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Moduli potentials in string compactifications with fluxes: Mapping the discretuum
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We find de Sitter and flat space solutions with all closed string moduli stabilized in four-dimensional
supergravity theories derived from heterotic and type II string theories, and explain how all the previously
known obstacles to finding such solutions can be removed. Further, we argue that if the compact manifold
allows a large enough space of discrete topological choices then it is possible to tune the parameters of
four-dimensional supergravity such that a hierarchy is created, and the solutions lie in the outer region of
moduli space in which the compact volume is large in string units, the string coupling is weak, and string
perturbation theory is valid. We show that at least two light chiral superfields are required for this scenario to
work; however, one field is sufficient to obtain a minimum with an acceptably small and negative cosmological
constant. We discuss the cosmological issues of the scenario and the possible role of anthropic considerations
in choosing the vacuum of the theory. We conclude that the most likely stable vacua are in or near the central
region of moduli space where string perturbation theory is not strictly valid, and that anthropic considerations
cannot help much in choosing a vacuum.
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I. INTRODUCTION

Time was when string theory was expected to produc
unique four-dimensional theory. However, even though
ten or eleven dimensions superstring theory is perh
unique in that the five perturbative formulations are expec
to be different limits of one underlying theory, it was alrea
realized in the mid 1980s that there are many different p
sibilities for supersymmetric vacua when the theory is co
pactified down to four dimensions. At that time it wa
thought that the only phenomenologically viable theory w
the heterotic theory, so it was possible to argue that the ga
group had to be a subgroup ofE83E8 or SO(32). Work
done in the 1990s withF theory removed even this con
straint, so that now it appears that one can find supers
metric vacua with almost any gauge group up to a rank
O(1000), as well as many different numbers of generatio

In order to get some perspective on the current state of
theory it is useful to recall the steps that have led us to
models in the so-called discretuum. We start with the ba
theoretical conjecture~T! and then add the different exper
mental and observational inputs~E! that need to be used i
order to get a model of the real world.

A. The saga of weakly coupled strings

T: The assumption of~weakly interacting! quantized su-
perstrings in a Lorentz invariant background.This yields a
startling outcome—the graviton~coupling precisely as ex
pected from general relativity at low energies! as well as the
quanta of gauge fields, thus giving us a viable candidate

*Electronic address: ramyb@bgumail.bgu.ac.il
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a unified theory. However, space-time is ten dimensional.
course, since only two of these dimensions need to be g
metrical, the rest being contributions to the central charge
a superconformal field theory, this leaves open the possib
of a four-dimensional space-time.

E1: Four dimensions.Since the observed world is fou
dimensional and this fact does not emerge automatic
from the basic conjecture, it has to be put in as an ex
assumption. Thus, the topological criterion that the te
dimensional space is of the formR43M6 , M6 being some
compact manifold or some abstract conformal field theo
was imposed, relegating all other solutions of the theory
cluding the simplest oneR10 to a theoretical limbo.

E2: N<1. Simple, for instance toroidal, compactifica
tions yield 16~or 32! supersymmetries in four dimension
which certainly cannot yield the chiral structure of the o
served world. Thus an additional input, that only four sup
symmetries survive, was added. So only internal manifo
such as Calabi-Yau~CY! manifolds~including their orbifold
limits! were to be considered. The choice of such a solut
is characterized by a number of parameters—theh12 com-
plex structures andh11 Kahler structures of the manifold
There are arguments that the space of such manifolds is
nected, although there may also be isolated points in
so-called super moduli space that correspond to nong
metrical compactifications such as asymmetric orbifolds.

E3: No massless moduli.The ~super! moduli appear as
massless four-dimensional~chiral super! fields in the low
energy four-dimensional action that is supposed to desc
the real world at scales below the string scale. However, t
couple with gravitational strength to other fields includin
the standard model ones, and such fields are definitely r
out by experiment since they affect Newtonian gravity
large distances. The same is true of the dilaton superfi
whose ground state value sets the coupling strength. T
©2004 The American Physical Society06-1
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additional input is needed which would generate a poten
for these moduli fields.

E4: Supersymmetry is broken.A moduli potential can be
generated in many different ways. The earliest solution w
to consider gaugino condensation in a gauge group@1–3#
~see@4# for a recent review!. Typically this yields a runaway
potential for the moduli but if there is a direct product
gauge groups~obtained, say, by turning on discrete Wilso
lines in the internal manifold! then one has the possibility o
developing a critical point in the so-called ‘‘racetrack’’ mo
els @5,6#. Similar effects can be obtained by consideri
brane instanton effects@7#. In addition, contributions to the
potential can be generated by turning on fluxes in inter
compact directions@2#. Often the minima are supersymme
ric with a string scale negative cosmological constant~CC!.
However, the world is not supersymmetric and at best
broken supersymmetry~SUSY! with mass splitting at a scal
10215M P .

E5: The cosmological constant is small and positive.The
world appears to have a positive~or perhaps zero! CC at a
scale 102120M P

4 . Recent work@8# has indicated that eve
though the natural scale of string theoryM;M P it may still
be possible to find a small positive CC.

E6 and E7: Three generations and SU(3)3SU(2)
3U(1). It mayturn out that a string theory that satisfies
of the above criteria will be unique and result in three ge
erations of chiral fermions with just the standard mod
gauge group. However, given the enormous number of p
sibilities, this seems unlikely and so we may need these
experimental inputs as well.

B. The discretuum

What then is left for string theory to predict? It is likel
that the Yukawa couplings can be calculated once a mo
satisfying all the other criteria is found. Here, again,
though the superpotential terms can be calculated exa
and will not be renormalized, the Kahler terms will acqu
corrections, but perhaps these can be calculated pertu
tively to a reasonable accuracy. However, even if this s
ceeds it is clear that we are far from a fundamental the
involving just some basic theoretical input~s!.

Now the question arises as to what to make of the h
number of solutions that do not satisfy the observational
puts E1 –E7. Do they exist as different universes? For i
stance, is there a ten-dimensional~noncompact! supersym-
metric universe? If one uses onlyE1 then there is a
continuous infinity to the power of the dimension of mod
space of supersymmetric compactifications correspondin
values of the moduli. These are perfectly valid solutions
perturbative string theory. Are they all to be included as U
verses that actually exist?E2 selects a subset of the abo
but E4 and E5 give a new set that comes from giving
potential to the moduli.1 It is this discrete set that is referre
to in the literature as the ‘‘discretuum.’’

1Except when the minimum of the potential, the CC, is exac
zero in which case what is selected is a discrete subset of the s
vacua obtained afterE2.
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In supergravity~SUGRA! phenomenology after picking
the field content and the gauge group one is left with th
arbitrary functions. A realistic phenomenology with a zero
a tiny CC could be obtained by fine-tuning. In string theo
there was no obvious mechanism that would allow for t
fine-tuning, let alone finding a solution to the problem
generating a constant that is 120 orders of magnitude sm
than the string scale. Our interpretation of the work
Bousso and Polchinski@8# is that such fine-tuning is actuall
possible in string theory in spite of the quantization of t
parameters~fluxes! in terms of the string scale.

In this paper we will consider both heterotic and type I
weakly coupled string theories compactified on large volu
6D manifolds, and examine under what conditions one
get a small positive CC with hierarchically larger, but st
parametrically small in string units, SUSY breaking. We w
attempt to find such minima from theF terms of theN51
potential in racetrack type models. We feel that finding so
tions for which SUSY is spontaneously broken throughF
terms is more reliable than invoking either explicit breaki
@9# @Kachru-Kallosh-Linde-Trivedi~KKLT !# or D terms@10#.
If there is only one light modulus as in the KKLT case w
find that it is not possible to find a SUSY breaking minimu
with zero or positive CC. However, with at least two lig
moduli such minima do exist. In general, we find that each
the vacua in the discretuum develops its own discretu
with several vacua, including some that have negative
and unbroken SUSY. With one light modulus, however, it
possible to find a minimum in which SUSY is broken and t
CC is negative although acceptably small.

We have not yet produced a concrete string model wh
realizes all the constraints. However, we do show that
known obstacles that were previously found in racetra
models ~see, for example,@11#! can be removed in this
framework by a choice of topological or geometrical prop
ties of the compactification manifold. We explain along t
way what the obstacles are and why previous attempts fa

We will argue that all solutions in the discretuum that a
in the outer region of moduli space, including ours, are
cosmologically viable—being subject to the overshoot pro
lem first discussed in@12# and recently called appropriatel
the ‘‘bat from hell’’ problem@13#. We also discuss the pos
sible application of the anthropic principle to choose amo
the variety of vacuua and find that it is not very useful. W
expect that solutions in the central region of moduli spa
will not suffer from the cosmological overshoot problem.

II. MODULI POTENTIAL IN THE HETEROTIC STRING
THEORY

A. The potential of the complex structure moduli
and the dilaton

The first attempt at using fluxes and gaugino condensa
to stabilize the moduli was that of Dineet al. @2# ~for a recent
discussion of this model, see@14#!. The main argument for
rejecting this model as a model of moduli stabilization h
been the observation that flux is quantized in string un
@15#, and hence the dilaton is stabilized in an unrealis
strong coupling region. Here we reconsider the argument

t of
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show that it should be modified, and that it is possible
stabilize the dilaton at weak~or intermediate! coupling. This,
as far as we know, could have been observed at the time
the original paper was written.

The ten-dimensional low energy effective action is
duced to a four-dimensional action using the ansatz

ds10
2 5e26u(x)ds4

21e2u(x)gmn
0 dymdyn,

where m,n go over the dimensions of the internal spa
which is taken to be a CY threefoldX. For simplicity we will
assume thatX has only one Kahler modulus but may have
arbitrary number of complex structure moduli. The fou
dimensional dilatonw and the four-dimensional volume sc
lar r are related to the ten-dimensional dilatonf and the
modulusu by w5f/226u andr5f/212u. The chiral su-
perfields S,T are then defined byS5e2w1 ia and T5er

1 ib wherea,b are the corresponding axions. The argum
proceeds from the observation that the low energy t
dimensional effective action for the heterotic string conta
the following contribution that can be interpreted as an
fective potential in four dimensions for the moduli:2

Vaction5
1

4a84

1

SRTR
3EX

S H32
a8

16
TR

3/2SR
3/2T3D

`* 6S H32
a8

16
TR

3/2SR
3/2T3D . ~1!

In the above,H3 is the Neveu-Schwarz–Neveu-Schwa
~NSNS! three-form flux which is taken to be nonzero only o
X, andT3 is a fermionic bilinear three-form~not to be con-
fused with the chiral superfieldT) which is assumed to be
represented upon gaugino condensation by

T352UV1c.c., ~2!

whereU5^tr ll& is an effective low energy scalar field rep
resenting the gaugino condensate andV is the holomorphic
~3,0!-form on X @2#. SR ,TR stand for the real parts ofS,T,
respectively. The dynamics ofU is governed by the
Veneziano-Yankielowicz~VY ! superpotential@16#

Wnp5
U

4 F f 1
C~G!

8p2
ln~a83/2U !G , ~3!

wheref is the gauge coupling function andC(G) is the dual
Coxeter number of the gauge group, which we have assu
here to be simple. We have also assumed that the model
not contain matter that is charged under the gauge gro
Classically f 5S, so extremizing the VY effective superpo
tential one findsU5a823/2e2[8p2/C(G)]S21.3 We also note

2In this section we use the same normalization conventions for
classical action as in@14#.

3Note that the precise normalization depends on the cutoff s
chosen in Eq.~3!. Here we have chosen it to be the string scale
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for future reference that the nonperturbative superpoten
for the modulusS that is generated is

Wnp52C~G!m3e2[8p2/C(G)]S21, ~4!

wherem351/32p2a83/2.
Apart from Chern-Simons terms which areO(a8) correc-

tions, H3 is closed, and theclassical equation of motion
implies that it is co-closed as well. Thus it may be expand
in terms of a basis of harmonic three forms onX,

H5aV1baxa1āV̄1b̄b̄x̄ b̄ , ~5!

where the sums overa,b̄ go over 1, . . . ,h12, the dimension
of the complex structure moduli space ofX. The volume of
the CY manifold can be expressed in terms ofV by v
[ i *V`V̄, and the metric on the moduli space is given
Gab̄52( i /v)*xa`xb̄ . Using the expansion~5! and the ex-
pression forT3 in Eq. ~1!, we get

Vaction5
1

2a83

v

SRTR
3 FUa2

a8

8

3p2

CG
TR

3SR
1/2WnpU2

1Gab̄babb̄G . ~6!

We now wish to express the action~6! in the N51
SUGRA form

VSUGRA5eK~Ki j̄ FiF j̄ 23uWu2!. ~7!

From the classical action and the properties of the manif
X the Kahler potential is found to be

K52 ln~S1S̄!23 ln~T1T̄!2 lnS v

4a83D . ~8!

The superpotential is the sum of two contributions. One c
tribution comes from the flux superpotential of Gukov, Va
and Witten@17#, which is given by

Wf lux5
4

a84E H`V52
4i

a84
av. ~9!

To obtain the second equality we have used the expan
~5!. In the case thatWnp vanishes,Wf lux and the Kahler po-
tential ~8! result in the potential coming from theclassical
action ~1! with Wnp set to zero. Now, if gaugino condens
tion does occur andWnp does not vanish, the total superp
tential is the sum of the flux superpotential~9! and the
gaugino condensate superpotential given by~4!,

Wtot5Wf lux1Wnp .

Computing Eq.~7! with Wtot gives

e

le
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VSUGRA5
a84

32TR
3SRv

H U 4i

a84
āv1S 11

16p2

C~G!
SRDWnpU2

1Gab̄S 4i

a8
bḡGaḡv1]aKWnpD

3S 4i

a8
bb̄Gdb̄v1]b̄KWnpD J . ~10!

Here the differentiation]a is with respect to the comple
structure moduli.

Comparing Eq.~6! to Eq. ~10! we see that there is agree
ment only when we setWnp50, i.e., only at the classica
level.4 This should not be surprising. One should not exp
to obtain the correct nonperturbative four-dimensional act
from theclassicalten-dimensional action. The difference b
tween Eqs.~1! and~10! is significant. If Eq.~1! had been the
correct formula for the potential then it would be impossib
to find anO(1) solution for the four-dimensional dilatonS
and hence a weak 4D gauge coupling. This follows fro
integrating the relation betweenH andT3 that is obtained at
the minimum ofVaction in Eq. ~1! over a three-cycle onX
and using Eq.~2! for T3 and the quantization of the three
form field H5dB that was first observed in@15# ~for a recent
discussion see@14#!. However, this is not the correct relatio
at the minimum since theN51 SUGRA potential is Eq.
~10!, and the correct equation is the vanishing of theF term
for the dilaton,

4i

a84
āv1S 11

16p2

C~G!
SRDWnp50. ~11!

Substituting the explicit expression forWnp from Eq. ~4!
we get

4i

a84
āv2

C~G!

32p2a83/2S 11
16p2

C~G!
SRDe2[(8p2/C(G))S11]50.

~12!

Thus, getting a weak coupling solution withSR of order a
few amounts to finding a small value in the ‘‘discretuum’’ fo
the flux superpotential, specifically for the productav. This
is similar to the corresponding type IIB case discussed
KKLT, and, as in that case, one expects such values to e
in CY manifolds with large numbers of complex structure
This mechanism would be an alternative to the proposa
@14# where the Chern-Simons contributions toH @3# were
included and integrated over spaces where the correspon
invariants are fractional.5

4Aspects of this difference have been noticed already in@2#.
5In this reference it was argued that one is forced to do thi

based on the constraint mentioned above from using the form o
potential coming from the ten-dimensional action. Here we h
seen that this constraint is not the appropriate one.
12600
t
n

y
ist
.
f

ing

In addition to Eq.~11!, at the potential minimum theF
term of the complex structure moduli needs to vanish,

4i

a8
bḡGaḡv1]aKWnp50. ~13!

Using Eq.~11! and the relationbḡGaḡ5ba , we get,

]aK5a83$11~@16p2/C~G!# !SR%
ba

ā
. ~14!

Recall that the derivation here is with respect to the comp
structure moduli. Thus, with generic fluxes the potential~6!
fixes all the complex structure moduli in addition to the d
laton S. Note that, unlike in the case of type IIB, here
order to get a solution we need the nonperturbative te
Wnp . From Eq.~14! it is clear that the relationba50 im-
posed in@14# @and which would have been obtained if w
had used Eq.~6! rather than Eq.~10!# is valid only if a50 or
SR→`.

B. The potential of the Kahler moduli

The Kahler moduli, and in particular the volume modul
T which is present in any compactification, are clearly n
fixed in the models that we have discussed so far. Additi
ally, SUSY is generically broken since

FT5KTW52
3

2TR
S 4i

a84
āv1WnpD

5
6i

TRa84

21@16p2/C~G!#SR

11@16p2/C~G!#SR

āv ~15!

is nonzero for a finite value ofTR and generic fluxes. In fact
unbroken SUSY (FT50) occurs only in the decompactifica
tion limit TR→`, as long as the flux superpotential~in effect
a) is nonzero. The situation here is somewhat different fr
that in type IIB, whereS and the complex structure modu
were fixed classically, i.e., without any nonperturbative s
perpotentials@18#, and where even though generically SUS
was broken there were flux configurations that preserved

We would like to consider possible modifications of th
models so that they will stabilize all moduli, including th
Kahler moduli. For simplicity we discuss now the case
only one Kahler modulus, the volume.

A dependence on theT modulus can arise from threshol
effects which have been calculated for various compactifi
tions. We will first consider theT dependent contribution to
the gauge function coming from anomaly consideratio
Then we will make some remarks about the case when
compact manifoldX is an orbifold where the complete one
loop string theory correction has been worked out.

There are now two possibilities for analyzing the theo
with all moduli stabilized.

The first possibility is to integrate out the complex stru
ture moduli and the dilaton by arguing that they are fixed
the minimum of the potential~10! at a high scale. This would

he
e
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generically be the case. In fact without threshold correcti
~i.e., just using the classical relationf 5S) the T modulus
would have zero mass, and the other moduli would h
string scale masses.6 In this respect the situation is similar t
the type IIB case. Then by incorporating threshold corr
tions, we get a theory for the single light fieldT with a
constant in the superpotential (Wf lux evaluated at the mini-
mum of the potential!. As we have shown elsewhere@19# the
modulus in the SUSY breaking direction needs to be li
but there is no such requirement on the other moduli.

The second possibility is to integrate out the comp
structure moduli at a high scale but arrange by a choice
point in the discretuum to have the dilaton light so it is n
integrated out at this stage.

It is plausible that within the discretuum there are choic
of CY manifolds and fluxes where this is justified. So w
solve the equations]aV50 to express the complex structu
moduli in terms ofSandT. It is not obvious that this can b
done holomorphically but since SUSY cannot be broken
this procedure it must be the case that the result is anN
51 SUGRA with justS andT moduli. Then after including
threshold corrections~that would introduceT dependence in
the superpotential! we would be left with a two-moduli mini-
mization problem. Since now we do not have a positive d
nite potential, finding actual solutions is complicated but c
be done. However, in this case one would in general exp
the Kahler potential to be different from the naive classi
form obtained by just suppressing the complex structure
pendent part ofK.

The complete minimization problem~if none of the
moduli are integrated out at a high scale! is prohibitively
complicated. But as an alternative to the previous possib
we can consider the case whereh1250 as in the original
paper@2#. In this case obviously we cannot use cancellatio
among different three-cycles to get a small value forWf lux
and we would have to resort to the mechanism of@14#, which
uses the Chern-Simons terms with the classical Kahler
tential to get realistic examples with two light moduli.

We will show in Sec. IV that within models with only on
light modulus it is impossible to get a true minimum of th
potential with a zero or positive CC from theF terms. With
two light moduli we have found examples where su
minima exist. Thus, only the last two cases will lead to mo
els with all moduli stabilized with a positive or zero CC.

1. Threshold corrections from Green-Schwarz terms

Regardless of the compactification manifold there
some one-loop corrections that can be computed due to
existence of the Green-Schwarz anomaly cancella
mechanism. As pointed out by Banks and Dine@20# ~see also
@14# for a recent discussion! from reduction of theB`X8
term in the ten-dimensional action~where X8 is a certain
polynomial in the gauge and curvature two-forms!, it is pos-
sible to see that the gauge coupling function~s! takes the

6A caveat noticed by Michael Dine is that the mass matrix
moduli is a large matrix, and therefore it can have some particul
small or large eigenvalues.
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form f i5S1b iT where theb i are numbers determined b
the topology of the gauge bundle and the tangent bundl
X. Let us also assume thatX has a nontrivial fundamenta
group so that we can turn on discrete Wilson lines to bre
the original ten-dimensional groupE83E8 or SO(32) to a
product of several simple groups. This adds another laye
discrete choices in the discretuum. Then the superpote
arising from gaugino condensation~4! takes the form

Wnp52(
i

C~Gi !m
3e2[8p2/C(Gi )](S1b iT)21. ~16!

The potential is then given by Eq.~10! with the above
expression forWnp and a term

DVSUGRA5
a84

32TR
3SRv

4TR
2

3 S u]TWnpu2

2
3

TR
Re@]TWnp~W̄f lux1W̄np!# D . ~17!

If the fluxes, gauge group parameters, and various topol
cal numbers are such that the dilaton and the complex st
ture are heavy, then they can be integrated out by setting
expression~10! to zero, and then effectively we have a p
tential for the modulusT given by Eq.~17! with S and the
complex structure moduli fixed. As we have already me
tioned, in this case with only one remaining light modulus
is not possible to find de Sitter~dS! or Poincare´ minima. The
general situation is of course prohibitively complicated. Th
we will focus on a situation where only the complex stru
ture moduli~assumed heavy! are integrated out leaving two
light moduli S,T. Alternatively, we could have considered
manifold X with two Kahler moduli withS and the complex
structure moduli integrated out at a high scale.

2. Modular invariance for orbifolds

Another source ofT dependence~at least in orbifold com-
pactifications! comes from requiring modular invariance u
der M :T→(aT2 ib)/( icT1d), a, . . . ,dPZ @21# as might
be expected fromT duality ~of course, in this case ther
would be three Kahler moduli, but for the sake of simplici
we will identify them!.

Then ~assuming that the complex structure moduli ha
been integrated out at a high scale! we take

K523 ln~T1T̄!2 ln~S1S̄!, ~18!

W5S c1( die
28p2S/C(Gi ) D Yh~T!6

[v~S!/h~T!6, ~19!

where h(T)5e2pT/12)n(12e22pnT) is the Dedekind eta
function. We have assumed here that the Kahler potentia
equal to its classical form. The constant in the superpoten
arises from theH flux as in Eq.~9!. The Kahler invariant
combination ofK,W and hence the potential isM invariant.

The potential resulting fromK andW of Eqs.~18!, ~19! is

f
ly
6-5
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V5
uh~T!u212

2SR~2TR!3 H u2SRvS2vu21S 3TR
2

p2
uĜ2u223D uvu2J ,

~20!

whereĜ252(p/TR14ph21]h/]T) is a modular function
of weight 2. The potential has SUSY extrema at

2SRWS2W~S!50, ~21!

Ĝ250. ~22!

With an appropriate choice of value ofc in the superpotentia
~19! there would be a solution forS perhaps even at wea
coupling, and the corresponding Hessian in theSdirection is
positive definite as discussed in Sec. IV. However, the ze
of G2 ~i.e., T51, eip/6,0) are saddle points (T51) or
maxima in theT direction. In addition, there is a true min
mum ~again, a result of a numerical calculation!, at T51.2
independently of the value ofSat the minimum. At this point
the volume of the compact manifold is not large in stri
units, and hence we may expect largea8 corrections to this,
and the solution is not under complete control.

3. Threshold corrections for orbifolds

It is not clear that in the presence of fluxes the theory
modular invariant. In fact, if one strictly follows the logic a
in the type IIB case~discussed by KKLT! what one gets is a
superpotential

W5c1( dae23kS/2ba/h~T!6[c1v~S!/h~T!6,

wherec5*H`V evaluated at the minimum of the classic
flux potential at which generically all complex structu
moduli will be fixed. In computing the gaugino condensa
from Eq. ~3! we have used the~Wilsonian—hence holomor
phic! gauge coupling function

f 5kS1
1

4p2 S 1

2
b82kdGSD ln h~T!2,

which comes from calculation of the threshold effects in
bifolds @22#. In contrast to this, theT dependence of the firs
term in W in Eq. ~19! comes from therequirementof M
invariance in the potential.

However, now~with the sameK as before! there is no
modular invariance. The potential is

V5
uh~T!u212

2SR~2TR!3 H u2SRvS2v2ch6~T!u2

13UTR

p
Ĝ2v1ch6~T!U2

23uv1ch6~T!u2J .

This potential for two moduli is we believe the correct r
placement of the formula~20!. It is a potential for two~pos-
sibly light! moduli and we will discuss the minima of suc
potentials in Sec. IV.
12600
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4. Non-Kahler manifolds

It is well known that in the presence ofH flux the het-
erotic string does not admit supersymmetric compactifi
tions on Kahler manifolds@23#.7 Such compactifications ar
possible, however, on non-Kahler manifolds, and recen
there have been a number of papers on this subject~see, for
example,@24,25# and references therein!. The non-Kahler
manifolds are not Ricci flat and so there are in general t
contributions to the classical potential—one from the flux
and one from the curvature. Actually, one might think th
this is the case even if the internal space is taken to be c
formally CY. But in that case, as we will see below, there
no solution unless the conformal factor is trivial and the fl
is zero.

The metric of the ten-dimensional space is parametri
as

ds25e2v(y)26u(x)g̃mn~x!dxmdxn

1e22v(y)12u(x)g̃mn~x,y!dymdyn. ~23!

Then from the ten-dimensional heterotic action we have
classicalpotential

V52
1

SR
E d6yAg̃(6)~y!F 1

TR
2 @R̃(6)28~ ]̃mv!2#2

e4v(y)

12TR
3

H̃3
2G .

This potential is a runaway potential inSand some quantum
~or stringy! effect such as the gaugino condensate term
cussed earlier is needed to stabilize it. On the other hand

T the situation is different. If *d6yAg̃(6)(y)R̃(6)

.8*d6yAg̃(6)(y)( ]̃mv)2, then it seems that it is possible t
classically stabilize theT modulus. Of course, ifg̃ metric is
CY as assumed in the previous subsections, thenR̃50 and
there is no extremum point forT either.

It has been suggested that the potential~in the non-Kahler
case! can be expressed in terms of a superpotentialW
5*(H2 idJ)`V whereJ is the Kahler form~ @24,25# and
references therein!. However it is not clear what the Kahle
potential is, and it is not known how to express the poten
coming from the ten-dimensional action in theN51
SUGRA form. Once this is done then we will have a situ
tion which is dual to the type IIB case of Giddings, Kachr
and Polchinski~GKP! with the S modulus being exchange
with the T modulus and the former being stabilized by i
voking nonperturbative effects.8 We leave further discussion
of these issues to future work.

7This can be seen from the discussion after Eq.~15!.
8We mention in passing that in the above mentioned referenc

is argued that theT modulus stabilization is a stringy effect needin
the incorporation ofa8 corrections. We are somewhat puzzled
this since the above argument does not require any such correct
6-6
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MODULI POTENTIALS IN STRING . . . PHYSICAL REVIEW D69, 126006 ~2004!
III. MODULI POTENTIAL IN TYPE IIB STRING THEORY

In type IIB string theory it was shown~GKP! @18# that all
the complex structure moduli and the dilaton can be sta
lized by an appropriate choice of fluxes. The resulting
models are of the no scale type. An important question
whether the Kahler moduli can be stabilized with SUSY b
ken, in a Poincare´ or dS background.

A. Review of the proposals to stabilize Kahler moduli

Let us first briefly review the proposals of KKLT an
Burgess, Kallosh, and Quevedo~BKQ! @10#. Both of these
constructions start with the potential for the complex str
ture moduli and the dilaton given by GKP.9 This is a classical
N51 SUGRA potential which can be obtained by consid
ing ten-dimensional low energy type IIB theory compactifi
on a CY orientifold with D3-branes and D7-branes
essentially a limit of anF-theory construction.

The metric is taken to be Eq.~23! wheree4u5TR is the
real part of the Kahler modulus~volume modulus! which sets
the overall size of the internal space andev is a warp factor
which effectively changes the scale of four-dimensio
physics at different points on the internal manifold. Additio
ally, we impose the constraint]m det g̃mn50 on the g̃mn
metric which can in turn be parametrized in terms of t
other Kahler moduli as well as the complex structure mod
GKP considered the case where ten-dimensional spac
compactified on a CY manifold with only one Kahler mod
lus but an arbitrary number of complex structure modu
They derived a potential for these moduli and the dilaton10

V5E
X
d6yAg̃(6)

e4v(y)212u(x)

24t I
u iG32 *̃ 6G3u2. ~24!

Here G35F32tH3 , H3 is the NS three-form flux of type
IIB, F3 is the Ramond-Ramond three-form flux, andt5C0
1 ie2f is the complex axion dilaton field. The integration
over the CY manifoldX, and we have set 2k10

2 51. The tilde
over the absolute value means that the Hodge dual and
tensor contractions are evaluated with the metricg̃mn . The
potential ~24! can be derived using the standard SUGR
form from a Kahler potentialK and a superpotentialW given
by

K52 ln@2 i ~t2 t̄ !#23 ln~T1T̄!2 lnS i E
X
V`V̄ D ,

~25!

W58E
X
G3`V, ~26!

9We use the same conventions as GKP in this section.
10Strictly speaking, this derivation is valid only when the wa

factor is trivial @26#—the solutions though are valid even for no
trivial v.
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whereV is the holomorphic three form on the CY manifo
X. The potential is clearly positive definite and is of th
no-scale form: at the minimum of the complex structu
moduli and the dilaton the potential vanishes so that the s
T is undermined. At this point the fluxes must satisfy t
imaginary self-duality conditioniG35* 6G3 and SUSY is
broken if W5cÞ0 at this point.

To stabilize the volume modulus one may introduce no
perturbative contributions to the superpotential, coming
instance from gaugino condensation in the gauge theory
the stack of D7-branes wrapping a four-cycle~with betti
number b150) in the internal manifold, as suggested b
KKLT. In this case it is easily seen that the correspond
gauge coupling function of the super-Yang-Mills theory
given by f 5T so that by standard arguments~reviewed in
the previous section! a superpotential for this modulus i
generated—thus giving a total superpotential

W5c2C~G!m3e28p2T/C(G). ~27!

With the ~classical! Kahler potential~25! the resulting poten-
tial has a single negative minimum at which SUSY is p
served, rather than being broken as before.

The KKLT proposal is to add the contribution of
D̄3-brane to this four-dimensional effective action. The an
D-brane gives a positive contribution to the potential,

dV5
D

TR
3

,

where D is positive and proportional to theD̄3 tension.
KKLT add the D̄-brane to the four-dimensional effective a
tion; however, the D̄-branes, like the D-branes, are strin
theoretic objects and should be added to the classical
dimensional theory. There does not seem to be a reaso
add the D-branes to the ten-dimensional action, as GKP
and not the antibranes. However, if both the branes and
tibranes are treated in the same manner, the classical po
tial becomes

V5E d6yAg̃(6)
e4v(y)212u(x)

24t I
u iG32 *̃ 6G3u2

12e212u(x)(
D̄

T3e4v(yD̄). ~28!

Note thatT3 is the brane tension, not to be confused with t
gaugino condensation field discussed in the previous sec
or with theT modulus. The contribution of the anti-D-brane
is local and therefore their contribution is determined by
warp factor at their positionsyD̄.

If we follow KKLT and integrate out~classically! the
complex structure moduli and the dilaton, we are left with
effective four-dimensional theory with a potential for th
volume modulus
6-7
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V5
2

TR
3 (

D̄

T3e4v(yD̄). ~29!

However, this is not a four-dimensional SUGRA theo
any more. From the four-dimensional standpoint SUSY
explicitly broken by the anti-D-branes, as is evident from t
term~29! in the potential. Moreover, it is a runaway potent
which pushes the theory toward the decompactification li
TR→`. In this limit ten-dimensional SUSY will be restored
This behavior is reminiscent of what happens with t
Scherk-Schwarz mechanism where a runaway potentia
generated for a modulus, although in that case the sig
opposite to that in the above.

Since in the resulting four-dimensional theory SUSY
explicitly broken, it is no longer possible to derive th
moduli potential from a superpotential. Hence it is uncle
how the addition of a nonperturbative contribution~coming,
say, from gaugino condensation! to the Gukov-Vafa-Witten
~GVW! superpotential evaluated at the minimum of the co
plex structure moduli and the dilaton potential, can be ju
fied. A possible consistent derivation would be possible if
term ~29! can be interpreted as aD term. However, it is
unclear how this can be done in this case. In particular,
D-term breaking discussed by BKQ@10# has a very different
structure.

In BKQ, SUSY is broken by turning on an electric fluxE
on D7-branes which can be interpreted inN51 SUGRA
context as aU(1) D term. This then gives~after integrating
out the complex structure moduli and the dilaton! a potential
of the standardD-term form

V5gY M
2 D2

2
5

2p

TR
S E

TR
1( qI uQI u2D 2

,

where theQI are any additional massless matter fields wh
are charged under the gauge field on the D7-branes
chargesqI .

There are some uncertainties in this scenario. Generic
charged massless matter exists and acquires vacuum e
tation values so as to set theD term to zero. This is exactly
what was realized in the context of the heterotic string~see,
for example, the discussion in Sec. 18.7 of@27#!. However,
in @10# it was argued that there are special situations in wh
such massless matter is absent, and theD-term contribution
is not canceled. This seems to require a certain open s
modulus to be fixed at a nonzero value but it is unclear h
this is done. In addition, it should be noted that this scena
implies the existence of an anomaly in theU(1) group since
the D-term interpretation of theE2/TR

3 term depends on
gauging thePQ symmetry associated withTI , the axionic
partner ofTR . This anomaly would need to be canceled
some chiral fermions having trQÞ0. The models of@10# do
not have such fermions, though it is possible that such m
els can be constructed.

B. Racetrack models for Kahler moduli

In view of the uncertainties associated with the propos
that we have just described, we will examine another po
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bility, which in some sense is a more conservative one,
finding a positive or vanishing minimum as well as stabil
ing the volume modulus. We will consider field theoret
nonperturbative effects in the superpotential incorporat
multiple gaugino condensates in the spirit of the old ‘‘rac
track’’ models, thus generalizing the analysis of KKLT.

If we use only the ingredients of GKP without the an
branes and without turning on fluxes on the branes, the
sulting effective four-dimensional theory is anN51
SUGRA. In this case it is meaningful to add nonperturbat
contributions to the superpotential. Multiple gaugino conde
sates arise when the gauge group is broken by turning
discrete Wilson lines on the four-cycle of the CY manifo
which is wrapped by the D7-branes. Note that we have ad
another discrete choice to the discretuum. The additio
layer increases the number of vacua in a way that depend
the gauge group and the desired pattern of breaking.

It is likely that there will be some corrections to th
Kahler potential which we will ignore for the moment, sinc
as long as they are small their exact form is not particula
important to us. The SUGRA potential obtained with all t
ingredients mentioned above is not necessarily a n
negative potential, and it may have both positive and ne
tive minima. There does not seem to be a general argum
which says that positive or vanishing minima are someh
excluded. To rule out the positive minima on the basis o
generalization of the classical no-go theorem would requ
one to show that there is a ten-dimensional action wh
incorporates the nonperturbative termsand satisfies the
strong energy condition. As far as we know such an act
does not exist, anda priori there is no reason to dismiss th
possibility of a dS or Minkowski minimum for theN51
SUGRA potential in the case that we have discussed.

As in the heterotic case, there are two possibilities wh
are feasible to analyze.

The one-light-modulus case. Here we integrate out~clas-
sically! the complex structure moduli and the dilaton, both
which generically will have string scale masses. Then
adding the gaugino condensate terms to the constant su
potential coming from the flux we are left with a potential f
T. With one condensate it is easy to see that the only m
mum is an anti–de Sitter~AdS! one, and that SUSY is pre
served. On the other hand, with more than one conden
one might have expected to find dS or flat space minima.
will show that this is impossible.11

Two light moduli. With nongeneric fluxes it should b
possible to keep the dilaton light while the complex structu
moduli will still have string scale masses. Alternatively, w
could consider compactification on a CY withh1152 and
proceed as in the previous case after integrating out the
laton and the complex structure moduli at a high scale
getting a superpotential for the Kahler moduli from gaugi
condensation. In this case we will have anN51 theory with
two light moduli and then, as we will show, it is possible
have dS or Poincare´ minima.

11A particular case of this general result was noticed in@28#.
6-8
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MODULI POTENTIALS IN STRING . . . PHYSICAL REVIEW D69, 126006 ~2004!
IV. POINCARÉ AND DE SITTER MINIMA
OF ONE- AND TWO-MODULI POTENTIALS

We will be considering the minima of the SUGRA actio
~7! where all but one or two moduli have been integrated
at a high scale. The origin of the SUGRA action can be eit
type IIB string theory or heterotic string theory.

In type IIB string theory compactified on a CY manifo
with only one Kahler modulus the situation analyzed in t
literature~for instance by KKLT! would fall into the category
of the one-modulus case since the dilaton and the com
structure moduli have been integrated out classically. T
classical Kahler potential of the SUGRA is

K523 ln~T1T̄!, ~30!

and the superpotential is of the form

W5c1( die
28p2T/C(Gi ). ~31!

The constantc in the superpotential is the value of the GVW
superpotential@17# evaluated at the point that minimizes th
classical superpotential, anddi52m3C(Gi). In the type IIB
case the sum originates from multiple gaugino condens
that may occur if the original gauge group living on th
D7-branes is broken by discrete Wilson lines on the fo
cycle which is wrapped by the branes. The sum of expon
tial terms in the superpotential would be over the sim
gauge group factors.

In the heterotic string theory case a similar effective fo
dimensional SUGRA action for a single field can arise if~as
is generically the case! the dilaton and the complex structu
moduli would get string scale masses from Eq.~10!, and a
potential for the volume modulus arises from the mec
nisms discussed in Sec. II.

The two-light-moduli case can arise in both string the
ries. One possibility is that the overall volume modulus a
the dilaton are light. This can happen by tuning the para
eters of the 10D action by a choice in the discretuum. Ot
possibilities can arise as well. For example, as an alterna
to keeping the dilaton and the overall volume modulus lig
we may consider compactification on a CY manifold w
two Kahler moduli,T1 ,T2 say. Now we will have two four-
cycles~each assumed to haveb150 so that there are no ope
string moduli! and it is possible have a stack of seven bra
wrapping each cycle. We do not know how to parameter
the corresponding metric in the CY case, but we might p
ceed in analogy with the torus~or orbifold! case where there
will be three Kahler moduli. After fixing the complex struc
ture moduli the metric may be written as

ds25exp2S 2(
i 51

3

ui~x!D g̃mn~x!dxmdxn1e2u1(x)dz1dz̄1

1e2u2(x)dz2dz̄21e2u3(x)dz3dz̄3.

We need to identify the axionic partners of the Kahler mod
in order to complete the chiral scalars in the correspond
supermultiplets. They can be identified by writing the fou
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form gauge field asC45( i 51
3 ai(x)`Ji whereJi5dzi`dz̄i

and theai are two-forms in four dimensions. The axions a
then the pseudoscalarsbi defined by writing da2

i

5exp2(2( ju
j22ui) *̃ 4dbi and the chiral scalars in th

Kahler moduli superfields take the formTi5bi /A21 ie4ui

with the Kahler potential being

K52(
i 51

3

ln~Ti1T̄i !.

In this case we can have three stacks of D7-branes e
wrapping a different four-cycle and then with a certa
choice of normalization of the integral over the three-cycl
we get for the gauge coupling functions

f 15AT2T3, f 25AT3T1, f 35AT1T2.

The corresponding VY superpotential would then be

W5c1die
28p2f i /C(Gi ).

Again, if one introduces discrete Wilson lines on each fo
cycle then each exponential term would be replaced b
sum of exponentials as before. The point is that now we h
a theory of three light moduli. As long as the extrema of t
potential are away from zero,12 we can expand around any o
them as before to determine whether they are minima. H
ever, the three-moduli case is technically quite complica
to analyze since the number of terms in the potential is la
We wish to consider a simpler case with only two lig
moduli, in other words we need the analogous theory wh
the compactification manifold is a CY withh1152. It is not
clear to us how to compute the gauge coupling functions
this case. However, all that we really need is that the ga
coupling functionsf 1, f 2 coming from branes wrapping dif
ferent four-cycles have different dependencies on the
moduli. By analogy with the case of the torus~with, say,
T25T3) this would appear to be the case. If so, this case
be analyzed in exactly the same way as the one with
dilaton and the overall volume.

In @19# we have considered the constraints on a fo
dimensional SUGRA with stable moduli if hierarchical
small SUSY breaking is desired, with an acceptably sm
CC. More precisely, defining the ratio of the gravitino ma
to the Planck mass«5m3/2/M Pl the SUSY breaking isO(«)
and the CC is!O(«2). We showed that for general Kahle
potentials, the mass of the modulus in the SUSY break
direction had to beO(«); however, the masses of the oth
moduli could be of the string scale. Assuming a canoni
form of the Kahler potential we found concrete examples
a one-modulus potential with a stable minimum. Our res
does not preclude the existence of more than one l
modulus—it just requires at least one.

12In any case the theory breaks down for values ofTi smaller than
unity, corresponding to compactification scales smaller than
string scale.
6-9
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R. BRUSTEIN AND S. P. de ALWIS PHYSICAL REVIEW D69, 126006 ~2004!
In earlier work ~see@29# and references therein!, it was
found that single field steep superpotentials do not al
extrema with broken SUSY and a non-negative CC that
true minimum in the resulting SUGRA potentials. Steep
perpotentials are defined by the condition that their deri
tives are large,

u~T1T̄!]T
(n11)Wu

u]T
nWu

@1, n50,1,2,3. ~32!

The reason thatn<3 appears will be explained shortly.
The steepness property holds for all the gaugi

condensation superpotentials that were previously discus
and it is generic to all models of moduli stabilization near t
boundaries of moduli space. The typical example of a su
potential satisfying Eq.~32! is a sum of exponentialsW(T)
5( idie

2b iT, as in Eq.~31!, in the regionuTb i u@1. In gen-
eral, the precise definition of the region in which the pote
tial is steep will depend on its detailed properties. Our res
did not depend on the particular form of the Kahler potent
provided that it was regular at the extremum. Thus, to ob
a true minimum with broken SUSY and a vanishing or po
tive CC requires that the superpotential and its first th
derivatives can be tuned so that the conditions in Eq.~32! are
avoided in a certain region of field space.

We have further defined a criterion for what constitutes
acceptably small CC: that the value of the CC be mu
smaller than«2M Pl

4 . The reason for choosing such a crit
rion, and not requiring that the cosmological constant v
ishes or is of the order of the critical energy density as s
gested by recent observations, is that we expect correct
to the CC coming from low energy field theoretic effec
Generically, loop contributions to the CC can be as large
«2M Pl

4 , and in addition we expect contributions of ord
«4M Pl

4 from electroweak scale physics. There are models
which the leading order loop corrections can be cance
~see, for example,@30#! but there would be corrections tha
are at least as large as«4M Pl

4 . Therefore, at energies jus
below the string scale, a model with a negative CC that is
large as, say,«4M Pl

4 , is at the level of accuracy that we~and
others! are working at, as good a model as one with a po
tive CC whose magnitude is (1023 eV)4.

Here we extend and complete our previous results.
will prove the following results.

If the Kahler potential for a single modulusF is of the
form that comes from classical string theoryK52A ln(F
1F̄), for 1<A<3, for example,K523 ln(T1T̄) or K

52 ln(S1S̄), then there does not exist a minimum with
positive or zero CC for anF-term potential for any superpo
tential. A minimum with a negative CC and broken SUSY
a region in which string perturbation theory is under cont
can be found for such Kahler potentials, and with enou
tuning of the parameters of the superpotential it can be m
acceptably small.

In the case of two moduli~say,S andT) with a classical
string theory Kahler potential, for exampleK52 ln(S1S̄)
23 ln(T1T̄), it is possible to find a superpotential that yiel
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a stable minimum with a positive or vanishing CC. It is al
possible to find minima with a negative CC and brok
SUSY which, with enough tuning, can be made accepta
small.

The first result means that if all but one modulus is in
grated out at a high scale, leaving us with an effective fo
dimensional SUGRA as in the KKLT case, then such a p
tential ~without introducing D terms! cannot have a
minimum with a zero or positive CC. As we have argu
above, the situation withD terms is unclear so in our view
the existence of such a dS or even Poincare´ minimum is still
not established. Our result also explains why the racetr
models with one modulus that have been discussed in
literature over the past 15 years have failed to produc
model for stabilizing moduli with zero~or positive! CC.

The second result establishes the possible existence
minimum in the region of moduli space where the Kah
potential is approximately of its classical form if all but tw
moduli are integrated out at a high scale. In this case
effective low energy theory is a four-dimensional SUGR
with two light moduli. We expect that the tuning that is ava
able in the discretuum will be sufficient to yield such a p
tential.

To establish our results we will begin with some gene
considerations. We investigate a SUGRA potential given
Eq. ~7! with Kahler potentialK52A ln(S1S̄)2B ln(T1T̄).
HereSandT are generic names for two moduli, for instan
they could be the dilaton and a Kahler modulus, or tw
Kahler moduli. Let us assume that there is an extremum
VSUGRAat S5S0 , T5T0. Then near the extremum we ma
expand the superpotential in a power series of the form

W~S,T!5(
i j

ai j ~S2S0! i~T2T0! j . ~33!

We may simplify the superpotential. If we make a tran
lation S→S1 i Im S0 , T→T1 i Im T0, the Kahler potential
is unchanged, so without loss of generality we can ta
S0 ,T0 to be real. SinceS,T are non-negative fields and i
fact S0R andT0R have the meaning of a coupling or a ge
metric object such as a radius of a cycle of the comp
manifold, both of them are positive. We may now rescaleS
andT by S0 andT0, respectively, to get

W~S̃,T̃!5(
i j

ai j S0
i T0

j ~S̃21! i~ T̃21! j . ~34!

The Kahler potential is changed under this rescaling,

K→K~S̃,T̃!2A ln~2S0R!2B ln~2T0R!, ~35!

which means that the potential is rescaled asV(S,T)
→@1/(2S0R)A(2T0R)B#V(S̃,T̃). If the extremum is a mini-
mum, this rescaling does not change its nature: A dS m
mum remains a dS minimum and a Poincare´ minimum re-
mains a Poincare´ minimum. Further simplification occurs
because the superpotential appears as an absolute
squared in the potential, and therefore if we multiply it by
constant phase, the potential is unchanged. We may use
6-10
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freedom to seta00 to be real. To summarize: We may take t
minimum to be atS051, T051, and the first~constant! term
in the superpotential to be real without loss of generality

To establish the existence of a Poincare´ or dS minimum
we need to establish the following:

Vu0>0,]SVu05]TVu050, eigenvalues@] i j
2 Vu0#>0,

where u0 means that the expressions are to be evaluate
S5S0 , T5T0, and the last expression is the Hessian ma
of second derivatives ofV. Now from the holomorphicity of
the superpotential, we see from the form~33! that in calcu-
lating these quantities we need to keep only terms up to
third order inSandT in W. This is because in the expressio
for the potential onlyW and its first derivatives appear. S
for analyzing the existence of a minimum we may limit ou
selves to a superpotential of the form

W5 (
i 50,j 50

i 1 j 53

ai j ~S21! i~T21! j ,

with a00 real. We will see later that to prove that a minimu
cannot exist it is sometimes possible to restrict this to a q
dratic superpotential.

A. The one-modulus case

1. de Sitter and Poincare´ minima are not possible

Here we would like to prove that, if the Kahler potenti
for a single modulusF is K52A ln(F1F̄), for 1<A<3,
for example, then there does not exist a minimum with
positive or zero CC for anF-term potential for any superpo
tential. We will prove our result by showing that under t
conditions stated above there is at least one direction
which the extremum is a maximum rather than a minimu
Thus, we will show that an extremum can be a saddle p
or a maximum but not a true minimum.

Rather than computing the Hessian directly and show
that under the conditions mentioned above it has at least
negative eigenvalue, namely, that it is not a positive defin
matrix, we will show that ]2V/]FR]FR1]2V/]F I]F I
,0. If this quantity is negative then the Hessian matrix ca
not be positive definite. This is because the condition tha
is positive definite is that its determinant and all of its pr
cipal minors be positive. If]2V/]FR]FR1]2V/]F I]F I
,0 then ]2V/]FR]FR,0 and/or ]2V/]F I]F I,0, so at
least one of the principal minors is negative. There are
advantages to choosing this quantity as a diagnostic. On
that it is linear in the potential rather than quadratic like t
determinant. The second advantage is due to the fact
]2V/]FR]FR1]2V/]F I]F I54]2V/]F]F̄. Because the
superpotential is a holomorphic function,]2V/]F]F̄ at the
extremum depends only on the superpotential and its
and second derivatives at the extremum. Therefore we
use a quadratic superpotential to analyze this quantity. T
greatly simplifies the analysis.

We consider a Kahler potential
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K52A ln~F1F̄!, 1<A<3, ~36!

and a quadratic superpotential

W5a01~a1R1 ia1I !~FR1 iF I21!

1~a2R1 ia2I !~FR1 iF I21!2, ~37!

which depends on five real paramete
$a0,a1R ,a1I ,a2R ,a2I%. The expression for the resultin
potential has many terms and it is not practical to presen
here. We useMATHEMATICA to compute it symbolically and
manipulate it.

We then impose the condition thatV(1)5e>0, and that
F51 is an extremum]FR

Vu150, ]F I
Vu150. This results in

three equations for the five parameters, leaving two of th
free. We then compute@]2V/]FR]FR1]2V/]F I]F I #uF51
in terms of the remaining two parameters and check whe
there is a region of parameter space for which it is positi
If we choose the two free parameters to bea1R ,a1I we find
that

F ]2V

]F]F̄
G

uF51

52
232A

A~32A!
@~32A!a1I

21~31A!a1R
2

1AAa1RA12a1R
22~32A!~2AAe24a1I

2!#,

AÞ3

F ]2V

]F]F̄
G

uF51

522e, A53. ~38!

We then check whether this expression can be positive
any value ofa1R and a1I and we find that it is always
negative. This is of course obvious for theA53 case.

If we look specifically for a Poincare´ vacuum, for which
e50, the analysis simplifies, and the results remain
same; the Hessian has always at least one negative e
value. For the caseA53 it is less obvious, but it is never
theless correct since in this case we have from the ab
@]2V/]FR]FR# uF51

52@]2V/]F I]F I # uF51
.

2. AdS minima with SUSY breaking

We would like to show that it is possible to find Ad
minima with an acceptably small CC. As can be seen fr
Eq. ~38!, if the value of potential at the minimum is negativ
e,0, it is no longer possible to deduce that one of the
genvalues is negative. In fact, it is rather easy to find
amples when both eigenvalues are positive and therefore
candidate extremum is indeed a minimum.

For example, in the case of a quadratic superpoten
with real coefficientsW(T̃)5a01a1(T̃21)1a2(T̃21)2,
and a Kahler potentialK523 ln(T1T̄), the conditions for a
true minimum are thata15a2 , a05a2/322e/a2, and 0
,a1,A26e. SUSY is generically broken at the minimum
since F52 3

2 a01a15a2/213e/a2 generically does not
vanish. For the caseK52 ln(T1T̄), the conditions area0
6-11
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54a2, a152a21A12a2
21e/2, and at the minimum SUSY is

generically brokenF52a0/21a15A12a2
21e/2.

To discuss the issue of scaling let us explicitly present
relationship between exponential and polynomial potenti
ComparingW5c1(die

28p2T/C(Gi ) to W(T̃)5(ai(T̃21)i ,
we find that a05c1(die

28p2T0 /C(Gi ), a15(

2dib iT0e28p2T0 /C(Gi ), a25(di@(b iT0)2/2#e28p2T0 /C(Gi ),
and so on. One needs to tune the coefficients such tha
superpotential and its first three derivatives are of the sa
order in a region in the vicinity of the minimum. To make th
CC acceptably small it needs to be less thanO(«2); recall
that «5m3/2/M Pl . Therefore the parameters in the superp
tential need to be tunable to an accuracy which is roughl«
@recall that the true potential is rescaled by a factor (2T0R)3].

The constantc can be tuned by choosing parameters in
discretuum, while the amount by which the other coefficie
are tunable is determined by the values ofT0 andC(Gi). In
the type IIB case there seem to be enough possibilitie
tune the coefficients to the desired accuracy, while in
heterotic case compactified on a Kahler manifold the amo
of tuning seems to be insufficient as long as the constr
that the rank of the group be less than 22 exists.

B. The two-moduli case: Examples with minima

The two-moduli case can be analyzed using the sa
methods as in the single modulus case. Because of the c
plexity of the analysis we cannot give the results for t
general case, rather we give some specific examples whe
is possible to find a true minimum with a positive or vanis
ing CC and broken SUSY.

The examples that we were able to find areK52 ln(S
1S̄)23 ln(T1T̄), and a general cubic superpotential with t
real coefficients,

W5a01a1~SR1 iSI21!1a2R~SR1 iSI21!2

1a3~SR1 iSI21!31b1~TR1 iTI21!

1b2~TR1 iTI21!21b3~TR1 iTI21!31ab1

3~SR1 iSI21!~TR1 iTI21!1ab2~SR1 iSI21!

3~TR1 iTI21!21ba2~SR1 iSI21!2~TR1 iTI21!.

~39!

The conditions thatT51, S51 is an extremum and that th
value of CC ise constitute three equations leaving seven f
parameters. We were able to find true minima for a range
these parameters such that the CC is positive or vanish
For example,a151, b151, ab151, a350.1, b3520.1,
ab250.1, ba250.1, e50.6, or a150.8, b150.8, ab1
50.5, a350.2, b3520.15, ab250.2, ba2520.15, e
50.3. The range of parameters is finite. It is also possible
find examples of true minima with vanishing or positive C
for simpler superpotentials, for example a general quadr
superpotential with real coefficients.

For other forms of the Kahler potential we were unable
find solutions with a positive or vanishing CC; however, t
analysis seems more complicated and our inability to fi
such solutions does not necessarily mean that they do
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exist. We do believe that the existence of such solution
quite sensitive to the form of the Kahler potential. From t
previous discussion it is also clear that in addition to t
solutions that we have found for the particular form of t
Kahler potential it is also possible to find minima with
negative CC and broken SUSY, and that with enough tun
their CC can be made small enough so that they are acc
able according to the criteria that we have defined previou
The amount of fine-tuning required can be estimated by co
paring the polynomial form of the superpotential to its orig
nal form as a sum of a constant and exponential terms as
done in the single field case.

V. COSMOLOGICAL ISSUES AND CONCLUSIONS

A. The discretuum and the anthropic principle

In the last few years it has become fashionable to ap
the anthropic principle~AP! to the discretuum. Imagine ap
plying it to the larger set of vacua that we have discussed
order to discuss the applicability of AP in string theory w
first need a precise statement of it. A scientifically accepta
statement would be the following weak form of the AP.

AP: Given a theory that predicts a range of values
some fundamental parameters, observers will measure va
for these parameters that are typical of those universes w
are consistent with the existence of the observers.

To formulate this more precisely would require one
know exactly what parameters of the standard model are
evant for our existence. Weinberg@31,32# has argued that if
the CC is not within a factor of a few of the currently ob
served value then galaxies would not have formed~and
hence we would not have come into being!. This argument
may constitute an explanation of the coincidence probl
~why the CC is of the same order of magnitude as the ma
density!; however, it is not an explanation of its actual valu
It is possible to imagine universes where both the CC and
matter density are much higher but galaxies are formed.13

As observed by many authors, the anthropic princi
makes sense only in the context of a theory that allow
wide range of values for the parameters in question. T
example of Newtonian dynamics, which allows for the ex
tence of planets at various distances from the sun, is o
cited. There this is just a matter of a set of initial condition
chosen presumably at random, with one of them puttin
planet just at such a distance that its surface temperatu
between the freezing point and boiling point of water, so t
life as we know it can form. In this analogy the point is th
there is no fundamental explanation of why the planet Ea
is at a certain distance from the sun. If it was at a differe
distance~outside some small range! then we could not in-
habit it. So in the same way we should not ask why it is th
we live in a universe with a particular value of the CC sin
if it were different ~again, outside some range! then we
would not be here to ask the question.

Notice that the argument assumes that all possible
tances from the sun are allowed and in principle can

13A detailed analysis along these lines is in@33#.
6-12



io
d

ac
u
n
n

o
m
ty
th

i

a
co
e
he
.
ys
n
t

s
n
he
s
gu

y
n

th

m
so
is
an

g
a

ed
ve
a

ha

d
lo
rs
o
th
h
ze
u

low
y

eds
ilar
his
e

tly
ni-

g
en-
per-
re

e
he

ve
are
ive
ap-
e
s

ini-

he
r
cale
lus

ill
e
er
ob-
ac-

ight
ob-
ex-

.

of
b-

a

it
ed

es
ringa

MODULI POTENTIALS IN STRING . . . PHYSICAL REVIEW D69, 126006 ~2004!
achieved. If, for instance, in spite of the theory, observat
showed that there was only one planet in the universe an
was at such a distance that liquid water existed on its surf
then the anthropic explanation would not be tenable. Th
the reality of planets at other distances is a necessary co
tion for this explanation to make sense. Similarly, an a
thropic explanation of the cosmological constant~or any
other parameter! requires the reality of other solutions t
string or M theory that have different values of this para
eter. We can see that there are other planets at a varie
different distances, but so far we have not detected any o
universe, and it is not clear that we ever would@34#. The
detection of other universes might even be impossible
principle.

Thus the anthropic explanation actually entails
prediction—that other universes exist, and that there is a
relation between the values of their CC’s and the existenc
galaxies capable of supporting intelligent life in them. T
latter does not make any sense unless the former is true
the other hand, for most of the history of fundamental ph
ics, theories and models that do not satisfy observatio
criteria have been discarded as unphysical. Of course, in
past physicists have not attempted anything as ambitiou
the construction of a theory of all fundamental phenome
But an analogy from general relativity may illustrate t
point. As is well known, without additional criteria thi
theory can lead to bizarre solutions, including naked sin
larities, universes with closed timelike geodesics, etc.14 Even
solutions which are much more acceptable, such as, sa
Bianchi cosmology, are usually rejected because they are
in accord with the observed homogeneity and isotropy of
universe.

Application of the anthropic principle in the discretuu
would make sense only if one were to treat all possible
lutions of perturbative string theory as having a real ex
tence. Since it is highly unlikely that any of them other th
our own~assuming it is a member of the discretuum! is ever
going to be observed it does not appear to be a meanin
principle to use. In this paper we have argued that there
points in the discretuum where all the moduli are stabiliz
Perhaps it is possible to find such a point with the obser
CC and small supersymmetry breaking. If so, rather th
appeal to the anthropic principle, we would argue that w
has been done is good old fashioned fine-tuning.

B. The overshoot problem

A generic problem with the moduli stabilization an
SUSY breaking scenarios discussed above is that cosmo
cally they are all subject to the overshoot problem fi
pointed out in@12#. To see this let us estimate the height
the barrier separating the SUSY breaking minimum from
runaway decompactifying region of the potential. In both t
KKLT and the BKQ proposals this is clearly set by the si
of the extra term that is added. In either case at the minim

14Recent work seems to indicate that Goedel universes are v
solutions of string theory too.
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this number sets the scale of SUSY breaking. To have
energy SUSY theD term in the BKQ proposal should satisf
uDu,O(10214) in Planck ~or string! units. In the anti-D-
brane case the SUSY breaking is explicit, but if one ne
this breaking to be at a low scale then we will have a sim
result. As one moves away to the right of the minimum, t
term gets reduced~since it is proportional to a negativ
power of TR) and hence the barrier height is<uDu2

;10228. In the case ofF-term breaking~with multiple
gaugino condensates! discussed here the argument is sligh
more involved. The point is that at the SUSY breaking mi
mum, in order to get a nearly zero CC, the value ofuA3Wu
should be equal touFu, i.e., the value of the SUSY breakin
order parameter. At this point then the value of the expon
tial terms is of the same order as the constant in the su
potential. Beyond this minimum the exponential terms a
smaller ~in absolute value! and an extremum at a positiv
value ofV may arise but the barrier is expected to be of t
same order asuFu2 at the SUSY breaking scale.

In addition to the SUSY breaking minima that we ha
worked so hard to establish, in generic situations there
also nearby SUSY preserving minima with a large negat
CC. The reason is that for superpotentials that can be
proximated by polynomials~and this can always be don
near the SUSY breaking minimum! there are also solution
to the equationsF50. Whenever theF term vanishes the
potential is negative~or in some special situations vanishes!,
and in general one of these solutions will be the global m
mum in the region where the approximation holds.

Now the problem is that generically one would expect t
initial conditions on theT modulus to be set by the string o
Planck era of the universe when one expects string s
energy densities and temperatures. Clearly, if the modu
starts with energy density<O(1) in string units then it is not
going to remain in this extremely shallow minimum and w
roll right over into the decompactifying region or into th
SUSY preserving AdS minimum. This classical rolling rath
than quantum tunneling through the barrier is the real pr
lem with any cosmology based on such outer region comp
tifications. Of course, it is possible~though unlikely! that
with enough tuning of the parameters such that the he
and width of the barrier are much larger, some of these pr
lems may be avoided, but in the absence of a concrete
ample one has to regard this issue as a serious problem

C. Toward a resolution

The main focus of this paper has been the possibility
obtaining models with all moduli stabilized. We have esta
lished the following forN51 SUGRA potentials with the
classical string theory form for the Kahler potential, and
positive or zero CC.

If all but one modulus is stabilized at a high scale then
is not possible to have the remaining light modulus stabiliz
by F terms.

If there are two light moduli then there are exampl
where stabilization can be achieved in regions where st
perturbation theory is under control.

lid
6-13
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Our results depend on the form of Kahler potential, as
have emphasized on several occasions along the way. I
corrections to the classical form of the Kahler potential
small, as expected in regions of moduli space in which str
perturbation theory is a good approximation, then our res
should be valid. If for the scales at which the CC is measu
~or even at the standard model scale! it turns out that there
are significant corrections to the Kahler potential and
classical form is drastically modified, then we expect o
results to be significantly modified. For example, if t
Kahler potential is modified in such a way that it can
approximated by the canonical form, then one can fin
good minimum even in the one-modulus case@19#. Clearly,
for two moduli there is a wider range of possibilities.

The minima that we have discussed, as well as all oth
discussed in the literature, fall into the category of ou
region solutions in the terminology of@29#. They are sepa-
rated from the runaway regions of the moduli potentials
tiny barriers and are thus subject to the cosmological ov
shoot problem discussed in the previous subsection. T
means that even if one finds a model of this sort which c
tains the~supersymmetric extension of the! standard model,
such a theory—though it would serve as an existence p
that an ultraviolet completion of the standard model coup
to gravity exists—would not give a viable cosmology.

If one includes the requirement of a viable cosmology
appears unlikely that one could get a satisfactory theory
the outer region of moduli space. Thus, as has been the
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current theme of our previous work, we need to focus
building models in the central region of moduli space—i.
the region that is not related by any dualities to weak c
pling large volume compactifications. Obviously, it is tec
nically hard to compute in this region at this stage of dev
opment of string theory, and perhaps one has to await
successful formulation of some nonperturbative descript
of string theory to be able to calculate meaningful quantit
in this region. However, as explained in@29# and in@19#, by
combining information from the different theories in th
outer region and using information from a bottom up a
proach, one may gain some insight into the physics of t
region.
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