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For the case of high multipoles we give an analytic form of the spectrum of gravitational
and electromagnetic radiation produced by a particle in a highly relativistic orbit r p

= (3
+ D)M around a Schwarzschild black hole of mass M. The general dependence of the power
spectrum on the frequency in all three spin cases (s = 0 for scalar, s= 1 for vector, and
s = 2 for tensor fields) are summarized by power P o- cu ' exp(-2'/(A)~it). Although they
have the common feature of an exponential cutoff above a certain frequency ~,~t (4/~6)~p,
where cop is the frequency of the orbit, the tensor case has a much broader frequency
spectrum than scalar or vector radiation.

I. INTRODUCTION

Regge and Wheeler' developed techniques to
treat the most general small perturbation in a
Schwarzschild geometry. These were applied to
the stability problem for the Schwarzschild met-
ric by Regge, Wheeler, and Vishveshwara, ' First
calculations of gravitational radiation from a
highly relativistic source, based on an extended
Regge-Wheeler formalism, were done by Thorne'
and used for the analysis of gravitational radiation
from neutron stars by Thorne and Campolattaro'
and Price and Thorne. ' Radiation from material
falling into black holes has been given by Zerilli'
and by Davis and Ruffini, ' Davis, Ruffini, Press,
and Price, ' Davis, Ruffini, and Tiomno, ' and
Davis, Ruffini, Tiomno, and Zerilli. ' In this
paper the method is applied to treat (in the fixed
Schwarzschild background geometry) the radiation
emitted by a test particle moving at a velocity
close to the local speed of light in the neighbor-
hood of a black hole. As usual the particle as
well as the radiation is described by a perturba-
tion of the background metric, which can be ex-
panded in terms of a set of scalar, vector, or ten-
sor harmonics with both (-l)' electric (even) par-
ity and (-l)'" magnetic (odd) parity. This problem

is of direct interest in relation to the possible en-
hancement of synchrotronlike gravitational radia-
tion effects as recently suggested by Misner. "

As we are interested in the spectral distribution,
we analyze only the Fourier transform of the per-
turbation. The radial part of the expansion satis-
fies a Schrodinger-type wave equation of the form

where r*=x —3My2Mln(r/M 2); M-is the mass
of the Schwarzschild black hole; l and m are the
angular and azimuthal quantum numbers of the
multipole expansion. V,ff depends on the particu-
lar spin of the field under examination. We can
adapt the formalism to the study of scalar (spin-0),
electromagnetic (spin-l), or gravitational (spin-2)
radiation. In the limit l»1 the potential V,«ac-
quires a standard form independent of the spin
of the field

The source terms will be different in the three
cases, even for l» 1. The explicit forms both
for the potential and for the source in the case of
vector fields have been derived by Ruffini and
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Tiomno, "and those for the tensor field by Davis,
Ruffini, and Tiomno. " We use their results as
reproduced in Ref. 10. The scalar equations have
been given by Misner et al."

In this paper we look at the spectra of vector
and tensor radiation produced by particles in ex-
treme relativistic circular geodesic orbit close to
the null orbit at r =3M, i.e., at r, =(3+5)M. Then
the radiated frequency co is just a multiple m of
the particle's orbit frequency (un = (M/rn')'~',
namely ~ = m cu0.

Equation (1) has to be solved with the boundary
conditions of purely outgoing waves for r*-r -+cc,

u(r*) =Ae'""*, r*-+~
and purely ingoing waves at the surface of the
black hole for ~*= - oo or x = 2M,

v(r*) =Be '"""
where u and v are solutions of Eq. (1) with S'"=0.
The Green' s function is then given by

W 'u(r*)v(r,"),
W-'u(r,*)v(r"), r*& r,*

where the Wronskian W = u(r,*)v'(r*) —v(r n )u'(r*).
In the solution of Eq. (1) for tensor and vector
fields the Green' s function and its derivative are
needed as a consequence of the fact that in the
source term both 5(r* —rn~) and 5'(r* —r,*) are
present. " For the asymptotic reg™(I» 1) it
has been shown that the following analytic forms
can be obtained":

-x~/8
G(r, rn) =4&(vn l,~, ),~n

1/2 -I/ 4

77 Pl 4)0

&(
-i[nln+(&/4)1n(&/4)] rlL i.

)either+e
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1/2P/48)'' ( )''
e-i)7I/8+(~/4) ]n(&/4)j Zl 3 & leis)r+

y 4+ 4$6'g e

(4)

Here ~ has different values for the two different
par itic s,

(-1)'. e,„.„=1 +4P+ ImI5, 3P = I-
I mI

( 1)'": ..«=3+4P+ImI5, 3P =I-ImI -I.
The quantity c appears in the barrier penetration

factor, "which is given by e, where for a particle
with energy E in the orbit x0*

() =, [V(r") E]'~'dr*
0

= 41TE

and r," is the outer turning point defined by V(r*)
=E. From expressions (3) and (4) we see imme-
diately that, both in the Green' s function and in
the derivative, terms with l&ImI are negligible
due to the exponential factor. The main contribu-
tion comes from the term l = ImI ~

II. VECTOR RADIATION

A charge q moves circularly around a Schwarzschild black hole at a radius r, =(3+5)M. The electromag-
netic field it produces is expandable in multipole modes characterized by /, m." The expression for the
power emitted into a single mode, even and odd parity, is' ~ "

P,„,(E, m) =—(IR,'„".„I'+ IR~, I'),

where

4nqR [( iyn Y'i(nw 0) g G (r r (v)i+ ljj 8 V0
(7)

R',«= —~,
I I)]o~, [I(I+1)—m(m+1)]' ' Y, ''(-,' 0v)G'o ( «r~, r,*,~).jl(l+ l (8)

Substituting the Green's functions (3) and (4) into (6), (7), and (8), and using a large-m approximation for
the Yi (-,'m, 0), we obtain

Pi nn(flzQP ) Q P i(™)=P +Po«
1~ Iml

2

i.[ xp(--'«;..)Ir(-'+ -'i~....) I'+ -,' exp( ——,
' ve«, )Ir(—', + —,

' ic«n) I'] .54ms

It should be mentioned that in the above expression only the leading terms in the sum (I = Iml for even and
I= Iml+ 1 for odd parity) are included; both contributions to the power in (9) have basically the same ex-
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ponentially decaying behavior in (l —~m~) —as mentioned above for the Green's functions —and furthermore
there are additional damping factors present if (m~& I in the even case and ~m(+1& I in the odd case. There-
fore we will set p=0 in (5) for all explicit evaluations.

In this case we can derive from expression (9) an approximate form, which holds in the region of the
limit e»1 or ~m~5»1. In that limit we can have a simplified form of the I' functions" and get

2
+em (~) S (e-z/2& i/2+2e 3w/2& -i/2)&-&v/ +crit

total 54&&f 2 t:ven odd (10)

wher~ I~I& =(4/~)~/~, „i. From Eq. (10) we obtain for the ratio of the contributions of the odd- and even-
parity terms in the asymptotic regime ~m~5» 1:

Pod/ /+even 2e /m 5 = 2 &e &crit/&

In the case ~m~5»1 the ratio tends instead to a constant of the order 10 '. In Fig. 1 the total electromag-
netic power, as given by expression (9), is presented. For comparison we also give the power spectrum
for the emission of scalar waves, which was derived by Misner et a/. ,"for the modes 1=no, which are the
main contributors, as

P (u) ~ (&o/v;, }exp(-2'/(u„;i )

asymptotically for ~m~5» l. Both cases are similar in that most of the radiated energy is emitted in a
single decade of frequencies.

III. TENSOR RADIATION

Let us consider now the case of an uncharged particle with mass p, orbiting the Schwarzschild black hole
and emitting gravitational radiation. In this case the power emitted is still given by expression (6). The
functions analogous to (7) and (8) for even and odd parity are, however, "now given by

Scalar
~,, fn ((O) x Power

Tensor Vector

Tensor (8=IO }

~ 2 3
4 &10

. M. 0 ~

I.O~lO
2

.M .
IxiO-2 . M.

O.5xQ p
'2
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10 IO IO

FIG. 1. Scalar, vector, and tensor synchrotron radiation. The quantity (co/m(TIt) ln(10) x power is plotted as the
area under these curves and represents the total energy when plotted against log)0(Q)/~, ~~)), where for the power the
expressions in Eqs. (9) and (16) are used. Scalar power and vector power are functions of cu/co~;t only; hence their
graphs are universal (independent of the choice of co~t). For the gravitational (tensor) power a radius 6 = ro/I -3 of
the orbiting particle has to be specified. For fixed 5 = 10 6 the tensor spectrum extends (to the left) till m = 2 or
2cuo/cu;t ——(7t/2)6= 10 8 . p stands for the scalar charge and the mass of the particle, and q is its electromagnetic
charge. The scalar power is taken from Ref. 12.
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R,'„", =4m pu'F, (-', w, 0) a(r„)G'"'" + —
~ [P(r,)G' ]

(I —1)(l+ 2) ' ',„.„1 s
(12)

where

~ = —,'(I —i)(I+ 2),

un (1 3M/r )-1/2 (3/6)1/ 2

r, —2M 1 M 3M 6M' 2m' —l(l+1)
(r, + 3M/X)' X Xr, X2rn y2r, 2 l(l + 1) —2

1 —2M/t,
1+3M/Xr, '

I(I+I)-m(m+1) "' s
Rcdd —4wlt, u'Y, (-2'mr 0) I(i 1)(1+1)(1~2) Srn ( &&G ) . (i3)

Again using Eqs. (3) and (4) for the asymptotic expressions of the Green's functions and their derivatives,
we obtain for the total power of the gravitational radiation (6«1)

P,„,„(mid, ) = p, 64,(, (I+-, m6)I'(-, +-, ie,„,„)+ I'(-, + , ie,„,„)-GR 2 exp( e &&even) 1 1 1 . W2 (1 —i)
(14)

P dd (~~,) = u &4,&, &
W2 I"(—,+ —ie dd)+ I'(-, +-, ie.dd)

GR exp( 4 ~e d) 1+8
54~' '~~ 2v"3'

As in the case of the electromagnetic radiation, the only significant contributions are given for even parity
by the term with I = ~m ~, and for odd parity by the term with l = ~m(+ 1. Then

PGR„t(mcdn) = PG",„(mid, ) + PGdRd(m td„). (16)

Notice that for large values of m the second terms in both PGR„(m&u, ) and PGdRd(mv, ) are negligible compared
with the first. We are now again interested in finding the asymptotic expression for the power in the re-
gion of the exponential cutoff, where ~m ~6» 1 or e» 1.

2
pGR(t22~ )

4 e-1/2 e-v/2+ 1
&

~t el/ 2 e 2rr/ 2 e-2rc/rccrit
() 54 ~/2 ~ 8 +

crit

where as before &u/&rt, „t = —,
'

11~m~6. Also the ratio of the even- and odd-mode parts in the power is similar
to the electromagnetic case. It is almost constant for low values of m (~m~6«1), and in the asymptotic
region where ~m~5»1 we have

GR i GR 1
Pndd/Peven 2 ~e tdcrit/~ r (18)

which is exactly the same as in (11).
The total power for gravitational radiation as given by Eq. (16) is plotted in Fig. 1. In contrast to the

scalar and vector spectra, for the tensor radiation each decade from the fundamental frequency up to the
cutoff contains roughly equal energy. In Fig. 2 the comparison of the power obtained in the present analysis
with the one gained from numerical integration is made for 5 =10 '. Only below an m value for which also
the second terms in P,dz and P,„,„contribute significantly is the exact solution missed. At m = 10 the ana-
lytic solution is off by -i%%uo in the gravitational case and by -15/o in the electromagnetic case.

Details on the behavior of the polarization of GSR in the gravitational case have been given by some of
us." For the electromagnetic case see the subsequent paper (this issue).

IV. DISCUSSION P(&d)-(&d/&u„;)' 'e ' (19)

The main result of our analysis is the following:
In the three cases the power spectrum P(td) can be
summarized by a formula of the type

s is here the spin of the field under consideration
(s = 0 scalar, s = 1 electromagnetic, s = 2 gr avita-
tional). Equation (19) is to be seen by inspection
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FIG. 2. Low-mode comparison of numerically integrated (exact) and analytic solutions (asymptotic) which generally
hold for m » 1. The radius ro of the particle's circular orbit is given by 6 = rgb 3= 10 . p-and q are the mass and
the charge of the particle, respectively.

w oo

Eg(&g
= Eobi P(CV)d(d

& 0

~~tlexp + ~&/2

& Q) ~ Q gati/2Bxp

P(co)da(. (20)

Due to the presence of high multipoles in the spec-

of Eq. (9) —the expression tends to a constant for
low a( as all e - 1 in that limit —and Eqs. (14) and

(15) —they show an over-all factor (m5) '
(QJ/(d 'g) . These properties are still visible in

the asymptotic expressions (10) and (17), respec-
tively, although other factors take over in that
limit. From (19) it follows that at high frequencies
(a(» ~„;,) all the spectra are qualitatively the
same as at low frequencies (&os &u,„.,); they differ
by a factor &o' ' (see also Fig. 1).

It is of physical interest to explore how these
spectra might affect the energy requirement im-
plied by a possible detection of gravitational radi-
ation. Of course, the spectra as given in (19)
which we are using here for that purpose are cer-
tainly not produced by events occurring daily over a
long period of time, as no astrophysically plau-
sible process of generation of these spectra has
yet been conceived.

If we have a detector of bandwidth Ace centered
around a frequency ru, „p we have for the total
amount of energy E„, implied by the given spectral
distribution as a function of the energy E',b, avail-
able in the fixed bandwidth

tra, the effect of beaming has to be taken also
into proper account in the estimate of F„b, . If the
radiation is confined to a disk of half-width A~,
then

E „=63xE,'"', (21)

~ ~Bxp+ &~/2

E„,= b, 3
( P(~)d~ I'(w)d~) E."b.'

"0 "'&Bxp- &~/2

Egots obs p
(22)

where E,"&,
' is the amount of energy extrapolated

from the energy observed by the antenna within its
bandwidth under the assumption of isotropic radia-
tion. 0,, is a conversion factor between this energy
and E„,, the total energy requirement due to the
entire spectrum and with the beaming effect in-
cluded. Since for circular orbits the radiated fre-
quency ~ is related to the orbital frequency ~0 by

where E,"&,' is the amount of radiation to be expected
by the detector in the absence of beaming (isotrop-
ic emission). As a property of the spherical har-
monics, radiation into a multipole m shows a 8
dependence cc sin2 ™0= e '. The ha].f-width
of the beam is determined by 63-~m~ ' '." We
have, therefore, for the final total energy implied
by the observations,
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M/Mo~ 2(3~3Mo) 'x~,„~
'

From expression (19) for the spectra we can
now give an explicit evaluation of E„, involved in
the cases s = 0, s = 1, and s = 2. However, before
calculating the explicit integral we have to fix a
particular cutoff frequency of the spectrum. For
the scalar and vector cases we assume that for a
given detector frequency ~,„p the cutoff frequency
w~, is chosen in a way so that v,„p coincides with
the peak of the spectrum (see Fig. 1), i.e., &u.,~
= &u «k=(4m)&u, », or &o,», = (4/w)&uexp. Furthermore
we assume the earth to be located within the half-
width of the beam, so that we have the relation

Q)exp
mexp =

(d0

=2.55x10 '(M/Mo},

~~ = mexp
-1/ 2

(24}

Now we are able to express all quantities involved
in terms of the detector frequency and the band-
width of the experiment. We insert the spectrum
as given by (19) into (22) to obtain the conversion
factor o, . For the scalar and vector cases we
get

m (4)p and for the orbit close to x = 3M the par-
ticle orbits with the frequency v, = (M/r')'~'
= 3.91x10'(Me/M)xsec ', we can set a lower limit
for the mass of the black hole by the minimal con-
dition co,„„o-2cv0 or

G = —Q0 ~ 1

1/2
1/2 +exP

7t'

1/2 1/2
3.86)&102 sec '/2x

be I
(b.(u «&u.,p) . (25)

To get a rough estimate for A&2 in the tensor case
we choose co„;t in a way that locates the detector
frequency in the flat part of the spectrum, say
~„;,= 10&@,„~. A crude evaluation of (22) then yields

1/2
A2= e 4)0 n/ 1 10

(d0

1/2 ~ 1/2
= 2.95x10' sec ' 'xln(5 ")

Aced M
(25)

Equation (27) shows that even for 5 =10 ' the en-
hancement of the radiation for tensor waves is
less than that for scalar waves only by a factor
of 10.

As we are aware of several gravity-wave experi-
ments operating already or in the near future at
different frequencies, (26) can be used to calculate
the energy requirement employed by this model.
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