Consistent coupling to Dirac fields in teleparallelism: Comment on ''Metric-affine approach to teleparallel gravity''

Eckehard W. Mielke*

Departamento de Fı´sica, Universidad Auto´noma Metropolitana–*Iztapalapa, P. O. Box 55-534, 09340 Me´xico D.F., Mexico* (Received 15 September 2003; published 2 June 2004)

Contrary to the claim in a recent publication [Phys. Rev. D 67, 044016 (2003)], I explicitly demonstrate the consistency of the coupling of Dirac fields to the teleparallelism equivalent of general relativity. Moreover, it is pointed out that, in a metric-affine framework, a *SL*(4,*R*)-covariant generalization of the Dirac equation needs to be considered.

DOI: 10.1103/PhysRevD.69.128501 PACS number(s): 04.50.+h, 04.20.Fy, 04.20.Jb

I. INTRODUCTION

Einstein's general relativity (GR) not only passes all observational tests but also permits a consistent coupling to Dirac spinors [1]. A very close rival is its *teleparallelism equivalent* (GR \parallel), suggested already by Einstein [2], which essentially differs from GR by a boundary term *dC**.

As has been well known since Hamilton, adding a boundary term to the action is the canonical method for generating new pairs of variables and momenta: In the transition from GR to teleparallelism, $C^* = \partial^{\alpha} \wedge^* D \partial_{\alpha}$ is the corresponding three-form, and the spacetime metric g_{ij} gets replaced by a local orthonormal coframe ϑ^{α} as independent variables, i.e., by the ''tetrads.'' For a specific choice of the kinetic term in the Lagrangian, one arrives at the teleparallelism equivalent GR_{\parallel} of Einstein's theory.

The Poincaré gauge theory or its metric-affine generalization [3] encompasses the Einstein-Cartan theory and the teleparallelism equivalent (GR_{\parallel}) of Einstein's theory as important subcases which are both *empirically* indistinguishable from classical general relativity.

Now and then the coupling of GR_{\parallel} to a Dirac field is debated, although this issue has essentially been answered already by Wigner $[4]$.

II. DIRAC FIELDS IN RIEMANN-CARTAN SPACETIME

A Dirac field is a bispinor-valued zero-form ψ for which $\overline{\psi}$ = $\psi^{\dagger} \gamma_0$ denotes the Dirac adjoint and $D\psi$ = $d\psi$ + $\Gamma \wedge \psi$ is the exterior covariant derivative with respect to the Riemann-Cartan (RC) connection $\Gamma = (i/4)\Gamma^{\alpha\beta}\sigma_{\alpha\beta}$, where $\sigma_{\alpha\beta}$ = (*i*/2)($\gamma_{\alpha}\gamma_{\beta} - \gamma_{\beta}\gamma_{\alpha}$) are the Lorentz generators. The Dirac Lagrangian is given by the manifestly Hermitian fourform

$$
L_{\rm D} = L(\gamma, \psi, D\psi) = \frac{i}{2} \{\overline{\psi}^* \gamma \wedge D\psi + \overline{D\psi} \wedge^* \gamma \psi\} + m\overline{\psi}\psi\eta,
$$
\n(2.1)

where $\gamma = \gamma_\alpha \vartheta^\alpha$. Since $L_\text{D} = \overline{L}_\text{D} = L_\text{D}^\dagger$ even in an unholonomic frame, it provides us automatically with the Hermitian charge current $j := \overline{\psi}^* \gamma \psi$ and axial current $j_5 := \overline{\psi} \gamma_5 * \gamma \psi$.

In order to separate out the purely Riemannian piece from torsion terms, we decompose the Riemann-Cartan connection $\Gamma = \Gamma^{1/2} - K$ into the Riemannian (or Christoffel) connection $\Gamma^{(1)}$ and the *contortion* one-form $K = (i/4)K^{\alpha\beta}\sigma_{\alpha\beta}$, obeying $\Theta := D\gamma = [\gamma, K] = \gamma_{\alpha}T^{\alpha}$. Accordingly, the Dirac Lagrangian (2.1) splits $[5]$ into a Riemannian and a spincontortion piece:

$$
L_{\rm D} = L(\gamma, \psi, D^{\{\}} \psi) - \frac{i}{2} \overline{\psi}({*}\gamma \wedge K - K \wedge {*}\gamma) \psi
$$

$$
= L(\gamma, \psi, D^{\{\}} \psi) - \frac{1}{4} A \wedge \overline{\psi} \gamma_5 {*}\gamma \psi
$$

$$
= L(\gamma, \psi, D^{\{\}} \psi) - T^{\alpha} \wedge \mu_{\alpha}. \qquad (2.2)
$$

The covariant derivative with respect to the Riemannian connection satisfies $D^{1}y=0$. Hence, in a RC spacetime a Dirac spinor feels only the axial torsion one-form $A = *$ (ϑ^{α} $\wedge T_a$), or, equivalently, torsion merely couples to the spinenergy potential $\mu_{\alpha} = \frac{1}{4} * j_{5} \wedge \vartheta_{\alpha}$ (cf. Ref. [6]).

Since $L_D \cong 0$ "on shell," the canonical energy-momentum three-form of the Dirac field reads

$$
\Sigma_{\alpha} := \frac{\partial L_{\rm D}}{\partial \vartheta^{\alpha}} \approx \frac{i}{2} \{ \bar{\psi} * \gamma \wedge D_{\alpha} \psi - \overline{D_{\alpha} \psi} \wedge * \gamma \psi \}, \quad (2.3)
$$

where $D_{\alpha} = e_{\alpha} | D$. The spin current of the Dirac field is given by the Hermitian three-form

$$
\tau_{\alpha\beta} = \frac{\partial L_{\rm D}}{\partial \Gamma^{\alpha\beta}} = \frac{1}{8} \bar{\psi} \left(\sqrt[8]{\sigma_{\alpha\beta} + \sigma_{\alpha\beta} \sqrt[8]{\gamma}} \right) \psi, \tag{2.4}
$$

with totally antisymmetric components $\tau_{\alpha\beta\gamma} = e_{\gamma}$ * $\tau_{\alpha\beta}$ $= \tau_{\left[\alpha\beta\gamma\right]}$.

In general, from local Poincaré invariance one obtains the ''on shell'' *Noether identities*

$$
D\Sigma_{\alpha} \cong (e_{\alpha}|T^{\gamma}) \triangle \Sigma_{\gamma} + (e_{\alpha}|R^{\gamma\delta}) \triangle \tau_{\gamma\delta} \tag{2.5}
$$

and

$$
D\tau_{\alpha\beta} + \vartheta_{\lceil \alpha} / \sum_{\beta} \ge 0, \tag{2.6}
$$

^{*}Email address: ekke@xanum.uam.mx

provided the matter field equation $\delta L/\delta\psi=0$ is satisfied. In the case of Dirac fields this can be proven directly by inserting the energy-momentum (2.3) and spin current (2.4) , respectively, into the Noether identities $(cf. [7])$.

It is a distinguishing feature of a Weitzenbock spacetime [8] with vanishing Riemann-Cartan curvature, i.e., $R^{\alpha\beta} = 0$, that the energy-momentum current Σ_{α} is conserved

$$
\hat{D}\Sigma_{\alpha} \cong 0 \tag{2.7}
$$

with respect to the transposed connection $\int_{-\infty}^{\infty} \beta = \int_{-\infty}^{\infty} \beta$ $+e_{\alpha}$] T^{β} (cf. [9]).

III. TELEPARALLELISM EQUIVALENT

Let us recall two classically viable gravitational Lagrangians. (1) Hilbert's original choice

$$
V_{\text{HE}} = -\frac{1}{2\ell^2} R^{\{\}}_{\alpha\beta} \wedge \, ^* (\vartheta^{\alpha} \wedge \vartheta^{\beta}), \tag{3.1}
$$

where $R_{\alpha\beta}^{\{\}}$ denotes the Riemannian curvature and vanishing torsion as in GR $~(cf.~ [10]).$ (2) The torsion-square Lagrangian $[11,12]$

$$
V_{\parallel} := \frac{1}{2\ell^2} T^{\alpha} \wedge \sqrt{\kappa} \left(- \frac{(1)}{T_{\alpha} + 2} \sqrt{(2)} T_{\alpha} + \frac{1}{2} \sqrt{(3)} T_{\alpha} \right) \tag{3.2}
$$

of GR_{||}, where $H_{\alpha}^{\parallel} := -\frac{\partial V_{\parallel}}{\partial T^{\alpha}} = (1/2\ell^2)\eta_{\alpha\beta\gamma} \wedge K^{\beta\gamma}$ is dual to the contortion one-form $K_{\alpha\beta}$ which features in the decomposition $\Gamma_{\alpha\beta} = -\Gamma_{\beta\alpha} = \Gamma_{\alpha\beta}^{\{\}} - K_{\alpha\beta} = \Gamma_{\alpha\beta}^{\{\}} + e_{\alpha}T_{\beta}$ $+(e_{\alpha}e_{\beta}T_{\gamma})\wedge \vartheta^{\gamma}$ of the RC connection with $T^{\alpha}=K_{\beta}^{\alpha}$ $\wedge \vartheta^\beta$.

Because of the geometric identity

$$
V_{\parallel} = V_{\text{HE}} + \frac{1}{2\ell^2} R_{\alpha\beta} \wedge \, ^* (\vartheta^{\alpha} \wedge \vartheta^{\beta}) + \frac{1}{2\ell^2} d(\vartheta^{\alpha} \wedge \, ^*T_{\alpha}), \tag{3.3}
$$

in a Weitzenböck spacetime GR \parallel is classically equivalent to GR up to a boundary term dC^* where $C^* := \vartheta^{\alpha} \wedge {}^*D \vartheta_{\alpha}$ is a Chern-Simons type term for the dual torsion.

IV. PROPER TELEPARALLELISM VIA CONSTRAINTS

In a consistent Lagrangian formulation and in order to avoid particular gauges, the constraint $R^{\alpha\beta} = 0$ on the RC connection Γ has to be imposed by subtracting $R^{\alpha\beta}\wedge \lambda_{\alpha\beta}$ from Eq. (5.2) below, where the two-form $\lambda_{\alpha\beta} = -\lambda_{\beta\alpha}$ is a Lagrange multiplier (cf. $\lfloor 13 \rfloor$). Then the proper teleparallelism Lagrangian reads

$$
\widetilde{V}_{\parallel} = V_{\parallel} - R^{\alpha\beta} \triangle \lambda_{\alpha\beta}.
$$
 (4.1)

By varying this Lagrangian independently with respect to ϑ^{α} , $\Gamma^{\alpha\beta}$, and the multiplier $\lambda_{\alpha\beta}$, one obtains [14] as field equations

$$
D\lambda_{\alpha\beta} + \vartheta_{\lbrack\alpha} \wedge H^{\parallel}_{\beta]} = \tau_{\alpha\beta}, \qquad (4.3)
$$

and

$$
R^{\alpha\beta} = 0.\tag{4.4}
$$

Since the multiplier term in Eq. (4.1) does not depend on the coframe, the resulting first field equation (4.2) is the same as that of the naive Lagrangian V_{\parallel} . As to the second field equation (4.3) , it satisfies identically the integrability condition as an equation for $\lambda_{\alpha\beta}$. Indeed, in a Weitzenbock spacetime

$$
DD\lambda_{\alpha\beta} = -2R_{[\alpha|}^{\gamma/\lambda}\lambda_{\gamma|\beta]} = 0.
$$
 (4.5)

Hence the condition for local solvability of Eq. (4.3) with respect to $\lambda_{\alpha\beta}$ is

$$
D(\tau_{\alpha\beta} - \vartheta_{\lbrack\alpha} \wedge H^{\parallel}_{\beta\rbrack}) = D\,\tau_{\alpha\beta} + \vartheta_{\lbrack\alpha} \wedge \Sigma_{\beta\rbrack} + \vartheta_{\lbrack\alpha} \wedge E^{\parallel}_{\beta\rbrack} - T_{\lbrack\alpha} \wedge H^{\parallel}_{\beta\rbrack} = 0, \tag{4.6}
$$

where the right-hand side follows after inserting the first field equation (4.2) . Since the metrical gauge energy-momentum current (5.4.15) of Ref. [3] satisfies $m_{[\alpha\beta]} = \partial_{[\alpha} \wedge E_{\beta]}^{\parallel} - T_{[\alpha]}$ \wedge *H* $_{\beta}$] = 0 in a Weitzenbock spacetime, the second Noether identity (2.6) for matter is recovered.

In particular, this holds for Dirac fields: one should not overlook that the transition from GR to GRⁱ generated by *C** is, in general, accompanied by the related change $L_D \rightarrow L_D$ $+dU$ of the Dirac Lagrangian. Even for a trivial three-form $U = \theta^{\alpha} \wedge \mu_{\alpha} = 0$, the corresponding boundary term $dU = T^{\alpha}$ $\wedge \mu_{\alpha} - \vartheta^{\alpha} \wedge D \mu_{\alpha} = \vartheta^{\alpha} \wedge [e_{\beta}](T^{\beta} \wedge \mu_{\alpha}) - D \mu_{\alpha}]$ compensates the torsion coupling in Eq. (2.2) and thereby induces the relocalization

$$
\Sigma_{\alpha} \to \sigma_{\alpha} := \Sigma_{\alpha} - D\mu_{\alpha} + e_{\beta}[(T^{\beta} \wedge \mu_{\alpha}),
$$

$$
\tau_{\alpha\beta} \to \hat{\tau}_{\alpha\beta} := \tau_{\alpha\beta} - \vartheta_{[\alpha} \wedge \mu_{\beta]} = 0
$$
 (4.7)

of the Noether currents $[cf. (R1)$ and $(R2)$ of Ref. $[9]$, such that the relocalized spin $\hat{\tau}_{\alpha\beta}$ vanishes. Equivalently, the correspondence $H_{\alpha}^{\parallel} \rightarrow \mu_{\alpha}$ emerging from Eq. (2.2) is sufficient for a consistently relocalized Dirac spin on the left-hand side of Eq. (4.6) even for GR_{II}.

Thus, the only role of the second field equation is to determine the Lagrangian multiplier $\lambda_{\alpha\beta}$ nonuniquely, i.e., only up to a covariant divergence $D\Phi_{\alpha\beta}$. The Cauchy problem for GR_{\parallel} , however, is not completely settled (cf. Refs. $[10,15,16]$.

V. DISCUSSION

Recently, it has been claimed $[17]$ that there is an inconsistency in the coupling of spinors to metric-affine generalizations of teleparallelism. However, this is erroneous for at least three reasons.

 (1) Dirac fields satisfy the Noether identities (2.5) , (2.6) and thereby couple consistently to GR_{\parallel} in the Poincaré framework with ''spontaneously'' broken local translations $|18|$, as has been shown here. (A previous comment $|19|$ cannot be regarded as conclusive, since there the teleparallel

gauge $\Gamma = 0$ is assumed and then GR_{||} is tacitly remapped to Einstein's GR about which there were no doubts in the first place.)

 (2) For GR_{II} extensions with nonmetricity based on gauging $SL(4,R)$ and the identity $(5.9.16)$ of Ref. [3], a metricaffine generalization $[20]$ of the Dirac equation needs to be considered.

~3! Moreover, in spaces without nonmetricity, the Lagrangian (4.1) of Ref. [15] is not that of GR but V_{HE} $+(1/2\ell^2)dC^*$, the boundary term of which signals a canonical transformation of variables. Then, in a consistent formulation [3], the Belinfante-Rosenfeld symmetrized energymomentum tensor $\sigma_{\alpha} = \sum_{\alpha}^{ } -D\mu_{\alpha} + e_{\beta} \left| (T^{\beta} \wedge \mu_{\alpha}) \right|$ arises, which, by construction, satisfies $\vartheta_{\lceil\alpha\rceil}\wedge\sigma_{\beta} = 0$.

On the other hand, the teleparallelism equivalent of GR merits further investigation because of several attractive features: the apparent absence $[21]$ of the chiral anomaly, in contradistinction $[22]$ to Einstein-Cartan theory, a complete formal solvability $[23]$ of its Ashtekar type constraints by loop type Cartan circuits, the possible implementation of torsional instantons into a quadratic Weyl model $[24,25]$ amended by the Euler invariant and *dC** as boundary terms, and consistent noncommutative $[26,27]$ and superspace extensions $[28]$.

ACKNOWLEDGMENT

I would like to thank Dmitri Vassiliev for helpful discussions.

- [1] Y. Choquet-Bruhat, in *Gravitation and Geometry*, edited by W. Rindler and A. Trautman (Bibliopolis, Naples, 1987), pp. 83– 106.
- [2] A. Einstein, Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl. 217, 224 (1928).
- [3] F.W. Hehl, J.D. McCrea, E.W. Mielke, and Y. Ne'eman, Phys. Rep. 258, 1 (1995).
- $[4]$ E. Wigner, Z. Phys. **53**, 592 (1929) .
- [5] E.W. Mielke, Int. J. Theor. Phys. **40**, 171 (2001).
- [6] F. W. Hehl, A. Macías, E. W. Mielke, and Yu. N. Obukhov, in *On Einstein's Path*: *Festschrift for E. Schucking on the occasion of his 70th birthday*, edited by A. Harvey (Springer, New York, 1999), pp. 257–274.
- @7# F. W. Hehl, J. Lemke, and E. W. Mielke, in *Geometry and Theoretical Physics*, *Bad Honnef Lectures, 1990*, edited by J. Debrus and A. C. Hirshfeld (Springer, Berlin, 1991), pp. 56– 140.
- [8] R. Weitzenböck, Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl. 466 (1928).
- @9# E.W. Mielke, F.W. Hehl, and J.D. McCrea, Phys. Lett. A **140**, 368 (1989).
- [10] A. Trautman, in *Differential Geometry*, Symposia Mathematica Vol. 12 (Academic Press, London, 1973), pp. 139–162.
- [11] W. Kopczyn^{ski, J. Phys. A **15**, 493 (1982).}
- [12] J.M. Nester, Class. Quantum Grav. **5**, 1003 (1988).
- [13] W. Kopczyński, Ann. Phys. (N.Y.) **203**, 308 (1990).
- [14] E.W. Mielke, Ann. Phys. (N.Y.) 219, 78 (1992).
- [15] R.D. Hecht, J. Lemke, and R.P. Wallner, Phys. Rev. D 44, 2442 $(1991).$
- [16] F. Müller-Hoissen and J. Nitsch, Phys. Rev. D **28**, 718 (1983).
- [17] Y.N. Obukhov and J.G. Pereira, Phys. Rev. D 67, 044016 $(2003).$
- @18# R. Tresguerres and E.W. Mielke, Phys. Rev. D **62**, 044004 $(2000).$
- $[19]$ J.W. Maluf, Phys. Rev. D 67, 108501 (2003) .
- [20] I. Kirsch and D. Sijacki, Class. Quantum Grav. 19, 3157 $(2002).$
- [21] E.W. Mielke, Phys. Lett. A **251**, 349 (1999).
- [22] D. Kreimer and E.W. Mielke, Phys. Rev. D 63, 048501 (2001).
- $[23]$ E.W. Mielke, Nucl. Phys. **B622**, 457 (2002) .
- [24] E.W. Mielke, Gen. Relativ. Gravit. **13**, 175 (1981).
- [25] D. Vassiliev, Gen. Relativ. Gravit. 34, 1239 (2002).
- $[26]$ E. Langmann and R.J. Szabo, Phys. Rev. D 64 , 104019 (2001) .
- [27] H. Nishino and S. Rajpoot, Phys. Lett. B **532**, 334 (2002).
- [28] S.J. Gates, H. Nishino, and S. Rajpoot, Phys. Rev. D 65, 024013 (2002).