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Consistent coupling to Dirac fields in teleparallelism: Comment on “Metric-affine approach
to teleparallel gravity”
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Contrary to the claim in a recent publicatipphys. Rev. D67, 044016(2003], | explicitly demonstrate the
consistency of the coupling of Dirac fields to the teleparallelism equivalent of general relativity. Moreover, it
is pointed out that, in a metric-affine frameworkSd(4,R)-covariant generalization of the Dirac equation
needs to be considered.
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[. INTRODUCTION In order to separate out the purely Riemannian piece from
torsion terms, we decompose the Riemann-Cartan connec-

Einstein’s general relativityGR) not only passes all ob- tion '=T'"—K into the Riemanniarior Christoffe) connec-
servational tests but also permits a consistent coupling ttion T't! and the contortion one-form K=(i/4)K“'80'aﬁ,
Dirac spinors[1]. A very close rival is itsteleparallelism  obeying ®:=Dy=[vy,K]=1v,T*. Accordingly, the Dirac
equivalent(GR)), suggested already by Einstdi?], which  Lagrangian(2.1) splits [5] into a Riemannian and a spin-
essentially differs from GR by a boundary tedC*. contortion piece:

As has been well known since Hamilton, adding a bound-
ary term to the action is the canonical method for generating _ 0 i— .
new pairs of variables and momenta: In the transition from Lo=L(y.4.DY) = s YAK=KA"y) ¢
GR to teleparallelismC* = 9*/\ * D9, is the corresponding
three-form, and the spacetime metgg gets replaced by a 1 _
local orthonormal coframe¥® as independent variables, i.e., =L(y,4,DMy)— 7ANbys F vy
by the “tetrads.” For a specific choice of the kinetic term in
the Lagrangian, one arrives at the teleparallelism equivalent N
GR, of Einstein’s theory. =L(y.4.DU9) =T Npeq. 2.2

The Poincarggauge theory or its metric-affine generaliza-
tion [3] encompasses the Einstein-Cartan theory and th
teleparallelism equivalent (GRof Einstein’s theory as im-
portant subcases which are batmpirically indistinguish-

able from classical general relativity.
J v energy potentiak,= 3 *js/\ 9, (cf. Ref.[6]).

Now and then the coupling of GRo a Dirac field is ; NP . .
debated, although this issue has essentially been answer%ds'nceLD=0 on shell,” the canonical energy-momentum
three-form of the Dirac field reads

already by Wignef4].

he covariant derivative with respect to the Riemannian con-
nection satisfie®!'y=0. Hence, in a RC spacetime a Dirac
spinor feels only the axial torsion one-form:= * (9
AT,), or, equivalently, torsion merely couples to the spin-

- JL i — N
II. DIRAC FIELDS IN RIEMANN-CARTAN SPACETIME EM:_ZEE{‘/’ *yAD p—D p/\ *yyt, (2.3
A Dirac field is a bispinor-valued zero-form for which I

="y, denotes the Dirac adjoint arly:=dy+T/\y is
the exterior covariant derivative with respect to the
Riemann-CartaiRC) connectionI’ ::(i/4)F“ﬁcraB, where
0.5=(112)(vovs— vgY.) are the Lorentz generators. The

where D ,:=e,|D. The spin current of the Dirac field is
given by the Hermitian three-form

: BB ; " aL 1
Dirac Lagrangian is given by the manifestly Hermitian four- Tapi= D _— (* YT apt Tap * V), (2.4)
form ores 8
Lo=L(y,4,Dy)= i_{a* y/\Dz//+D_¢/\* Y+ My with totally antisymmetric components,s,:=€,| * 7,z
D 1 ) 2 i) — 7' aBy] . . N . -
2.9 In general, from local Poincaiiavariance one obtains the

) — + ) “on shell” Noether identities
where y:=vy,0% Since Lp=Lp=L[ even in an unholo-

nomic frame, it provides us automatically with the Hermitian D3 = (TN 4 (€, JR?) A7 (2.5
charge curreni:=¢* y¢ and axial currenfs:=iys * yi.
and

*Email address: ekke@xanum.uam.mx D 7,5t 91a/\Z 5=0, (2.6)
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provided the matter field equatiofL/Sy¢=0 is satisfied. In DA+ ﬁ[c/\Hu;]: Tap 4.3
the case of Dirac fields this can be proven directly by insert-

ing the energy-momenturt2.3 and spin current2.4), re-  and

spectively, into the Noether identitiésf. [7]).

It is a distinguishing feature of a Weitzentlospacetime R*A=0. (4.4
[8] with vanishing Riemann-Cartan curvature, iR%#=0,
that the energy-momentum curredy, is conserved Since the multiplier term in Ed4.1) does not depend on the
) coframe, the resulting first field equati¢h.2) is the same as
DX =0 (2.7)  that of the naive Lagrangiavi . As to the second field equa-

R tion (4.3), it satisfies identically the integrability condition as
with respect to the transposed connectidh,”:=T',”  an equation fon . Indeed, in a Weitzeriui spacetime
+e,|T? (cf. [9)).

DD\ 5= — 2R} 4"/ \\ 5 =0. (4.5
Il. TELEPARALLELISM EQUIVALENT

. ) o Hence the condition for local solvability of E¢4.3) with
Let us recall two classically viable gravitational regpect ton

wp IS
Lagrangians(1) Hilbert's original choice p

. D(7up— 01/ \Hly) =D 7op+ 91\S g+ 91/ \Ely
Vie=— 52RUA (99N 05), (3.

202 ~Tio/\H =0, (4.6)

whereRE‘B denotes the Riemannian curvature and vanishingvhere the right-hand side follows after inserting the first field
torsion as in GR(cf. [10]). (2) The torsion-square Lagrang- equation(4.2). Since the metrical gauge energy-momentum

ian[11,12 current(5.4.19 of Ref. [3] satisfiesm(,z:= i}[a/\Eug]—T[a
1 1 AHL =0 in a Weitzenbok spacetime, the second Noether
Vji=o 5 TN *| - WT +2 OT +2 @7 identity (2.6) for matter is recovered.
242 “ ‘2 “ In particular, this holds for Dirac fields: one should not

(3.2 overlook that the transition from GR to GBenerated b*
- o 5 By is, in general, accompanied by the related chahge-Lp
of GR, whereH , == — V) /9T*= (1/2) 744,/ \K"Vis dual | gy of the Dirac Lagrangian. Even for a trivial three-form
to the contortion one-forrK , ; which features in the decom- - 9\, =0, the corresponding boundary tewhty =T
position Top=—Tpa=Tls— K, z=Tl +e,|T, A= 9*N\Dp,=9*/\eg)(TFAp,)—Du,]  compen-
;L\S;BaJeﬁJTy)/\ﬁy of the RC connection withT*=Kz*  sates the torsion coupling in E€R.2) and thereby induces

. ) the relocalization
Because of the geometric identity

1 1 Ea_>0-a:=2a_DMa+eBJ(Tﬁ/\/~La)1
Vi=Viet =R,/ * (9N P)+ —d(9N *T,),
” HE 262 ap ( ) 262 ( a)

Ta _);a =Ty _ﬁu/\ﬂ‘ =0 (47)
3.3 B B B [ Bl

. f the Noeth f. (R1) and(R2) of Ref.[9]], h
in a Weitzenbok spacetime GRis classically equivalent to of the Noether currentie. (R1) and (R2) of Ref. [9]], suc

GR up to a boundary terdC* whereC* :=9%A *D 9, is that the relocalized spim,; vanishes. Equivalently, the cor-

a Chern-Simons type term for the dual torsion. respondence-luyﬁﬂa emerging from Eq(2.2) is sufficient
for a consistently relocalized Dirac spin on the left-hand side

of Eq. (4.6) even for GR.
Thus, the only role of the second field equation is to de-
In a consistent Lagrangian formulation and in order totermine the Lagrangian multiplier, ; nonuniquely, i.e., only
avoid particular gauges, the constraRt’=0 on the RC up to a covariant divergend@® ;. The Cauchy problem
connectionl” has to be imposed by subtractirﬁ@f@\km for GR/, however, is not completely settletf. Refs.
from Eq. (5.2) below, where the two-form ,z=—\g, is a [10,15,16).
Lagrange multiplier(cf. [13]). Then the proper teleparallel-
ism Lagrangian reads V. DISCUSSION

IV. PROPER TELEPARALLELISM VIA CONSTRAINTS

VI\ZVH_ R“ﬁ/\)\aﬁ. (4.7 Recently, it has been claimgd7] that there is an incon-
sistency in the coupling of spinors to metric-affine generali-
By varying this Lagrangian independently with respect tozations of teleparallelism. However, this is erroneous for at
9%, T'*?, and the multiplier\ , 5, one obtaing14] as field least three reasons.
equations (1) Dirac fields satisfy the Noether identiti¢8.5), (2.6)
| | and thereby couple consistently to G the Poincare
DH,—E,=3,, (4.2 framework with “spontaneously” broken local translations
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[18], as has been shown her@ previous commen{19]  which, by construction, satisfie$;,/\o z=0.

cannot be regarded as conclusive, since there the teleparallel On the other hand, the teleparallelism equivalent of GR
merits further investigation because of several attractive fea-
IIures: the apparent absenf®l] of the chiral anomaly, in
contradistinction22] to Einstein-Cartan theory, a complete
formal solvability [23] of its Ashtekar type constraints by
loop type Cartan circuits, the possible implementation of tor-
sional instantons into a quadratic Weyl moded4,25
amended by the Euler invariant ad€* as boundary terms,
and consistent noncommutatiy26,27 and superspace ex-
tensiong 28].

*
gaugel’=0 is assumed and then GR tacitly remapped to
Einstein’s GR about which there were no doubts in the firs
place)

(2) For GR, extensions with nonmetricity based on gaug-
ing SL(4,R) and the identity(5.9.16 of Ref. [3], a metric-
affine generalizatiof20] of the Dirac equation needs to be
considered.

(3) Moreover, in spaces without nonmetricity, the La-
grangian (4.1) of Ref. [15] is not that of GR butVe
+(1/2¢?)dC*, the boundary term of which signals a canoni-
cal transformation of variables. Then, in a consistent formu-
lation [3], the Belinfante-Rosenfeld symmetrized energy- | would like to thank Dmitri Vassiliev for helpful discus-
momentum tensoro,:=3,—Du,*+ eﬁJ(TB/\,ua) arises,  sions.
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