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U(N) instantons on /=3 superspace: Exact solution and geometry of moduli space
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We construct the exact solution of orfanti-)instanton in/\f=% super Yang-Mills theory defined on
non(anti-)commutative superspace. We first identj’f&z% superconformal invariance as maximal spacetime
symmetry. For the gauge group2), the SU2) part of the solution is given by the standdgahti-)instanton,
but the U1) field strength also turns out to be nonzero. The solution ig4BMtationally symmetric. For the
gauge group WU{), in contrast with the () case, we show that the entire N part of the solution is
deformed by notanti-)commutativity and fermion zero modes. The solution is no longer rotationally symmet-
ric; it is polarized into an axially symmetric configuration because of the underlyinGanticommutativity.

We compute the “information metric” of onéanti-)instanton. We find that the moduli space geometry is
deformed from the hyperbolic spatk (Euclidean anti—de Sitter spacie a way anticipated from reduced
spacetime symmetry. Remarkably, the volume measure of the moduli space turns out to be independent of the
non(anti-)commutativity. Implications foD branes in the Ramond-Ramond flux background and the gauge-
gravity correspondence are discussed.
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Recently, there has been considerable development in un-
derstanding superstrings aidbranes in the background of
the Ramond-Ramond flux. Take type-lIB superstring theorywhere the notanti- commutativity(1) is realized in terms of
compactified onXx R4, whereX is a Calabi-Yau threefold. the x product:
Turn on a Ramond-Ramond five-for@: on a holomorphic
cycle of X; the flux corresponds ofi* to a self-dual gravi- 1 5 3
photon flux. Introducé®3 branes whose world volume fills A(6)*B(0)=A( 6)exp( _Zgeh
R4, For closed strings, the graviphoton flux deforms the 2 0% 96P
four-dimensional V=2 supersymmetry algebra, in which
ha!f of the supersymmetry is realized nonlinegrly. For OPenrhough the nofanti-)commutativity parameteZ*# carries a
strings on the Euclidea®3 branes, the graviphoton flux nonzero scaling dimension, it turns out that, to all orders in
deforms theAV’=1 supersymmetry1-5]. The deformation perturbation theory, the néanticommutative deformation
induces nofanti-)commutativity among the Grassmann-odd ot 5 renormalizableV=1 supersymmetric field theory re-
coordinates, mains renormalizable [7,8]. Intuitively, in  Wilson’s

renormalization-group viewpoint, the renormalizability is
. . explainable by chirally asymmetric assignments of
{0°,0F}=C*F,  [6%,6P}=0, {6*,6°}=0, (1) scaling dimensions, a possibility made available by the
non(anti-)commutative deformatiof8].

We are primarily interested in the low-energy dynamics of
and breaks the underlyingg=1 supersymmetry to\V'=3. N=3 supersymmetric gauge theory. The motivation comes
Accordingly, the low-energy world-volume dynamics of a largely from two sides. First, the dynamics by itself is quite
EuclideanD 3 brane is governed by a n@mti-)commutative interesting and may provide a novel way of interpolating
super-Yang-Mills theory with\/=3 supersymmetry. The  between gauge dynamics witti=1 and\/'=0 supersymme-
N=1 super Yang-Mills theory is then defined%ihe action tries. Second, the dynamics may probe the Calabi-Yau geom-
functional[4] etry with the Ramond-Ramond flu@s turned on. It then

becomes imperative to understand instantons#n3 super-
symmetric gauge theories.

< -

B(6). (3

*Electronic address: britto@ias.edu In exploring instantons in theV=3 super-Yang-Mills
TElectronic address: fengb@ias.edu theory, a variety of interesting questions arise. At the ultra-
*Electronic address: lunin@ias.edu violet fixed point, the\N'=1 theory is known to promote the
SElectronic address: sjrey@snu.ac.kr Poincaresupersymmetry to superconformal symmetry. The
For recent works dealing with various aspects of theories withsuperconformal symmetry algebra is SUL} and involves
N'=3 supersymmetry, see RéB]. 16 Bosonic generators and 8 Fermionic ones. We will show
20ur conventions and notation are collected in Appendix A. that, once the nqanti-)commutativity is turned on, the sym-
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metry algebra is reduced to axf=2% superconformal alge- spherically symmetric contribution from the standard(3uU
bra. In this reduced symmetry algebra, the special conformanstanton. The latter yields integrally quantized topological
and the chiral SU(2) generatorgas well as their Fermionic charge.
partner$ are removed, and the dilatation and teymmetry One can learn more physics from the topological charge
generators combine into a single generator of the form dicdensity 7, since it is a function of Bosonic and Fermionic
tated precisely by the new scaling dimension assignment putero modes in addition to being a function of coordinates
forward in Ref.[8]. on R* What one expects to be modified by the
Despite being deformed by the nanti-)commutativity, = non(anti-)commutative deformation is the geometry of the
the instanton carries an integrally quantized topologicabne-instanton moduli space. To explore the issue, we com-
charge, pute the information metric of one instanton, first put for-
ward by Hitchin[9]. For small instantons, we find that the
1 information metric approaches that of a five-dimensional hy-
Qinstantor™ JWW}EZ’ where  F:=TryF/\F. perbolic spacels (Euclidean anti—de Sitter space, AJS
(4  The asymptotic isometry §6,1) is much bigger than the
N=1 superconformal symmetry, so one expects the interior
This is in full accord with the Atiyah-Singer index theorem of the moduli space not to retain th& geometry globally.
and assures that the deformed anti-instantons are analytic indeed, we find that the geometry of the moduli space is
C*E. There is a good rationale behind this. The instantordeformed for larger instantons—by r{@nti-)commutativity,
supports Fermionic zero modes. What is nontrivial in thenot only is each metric component deformed, but also
present context is that the instanton solution is corrected byff-diagonal components of the metric are induced.
the Fermionic zero modes. Accordingly, the topologicalln fact, these corrections are fully compatible with the sym-
chargedensity.F itself depends not only on the Bosonic zero metries that underlie the theoryN=3 supersymmetry,
modes but also oeven powers ofFermionic zero modes. R-(pseud@symmetry and dilatation symmetry. Remarkably,
Moreover, since the nganti-)commutative superspace is not after a suitable change of zero-mode variables, the volume
invariant under the full SO(43 SU(2)_ X SU(2) rotation  measure on the moduli space turns out tarziependenof
group, the instanton would not be rotationally symmetric inthe noranti-)commutative deformation. This observation

general. bears implications for Maldacena’s gauge-gravity correspon-
It turns out that the above two issues are intimately re-dence, on which we will elaborate in Sec. VILI.
lated. For the gauge group=U(2), we will find that the We have organized the present paper as follows. In Sec.

one-instanton solution exhibits trivial dependence on thdl, we analyze the spacetime symmetry for theories defined
non(anti-commutativity—the S(P) part of the solution is on N=3 superspace. We find that the underlying-1 su-
the standard instanton, and thélYpart is a multipole con- perconformal symmetry is broken explicitly to “half” of it,
figuration induced through Fermionic zero modes andyielding what we call\V=3 superconformal symmetry. This
non(anti-)commutativity. The W1) part cannot contribute to symmetry will provide a useful guideline for constructing
the topological charge; this is how the deformed instantonV= 3 instantons in subsequent sections. In Sec. lll, we de-
remains consistent with the Atiyah-Singer index theoremrive self-duality and anti-self-duality equations by localizing
The entire configuration is spherically symmetric, viz. thethe action on appropriate supersymmetric loci in field con-
U(2) instanton exhibits accidentally larger spacetime symmefiguration space. In Sec. IV, we construct the instanton for
tries. the gauge grous=U(2). This is a special situation where
For a gauge group of higher ran®&=U(N=3), the story the instanton calculus becomes almost trivial, due in a major
is far more interesting and intricate. Start with the standarcart to the trivial back reaction of the fermion quasi-zero
SU(2) instanton embedded in B), and examine how the modes to the undeformed instanton. In Sec. V, we construct
non(anti-)commutativity deforms the instanton configuration. the instanton for gauge groups of higher rank, nanm@ly
In stark contrast to th&=U(2) case, we find that the one- =U(N) for N=3. To illustrate the general strategy, we first
instanton solution is deformed not only in theNJ{ 2) part  set superconformal Fermionic zero modes to zero, and con-
but in the SUW2) part as well. As the attentive reader will sider perturbations by supersymmetry Fermionic zero modes
notice, this leads immediately to the possibility that the to-only. In Sec. VI, we include the superconformal Fermionic
pological charge density, and hence the charge itself, dezero modes and find the exact instanton solution for gauge
pends on the Fermionic zero modes. We shall find that thgroupG=U(N). In both sections, we set out analytic strat-
topological charge density indeed depends on the Fermioniegy in a way adaptable for the Atiyah-Drinfeld-Hitchin-
zero modes, but the charge itself is actually independent dflanin (ADHM) method[10], relegating a direct ADHM
them. The way this is made possible turns out to be nicelygonstruction for multi-instantons to future work. In Sec. VII,
intertwined with the absence of rotational invariance in thewe study the profile ofit* of the topological charge density.
problem. We will demonstrate that the deformation inducedVe find that the density exhibits dipolar polarization, whose
by the noanti-)commutativity polarizes the topological size is set by the nganti-)commutative deformation and
charge density into a sort of dipole configuration. The deforwhose symmetry fits precisely with the underlying spacetime
mation is axially symmetric but is fully compatible with the symmetries. We next study the density profile on the instan-
antichiral SU(2), invariance. Thus, once integrated o, ton moduli space by computing Hitchin’s information metric.
the dipolar deformation is washed out, retaining only aWe find that the geometry of the moduli space asymptotes to
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that of the Hs (Euclidean anti—de Sitter spaceear the 1Q4.Qpt=0,

boundary. In the interior, the moduli space of the geometry is

deformed by the ndanti-)commutativity, but again in a {Q,.Q.}.=2P,.,

form fully compatible with the underlying spacetime symme-

tries. We discuss aspects of this observation in the context of {Q., ,6/-;}*:4Caﬂpm-lpﬁb_ (6)

Maldacena’s gauge-gravity correspondence. In the appen-

dixes, we collect conventions and notation, undeformedrhe |ast relation indicates that repeated action of@hsu-
SU(2) instanton and anti-instanton solutions, and some espercharges is ill defined, violating the Leibnitz rdlés
sential steps of the computation for obtaining the exa®)JJ( such, Eq(6) does not form an algebra. The subalgebra gen-
solution presented in Sec. VI. erated by theQ,’s is still preserved, and this defines pre-
During the progress of this work, a paper by Imaanpurgjsely the chiral\'=2% supersymmetry algebra.
[11] appeared, overlapping with part of our Sec. IV. We find  |mpjicit in the above route to tha/= % supersymmetry is
agreemen{modulo errors and numerical factpraherever  tnat the nofanti- commutative superspace is parametrized in
both results overlap. Also, while this work was being Writtenterms of so-called chiral coordinateg, §), wherey,y refer

up, & paper by Grasst al.[12] app_eared, again over[app_ing to chiral and antichiral Grassmann-even coordinates:
with part of our Sec. IV. We believe that our motivation,

results, and interpretation are in strong contrast to theirs. yaé:z(xaé_zi Gaga) and y@:(xaaHi Gaga)'

Various considerations point to this as the correct choice.
First, in terms of the chiral coordinates, as observed by

We begin with observations regarding symmetry associSeiberg[4], chiral and antichiral superfields are definable in
ated to the nofanti- commutative\'= 3 superspace. The un- a manner compatible with the n@mti-)commutative
derlying (anti-)commutative '=1 superspace is param- product(3). Second, the\/=3 superspace can be param-
etrized by the coordinatesx{, 6%, 6*)—Bosonic, chiral, ~€trized uniquely by y,6), for which the =5 supersym-
and antichiral Fermionic coordinates. The superspace digletry acts as a chiral Grassmann-odd translation:
playsN=1 Poincaresupersymmetry. If dilatation invariance
is additionally endowed, the symmetry is enlarged\fe- 1

superconformal symmetry. This is the symmetry we are most Having identified the canonical choice of coordinates on

interested in. For example, if a theory defined on the supers , 1 .
space has no mass scale, classically and/or quantum mg-_2 SUPETSpace, we are now ready to analyze spacetime
pac ' y d Symmetries. In doing so, we will come across the ifieh
chanically, then the operators and states of the theory arg ‘

organized in irreducible representations of the superconfor-ehind the intuitive proof of renormalizability of nemti)
mal group SU(2,2L) or SU(41). commutative field theories. In RdB], it was argued that the

Once the nofanti-commutativity deformation is turned most natural assignment of scaling dimensions is such that

on for the chiral Fermionic coordinates as in Ef), the A 6% is dimensionless, and hen&@"? also is dimensionless.
1 supersvmmetry is broken =2 supers mmétr This The new scaling dimension is now measured as a particular
. persymmetry 2 SUPErsy - linear combination of the conventional scaling dimension
is seen by examining the deformation of the=1 supersym-

" and theR-symmetry charge. In other words, the new dilata-
metry a'ge_bf?- Though the algebra among 1 super- tion operatorD,g, is a linear combination of the conven-
space derivatives

tional dilatation operatoD and theR-symmetry charger.
We will now show that this is precisely what comes out of

Il. N'=3 SUPERCONFORMAL ALGEBRA

(yad,ea)ﬁ(yad,aa_kga).

D,=+d,+ Zi?&aa , Dy=-4, the analysis of spacetime symmetries associated Mith;
superspace.
remains unaffected: We claim that, on the ndanti-)commutative superspace,
the spacetime symmetry is realized on the following set of
enerators:
{D..Dgh=0, g
_ M,;, Dmw=D-=R, P.., Q. S% (7
{DL.Y,D'B}*ZO’ B new 2 Q ( )
o which we refer to as theV'=3 superconformal symmetry
{D,,D}=—2P,,, generators. Notice that the special conformal transformation

the algebra among th&'=1 supersymmetry charges o
3Note, however, that a single action of tRecharge is meaning-
ful. In particular, the second relation in E@) indicates that acting

— A —_ o Foa g 7
Qu="Fdar Qu Iat 2100 aa (5) Q. on theN=% supercharge®,, generates a translation &. In
the next section, we will use this observation to derive instanton
now obey deformed anticommutation relations: equations.
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is no longer part of the symmetry, so the symmetry grougthe last relation in Eq(6). We notice that only those genera-
does not encompass the conformal transformations. Rather,tirs whose expressions do not contain the coordifiadee
should be viewed as supersymmetrization of the dilatatiorthe ones preserved by the deformation.
transformation. This implies that, at a renormalization-group The algebra7) shows that translational invariance is re-
fixed point, scale invariance of n@nti-)commutative field tained, while(half of) the S@4) rotational and special con-
theories would not be enhanced to superconformal invariformal invariance are lost. Therefore one expects that an in-
ance, in stark contrast to the more familiar quantum fieldstanton in A’=3 would produce only those zero modes
theories[13]. Implicit to the latter is the requirement of uni- associated with these generators, and span the coordinates of
tarity and Poincarénvariance, but these are precisely what one-instanton moduli space. In the following sections, we
we drop in noifanti-)commutative field theories. shall see how this restricted symmetry plays out in adding
The proof of Eq(7) is elementary. Begin by realizing the deformation terms to the one-instanton solution and the met-
N=1 superconformal generators, again in the basis of chiraiic on the moduli space.

superspace coordinateg, (9,3). They are
Ill. (UN)DEFORMED INSTANTON EQUATIONS

_ 1 _
Map= Eyy(aa*/ﬁ)_a(aﬁﬁ); Paa=1daas In this section, we set up the problem of constructing
instantons and anti-instantons V=3 super-Yang-Mills
1 theory. First, and to help set up our notation, we recapitulate

Map=5Y(a"9p)y~ O(adp) the definition of the theory. We then derive instanton and
anti-instanton equations and argue that with the self-dual de-
formation by C*#, the anti-self-duality equations are de-
formed, while the self-duality equations are not.

Expanding in terms of the component fields, the action
functional of the nofanti-’commutative Yang-Mills theory
(2) is given by[4]

Kpo=— iyaByB;,&B'BwL 2in&05¢9“+ 21y i
X ( GﬁaBJrEB?B) +46,6%9,,+ 2iyf§'53& :

R=i6%,—i6%,

P i i Im~ 1 —
D:_Eyaaaa&_'—ieaaa—’_ Eeaa.a, SYM: ype R4Tr —Eanan—l)\)\Cmnan
o Y ; 1—2 PN 2
Q,=d,; Q,=-0,+2i6,,, + Z()\)\) CiirlCmn—iNd"V N +D
S,=y".Q.+2i¢°D,; Rer .
_|8_7T H“Tranan. (8)

Su=—(yf+4i0,6°)Q;+2i 6°D,,.

Here we take the gauge group to Be=U(N).* We also
denote the coupling parameters in the convention of
Qinkowski spacetime

It is now straightforward to check (anti-)commutators
among these generators. In doing so, we need to take in
account the nad@nti-)commutativity among the 6%’s

as in Eqg.(1). As mentioned above, all other coordinates
(anti-)commute provided one adopts the chiral superspace ReTEE(TJF?) Imrzi.(r—?) (9)
coordinates. One finds by straightforward computation that 2 ' 2i '

the algebra closes on the sub§gt, whose nonvanishing

commutators are but, because the theory is defined on the Euclidean dphce
_ _ _ we interpret them as referring two independent complex
[Map Mpli= €Myt €M pyars coupling constants, 7. In particular, by takingr or 7 to
— _ o infinity, one can localize the super Yang-Mills action func-
[Majs . Pyyle=4Pyaepy tional toD (,Wg,=0 or D, W =0 field configurations, viz.
— = = anti-self-duality and self-duality configurations. Decompose
[Mag Sy =€@ySp) the gauge field strength into self-dual and anti-self-dual
_ _ parts:
[Paa Spli=2i€,5Quq,
[Dnew:Paale==1Paa, 4Under thex product(3), the enveloping algebra involving the
— — Lie algebrasu(N) is u(N). We adopt the conventions that théN)
[DnewSal«= +iS,, generatorsT? (a=0,1,... N°—1) are normalized as TRT®

1 b : . . A .
. =56%°, and the gauge covariant derivatives afg,=d,,
while the rest do not even form an algebra because the de—2i gaug

formation induces terms violating the Leibniz rule, much as+ E[A@,.].
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1 1 i —
FlH= E(F-I—*F)mn:EFaﬁafnﬁ, SN =ie"D+2| F*P+ Ecaﬁm\) €g,
1 1 . N
S e S OF ap= i€V A"
We will now derive the localization to self-duality or anti- SD=— €V, ",
self-duality configurations explicitly.
oF,3=0,
A. Antiholomorphic instanton from anti-self-duality
To derive the anti-self-dual equations, we arrange the ac- SNE=0. (12

tion functional(8) into perfect squares involving(*) as
Imr (+) i 2 o = o
SYM:E P\4TI‘ — an+§Cmn)\)\ —iNe"V ,A+D

iT
~ i f LT F/\F. (10)

Take in EQ.(2) the limit 7—o0. In this limit, field configu-
rations are localized to

0=Tr e“/’)[Wa*Wﬁ] 62

1
: o : =Tr e — S (S N)(SgN)—iN, 85D |.
The last term is a topological invariant, so the action func- ¢ 2( M(FpN) = 1Nadp

tional has a critical point at which

. We find that the configuration is localized where the= 3
) 4 I—C =0 o"V.A=0 \=0. D=0. supersymmetry variations vanish. Moreover, inferring the su-
mn - oTmn ' e ’ persymmetry transformation rulés2), the localization locus
(11)  is precisely the critical point specified by EQ.1). We will
refer to a configuration satisfying the anti-self-duality condi-

These equations define anti-self-duality conditions, WhoSgons (11) as anantiholomorphic instantarsince its strength
solutions are anti-instantons. Notice that, compared to the

_ . ) ; IS proportional to multiple powers of eprari?).
N=1supersymmetric_ anti-self-dual equations, EG5D Notice that each equation in E(L1) is preserved under
are deformed by _th_e terms proport|onal_ to_ the Se”'duakhe/\/z% supersymmetry transformatio2), but that does
non(anti)commutativity paramete@mn. Notice in Eq.(lO) not mean that the functional form of the solution is preserved
that, though expressed into a perfect square, the first term 13

not positive definite—the ndanti-Jcommutativity parameter 00. In fact, we shall find in the next section that the solution
p_ ) yp__ is corrected through th&€*?-dependent fermion bilinear
Cmn is in general complex valued and the gaugias no

: ex ] _term in Eq.(11). This correction has the following implica-
longer a Majorana fermion in Euclidean space. So, the crititjons Suppose we start with the ordinary instanton solving
cal point(11) should be understood as an enhanced symmepe anti-self-duality equatioff*)=0. This instanton is an

try point rather than a minimum action configuration. L2-normalizable solution ofthgequation in Eq(11). As is

Closely related to this, in the first work of Rdf7], it was . . )
shown that the supersymmetry state is not a configuration quident from Eq.(11), this solution does not break thi

minimum energy but of enhanced symmetry. In fact, owing_ 2 SUPErsymmetry; in particulag,,,= 6D =0. It is illu-

to the nortanti)commutativity, the energgdefined as eigen- Mnating to recast this from the underlyirig=1 supersym-

values of the Hamiltoniaris in general complex valued. ~ Metry viewpoint. The.>-normalizablex zero-mode solution
The anti-self-dual equations are also derivable by considdreaks “spontaneously” the antichiral supersymmeyen-

ering the\N'= 1 supersymmetry transformations. In the actionerated byQ,,), but this is already broken “explicitly” as the

functional (2), the chiral field strength superfield is given in non(anti-)commutativity deformation is turned on. As such,

the Wess-Zumino gauge as we will refer to theL?-normalizablex solution solving Eq.
(11) asquasi-zero moded#\s discussed in the previous para-
1
W.(y,0)=—i\ +loDvi—il E graph, theN=3 supgrsymmetry does not _preclude .bac.k re-
o(y:6) oY) DY) ( apY) action of these quasi-zero modes to the first equation in Eq.

(11). It then modifies the vector potential one started with.

+ I_Caﬂﬁ(y) 08| + Mva&p(y)_ Anglogou_sly, there will be quasi-superconformz?\l zero dees,
2 which will also react back to the Bosonic equations
) in Eq. (12).
Component fields transform under thé=3 supersymmetry
as
B. Holomorphic instanton from self-duality
To derive the self-duality conditions, we arrange the ac-
5This method was also considered independently in Réi. tion functional(8) into terms involvingF(~) as
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vanish. Recall that, thoug®'’s are broken explicitly by the
non(anti-)commutativity, linear transformations under the
antichiral supersymmetry are well defined. Therefore for in-
finitesimal variations, the localization is a meaningful notion.
We now see from Eq(14) that the localization takes place
precisely at the critical poin{l3). We will call the solutions
where the kerneM, which is an(anti-)commutator depend- of Eq. (13) holomorphic instantonssince their amplitude is
ing on A\, is defined by proportional to exp(zi7).

For holomorphic instantons, chiral fermion zero modes
are protected. A nontrivial solution to the equation in Eq.
(13) breaks the\'=3 supersymmetry spontaneously. There-
) ] fore these zero modes are trule Goldstino modes, associated

) ~mn ENPY S el to the spontaneously brokevi= 5 supersymmetry generated
* 4C {Am LAn, -1} 16Cm”{M’ b by Q, . There will be also superconformal zero modes, since

. ) o ) ~the theory is actually invariant under thé= 3 superconfor-
Again, the last term is a topological invariant, so the actionma| transformations, part of which includes the antichiral

functional has a critical point at which superconformal generato@. Essentially, from the view-
(-)_ i _ T _ point of A’'=1 super-Yang-Mills theory, th&/= 3 supersym-
Frn =0, 107Wmh =0, A=0, D=0. (13 metry coincides with the part spontaneously broken by the

These equations are the standard self-duality equations, afftantons. , , , _
being independent oE#, they are apparently unmodified _ Summarizing the_ above con3|d_erat|ons, annholomorphm
by the norfanti-)commutativity deformation. instantons are solutions of the anti-self-duality equations
Actually, the self-duality equations(13) involve
some highly nontrivial effects arising from the
non(anti-)commutative deformation. This can be seen by re-
sorting to the “broken” antichiral supersymmetry generated

by Q. The antichiral field strength superfield is given in the 1
Wess-Zumino gauge by A=0, TrﬁJHAF/\F =7_, (15

Im 7 — — —
SYM=HJR4Tr[—(F§n_n))2+)\“[M Ao} —iN%aT VA2

iT
+D2]+—f TrFAF,
4 | p4

1
[M!'}::_Ecmn{ani'}—’_Cmn{Avan }

i — _
FCO 4+ 5CmAA=0, i0™V\ =0,

W —ix (VT AYD (V) —iE - (v BBT+ AT M X -
Wo=iho(y)+[6°D(Y) —iF 4p(y) 07]+ 6 M. Ao} while holomorphic instantons are solutions of the self-duality

Under the antichiral supersymmettgenerated bﬁ), the equations

component fields transform as 1
an_n)zo, ia'mvm)\:O, 7\:0, TrﬁfR4F/\F=Z+ .

S\e=—ie*D—2F“Pey,
(16)
EAM: —2i)\0;;1,
o o IV. CONSTRUCTING INSTANTONS FOR G=U(2)
OF =€ V,m\, . . . s
ap™ E(atap) We will begin with the gauge grou@=U(2), as inthis
case the back-reaction of the fermion quasi-zero modes is
rather trivial® We will always trade the (2) color indices

} for chiral or antichiral SU(2X U(1) indices, so we express

SD= —?’V@A“Jr i?*[ M, N} — C“ﬁ&aéa@?fﬁ,

- i — .
O\, = €ePC55 i€,,D+2| F .+ 5Cayhh the gauge potential as

(14) Aia&b}E(ZiTZAad)ab-

Take now the limitr— . In this limit, the action localizes to

the field configuration satisfying Of the Lie algebrau(2), thesymmetric partab) realizes the
o su(2) subalgebra, while the antisymmetric piab] realizes
0=Tr e [W,*Wj]55 the u(1) subalgebra.

As elaborated in the previous section, the self-duality
B 1 — — equations(16) are exactly the same as that bf=1 super-
=Tre® — 5(5)\&)(5)\[3)+|)\a5ﬁD . Yang-Mills theory, i.e., these equations are not deformed by
turning on the nofanti-)commutativity. Hence the antiholo-
Here, we have used the cyclicity of color trace and the selfmorphic instanton solutions are the same as thos&’sfl
duality of the paramete€“” to simplify the last term in the
second line. Thus the partition function is localized at a place
where variations under the broken antichiral supersymmetry ®This case of5=U(2) was also considered in Refd1] and[12].
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super-Yang-Mills theory. For a single antiholomorphic in- commutativity On the other hand, as we will see in the next
stanton of sizep and centelx,, the gauge potential and the section, this simplification no longer works for gauge groups

field strength are G=U(N=3).
) The anti-self-duality equation of the diagonal1l) part
a2 @b now reads
kB [(x=x0)*+p?] #"F" _
* _ ! Ny \{cd
. 8ip? o (F+*F)mn=— 5 CnrAN) ey

- - )
B [(x=xg)*+p?]2 T TR . . . . N
To solve this equation, we first take the exterior derivative of
while the supersymmetry and the superconformal zerdhe equation and obtaitafter using the Bianchi identify

modesg,;of the chiral fermion\ (associated with the spon- .
taneously brokedV= 3 supersymmetiyenter as d*F(x)=— '_C/\d(ﬁ){cd}(x)ecd
5 .

No=Fapéf, where §“=§“+xz;4. . . .
This equation reduces in the Lorentz gauge to
Since the anti-instanton is unaffected by the
non(anti-)commutativity and does not entail any new fea-
tures, we shall not discuss it further.
The anti-self-duality equation@l5) show that the gauge
field strength is modified by quasi-zero modes of the fermiorintroduce a prepotential(x) for the gauge potential, and

\. The coupled first-order equatiorid6) are solvable by denote the fermion bilinear as a soutte

formally treating the deformation parame®@t” as a pertur- .

bation and iterating fermion bapk reactions. Becausg of t'he A(X)=*[CAdD(x)] and JI(x)= '_ecd(ﬁ){cd}(x)_
Grassmann nature of the fermion zero modes, the iterative 2

procedure will terminate, and we will be able to construct the . ) o
exact instanton solution. Notice that this prepotential ansatz for the gauge potential is

So, begin with the solution at zeroth order@#?. Thisis ~ consistent with the choice of the Lorentz gauge. We have
the standard instanton solution, solving the anti-self-dualitythus reduced the first-order perturbation problem to solving a

i _
O*A(X)= EC/\d()\)\){Cd}(x)ecd .

equation, and is given by Poisson equation:
2i ot
(0){ab} _ (a,b) — _ 6 o
A =—— 5%, OdP(x)=J(x) where J(X)=3X2°%———F—(, L%
BB [(X_Xo)2+P2] BB (X2_|_p2)4 0
i 2
FOEo__ BIPT e (17)  Three remarks are in order. First, it is worth emphasizing that

s [(x—%g)2+p?2 « 7 the above procedure applies to the construction of multi-
__instantons as well. Second, concerning the field profile on
The zeroth-order solution for the quasi-zero modeshof R# not only is the zeroth-order solutiofl7), (18) SO(4)
[transforming as an adjoint under the @Usubgroupis also  rotationally symmetric, but the deformed soluti¢®0) is
standard: also. The S@) symmetry is certainly larger than the space-
_(0)_ (0= —_ = s time symmetry identified in Sec. Il. Third, the fermion zero
N, =F. ;€% where ¢={P+xin®. (18  modes are not deformed by the ttanti-)commutativity at
_ ) _ all. In the latter two points, the gauge gro@-=SU(2) is
_ In computing first-order corrections to the gauge poteneyceptional. In the next two sections, for higher-rank gauge
tial, it is useful to keep track of trgcolor indices. For the groups, we will show that the instanton solution is only axi-
gauge groupG=U(2), thebilinear (\\){2 is antisymmet- symmetric, retaining symmetries belonging to (30C
ric in the color indicesa,b for an arbitrary spinoi, so the SO(4) and that the fermion zero modes are deformed further.
O(C) perturbation acts only on the diagonallly subgroup,
not on the SW2) subgroup. In particular, one can express the V. DEFORMED INSTANTONS FOR G=U(N=3):
perturbation as HALF OF THE STORY

i — i - We next consider the gauge gro@=U(N) for N=3
§Cmn(7\(o)?\(o)){ab}= - fabZCmnEcd(A(O))\(O)){Cd}- and find an exact solution for the antiholomorphic instanton.
(19 We do so by adopting the same iterative procedure, as it
truncates at a finite order in the perturbative expansion. The

This observation is elementary but simplifies the backsprocedure is, however, far more nontrivial than tke
reaction computation considerably, and rendies SU?2) =U(2) case, since there are extra fermion zero modes. To
part of the instanton solution unaffected by the non(anti-)illustrate our strategy for constructing instantons exactly, we
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consider in this section a special solution in which the super- i
conformal quasi-zero modes are all set to zero. (VA =V AD) ()= — Ecmn)jomm_

Again, we start with the standard &) instanton as the
zeroth-order solutiohand then use perturbation theory in Notice that in this paper we always uSg to denote a co-
powers ofC* to construct deformed solutions of EQL5).  variant derivative with respect to the background gauge po-
At zeroth order, the S(2) instanton is embedded inside tentiaIAET?). A more proper notation would b8, but we
U(N), so we will decompose various Nj fields into  pope that using’,, does not lead to confusion. An equation
U(2)XU(N-2): an adjoint 8®1,1), fundamentals of this sort can be reduced to a Laplace equatsee the
(2,N—2) and antifundamentals 2(N—2), and singlets discussion in Appendix by taking an ansatz expressing the
(1L,N—2®N—2) under U2). We use the freedom of global first-order gauge field in terms of a matrix-valued prepoten-
gauge transformation under NE2) to put the gaugino tial ®);
components transforming as fundamentals to some arbitrary
unidirectional components in the N¢2) subspace. More AR ()= CpnpVa®M(x).

precisely, we consider the zero mode : . .
The resulting Laplace equation for th&l X N) matrix pre-

—— X . potential®(x) can be easily solved:
A =5, _
a (X2+p2)3/2 a - ) . )(i)(l
_ . ()= 85| ba(X) Lol + da(X) =5
and perform a UJ—2) rotation to puty' in the form y* p
#0, x*=x°=---=xN=0.2 In this way, we have reduced nd
the effective number of gaugino equations to be solved irf
color space. Notice that the same gauge rotation does not in i

: diracti i D) XiX
general put the gauge fields to the same unidirectional com q)i( )= Ba(X) ==,
ponents in color space—they are generically nonzero and p
need to be solved through the anti-self-duality equations.

We expand the gauge field and Fermionic zero modes ihere

powers ofC,,,:

g L P
Ap=AQ+AD+. . and =AW é1 ! (r24+p?)  (r2+p?2/
(21

i 1
where A% and\" are of ordero(C*), andA® and\'” $2=g 2t 7
refer to the undeformed single instanton solution. Normally, P P
such an iterative procedure would never yield an exact solu- i 1
tion. In the present case, what saves us is the fact that the 3= .
back reaction is generated by a finite number of fermion zero 4 p?(r2+p?)

modes. As they are Grassmann valued, after some finitely _
many steps of the iteration, the back reaction terminates au- Next, we simplify the Weyl equation for™"). Substituting
tomatically. This is the motivation to first consider a specialthe value ofAﬁ,}) into the equation foh, we get in the first
solution without superconformal zero modes, as the iteratiomrder inC,,:
there stops already at second order.

AR AN C LS OF

A. First-order back reaction aa M 2
We now solve explicitly the first-order back reaction to i Wy M 0);
the gauge and gaugino fields. Those residing in thél U( == 5 Cnd (@), 07, AT
—2) subgroup are not affected at all, so we only need to
concentrate on the (@) subgroup. Using the Fierz identity:

First, the self-dual gauge field equation becomes "
Cmna'a&: Unﬁ&cﬁyeya )

"Our conventions and notations are summarized in Appendix Aand the Weyl equation fax(®), one can show that
and the explicit form of the undeformed instanton solution is given Mo .
in Appendix B. cmnga&v M\ (0)a— Cﬂyemanﬁdvnﬂo)a: 0.
8From this point onward, all equations should be interpreted as o
equations in this particular frame, wheye=0 fori>3. However,  This simplifies the first-order Weyl equation faf!) as
for presentational purposes, we will still keep the indefor y;
=0. Notice that we do not impose any restriction on the conjugate

— .
b m, Va—_cB,M (1) \(0)e
representation spinoy; . T o Yk Ca0 5,V @ N4,

2 a7 pa
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We take an ansatz for® in terms of a spinor prepotential

i
O as (VAP = VAD) )+ STAD AT

. . i . .
NDB= O-mﬁﬂvmqf%l) ) + ECmn(x(&l))\(O)a_'_X(dO))\(l)a) =0. (24)

. i 3 . . (0): ) ] )
Using the anti-self-duality conditioR,;=0, we then get Again, we remind the readers that the superscrip) de-

notes projection onto self-dual components of the antisym-

Vz‘i,gl): _ %Cgog&vm[q)(l)x(o)a]. (22) metric tensor. Begin in Eq24) with the term

1
(AR AR = cmkcm+Eemnpqcpkcm)V[k<1><l>v|]<b“>.

Here V?=V_V™ is the covariant Laplacian with respect to
the background gauge potenti&ﬂ,?). We look for the solu-

tion in a form which factorizes out thé dependence from For an arbitrary antisymmetric tensby, , by straightforward
the prepotential: computation, one finds an identity:

. 1
‘ng:Cg‘l’%l)- (kacnl+ EfmnpqckaqI)Tkl

Then one can re-express H@2) as 1 .
=- ECk|Ck|T;(nn)+ CrmnCri Tk -

ic BsM —jghay M _ Z1rp@) \0)ay| =
ICq Uﬁan EAALLS’ Z[CD ATHE]|=0. This allows us to simplify the commutator:

A particular solution to this equation obeys 1
partictiar SOl 'S eaation obey (AR A= = 5 CluCra((Tim( @DV (1))

. i -
a”ayvnwgl)zE[qﬂ),)\(o)a]. +CrnCia Vi@ WV @@,

Next, express the fermion contribution in E@4) in terms
One can solve this equation again by using Green'’s functiongf the prepotentiaﬂf&l) in Eq. (23):
for the Dirac operator. We obtain the solution

_ 1 .
0 o __ 0 ao
AW —Eckﬁ& Jomae gy g,

i Xy 1 —
(W) P=— 288 =0 5
@ 4 2 (r24 p2)2 . . .
p p Using the identity
(D | I X o=, 1 — ;mo_m:}( migk— pmKkgT — mkingny
(Wi'=+5 5| xix’s 27 K ’
p (re+p%)
and the self-duality of the ndanti-)commutativity tensor
x2__ 1 p? _ Cyi, the fermion contribution in Eq24) can be simplified as
(W=~ _ZXi 2, 212 (2. 252 £pt”, — .
p* L (re+p9) (re+p°) X‘f’x(l)“zCk.ﬂo)okaam\lf&”.
O Xaa 1 pt |—— Substituting these two expressions into Eg4) for A,
a/a o X (r24p2)V2 (124 p?2)52 BS - one finds

23 i
* (VimAH )= 'gck|ck|<v[m<<1><l>vn]<I><l>>>(*>
This completes the first-order computation for back reaction
of the fermion quasi-zero modes. i e —0) .
+ 7 CmnCu (V@ OV 0+ ok [\ 7 viw () =0,

B. Second-order back reaction

This equation is solvable by taking again a prepotential an-

Next we compute the second-order back reaction. Th%atz of the form

second-order perturbation for the gauge fiélﬁ) satisfies

the equation i
a Ag$>=§cklck.cbvmq>+ CrnVa®?),

This step need not work in general, but will be justified by our and reducing it to the Poisson equation for thHe>(N)
explicit solution. matrix-valued prepotentiab(?):
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V2D =iC (V@ DV d D+ g\ v 1)), An=AR+ CinVa( @D+ 0@+ o)
i
Again, the solution is obtained by convolving the scalar +ECK|CK,[CI>(1),V,]CI>(1)],

Green function on the right-hand side. We find tiét) has
nonzero components on the &)Y subspace only: L
B )\a:)\(o)a+O_maacgvm(q,'(gl)_{_\[,fg))
(@)= =2iC ("), CiC¥ -
_ 2K rp) @) N (0a
1 P2 3y [P AT (27)

men +
(r2+p?)2  (r2+p?)?3

XX Lal®.

Here the superscripts denote the ordeiCoéxpansion they
(29 contribute. The zeroth-order, undeformed solutiaff’ is
summarized in Appendix B. Now that we havél Zermion
To complete the iteration, one would next substitute thezero modes, reduced effectively viaN}{-2) gauge rotation
solution found above into thgf-f) field equations and solve to six zero modesd,, 7% xi, x'), the perturbation expan-
the second-order back reaction to the fermion quasi-zersions continue to the third order for the gauge field and to the
modes. It is readily counted that the source term in the corsecond order for the fermion zero modes. We relegate com-
responding Weyl equation contains fifth powers of the fer-putational details to Appendix D, and collect below the final
mion quaS| zero modes. Now that there are only four zerqesult, order by order, using the shorthand notatiée: ga

modesZ;,, xi, andy', the source term vanishes identically. +x%7%. The Bosonic prepotentials are
We thus find that second-order back reaction to the fermions

is absent, |eX(2) 0. By the same reasoning, all higher- 2
order back reactions,,® and_(&k) vanish identically fork (o)) b=—gj 2)2§ L ! (g 294 p29%,)
>2.
In summary, in the special situation where the supercon- —
formal zero mode is set to zero, we have succeeded in ob- _ 1 xix
taining the exact solution for the anti-instanton as r2+p? 64p?

i — .
—a(0 . ¢sa
An=A+ Cnp¥p @+ g CuC®DV@ D+ Con®u®®, -y i —gzga); i @yan - 2NE
(r*+p%) (r°+p%)
A=A gheachy (), (26) _
(@)j=i 29
where the Bosonic prepotentials®), &) are given in Egs. r°+p°4p?
(22) and(25), while the Fermionic prepotentia (") is given
in Eq. (23). at O(C),
VI. DEFORMED INSTANTONS FOR G=U(N=3): 1 X X
FULL STORY (D2 b= _2|ka(2+—r)3(o.kn)b %
We now extend the result of the previous section and P
obtain an exact solution for the antiholomorphic instanton in § é«a

which all quasi-zero modes of the antichiral gaugino are (r 24+ 2p2) = p2nn,— 7 xaag

turned on. Compared to the previous section, the iterative
steps do not truncate at the second order because the super-
conformal zero modes of the fermions render the source
terms in the Poisson equation far more complicated. Never-
theless, as there are only a finite number of fermion zero
modes, the iteration is truncated beyond some higher order.

XlX [ga

+ 2i (_2+_I’272 (XC) +?)(;C)§77a],

One can thus follow the Green-function method illustrated in @) a Xi )
the previous section to obtain the instanton solution. D)= _8(|,2+—2)5/2 (re+2p Na
We performed the computation in the way indicated and P
obtained the exact anti-instanton solution in the following o .
form: +n® na(xCx)aagal , (29
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{( 24+2p%) - ol >~ (XC)an,
p?

i

i X
@2y —_g ~*
(CI) )a_ (r2+p2)5/2

+ 7% 74(XC X)a;f‘]
at O(C?), and

CkICkI Ui 77a§a§ Xix'

B =
2 p4(r2+p2)3

diad r*+6r2p2+3p* r4

+6r2p2+3p*,2(r*+4r?p%+ p*)] (30

at (9(C3),_ respectively. Herex denotes the matrix“é’, X
denotesx*“, andC is a matrix with components

1
Caﬁ: 6a707ﬁ:§Cmn(Umn)aﬁ-

The Fermionic prepotentials are

i [xae 1 rn 1 |-
\If(l) b:__5b aa _ a k7
( @ )a 4°a p2 (r2+p2)2 p4 (r2+p2) XkX
(rP+3p%)——  2p*
(Iya_ _~* - &B
(¥, )i® 4X| (r (24 2)3/2 Bg (r 2+p2)5/2§ﬁ§
B 4Ea77a;i 31
(r2+p2)3/2’ ( )
2 2 4
(q,(l)) Xaa ﬂ__ﬁ LEEB
a (r2+p2)3/2 B (I’2+p2)5/2 B
423%)9
(r2+p2)3/2'
ol [ P
(YD) =2 5[ Xaab = 5 7a
|

at O(C) order, and

xix'

(@) b= 2% __l4C (") x Xagf& p
a pz(r2+p2)3_ mnXm aXk Mg
_2(Xaa;bﬁcl377;7+?’ﬁcﬂaﬂyxya)zaza
r2+ 2 ~bB o
_ (XaaXPPCY7,+ X0 X a7 C) L, 77,
p?
Chxgax'
2 _ a’paX a
(VP)/=-8 (r2+ 2)5/277y77“Y§”‘g ’
Cﬁxa; —_
. a”™BAI R
(V) 2= —8i— Ly Ll 32
i (r2+p2)5/2 Y
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at O(C?) order.

We emphasize again the reasoning behind truncation of
the iterative process at the third order, hih order. Though
there are Rl fermion zero modes, by making use of the
U(N—2) gauge rotation, we have brought the bi-

fundamental fermiong, x to a unidirection. Therefore, with
the aid of the gauge freedom, we have effectively reduced
the independent components of the fermion zero modes to 6:
two (would-be supersymmetry’s, two (would-be super-
conformal »'s, and two gauge zero modesy. As such,
with U(N—2) gauge orientation chosen to be unidirectional,
the iterative procedure terminates at third order. We stress
that for presentational purposes we kept an indéor the
zero modesy;, even though the results are relevant only in
the particular frame where the only nonvanishing component

iS X3-

VII. INSTANTON TOMOGRAPHY: POLARIZATION
AND GEOMETRY OF MODULI SPACE

Having obtained the exact solution for one antiholomor-
phic instanton, we are now ready to learn aspects of semi-
classical or nonperturbative physics =3 super Yang-
Mills theory. The simplest gauge-invariant quantity we
would like to study is the action functional density, which in
the present case is simply the topological charge dedSity
Notice that we are interested in tHensityof the topological
charge, since the latter is nothing but the zeroth moment of
the former. The zero modes supported by the instanton span
the moduli space, which we denote &$.

With particular attention to the fate of spacetime symme-
tries discussed in Sec. Il, we are primarily interested in the
five-dimensional subspace i spanned by the instanton

centerX“® and sizep. The instanton densit§ then depends

not only on the coordinates*® of R* but also on the coor-
dinates of M. Therefore one needs to examine moments of
the instanton density separately olR* and onM, respec-
tively. This is precisely what we will do in this section. First,
we will examine the profile ofF on R* for a fixed position

on M. We will then find that the instanton charge densky
contains a dipole-moment componeih addition to the
O(4)-symmetric monopole-moment compongfithe dipole-
moment component refers to axially symmetric polarization
of the instanton and is invariant only undek3p C O(4).
Second, we will examine the profile ¢f on M (after inte-
grating it overR*). We will compute Hitchin’s information
metric and study the deformation of the geometry. /of.
Remarkably, we will discover that, though the metric is de-
formed, the volume measure is independent of the{amn)
commutative deformation.

A. Instanton density

The topological charge densityhich is the same as the
action functional density for instantonis defined by
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F%Z28=Trypy (FAF ) instanton pends on the fermion zero modes. On the other hand, the
topological charge ought to be integer valued, and hence
' . . ) ) independenof the fermion zero modes whatsoever. It is also
The field qonflguratlans of the instanton are functions both Oﬁndependent of the instanton sige but this is a well-known
the coordinates orit” and of the Bosonic and Fermionic ragyjt for the ordinary instanton, again from a topological
quasi-zero modes. The quasi-zero modes span the modultg,ment. What ia priori not so obvious in the present case
space M, so we will denote coordinates oM as Z is that the result is also independent of the fermion zero
=(X“p,m4,{% X", xi). Therefore the instanton densiy  modes'® The way this independence on fermion zero modes
could depend not only on coordinate®® of R* but also on  comes about is highly nontrivial: integrals oveof the sec-
coordinatesZ* on M. ond and the third terms vanish individually. We are thus led
Substituting the exact one-instanton solution constructedo examine tomographically the instanton density and under-
in the previous section, after a straightforward algebra, wetand how precisely the Fermionic zero-mode dependence is
obtain the action functional density as distributed.
It would also be illuminating to recast the instanton den-
sity F in the context of Maldacena’s gauge-gravity corre-
spondencd14]. As is well known in the context of five-

4 4 2 2 4 i
__ % _ CuCia (1 62r P ;23’) );X?&Za dimensional anti—de Sitter spacetime as holographic dual of
(r?+p?)* p? (re+p%) N=4 super-Yang-Mills theory, the instanton densifyde-

fines the bulk-to-boundary propagat@s introduced in Ref.
CyCu (2r2p%—3p% S— [15]) of a massless pulk scalar field that COL_JpIes to the to_po—
2— (71 p?)? (7" Xqal“XiX logical charge density of the super-Yang-Mills theory resid-

p ing at the boundary16]. This can be understood from the
elementary observation that
+ 16027, L") |. (33)
(5) 1

We have shown that S@) Lorentz symmetry is broken ex- c=0

plicitly on non(anti-)commutative superspace. Still, as is evi-

dent from the spinor index contractions, the instanton density

is invariant under S@) rotations,provided in addition to ] 1

a o . lim — AZ;x)| =-6%(x)
x*¢, all Fermionic zero modes are rotated simultaneously. 0 87 c—o

Notice that, under this S@) symmetry transformatiorCy,
transforms nontrivially bu€,,C*' is invariant. We will refer
to this invariance as S@) (pseudgsymmetry and make fur-
ther use of it in the following subsections. obeying J i: 1. (34)
One learns from the result(33) that, with R4 8772
non(anti-)commutativity turned on, the instanton density is
deformed from the standard one y(C?) contributions.
_Notice_ that, th(_)ugh the antiho_lomorphic_ instanton sqlution|n this context, the coordinateé((‘é’,p) are interpreted as the
itself is modified up to cubic order in the n@mti-)  pyik |ocation, while the coordinate refers to the boundary
commutativity paramete€#, the instanton density termi- |cation. Once the ndanti-commutativity is turned on, nei-
nates at quadratic order. Notice also that there ISMQ)  ther of the two relations would hold. Therefore one expects
deformation in the instanton density. These features are n@fat poth the geometry of the five-dimensional gravity back-
due to any delicate cancellations, but originate from SY(2) ground and the instanton density would be modified. In the
symmetry and the Grassmann-odd nature of the fermion zerg|iowing subsections, we will explore aspects of these

modes. o . ~ modifications in detail.
As it stands, the resu(B3) is quite complicated, primarily

because of the last two terms involving various combinations

of fermion zero modes. To expose further puzzles, recall that

the topological charge of the antiholomorphic instanton,

which is defined by the integral of the action functional den-  With a fair amount of guesswork based on underlying

sity F over the Euclidean spad¥, equals symmetries, we were able to show that the action functional
density can be packaged into the following form:

B. Instanton polarization by non(anti-)commutativity

_ 4 o
Qinstamon:f 4d X—2= -1
1 8m 1% vidently, dependence of the result on the fermion zero mode
would lead to Grassmann-valueghumber contribution to the to-
It takes an integer value, though in general the integral depological charge. This is unphysical.
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F=98(p" = C?p " Zxix' (ul “+64C% Lol 0" 1.
2

L
Yw
X+ \/ECW—CZ&

X
2p*

xix'
16

+p2+2\/1—00(?,f‘—

+ 202@?( 1877,

— 2
_M +p2

p*

-2 —
iX W
X— \/1—(EW_C2&

2p*

= e

— -2
XiX
p4

(39

+ 26%?( 18777,
Here we have introduced the following shorthand notation:
c=.c2

Wa&E nuzz&’ CZE decaﬁ'

N

Notice that, in Eq.(35), the two square brackets are ex-
changed by the inversioHl in R* (which is the Euclidean
version of the combined operation of pariyand time re-

versal T); since N is an antichiral fermion]I essentially
rotates all the fermion zero modes by”?= +i. Therefore
the new expressiof85) of the instanton density exhibits the
7, antipodal reflection symmetry manifestly. Ttis reflec-
tion is nothing but a subgroup of theseudd SO(4) sym-
metry discussed below EQ33).

PHYSICAL REVIEW D 69, 126004 (2004

Begin by noting that the term proportional to

C%x' xiw*x,,;, flips sign under the aforementioned antipodal
7., reflection. Bearing in mind that, is nothing but a sub-
group of S@4) (pseudgsymmetry, one finds that the instan-
ton densityF is polarized along the direction set by

C%xix'
ot

A wi

‘ (36)

As the dipole momend ; is proportional toC2, we discover
that the first moment ofF is induced as a consequence of
turning on noranti- commutativity—an important indication
that the Grassmann-even spdt® and the Grassmann-odd
space spanned byt, #%) are not merely in a direct product,
but rather intertwined. This is as expected. We have shown
in Sec. Il that the conformal extension of the
non(anti-commutative superspace is nothing Wt 3 con-
formal superspace. We will make this more concrete in the
next two subsections.

Notice that the dipole momeuk, is also set by the prod-
uct of supersymmetry and superconformal zero maaeko

the off-diagonal zero modes',;. In par@ular, dependence

on the latter is quite interesting singé, x; zero modes are
the ones present only for higher-rank gauge gro@ps
=U(N=3). It also follows that the instanton in the(2)
gauge theory does not support enough Fermionic zero
modes to exhibit the full intricacy of physics on the
non(anti-)commutative superspace. In fact, 8= U(2), the
instanton densityF in Eq. (33) is considerably simplified and
one observes the maximum»t“=0. It is also S@4) rota-
tionally symmetric and thus carries no first moment.

After all, polarization of the antiholomorphic instan-
ton is fully consistent with symmetries of the
non(anti-)commutative superspace. As explained in Sec. I,
the norjanti-)commutativity breaks the underlying $0
Lorentz symmetry to the antichiral SU(g$ymmetry, acting

In passing, we would like to emphasize that, though eaclyn antichiral, dotted indices. This implies that the instanton

square bracket in Eq35) seems to contain a nonanalytic
expression ofC%?, the instanton densityF is actually
analytic—EQq.(35) is merely rewriting Eq.(33), whose ex-
pression is manifestly analytic i@~.

The alternative expressia35) for the instanton density

configuration would no longer be a spherically symmetric
configuration oriR*, but rather a configuration invariant only
under SU(2). Indeed, we have just observed that the in-
stanton is polarized such that its topological charge density is
axisymmetric, where the polarization direction is set by the

now offers an intuitive understanding of the effect of product of supersymmetry and superconformal zero modes.
non(anti-)commutativity. From the two square brackets in" e should, however, emphasize that the induced polariza-
Eq. (35), one readily finds a variety of deformations. A classtion is set entirely by the fermion zero modes and hence
of deformation of the most interest to our discussion is thegrassmann valued. Modulo this point, what underlies the
one arising from the last term in the round brackets, proporpolarization is precisely the same physics as the UV/IR
tional to C%y;x'w. We will now argue that this term corre- mixing phenomenon discovered in RélL7] and by now
sponds to polarizingF so that the dipole moment is well understood in terms of open Wilson lingk3,19 in the
induced!! noncommutative spacetime. We recall that the UV/IR

mixing phenomenon was also shown to take place in

non(anti-)commutative superspa¢0]. With such a caveat,

e also note that all deformation terms in Eg5) other than ~ We plot the induced dipole-moment component of the instan-

A, contribute to deformation of the monopole-moment componenton density in Fig. 1, and contrast it with the monopole-
in the instanton density. moment component.
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FIG. 1. Contour plots of the instanton dens{B88). We consider the simplest case whE?e: 7°=0 and present the section i3—x,
plane:(a) section of theC-independent, monopole-moment component of(Bg); (b) dipole-moment component for real part of coefficient

of C29%¢tyix'; (c) dipole-moment component for imaginary part of coefficienC8f ¢y x'.

C. Geometry of moduli space: Information metric The information metric has many virtues compared tolthe
metric. First, as the instanton densifyis gauge invariant,
the metric defines the moduli space geometry with manifest
gauge invariance. Second, the metric is geodesically com-

instanton moduli spaceM. Traditionally, the instanton . ) .
moduli space is defined in terms of the so-call@dnetric— plete. Third, elementary scaling analysis proves that the met-
ric exhibits manifest conformal invariance.

the induced metric on the space of zero modes obtained by- In this section, we shall compute Hitchin's information

. 12 H 2
choo_smg a conformal _structu_re dﬂf‘ Practlf:ally, t_hEL metric explicitly for a single antiholomorphic instanton, and
metric is not so convenient, since it comes with various teChjarn the geometry of the moduli spadd. Recall that the
nical complications. For example, the formalism is not mani-yqqyji spaceM is five dimensiona[apart from the trivial
festly gauge invariant, the moduli space is typically aﬁllctedsu(z) C U(2) gauge orientatior}s spanning the instanton’s
with small instanton singularities at a finite distance in thesjze and center. To introduce the instanton center position
. 3 . . . . !
moduh_spacé, and the metric dqes not exhibit ma_nlfest CON- o first shift the coordinates® on R% in Eq. (33 by
formal invariance though thénti-) self-dual equation does. a(x—X)“d where X now refers to the center of the anti-

To remedy these shortcomings, Hitchin proposed an altern .
tive definition of the moduli space metric based on the So_mstanton, and compute the integra). After some alge

called information metrid9,21,24. The idea is that one bra, we find that
views the instanton action density as a family of probability

We will now dwell on the other side of the instanton
density (33), (35), viz. variation of the density over one-

trib 4 ; 2|  dp? 15 320
distributions onR*, parametrized by the Grassmar_m_—even G rpdZAdZB=2 | 64 P 1- > c?s,— ~2-c?s,
and Grassmann-odd zero modes of instantons. Implicit to the 5 p? 7p° 7p?
idea is an assumption that the moduli space is a submanifold
of the infinite-dimensional affine space of athoothvolume dx? 5 ., 88 ,
forms with unit volume. Since we are more interested in +64 2 1--+C Sl_;c Sz
incorporating all the spacetime symmetries inherent to the p p P
theory and studying Qifferent_ial geometry on the moduli 32C2 16C2
space, we prefer studying the information metric overlthe + —=—=T"dXdp— ——dX, dT"

: 70’ 6
metric. P p
As mentioned, Hitchin’s information metric is defined en- 392 102402

tirely in terms of the instanton density§, and is given by + = dpdS, + - dpdS,|. (39

p p
b o[ ga el H introduced the shorthand dT
GapdZ2dZP=dz2dZ gAx (37) ere, we introduced the shorthan no;atﬁln S, andTp,
R* F for three independent products involving the fermion zero

modes:

2For a compact hyper-Kder manifold, it is well known that the oy s i m—
L2 metric on the moduli space is again hypeifia. This assertion Si=0al XXy S=8al 00, Tm=xix 770, 0%
extends also to noncompact hyperkiier manifolds such aB*. (39
13This is particularly a drawback for making contact with Mal-
dacena’s gauge-gravity correspondefit4], since differential ge- As they are quartic in Grassmann-odd variables, the product
ometry is ill defined at the singularity. of any two such objects vanishes identically.
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Much as the instanton denSlty itself, the information met- -however, that the natural coordinate is pd])utp This may

ric (38) is quite complicated because Gfdependent Fermi- indicate thatp should be interpreted as the size modulus of
onic zero-mode effects. This is again the manifestation thaﬁwe deformed instanton.

the moduli spaceM is not the standard superconformal su-
perspace, but rather its n@mti-)commutative counterpart
with A’'=3 supersymmetry explained in Sec. Il. Nontrivial
mixing between Grassmann-even and Grassmann-odd coor- Having examined the instanton density and the informa-
dinates onM as observed in Eq.38) originates from the tion metric, one might be able to infer the results from con-
non(anti-)commutativity. All these mixings, however, are re- siderations of the spacetime conformal symmetry identified
movable by a suitable change of variables. Introduce the folin Sec. Il. Indeed, the functional form of various terms in the
lowing shift to the Grassmann-even coordinaxgsand p: information metria(38) (but not the coefficienids determin-
able by those symmetries. Let us briefly discuss these sym-
metries and their consequences for the m&B8).

D. Symmetry considerations

(i) Translational invariance on the conformal slice bt

) ) o ) ) ) guarantees that the metric componeffs do not depend
Notice that we still maintain the translational invariance on  ypon the translational Bosonic zero modess.

conformal slice ofR* in X™. In terms of the shifted vari- (i) Global rotation in thdJ(N—2) part of the gauge group
ables, the information metric becomes (i.e., unitary rotations acting by’ —>U'1X xi—Ulxi )
restricts possible contributions of the bi- fundamental

gABdZAdZB d~p . iczsl_ iczsz _ Fermionic zero modes_tE_)(i ord(xix"). _
5 | 72 p® 7p? (i) Chiral SU(2). and antichiral SU(2) symmetries(act-
_ ing on dotted and undotted indigesestrict possible
N d_X2 1— 3 C2S,+ = C7S, contractions of supersymmetrlc and superconformal
02 n6 Tt 752 Fermionic zero modes t0,{%, 7%7,, 7% (%, and

7 C Pl L7, 7°CopCrYaT, L7, (42

(40)

Here we also made use of the Fermionic statistics and of the
One readily sees that, in the limit that the Grassmann-odéact that we can have at most t\mﬁ if only one » and one
coordinates vanish, the information metric is precisely the; are present. Notice thaj* U - {* can appear only in the
metric of the hyperbolic spacéls, describing the five-
dimensional Euclidean anti—de SittéAdS) space. There-
fore, for nonzeraC*?, one would still interpret the instanton
density F as the bulk-to-boundary propagator obeying

combinationd X, n craag“ in order to be consistent with
Lorentz (pseudg@symmetry and translation symmetry.

The first term in Eq(42) is removable in the information
metric* To show this, we notice that there are only two
5 1 ways of incorporating the first term in E42) consistently
A,(f)ﬁ]-‘(z;x)zo for zZA+0, with Lorentz (pseudg@symmetry:

X7, CP05 %, CrneXa 7, CP0 L% (43)

1 F
=_—54 i o
ZI/IATOS_ZJ:(Z )=~ o7x) obeymgjw 8m? L The first term is linear irC*# and thus cannot appear in the
(41)  instanton densityF or in the information metric. Recall that
the part of the solution that is linear @ is a singlet under

whereA ) refers to the scalar Laplacian operator defined bySU(2). Using the Fierz identity22),
Hitchin’s information metric(38), and the limitZA—0 is
interpreted as taking all Grassmann-even and Grassmann- Cmnffgaz
odd coordinates approaching zero while hold®¢f finite.

A quantity of interest is the volume measure of Hitchin’s we observe that the second term in E4p) becomes
information metric, as it defines the sum over instanton ef-
fects in /=3 super-Yang-Mills theory. From Ed40), one CrrdX, naC“ﬁam-?’ZannaC“Ban@C”ye,,B?
readily finds that Be

- CPY
O'npaC 6,}/'8,

: PB a N e
128 == 5CPPCpd X, L

d Vol= \/detGdpd*X where detj= )
5 p10

Remarkably, we find that the volume form is exactly the “The second term can be written in terms gfo'™. 2% due to
same as in ordinary Yang-Mills theories. It should be notedrelationC,;C*7= %Caﬁcﬂ“ag.
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Putting these considerations together, we find that only th&orentzian spinor notation. We freely change betweeid$O
following combinations of zero modes are permitted by theand SU(2) X SU(2)g indices, viz.

spacetime symmetries: ‘ _

Jae= 0 Omi DguXPP=—2585"

815Zdzc(;Xir SZEZXZQWQ”M ’
__a_a. — T i a. M a . m 1_&01 .
Ss=n"n"xix',  dXnTm=dXmxix' 7“0 L% Xaa™ O goXms  Xm=~ 50m Xaa

and they should be multiplied b®? in the information met-
ric to be consistent with (1) (pseudgR symmetry.

(i) The fermion zero modes transform under the= 3 i
supersymmetry as follows: Vea=0aat E[Aad -

We normalize the gauge covariant derivatives as

(0X) qo=4i €L, For the U2) gauge group, we also freely interchange color

indices between adjoint and spinor indi¢@8] (suppressing

2_ i 2
op"=4ip*(en), spacetime indices

on=4in(en), 1
_ A=AST? AP (2IT,A)0  try ) TATP =7 570,
Sx=6ix(en), 2
Sx=6ix(en) In spinor notation, the traceless &Ysubgroup is symmetric
' in the spinor indices, b, while the diagonal (L) subgroup
52:0 is proportional toe?®. In explicit form,

{ab} _ _acp b b_ {ch}
From these rules, one readily finds that A €Ay Ad = €A

5(5—2 =0; 5(%) =0; and &(xxn?)=0.

p p

Both the instanton densit§ and the information metriGag

are invariant under these transformatidns. ~
(ii) Powers ofp in the instanton densit§ and the infor- where Fmnn=3 €mnpdpq-

mation metricG g are determinable by elementary dimen- and 3 (F P mn) = * (F/\F).

sional analysis. The gauge coupling constantsr are customarily taken
as per Lorentzian theory conventions:

In differential forms, the gauge field strengths are

1 1.
F= Eandxm/\dx”; *F= Eandxm/\dx”,

Thus 3(FnFmn = *(F/A*F),
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The zeroth-order(undeformed solution for the gauge
APPENDIX A: CONVENTIONS AND NOTATION field is
The conventions and notation we adopt are as fol-
lows. The signature of Lorentzian spacetinie®! is (0)ab}_ a
diag(+ ———). Wick rotation to Euclideari* is achieved App = X2+p 2, 209 XB+ 5 pail
by x°—ix* and S, grentzian— 1 Seuciigear W€ cONtinue adopting
F{0)abl 8'—(5 N+ 8255, (B1)

5There is a possible combination of the forn€2S, Cas (x*+p?)? b
—CZX,X 7n“n, that is consistent with all symmetries; thus it can in _
principle appear in the instanton densifyand in the information Consider a fermiorw transforming in the adjoint repre-
metric Gog. On the other hand, explicit computation indicates thatsentation of W2). The zeroth-order solution for its zero
the coefficient of this term is zero. modes is
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TABLE |.  Scaling dimension an& charge of zero modes. ianAn—VzAm= —CrVid.
dim U(1)r This equation is solvable by taking an ansatz

o o 8 An=Coni¥a®, €2
Na 3 -1 which automatically satisfies the gauge conditi®pA,
- -1 -1 =(il4)Cp Fmn®=0 because of the anti-self-duality of
¥ —3 -1 Fmn- Using the relationF,,C.«=F.Cnm. the left-hand
" -3 -1 side of Eq.(C2) can be rewritten as

I

[
. ianAn_VzAm: - _[Vkakl]CmIq)_CmIVIVZq)-
O — 078 pOyB o (028 2
NP G=F o g0+ F  pXan=F &8 (B2) .
. - o We thus demonstrated that there exists a natural an6ajz
Consider next fermiong, x transforming in the fundamental for the gauge potentia,,, allowing us to reduce E¢C1) to

and antifundamental representations of2)) respectively.  a single differential equation of Poisson type:
The zeroth-order solution for their zero modes is
_ ViD=,
) — ) — ) X'
INETNCIEUS N =— =87, HereV is a covariant derivative in an appropriate represen-
(x%+p%) tation of the gauge grou@.

Y(O)-i a—) (0fa}. = _Xi APPENDIX D: DETAILS OF THE COMPUTATION
a a 2 2732 a’
X+ . . . . .

( P7) In this appendix we present some intermediate steps in

See Table | for the scaling dimensions @@harges for the computing the solutioii27)—-(32). We start with the conven-
fermion zero modes. tional instanton solution and construct the deformed instan-

In the instanton solution for gauge gro@-=U(N), x; is  ton in perturbation theory in the n(anti-)commutativity pa-
the fermion component transforming as a bi-fundamental untameterC*”.
der UN—2), andy; is its complex conjugate. Starting with
an arbitrary zero mode, one can always perform a constant
U(N—2) rotation, so that there is only one nontrivial com-  \We begin by solving the equation for the first correction
ponentys. In other words, one can reduce the general distg the gauge field\(":
cussion ofG=U(N) with N=3 effectively toG=U(3).

1. First order for the bosons

XixX'

4
(Fy b= — _c 5 3-64p v ra_
APPENDIX C: SOLVING DIFFERENTIAL EQUATIONS ap/a 2 ~ap%b (X2+p2)4 @ (X2+p2)3 ’
While constructing the instanton solution in perturbation o
theory, we repeatedly encounter equations of the following (FO)i tic Yix!
. = | B o
form: ap’i E(X2+p2)3
VA= ViAm+ €mniiViAl = — Cinnd, (Cy 5
. - FOy o YT =
where the covariant derivativé, is computed with instanton ( aﬁ)a - aﬁ(xg+ 2)7/2§aX J
background fieldA(®) taken in the appropriate representation p
of SU(2). Applying a differential operatog,,,Vs to both 1202
sides of the above equation, we fifid (FWya= ¢ 2 é
ap/i aﬁ(xz+p2)7lzx' )

2iF 1 A+ 2V, VA — 2V2A, = — €110/ VeCrnnd.
o ) ) ) As discussed in Appendix C, an ansatz
Here we used the definition &f,,, and its anti-self-duality:
i AV=c .V,
VinVn ™ VaVin= 5 Fmn, - €mnresm=2Fn reduces the entire problem to solving a Poisson-type equa-
tion in the instanton background, and the solution of the
In the Lorentz gaugeWA=0), we have Poisson equation is given by E®8).

2. First order for the fermions
16To simplify notation, we usé ,, instead ofF (%) in this appen- o
dix. At the next step, we solve the equation fdi):
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. i .
T Vh D= = S[AQ) o A O]

aa'M
i .
= = 5 Crd (@), o7 X,

Using the Fierz identity and equation of motion i), we
reduce this equation to

o .
7 Yk =5 Clo: Vi @D A O],

With an ansatz
vl)&:;m&acgvm\p(l) ,

it is reduced further to

e 1 —0):
e V| — 10"V W = S[@W O] =0, (D1)

Notice that this derivation does not rely on the specific form
of A(9: the steps above are essentially the same as those

PHYSICAL REVIEW D 69, 126004 (2004

i
2(VinA) " = 2 CluCil Vim( @IV @) 1+

*3

ConrCrl Ve DV d D+ gkee )1y D11=0.
(D3)

In Sec. V, we put forward the following ansatz f&f):

i
A§n2)=§CK|Ck,CI>(1)Vm<I>(1)+CmnVn¢(2). (D4)

With the ansatz, EqD3) was reduced to an Poisson equa-
tion for @), Notice that, in special situations, the supercon-
formal modes were set to zero, the solutidf?) was such
that Trd WV, dM=0. As suchA? did not have a compo-
nent proportional to the identity matrix. In the presence of
superconformal modes, IrMV, &™) is no longer zero, and
we found it convenient to modify the ansdiz4) so that the
trace component iAEnZ) is avoided. The simplest such modi-
fication is

i -
A‘nf)zl—eck.ck.qﬂ)Vmcp(l)Jrcmnvncb(Z), (D5)

described in more detail in Sec. V for the special situation

7,=0.
Using an identity for sigma matricess,on=— %7mn

+20™ and anti-self-duality of the undeformed solution
(which leads tax™"V,,V,,=0), we can express E¢D1) as a

Poisson equation:
. o .
VA= =07 VI, JWe= S 0],

Explicit evaluation of the current gives

oo EX L TE
(J%a 5a(r2+p2)3' (3% 2(I’2+p2)3’
(Ja)ai:—faa(r2+—p2)7,2[(r2+92)(za?+f)277“77a)
+4p2gEP], (D2)
. Ax __
(Ja)aa:—5402+—);2)7,2[(r2+p2)(§a§“+p2n"77a)
+4p%EEP).

We used the following relation: @ng_amn:@?—@?
—x%5%y, . The solution of Eq(D2) is given by Eq.(31).

3. Second order for the bosons

and it does not spoil the Poisson equation¥dr), since the
difference between Egs.(D5) and (D4), SAP)=
—(i/16)Ci Ch V(@M D W), satisfies  FndA) " =0.
With the ansatZD5), we get the equation fob(?):

V2@ =iC VDDV d D+ gkee )1 v y=32),

Explicit evaluation of the current® yields

C o . . ca
(2)y b— " ~mK_“Knyb _ a 2 2
J )a (p2+l’2)5(0- n) aXanXlXI p2 (r +69)
+(r2=4p?) n“n,— 1077“&5?]
A0xix' = — s
- mfaa[ia(xc)b“ﬂa+ {P(xC)*n,],
32x; S
(3@)2= (r2+—p2')w[(r2+9p2)§&§“(x0)a“na
+8p2 797, (XxCx)2,L7],
. 320, SR
(1@, = (rZ+—p%i,2[<r2+9p2)a,/:“<xc)ﬁ“na
+8p2 77, (XCx)P, L.

Repeating the arguments of Sec. V, we find the equatiorSolving the Poisson equation, we get E29).
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4. Second order for the fermions

In the second order i€, we get the following equation
for the fermions:

PHYSICAL REVIEW D 69, 126004 (2004

—szpf)='Eaj&vm([qﬂl),)?l)&]+[q><2>,>\70>&]).

The solution is given in Eq(32).

o VA= —'E[Asnl) o™ AW —'E[Aﬁn” o™\ (0]

i .
= Ecmnvn([q)(l)vo'r:a)\(l)a]
+H[ DA, g™ \(0)a))

i .
+ 5 Cml @@, 07 Vn (]

5. Third order for the bosons

Finally, in the third order inC, we need to solve for the
gauge fields only. The equations are

a

i i N
2(VimAD) "+ S2L A AT + 5 Cn RO

ORI R o,

Direct computation of the current yields

1 .
+ 3—2Ck|Ck|[CI>(1)Vm(D(1), US&FO)Q] .

(VoA = VAR T = —

After straightforward algebra, this equation is simplified as

i .
- _CmnVn([(D(l)ao'T&)\(l)a]

A

+H[D@) g™\ O]

i—C CuiCu 327° 0oL ol “XiX
mn- 4 pZ(r2+p2)5

2
X diag3(r4—4r2p2—p*),3(r*
—4r?p?=ph),2(r*=10r%p%+ p)),

where the nonzero entries reside in th€3Ublock. This

equation is soluble by taking

CkICkl
32

o™ Vo [dD,[ DD XOe]],
This suggests the following ansatz:

Y(z)az _

CiC NG 2
35 (PO [@W N+ g Clv, wid),

which leads to the following Poisson-type equation:

PG =

3
Agn)zcmn&nq)(g)!

where

o CuCu n* na?;f‘%x‘

diag(r+6r2p2+3p*r*
4 p*(r2+ p?)3

+6r2p2+3p*,2(r*+4r2p%+ p*)).
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