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Moduli potentials in string compactifications with fluxes: Mapping the discretuum
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We find de Sitter and flat space solutions with all closed string moduli stabilized in four-dimensional
supergravity theories derived from heterotic and type Il string theories, and explain how all the previously
known obstacles to finding such solutions can be removed. Further, we argue that if the compact manifold
allows a large enough space of discrete topological choices then it is possible to tune the parameters of
four-dimensional supergravity such that a hierarchy is created, and the solutions lie in the outer region of
moduli space in which the compact volume is large in string units, the string coupling is weak, and string
perturbation theory is valid. We show that at least two light chiral superfields are required for this scenario to
work; however, one field is sufficient to obtain a minimum with an acceptably small and negative cosmological
constant. We discuss the cosmological issues of the scenario and the possible role of anthropic considerations
in choosing the vacuum of the theory. We conclude that the most likely stable vacua are in or near the central
region of moduli space where string perturbation theory is not strictly valid, and that anthropic considerations
cannot help much in choosing a vacuum.
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[. INTRODUCTION a unified theory. However, space-time is ten dimensional. Of
course, since only two of these dimensions need to be geo-

Time was when string theory was expected to produce anetrical, the rest being contributions to the central charge of
unique four-dimensional theory. However, even though ina superconformal field theory, this leaves open the possibility
ten or eleven dimensions superstring theory is perhapsf a four-dimensional space-time.
unique in that the five perturbative formulations are expected E1: Four dimensionsSince the observed world is four
to be different limits of one underlying theory, it was already dimensional and this fact does not emerge automatically
realized in the mid 1980s that there are many different posfrom the basic conjecture, it has to be put in as an extra
sibilities for supersymmetric vacua when the theory is com-assumption. Thus, the topological criterion that the ten-
pactified down to four dimensions. At that time it was dimensional space is of the forR*x Mg, Mg being some
thought that the only phenomenologically viable theory wascompact manifold or some abstract conformal field theory,
the heterotic theory, so it was possible to argue that the gauggas imposed, relegating all other solutions of the theory in-
group had to be a subgroup &;XEg or SO(32). Work  cluding the simplest onR° to a theoretical limbo.
done in the 1990s withF theory removed even this con-  E2: N<1. Simple, for instance toroidal, compactifica-
straint, so that now it appears that one can find supersyntions yield 16 (or 32 supersymmetries in four dimensions
metric vacua with almost any gauge group up to a rank ofvhich certainly cannot yield the chiral structure of the ob-
0(1000), as well as many different numbers of generationsserved world. Thus an additional input, that only four super-

In order to get some perspective on the current state of theymmetries survive, was added. So only internal manifolds
theory it is useful to recall the steps that have led us to thguch as Calabi-Ya(CY) manifolds(including their orbifold
models in the so-called discretuum. We start with the basi¢imits) were to be considered. The choice of such a solution
theoretical conjectur€T) and then add the different experi- is characterized by a number of parameters—hhecom-
mental and observational inpuf§) that need to be used in plex structures andh,; Kahler structures of the manifold.
order to get a model of the real world. There are arguments that the space of such manifolds is con-
nected, although there may also be isolated points in this
so-called super moduli space that correspond to nongeo-
metrical compactifications such as asymmetric orbifolds.

T: The assumption ofweakly interacting quantized su- E3: No massless modullhe (supej moduli appear as
perstrings in a Lorentz invariant backgroundhis yields a massless four-dimensionéthiral supey fields in the low
startling outcome—the gravitofcoupling precisely as ex- energy four-dimensional action that is supposed to describe
pected from general relativity at low energies well as the the real world at scales below the string scale. However, they
quanta of gauge fields, thus giving us a viable candidate focouple with gravitational strength to other fields including

the standard model ones, and such fields are definitely ruled

out by experiment since they affect Newtonian gravity at
*Electronic address: ramyb@bgumail.bgu.ac.il large distances. The same is true of the dilaton superfield
"Electronic address: dealwis@pizero.colorado.edu whose ground state value sets the coupling strength. Thus,

A. The saga of weakly coupled strings
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additional input is needed which would generate a potential In supergravity(SUGRA) phenomenology after picking
for these moduli fields. the field content and the gauge group one is left with three
E4: Supersymmetry is brokeA.moduli potential can be  arbitrary functions. A realistic phenomenology with a zero or
generated in many different ways. The earliest solution wag tiny CC could be obtained by fine-tuning. In string theory
to consider gaugino condensation in a gauge gfdBl  here was no obvious mechanism that would allow for this
(sete[AE] flo; a :ﬁcent rgv;_e\z)v IY?';?”V this ylg_lds ? rundaw?y  fine-tuning, let alone finding a solution to the problem of
otential for the moduli but if there is a direct product o . . )
e ropasbaned 2. by o on 05 i ST conan 120 e of gt sl
lines in the internal manifoldthen one has the possibility of Bousso and Pglchins[ié] is that sugh fine-tuning is actually

developing a critical point in the so-called “racetrack” mod- AR ) ) . 0
els [5,6]. Similar effects can be obtained by consideringposs'ble in string theory in spite of the quantization of the
' parametergfluxes in terms of the string scale.

brane instanton effec{]. In addition, contributions to the In thi i ider both heterofi dt B
potential can be generated by turning on fluxes in internal n this paper we will consider both heterotic and type
compact direction§2]. Often the minima are supersymmet- weakly c_oupled string the_orles compactified on _Iarge volume
ric with a string scale negative cosmological const@() 6D manifolds, and examine under what conditions one can

However, the world is not supersymmetric and at best hadet @ small positive CC with hierarchically larger, but still

broken supersvmmett8USY) with mass splitiing at a scale parametrica_lly small in §tring units, SUSY breaking. We will
10 15Mp, Persy BUSY) P g attempt to find such minima from the terms of theA/'=1

potential in racetrack type models. We feel that finding solu-
tions for which SUSY is spontaneously broken through
terms is more reliable than invoking either explicit breaking
[9] [Kachru-Kallosh-Linde-Trived{KKLT )] or D terms[10].

If there is only one light modulus as in the KKLT case we
find that it is not possible to find a SUSY breaking minimum

XLIJE 61 arlltdea?:t Tnhgee:{ tﬁ:,[n Eelratt;_c;]nsthaer;dr ii{xiul(c.? all with zero or positive CC. However, with at least two light
(1). yurn ou string y SalSHES all 1 oduli such minima do exist. In general, we find that each of

of the above criteria W'I.I be unique and result in three 9€M4he vacua in the discretuum develops its own discretuum
erations of chiral fermions with just the standard model

; However given the enorm number of with several vacua, including some that have negative CC
gauge group. HOWEVEr, given the enormous NUMBET of POSyy \nproken SUSY. With one light modulus, however, it is
sibilities, this seems unlikely and so we may need these tw

experimental inputs as well Bos§ible to fi_nd a minimum in which SUSY is broken and the
: CC is negative although acceptably small.
_ We have not yet produced a concrete string model which
B. The discretuum realizes all the constraints. However, we do show that all
What then is left for string theory to predict? It is likely known obstacles that were previously found in racetrack
that the Yukawa couplings can be calculated once a modénodels (see, for example[11]) can be removed in this
satisfying all the other criteria is found. Here, again, al-framework by a choice of topological or geometrical proper-
though the superpotential terms can be calculated exactljes of the compactification manifold. We explain along the
and will not be renormalized, the Kahler terms will acquire way what the obstacles are and why previous attempts failed.
corrections, but perhaps these can be calculated perturba- We will argue that all solutions in the discretuum that are
tively to a reasonable accuracy. However, even if this sucin the outer region of moduli space, including ours, are not
ceeds it is clear that we are far from a fundamental theorgosmologically viable—being subject to the overshoot prob-
involving just some basic theoretical inge)t lem first discussed ifil2] and recently called appropriately
Now the question arises as to what to make of the hugéhe “bat from hell” problem[13]. We also discuss the pos-
number of solutions that do not satisfy the observational insible application of the anthropic principle to choose among
puts E1-E7. Do they exist as different universes? For in-the variety of vacuua and find that it is not very useful. We

stance, is there a ten-dimensiorfabncompadt supersym-  €xpect that solutions in the central region of moduli space

metric universe? If one uses onlgl then there is a Will not suffer from the cosmological overshoot problem.

continuous infinity to the power of the dimension of moduli

space of supersymmetric compactifications corresponding tt. MODULI POTENTIAL IN THE HETEROTIC STRING

values of the moduli. These are perfectly valid solutions of THEORY

perturbative string theory. Are they all to be included as Uni-

verses that actually exist22 selects a subset of the above

but E4 andE5 give a new set that comes from giving a

potential to the modulft.It is this discrete set that is referred  The first attempt at using fluxes and gaugino condensation

to in the literature as the “discretuum.” to stabilize the moduli was that of Diret al.[2] (for a recent
discussion of this model, s¢é&4]). The main argument for
rejecting this model as a model of moduli stabilization had

IExcept when the minimum of the potential, the CC, is exactlybeen the observation that flux is quantized in string units
zero in which case what is selected is a discrete subset of the set pt5], and hence the dilaton is stabilized in an unrealistic
vacua obtained aftef?2. strong coupling region. Here we reconsider the argument and

E5: The cosmological constant is small and positiVke
world appears to have a positiver perhaps zenoCC at a
scale 10?7 . Recent work[8] has indicated that even
though the natural scale of string thedvwy~ My it may still
be possible to find a small positive CC.

A. The potential of the complex structure moduli
and the dilaton
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show that it should be modified, and that it is possible tofor future reference that the nonperturbative superpotential
stabilize the dilaton at wealor intermediatgcoupling. This,  for the modulusS that is generated is
as far as we know, could have been observed at the time that

the original paper was written. W, = _C(G)Mse—[s#/qe)]sfl, (4)
The ten-dimensional low energy effective action is re- P
duced to a four-dimensional action using the ansatz where u3=1/3272a" 3?2
dsfo: e76u(x)dS‘21+e2u(x)g(r)nndymdyn, Apart from Chern-Simons terms which &€« ) correc-

tions, H; is closed, and theslassical equation of motion

where m,n go over the dimensions of the internal SpaCe!mplles that it is co-closed as well. Thus it may be expanded

which is taken to be a CY threefold For simplicity we will in terms of a basis of harmonic three forms Xn

assume thaX has only one Kahler modulus but may have an =

arbitrary number of complex structure moduli. The four- H=aQ+b%,+aQ+b’xz, 5
dimensional dilatorp and the four-dimensional volume sca- o

lar p are related to the ten-dimensional dilatgnand the  where the sums over,3 go over 1. .. h;,, the dimension
modulusu by ¢= ¢/2—6u andp= ¢/2+2u. The chiral su- of the complex structure moduli space XfThe volume of
perfields S, T are then defined bys=e ¢+ia and T=e”  the CY manifold can be expressed in terms (f by v

+ib wherea,b are the corresponding axions. The argument=j f() A\ (), and the metric on the moduli space is given by
proceeds from the observation that the low energy te”Ga§=—(i/v)fXa/\XE- Using the expansiofb) and the ex-
dimensional effective action for the heterotic string containsyression forT; in Eq. (1), we get

the following contribution that can be interpreted as an ef-
fective potential in four dimensions for the mod#ili:

1 v a' 37° 2
Vaction:_,3 — 3|8 g C_TgisIZWnp
1 1 a 2a'7 SRTR G
Vaction:_4 3f (HS_ _T?F){2§R/2T3)

al
N* 6( Hs— ET2/2$/2T3 . ()

We now wish to express the actiol®) in the N=1

i RA f
In the above,H; is the Neveu-Schwarz—Neveu-Schwarz SUGRA form

(NSNS three-form flux which is taken to be nonzero only on
X, and T3 is a fermionic bilinear three-fornnot to be con-

fused with the chiral superfield) which is assumed to be ) ) ] )
represented upon gaugino condensation by From the classical action and the properties of the manifold

X the Kahler potential is found to be

Vsuera= €“(KTFF—3|W|?). (7)

— — v
whereU =(tr\\) is an effective low energy scalar field rep- K=~=In(S+8) -3 In(T+T) - |ﬂ( 2 ,3) : (8)
resenting the gaugino condensate &hds the holomorphic @
(3,0-form on X [2]. Sg, TR stand for the real parts &,T,
respectively. The dynamics olJis governed by the
Veneziano-YankielowiczVY') superpotential16]

The superpotential is the sum of two contributions. One con-
tribution comes from the flux superpotential of Gukov, Vafa,
and Witten[17], which is given by

U

Wnp:Z

C(G)

f+
872

|n(a13/2u)

, 3 4 4j
Wfluxz_l4f H/\QI——M‘av (9)

o o
wheref is the gauge coupling function ar@{G) is the dual
Coxeter number of the gauge group, which we have assumetp obtain the second equality we have used the expansion
here to be simple. We have also assumed that the model do&®. In the case tha#V,, vanishes\Vy,,, and the Kahler po-
not contain matter that is charged under the gauge grougential (8) result in the potential coming from thelassical
Classicallyf=S, so extremizing the VY effective superpo- action(1) with W,, set to zero. Now, if gaugino condensa-
tential one findsU = o' 32~ [87°/C(6)1S-1 3 \We also note ton does occur antlv,, does not vanish, the total superpo-
tential is the sum of the flux superpotentid) and the
gaugino condensate superpotential given4dy

2In this section we use the same normalization conventions for the

classical action as ifl4]. Wiot=Whiux+Whp.
3Note that the precise normalization depends on the cutoff scale

chosen in Eq(3). Here we have chosen it to be the string scale. Computing Eq(7) with W, gives
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nz 4i 1672 2 In addition to Eq.(11), at the potential minimum thé&
\% =——{|—av+|1+ —==S )W term of the complex structure moduli needs to vanish,
SUCRA 3213500 | | ' C(G) R/
4i —
4 — —b"G v +d,KW,,=0. 13
+GeP zbyGa;U-i-&aKWnp a’ 7 ne 13

ai - Using Eq.(11) and the relatiorb;Gayz b,, we get,
X ( —bPG v+ agKWnp) ] . (10
a' b,,
9, K=a"3{1+([16m2%/C(G)])Sr}=. (14)
Here the differentiatiory,, is with respect to the complex a
structure moduli.

Comparing Eq(6) to Eq.(10) we see that there is agree-
ment only when we seiV,,=0, i.e., only at the classical

Recall that the derivation here is with respect to the complex
structure moduli. Thus, with generic fluxes the potent@l

4 - fixes all the complex structure moduli in addition to the di-
level” This should not be surprising. One should not expeciyion s Note that, unlike in the case of type IIB, here in

to obtain the correct nonperturbative four-dimensional action, qer to get a solution we need the nonperturbative term
from theclassicalten-dimensional action. The difference be- From Eq.(14) it is clear that the relatiom,=0 im-

. . e np- . (23
tween Eqs(1) and(10) is significant. If Eq.(1) had been the posped in[14] [and which would have been obtained if we

correct formula for the potential then it would be impossiblehad sed Eq6) rather than Ea(10)1is valid onlv ifa=0 or
to find anO(1) solution for the four-dimensional dilato® ! 46 101 is vali v

and hence a weak 4D gauge coupling. This follows from R
integrating the relation betwedth and T that is obtained at

the minimum ofVion IN EQ. (1) over a three-cycle oX

and using Eq(2) for T; and the quantization of the three-  The Kahler moduli, and in particular the volume modulus
form field H =dB that was first observed [ri5] (for arecent T which is present in any compactification, are clearly not
discussion sefl4]). However, this is not the correct relation fixed in the models that we have discussed so far. Addition-
at the minimum since thé/=1 SUGRA potential is Eq. ally, SUSY is generically broken since

(10), and the correct equation is the vanishing of Fheerm
for the dilaton,

m.

B. The potential of the Kahler moduli

FT: KTW: — | —

16
1+ —C(Z) sR)wnp=o. (1D 6i 2+[167%C(G)]Sr—

= a 15
Tra'* 1+[16m2/C(G)]Sk Y 13

Substituting the explicit expression fav,,, from Eq. (4) i o _
we get is nonzero for a finite value dfz and generic fluxes. In fact,

unbroken SUSY E+=0) occurs only in the decompactifica-
tion limit Ty—o0, as long as the flux superpotentiad effect
SR) e [(87IC(G)S+1]— . a) is nonzero. The situation here is somewhat different from
that in type 1IB, whereS and the complex structure moduli
(120  were fixed classically, i.e., without any nonperturbative su-
perpotential§ 18], and where even though generically SUSY
Thus, getting a weak coupling solution wi of order a  was broken there were flux configurations that preserved it.
few amounts to finding a small value in the “discretuum” for ~ We would like to consider possible modifications of the
the flux superpotential, specifically for the prodaet. This ~ models so that they will stabilize all moduli, including the
is similar to the corresponding type 1IB case discussed by<ahler moduli. For simplicity we discuss now the case of
KKLT, and, as in that case, one expects such values to existnly one Kahler modulus, the volume.
in CY manifolds with large numbers of complex structures. A dependence on th€ modulus can arise from threshold
This mechanism would be an alternative to the proposal oeffects which have been calculated for various compactifica-
[14] where the Chern-Simons contributions kb[3] were  tions. We will first consider th& dependent contribution to
included and integrated over spaces where the correspondiitige gauge function coming from anomaly considerations.
invariants are fractional. Then we will make some remarks about the case when the
compact manifoldX is an orbifold where the complete one-
loop string theory correction has been worked out.

“4Aspects of this difference have been noticed alreadi2]n There are now two possibilities for analyzing the theory
%In this reference it was argued that one is forced to do this—with all moduli stabilized.
based on the constraint mentioned above from using the form of the The first possibility is to integrate out the complex struc-
potential coming from the ten-dimensional action. Here we havdure moduli and the dilaton by arguing that they are fixed at
seen that this constraint is not the appropriate one. the minimum of the potentidlL0) at a high scale. This would

4i C(G)( 167

av — +
a,/4 32772a/3/2 C(G)
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generically be the case. In fact without threshold correctionsorm f;=S+ B;T where theB; are numbers determined by
(i.e., just using the classical relatidn=S) the T modulus the topology of the gauge bundle and the tangent bundle of
would have zero mass, and the other moduli would haveX. Let us also assume that has a nontrivial fundamental
string scale massé&dn this respect the situation is similar to group so that we can turn on discrete Wilson lines to break
the type IIB case. Then by incorporating threshold correcthe original ten-dimensional groupgX Eg or SQO(32) to a
tions, we get a theory for the single light field with a  product of several simple groups. This adds another layer of
constant in the superpotential\,,, evaluated at the mini- discrete choices in the discretuum. Then the superpotential
mum of the potential As we have shown elsewhdr&9] the  arising from gaugino condensati¢#) takes the form
modulus in the SUSY breaking direction needs to be light
but there is no such requirement on the other moduli. _ 3a-[872/C(G)](S+B,T) -1

The second possibility is to integrate out the complex W”p__Z C(G)pe ! (OSTADTL (18
structure moduli at a high scale but arrange by a choice of a
point in the discretuum to have the dilaton light so it is not The potential is then given by Eq10) with the above

integrated out at this stage. expression folW,, and a term

It is plausible that within the discretuum there are choices
of CY manifolds and fluxes where this is justified. So we a't  4TE 5
solve the equationg,V =0 to express the complex structure AVSUGRA:m 3 | I1Whpl

moduli in terms ofSandT. It is not obvious that this can be
done holomorphically but since SUSY cannot be broken by 3 _ _
this procedure it must be the case that the result is\an 1. Re[ﬁTWnp(WﬂuxJFWnp)])- 17
=1 SUGRA with justSand T moduli. Then after including
threshold correctionghat would introducel dependence in | the fluxes, gauge group parameters, and various topologi-
the superpotentialve would be left with a two-moduli mini-  cal numbers are such that the dilaton and the complex struc-
mization problem. Since now we do not have a positive defiture are heavy, then they can be integrated out by setting the
nite potential, finding actual solutions is complicated but carexpression(10) to zero, and then effectively we have a po-
be done. However, in this case one would in general expegential for the modulusT given by Eq.(17) with S and the
the Kahler potential to be different from the naive classicalcomplex structure moduli fixed. As we have already men-
form obtained by just suppressing the complex structure desioned, in this case with only one remaining light modulus it
pendent part oK. is not possible to find de Sitt¢dS) or Poincareminima. The

The complete minimization problentif none of the general situation is of course prohibitively complicated. Thus
moduli are integrated out at a high sgale prohibitively  we will focus on a situation where only the complex struc-
complicated. But as an alternative to the previous possibilitifure moduli(assumed heayare integrated out leaving two
we can consider the case wheig,=0 as in the original |ight moduli S, T. Alternatively, we could have considered a
paper{2]. In this case obviously we cannot use cancellationsnanifold X with two Kahler moduli withS and the complex

among different three-cycles to get a small valueW,,  structure moduli integrated out at a high scale.
and we would have to resort to the mechanisrildf, which

uses the Chern-Simons terms with the classical Kahler po- 2. Modular invariance for orbifolds
tential to get realistic examples with two light moduli.

We will show in Sec. IV that within models with only one
light modulus it is impossible to get a true minimum of the

potential with a zero or positive CC from theterms. With be expected froni duality (of course, in this case there

tW.O. light _modul| we have found examples where S’UChwouId be three Kahler moduli, but for the sake of simplicity
minima exist. Thus, only the last two cases will lead to mod-

\ ; o ; " we will identify them).
els with all moduli stabilized with a positive or zero CC. Then (assuming that the complex structure moduli have

been integrated out at a high soalee take

Another source of dependencéat least in orbifold com-
pactificationg comes from requiring modular invariance un-
derM:T—(aT—ib)/(icT+d), a, ..., de Z [21] as might

1. Threshold corrections from Green-Schwarz terms

Regardless of the compactification manifold there are K=-3 In(T+?)—In(S+§), (18)
some one-loop corrections that can be computed due to the

existence of the Green-Schwarz anomaly cancellation )

mechanism. As pointed out by Banks and Djg6] (see also W=|c+2> die 8" S’C(G‘)) /77(T)6

[14] for a recent discussigorfrom reduction of theB/\Xg

term in the ten-dimensional actiofwhere Xg is a certain =w(S)/n(T)®, (19

polynomial in the gauge and curvature two-fopmisis pos- . . .
sible to see that the gauge coupling funct®ntakes the Where n(T)=e~ "I, (1-e ?™"7) is the Dedekind eta
function. We have assumed here that the Kahler potential is

equal to its classical form. The constant in the superpotential
®A caveat noticed by Michael Dine is that the mass matrix ofarises from theH flux as in Eq.(9). The Kahler invariant

moduli is a large matrix, and therefore it can have some particularfgombination ofk,W and hence the potential M invariant.
small or large eigenvalues. The potential resulting fror andW of Egs.(18), (19) is
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- 2 4. Non-Kahler manifolds
v 17Dl 2

 25R(2TR)°

[|25Rws—w|2+ —2R|G2|2—3 Bl It is well known that in the presence &f flux the het-
T (20) e_rotic string does not admit supersymmetriq _compactifica-
tions on Kahler manifold§23].” Such compactifications are
possible, however, on non-Kahler manifolds, and recently
there have been a number of papers on this sulges, for

example,[24,25 and references therginThe non-Kahler

whereG,= — (w/Tr+ 4wy *a5/aT) is a modular function
of weight 2. The potential has SUSY extrema at

2SsWs—W(S)=0, (21 manifolds are not Ricci flat and so there are in general two
contributions to the classical potential—one from the fluxes
é2=0- (22) and one from the curvature. Actually, one might think that

this is the case even if the internal space is taken to be con-
With an appropriate choice of value ofn the superpotential formally CY. But in that case, as we will see below, there is
(19 there would be a solution foB perhaps even at weak NO solution unless the conformal factor is trivial and the flux
coupling, and the corresponding Hessian in ®direction is IS zero.
positive definite as discussed in Sec. IV. However, the zeros The metric of the ten-dimensional space is parametrized
of G, (i.e.,, T=1, €'%,0) are saddle pointsT=1) or as
maxima in theT direction. In addition, there is a true mini-
mum (again, a result of a numerical calculatjpat T=1.2 .
independently of the value &at the minimum. At this point ds?=e2*M~6ug  (x)dx“dx”
the volume of the compact manifold is not large in string — 20 (y)+2u(X) M N
units, and hence we may expect laige corrections to this, +e Imn(X,y)dy"dy". (23)
and the solution is not under complete control.

Then from the ten-dimensional heterotic action we have the

. ) _classicalpotential
It is not clear that in the presence of fluxes the theory is

modular invariant. In fact, if one strictly follows the logic as

3. Threshold corrections for orbifolds

in the type 1IB casddiscussed by KKLT what one gets is a 1 1 . _ gdoy) _
superpotential V=— | d®y\g®(y)| Z[R®—8(Inw)?] - —Hj|.
Sr TR 12T

W=c+ D, d.e 3kS2Pa) 5(T)®=c+ w(S)/ 7(T)®,
This potential is a runaway potential iand some quantum

wherec=[H/\Q evaluated at the minimum of the classical (Or stringy effect such as the gaugino condensate term dis-
flux potentia' at which generica”y all Comp|ex structure cussed earlier is needed to stabilize it. On the other hand for

moduli will be fixed. In computing the gaugino condensateT the situation is different. If [d%+/g®(y)R®

frqm Eq. (3) we ha}ve used_theNiIsonian—hence holomor- >8[d°y Fg(ﬁ)(y)(ﬁmw)z, then it seems that it is possible to
phic) gauge coupling function classically stabilize th& modulus. Of course, iff metric is

1 /1 CY as assumed in the previous subsections, fRer0 and
f=kS+ _Z(Ebl —k565> In 7(T)2, there is no extremum point foF either.
Am It has been suggested that the poteritiathe non-Kahler

. . . case can be expressed in terms of a superpotenfial
which comes from calculation of the threshold effects in OF_ [(H—idJ)/\Q wherelJ is the Kahler form( [24,25 and

bifolds [22]. In contrast to this, th& dependence of the first | oforences thereinHowever it is not clear what the Kahler
term in W in Eq. (19) comes from therequirementof M qtential is, and it is not known how to express the potential
invariance in the po.tentlal. . coming from the ten-dimensional action in th&=1
Howe\(er, UOW(W'th the samgK as beforg there is no SUGRA form. Once this is done then we will have a situa-
modular invariance. The potential is tion which is dual to the type 1IB case of Giddings, Kachru,
and PolchinskiGKP) with the S modulus being exchanged

—-12
V= ﬂ |2Srws— w—c78(T)|? with the T modulus and the former being stabilized by in-
2Sr(2TR)3 S voking nonperturbative effecfswe leave further discussion
T 5 of these issues to future work.
+3 ?Rézw-l-C?]ﬁ(T) —3lo+cn®(T)|?}.

"This can be seen from the discussion after @).
This potential for two moduli is we believe the correct re- 8we mention in passing that in the above mentioned references it
placement of the formulé20). It is a potential for twa(pos- s argued that th& modulus stabilization is a stringy effect needing
sibly light) moduli and we will discuss the minima of such the incorporation ofx’ corrections. We are somewhat puzzled by
potentials in Sec. IV. this since the above argument does not require any such corrections.
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[ll. MODULI POTENTIAL IN TYPE 1IB STRING THEORY where() is the holomorphic three form on the CY manifold

. . X. The potential is clearly positive definite and is of the
In type I1B string theory it was show(GKP) [18] that all .no-scale form: at the minimum of the complex structure

the complex structure modu_ll and the dilaton can b? Stab'?noduli and the dilaton the potential vanishes so that the scale
lized by an appropriate choice of fluxes. The resulting 4D.

models are of the no scale type. An important question is is undermined. At this point the fluxes must satisfy the

whether the Kahler moduli can be stabilized with SUSY bro-a9!nary self-duality conditioniG;="¢G3 and SUSY is

ken, in a Poincarer dS background. broken 'fW.:‘#O at this point. .
To stabilize the volume modulus one may introduce non-

perturbative contributions to the superpotential, coming for
A. Review of the proposals to stabilize Kahler moduli instance from gaugino condensation in the gauge theory on
the stack of D7-branes wrapping a four-cydleith betti
numberb;=0) in the internal manifold, as suggested by
KKLT. In this case it is easily seen that the corresponding

ture moduli and the dilaton given by GRMhis is a classical gauge coupling function of the super-Yang-Mills theory is

N=1 SUGRA potential which can be obtained by consider-3'VeN by.f=T SO Fhat by standard .argumer(_tsewewed n
ing ten-dimensional low energy type IIB theory compactiﬁedthe previous sectlgna superpotential for t.h's modulus is
on a CY orientifold with D3-branes and D7-branes— generated—thus giving a total superpotential
essentially a limit of arF-theory construction.

The metric is taken to be E@23) wheree®'=Tg is the W=c—C(G)u3e 8m°T/C(@), (27)
real part of the Kahler modulusolume moduluswhich sets
the overall size of the internal space agftlis a warp factor

Let us first briefly review the proposals of KKLT and
Burgess, Kallosh, and QuevedBKQ) [10]. Both of these
constructions start with the potential for the complex struc

. ; ! X With the (classical Kahler potential25) the resulting poten-
which effectively changes the scale of four-dimensional;,| o5 4 single negative minimum at which SUSY is pre-
physics at different points on the internal manifold. Addition- served, rather than being broken as before

ally, we impose the constraint, det gm,=0 on thegp, The KKLT proposal is to add the contribution of a
metric which can In turn be parametrized in terms of th?ﬁg—brane to this four-dimensional effective action. The anti-
other Kahlc_er moduli as well as the compk_ax structure mOd”“'D-brane gives a positive contribution to the potential,

GKP considered the case where ten-dimensional space is
compactified on a CY manifold with only one Kahler modu-
lus but an arbitrary number of complex structure moduli.

They derived a potential for these moduli and the dildton T3’

gtey)—12u(x) —

_ 6 (6) : * 2 _
v fxd yNg 247, (Gs—*6Gal*. (24 where D is positive and proportional to th®; tension.

KKLT add the Dbrane to the four-dimensional effective ac-

Here Ga=F5—7H3, Hj is the NS three-form flux of type tion; however, the Dbranes, like the D-branes, are string

IB, Fs is the Ramond-Ramond three-form flux, and C,  theoretic objects and should be added to the classical ten-
+ie~? is the complex axion dilaton field. The integration is dimensional theory. There does not seem to be a reason to
over the CY manifold. and we have setKZEO:l. The tilde add the D-branes to the ten-dimensional action, as GKP do,

over the absolute value means that the Hodge dual and tH"%d not the antlbran_es. However, if both the brane_s and an-
. . ~ . tibranes are treated in the same manner, the classical poten-
tensor contractions are evaluated with the medtjg,. The

i - i tial b
potential (24) can be derived using the standard SUGRA 'al becomes
form from a Kahler potentiak and a superpotenti&l/ given

eto(y)—12u(x)
by Ve J doy\g®

0 gie=F 2
247, [iG3—* Gyl

K=—|n[—i(r—?)]—3|n(T+?)—|n(if Q/\(_l), +2e" 1200 T3e4w<y5>. 28)
X 2
D
(25

Note thatT is the brane tension, not to be confused with the
gaugino condensation field discussed in the previous section
or with theT modulus. The contribution of the anti-D-branes
is local and therefore their contribution is determined by the
warp factor at their positiong®.

%We use the same conventions as GKP in this section. If we follow KKLT and integrate out(classically the

Ostrictly speaking, this derivation is valid only when the warp complex structure moduli and the dilaton, we are left with an
factor is trivial [26]—the solutions though are valid even for non- effective four-dimensional theory with a potential for the
trivial w. volume modulus

W=8 J G3/\Q, (26)
X
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2 5 bility, which in some sense is a more conservative one, for
V== Z Taete0), (29 finding a positive or vanishing minimum as well as stabiliz-
R D ing the volume modulus. We will consider field theoretic

However, this is not a four-dimensional SUGRA theory nonperturbatlye effects in the_superpo.tefntlal mcorpc:ratlng
multiple gaugino condensates in the spirit of the old “race-

any more. From the four-dimensional standpoint SUSY is K models. th lizing th vsis of KKLT
explicitly broken by the anti-D-branes, as is evident from thelrack” models, thus generalizing the ana ysIS O o
If we use only the ingredients of GKP without the anti-

term(29) in the potential. Moreover, it is a runaway potential 4 :
which pushes the theory toward the decompactification limiranes and without turning on fluxes on the branes, the re-
Tr—c. In this limit ten-dimensional SUSY will be restored. sulting effective four-dimensional theory is an=1
This behavior is reminiscent of what happens with theSUGRA In this case it is meaningful to add nonperturbative
Scherk-Schwarz mechanism where a runaway potential i§ontributions to the superpotential. Multiple gaugino conden-
generated for a modulus, although in that case the sign igates arise when the gauge group is broken by turning on
opposite to that in the above. discrete Wilson lines on the four-cycle of the CY manifold
Since in the resulting four-dimensional theory SUSY iswhich is wrapped by the D7-branes. Note that we have added
explicitly broken, it is no longer possible to derive the another discrete choice to the discretuum. The additional
moduli potential from a superpotential. Hence it is unclearayer increases the number of vacua in a way that depends on
how the addition of a nonperturbative contributi@oming, the gauge group and the desired pattern of breaking.
say, from gaugino condensatjoto the Gukov-Vafa-Witten It is likely that there will be some corrections to the
(GVW) superpotential evaluated at the minimum of the com-Kahler potential which we will ignore for the moment, since
plex structure moduli and the dilaton potential, can be justias |ong as they are small their exact form is not particularly
fied. A possible cor_15|stent derivation would be posmb!e _|f tthportant to us. The SUGRA potential obtained with all the
term (29) can be interpreted as B term. However, it is jngredients mentioned above is not necessarily a non-
unclear how Fh|s can be done in this case. In par'gcular, th?legative potential, and it may have both positive and nega-
D-term breaking discussed by BKQO] has a very different tive minima. There does not seem to be a general argument
structure. which says that positive or vanishing minima are somehow

In BKQ, SUSY is broken by turning on an electric fl&x I, . :
on D7-branes which can be interpreted Afi=1 SUGRA exclude_d. To rule out the posmve minima on the basis of.a
generalization of the classical no-go theorem would require

context as a&J(1) D term. This then givesafter integrating : : . . .
out the complex structure moduli and the dilgtanpotential one to show that there is a tgn-d|men5|onal .ac_tlon which
incorporates the nonperturbative ternamd satisfies the

of the standard-term form e .
strong energy condition. As far as we know such an action
2 does not exist, and priori there is no reason to dismiss the
; possibility of a dS or Minkowski minimum for thev=1
SUGRA potential in the case that we have discussed.

where theQ, are any additional massless matter fields which AS in the heterotic case, there are two possibilities which

are charged under the gauge field on the D7-branes witf'® feasible to analyze. _
charges, . The one-light-modulus case. Here we integrate (olas-

There are some uncertainties in this scenario. Genericallgically) the complex structure moduli and the dilaton, both of
charged massless matter exists and acquires vacuum expddich generically will have string scale masses. Then by
tation values so as to set tikterm to zero. This is exactly 2dding the gaugino condensate terms to the constant super-
what was realized in the context of the heterotic stiisee, potennal coming from the_ fI_ux we are left with a potential f(_)r_
for example, the discussion in Sec. 18.7[27]). However, T. Wlt_h one co_ndensa_1te it is easy to see that the o_nly mini-
in [10] it was argued that there are special situations in whicHUm is an anti—de SittefAdS) one, and that SUSY is pre-
such massless matter is absent, andHerm contribution served. On the other hand, with more than one condensate
is not canceled. This seems to require a certain open stringf?® Might have expected to ,f'”gl dsS or flat space minima. We
modulus to be fixed at a nonzero value but it is unclear howVill show that this is impossible. _
this is done. In addition, it should be noted that this scenario WO light moduli. With nongeneric fluxes it should be
implies the existence of an anomaly in tH¢1) group since possple t.o kgep the d|Ia_ton light while the complex.structure
the D-term interpretation of theE2/T3 term depends on moduli will still have string scale masses. Alternatively, we

R

gauging thePQ symmetry associated witf,, the axionic could consiqler compa(_:tification on a CY wih1_1=2 and .
partner ofTx. This anomaly would need to be canceled byproceed as in the previous case after integrating out the di-

some chiral fermions having@+ 0. The models of10] do laton and the complex structure moduli at a high scale and

not have such fermions, though it is possible that such moogetting a superpotential for the Kahler moduli from gaugino
els can be constructed ' condensation. In this case we will have. & 1 theory with

two light moduli and then, as we will show, it is possible to
have dS or Poincaminima.

D? 2#|E
—02 | 2
V=0im 5 TR(TR+2 ailQil

B. Racetrack models for Kahler moduli

In view of the uncertainties associated with the proposals—
that we have just described, we will examine another possi- 1A particular case of this general result was notice(i2@].
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IV. POINCARE AND DE SITTER MINIMA form gauge field a€,=37_,a(x)/\J' whereJ'=dZ \dZ
OF ONE- AND TWO-MODULI POTENTIALS and thea' are two-forms in four dimensions. The axions are

We will be considering the minima of the SUGRA action then the pseudoscalar:b' defined by writing dal,
(7) where all but one or two moduli have been integrated out= exp—(2Z; u—2u')*,db' and the chiral scalars in the
at a high scale. The origin of the SUGRA action can be eitheKahler moduh superfields take the forfi=h;/\2+ie*
type IIB string theory or heterotic string theory. with the Kahler potential being

In type IIB string theory compactified on a CY manifold
with only one Kahler modulus the situation analyzed in the 3
literature(for instance by KKLT would fall into the category 2 In(T' +T'
of the one-modulus case since the dilaton and the complex -
structure moduli have been integrated out classically. The

classical Kahler potential of the SUGRA is In this case we can have three stacks of D7-branes each

wrapping a different four-cycle and then with a certain
(30) choice of normalization of the integral over the three-cycles,

K==3In(T+T), we get for the gauge coupling functions

and the superpotential is of the form

fr=VT°T°, f2={T°T,, f3=yT'T°
8m2TIC(G: _ .
W=c+ 2 die 87 T/e(E), (3)  The corresponding VY superpotential would then be

The constant in the superpotential is the value of the GVW W=c+d;e 87 1C(G),
superpotential17] evaluated at the point that minimizes the
classical superpotential, ag= — x3C(G;). In the type IIB Again, if one introduces discrete Wilson lines on each four-
case the sum originates from multiple gaugino condensatesycle then each exponential term would be replaced by a
that may occur if the original gauge group living on the sum of exponentials as before. The point is that now we have
D7-branes is broken by discrete Wilson lines on the four-a theory of three light moduli. As long as the extrema of the
cycle which is wrapped by the branes. The sum of exponenpotential are away from zerd,we can expand around any of
tial terms in the superpotential would be over the simplethem as before to determine whether they are minima. How-
gauge group factors. ever, the three-moduli case is technically quite complicated
In the heterotic string theory case a similar effective four-to analyze since the number of terms in the potential is large.
dimensional SUGRA action for a single field can ariséa$  We wish to consider a simpler case with only two light
is generically the cagehe dilaton and the complex structure moduli, in other words we need the analogous theory when
moduli would get string scale masses from EfQ), and a  the compactification manifold is a CY withy;=2. It is not
potential for the volume modulus arises from the mechaclear to us how to compute the gauge coupling functions in
nisms discussed in Sec. Il. this case. However, all that we really need is that the gauge
The two-light-moduli case can arise in both string theo-coupling functionsf!,f?> coming from branes wrapping dif-
ries. One possibility is that the overall volume modulus andferent four-cycles have different dependencies on the two
the dilaton are light. This can happen by tuning the parammoduli. By analogy with the case of the torgsith, say,
eters of the 10D action by a choice in the discretuum. Othem?=T3) this would appear to be the case. If so, this case can
possibilities can arise as well. For example, as an alternativee analyzed in exactly the same way as the one with the
to keeping the dilaton and the overall volume modulus lightdilaton and the overall volume.
we may consider compactification on a CY manifold with  In [19] we have considered the constraints on a four-
two Kahler moduli,T;,T, say. Now we will have two four- dimensional SUGRA with stable moduli if hierarchically
cycles(each assumed to halg=0 so that there are no open small SUSY breaking is desired, with an acceptably small
string modul) and it is possible have a stack of seven branesCC. More precisely, defining the ratio of the gravitino mass
wrapping each cycle. We do not know how to parameterizeo the Planck mass=mg,/Mp, the SUSY breaking i©(e)
the corresponding metric in the CY case, but we might proand the CC is<O(e?). We showed that for general Kahler
ceed in analogy with the torusr orbifold) case where there potentials, the mass of the modulus in the SUSY breaking
will be three Kahler moduli. After fixing the complex struc- direction had to bé(e); however, the masses of the other
ture moduli the metric may be written as moduli could be of the string scale. Assuming a canonical
form of the Kahler potential we found concrete examples of
a one-modulus potential with a stable minimum. Our result
does not preclude the existence of more than one light
modulus—it just requires at least one.

3
ds’=exp— ( 2> ui(x))aw(x)dxf‘dx“r e2u1gzldZ
=1
+e29200d 2d 22+ e23Nd 2d 2.
We need to identify the axionic partners of the Kahler moduli 2n any case the theory breaks down for valueg'o§maller than

in order to complete the chiral scalars in the correspondingnity, corresponding to compactification scales smaller than the
supermultiplets. They can be identified by writing the four-string scale.
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In earlier work (see[29] and references therginit was  a stable minimum with a positive or vanishing CC. It is also
found that single field steep superpotentials do not allowpossible to find minima with a negative CC and broken
extrema with broken SUSY and a non-negative CC that is &USY which, with enough tuning, can be made acceptably
true minimum in the resulting SUGRA potentials. Steep su-small.
perpotentials are defined by the condition that their deriva- The first result means that if all but one modulus is inte-
tives are large, grated out at a high scale, leaving us with an effective four-

dimensional SUGRA as in the KKLT case, then such a po-
|(T+?)&(T”+1)W| tential (without introducing D termg cannot have a
——  >1, n=0,1,2,3. (32 minimum with a zero or positive CC. As we have argued
|o7W] above, the situation witlD terms is unclear so in our view
the existence of such a dS or even Poinecameimum is still
The reason that<3 appears will be explained shortly. not established. Our result also explains why the racetrack

The steepness property holds for all the gaugino-models with one modulus that have been discussed in the
condensation superpotentials that were previously discusseliterature over the past 15 years have failed to produce a
and it is generic to all models of moduli stabilization near themodel for stabilizing moduli with zergor positive CC.
boundaries of moduli space. The typical example of a super- The second result establishes the possible existence of a
potential satisfying Eq(32) is a sum of exponentialé/(T) minimum in the region of moduli space where the Kahler
=3,d;e” AT, asin Eq.(31), in the region|TB3|>1. In gen-  potential is approximately of its classical form if all but two
eral, the precise definition of the region in which the poten-moduli are integrated out at a high scale. In this case the
tial is steep will depend on its detailed properties. Our resuleffective low energy theory is a four-dimensional SUGRA
did not depend on the particular form of the Kahler potential with two light moduli. We expect that the tuning that is avail-
provided that it was regular at the extremum. Thus, to obtairable in the discretuum will be sufficient to yield such a po-
a true minimum with broken SUSY and a vanishing or posi-tential.
tive CC requires that the superpotential and its first three To establish our results we will begin with some general
derivatives can be tuned so that the conditions in(B8).are ~ considerations. We investigate a SUGRA potential given by

avoided in a certain region of field space. _ Eq. (7) with Kahler potentialk = — A In(S+S)—BIn(T+T).

We have further defined a criterion for what constitutes arHere SandT are generic names for two moduli, for instance
acceptably sr?aIL CC: that the value of the CC be muchhey could be the dilaton and a Kahler modulus, or two
smaller thane“Mp, . The reason for choosing such a crite- Kahler moduli. Let us assume that there is an extremum of
rion, and not requiring that the cosmological constant vanyg graat S=S,, T=T,. Then near the extremum we may

ishes or is of the order of the critical energy density as sugexpand the superpotential in a power series of the form
gested by recent observations, is that we expect corrections

to the CC coming from low energy field theoretic effects. : .

Generically, loop gcj:ontributions to tghye CC can be as large as W(S'T):izj 2ij(S—Sp)(T—To)". (33
e?Mp,, and in addition we expect contributions of order

s“M‘F‘,, from electroweak scale physics. There are models in  We may simplify the superpotential. If we make a trans-
which the leading order loop corrections can be cancelethtion S—=S+iIlmS,, T—=T+iImT,, the Kahler potential
(see, for exampld,30]) but there would be corrections that is unchanged, so without loss of generality we can take
are at least as large aM3p,. Therefore, at energies just So,To to be real. SinceS,T are non-negative fields and in
below the string scale, a model with a negative CC that is afact Syr and T have the meaning of a coupling or a geo-
large as, sa)e4M‘F‘,|, is at the level of accuracy that wand ~ Metric object such as a radius of a cycle of the compact
others are working at, as good a model as one with a posimanifold, both of them are positive. We may now rescale

tive CC whose magnitude is (18 eV)*. andT by Sy and Ty, respectively, to get
Here we extend and complete our previous results. We
will prove the following results. W(S,T)= ; aijS'oT{)(S— 1)i(T-1)l. (34)

If the Kahler potential for a single moduluB is of the
form that comes from classical string thedfs= — A In(P
+®), for 1<A<3, for example,K=—-3In(T+T) or K
=—In(S+9), then there does not exist a minimum with a K—>K(§'~r)—AIn(250 )—BIn(2T,p) (35)
positive or zero CC for air-term potential for any superpo- ’ R OR7:
tential. A minimum with a negative CC and broken SUSY inhjch means that the potential is rescaled S, T)
a region in which string perturbation theory is under Contr0|4>[1/(280R)A(2T0R)B]V(é T). If the extremum is a mini-

can be found for such Kahler potentials, "’.md. with enougf}num this rescaling does not change its nature: A dS mini-
tuning of the parameters of the superpotential it can be madn%um’remains a dS minimum and a Poircam@mimum re-

acceptably small. . . mains a Poincareninimum. Further simplification occurs

In the case of two modulisay, SandT) with a cIassEaI because the superpotential appears as an absolute value
string theory Kahler potential, for exampk=—In(S+S  squared in the potential, and therefore if we multiply it by a
—3In(T+T), it is possible to find a superpotential that yields constant phase, the potential is unchanged. We may use this

The Kahler potential is changed under this rescaling,
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freedom to sef, to be real. To summarize: We may take the K=—AlIn(d+d), 1<A<3, (36)
minimum to be aSy=1, Ty=1, and the firstconstankterm
in the superpotential to be real without/loss of generality. and a quadratic superpotential

To establish the existence of a PoincaredS minimum

we need to establish the following: W=a0+ (alg+ial))(Pg+id,—1)
+(a2g+ia2))(bg+id,—1)? 3
V]0=0,3sV|o=d1V|o=0, eigenvalueq 7;V|o]=0, (a2pH1a2)(Prtid—1) 37
which depends on five real parameters

where |, means that the expressions are to be evaluated &80,alg,al,,a2g,a2,}. The expression for the resulting

S=5,, T=T,, and the last expression is the Hessian matrixpotential has many terms and it is not practical to present it

of second derivatives of. Now from the holomorphicity of here. We usaMATHEMATICA to compute it symbolically and

the superpotential, we see from the fo(B88) that in calcu- manipulate it.

lating these quantities we need to keep only terms up to the We then impose the condition the{1)=e=0, and that

third order inSandT in W. This is because in the expression ®=1 is an extremurwq,RV|1=O, &¢|V|1=0. This results in

for the potential onlyW and its first derivatives appear. So three equations for the five parameters, leaving two of them

for analyzing the existence of a minimum we may limit our- free. We then computgs?V/a® gd® g+ 92VIdD, P, ]| g1

selves to a superpotential of the form in terms of the remaining two parameters and check whether
there is a region of parameter space for which it is positive.

1+i=3 : _ If we choose the two free parameters todig; ,al, we find
W:i:;:o a;j(S—1)'(T—-1)), that
(92\/ 3-A
with agg real. We will see later that to prove that a minimum — =— m[(3_A)al'2+ (3+A)alj
cannot exist it is sometimes possible to restrict this to a quat d® IP oot (3-A)
dratic superpotential. -
+Aalgy12a13— (3—A)(2"Ae—4al?)],
A. The one-modulus case A+3
1. de Sitter and Poincareninima are not possible
2
Here we would like to prove that, if tﬂe Kahler potential 9 V_ =—2¢. A=3. (38)
for a single modulusp is K=—AIn(®+®), for 1I<A<3, IPIP

X .. i lo—
for example, then there does not exist a minimum with a .

positive or zero CC for aft-term potential for any superpo- We then check whether this expression can be positive for

tential. We will prove our result by showing that under the any value ofalg and al, and we find that it is always
conditions stated above there is at least one direction ipegative. This is of course obvious for the=3 case.

which the extremum is a maximum rather than a minimum. If we look specifically for a Poincareacuum, for which
Thus, we will show that an extremum can be a saddle point=0, the analysis simplifies, and the results remain the
or a maximum but not a true minimum. same; the Hessian has always at least one negative eigen-

Rather than computing the Hessian directly and showingalue. For the cas&=3 it is less obvious, but it is never-
that under the conditions mentioned above it has at least ORBeless correct since in this case we have from the above

negative eigenvalue, namely, that it is not a positive definitqﬁ2\//(9¢)R,9q)R]‘ = —[02VI D, 9D
matrix, we will show that 92V/J®gID g+ I°VI D, oD, et

<0. If this _q'uantity. i§ nega_tivg then the Hessian rr_u_':ltrix can- 2. AdS minima with SUSY breaking

not be positive definite. This is because the condition that it } o ] ]

is positive definite is that its determinant and all of its prin- We would like to show that it is possible to find AdS
cipal minors be positive. If92V/d®rd® -+ 92V oD, D, minima v_v|th an acceptably s_mall CC. A_s can b(_e seen f_rom
<0 then 2V/9®rddg<0 andlor 2V/ad,od,<0, so at Eq.(3§),.|f the value of potgntlal at the minimum is negative
least one of the principal minors is negative. There are twg <0, it is no longer possible to deduce that one of the ei-
advantages to choosing this quantity as a diagnostic. One f€nvalues is negative. In fact, it is rather easy to find ex-
that it is linear in the potential rather than quadratic like the@MPples when both eigenvalues are positive and therefore the
determinant. The second advantage is due to the fact thgfndidate extremum is indeed a minimum. _
aZV/ad>Ra<I>R+aZV/a¢>|ad>,:4a2V/a<ba5. Because the For example, in the case of a quadratic superpotential

- . .. = _ = = 2
superpotential is a holomorphic functiof?V/dd®dd at the with real coeﬁ|C|thsW(T)—a0+zﬂ(T—1)+a?(T—1) :
extremum depends only on the superpotential and its firsgnd & Kahler potentiak = —3 In(T+T), the conditions for a
and second derivatives at the extremum. Therefore we majueé minimum are tham;=a,, a,=a,/3—2¢/a,, and 0
use a quadratic superpotential to analyze this quantity. Thiss@1<v—6e. SUSY is generically broken at the minimum
greatly simplifies the analysis. since F=—3ay+a;=a,/2+3¢/a, generically does not

We consider a Kahler potential vanish. For the cas&= —In(T+ﬁ, the conditions area,

gy
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=4a,, a;=2a,+ 1/123224- €/2, and at the minimum SUSY is exist. We do believe that the existence of such solutions is
generically brokerF = —ay/2+a, = \/12a3+ €/2. quite sensitive to the form of the Kahler potential. From the

To discuss the issue of scaling let us explicitly present théPrevious discussion it is also clear that in addition to the
relationship between exponential and polynomial potentialssolutions that we have found for the particular form of the
ComparinngC+Edie—8w2T/C(Gi) to W(T’)=Eai(rr—1)i Kahler potential it is also possible to find minima with a
we find that a0=c+2die*8”2T0/C(Gi), a,=> negatlve CC and broken SUSY, and that with enough tuning

—8m 2T 1C(G: 2 8m2T IC(G their CC can be made small enough so that they are accept-

—d;BiToe 87 To/C(C)  a,=3d[(BT)%2]e 87 To/C(C),

1 able according to the criteria that we have defined previously.
and so on. One needs to tune the coefficients such that thﬁ1 9 b Y

superpotential and its first three derivatives are of the same_ -
order in a region in the vicinity of the minimum. To make the '
CC acceptably small it needs to be less t 2)- recall nal for_m as asum o_f a constant and exponential terms as was
ptaply @e); done in the single field case
thate =mjg,,/Mp,. Therefore the parameters in the superpo- 9 '
tential need to be tunable to an accuracy which is roughly
[recall that the true potential is rescaled by a factoF°]. V. COSMOLOGICAL ISSUES AND CONCLUSIONS
The constant can be tuned by choosing parameters in the
discretuum, while the amount by which the other coefficients
are tunable is determined by the valuesTgfandC(G;). In In the last few years it has become fashionable to apply
the type IIB case there seem to be enough possibilities tthe anthropic principléAP) to the discretuum. Imagine ap-
tune the coefficients to the desired accuracy, while in theplying it to the larger set of vacua that we have discussed. In
heterotic case compactified on a Kahler manifold the amountrder to discuss the applicability of AP in string theory we
of tuning seems to be insufficient as long as the constrairfirst need a precise statement of it. A scientifically acceptable

A. The discretuum and the anthropic principle

that the rank of the group be less than 22 exists. statement would be the following weak form of the AP.
AP: Given a theory that predicts a range of values for
B. The two-moduli case: Examples with minima some fundamental parameters, observers will measure values

The two-moduli case can be analyzed using the samor these parameters that are typical of those universes which
methods as in the single modulus case. Because of the coril€ consistent with the existence of the observers.
plexity of the analysis we cannot give the results for the 10 formulate this more precisely would require one to

general case, rather we give some specific examples whereffoW exactly what parameters of the standard model are rel-
is possible to find a true minimum with a positive or vanish- €vant for our existence. Weinbef81,32 has argued that if
ing CC and broken SUSY. the CC is not within a factor of a few of the currently ob-

The examples that we were able to find #e —In(S served value then galaxies would not have formadd

= = . . . hence we would not have come into beinghis argument
:;i)l cgelz?fg;;l?s and a general cubic superpotential with tenmay constitute an explanation of the coincidence problem

(why the CC is of the same order of magnitude as the matter

W=a0+al(Sg+iS,—1)+a2x(Sg+iS, — 1)2 density; however, it is not an explanation of its actual value.
It is possible to imagine universes where both the CC and the
+a3(Sg+iS—1)3+bl1(Tg+iT,— 1) matter density are much higher but galaxies are forfied.

As observed by many authors, the anthropic principle

H _ 2 H _ 3
+b2(Tr+iT,—1)“+b3(Tg+iT,—1)°+abl makes sense only in the context of a theory that allows a

X (Sr+iS,—1)(Tr+iT,—1)+ab2(Sg+iS,— 1) wide range of values for the parameters in question. The
example of Newtonian dynamics, which allows for the exis-
X(Tgr+iT,—1)%+ba2(Sg+iS,— 1)A(Tr+iT,—1). tence of planets at various distances from the sun, is often

(39) cited. There this is just a matter of a set of initial conditions,
chosen presumably at random, with one of them putting a

The conditions thaT =1, S=1 is an extremum and that the planet just at such a distance that its surface temperature is
value of CC ise constitute three equations leaving seven freebetween the freezing point and boiling point of water, so that
parameters. We were able to find true minima for a range olfife as we know it can form. In this analogy the point is that
these parameters such that the CC is positive or vanishinghere is no fundamental explanation of why the planet Earth
For exampleal=1, bl=1, abl=1,a3=0.1,b3=-0.1, is at a certain distance from the sun. If it was at a different
ab2=0.1, ba2=0.1, e=0.6, or al=0.8, b1=0.8, abl distance(outside some small rang¢éhen we could not in-
=0.5, a3=0.2, b3=-0.15, ab2=0.2, ba2=-0.15, ¢ habitit. So in the same way we should not ask why it is that
=0.3. The range of parameters is finite. It is also possible tave live in a universe with a particular value of the CC since
find examples of true minima with vanishing or positive CCif it were different (again, outside some rang¢hen we
for simpler superpotentials, for example a general quadratieould not be here to ask the question.
superpotential with real coefficients. Notice that the argument assumes that all possible dis-

For other forms of the Kahler potential we were unable totances from the sun are allowed and in principle can be
find solutions with a positive or vanishing CC; however, the
analysis seems more complicated and our inability to find—
such solutions does not necessarily mean that they do not®A detailed analysis along these lines is[88].
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achieved. If, for instance, in spite of the theory, observatiorthis number sets the scale of SUSY breaking. To have low
showed that there was only one planet in the universe and @nergy SUSY th® term in the BKQ proposal should satisfy
was at such a distance that liquid water existed on its surfacéD|<O(10 % in Planck (or string units. In the anti-D-
then the anthropic explanation would not be tenable. Thushrane case the SUSY breaking is explicit, but if one needs
the reality of planets at other distances is a necessary condhis breaking to be at a low scale then we will have a similar
tion for this explanation to make sense. Similarly, an an-result. As one moves away to the right of the minimum, this
thropic explanation of the cosmological constgnt any term gets reducedsince it is proportional to a negative
other parametgrrequires the reality of other solutions to power of Tg) and hence the barrier height is|D|?
string or M theory that have different values of this param-~10"28, In the case ofF-term breaking(with multiple
eter. We can see that there are other planets at a variety gaugino condensatediscussed here the argument is slightly
different distances, but so far we have not detected any othenore involved. The point is that at the SUSY breaking mini-
universe, and it is not clear that we ever wolB#]. The  mum, in order to get a nearly zero CC, the valug @W|
detection of other universes might even be impossible ishould be equal t¢F|, i.e., the value of the SUSY breaking
principle. order parameter. At this point then the value of the exponen-
Thus the anthropic explanation actually entails atial terms is of the same order as the constant in the super-
prediction—that other universes exist, and that there is a copotential. Beyond this minimum the exponential terms are
relation between the values of their CC’s and the existence a§maller (in absolute valueand an extremum at a positive
galaxies capable of supporting intelligent life in them. Thevalue ofV may arise but the barrier is expected to be of the
latter does not make any sense unless the former is true. Q3ame order akFlz at the SUSY breaking scale.
the other hand, for most of the history of fundamental phys- |n addition to the SUSY breaking minima that we have
ics, theories and models that do not satisfy observationahorked so hard to establish, in generic situations there are
criteria have been discarded as unphysical. Of course, in thgso nearby SUSY preserving minima with a large negative
past physicists have not attempted anything as ambitious s The reason is that for superpotentials that can be ap-
the construction of a theory of all fu_n_damenta! phenomenaproximated by polynomialgand this can always be done
But an analogy from general relativity may illustrate the near the SUSY breaking minimyrthere are also solutions

point. As is well kn_own, W'thQUt ad_d|t|ongl criteria t.h's to the equationd==0. Whenever thé= term vanishes the
theory can lead to bizarre solutions, including naked singu- o . . S .
larities, universes with closed timelike geodesics,*&&ven potential is negativéor in some special situations vanishes

solutions which are much more acceptable, such as, say, aepd in general one of these solutions will be the global mini-

Bianchi cosmology, are usually rejected because they are n§ium in the region where the approximation holds.

in accord with the observed homogeneity and isotropy of the . NOW the problem is that generically one would expect the
universe. initial conditions on thel modulus to be set by the string or

Application of the anthropic principle in the discretuum Planck era of the universe when one expects string scale
would make sense only if one were to treat all possible so€nergy densities and temperatures. Clearly, if the modulus
lutions of perturbative string theory as having a real exis-starts with energy densitg O(1) in string units then it is not
tence. Since it is highly unlikely that any of them other thangoing to remain in this extremely shallow minimum and will
our own(assuming it is a member of the discretuusiever  roll right over into the decompactifying region or into the
going to be observed it does not appear to be a meaningf@USY preserving AdS minimum. This classical rolling rather
principle to use. In this paper we have argued that there ardan quantum tunneling through the barrier is the real prob-
points in the discretuum where all the moduli are stabilizedlem with any cosmology based on such outer region compac-
Perhaps it is possible to find such a point with the observedifications. Of course, it is possibléhough unlikely that
CC and small supersymmetry breaking. If so, rather tharwith enough tuning of the parameters such that the height
appeal to the anthropic principle, we would argue that whatind width of the barrier are much larger, some of these prob-
has been done is good old fashioned fine-tuning. lems may be avoided, but in the absence of a concrete ex-

ample one has to regard this issue as a serious problem.
B. The overshoot problem

A generic problem with the moduli stabilization and C. Toward a resolution

SUSY breaking scenarios discussed above is that cosmologi- The main focus of this paper has been the possibility of
cally they are all subject to the overshoot problem firstobtaining models with all moduli stabilized. We have estab-
pointed out in[12]. To see this let us estimate the height of lished the following forA/=1 SUGRA potentials with the
the barrier separating the SUSY breaking minimum from theclassical string theory form for the Kahler potential, and a
runaway decompactifying region of the potential. In both thepositive or zero CC.
KKLT and the BKQ proposals this is clearly set by the size If all but one modulus is stabilized at a high scale then it
of the extra term that is added. In either case at the minimuns not possible to have the remaining light modulus stabilized
by F terms.
If there are two light moduli then there are examples

YRecent work seems to indicate that Goedel universes are valiwhere stabilization can be achieved in regions where string

solutions of string theory too. perturbation theory is under control.
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Our results depend on the form of Kahler potential, as wecurrent theme of our previous work, we need to focus on
have emphasized on several occasions along the way. If tHauilding models in the central region of moduli space—i.e.,
corrections to the classical form of the Kahler potential arethe region that is not related by any dualities to weak cou-
small, as expected in regions of moduli space in which stringling large volume compactifications. Obviously, it is tech-
perturbation theory is a good approximation, then our resultsically hard to compute in this region at this stage of devel-
should be valid. If for the scales at which the CC is measure@pment of string theory, and perhaps one has to await the
(or even at the standard model sgalteturns out that there g ccessful formulation of some nonperturbative description
are significant corrections to the Kahler potential and theyf string theory to be able to calculate meaningful quantities
classical form is_, drqstically modi_fied, then we expect ourin this region. However, as explained[iad] and in[19], by
results to be significantly modified. For example, if the combining information from the different theories in the
Kahler potential is modified in such a way that it can begter region and using information from a bottom up ap-

approximated by the canonical form, then one can find goach, one may gain some insight into the physics of this
good minimum even in the one-modulus c4$8]. Clearly,  rggijon.

for two moduli there is a wider range of possibilities.
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