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Monopole and Berry phase in momentum space in honcommutative quantum mechanics
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To build genuine generators of the rotations group in noncommutative quantum mechanics, we show that it
is necessary to extend the noncommutative parandetea field operator, which proves to be only momentum
dependent. We find consequently that this field must be obligatorily a dual Dirac monopole in momentum
space. Recent experiments in the context of the anomalous Hall effect provide evidence for a monopole in the
crystal momentum space. We suggest a connection between the noncommutative field and the Berry curvature
in momentum space which is at the origin of the anomalous Hall effect.
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A natural generalization of quantum mechanics involvingsatisfy the usual angular momentum algebra. We then show
noncommutative space-time coordinates was originally introthat this @ field is only momentum dependent and that the
duced by Snydefl] as a short distance regularization to requirement of the angular momentum algebra, that is, the
improve the problem of infinite self-energies inherent inexistence of an angular momentum, necessarily imposes a
guantum field theory. Due to the advent of the renormalizadual Dirac monopole in momentum space field configura-
tion theory this idea was not very popular until Configs  tion. Thereafter we will intensely use the concept of duality
analyzed Yang Mills theories on noncommutative spacebetween the quantities defined in momentum space com-
More recently a correspondence between a noncommutatiygared with those defined in the position space.
gauge theory and a conventional gauge theory was intro- (ii) The second motivation comes for recent theoretical
duced by Seiberg and Wittef8]. Noncommutative gauge works [20] concerning the anomalous Hall effect in two-
theories were also found as being naturally related to stringimensional ferromagnets predicting topological singularity
and M theory[4]. in the Brillouin zone, but especially very recent experiments

In this framework an antisymmetrié“* parameter usu- carried out in the same contg21] where a monopole in the
ally taken to be constafb—11] is introduced in the commu- crystal momentum space seems to have been discovered.
tation relation of the coordinates in the space time manifoldrhis monopole being a singular configuration of the Berry
[x*,x¥]=i6*". This relation leads to the violation of the curvature it appears naturally in the expression of the Hall
Lorentz symmetry, a possibility which is intensively studied conductivity [22]. We will consider this framework as a
theoretically and experimentally12]. Applications of non- physical realization of our more general theory, where the
commutative theories were also found in condensed mattéBerry curvature corresponds to oafp) field.
physics, for instance, in the quantum Hall eff€t8,14] and Consider a quantum particle of massvhose coordinates
the noncommutative Landau probldi6-17, i.e., a quan- satisfy the deformed Heisenberg algebra
tum particle in the noncommutative plane, coupled to a con-

stant magnetic field with a constant selectegarameter as [X'xI]=i%0,6" (x,p),
usual. o
In this Brief Report, we generalize the quantum mechan- [X,p']=in ",
ics in noncommutative geometry by promoting th@aram- i
eter with a new field obeying its own field equations. Note [p'.p']=0,

that some authorsfor example, Ref.[18]) introduced a where @ is a field which is a priori position and momentum

position-dependend field using a Kontsevich produ¢i9] . o . .
in the study of gauge theory. Contrary to these approache?ependem and, is a charge characterizing the intensity of

we find that thed field must be momentum dependent. The e Interaction of the particle and t_me‘!eld._Not(_e that we do_
. o not consider any external magnetic field in this work, but its
physical motivations of our work are twofold.

(i) For a constand field, we show that a quantum particle taking into account does not pose a problem. It is well
. . . ’ thata g Partic’e | nown that these commutation relations can be obtained
in a harmonic potential has a behavior similar to a particle i

R '€ Mrom the deformation of the Poisson algebra of classical ob-
a constant magnetic field in standard quantum mechanics,

. X . L servable with a provided Weyl-Wigner-Moyal product
since a paramagnetic term appears in the Hamiltonian. Mor%-23 24 expanded at the first order i
over the particle in the presence of thefield acquires an 'I,'he Jacobi identity
effective dual mass in the same way that an electron moving
in a periodic potential in solid state physics. Thus it is legiti- [p'[x) K]+ %, [ X%, p'T]+ [ x5, [ p',x1]]=0, 1)
mate to interpret this field as a field having properties of the
vacuum. In this context it is natural to extend the theory to §mplies the important property that the field is position
nonconstant field. This proposal is strongly enforced by thendependent
lack of rotation generators in noncommutative space with a
constantd parameter, i.e., the angular momentum does not k= 0%(p). 2
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Then one can see thiefield as a dual of a magnetic field and which corresponds formally to a particle in a harmonic os-
q, as a dual of an electric charge. The fact that the field igillator submitted to an external constant magnetic field.
homogeneous in space is an essential property for thErom Eg.(6) we deduce thady,(p)=0q,6'p;, so X'=x
vacuum. In addition, one can easily see that a particle in this- %q(,@‘ipj , and the Hamiltonian can then be written
field moves freely, that is, the vacuum field does not act on 3
the motion of the particle in the absence of an external po- (m;l)”pipj K o, Qo< =
tential. The effect of the field is manifest only in the pres- Hy(X,p)= — 5 T §X - kﬁ(@'ﬁ’ ©
ence of a position dependent potential.

To look further at the properties of thefield consider the  with 61=¢*@,, £(X,p)=1e} (XIp*+p*x) and o
other Jacobi identity =6102-0'0, the dual tensor of the Maxwell constraint

i roi ok i ok i K roi vi11— tensor. Note that the interaction with the figdds due to the
[ DX+ D IEXTHIXEDEXTT=0, (3) presence of the position-dependent harmonic potential and

leads to a dual paramagnetic interaction which could be ex-
perimentally observable. As in solid state physics of an elec-
iK Ki i tron in the effective periodic potential of the ions, the particle
70 (.p) + 70 (.p) 4 96"(p) =0, (4)  in the ¢ field acquires an effective mass tenso} =m([ 5"
ap' ap’ ap +(h%kq2/4)a'11~ which breaks the homogeneity of space.
. This strong analogy with the vacuum of the solid state leads
which is the dual equation of the Maxwell equation Biv ys to regard this field as a property of the vacuum.

giving the equation of motion of the field

=0. As we will see later, Eq4) is not satisfied in the pres- Consider now the problem of angular momentum. It is
ence of a monopole and this will have important conse-obvious that the angular momentum expressed according to
quences. the canonical coordinates satisfies the angular momentum
Now consider the position transformation algebra, however, it is not conserved
X=X+ qg,a,(x,p), (5 d£(X,p) L
=kq,LN\O. (10

wherea, is a priori position and momentum dependent, that dt

restores the usual canonical Heisenberg algebra -
In the original &,p) space the usual angular momentum

[Xi,Xi1=0, L'(x,p) =&}, xIp¥, does not satisfy this algebra. So it seems
that there are no rotation generators in thep] space. We

[X,pi1=i%d", will now prove that a true angular momentum can be defined
only if 6 is a nonconstant field.

[p',pi]=0. From the definition of the angular momentum we deduce

the following commutation relations:
The second commutation relation implies tlgtis position

independent, while the commutation relation of the positions [, L]=ihe ™+ ifiqeekp' 0%(p),
leads to the following expression & in terms of the dual o
gauge fielda,: [p',L']=ife"py,
, , i iy K i Alangk
Hij(p):aab(P)_&aﬂ,(P) © [L'\L]=ifiel L +ifiqgeiemnp p"0“"(P),
ap’ ap' showing, in particular, that theO(3) Algebra is broken. To

o . o restore the angular momentum algebra consider the transfor-
which is dual to the standard electromagnetic relation in pomation law

sition space.
In order to examine more in detail the properties of this LisLi=Li+ |\/|‘0(x,p), (11
new field, let us consider initially the case of a constant field
what is usual in noncommutative quantum mechanics. In thand require the usual algebra
case of an harmonic oscillator expressed in terms of the

original coordinatesx,p) the Hamiltonian reads [X, L]=ifie" ¥,
p* Kk [p',L/]=ihe ™ py,
Hy(x,p)= 5 + 5% (7
[LL]=ifekL,. (12
from which we getp'=mx'—kqg,6"x;, p.'= —kx' and the o o
equation of motion Tfle second equation implies the position independent prop-
erty
mx =kq,6'x,— kX, ) M(x,p)=M(p), (13
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while the third leads to This term is responsible for the violation of the associativity
which is only restored if the following quantification equa-

Miy(P)= 500z PP 0P, (19 ~fonis saushied

i
Putting this equation in Eq12) we are led to a dual Dirac f d%ﬁ: 2mnh (20)
monopole[25] defined in momentum space Ip; Qo
6 _%E 15 leading toqu9,=n#%/2, in complete analogy with Dirac’s
(P)= 47 p3’ ( guantization28,29.

It is interesting to mention that singular configuration in
where we introduced the dual magnetic chaggessociated momentum space, seems to have been discovered in the very

to the ® field. Consequently we have beautiful experiments of Farg al. [21] in the context of the
anomalous Hall effect in a ferromagnetic crystal. The strong
. q494 |5 analogy between this result and the monopole we deduced
My(p)=— am p’ (16)  from symmetry consideration in noncommutative quantum

mechanics, suggest us interpreting their Berry curvature in
which is the dual of the famous Poincare momentum introthe AHE as our noncommutative field. The main point is the
duced in positions spa¢@6,27). Then the generalized angu- consideration of the Berry phase
lar momentum
> ap (k) =i(Ung|dif une),
dogo P

L= (np)- S2E,

17

where the wave function,(x) are the periodic part of the

is a genuine angular momentum satisfying the usual algebrgloch waves. In their work, the authors introduced a gauge

It is the summation of the angular momentum of the particle ovariant po_sition operator of the wave packet associated to
and of the dual monopole field. One can check that it is &0 electron in ther band
conserved quantity.

The duality between the monopole in momentum space i d "
and the Dirac monopole is due to the symmetry of the com- XT=l I_an(k)' (21)
mutation relations in noncommutative quantum mechanics .
where[x',x)]=i%q,e"*®(p) and the usual quantum me-
chanics in a magnetic field whefe',v/]=i4qs"*B,(x).
Therefore the two gauge field3(p) and B(x) are dual to

whose commutator is given by

each other. dap(k) daf(k) i
Note that in the presence of the dual monopole the Jacobi [x#,x"]= e e —iF#¥(k), (22
identity (3) fails:
[, [T XKT] [, [ X T+ X6 [ X ] whereF#”(k) is the Berry curvature in momentum space.
90'(p) The connection with our noncommutative quantum me-
=—quh? > .p =—4mq,h%g,8%p). (18  chanics theory is then clearly apparent. T&(e_p) field cor-
Pi responds to the Berry curvaturék) anda,(p) is associated

to the Berry phasa,(k). This shows that physical situations

. L L Tith a Berry phase living in momentum space could be ex-
by Jackiw[28] of a comparable violation of the Jacobi iden- ressed in the context of a noncommutative quantum me-

tity between momentum by the Dirac monopole in Stand""rdghanics. Of course this formal analogy requires more work to

quantum mechanics: the presence of the monopole in mod'eepen the relation between the noncommutative quantum

mentum space is related to the breaking of the _tr_anslatlon echanics formalism and the Berry phase in momentum
group of momentum. As a consequence the addition law o pace

momentum is different from the usual Galilean additional

law. Indeed if we define the element of the translations group, e(t)r:Jer Swg:)kr Itshéllis\}\;ze?oszdtk;ﬁ eermllact:?a SZE?;?;V% ri)rfr?gtt esghn;—

of momentum byT(b) =exp(r -b/%), we have the following  parameter of the noncommutative quantum mechanics to a
relation: 6(p) field. Then we showed that the restoration of the
q Heisenberg algebra implies the existence of a dual gauge
_ o ) field in momentum space. We proved that configuration of
T(by)T(by) = exp{ ' q)(p’bl’bZ)] T(batb), (19 4o field which makes it possible to build an angular momen-
tum which satisfies thesO(3) algebra and which is pre-
where ®(p;by,b,) is the flux of © through a triangle with  served, is a dual monopole in momentum space. This mono-
three tops located by the vectqus p+b; andp+b;+b, .  pole is responsible for the violation of the Jacobi identity and

One can interpret this by analogy with the explanation give
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implies the nonassociativity of the law of addition of the associated to a Berry phase expressed in momentum space in
momentum. To restore associativity a Dirac’s quantization othe context of the anomalous Hall effect.

the dual charges is necessary. As a physical realization of our We benefitted from conversations with Josages and
theory we can interpret thé(p) field as a Berry curvature correspondences with Peter Horvathy.
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