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Scalar-tensor gravity coupled to a global monopole and flat rotation curves
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In a scalar-tensor theory of gravity we consider a global monopole field as a candidate for galactic dark
matter. Within the weak gravity approximation we solve the equations of a metric tensor and a scalar field
coupled to the monopole and determine the asymptotic structure of a galactic spacetime faorltatge case
of a massless scalar field, we derive a formula for the rotation velocity of stars, which contains an extra
constant value in addition to the other known terms, and we discuss its relation to flat rotation curves in the
galaxy.
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I. INTRODUCTION
S:

1
e f d*xV=g[R-29""9,¢d,¢ Vo (¢)]
The asymptotic flatness of rotation cur¢BC9 in the *
galatic halo suggests the existence of dark matter whose en- +Sm[<I3,Ang,,] 2)
ergy density varies asrf. Since the global monopol&M) _
found by Barriola and Vilenkif1] has energy density pro- With
portional to 1/2, it was suggested by Nucamendi and others
[2,_3] that th_e monopole could be the galaptic dark matter in Sm[<I3,AZgM,,]= _J d4x\/—_g
spiral galaxies. Even though Harari and Loustpsuggested
that the mc_)nopole core mass is negative and that there are no X (L A2gr7g . anS+A4VM(<I32)),
bound orbits, Nucamendit al. [2] showed that there is an ”
attractive region where bound orbits exist, by the introduc- 3
tion of a nonminimal coupling of gravity to the GM. Baner- 5 ~ . )
jee et al. [3] noted that the GM in Brans-Dicke theory also Where A“(¢)=1/G, ¢. The above equations are obtained
exerts gravitational pull on a test particle moving in its from the action(1) of the ST theory with the GM actio8,,
spacetime. Therefore it seems important to study in mordy a conformal transformatiofv,8] gW—Az((p)gW, with
detail scalar-tenso(ST) theories of gravity coupled to the
GM. a?’=(9InAldg)?°= 1/(2w+3). (4)
About 40 years ago Brans and DickB] introduced a

scalar fielde instead of the inverse bare gravitational con-

stantG;l, for the purpose of generalizing Einstein’s general

theory of relativity to incorporate Mach’s principle. Since

then various ST theories of gravity have been studied.

four-dimensional dilaton gravity obtained as a low energy a2<0.001. (5)

effective theory from strings also has the form of a ST

theory, with nontrivial couplings of the dilaton to matter and It is well known that the bare gravitational consta®y is

a possible dilaton potential. When a potential of the scalarelated to the gravitational consta@tin Einstein’s theory as

field, Vg(¢), is included as in some models of dilaton grav-[5] G, =G/(1+ a3).

ity, the action of the ST theory of gravity is given by Varying the action(2) with respect to the fields, we have
equations for the monopole fields and the scalar fielg as
well as Einstein’s field equations:

The potentialVp(¢) has been defined a8, A*e~ V(o).

In the Brans-Dicke theory of gravity 1/¢2+ 3)Ea(2) is con-
stant and astronomical constraints for the parameter are
Aqiven by solar-system experiments[&8s9]

I Vs(%)

16

oR— —9“”%90(%90

+Sm 1 . Vv
——9,A%~gg" 9, A Mg” =0,

(1) J-g

) 1dVp 1 388y
with S, the action for matter fields. \/—%\/ 99""d,o— + 490 §K5_<P’ (6)
In the so-called Einstein conformal frani6,7], the ST

theory of gravity coupled to the GM is described by the a
act|or¥ g y p y G KT v+zapcp&v¢_%gpv[2g Bﬁacp&BQD_FVD((P)]v

wherexk=8wG, and the energy-momentum tensor
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In Sec. Il, we take the weak gravity approximation of the PV Ny 2f1
field equationg6) and we find large- solutions to the equa- —2f +a;—— %,
tions. In Sec. IlI, with these solutions we calculate the rota- fo
tion velocity of stars in a galactic halo and discuss its pos- >
sible (elation to the flatnessf of RQs in the galaxy. Section IV =f1+b,f§+fs| sc1+ b1+ +al + - f’ (15
contains a summary and discussion. 2

for the GM,
1. WEAK FIELD APPROXIMATION OF ST GRAVITY
COUPLED TO GM AND LARGE- r SOLUTIONS 1 §2
"t Sl —m2 o =agl = (F5)2+ — +2Vyy(fo) (16)

When we consider the potential of a triplet of scalar fields®1™ y #17 b®1~ *0} 5110/ ™ 5 m{To
Vi (D2) = (\/4) (D2 5%)? with a constanty, the global
O(3) symmetry is spontaneously broken (1) as|®|  for the scalar fieldp, and
— 7 [1]. It can be realized with a spherically symmetric ) 5
hedgehog ansatz for the scalar fieflis=f(r)r. In the Ein- by b1 Z(502— -2 v (o) an
stein conformal framg6,7] we assume the line element of rz or 2°0 2 MATO%
the spherically symmetric, static spacetime as

b, by c¢; 1 fa
dr? et T 7 TR Y A

dstin=0,.,dX dX"= —b(r)e(ndt’+ prs+r2d0? (8 2ty T =) Vo,
with X#=(t,r,0, ) anddQ?=d#?+ sirtod 2. by ¢ bitc; 1

Taking the weak gravity approximations as T Tor + 2 E(fo) ~Vu(fo)

— 2 — 2 . _ .
b=Dbo+kbi+ Ky -+, c=CotkCi+kC-, (9  for the metric coefficients. We have parametrized as
9°Vp ldp3=4m3 and used the relation$A\?/ dpo=2a and
a;=2ape;.

Considering the case of a massless scalar fielgdnp

=0), we have the solution

(p:(Po+K(Pl+K2(P2"', f:f0+Kfl+K2f2"'

(bp=1 andcy=1 for the spacetime to be Minkowskian in
the k—0 limit [7]), we have thed(«°) equation forf(r),

from Eq. (6),
%© p1=0o7[3 In(1/r)) + (5161 ]— qoM /16w, (18)
a/
ag—— &VM 2f° =f! +f(’)z+f(’)—o (10) whereM andr; are constants of integration, whose physical
afo r Qo meanings are given in the next section. Using the solution

(18) of ¢4, with b; andc, easily calculated from Eq17),

The function A*> has been approximated a°(¢)=a, we find the spacetime described by the following metric in

+kay+- - . To O(x° Eq. (6) for ¢ gives the physical framg7]:
oo+ @(2/r) = (Vpldpg)=0 (11) dSZZ"éMVdXMdXVZAZQWqudXV
and 87Gna’ r M 26
=1+ 5 —— T
(¢0)*=0, Vp(¢o)=0, (12 +ag i 4wy 3r
whose solutions are Xl =y1- BrGr’| W 5_2 _) dt?
1+ af 4rn’r  r?  3rt
po=const, dVpl/dpy=0 (13
87G7?[ M 8 26 5
Here and hereafteVy,/df, means[dVy/dfli—¢, fg +41+ +———|tdr
. 0 " 1+a2 \4mn?r %2 3r*
meansdfy/dr, etc., and we calculate all physical quantities 0
up to O(1/r%). A series solution of Eq(10) for fg is 877G 12
AR EATI (19
fo=n(1—8%r2—358%2r%), (14) 1+ a3

where the size of the monopole cose1/\\ 7 [1] and we
have taken the constant valag=A?(¢,) as 1, sincex, can
be absorbed by a redefinition of the coordinaxésin Eq.
(19 [7].

Then from Eq.(6) up to O(«x') we have

where the relationc=87G/(1+ ag) is used, and a coordi-
nate transformation following Barriola and Vilenkjd] is
performed. The above formula is valid for<r, and it gives
us corrections in 1/ up to O(1/r*), compared with the re-
sults calculated by Teixeira Filho and Bez€fdand others.
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Ill. FLAT RCS IN A GALAXY 2_87TG7]2 , (1+a(2))|\/| 52 2(1—2a(2))64

In a series of works, Matos, GuzmaUréfa-Lopez, and ~ (Vrot) "= 1+a2 | %0 8anr 12 314
Nunez [10] discussed the possibility of determining the ge- 0 (28)
ometry of a spacetime where the flat RCs in galaxies could
be explained and constraining the type of dark matter thator a GM with a very small sizé compared to astronomical
generates such geometry. As a candidate for galactic dadgaleq1], the last two terms in the above equation are neg-
matter, we have considered the GM coupled to gravity in gjgible. Far away from the galactic coresr;, the rotation

ST theory. In the weak gravity approximation we obtainedye|ocity (28) approaches the following constant value:
larget solutions(19) to Einstein’'s equations, which deter-

mine th_e geometry c_)f a galactic spacetime._ . \/877(3 nzagl(lJr ag)zvsg%' (29)
To discuss RCs in the galaxy, we consider the circular
motic.)n.s of stars in a spacetime with the following metric \jeasurements of the RCs in spiral galaxies give us the
coefficients: asymptotic value of v,,, 100—300 km/s [v,o;/c~(3
X 10 %) —-10"3] [2,12]. From this and Eq(5) we have

ds?=—N2(r)dt?+ M2(r)dr?+ A?(r)r?dQ2. (20

- 6y_ 1017

When we consider the cage= 7/2, with the definition 7~(3x109-10" GeV, (30
dX* (dt dr do de¢\ . . . . which is the natural scale for grand unified theories. Estima-
F:(EE—EE) =(t,r,0=0,0) (21)  tions of the scaley were already made in previous works

about the GM minimally coupled to gravifit] and nonmini-
mally coupled to gravity2], and it is interesting that a simi-
lar result of the estimation is given when the astronomical
constraint(5) for ag in a ST theory of gravity is saturated.
LtV  AS2(r)}2 20:\p2 20 \e2 02 _ When we consider a typical galaxy of radiug~30 kpc
Arr ¢ tn) == NADEF MANE+ AN (212’) and mass 18M,, the first and second terms in E@8) are
comparable for~r . Therefore a velocity formula useful in
where it is used thatis’= —d+? in our unit system witc  the whole region where the galactic halo exists<r<ry,
=1. SincedL/d¢p=0 anddL/st=0, we have the constants (the radius of the galactic halo,=10r,~200-400 kpc

and dividing Eq.(20) by the square of the infinitesimal
proper timeds?, we get the equation for the Lagrangign

of motion [13]), can be given by
ALIdp=2A%2p=2L, aLlot=—2N?t=—-2E. (23 Vrot= V(02 +GM;,(r)/r. (31)
Using Egs.(22) and(23), the geodesic equations read In the above equation the mass parambtés substituted by
) the masadM,,(r) of the sphere with a radius which will be
r“+Ves(r)=0, (24)  briefly explained in the following section.
where
IV. SUMMARY AND DISCUSSION
v 1 14 L2 3 E? (25 In a ST theory of gravity we have determined a galactic
efi(1) = M2(r) A2 NN spacetime at the center of which there is a GM. From the

geodesic equation in the spacetime, we obtained the formula
We require the following conditions for stars to have circular(31) for the rotation velocity of stars in the galactic halo,

motions[10]: which has an extra constant valwéd) in addition to the
other ordinary term§12].
r=0, Verddr=0, *Vegldr?>0. (26) In the weak gravity approximation, the metric component

N? in Eq. (20) with Eq. (19) can be given byN?=1
Following the same procedure as in Rdfs0] and[11], we  +2W, with the gravitational potential
solve the above equations, expressandt as functions of
metric coefficients, and have the formula for the rotation V=V +Vo,=DA(r/ir)—(GMIr), (32
velocity
up to O(1/r). As we can see in Eq16), the first termW¥g
Vrot=(Ar/N)(dg/dt)= VN IN(LIr+ A'1A).  (27) comes only frome interaction with the GM, and it is also
true when we consider the quasistatic source of the spherical
In stable orbits of stars fori<r<rie1°6 where Vg (r) mass distributiorp(r) and substitute the second teMn,
>0 within the weak gravity approximation, around a galaxyby the gravitational potentidfL4]
(of massM) at the center of which there is a GM coupled to
gravity in the ST theory, we apply Eq27) to Eq. (19) and
obtain their circular velocity,

qu=—Gfd3r'[p(r')/|F—ﬁ|]. (33)
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Here thee and gy, contributions toW;, are summed as we will have a smallervalue af‘®). To explain the flat ro-
shown in the expressidis] G=G, (1+ a3). The square of tation curves in that case, we need more contributitns
the rotation velocity in Eq(27) can be written asi(o)®>  from other dark mattef12] in addition to the GM contribu-
~r-V¥. Since —VW¥,,=—rGM,,(r)/r? is the gravita- tions.

tional force of a sphere of radius and massM;,(r) By a numerical analysis of the gravitational field of a GM
=4m[idr'r'?p(r') on a unit mass object at we have Eq. nonminimally coupled to gravity, Nucamenét al. found
(32). that the RCs contain a relatively flat regi2]. When we

It seems more plausible to explain the flatnésseven 100k at Eqs.(28) and(31), it appears that the flatness of the
the rising par{15]) of the RCs, including the constant value RCs extends beyond the galactic halo. However, the formula
v . This originates from a In(r;) term of the massless (31) is valid forr;<r<ry, since the GM fieldand ¢,) will
scalar fielde contribution tog, in Eq. (19), which is . vanish at distances larger thepndue to interactions with the

Some other authors also found gravitational potentials simif€arest topological defect such as an antimonof2(g, a
lar to W, in various theories of gravity16] and in a modified  CoSMic string, and so of7,21. (For example, GM field

Newtonian dynamics modgL7]. In the Brans-Dicke theory IN€S can be absorbed into an antimonopole gdreese de-
of gravity, the weak equivalence principle can be violatedf€cts could be thought of as seeds of structure formation in

only by quantum correction and its possible violation isthe Univers_e[ZO]. If we perform numerical studies following
much smaller than in string theorié&8]. Even if a GM  Nucamendiet al. [2] and Banerjeeet al. [3], then we can
induces only a deficit angle in Einstein's theory of gravity draw a more concrete conclusion about flat RCs beyond the

[1,4], its energy density, proportional tor/ generates the Weak gravity approximation.
In(r/r;) term in a metric componeng,, in Brans-Dicke
theory. The force— VW, responsible for the flatness of the
rotation curves in the galactic halo region is a gravitational
force derived from the metri@w in the physical frame We thank Dr. P. Oh, Dr. J. Lee, Dr. S. Hong, and Dr. J.

[7,8]. However if we use the more stringent bound on STYoon for useful discussions. This work was supported by the
theories given by experiments around 1 AU rahg@], then  Soongsil University Research Fund.
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