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formulated the text in terms of the less customary point
transformation, in order to facilitate the comparison
with paper I (Ref. 3).

30. Carmi, preceding paper, Phys. Rev. D 7, 1038
(1973), which is henceforth referred to as "paper I."
Its equations will be quoted, as e.g. , (I2.3).

4Professor Donald Newman, private communication.
5This is hindsight, of course. At the time paper I was

written, the solution had to be found by trial and error.
6Thus the equilibrium-thermodynamics (i.e.,

(n ) e ~s~n)) cannot be evaluated exactly Ho. wever, if
the system is first transformed by the two Bohm-Pines
transformations ID. Bohm and D. Pines, Phys. Rev. 92,
609 (1953)] and the random-phase approxixnation (RPA)
(and, possibly, also [G. Carmi and A. J. Lock, Phys.
Hev. A 5, 1447 (1972)] the Bogoliubov approximation) is
used, the residual interaction is small and the transfor-
mation (3.1) will (if it is chosen in such a way as to ful-
fill the other criteria of Ref. 1) describe also the thermo-
dynamics of the system quite well (Ref. 1).

TThis definition is obviously not the widest possible
generalization of the corresponding definition in Sec. II,
but it serves our purposes here.

Again, this is not the most general system for which
Lemma 1„could be proved. More generally, one could
write f; (x1~. . ., x; 1,x; + 1,x; 1, . . . , x„) on the left-
hand side of (3.12).

~The main restriction is that the corresponding Lie
element pf + fp + g has a nonvanishing domain inl 2, as
operator with range in I 2, and that this remains so for
the Lie products of such elements.

~ORobert Hermann, L,ie Groups and Physics (Benjamin,
New York, 1966), p. 139.

~~L. Van Hove, Acad. Roy. Belg. Cl. Sci. MOm. (Series
8) 26, No. 6 (1951); Bull. Cl. Sci, Acad. Roy. Belg.
(Series A) 37, 610 (1951).

(Pf&+f&p+g, pf2+f2p + g2) =pf3+f3P + g3, with f3
= 2(f(f2 -fgf2), etc.

~3These results do not seem to be recorded in the liter-
ature but, judging from their simple nature, they must
have occurred to almost everybody who has encountered
this algebra.

~4Within the underlying associative algebra (with re-
spect to ordinary operator multiplication) the algebra
can be spanned by a basis of taco elements only, e.g.,

pe-2i" +e-2ix p and B eix-2 1
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The advent of the diInensional-regularization procedure allows the study of renormaliza-
bility of spontaneously broken gauge theories formulated in a wide class of gauges. We

derive and study the Ward- Takahashi identities appropriate to such gauges. A consequence
of the Ward-Takahashi identities is that the physical S matrix is invariant under a variation
of the gauge condition. As remarked before, since the variation of a parameter in the Re-
gauge formulation shifts the masses of unphysical excitations, the above result, the ( inde-
pendence of the physical S matrix, implies that the unphysical excitations cannot contribute
to the sum over intermediate states, establishing the unitarity of the S matrix. We also
give the renormalization procedure of a model formulated in the R& gauge.

I. INTRODUCTION

The advent of a very powerful regularization
procedure for Feynman integrals —the so-called
dimensional regularization —permits us to discuss
intelligently the renormalizability question of spon-
taneously broken gauge theories formulated in a
fairly general class of gauges. ' The present paper
is dedicated to the derivation of the Vizard-Takaha-
shi (WT) identities in such gauges, which can be
used to prove the renormalizability and unitarity

of the theory in question. It has been observed'
that in the so-called R&-gauge formulation invari-
ance of the physical S matrix under the variation
of a gauge-specifying parameter (i.e., $) implies
the unitarity of the S matrix, that is to say, that
unphysical excitations do not contribute to sums
over intermediate states. Thus, the ability to for-
mulate quantum theory of spontaneously broken
gauge symmetry in a general class of gauge condi-
tions, in a way that reflects the gauge invariance
of the action as expressed through the WT identi-
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ties, is extremely useful in showing that the theory
is in fact unitary and renormalizable. [Let us re-
call that the proof (in paper II) of the unitarity in
the 8 gauge was extremely complicated. ]

In our discussion we shall assume that all ex-
pressions are dimensionally regulated, so that for-
mal manipulations of the kinds necessary in show-
ing the WT identities for Feynman amplitudes are
justified. ' In the next section, we consider a gen-
eral class of gauge conditions and derive the WT
identities appropriate to the gauges being consid-
ered. An important lemma we use in the deriva-
tion, which is a generalization of the results of
Fradkin and Tyutin, and Slavnov4 for the Landau
gauge formulation, is proved in the Appendix. In

Sec. IO we give a demonstration that the physical
S matrix is invariant under an infinitesimal change
in the gauge condition. This, together with the re-
mark in Ref. 3, establishes the unitary of the phys-
ical S matrix. In Sec. IV we discuss renormaliza-
tion conditions of a model formulated in the A&

gauge. Here we illustrate how renormalization
constants may be chosen in accordance with the
WT identities. Finally the Lagrangian of the mod-
el is written down in terms of renormalized fields
and parameters.

II. WT IDENTITIES

We shall discuss a theory consisting of Bose
fields. Recently Bardeen' has given a discussion
of renormalizability of gauge theories with fer-
mions. He has shown that the problem associated
with the anomalies' ' in fermion loops can be
isolated from the general problem of renormaliza-
bility and gauge invariance, and if fermion loop
anomalies are absent, or canceled among them-
selves in losoest order, the presence of fermions
does not hinder the WT identities from being valid.

Let Q, be the set of all fields including the gauge
fields transforming as a linear (in general reduc-
ible) representation of a compact Lie group. The
infinitesimal transformation is given by

and consider the integral

Popov and Faddeev' have shown that the vacuum-
to-vacuum amplitude for a gauge theory should be
written as

W(a„) = [dP]e"~~~detMII5(F„(P) —a ), (6)

where S[P] is the gauge-inva. riant action, S[g]
= Jd'xg(P) Con.sider the transformation (1) with

g„however restricted by the condition

g = [M '(Q)]„BA.8, (7)

where A. is an arbitrary infinitesimal number in-
dependent of Q. We show in the Appendix that
(detM)[dg] is a measure invariant under the trans-
formation (1) with the restriction (7). From Eq.
(6), it follows then that W is invariant under an
infinitesimal change of a, Ga„=A.

d W(a„) =0, for all a~, (6)da

so W is independent of a„. One can therefore inte-
grate over a„ the right-hand side of Eq. (6) with-
out changing the result, "up to some irrelevant
normalization:

xdetMII5(F (Q) —a„)

where [dg] =II„dg is the product of Hurwitz inte-
grals at every space-time point and a is indepen-
dent of P, and g. We need only compute, for our
purpose, AF with the restriction to the manifold
F (Q) = a . It is given by

hz(Q) = detM„8

for P such that F„(P)=a„,where

F (y)=a„, (2)

where our notation is such that the indices i and +
stand for the space-time variables as well as the
internal symmetry indices, and summation and
integration over repeated indices will always be
understood; g is the space-time-dependent pa-
rameter of the Lie group and I',

&
is a reducible

representation of the generator labeled by n, and

A, may involve space-time derivatives. The La-
grangian g is invariant under the transformation
(1).

We choose as the gauge condition

[dQ] e' ~~j det M II H(F (P)) .

We shall specialize H(a„) to a Gaussian function
in the following:

II H(a8) = exp(- —,
' iaq') .

8

Equation (9) can be written as"

(10)

W= [dP] exp(iS[&f&] ——,iF„')detM .

Furthermore detM can be described as loops gen-
erated by a set of complex scalar fields c and e
obeying Fermi-Dirac statistics. ' '" Equation (11)
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can thus be written as' "
W = [dp][dc][dc]exp(iS, ff [P, c, c]),

where

S,ff[$ C C] S[Q] 2F„+C M„BC8.

(12)

(13)

theory be renormalizable the effective action, Eq.
(13), must not contain terms of dimension higher
than four. This requires in particular that the di-
mension of the function I' not exceed two.

We will now introduce source terms J; for the
fields P, in order to generate Green's functions:

detM 0 0,
and in order that the Green's functions of the

(14)

So far we have been silent about permissible
choices of the gauge condition I' =a„. The gauge
condition must be so chosen that the operator M 8
is nonsingular, i.e.,

W[J] = [dP] detM expi(S[g] —,'F '+—Q,J, ) .

Performing the nonlinear gauge transformations
previously defined by Eq. (7) and remembering
that a change of variables does not change the
value of an integral, we obtain the identity

0= [dp]detM exp(i(S[p] —',F„'+J;—Q, ) f (S[&g — F„'+J—;Q;),n

or

[dp]detMexpfi(S[P] —,'Fz'+ J,P—,)j[-F„.+J, (I',~~/&+A~)(M ')8„]=0. (16)

Equation (16) can be translated into an equation for W[J]:

-Z„-.—+J, r,', —.—+A,' m-' —.— W J =0. (17)

This is the WT identity for generating functional
W[Z] in the gauge defined by F (P) = a„

In the special case where I' is a linear function
of fields P„

F„(Q)=F;Q, ,

a set of solutions of Eq. (17) can be obtained in the
following way. Let us compute W[Z] with 7, =K„F„

W[K„F„,] = [dQ] detM

To this end we consider

w„,[J]=
J

[dQ][dc][dc]c„cq

&&exp[i(S[P] ——,F„'+c„M„Bc8+J,P, )] .

(21)

The functional W„&[J], the Green's function for c
in the presence of external sources, satisfies the
equation

xexp(i/S[P] —,'(F„-K„)'+—'K—„']).

(19)

Using the fact that one can add to Il an arbitrary
function of space-time by a succession of gauge
transformations which satisfy Eq. (7) and leave the
metric detM[dg] and the action S[P] invariant, we
can perform the integral and obtain

w[K„F„,]=w[0] 8'» '"
ol

Z[K„F„,]= ilnW[K„F„,]. -
= —,K '+const.

Equation (17) requires knowing the quantity

or

w[z]=w, ,[z]. (22)

We believe that the discussion here of the WT
identities for a general class of gauges parallels
the combinatoric discussion of 't Hooft and Velt-
man" on the same subject.

HI. SOME CONSEQUENCES OF WT IDENTITIES

The WT identities implied by Eq. (17) are satis-
fied by the dimensionally regulated Green's func-
tions of the theory for general n, the number of
space-time dimensions. ' lf the effective action
S,ff in Eq. $.2) is that of a renormalizable theory,
then the singularities of the Green's functions at
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n =4 are removed by the renormalization of fields
and parameters of the Lagrangian and F (Q). The
renormalized Green's functions then satisfy the
renormalized WT identities obtained by rescaling
parameters and sources J; in Eq. (17), as we have
shown for the 8-gauge formulation in paper II.

In this section we shall demonstrate that, for
general n, a small. variation in the unrenormalized
expression for E leaves the physical S matrix in-
variant. It follows from the discussion in the last
paragraph that when the theory is renormalized as
we discussed, the physical S matrix is invariant

under a variation of renormalized parameters ap-
pearing in the gauge condition.

As alluded to in the Introduction, a variation of
the parameter $ in the R&-gauge formulation'
causes the masses of unphysical particles to vary;
in fact, in the limit $-0, these become infinite.
Thus it is seen that the (-independence of the S ma-
trix implies the unitarity of the S matrix; that is
to say, the unphysical particles decouple from
physical ones on mass shell.

We will give a small variation hF to E and
compute the variation b, W of W[J]:

aW[J]= ][d[g]detMe PX[i(S /[1 —,'F,'+J;g)j—(-at,at„+
~

(ryQy+A, )(M )g).
We will now use Eq. (16). Applying ib, F„(5/i5J) on it, we obtain

(23)

0= iF AF„+ J,aF„+ . " (I'8~]t], + AB)(M ')[]„exP(i(S[Q]—,F '+ J—,Q, ))detM[dg] . (24)

Combining Eqs. (23) and (24), we finally obtain

LW[J] = [dp] exp[i(S[Q] —,'F„'+J;Q;)—]detMJ, AF„(Q)(I';8,Q;+A~)(M ') 8„. (25)

The S-matrix element, not necessarily connected, is obtained from R' by differentiating with respect to
J's around J=O, truncating external lines, and setting every external momentum on its mass shell. Let
S~ be the quantity so obtained in the gauge specified by F„. Then the structure of b, W in Eq. (25) implies

or

S~+aS~= 1+-,' S
e p e-

where Z~ is the wave-function renormalization constant in the gauge specified by E, and the summation

Q, and the product+, run over all external lines e. The change in the renormalization constant, 5Z~, is
obtained from the change in the propagator:

i = — [dp] detM exp(i(S[p] —,'F„')f[Q,AF „—(I'~8$,+ As)(M ') []„+(i —k)] .
i k Jo (27)

The quantity (6Z~), is the residue of the pole of the Fourier transform of the above expression when i and
k take the internal quantum numbers of e. Equation (26) shows that the renormalized, physical S-matrix
element,

(28)

is independent of the gauge chosen, E, to compute it.

IV. RENORMALIZATION

In this section we apply the considerations of previous sections to a model, partly to illustrate the gener-
al arguments presented abstractly there, and partly to illustrate the renormalization procedure based on
the WT identities is the 8& gauge.

We choose as our model the system of a quartet of scalar mesons. They form a representation of [SU(2)Q
x SU(2) where the first factor is a gauge symmetry. The SU(2) x SU(2) symmetry is spontaneously broken,
leaving the diagonal SU(2) as invariance of the vacuum. In this model the triplet of gauge bosons all become
massive. ' In a gauge theory of weak and electromagnetic interactions, one of the gauge bosons remains
massless and causes infrared divergences. In this model we avoid the infrared problem completely. In
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(29)

6(I)( = (I';~QJ +A;")(t„),

any case the infrared problem in the former is no worse than in quantum electrodynamics when formulated
in the 9

& gauge and can be resolved in the usual way.
The Lagrangian of the model is written as

g=--,'(s„A, —B,A~++A„&&A,) +~2[(sp) +(8„X) l+-,'gA" (g&, x-xe&4+x &&s&x)

+ km'A„'([I'+X')- kP(4'+ g') —-'o(4'+X')'.

The infinitesimal form of the local [SU(2)]c transformations is

5X=-~ 0
(30)

6X=~4-»&X.

We assume that the parameters o. and P are so arranged that the field g develops a vacuum expectation
value,

&4)=~.

%e choose the gauge condition

Z„(y) =0,

d((eett'e-x =D,

where A. and $ are parameters to be specified. The operator M is given by

(3l)

(32)

"(l",,.y, +A['),
(33)

We shall write the generating functional of Green's functions as

te[t)„z tt] = [dd]detMexp[t'(s[P] ——,'P„*)]exp (t' d'x( t)e (teeZ xzt)-)P.

The identity (20) translates into

-i lnW[S„A, (A./$)A, 0] =—A'+ const,

(34)

(35)

which yields

(36)

where g = ilnW, an-d a and f) are isospin indices. Equation (36) yields a set of relations useful to renor-
malization of propagators and the parameters ( and A. .

It is convenient to parametrize the A„and y propagators as

-t((tPe(x)d'(P)) ),- (d„.—+PeP„-[( pp)d, p] )I!",

(37)

where a(P'), b(P'), c(p'), and d(p') are free of poles, at least in perturbation theory Equation . (36) gives

p d+ 2 —g + — g+ $p = — g+ yp~ d g~p~ (36)
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Vfe shall adjust the value of A. so that

c(0) =0.
Then we must have

(39)

d(0) = —— (40)

a(0)d'(0) = A.'.
Vfe can renormalize fields and parameters so that

(41)

a(p') ~ —Z, '(p' —m'),
$2~ Q

d(p'), z, '(p' u')- (42)

Then from Eqs. (40) and (41) we find that

x=m(z, z )
"

X

and

-1
p, = —rn,2 — 2

(43)

(44)

where

5, = $z~ ~ (45)

How is the constant m related to the fundamental parameters of the theory'? In lowest order, we have m
= —,'(gv). The vacuum expectation value v may be used as a fundamental parameter of theory instead of P in
Eq. (29). What is more convenient, we may use m as a fundamental parameter instead of v. Thus the re-
normalized theory can be specified completely in terms of m and g„, in addition to g„and a„ to be defined
shortly.

Certain useful information is obtained from the WT identity which follows from differentiating Eq. (17)
with respect to J; and then putting all external sources equal to zero:

+n + ~ay +A; M —. W J =0. (45)

Specializing to J, =J '( y), we learn that the inverse ghost propagator G '(p'),

-i((c'(x)c' (y)),)-G( p') P',
is proportional to

G '( p') - [(a+p'5)d c'p'], -

(47)

(4&)

so that G(p ) has a pole where the )t propagator does. Moreover, the low-energy limit of G '(p2) is given
by

g '(p*) —g, ' p' ——m'),
p2 0 8 (49)

(50)

where Z, is cutoff-dependent.
Differentiating Eq. (17) with respect to J, and J, and letting all external sources vanish, we obtain

1 5 5 6 I 81 5 8, 1 5 5

specializing to the case J, =g~, J, =g'„, where q~ and g', are transverse, B~g~&—-0, we obtain a relation be-
tween the (A„)' and A„cc vertices. Denoting the former by il"~"„',(p, q, r) and the latter by iy'„"(p, q; x) with
p+q+r =0 [see Fig. 1 of paper I (Ref. 14)], and expressing the low-energy limits of these quantities by

if'ts'„(P, q, r) s' g —[(P —q)„gts+ (q —r)tgs„r (r —P)„g„t]+nntnff-indePendent terms),
p, q, r~o Zg

1
ir's '(p, q; r) «'"p» g= + entnff-independent terms),

0 up&~0 Z~

(51)
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we find from Eq. (50) that"

Z, /Z, =Z,/Z, . (52)

The renormalized coupling constant g„ is defined as

g Z ]
gr g 3/2 grZ g 1/2.

3 3 3
(53)

[Caution: Actually the quantity appearing in Eq. (50) is not y~"', but a related quantity whose cutoff-depen-
dent part is the same as yz".]

We may also define n„ to be the value of the renormalized (y) coupling when all external momenta van-
ish. By the use of Eq. (17) it is possible to show that all remaining renormalization parts can be expressed
finitely in terms of g„, n„, and m. We have done this. However, the process is much too arduous to re-

.produce here. We shall be content to give a renormalization procedure based on this study by specifying
renor malization constants.

The effective Lagrangian of the theory is

aCeff 4(9„A—s, A„+gA~ xAu)'+ 2[(s~S)'+(s &Z)']+ 2gA" ~ (Ss~& —&B~S+ZxstiX) + —,'g»" s„&

+ —,
' g 'v'A~ + —,'g 'vA'„S+ 8 g 'A'„(S'+ y') —

& n(S'+ y') —o vS(S'+ X') —ov'S' —5 p, '(S'+ y') —vb p, 'S

Xgv ~ Xg+c s + c+gc s'[A xc]+—(c.cS+c yxc) —2( s Ai'+ —
X (54)

where bp, '= av'+P, and P=v+S. We shall renor-
malize fields and parameters according to

(S, v) =Z ' '(S, v)„,
(55)

c =z '~2e
3 r 0

g=g„Z,/Z, ",
t| = Q „Zg/Zx

and define

1m- 2 grVr

We recall

1

3

X=m(Z, Z„) '~'.

(57)

(58)

We determine Z„ZX, and Z, from Eqs. (42) and

(49). We choose Z& in such a way that m' deter
mined by Eq. (42) is the same as —,'(g„v„)' by rescal-
ing v„and S„. [This does not make the S field nor-
malized to the unit amplitude asymptotically, but
no matter. The renormalized S propagator is fi-
nite. ] The constants Z, and Z, are determined by
requiring that the renormalized coupling constants
associated with the (A, )' and (y)' vertices at zero
external momenta are g„and n„, respectively.
The counterterm 6 p,

2 is determined by the condi-
tion that the S field does not have a vacuum expec-
tation value (see paper II).

Once they are renormalized according to Eqs.

(55)-(58), Green's functions of the theory are fi-
nite in terms of m, g„, o.„, and g„. The S matrix
is independent of $„. Since the poles of the y pro-
pagator, the longitudinal part of the A.

&
propagator,

and the ghost propagator G(p') at

p'= —m'+ a finite correction

APPENDIX

We wish to show the invariance of the metric

dV= [d&gA, 6 =detM, (Al)

under the gauge transformation (1) constrained by
Eq. (7). We shall first compute the Jacobian J of
the transformation (1) to first order in g,

J= exp[r,",g„+(r,",y, +A",)bg„/b. y;], (A2)
bg„/5$; = —(M ')„g(5MBy/5$()gy .

Since the measure [dQ] is invariant under the
group of linear transformations, exp(I';"; g„)= 1, and
we have

arising from the zero of [(a+ bp')d —c'p'] vary as
g„ is varied, while the S matrix is independent of

$„, we see that the contributions from these poles
must cancel in all S-matrix elements. In fact, in
the limit $„-0, we find that the poles in question
recede to infinity and the corresponding particles
do not contribute to sum over intermediate states
at any finite energy. The limit g„-0 defines the
U-gauge formulation discussed in paper III(see also
Ref: 16) as an analytic limit of an infinite set of
renormalizable gauge formulations.
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J' = exp[-(I","~(t), + A; ) (M ') „8(OMS~/6(t)')g~] .
(AS)

We shall now compute the change in ~~ to this
order~

We must now compute OM/6$:

(AS)

L~ = det(M + OM) = A~ exp TrM 'OM,

where

(A4) When Eq. (AS) is substituted in Eq. (A8), the term
O' F/6$, 6$, drop. s out. So Eq. (A8) becomes

So we have

6[in~ ] = "(M-')„(1,', y, +A,')g, .
)

(A5)

(A6)

[r~,.(r,.',.y, +A,') —r,', (r,', y, +AI')](M-'), , =0.

(A10)

Let f„8 be the structure constant of the gauge
group. Then

The effect of the transformation on the measure
dV is then 1'~; (1';)4J + Ag ) - 1 ), (1'('g4'g +A( ) -f,s (1'ag 4) + A)" ) .

(A11)

Therefore Eq. (A10) can be written as

(A 7)

Th«xpression (AV) vanishes for every g if we
have

or (A12)

"()' gled+&'&) —
~

"(I')(,+A()) (I ')y~=0.

(A8)

f~p„(M ')ysMe„=0.

But Eq. (A12) is true because f„~„=0for any com-
pact Lie group.
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