frequencies ~& 0. The remain-
ing assumptions (2.1c) through (2.1i) and (2.5) en-
abled us to be precise as to what was doubled by
the presence of both signs of the energy in the
massive case; i.e., the 2J+1 spin components.
However, if (2.5) is assumed for massless parti-
cles, then, except for J=&, subsidiary conditions
are required to eliminate all helicities except +J
and -J.

For spin & we have the Weyl Hamiltonian

where o' p is a constant of the motion. Equations
(2.29) have the solutions

p, (t) =p, (0)+ip, (0)mH '[1 -exp(-i2H i)],

(2.30a)

p, (t) = p, (0) exp(-i2HDt), (2.30b)

p, (t) =p, (0) ip, (0-)e pHD '[1 —exp(-i2HDt)]

(2.30c)

One immediately notes the striking similarity
of Eqs. (2.28) and (2.30) and the fact that both ex-
hibit Zitterbeuegung. To investigate the origin of
this phenomenon in the present case, we resort to
the equalities

Yi —-z27xHs,

T+ z2m T$

= -i2m xHs'v

(2.27a)

(2.2Vb)

(2.2Vc)

H =0'p, (2.32)

in which case the helicity operator (2.7) takes on
the form

The solutions of Eqs. (2.2V) are

T, (t) =r, (0) exp(-i2H~t), (2.28a)
g(1/2) (~) ~ W (2.33)

r, (t) =a+(0) +r, (0)mH~ '[1 —exp(-i2Het)], (2.28b)

(t) =T (0) -r, (0)m 'Hz[1 —exp(-i2Het)]. (2.28c)
Thus the Zi tgerbe~egung is between states having
opposite signs of both the energy and of the helici-
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ty, in agreement with our remarks in the Intro-
duction.

6 extp6 ext p y

(Pext X6 ext — X ~

(Pexto'(Pext = o,

6'ext pg(Pext =
pg ~

(3.3b)

(3.3c)

(3.3d)

Furthermore, from (3.1) and (3.2), we see that

(3.4)

so p, and c, can be taken to be constants of the
motion. Therefore, p, plays a different role here
than in the Dirac theory, where it is not a con-
stant of the motion, and might be more appro-
priately labeled p, in the present theory.

Following BHV an eigenstate of p, is said to
have "chirality" +1 or -1 corresponding to its
eigenvalue. Likewise, an eigenstate of ~, has
"stigma" designated by its eigenvalue" +1 or -1.
In the BHV terminology, one can choose chirality
and stigma to be "sharp. " It follows that the space
of the Hamiltonian (3.1) can be divided into four
subspaces characterized by their chirality and
their stigma. In particular, we may rewrite (3.1)
in the form

Hg=2(1+ p, )H,'+2(1 p, )Hn, -
where

(3.5)

H~=o p+(Pextm,
II

H~ = -o' 'p+6'extm.

(3.6a)

(3.6b)

III. FOUR - COMPONENT POINCARE - INVARIANT

BHV EQUATIONS

One form of the equations introduced by Bieden-
harn, Han, and van Dam ' for a vanishing ex-
ternal electromagnetic field employs the Hamil-
tonian

H~=p, o p+6',„tm. (3.1)

This is the Hamiltonian form of Eqs. (56) and (56')
of Ref. 5 and is identical to Eq. (57) there.

In (3.1) we have

(3.2)

Here 6', introduced in Eq. (2.25), is referred to
by BHV as the "internal parity" operator. To ob-
tain their "external parity" operator 6'.x~ BHV in-
troduce the operators ~~, where c is the ancient
Greek symbol "stigma. " As explained by BHV,"
the & matrices have formally the same multiplica-
tive properties as the p matrices, but they com-
mute with the p matrices. In addition q ~ commutes
with o, p, x, and (P. It follows that

The advantage of using the form (3.5) is that the
operator —,

' (1+ p, )FFs has nonvanishing matrix ele-
ments only between states of positive chirality and
the operator —,

'
(1 —p, )H ushas nonvanishing matrix

elements only between states of negative chirality.
The equivalence relation

I IM
Hg = (Pext H~U. ext, (3 7)

which follows from (3.3) and (3.6), shows that the
solutions of H~ can be obtained from those of H~
and vice versa. Thus, Eq. (3.1) contains redun-
dant components and either of the operators (3.6)
describes the same physica1 situation as H~.

%e can continue the decomposition into sub-
spaces by using (3.2) to write

H~ = 2 (1 + CB)H++ g (1 —CB)H

H" = ,' (1 + z, )H-", + ,' (1 —&,)H—",

where

(3.6a)

(3.6b)

HI~=o' pram(P.

H"= -o p +rn6'

(3.9a)

(3.9b)

p
2 + m 2 (3.10)

Thus each of the four operators in (3.9) factorizes
the Klein-Gordon equation, ~' but is each of these
operators the Hamiltonian for a Poincare-invar-
iant theory? In the remainder of this section we
shall develop the Poincare-invariant BHV theory
according to the general treatment at the beginning
of Sec. II and explain why only the equivalent four-
component operators H~ and H~ are Hamiltonians.
An alternative interpretation that allows one to re-
gard each of the operators is (3.9) as Hamiltonians
for a non-Poincare-invariant theory will be dis-
cussed in the next section.

We shall confine our attention to H~ jn (3.6a),
since the operators for the representation using
H~ can be obtained through the equivalence trans-
formation (3.7). From (3.1)-(3.6) and (2.25b), we
see that [Hs, p] w 0 and also [Hs, p] x0 and [Hsn, p]
x0, so (2.1b) demonstrates that if any of these op-
erators is indeed a free-particle Hamiltonian, p
cannot be the canonical momentum operator; i.e.,
the generator of spatial displacements. However,
let us introduce the operators

pg = ~gp~ (3.11a)

The equivalent operators —,
'

(1 + &,)H', and —,
'

(1 + e,)H",

have nonvanishing matrix elements only between
states of positive stigma, whereas the equivalent
operators —,

'
(1 —c,)H' and —,

'
(1 —c,)H" have non-

vanishing matrix elements only between states of
negative stigma.

From (3.9) and (2.25b),

(Hl )2 (Hu)2
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(3.11b)

[note that pzz and x~ satisfy the canonical commu-
tation relations (2.4)j, and rewrite (3.6a) in the
form

and where

(3.1 Ia)

(3.1Vb)

HB ~la' pB + 6 extol

Furthermore, we define

xB +pB +2 a

~ ] ~
KB =xBHB —tpB

(3.12)

(3.13a)
(3.18a)

are "parity-carrying operators '"' (in the BHV
terminology) that anticommute with (P,„,. Then in
place of (2.2a) and (2.2d) for finite spatial trans-
lations and boosts, respectively, they write

exp(id~ p)H~ exp(-id~ p) =H~,

exp(-A~ K~)H~ exp(zX~ K~)

where.

B 1 KB B KB ) (3.15b)

KB = &1KB, (3.16)

= z (x~Hzz +H~xzz) —fpzz . (3.13b)

It is easily verified that HB pB B and KB
fy the Lie algebra (2.1). Thus H~ is indeed the
Hamiltonian for a spin-& theory that is invariant
under proper orthochronous Poincare transforma-
tions.

The theory is also invariant under spatial in-
versions, since if we make the identification

&B ='3

the requirements (2.16) are satisfied. Conse-
quently, the stigma of a particle is identical to
the relativistic parity quantum number defined in
our discussion following (2.16)." It is, as we saw
there, invariant under time translations and spa-
tial rotations.

Even though the four -component Hamiltonian
can be split in every reference frame into two
subspaces of sharp stigma, neither H+ nor H'

plays the role of a Hamiltonian in the present the-
ory: (a) A Hamiltonian generates time displace-
ments for a/l physical observables, but neither of
these operators can generate the equations for xB
and pB, which have components connecting the two
stigma subspaces; (b) furthermore, it is not pos-
sible to find a set of two-component operators
satisfying the Poincare algebra (2.1) with either
H+ or H' as the Hamiltonian.

Our conclusion that only HB yields a Poincare-
invariant theory is in agreement with Ref. 5, but,
since the two-component subspaces, H,' and H' of
H~ have opposite stigma (relativistic parity) BHV
state, ""we have chosen to ignore the dimension-
ality associated with the space-time structure
carried by parity, " and they formally regard HB
as a two-component operator. To emphasize their
viewpoint, they choose to write in (2.2)

pB —&1d 'p -dB p &
(3.15a)

=H' cosh(7( + sinh
f 7[ .

(3.18b)

The operators p and KB, the former of which does
not have the significance of momentum in the pres-
ent theory, have matrix elements only within each
stigma subspace, and BHV formally ignore the
doubling present in B~ and A~ .

We shall now demonstrate that, from the view-
point advocated in this paper, the doubling present
in the BHV free-particle theory is no more ignora-
ble than is the doubling in the Dirac and Sakata-
Taketani theories. To show that the doubling of
the spin space in the BHV theory is associated
with the presence of both positive and negative
eigenstates of the Hamiltonian for each value of
the canonical three-momentum and each value of
the canonical helicity, it is sufficient, according
to the discussion following (2.12), to verify that
the operator xB exhibits Zitterbezoegung in the
charge space; i.e., that x~w0 in (2.10). From
(3.3b), (3.11), (3.12), and (2.8) it follows that

XB = cia (3.19)

and that

xB = -2a' ~pB —2m&, 6'a (3.20)
~ 0

%e note that xB 4 0 and it anticommutes with z3,
so the Zitte~bezvegung of the canonical coordinate
does not occur within each two-component sub-
space having definite stigma [this agrees with our
remarks following (2.17)j.

Examination of (3.12) shows that Hs has the
simple form (2.18) with x, independent of p, and
with g a nonlocal operatar. Furthermore, we see
that HB can be obtained from the Dirac Hamiltoni-
an (2.19) by the substitutions p-p~, p, -c„and
p3 - (P,„t . This anal ogy can be carried further if
we solve the equation of motion for the operators
&, , (P= &,(P, and (Pext=&3(P, using HB. The final
result is obtained from that for the p matrices in
(2.30) by the substitutions p, - ~„p,-(P, p, -(P.,&,

H H', and a p-a' p
It has been shown by BHV

' that the above rela-
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tion between the free Dirae and BHV theories is
in fact an equivalence. They introduced the unitary
operator"

I' = I =-, (1 + ~,) +-, (1 —~, )6

and considered the transformation

6~ Q~ = I'5~I"

(3.21)

(3.22)

for each operator 8~. Then for the canonical co-
ordinate

X =X,8 (3.23)

for the generators of proper orthochronous Poin-
care transformations,

=X XP+-,'a,

(3.24a)

(3.24b)

(3.24c )

(3.24d)

and for the spatial inversion operator S~ =~3,

Sa = ~36 . (3.25)

One finds that the transformed Hamiltonian
(3.24b) is identical to the Dirac Hamiltonian (2.19),
since only the algebra satisfied by the operators
that appear in these equations is relevant. Simi-
larly, the remaining operators in (3.24) and (3.25)
are identical to the corresponding operators in
the Dirac theory. It could also be demonstrated
that the antiunitary (Wigner) time-reversal opera-
tor for the BHV theory mays into that for the Dirac
theory under the transformation (3.21). Conse-
quently, the free Dirac theory and the BHV theory
with either of the Hamiltonians (3.6) describe
equivalent representations of the Poincare group
with spatial inversion and antiunitary time re-
versal included. It is well known that, through a
(nonlocal) Foldy-Wouthuysen transformation ~3 "
on the Dirac theory, one can show that this rep-
resentation is reducible to two inequivalent rep-
resentations with masses +no and -m.

While the Hamiltonians (3.24b) and (2.19) are
identical physically and mathematically, it should
be stressed that the properties of the c matrices
in a theory based on the Dirac Hamiltonian (3.24b)
is different from their properties in a theory
based on the BHV Hamiltonian (3.12). In the form-
er theory these matrices are all invariant under
translations, whereas in the latter &, and &3 are
not. Furthermore, in the Dirac theory the time
dependence is given by (2.30), with the substitu-
tion p,.—c, , but in the BHV theory &, and ~,
"rotate" among themselves while ~3 is time-in-
dependent. It is the operators ~„(P= ~,(P, and
(P t 3(P in the BHV theory that map into the op-

IV. A TWO - COMPONENT INTERPRETATION
OF THE BHV THEORY

In the preceding section, we were unable to re-
gard the individual two-component operators (3.9)
that factorize the Klein-Gordon equation as Hamil-
tonians because of arguments (a) and (b) following
Eq. (3.14). Is there some way of circumventing
these two restrictions and finding a theory in
which the two-component operators do play the
role of Hamiltonians? Our previous arguments
offer two clues: Argument (a), in particular,
shows that, if we wish to interpret one or more of
the operators H,' and H", as Hamiltonians, it is
necessary to seek a theory in which all observa-
bles split up into subspaces of "sharp" stigma,
while (b) shows that we will have to abandon Poin-
care invariance.

%e could obtain the desired result if we could
somehow justify the use of p and x as canonical
operators, as they are in the Dirac theory. Let
us therefore start with the free Dirac Hamiltonian
(2.19) and add to it a potential

v, =m(e-p, ).
The result is the new Hamiltonian

HD —pro p+ m6',

(4.1)

(4 2)

in which p is the canonical momentum operator.
It is interesting to note that (4.2) can be obtained
from (3.1) and (3.2) by taking the stigma sharp
there; i.e., ~3-+1.

Since H~ commutes with p, we may divide it into
two subspaces as follows:

H' = —,
'

(1 + p, )H,' + —,
' (1 —p, )H,", (4.3)

where H,' and H", are the two-component positive-
stigma operators introduced in (3.9), and p, can
be chosen to be sharp.

The Dirac canonical momentum operator p com-

erators &, , &„and~3, respectively, under the
transformation (3.21) between the two represen-
tations. For these reasons, it is best to follow
BHV by using the p notation in the Dirac represen-
tation and the c notation in their representation.
But we also wish to emphasize the very different
significance of p, in the eight-component operator
(3.1) than in the Dirac Hamiltonian (2.19). In the
former case, taking p, sharp yields a four-com-
ponent theory describing the same physics as the
Dirac equation.

Although the BHV and Dirac theories are equiv-
alent for free particles, it is well known that such
theories do not necessarily lead to identical re-
sults when interactions are introduced. %e shall
return to this matter in Secs. V and VI.
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mutes with p, and therefore p, is translation in-
variant in this theory. However, neither H', nor
H," is translation-invariant, since from (2.25b)
and (3.9),

[H&, p] =[H",, p]

(4 4)

This fact has already been noted by BHV" and
several other authors" who also pointed out that
the form of the two-component operators H+ and
H," is not invariant under boosts. Just as the Dirac
equation in a Coulomb potential centered at the
origin takes on a more complicated form when
one performs a translation or a boost, one can re-
gard (4.2) as the simple form that the Hamiltonian
has in a particular reference frame. For example,
under a spatial translation

If' -De px(id p)Hoexp(-id p) = pP p+m(P(d),

(4.5)

where

IP(d) exp=(id p)(Pexp(-id p) (4 6)

p(t) =exp(i2m 6'f) p(0)

= (cos2mt+ id' sin2mt) p(0) . (4.8)

Thus, in the present case the canonical momentum
operator exhibits Zittexbeuegwng of frequency 2m
between states having the same energy.

Whether the two-component theory describes
any realistic physical situation is not presently
clear and we do not wish to pursue the matter
further in the present paper. However, in Sec. V
arguments will be presented which probably ex-
clude the usual introduction of a general electro-
magnetic field into such a two-component theory.

is the operator for spatial reflections about the
point -d.

Since p, x, and 0 have nonvanishing matrix ele-
ments only between states with the same p, eigen-
value, it appears correct to regard H+ and H+'

separately as Hamiltonians that generate time
translations within each two-component subspace.
Note that either H+ or H+ generates time displace-
ment for all physical observables in the present
theory, in agreement with requirement (a) follow-
ing Eq. (3.14), and that we have abandoned the re-
quirement (b) of Poincare invariance.

From (4.4) and (2.8), the latter of which also ap-
plies when interactions are present, we have

p = i2m(Py, (4 7)

which has the solution

V. THE BHV EQUATIONS IN AN EXTERNAL
ELECTROMAGNETIC FIELD

Hs = -&,o [ps -eA(zs, t)]+(P«~m +eA'(xs, t),
(5.3b)

which is equivalent to (5.3a),

6 extH36 ext ~ (5.4)

Using the operator I' defined in (3.21), we find
that

(Ifs) = I"Hs 1

= ~,o'[p -eA(x, t)) +~,m +eA'(x, t) (5.5)

is identical to the Dirac Hamiltonian (5.2), since
once more only the algebra satisfied by the p or ~

matrices is relevant. Thus, in the present case,
the two theories are both mathematically and
physically equivalent —every eigenstate of the BHV
Hamiltonian (5.3a) maps one-to-one into an eigen-
state of the Dirac Hamiltonian (5.2) and vice versa.

We can write

A&(z, f) ~A~(z, t)+Aj' (z, f),
where

A& (x, t) =—', [A&(x, i) aA"(-x, f)] .

(5.6)

(5.V)

This gives a division of A" (x, i) into parts that are
even and odd under spatial inversions, since

(pA", (z, t)(p =A.",(-x, t)

=M", (z, t) . (5.8)

A well-known prescription for obtaining a Ham-
iltonian for a particle in an external electromag-
netic field is to make the substitution p, -p,
-eA(z, , f) in the corresponding free-particle Ham-
iltonian and to add to it a term eA'(x„ i), where

p, and x, are the canonical variables introduced in
Secs. II and III. This prescription is consistent
with the requirement that a gauge transformation

A'(x„ t) -A'(x„ f) + —f(x„i), (5.1a)

A(x, , f)-A(z„ t)-7 f(x, , t) (5.1b)

should have no physical effect.
Thus, in place of the free Dirac Hamiltonian

(2.19) one employs

HD= p, o ~ [p -eA(x, t)]+ p, m +eA'(x, t), (5.2)

and in place of the free BHV Hamiltonian in (3.6a)
and (3.12),

Hs = ~,o [ps -eA (zs, t )] +(P,„,m +eA'(xs, f).

(5.3a)

Note that from the Hamiltonian in (3.6b) one ob-
tains
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Let us define matrices A~~(x, t) by

Ao~(x, t) =A'(x~, t)

=A', (x, t)+~,A'(x, t),

As(x, t) =&,A(xs, t)

-A (x, t)+~,A,(x, t) .
These have the interesting property'~

(P,„,Aos (x, t)(P„t =Aos (x, t),
(Pext As (X t)(Pext = Att(x t) .

(5.9a)

(5.9b)

(5.10a)

(5.10b)

Equations (5.3) may now be written in the form"

Hs =(T [p eAs-(x, t)] +(P,„t m +eAes(x, t),

(5.1la)

Hs = -o ~ [p -eAs(x, t)]+(P,„tm +eAas(x, t),

(5.11b)

which look very much like two-component equa-
tions with only the spin degrees of freedom. BHV,
in fact, choose to formally regard them as two-
component operators. Note, however, that in the
limit of a vanishing field, the Hamiltonians (5.11)
reduce to the free BHV Hamiltonians (3.6), which
we have seen can be viewed as four-component
operators in the same sense that the Dirac and
Sakata- Taketani Hamiltonians are, respectively,
four and two-component ones.

In general, z, does not commute with either of
the Hamiltonians (5.11). However, for the parti-
cular case of an "even environment"' under spa-
tial inversion, when A' (x, t) = 0 and A, (x, t) =0,
one has from (5.6) and (5.lla)

H~t = (T ~ [ p —eA. (x, t)] + ~,(Pm +eA'(x, t), (5.12)

lowing (3.14) does not apply. From the considera-
tions of Sec. IV we know that neither 0,' nor 0' in
(5.14) can individually describe a particle under
the influence of only electromagnetic forces. At
the end of this section we shall answer the ques-
tion as to whether our alternative interpretation
of the BHV theory allows us to regard each of the
operators in (5.14) as a Hamiltonian for a particle
that is also under the influence of a potential of
the type (4.1).]

For the special case of a Coulomb potential with
A'=-Ze/(x( and A =0, (5.14) becomes

ge 2

(x)
(5.15)

ory.
When we pass to the Schrodinger picture, the

Dirac Hamiltonian (5.2) yields the equation

(TT' —p, (T TT —p, m) yo (x, t) = 0, (5.16)

TT' = p' -eA'(x, t),
TT =p -eA(x, t).

(5.17a)

(5.17b)

Similarly, the BHV Hamiltonians (5.11) lead to the
equations

(TTO~ W(T TTS -(Pextm)lee(X, t) =0, (5.18)

As shown by BHV,"each of the operators II,' and
H' yields a nondegenerate spectrum and the two
together give the same spectrum and the same de-
generacy as the Dirac Hamiltonian. However,
since according to the preceding paragraph only
H~, and not just II,' or II', describes a particle
experiencing only an attractive Coulomb potential,
the results are identical to those of the Dirac the-

and stigma can be taken sharp"; i.e.,
Hs = ~ (1 + t:,)H, +—', (1 —c ~)H',

where

(5.13)

where

TT~O =P' —eAoe(x, t),

TTTT =p -eAtt(x, t) .
(5.19a)

(5.19b)

H', =o" [p -eA(x, t)] a(Pm +eA'(x, t) . (5.14)

As was the case for the corresponding operators
(3.9a) in a vanishing electromagnetic field, nei-
ther H+' nor II' is a Hamiltonian for a, particle
that experience only an electroma, gnetic force.
Qne reason has already been given in the discus-
sion following Eq. (3.14); i.e., H, and H' do not
satisfy condition (a) there. Furthermore, if we
make a gauge transformation (5.1) with f(x, t)
x f(-x, t), or if we perform a spatial translation
or a boost to a new reference frame, we no longer
have an even environment under spatial inversion
with Ao (x, t) = 0 and A, (x, t) = 0 and cannot make
the decomposition (5.13). [Since we do not have
the free-particle situation here condition (b) fol-

From (5.10) and (3.3a) we obtain

0 06,„,F36',„,=a~,

+cxt &~+cxt = -&~ .
(5.20a)

(5.20b)

This result leads to the first of the two identities

((TTOs)' —((T TTe)' —Pt[((os, O' TT~] —m')

= (TT tt + Pt(T '
1T

Tt
+ (Pext m) (TTTt

—P t 0'TTtt —(Pext'm )

(5.21a)

= (TToe+ pt(T TT~+ p, m)(TTos —p, (T TTs —p, m).

(5.21b)
For obvious reason we shall refer to (5.21a) and
(5.21b), respectively, as the BHV and Dirac fac-
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torizations of the operator on the left-hand side.
Both p, and ~, commute with the operator on the

left-hand side of (5.21), and if the former is taken
sharp (p, -+1) then only the BHV factorization

= (rro+ c~g ' f + c~m)(rr —
c~o

' f —gism) ~

(5.24}
which is just (5.23), since once more only the al-
gebra satisfied by the operators is important.
Therefore, (5.22) and (5.23) are equivalent.

By taking both c, and p, sharp in (5.21) we ob-
tain the two-component operator that appears in
the Kramers equation":

((r')'- (o f)'+[rr' (7 ~ 7r]-m'jag'=0, (5.25)

but neither the Dirac nor the BHV factorization
then directly exists. It was by formally regarding
(5.22) as a two-component equation that BHV con-
cluded that they had obtained a two-component fac-
torization of the Kramers equation for an electro-
magnetic field.~' The approach developed here
shows that the Dirac and BHV operators have an
equal right to be regarded as four-component fac-
torizations of the two-component Kramers opera-
tor.

Can one extend the results of Sec. IV so that 0,
and H,"in (3.9) become Hamiltonians describing a
spin=,' particle under the influence of both an ex-
ternal electromagnetic field and the potential VI

= (rr ~ + o ' fs + (pextm) (rr~ 7 o ' f~ (Pextm)

(5.22)

exists. On the other hand, if c, is taken sha, rp
(e.g., c,-1) there exists only the Dirac factoriza-
tion

((m')' —(o' f)'- p [m', o' f] -m']

=(rr'+ p,o ~ f+ p, m)(m'-p, o'f —p, m).

(5.23)

[Note that if &,- -1, we obtain the analog of (5.28}
with m' replaced by p'-A'(-», t) and with f re
placed by p+A(-x, t).] The two choices of sign in
(5.22) are equivalent under a transformation with
rPext and under a transformation with I" in (3.21),
(5.22) with the upper sign maps into

in (4.1)? This cannot be accomplished in the usual
way, since the substitution p -p —eA(x, t) and the
addition of eA (x, t) to the individual two-compo-
nent operators in (8.9) would give results depend-
ing on the particular gauge (5.1) chosen. Thus,
the possibility of a two-component Hamiltonian
with a Coulomb term, as in (5.15), is ruled out.
Of course, as in the case with both the Dirac Ham-
iltonian and the four-component BHV Hamiltonian,
one can always add terms depending on the corn-
ponents of the electromagnetic four-tensor to the
individual operators in (3.9), but we shall make
no attempt here to analyze the physical implica-
tions.

VI. SUMMARY

By working in the Heisenberg picture we have
established that, if the Hamiltonian for a relativis-
tic quantum theory of a free spin-Z particle fac-
torizes the Klein-Gordon operator, there is a
doubling of the spin space, with a certain excep-
tion. The extra degrees of freedom are present
because for each value of the canonical momentum
and for each value of the canonical helicity, there
are both positive- and negative-energy solutions.
%e have seen that the BHV Hamiltonian, like the
Dirac and Sakata- Taketani spin-0 Hamiltonians,

provides an example of such a theory.
The Dirac and the BHV theories are equivalent

in the presence of an electromagnetic field, but,
since the transformation (3.21) between the two is
nonlocal, there may exist interactions that de-
stroy this equivalence. If this is the case it is
likely, as emphasized by BHV, to occur in the
case of weak interactions, but the possibility has
not yet been demonstrated. BHV have placed
great emphasis on the importance of chirality, "'
which is the + sign that appears in front of the
o ~ [p -eA~(x, t)] term in (5.11). For chirality to
be significant the interaction would have to be such
that the operator (Pext no longer provides a mapping
between the two alternatives as it does in (5.4).
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A general formalism for theories with spontaneously broken local symmetries is developed
in the unitarity gauge. The canonical quantization procedure is carried out, leading to a
set of Lorentz-covariant Feynman rules. Various special topics are discussed.

I. INTRODUCTION AND SUMMARY

Models with spontaneously broken local symme-
tries have been suggested' as a solution to two of
the major problems of elementary-particle theory:

(a) the unification' of the weak and electromag-
netic interaction;

(b) the elimination of ultraviolet divergences ap-
pearing in higher -order effects of the weak inter-
actions.

Recently there have been indications' that such
models may also elucidate one other outstanding

problem:

(c) the explanation of the weak breaking of intrin-
sic symmetries such as isospin.

The purpose of the present paper is to provide a
formal foundation for general theories with spon-
taneously broken local symmetries.

The formalism described here is based on choice
of a particular gauge, the "unitarity gauge, " in
which the absence of Goldstone bosons and the or-
der-by-order unitarity of these theories is mani-
fest. This is the gauge which was originally used
to show that, instead of Goldstone bosons appear-
ing when local symmetries are spontaneously brok-


