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Consistent coupling to Dirac fields in teleparallelism: Comment on ‘‘Metric-affine approach
to teleparallel gravity’’
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Contrary to the claim in a recent publication@Phys. Rev. D67, 044016~2003!#, I explicitly demonstrate the
consistency of the coupling of Dirac fields to the teleparallelism equivalent of general relativity. Moreover, it
is pointed out that, in a metric-affine framework, aSL(4,R)-covariant generalization of the Dirac equation
needs to be considered.

DOI: 10.1103/PhysRevD.69.128501 PACS number~s!: 04.50.1h, 04.20.Fy, 04.20.Jb
-

nd
tin
om

.,
in
le

a-
th

e

he

e
r-

an

om
nec-

-

on-
c

in-

e

I. INTRODUCTION

Einstein’s general relativity~GR! not only passes all ob
servational tests but also permits a consistent coupling
Dirac spinors@1#. A very close rival is itsteleparallelism
equivalent(GRi), suggested already by Einstein@2#, which
essentially differs from GR by a boundary termdC* .

As has been well known since Hamilton, adding a bou
ary term to the action is the canonical method for genera
new pairs of variables and momenta: In the transition fr
GR to teleparallelism,C* 5qa` * Dqa is the corresponding
three-form, and the spacetime metricgi j gets replaced by a
local orthonormal coframeqa as independent variables, i.e
by the ‘‘tetrads.’’ For a specific choice of the kinetic term
the Lagrangian, one arrives at the teleparallelism equiva
GRi of Einstein’s theory.

The Poincare´ gauge theory or its metric-affine generaliz
tion @3# encompasses the Einstein-Cartan theory and
teleparallelism equivalent (GRi) of Einstein’s theory as im-
portant subcases which are bothempirically indistinguish-
able from classical general relativity.

Now and then the coupling of GRi to a Dirac field is
debated, although this issue has essentially been answ
already by Wigner@4#.

II. DIRAC FIELDS IN RIEMANN-CARTAN SPACETIME

A Dirac field is a bispinor-valued zero-formc for which
c̄ªc†g0 denotes the Dirac adjoint andDcªdc1G`c is
the exterior covariant derivative with respect to t
Riemann-Cartan~RC! connectionGª( i /4)Gabsab , where
sabª( i /2)(gagb2gbga) are the Lorentz generators. Th
Dirac Lagrangian is given by the manifestly Hermitian fou
form

LD5L~g,c,Dc!5
i

2
$c̄* g`Dc1Dc`* gc%1mc̄ch,

~2.1!

where gªgaqa. Since LD5L̄D5LD
† even in an unholo-

nomic frame, it provides us automatically with the Hermiti
charge currentjªc̄* gc and axial currentj 5ªc̄g5 * gc.
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In order to separate out the purely Riemannian piece fr
torsion terms, we decompose the Riemann-Cartan con
tion G5G$%2K into the Riemannian~or Christoffel! connec-
tion G$% and the contortion one-form K5( i /4)Kabsab ,
obeying QªDg5@g,K#5gaTa. Accordingly, the Dirac
Lagrangian~2.1! splits @5# into a Riemannian and a spin
contortion piece:

LD5L~g,c,D $%c!2
i

2
c̄~* g`K2K`* g!c

5L~g,c,D $%c!2
1

4
A`c̄g5 * gc

5L~g,c,D $%c!2Ta`ma . ~2.2!

The covariant derivative with respect to the Riemannian c
nection satisfiesD $%g50. Hence, in a RC spacetime a Dira
spinor feels only the axial torsion one-formAª * (qa

`Ta), or, equivalently, torsion merely couples to the sp
energy potentialma5 1

4 * j 5`qa ~cf. Ref. @6#!.
SinceLD>0 ‘‘on shell,’’ the canonical energy-momentum

three-form of the Dirac field reads

Saª
]LD

]qa
>

i

2
$c̄ * g`Dac2Dac` * gc%, ~2.3!

where DaªeacD. The spin current of the Dirac field is
given by the Hermitian three-form

tabª
]LD

]Gab
5

1

8
c̄~ * gsab1sab * g!c, ~2.4!

with totally antisymmetric componentstabgªegc * tab
5t [abg] .

In general, from local Poincare´ invariance one obtains th
‘‘on shell’’ Noether identities

DSa>~eacTg!`Sg1~eacRgd!`tgd ~2.5!

and

Dtab1q [a`Sb]>0, ~2.6!
©2004 The American Physical Society01-1
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provided the matter field equationdL/dc50 is satisfied. In
the case of Dirac fields this can be proven directly by ins
ing the energy-momentum~2.3! and spin current~2.4!, re-
spectively, into the Noether identities~cf. @7#!.

It is a distinguishing feature of a Weitzenbo¨ck spacetime
@8# with vanishing Riemann-Cartan curvature, i.e.,Rab50,
that the energy-momentum currentSa is conserved

D& Sa>0 ~2.7!

with respect to the transposed connectionG& a
b
ªGa

b

1eacTb ~cf. @9#!.

III. TELEPARALLELISM EQUIVALENT

Let us recall two classically viable gravitation
Lagrangians.~1! Hilbert’s original choice

VHE52
1

2,2 Rab
$% ` * ~qa`qb!, ~3.1!

whereRab
$% denotes the Riemannian curvature and vanish

torsion as in GR~cf. @10#!. ~2! The torsion-square Lagrang
ian @11,12#

Viª
1

2,2 Ta` * S 2 (1)Ta12 (2)Ta1
1

2
(3)TaD

~3.2!

of GRi , whereHa
i
ª2]Vi /]Ta5(1/2,2)habg`Kbg is dual

to the contortion one-formKab which features in the decom
position Gab52Gba5Gab

$% 2Kab5Gab
$% 1eacTb

1(eacebcTg)`qg of the RC connection withTa5Kb
a

`qb.
Because of the geometric identity

Vi[VHE1
1

2,2 Rab` * ~qa`qb!1
1

2,2 d~qa` * Ta!,

~3.3!

in a Weitzenbo¨ck spacetime GRi is classically equivalent to
GR up to a boundary termdC* whereC*ªqa` * Dqa is
a Chern-Simons type term for the dual torsion.

IV. PROPER TELEPARALLELISM VIA CONSTRAINTS

In a consistent Lagrangian formulation and in order
avoid particular gauges, the constraintRab50 on the RC
connectionG has to be imposed by subtractingRab`lab
from Eq. ~5.2! below, where the two-formlab52lba is a
Lagrange multiplier~cf. @13#!. Then the proper teleparalle
ism Lagrangian reads

Ṽi5Vi2Rab`lab . ~4.1!

By varying this Lagrangian independently with respect
qa, Gab, and the multiplierlab , one obtains@14# as field
equations

DHa
i 2Ea

i 5Sa , ~4.2!
12850
t-

g

Dlab1q [a`Hb]
i 5tab , ~4.3!

and

Rab50. ~4.4!

Since the multiplier term in Eq.~4.1! does not depend on th
coframe, the resulting first field equation~4.2! is the same as
that of the naive LagrangianVi . As to the second field equa
tion ~4.3!, it satisfies identically the integrability condition a
an equation forlab . Indeed, in a Weitzenbo¨ck spacetime

DDlab522R[au
g`lgub]50. ~4.5!

Hence the condition for local solvability of Eq.~4.3! with
respect tolab is

D~tab2q [a`Hb]
i !5Dtab1q [a`Sb]1q [a`Eb]

i

2T[a`Hb]
i 50, ~4.6!

where the right-hand side follows after inserting the first fie
equation~4.2!. Since the metrical gauge energy-momentu
current~5.4.15! of Ref. @3# satisfiesm[ab]ªq [a`Eb]

i 2T[a

`Hb]
i 50 in a Weitzenbo¨ck spacetime, the second Noeth

identity ~2.6! for matter is recovered.
In particular, this holds for Dirac fields: one should n

overlook that the transition from GR to GRi generated byC*
is, in general, accompanied by the related changeLD→LD
1dU of the Dirac Lagrangian. Even for a trivial three-form
U5qa`ma50, the corresponding boundary termdU5Ta

`ma2qa`Dma5qa`@ebc(Tb`ma)2Dma# compen-
sates the torsion coupling in Eq.~2.2! and thereby induces
the relocalization

Sa→saªSa2Dma1ebc~Tb`ma!,

tab→ t̂abªtab2q [a`mb]50 ~4.7!

of the Noether currents@cf. ~R1! and~R2! of Ref. @9##, such
that the relocalized spint̂ab vanishes. Equivalently, the cor
respondenceHa

i →ma emerging from Eq.~2.2! is sufficient
for a consistently relocalized Dirac spin on the left-hand s
of Eq. ~4.6! even for GRi .

Thus, the only role of the second field equation is to d
termine the Lagrangian multiplierlab nonuniquely, i.e., only
up to a covariant divergenceDFab . The Cauchy problem
for GRi , however, is not completely settled~cf. Refs.
@10,15,16#!.

V. DISCUSSION

Recently, it has been claimed@17# that there is an incon-
sistency in the coupling of spinors to metric-affine genera
zations of teleparallelism. However, this is erroneous for
least three reasons.

~1! Dirac fields satisfy the Noether identities~2.5!, ~2.6!
and thereby couple consistently to GRi in the Poincare´
framework with ‘‘spontaneously’’ broken local translation
1-2
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@18#, as has been shown here.~A previous comment@19#
cannot be regarded as conclusive, since there the telepa

gaugeG5
* 0 is assumed and then GRi is tacitly remapped to

Einstein’s GR about which there were no doubts in the fi
place.!

~2! For GRi extensions with nonmetricity based on gau
ing SL(4,R) and the identity~5.9.16! of Ref. @3#, a metric-
affine generalization@20# of the Dirac equation needs to b
considered.

~3! Moreover, in spaces without nonmetricity, the L
grangian ~4.1! of Ref. @15# is not that of GR butVHE
1(1/2,2)dC* , the boundary term of which signals a canon
cal transformation of variables. Then, in a consistent form
lation @3#, the Belinfante-Rosenfeld symmetrized energ
momentum tensorsaªSa2Dma1ebc(Tb`ma) arises,
K

s

-

th

12850
llel

t

-

-
-

which, by construction, satisfiesq [a`sb]50.
On the other hand, the teleparallelism equivalent of G

merits further investigation because of several attractive
tures: the apparent absence@21# of the chiral anomaly, in
contradistinction@22# to Einstein-Cartan theory, a comple
formal solvability @23# of its Ashtekar type constraints b
loop type Cartan circuits, the possible implementation of t
sional instantons into a quadratic Weyl model@24,25#
amended by the Euler invariant anddC* as boundary terms
and consistent noncommutative@26,27# and superspace ex
tensions@28#.
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