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In the preceding comment, Blankleider and Kvinikhidze criticize the form of the thermal propagator used
previously by us and propose an alternate thermal propagator for the fermions in the light-front Schwinger
model. We show that, within the standard light-front quantization used by us, the thermal propagator for the
fermions is unique as presented in that paper.
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In an earlier pap€lrl], we studied various questions asso- mal propagator for the fermions that should have been used
ciated with the light-front Schwinger model at finite tem- in [1] is of the form(only the + + component
perature where the theory was quantized on the standard
light-front surfacex’=x%+x*=0. (We refer the reader to K = —
[1] for notation and conventionsWe argued in that paper 1S (P)==p1 —(2Po+P1)P;
that one of the components of the fermion field does not Po PuP
thermalize and correspondingly used the real time propagator _ -
(only the ++ component of the propagator and we will —2mne(|pol) 8((2pg+ pl)p1)>,

suppress thei‘e” for simplicity )

—_— —_— i N N o~ o i
iSMED (pj= 5, ! iSCE9 (p)=(2py+py)

—(2po+ P1)Ps —(2po+P1)Ps
—27ne(po)) 5((2Po+ P)PY) |+ —%m(l%l)&(ﬂﬁﬁ)ﬁ)). 2)
. They obtain this propagator from E(33) in [1] by setting
iS(MO2) () = '__ (1) mM=0 (and restricting to ¥ 1 dimensions The difference
-p; between Eq91) and(2) lies in the thermal part of the propa-

B gatoriS{(p); namely, the contention of the authors[af is
whereng(|pg|) represents the Fermi-Dirac distribution func- that both components of the fermion field in the light-front
tion. This propagator was obtained from the structure of the&schwinger model should thermalize, even though one of
fermion Lagrangian density of the light-front Schwinger them is nondynamical. In this case, of course, one should not
model and was not derived from E3) in [1], which de- expect any difference from the results of the conventionally
scribes the propagator for a massive fermion in higher diquantized theory. The basic issue, therefore, is whether the
mensions(The authors if2] seem to suggest that our propa- s component in the light-front Schwinger model thermal-
gator was derived from an erroneous limit of thatizes in the quantization used f].
expression. We did, however, indicate that E¢l) can be Given the quantization conditions in a theory, the propa-
obtained from Eq(33) in [1] in a limiting manner. One of gators are, of course, uniquely determined as vacuum expec-
the results found in that paper showed that the off-shell thertation values of time ordered products of fields. Therefore, it
mal n-point photon amplitudes in this theory do not coincideis not entirely clear fron{2] whether the authors find the
with the ones calculated in the conventionally quantizedfermion propagator ifil] to be incorrect within the quanti-
(equal-time Schwinger mode[3] and we traced the origin zation used or whether their objection is addressed to the
of the difference to the fact that one of the fermion compo-quantization used in that paper. We will try to address both
nents in the light-front Schwinger model is nondynamical inthese issues in the following.
the quantization used and as a result does not thermalize, First, let us discuss the form of the propagator within the
while both the fermion components in the conventionallyquantization used ifil]. There are various ways to see, in
guantized theory are dynamical and do thermalize. We notéyoth the imaginary time and the real time formalisms, that
on the other hand, that all the thermal corrections to thehe ¢y component in the light-front Schwinger modibes
n-point photon amplitudes vanish at zero temperature in botmot thermalizen the standard light-front quantization used in
the quantizations and thepoint photon amplitudes do co- [1]. We briefly discuss the imaginary time formalism before
incide. going into the real time formalism. We note that the qua-

In [2] the authors comment that the difference found indratic part of the fermion Lagrangian densityhich is rel-
[1] has its origin in the use of an erroneously simplifiedevant for a discussion of the propagatéor the light-front
thermal fermion propagator and suggest that the proper theBchwinger model has the form
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L=iyl 200+ ap) ., —ip oy . &) U(g)=e "9, (10

Here ¢, ,y_ represent the two chiral components of thewith the parameteé related to the fermion distribution func-
theory. The zero temperature propagators of the theory in Edion [6,7]. The finite temperature propagator for tite field

(3) have the simple forms is then defined in the standard manner as
SOF P ISP x=y)=(0(B)| T(w-0v' (yDI0B)). (1D
. ~(2po+ppr  —(2po+py)’

From Eqs(8)—(11) as well as the fact that_ satisfies trivial
(204D . anticommutation relations in the standard light-front quanti-
iSO (p)= 1(2po+py) | (4)  zation, it follows that

—(2pot+pP1)pP1  —P1 o ' I 5
. _ o 18P (x—y)=(0le(0|[e " y_(x) ¢! (y)e **?]|0) & [0)
In the imaginary time formalism in light-front theories
within the quantization used ifl], one obtains the thermal =(0|®(0|[¢-(x) ¢ (y)1|0)®[0)
propagators simply by lettinpt,5]

=0 () ¢! (y)|0)=iSO(x—y)
=F(xI—-y}). (12)

Po—(2n+1)i T, (5

whereT denotes temperature. This introduces a temperature

dependence t@S{"(p) in Eq. (4), while iS"(p) remains  This demonstrates clearly that within the standard light-front
temperature independent since it does not depenggn quantization used ifl], the fermion fieldys»_ does not ther-
This is probably the most direct way to see that the compomalize, and that the unique finite temperature propagator co-
nenty_ does not thermalize in the standard light-front quan-incides with that at zero temperature, which is the form used
tization. in [1].

Let us next analyze the propagator in the real time formal- As we indicated in[1], this form of the propagator can
ism. This is best done in the operatorial formalism of ther-also be obtained from a limit of Eq33) (a massive propa-
mofield dynamicg6,7]. We note that a Hamiltonian analysis gatop of that paper. Essentially, this involves looking at the
of the theory in Eq(3) shows that, when quantized on the yanishing mass limit of a delta function of the formpg

surfacex’=0, the only nontrivial anticommutation relation +p1) 8((2po+ p1)p1+m?). If m=0, there are two roots for

has the form the vanishing of the delta function. Keeping both the roots
— = o =i leads to the propagator in, E), which, however, would
{+(¥), (Y o-yo=P7 8(x"=y"), (6)  not be compatible with Eq(12) and would lead to a non-

N o _ trivial time dependencén the coordinate spageTherefore,
whereP™ represents the projection operator for the positivenajyely settingn=0 in Eq.(33) of [1] would not lead to the
chirality spinors. Since the fermion field_ satisfies trivial  proper propagator within the quantization being discussed.

anticommutation relations, it follows in particular that The propagator in Eq12) [and, therefore, Eq(1)], on the
_ other hand, can be obtained from a massive thé&oy (33)
{¢-(x),H}=0, (7)  of [1]] only if a particular limiting value is chosefmamely,
namely, theys_ component has no time evolution. As a re- |pi,|pl|>m—>0) which se_lects 0'_“'t only the root (g
sult, the propagator for thes _ field has the form +p;)=0 of the delta function. As is also noted fd], the
massless limit in light-front theories is subtle; therefore,
iS(,O)(;—V)=<O|T(1//, ) gt (V))|O> when necessary one must go back to the basic definitions, as

we have just done for the propagatand as was also done
=(0ly-()y (N[0 =F(x*=yh), (8 il .

The authors of2] have also argued how the_ field can
which is consistent with the form of the zero temperaturebecome dynamical in the nonstandard light-front quantiza-
propagatoiS\®) in Eq. (4). tion due to McCartof8], which involves quantizing the

In going to finite temperature, in thermofield dynamics,field on the conventional surface®=x+x'=0 while
one doubles the degrees of freedgwith tilde fieldy and  quantizing they_ component on the surface =x°-x*
obtains a thermal vacuum through a Bogoliubov transforma=0. This brings us to the question of whether their objection
tion of the form is really to the quantization used fih]. It is worth recogniz-

ing that a given quantization defines a unique quantum

|o(,3)):u(g)|o>®|(")>, (99  theory, and different quantizations do not yield equivalent

quantum theories in general. As McCartor himself has

where 8 represents the inverse temperature in units of thgointed out{9], his nonstandard quantization leads to a van-
Boltzmann constant. The formally unitary transformation in-ishing fermion condensatéin the infinite volume limi}

volves both the physical and the tilde fields and has the formwhich is in disagreement with all the other calculations. The
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theory quantized or°=x%+x1=0, on the other hand, does if it does, that would not be the appropriate propagator to use
lead to the condensaf@0] (even at finite temperature]) in a calculation involving the standard light-front quantiza-
which agrees with the results of equal-time quantizationtion such as if1]. As we have argued above the propagator
Therefore, it is not cleaa priori which of the two theories used in[1] is the unique propagator within that quantization
should be called the light-front Schwinger modilthat is  and leads to the result that at zero temperaturentpeint

the objection being raised by the authors[&]). It is, of  photon amplitudes agree with the calculations using equal-
course, an interesting question to see if McCartor’s alternatime relations, while at finite temperature, the results are dif-
tive quantization(or a generalization of tdoes allow a sta- ferent.

tistical description(we remind the reader that the conven-

tional light-front quantization does noand if so whether it This work was supported in part by U.S. DOE Grant No.
leads to the propagator in E() at finite temperature. Even DE-FG 02-91ER40685.
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