
PHYSICAL REVIEW D 69, 127701 ~2004!
Monopole and Berry phase in momentum space in noncommutative quantum mechanics

Alain Bérard and Herve´ Mohrbach
Laboratoire de Physique Mole´culaire et des Collisions, Institut de Physique, Technopoˆle 2000, 57078 Metz, France

~Received 11 October 2003; published 2 June 2004!

To build genuine generators of the rotations group in noncommutative quantum mechanics, we show that it
is necessary to extend the noncommutative parameteru to a field operator, which proves to be only momentum
dependent. We find consequently that this field must be obligatorily a dual Dirac monopole in momentum
space. Recent experiments in the context of the anomalous Hall effect provide evidence for a monopole in the
crystal momentum space. We suggest a connection between the noncommutative field and the Berry curvature
in momentum space which is at the origin of the anomalous Hall effect.
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A natural generalization of quantum mechanics involvi
noncommutative space-time coordinates was originally in
duced by Snyder@1# as a short distance regularization
improve the problem of infinite self-energies inherent
quantum field theory. Due to the advent of the renormali
tion theory this idea was not very popular until Connes@2#
analyzed Yang Mills theories on noncommutative spa
More recently a correspondence between a noncommuta
gauge theory and a conventional gauge theory was in
duced by Seiberg and Witten@3#. Noncommutative gauge
theories were also found as being naturally related to st
and M theory@4#.

In this framework an antisymmetricumn parameter usu-
ally taken to be constant@5–11# is introduced in the commu
tation relation of the coordinates in the space time manif
@xm,xy#5 iumn. This relation leads to the violation of th
Lorentz symmetry, a possibility which is intensively studi
theoretically and experimentally@12#. Applications of non-
commutative theories were also found in condensed ma
physics, for instance, in the quantum Hall effect@13,14# and
the noncommutative Landau problem@15–17#, i.e., a quan-
tum particle in the noncommutative plane, coupled to a c
stant magnetic field with a constant selectedu parameter as
usual.

In this Brief Report, we generalize the quantum mech
ics in noncommutative geometry by promoting theu param-
eter with a new field obeying its own field equations. No
that some authors~for example, Ref.@18#! introduced a
position-dependentu field using a Kontsevich product@19#
in the study of gauge theory. Contrary to these approac
we find that theu field must be momentum dependent. T
physical motivations of our work are twofold.

~i! For a constantu field, we show that a quantum partic
in a harmonic potential has a behavior similar to a particle
a constant magnetic fieldu in standard quantum mechanic
since a paramagnetic term appears in the Hamiltonian. M
over the particle in the presence of theu field acquires an
effective dual mass in the same way that an electron mov
in a periodic potential in solid state physics. Thus it is leg
mate to interpret this field as a field having properties of
vacuum. In this context it is natural to extend the theory t
nonconstant field. This proposal is strongly enforced by
lack of rotation generators in noncommutative space wit
constantu parameter, i.e., the angular momentum does
0556-2821/2004/69~12!/127701~4!/$22.50 69 1277
-

-

.
ve
o-

g

d

er

-

-

es

n

e-

g
-
e
a
e
a
t

satisfy the usual angular momentum algebra. We then s
that thisu field is only momentum dependent and that t
requirement of the angular momentum algebra, that is,
existence of an angular momentum, necessarily impose
dual Dirac monopole in momentum space field configu
tion. Thereafter we will intensely use the concept of dual
between the quantities defined in momentum space c
pared with those defined in the position space.

~ii ! The second motivation comes for recent theoreti
works @20# concerning the anomalous Hall effect in two
dimensional ferromagnets predicting topological singular
in the Brillouin zone, but especially very recent experime
carried out in the same context@21# where a monopole in the
crystal momentum space seems to have been discove
This monopole being a singular configuration of the Be
curvature it appears naturally in the expression of the H
conductivity @22#. We will consider this framework as a
physical realization of our more general theory, where
Berry curvature corresponds to ouru(p) field.

Consider a quantum particle of massm whose coordinates
satisfy the deformed Heisenberg algebra

@xi ,xj #5 i\quu i j ~x,p!,

@xi ,pj #5 i\d i j ,

@pi ,pj #50,

whereu is a field which is a priori position and momentu
dependent andqu is a charge characterizing the intensity
the interaction of the particle and theu field. Note that we do
not consider any external magnetic field in this work, but
taking into account does not pose a problem. It is w
known that these commutation relations can be obtai
from the deformation of the Poisson algebra of classical
servable with a provided Weyl-Wigner-Moyal produ
@23,24# expanded at the first order inu.

The Jacobi identity

@pi ,@xj ,xk##1@xj ,@xk,pi ##1@xk,@pi ,xj ##50, ~1!

implies the important property that theu field is position
independent

u jk5u jk~p!. ~2!
©2004 The American Physical Society01-1
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Then one can see theu field as a dual of a magnetic field an
qu as a dual of an electric charge. The fact that the field
homogeneous in space is an essential property for
vacuum. In addition, one can easily see that a particle in
field moves freely, that is, the vacuum field does not act
the motion of the particle in the absence of an external
tential. The effect of theu field is manifest only in the pres
ence of a position dependent potential.

To look further at the properties of theu field consider the
other Jacobi identity

@xi ,@xj ,xk##1@xj ,@xk,xi ##1@xk,@xi ,xj ##50, ~3!

giving the equation of motion of the field

]u jk~p!

]pi
1

]uki~p!

]pj
1

]u i j ~p!

]pk
50, ~4!

which is the dual equation of the Maxwell equation divBW
50. As we will see later, Eq.~4! is not satisfied in the pres
ence of a monopole and this will have important con
quences.

Now consider the position transformation

Xi5xi1quau
i ~x,p!, ~5!

whereau is a priori position and momentum dependent, th
restores the usual canonical Heisenberg algebra

@Xi ,Xj #50,

@Xi ,pj #5 i\d i j ,

@pi ,pj #50.

The second commutation relation implies thatau is position
independent, while the commutation relation of the positio
leads to the following expression ofu in terms of the dual
gauge fieldau :

u i j ~p!5
]au

i ~p!

]pj
2

]au
j ~p!

]pi
, ~6!

which is dual to the standard electromagnetic relation in
sition space.

In order to examine more in detail the properties of t
new field, let us consider initially the case of a constant fi
what is usual in noncommutative quantum mechanics. In
case of an harmonic oscillator expressed in terms of
original coordinates (x,p) the Hamiltonian reads

Hu~x,p!5
p2

2
1

k

2
x2, ~7!

from which we getpi5mx.
i2kquu i j xj , p.

i52kxi and the
equation of motion

mx
..

i5kquu i j x
.

j2kxi , ~8!
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which corresponds formally to a particle in a harmonic o
cillator submitted to an external constant magnetic fie
From Eq. ~6! we deduce thatau

i (p)5quu i j pj , so Xi5xi

1 1
2 quu i j pj , and the Hamiltonian can then be written

Hu~X,p!5
~m

*
21! i j pipj

2
1

k

2
X22k

qu

2m
QW •LW , ~9!

with u i j 5« i jkQk , L i(X,p)5 1
2 « jk

i (Xj pk1pkXj ) and s i j

5d i j Q22Q iQ j , the dual tensor of the Maxwell constrain
tensor. Note that the interaction with the fieldu is due to the
presence of the position-dependent harmonic potential
leads to a dual paramagnetic interaction which could be
perimentally observable. As in solid state physics of an el
tron in the effective periodic potential of the ions, the partic
in the u field acquires an effective mass tensorm

*
i j 5m@d i j

1(\2kqu
2/4)s i j #21 which breaks the homogeneity of spac

This strong analogy with the vacuum of the solid state le
us to regard this field as a property of the vacuum.

Consider now the problem of angular momentum. It
obvious that the angular momentum expressed accordin
the canonical coordinates satisfies the angular momen
algebra, however, it is not conserved

dLW ~X,p!

dt
5kquLW `QW . ~10!

In the original (x,p) space the usual angular momentu
Li(x,p)5« jk

i xj pk, does not satisfy this algebra. So it seem
that there are no rotation generators in the (x,p) space. We
will now prove that a true angular momentum can be defin
only if u is a nonconstant field.

From the definition of the angular momentum we dedu
the following commutation relations:

@xi ,L j #5 i\« i jkxk1 i\qu«kl
j plu ik~p!,

@pi ,L j #5 i\« i jkpk ,

@Li ,L j #5 i\«k
i j Lk1 i\qu«kl

i «mn
j plpnukm~p!,

showing, in particular, that thesO(3) Algebra is broken. To
restore the angular momentum algebra consider the tran
mation law

Li→Li5Li1M u
i ~x,p!, ~11!

and require the usual algebra

@xi ,Lj #5 i\« i jkxk ,

@pi ,Lj #5 i\« i jkpk ,

@Li ,Lj #5 i\« i jkLk . ~12!

The second equation implies the position independent p
erty

M u
j ~x,p!5M u

j ~p!, ~13!
1-2
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while the third leads to

M u
i ~p!5

1

2
qu« jkl p

ipluk j~p!. ~14!

Putting this equation in Eq.~12! we are led to a dual Dirac
monopole@25# defined in momentum space

QW ~p!5
gu

4p

pW

p3
, ~15!

where we introduced the dual magnetic chargegu associated
to theQ field. Consequently we have

MW u~p!52
qugu

4p

pW

p
, ~16!

which is the dual of the famous Poincare momentum int
duced in positions space@26,27#. Then the generalized angu
lar momentum

LW5~rW`pW !2
qugu

4p

pW

p
, ~17!

is a genuine angular momentum satisfying the usual alge
It is the summation of the angular momentum of the parti
and of the dual monopole field. One can check that it i
conserved quantity.

The duality between the monopole in momentum sp
and the Dirac monopole is due to the symmetry of the co
mutation relations in noncommutative quantum mechan
where @xi ,xj #5 i\qu« i jkQk(p) and the usual quantum me
chanics in a magnetic field where@v i ,v j #5 i\q« i jkBk(x).
Therefore the two gauge fieldsQ(p) and B(x) are dual to
each other.

Note that in the presence of the dual monopole the Ja
identity ~3! fails:

@xi ,@xj ,xk##1@xj ,@xk,xi ##1@xk,@xi ,xj ##

52qu\2
]Q i~p!

]pi
524pqu\2gud3~p!. ~18!

One can interpret this by analogy with the explanation giv
by Jackiw@28# of a comparable violation of the Jacobi ide
tity between momentum by the Dirac monopole in stand
quantum mechanics: the presence of the monopole in
mentum space is related to the breaking of the translat
group of momentum. As a consequence the addition law
momentum is different from the usual Galilean addition
law. Indeed if we define the element of the translations gro
of momentum byT(b)5exp(irW•bW/\), we have the following
relation:

T~b1!T~b2!5expH i
q

u

\
F~p;b1 ,b2!J T~b11b2!, ~19!

whereF(p;b1 ,b2) is the flux of Q through a triangle with
three tops located by the vectorspW , pW 1bW 1 andpW 1bW 11bW 2 .
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This term is responsible for the violation of the associativ
which is only restored if the following quantification equ
tion is satisfied

E d3p
]Q i

]pi
5

2pn\

qu
~20!

leading to qugu5n\/2, in complete analogy with Dirac’s
quantization@28,29#.

It is interesting to mention that singular configuration
momentum space, seems to have been discovered in the
beautiful experiments of Fanget al. @21# in the context of the
anomalous Hall effect in a ferromagnetic crystal. The stro
analogy between this result and the monopole we dedu
from symmetry consideration in noncommutative quant
mechanics, suggest us interpreting their Berry curvature
the AHE as our noncommutative field. The main point is t
consideration of the Berry phase

an
m~k!5 i ^unkudkuunk&,

where the wave functionunk(x) are the periodic part of the
Bloch waves. In their work, the authors introduced a gau
covariant position operator of the wave packet associate
an electron in then band

xm5 i
]

]km
2an

m~k!, ~21!

whose commutator is given by

@xm,xn#5
]an

n~k!

]km
2

]an
m~k!

]kn
52 iF mn~k!, ~22!

whereFmn(k) is the Berry curvature in momentum space
The connection with our noncommutative quantum m

chanics theory is then clearly apparent. Theu(p) field cor-
responds to the Berry curvatureF(k) andau(p) is associated
to the Berry phasean(k). This shows that physical situation
with a Berry phase living in momentum space could be
pressed in the context of a noncommutative quantum
chanics. Of course this formal analogy requires more work
deepen the relation between the noncommutative quan
mechanics formalism and the Berry phase in moment
space.

Our work is justified by the will to preserve exact sym
metries. For that we found the necessity to promote thu
parameter of the noncommutative quantum mechanics
u(p) field. Then we showed that the restoration of t
Heisenberg algebra implies the existence of a dual ga
field in momentum space. We proved that configuration
the field which makes it possible to build an angular mom
tum which satisfies thesO(3) algebra and which is pre
served, is a dual monopole in momentum space. This mo
pole is responsible for the violation of the Jacobi identity a
1-3
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implies the nonassociativity of the law of addition of th
momentum. To restore associativity a Dirac’s quantization
the dual charges is necessary. As a physical realization o
theory we can interpret theu(p) field as a Berry curvature
,

e

t.

T.

s,
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associated to a Berry phase expressed in momentum spa
the context of the anomalous Hall effect.

We benefitted from conversations with Jose´ Lagès and
correspondences with Peter Horvathy.
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