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Scalar-tensor gravity coupled to a global monopole and flat rotation curves

Tae Hoon Lee* and Byung Joo Lee
Department of Physics, Soongsil University, Seoul 156-743, Korea

~Received 16 November 2003; published 18 June 2004!

In a scalar-tensor theory of gravity we consider a global monopole field as a candidate for galactic dark
matter. Within the weak gravity approximation we solve the equations of a metric tensor and a scalar field
coupled to the monopole and determine the asymptotic structure of a galactic spacetime for larger. In the case
of a massless scalar field, we derive a formula for the rotation velocity of stars, which contains an extra
constant value in addition to the other known terms, and we discuss its relation to flat rotation curves in the
galaxy.
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I. INTRODUCTION

The asymptotic flatness of rotation curve~RCs! in the
galatic halo suggests the existence of dark matter whose
ergy density varies as 1/r 2. Since the global monopole~GM!
found by Barriola and Vilenkin@1# has energy density pro
portional to 1/r 2, it was suggested by Nucamendi and oth
@2,3# that the monopole could be the galactic dark matte
spiral galaxies. Even though Harari and Lousto´ @4# suggested
that the monopole core mass is negative and that there a
bound orbits, Nucamendiet al. @2# showed that there is a
attractive region where bound orbits exist, by the introd
tion of a nonminimal coupling of gravity to the GM. Bane
jee et al. @3# noted that the GM in Brans-Dicke theory als
exerts gravitational pull on a test particle moving in
spacetime. Therefore it seems important to study in m
detail scalar-tensor~ST! theories of gravity coupled to th
GM.

About 40 years ago Brans and Dicke@5# introduced a
scalar fieldw̃ instead of the inverse bare gravitational co
stantG

*
21 , for the purpose of generalizing Einstein’s gene

theory of relativity to incorporate Mach’s principle. Sinc
then various ST theories of gravity have been studied
four-dimensional dilaton gravity obtained as a low ener
effective theory from strings also has the form of a S
theory, with nontrivial couplings of the dilaton to matter an
a possible dilaton potential. When a potential of the sca
field, ṼS(w̃), is included as in some models of dilaton gra
ity, the action of the ST theory of gravity is given by

S5
1

16pE d4xA2g̃S w̃R̃2
v

w̃
g̃mn]mw̃]nw̃2

ṼS~ w̃ !

w̃
D 1Sm

~1!

with Sm the action for matter fields.
In the so-called Einstein conformal frame@6,7#, the ST

theory of gravity coupled to the GM is described by t
action
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S5
1

16pG*
E d4xA2g@R22gmn]mw]nw2VD~w!#

1Sm@FW ,A2gmn# ~2!

with

Sm@FW ,A2gmn#52E d4xA2g

3„

1
2 A2gmn]mFW •]nFW 1A4VM~FW 2!…,

~3!

where A2(w)51/G* w̃. The above equations are obtaine
from the action~1! of the ST theory with the GM actionSm ,
by a conformal transformation@7,8# g̃mn5A2(w)gmn , with

a2[~] ln A/]w!25 1/~2v13!. ~4!

The potentialVD(w) has been defined asG* A4w̃21ṼS(w̃).
In the Brans-Dicke theory of gravity 1/(2v13)[a0

2 is con-
stant and astronomical constraints for the parameter
given by solar-system experiments as@8,9#

a0
2,0.001. ~5!

It is well known that the bare gravitational constantG* is
related to the gravitational constantG in Einstein’s theory as
@5# G* 5G/(11a0

2).
Varying the action~2! with respect to the fields, we hav

equations for the monopole fieldsFW and the scalar fieldw as
well as Einstein’s field equations:

1

A2g
]mA2A2ggmn]nFW 2A4

]VM

]FW
50,

1

A2g
]mA2ggmn]nw2

1

4

]VD

]w
52

1

2
k

dSm

dw
, ~6!

Gmn5kTmn12]mw]nw2 1
2 gmn@2gab]aw]bw1VD~w!#,

wherek58pG* and the energy-momentum tensor

Tmn52~2/A2g!~dSm/dgmn! . ~7!
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In Sec. II, we take the weak gravity approximation of t
field equations~6! and we find large-r solutions to the equa
tions. In Sec. III, with these solutions we calculate the ro
tion velocity of stars in a galactic halo and discuss its p
sible relation to the flatness of RCs in the galaxy. Section
contains a summary and discussion.

II. WEAK FIELD APPROXIMATION OF ST GRAVITY
COUPLED TO GM AND LARGE- r SOLUTIONS

When we consider the potential of a triplet of scalar fie
VM(FW 2)5(l/4)(FW 22h2)2 with a constanth, the global
O(3) symmetry is spontaneously broken toU(1) as uFW u
→h @1#. It can be realized with a spherically symmetr
hedgehog ansatz for the scalar fieldsFW 5 f (r ) r̂ . In the Ein-
stein conformal frame@6,7# we assume the line element o
the spherically symmetric, static spacetime as

dsEin
2 [gmndXmdXn52b~r !c~r !dt21

dr2

b~r !
1r 2dV2 ~8!

with Xm5(t,r ,u,f) anddV2[du21sin2udf2.
Taking the weak gravity approximations as

b5b01kb11k2b2•••, c5c01kc11k2c2•••, ~9!

w5w01kw11k2w2•••, f 5 f 01k f 11k2f 2•••

(b051 andc051 for the spacetime to be Minkowskian i
the k→0 limit @7#!, we have theO(k0) equation forf 0(r ),
from Eq. ~6!,

a0

]VM

] f 0
1

2 f 0

r 2
5 f 091 f 08

2

r
1 f 08

a08

a0
. ~10!

The function A2 has been approximated asA2(w)5a0
1ka11•••. To O(k0) Eq. ~6! for w gives

w091w08~2/r !2 1
4 ~]VD/]w0!50 ~11!

and

~w08!250, VD~w0!50, ~12!

whose solutions are

w05const, ]VD/]w050. ~13!

Here and hereafter]VM /] f 0 means @]VM /] f # f 5 f 0
, f 08

meansd f0 /dr, etc., and we calculate all physical quantiti
up to O(1/r 4). A series solution of Eq.~10! for f 0 is

f 05h~12d2/r 223d4/2r 4!, ~14!

where the size of the monopole cored51/Alh @1# and we
have taken the constant valuea05A2(w0) as 1, sincea0 can
be absorbed by a redefinition of the coordinatesXm in Eq.
~19! @7#.

Then from Eq.~6! up to O(k1) we have
12750
-
-
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]2VM

] f 0
2

f 11a1

]VM

] f 0
1

2 f 1

r 2

5 f 191b1f 091 f 08S 1

2
c181b181

2b1

r
1a18D1

2

r
f 18 ~15!

for the GM,

w191
2

r
w182mD

2 w15a0H 1

2
~ f 08!21

f 0
2

r 2
12VM~ f 0!J ~16!

for the scalar fieldw, and

b1

r 2
1

b18

r
52

1

2
~ f 08!22

f 0
2

r 2
2VM~ f 0!, ~17!

b1

r 2
1

b18

r
1

c18

r
5

1

2
~ f 08!22

f 0
2

r 2
2VM~ f 0!,

b18

r
1

c18

2r
1

b191c19

2
52

1

2
~ f 08!22VM~ f 0!

for the metric coefficients. We have parametrized
]2VD /]w0

2[4mD
2 and used the relations]A2/]w0[2a0 and

a152a0w1.
Considering the case of a massless scalar fieldw (mD

50), we have the solution

w15q0h2@ 1
2 ln ~r /r i !1~d4/6r 4!#2q0M /16pr , ~18!

whereM andr i are constants of integration, whose physic
meanings are given in the next section. Using the solut
~18! of w1, with b1 andc1 easily calculated from Eq.~17!,
we find the spacetime described by the following metric
the physical frame@7#:

ds25g̃mndXmdXn5A2gmndXmdXn

5F11
8pGh2a0

2

11a0
2 S 2 ln

r

r i
2

M

4ph2r
1

2d4

3r 4 D G
3F2H 12

8pGh2

11a0
2 S M

4ph2r
1

d2

r 2
1

d4

3r 4D J dt2

1H 11
8pGh2

11a0
2 S M

4ph2r
1

d2

r 2
2

2d4

3r 4 D J dr2

1H 12
8pGh2

11a0
2 J r 2dV2G , ~19!

where the relationk58pG/(11a0
2) is used, and a coordi

nate transformation following Barriola and Vilenkin@1# is
performed. The above formula is valid forr i,r , and it gives
us corrections in 1/r , up toO(1/r 4), compared with the re-
sults calculated by Teixeira Filho and Bezerra@7# and others.
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III. FLAT RCS IN A GALAXY

In a series of works, Matos, Guzma´n, Ureña-López, and
Núñez @10# discussed the possibility of determining the g
ometry of a spacetime where the flat RCs in galaxies co
be explained and constraining the type of dark matter
generates such geometry. As a candidate for galactic
matter, we have considered the GM coupled to gravity i
ST theory. In the weak gravity approximation we obtain
large-r solutions~19! to Einstein’s equations, which dete
mine the geometry of a galactic spacetime.

To discuss RCs in the galaxy, we consider the circu
motions of stars in a spacetime with the following met
coefficients:

ds252N 2~r !dt21M 2~r !dr21A 2~r !r 2dV2. ~20!

When we consider the caseu5p/2, with the definition

dXm

dt
5S dt

dt
,
dr

dt
,
du

dt
,
df

dt D[~ ṫ , ṙ ,u̇50,ḟ ! ~21!

and dividing Eq. ~20! by the square of the infinitesima
proper timedt2, we get the equation for the LagrangianL:

L~r , ṙ ,ḟ, ṫ ;t![2N 2~r ! ṫ21M 2~r ! ṙ 21A 2~r !r 2ḟ2521,
~22!

where it is used thatds252dt2 in our unit system withc
51. Since]L/]f50 and]L/]t50, we have the constant
of motion

]L/]ḟ[2A 2r 2ḟ52L, ]L/] ṫ [22N 2 ṫ522E. ~23!

Using Eqs.~22! and ~23!, the geodesic equations read

ṙ 21Ve f f~r !50, ~24!

where

Ve f f~r !5
1

M 2~r !
S 11

L2

A 2~r !r 2
2

E2

N 2~r !
D . ~25!

We require the following conditions for stars to have circu
motions@10#:

ṙ 50, ]Ve f f/]r 50, ]2Ve f f/]r 2.0. ~26!

Following the same procedure as in Refs.@10# and @11#, we
solve the above equations, expressḟ and ṫ as functions of
metric coefficients, and have the formula for the rotati
velocity

v rot[~Ar /N!~df/dt!5AN8/N~1/r 1A8/A!. ~27!

In stable orbits of stars forr i,r !r ie
106

whereVe f f9 (r )
.0 within the weak gravity approximation, around a gala
~of massM ) at the center of which there is a GM coupled
gravity in the ST theory, we apply Eq.~27! to Eq. ~19! and
obtain their circular velocity,
12750
-
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a

r

r

~v rot!
25

8pGh2

11a0
2 S a0

21
~11a0

2!M

8ph2r
1

d2

r 2
1

2~122a0
2!d4

3r 4 D .

~28!

For a GM with a very small sized compared to astronomica
scales@1#, the last two terms in the above equation are n
ligible. Far away from the galactic core,r @r i , the rotation
velocity ~28! approaches the following constant value:

A8pGh2a0
2/~11a0

2![v rot
(0) . ~29!

Measurements of the RCs in spiral galaxies give us
asymptotic value of v rot , 100–300 km/s @v rot /c;(3
31024) –1023# @2,12#. From this and Eq.~5! we have

h;~331016!–1017 GeV, ~30!

which is the natural scale for grand unified theories. Estim
tions of the scaleh were already made in previous work
about the GM minimally coupled to gravity@1# and nonmini-
mally coupled to gravity@2#, and it is interesting that a simi
lar result of the estimation is given when the astronomi
constraint~5! for a0 in a ST theory of gravity is saturated.

When we consider a typical galaxy of radiusr o;30 kpc
and mass 1011M ( , the first and second terms in Eq.~28! are
comparable forr;r o . Therefore a velocity formula useful in
the whole region where the galactic halo exists,r i,r ,r h
~the radius of the galactic halor h.10r o.200–400 kpc
@13#!, can be given by

v rot5A~v rot
(0)!21GMin~r !/r . ~31!

In the above equation the mass parameterM is substituted by
the massMin(r ) of the sphere with a radiusr, which will be
briefly explained in the following section.

IV. SUMMARY AND DISCUSSION

In a ST theory of gravity we have determined a galac
spacetime at the center of which there is a GM. From
geodesic equation in the spacetime, we obtained the form
~31! for the rotation velocity of stars in the galactic hal
which has an extra constant valuev rot

(0) in addition to the
other ordinary terms@12#.

In the weak gravity approximation, the metric compone
N 2 in Eq. ~20! with Eq. ~19! can be given byN 251
12C, with the gravitational potential

C5Cs1Cout5~v rot
(0)!2ln~r /r i !2~GM/r !, ~32!

up to O(1/r ). As we can see in Eq.~16!, the first termCs
comes only fromw interaction with the GM, and it is also
true when we consider the quasistatic source of the sphe
mass distributionr(r ) and substitute the second termCout
by the gravitational potential@14#

C in52GE d3r 8@r~r 8!/urW2r 8W u#. ~33!
2-3
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Here thew and gtt contributions toC in are summed as
shown in the expression@5# G5G* (11a0

2). The square of
the rotation velocity in Eq.~27! can be written as (v rot)

2

.rW•¹C. Since 2¹C in52 r̂GMin(r )/r 2 is the gravita-
tional force of a sphere of radiusr and massMin(r )
54p*0

r dr8r 82r(r 8) on a unit mass object atrW, we have Eq.
~31!.

It seems more plausible to explain the flatness~or even
the rising part@15#! of the RCs, including the constant valu
v rot

(0) . This originates from a ln(r /r i) term of the massles

scalar fieldw contribution tog̃tt in Eq. ~19!, which is Cs .
Some other authors also found gravitational potentials s
lar to Cs in various theories of gravity@16# and in a modified
Newtonian dynamics model@17#. In the Brans-Dicke theory
of gravity, the weak equivalence principle can be violat
only by quantum correction and its possible violation
much smaller than in string theories@18#. Even if a GM
induces only a deficit angle in Einstein’s theory of grav
@1,4#, its energy density, proportional to 1/r 2, generates the
ln(r /r i) term in a metric componentg̃tt in Brans-Dicke
theory. The force2¹Cs responsible for the flatness of th
rotation curves in the galactic halo region is a gravitatio
force derived from the metricg̃mn in the physical frame
@7,8#. However if we use the more stringent bound on
theories given by experiments around 1 AU range@19#, then
et

as

et

a
-

e
.

c.

12750
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d

l

we will have a smallervalue ofv rot
(0) . To explain the flat ro-

tation curves in that case, we need more contributionsC in

from other dark matter@12# in addition to the GM contribu-
tions.

By a numerical analysis of the gravitational field of a G
nonminimally coupled to gravity, Nucamendiet al. found
that the RCs contain a relatively flat region@2#. When we
look at Eqs.~28! and ~31!, it appears that the flatness of th
RCs extends beyond the galactic halo. However, the form
~31! is valid for r i,r ,r h , since the GM field~andw1) will
vanish at distances larger thanr h due to interactions with the
nearest topological defect such as an antimonopole@20#, a
cosmic string, and so on@17,21#. ~For example, GM field
lines can be absorbed into an antimonopole core.! These de-
fects could be thought of as seeds of structure formation
the Universe@20#. If we perform numerical studies following
Nucamendiet al. @2# and Banerjeeet al. @3#, then we can
draw a more concrete conclusion about flat RCs beyond
weak gravity approximation.
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