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U„N… instantons onNÄ1
2 superspace: Exact solution and geometry of moduli space
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We construct the exact solution of one~anti-!instanton inN5
1
2 super Yang-Mills theory defined on

non~anti-!commutative superspace. We first identifyN5
1
2 superconformal invariance as maximal spacetime

symmetry. For the gauge group U~2!, the SU~2! part of the solution is given by the standard~anti-!instanton,
but the U~1! field strength also turns out to be nonzero. The solution is SO~4! rotationally symmetric. For the
gauge group U(N), in contrast with the U~2! case, we show that the entire U(N) part of the solution is
deformed by non~anti-!commutativity and fermion zero modes. The solution is no longer rotationally symmet-
ric; it is polarized into an axially symmetric configuration because of the underlying non~anti-!commutativity.
We compute the ‘‘information metric’’ of one~anti-!instanton. We find that the moduli space geometry is
deformed from the hyperbolic spaceH5 ~Euclidean anti–de Sitter space! in a way anticipated from reduced
spacetime symmetry. Remarkably, the volume measure of the moduli space turns out to be independent of the
non~anti-!commutativity. Implications forD branes in the Ramond-Ramond flux background and the gauge-
gravity correspondence are discussed.
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I. INTRODUCTION

Recently, there has been considerable development in
derstanding superstrings andD branes in the background o
the Ramond-Ramond flux. Take type-IIB superstring the
compactified onX3R4, whereX is a Calabi-Yau threefold
Turn on a Ramond-Ramond five-formG5

1 on a holomorphic
cycle of X; the flux corresponds onR4 to a self-dual gravi-
photon flux. IntroduceD3 branes whose world volume fill
R4. For closed strings, the graviphoton flux deforms t
four-dimensionalN52 supersymmetry algebra, in whic
half of the supersymmetry is realized nonlinearly. For op
strings on the EuclideanD3 branes, the graviphoton flu
deforms theN51 supersymmetry@1–5#. The deformation
induces non~anti-!commutativity among the Grassmann-o
coordinates,

$ua,ub%5Cab, $ū ȧ,ū ḃ%50, $ua,ū ȧ%50, ~1!

and breaks the underlyingN51 supersymmetry toN5 1
2 .

Accordingly, the low-energy world-volume dynamics of
EuclideanD3 brane is governed by a non~anti-!commutative
super-Yang-Mills theory withN5 1

2 supersymmetry.1 The
N5 1

2 super Yang-Mills theory is then defined by2 the action
functional @4#

*Electronic address: britto@ias.edu
†Electronic address: fengb@ias.edu
‡Electronic address: lunin@ias.edu
§Electronic address: sjrey@snu.ac.kr
1For recent works dealing with various aspects of theories w

N5
1
2 supersymmetry, see Ref.@6#.

2Our conventions and notation are collected in Appendix A.
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SYM52E
R4

TrF i t

8p
Wa!WaG

u2

1TrF i t̄

8p
W̄ȧ!W̄ȧG

ū2

, ~2!

where the non~anti-!commutativity~1! is realized in terms of
the ! product:

A~u!!B~u![A~u!expS 2
1

2
Cab

]Q

]ua

]W

]ubD B~u!. ~3!

Though the non~anti-!commutativity parameterCab carries a
nonzero scaling dimension, it turns out that, to all orders
perturbation theory, the non~anti-!commutative deformation
of a renormalizableN51 supersymmetric field theory re
mains renormalizable @7,8#. Intuitively, in Wilson’s
renormalization-group viewpoint, the renormalizability
explainable by chirally asymmetric assignments
scaling dimensions, a possibility made available by
non~anti-!commutative deformation@8#.

We are primarily interested in the low-energy dynamics
N5 1

2 supersymmetric gauge theory. The motivation com
largely from two sides. First, the dynamics by itself is qu
interesting and may provide a novel way of interpolati
between gauge dynamics withN51 andN50 supersymme-
tries. Second, the dynamics may probe the Calabi-Yau ge
etry with the Ramond-Ramond fluxG5 turned on. It then
becomes imperative to understand instantons inN5 1

2 super-
symmetric gauge theories.

In exploring instantons in theN5 1
2 super-Yang-Mills

theory, a variety of interesting questions arise. At the ult
violet fixed point, theN51 theory is known to promote the
Poincare´ supersymmetry to superconformal symmetry. T
superconformal symmetry algebra is SU(4u1) and involves
16 Bosonic generators and 8 Fermionic ones. We will sh
that, once the non~anti-!commutativity is turned on, the sym

h
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BRITTO et al. PHYSICAL REVIEW D 69, 126004 ~2004!
metry algebra is reduced to anN5 1
2 superconformal alge

bra. In this reduced symmetry algebra, the special confor
and the chiral SU(2)L generators~as well as their Fermionic
partners! are removed, and the dilatation and theR-symmetry
generators combine into a single generator of the form
tated precisely by the new scaling dimension assignment
forward in Ref.@8#.

Despite being deformed by the non~anti-!commutativity,
the instanton carries an integrally quantized topologi
charge,

Qinstanton5E
R4

1

8p2F5Z, where FªTrU(N)F`F.

~4!

This is in full accord with the Atiyah-Singer index theore
and assures that the deformed anti-instantons are analy
Cab. There is a good rationale behind this. The instan
supports Fermionic zero modes. What is nontrivial in t
present context is that the instanton solution is corrected
the Fermionic zero modes. Accordingly, the topologic
chargedensityF itself depends not only on the Bosonic ze
modes but also on~even powers of! Fermionic zero modes
Moreover, since the non~anti-!commutative superspace is n
invariant under the full SO(4)5SU(2)L3SU(2)R rotation
group, the instanton would not be rotationally symmetric
general.

It turns out that the above two issues are intimately
lated. For the gauge groupG5U(2), we will find that the
one-instanton solution exhibits trivial dependence on
non~anti-!commutativity—the SU~2! part of the solution is
the standard instanton, and the U~1! part is a multipole con-
figuration induced through Fermionic zero modes a
non~anti-!commutativity. The U~1! part cannot contribute to
the topological charge; this is how the deformed instan
remains consistent with the Atiyah-Singer index theore
The entire configuration is spherically symmetric, viz. t
U~2! instanton exhibits accidentally larger spacetime symm
tries.

For a gauge group of higher rank,G5U(N>3), the story
is far more interesting and intricate. Start with the stand
SU~2! instanton embedded in U(N), and examine how the
non~anti-!commutativity deforms the instanton configuratio
In stark contrast to theG5U(2) case, we find that the one
instanton solution is deformed not only in the U(N22) part
but in the SU~2! part as well. As the attentive reader w
notice, this leads immediately to the possibility that the
pological charge density, and hence the charge itself,
pends on the Fermionic zero modes. We shall find that
topological charge density indeed depends on the Fermi
zero modes, but the charge itself is actually independen
them. The way this is made possible turns out to be nic
intertwined with the absence of rotational invariance in
problem. We will demonstrate that the deformation induc
by the non~anti-!commutativity polarizes the topologica
charge density into a sort of dipole configuration. The def
mation is axially symmetric but is fully compatible with th
antichiral SU(2)R invariance. Thus, once integrated overR4,
the dipolar deformation is washed out, retaining only
12600
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spherically symmetric contribution from the standard SU~2!
instanton. The latter yields integrally quantized topologic
charge.

One can learn more physics from the topological cha
densityF, since it is a function of Bosonic and Fermion
zero modes in addition to being a function of coordina
on R4. What one expects to be modified by th
non~anti-!commutative deformation is the geometry of th
one-instanton moduli space. To explore the issue, we c
pute the information metric of one instanton, first put fo
ward by Hitchin @9#. For small instantons, we find that th
information metric approaches that of a five-dimensional
perbolic spaceH5 ~Euclidean anti–de Sitter space, AdS5).
The asymptotic isometry SO~5,1! is much bigger than the
N5 1

2 superconformal symmetry, so one expects the inte
of the moduli space not to retain theH5 geometry globally.
Indeed, we find that the geometry of the moduli space
deformed for larger instantons—by non~anti-!commutativity,
not only is each metric component deformed, but a
off-diagonal components of the metric are induce
In fact, these corrections are fully compatible with the sy
metries that underlie the theory:N5 1

2 supersymmetry,
R-~pseudo!symmetry and dilatation symmetry. Remarkab
after a suitable change of zero-mode variables, the volu
measure on the moduli space turns out to beindependentof
the non~anti-!commutative deformation. This observatio
bears implications for Maldacena’s gauge-gravity corresp
dence, on which we will elaborate in Sec. VII.

We have organized the present paper as follows. In S
II, we analyze the spacetime symmetry for theories defin
on N5 1

2 superspace. We find that the underlyingN51 su-
perconformal symmetry is broken explicitly to ‘‘half’’ of it,
yielding what we callN5 1

2 superconformal symmetry. Thi
symmetry will provide a useful guideline for constructin
N5 1

2 instantons in subsequent sections. In Sec. III, we
rive self-duality and anti-self-duality equations by localizin
the action on appropriate supersymmetric loci in field co
figuration space. In Sec. IV, we construct the instanton
the gauge groupG5U(2). This is a special situation wher
the instanton calculus becomes almost trivial, due in a ma
part to the trivial back reaction of the fermion quasi-ze
modes to the undeformed instanton. In Sec. V, we const
the instanton for gauge groups of higher rank, namelyG
5U(N) for N>3. To illustrate the general strategy, we fir
set superconformal Fermionic zero modes to zero, and c
sider perturbations by supersymmetry Fermionic zero mo
only. In Sec. VI, we include the superconformal Fermion
zero modes and find the exact instanton solution for ga
groupG5U(N). In both sections, we set out analytic stra
egy in a way adaptable for the Atiyah-Drinfeld-Hitchin
Manin ~ADHM ! method @10#, relegating a direct ADHM
construction for multi-instantons to future work. In Sec. V
we study the profile onR4 of the topological charge density
We find that the density exhibits dipolar polarization, who
size is set by the non~anti-!commutative deformation and
whose symmetry fits precisely with the underlying spaceti
symmetries. We next study the density profile on the inst
ton moduli space by computing Hitchin’s information metri
We find that the geometry of the moduli space asymptote
4-2
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U(N) INSTANTONS ONN5
1
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that of the H5 ~Euclidean anti–de Sitter space! near the
boundary. In the interior, the moduli space of the geometr
deformed by the non~anti-!commutativity, but again in a
form fully compatible with the underlying spacetime symm
tries. We discuss aspects of this observation in the contex
Maldacena’s gauge-gravity correspondence. In the app
dixes, we collect conventions and notation, undeform
SU~2! instanton and anti-instanton solutions, and some
sential steps of the computation for obtaining the exact U(N)
solution presented in Sec. VI.

During the progress of this work, a paper by Imaanp
@11# appeared, overlapping with part of our Sec. IV. We fi
agreement~modulo errors and numerical factors! wherever
both results overlap. Also, while this work was being writt
up, a paper by Grassiet al. @12# appeared, again overlappin
with part of our Sec. IV. We believe that our motivatio
results, and interpretation are in strong contrast to theirs

II. NÄ1
2 SUPERCONFORMAL ALGEBRA

We begin with observations regarding symmetry asso
ated to the non~anti-!commutativeN5 1

2 superspace. The un
derlying ~anti-!commutative N51 superspace is param
etrized by the coordinates (xaȧ,ua,ū ȧ)—Bosonic, chiral,
and antichiral Fermionic coordinates. The superspace
playsN51 Poincare´ supersymmetry. If dilatation invarianc
is additionally endowed, the symmetry is enlarged toN51
superconformal symmetry. This is the symmetry we are m
interested in. For example, if a theory defined on the sup
space has no mass scale, classically and/or quantum
chanically, then the operators and states of the theory
organized in irreducible representations of the supercon
mal group SU(2,2u1) or SU(4u1).

Once the non~anti-!commutativity deformation is turned
on for the chiral Fermionic coordinates as in Eq.~1!, theN
51 supersymmetry is broken toN5 1

2 supersymmetry. This
is seen by examining the deformation of theN51 supersym-
metry algebra. Though the algebra among theN51 super-
space derivatives

Da51]a12i ū ȧ]aȧ , D̄ ȧ52 ]̄ ȧ

remains unaffected:

$Da ,Db%!50,

$D̄ ȧ ,D̄ ḃ%!50,

$Da ,D̄ ȧ%!522Paȧ ,

the algebra among theN51 supersymmetry charges

Qa51]a , Q̄ȧ52 ]̄ ȧ12iua]aȧ ~5!

now obey deformed anticommutation relations:
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$Qa ,Qb%!50,

$Qa ,Q̄ȧ%!52Paȧ ,

$Q̄ȧ ,Q̄ḃ%!54CabPaȧPbḃ . ~6!

The last relation indicates that repeated action of theQ̄ su-
percharges is ill defined, violating the Leibnitz rule.3 As
such, Eq.~6! does not form an algebra. The subalgebra g
erated by theQa’s is still preserved, and this defines pr
cisely the chiralN5 1

2 supersymmetry algebra.
Implicit in the above route to theN5 1

2 supersymmetry is
that the non~anti-!commutative superspace is parametrized
terms of so-called chiral coordinates (y,u), wherey,ȳ refer
to chiral and antichiral Grassmann-even coordinates:

yaȧ
ª~xaȧ22iuaūȧ! and ȳaȧ

ª~xaȧ12iuaūȧ!.

Various considerations point to this as the correct cho
First, in terms of the chiral coordinates, as observed
Seiberg@4#, chiral and antichiral superfields are definable
a manner compatible with the non~anti-!commutative !
product ~3!. Second, theN5 1

2 superspace can be param
etrized uniquely by (y,ua), for which theN5 1

2 supersym-
metry acts as a chiral Grassmann-odd translation:

~yaȧ,ua!→~yaȧ,ua1«a!.

Having identified the canonical choice of coordinates
N5 1

2 superspace, we are now ready to analyze space
symmetries. In doing so, we will come across the idea@8#
behind the intuitive proof of renormalizability of non~anti-!
commutative field theories. In Ref.@8#, it was argued that the
most natural assignment of scaling dimensions is such
ua is dimensionless, and henceCab also is dimensionless
The new scaling dimension is now measured as a partic
linear combination of the conventional scaling dimensi
and theR-symmetry charge. In other words, the new dila
tion operatorDnew is a linear combination of the conven
tional dilatation operatorD and theR-symmetry chargeR.
We will now show that this is precisely what comes out
the analysis of spacetime symmetries associated withN5 1

2

superspace.
We claim that, on the non~anti-!commutative superspace

the spacetime symmetry is realized on the following set
generators:

M̄ ȧḃ , Dnew[D2
1

2
R, Paȧ , Qa , S̄ȧ, ~7!

which we refer to as theN5 1
2 superconformal symmetry

generators. Notice that the special conformal transforma

3Note, however, that a single action of theQ̄ charge is meaning-
ful. In particular, the second relation in Eq.~6! indicates that acting

Q̄ȧ on theN5
1
2 superchargesQa generates a translation onR4. In

the next section, we will use this observation to derive instan
equations.
4-3



u
er
tio
u

ar
el
i-
a

e
ir

in

es
ce
ha

d
a

-

e-
-
in-
s
es of
we
ing
et-

ng

late
nd
de-
-

ion

of

c-

se
ual

e
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is no longer part of the symmetry, so the symmetry gro
does not encompass the conformal transformations. Rath
should be viewed as supersymmetrization of the dilata
transformation. This implies that, at a renormalization-gro
fixed point, scale invariance of non~anti-!commutative field
theories would not be enhanced to superconformal inv
ance, in stark contrast to the more familiar quantum fi
theories@13#. Implicit to the latter is the requirement of un
tarity and Poincare´ invariance, but these are precisely wh
we drop in non~anti-!commutative field theories.

The proof of Eq.~7! is elementary. Begin by realizing th
N51 superconformal generators, again in the basis of ch
superspace coordinates (y,u,ū). They are

M̄ ȧḃ5
1

2
yg

(ȧ]gḃ)2 ū (ȧ]̄ ḃ) ; Paȧ5 i ]aȧ ;

Mab5
1

2
y(a

ġ]b)ġ2u (a]b) ,

Kaȧ52 iya
ḃyb

ȧ]bḃ12iy ȧ
b

ub]a12iyaȧ

3~ub]b1 ū ḃ]̄ ḃ!14uaū2]̄ ȧ12iya
ḃū ḃ]̄ ȧ ,

R5 iua]a2 i ū ȧ]̄ ȧ ;

D52
i

2
yaȧ]aȧ1

i

2
ua]a1

i

2
ū ȧ]̄ ȧ ,

Qa5]a ; Q̄ȧ52 ]̄ ȧ12iua]aȧ ,

S̄ȧ5y ȧ
a

Qa12i ū2D̄ ȧ ;

Sa52~ya
ḃ14iuaūḃ!Q̄ḃ12iu2Da .

It is now straightforward to check! ~anti-!commutators
among these generators. In doing so, we need to take
account the non~anti-!commutativity among the ua’s
as in Eq. ~1!. As mentioned above, all other coordinat
~anti-!commuteprovided one adopts the chiral superspa
coordinates. One finds by straightforward computation t
the algebra closes on the subset~7!, whose nonvanishing!
commutators are

@M̄ ȧḃ ,M̄ ġ ṙ#!5eȧ(ġM̄ ṙ)ḃ1eḃ(ġM̄ ṙ)ȧ ,

@M̄ ȧḃ ,Pgġ#!54Pg(ȧeḃ)ġ ,

@M̄ ȧḃ ,S̄ġ#!5e (ȧġS̄ḃ) ,

@Paȧ ,S̄ḃ#!52i eȧḃQa ,

@Dnew,Paȧ#!52 iPaȧ ,

@Dnew,S̄ȧ#!51 iS̄ȧ ,

while the rest do not even form an algebra because the
formation induces terms violating the Leibniz rule, much
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the last relation in Eq.~6!. We notice that only those genera
tors whose expressions do not contain the coordinateu are
the ones preserved by the deformation.

The algebra~7! shows that translational invariance is r
tained, while~half of! the SO~4! rotational and special con
formal invariance are lost. Therefore one expects that an
stanton in N5 1

2 would produce only those zero mode
associated with these generators, and span the coordinat
one-instanton moduli space. In the following sections,
shall see how this restricted symmetry plays out in add
deformation terms to the one-instanton solution and the m
ric on the moduli space.

III. „UN…DEFORMED INSTANTON EQUATIONS

In this section, we set up the problem of constructi
instantons and anti-instantons inN5 1

2 super-Yang-Mills
theory. First, and to help set up our notation, we recapitu
the definition of the theory. We then derive instanton a
anti-instanton equations and argue that with the self-dual
formation by Cab, the anti-self-duality equations are de
formed, while the self-duality equations are not.

Expanding in terms of the component fields, the act
functional of the non~anti-!commutative Yang-Mills theory
~2! is given by@4#

SYM5
Im t

4p E
R4

TrF2
1

2
FmnFmn2 ill̄CmnFmn

1
1

4
~ll̄ !2CmnCmn2 i l̄s̄m¹ml1D2G

2 i
Ret

8p E
R4

Tr FmnF̃mn . ~8!

Here we take the gauge group to beG5U(N).4 We also
denote the coupling parameters in the convention
Minkowski spacetime

Ret[
1

2
~t1 t̄ !, Im t[

1

2i
~t2 t̄ !, ~9!

but, because the theory is defined on the Euclidean spaceR4,
we interpret them as referring totwo independent complex
coupling constantst,t̄. In particular, by takingt or t̄ to
infinity, one can localize the super Yang-Mills action fun
tional toD (aWb)50 or D̄ (ȧW̄ḃ)50 field configurations, viz.
anti-self-duality and self-duality configurations. Decompo
the gauge field strength into self-dual and anti-self-d
parts:

4Under the! product ~3!, the enveloping algebra involving th
Lie algebrasu(N) is u(N). We adopt the conventions that theu(N)
generatorsTa (a50,1, . . . ,N221) are normalized as TrTaTb

5
1
2 dab, and the gauge covariant derivatives are¹aȧ5]aȧ

1
i

2
@Aaȧ ,.#.
4-4
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Fmn
(1)[

1

2
~F1* F !mn5

1

2
Fabsmn

ab ,

Fmn
(2)[

1

2
~F2* F !mn5

1

2
F ȧḃs̄mn

ȧḃ .

We will now derive the localization to self-duality or ant
self-duality configurations explicitly.

A. Antiholomorphic instanton from anti-self-duality

To derive the anti-self-dual equations, we arrange the
tion functional~8! into perfect squares involvingF (1) as5

SYM5
Im t

4p E
R4

TrF2S Fmn
(1)1

i

2
Cmnll̄ D 2

2 ilsm¹ml̄1D2G
2

i t̄

4pER4
Tr F`F. ~10!

The last term is a topological invariant, so the action fun
tional has a critical point at which

Fmn
(1)1

i

2
Cmnll50, sm¹ml̄50, l50, D50.

~11!

These equations define anti-self-duality conditions, wh
solutions are anti-instantons. Notice that, compared to
N51 supersymmetric anti-self-dual equations, Eqs.~11!
are deformed by the terms proportional to the self-d
non~anti-!commutativity parameterCmn . Notice in Eq.~10!
that, though expressed into a perfect square, the first ter
not positive definite—the non~anti-!commutativity paramete
Cmn is in general complex valued and the gauginol̄ is no
longer a Majorana fermion in Euclidean space. So, the c
cal point~11! should be understood as an enhanced sym
try point rather than a minimum action configuratio
Closely related to this, in the first work of Ref.@7#, it was
shown that the supersymmetry state is not a configuratio
minimum energy but of enhanced symmetry. In fact, ow
to the non~anti-!commutativity, the energy~defined as eigen
values of the Hamiltonian! is in general complex valued.

The anti-self-dual equations are also derivable by con
ering theN5 1

2 supersymmetry transformations. In the acti
functional ~2!, the chiral field strength superfield is given
the Wess-Zumino gauge as

Wa~y,u!52 ila~y!1FuaD~y!2 i S Fab~y!

1
i

2
Cabll~y! D ubG1uu¹aȧl̄ ȧ~y!.

Component fields transform under theN5 1
2 supersymmetry

as

5This method was also considered independently in Ref.@11#.
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dla5 i eaD12S Fab1
i

2
Cabll D eb ,

dFab52 i e (a¹b)ḃl̄ ḃ,

dD52ea¹aḃl̄ ḃ,

dF ȧḃ50,

dl̄ȧ50. ~12!

Take in Eq.~2! the limit t→`. In this limit, field configu-
rations are localized to

05Tr eab@Wa!Wb#u2

5Tr eabF2
1

2
~dal!~dbl!2 iladbDG .

We find that the configuration is localized where theN5 1
2

supersymmetry variations vanish. Moreover, inferring the
persymmetry transformation rules~12!, the localization locus
is precisely the critical point specified by Eq.~11!. We will
refer to a configuration satisfying the anti-self-duality con
tions ~11! as anantiholomorphic instanton, since its strength
is proportional to multiple powers of exp(22pit̄).

Notice that each equation in Eq.~11! is preserved unde
theN5 1

2 supersymmetry transformations~12!, but that does
not mean that the functional form of the solution is preserv
too. In fact, we shall find in the next section that the soluti
is corrected through theCab-dependent fermion bilinea
term in Eq.~11!. This correction has the following implica
tions. Suppose we start with the ordinary instanton solv
the anti-self-duality equationF (1)50. This instanton is an
L2-normalizable solution of thel̄ equation in Eq.~11!. As is
evident from Eq.~11!, this solution does not break theN
5 1

2 supersymmetry; in particular,dFab5dD50. It is illu-
minating to recast this from the underlyingN51 supersym-
metry viewpoint. TheL2-normalizablel̄ zero-mode solution
breaks ‘‘spontaneously’’ the antichiral supersymmetry~gen-
erated byQ̄ȧ), but this is already broken ‘‘explicitly’’ as the
non~anti-!commutativity deformation is turned on. As suc
we will refer to theL2-normalizablel̄ solution solving Eq.
~11! asquasi-zero modes. As discussed in the previous par
graph, theN5 1

2 supersymmetry does not preclude back
action of these quasi-zero modes to the first equation in
~11!. It then modifies the vector potential one started wi
Analogously, there will be quasi-superconformal zero mod
which will also react back to the Bosonic equatio
in Eq. ~11!.

B. Holomorphic instanton from self-duality

To derive the self-duality conditions, we arrange the a
tion functional~8! into terms involvingF (2) as
4-5
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SYM5
Im t

4p E
R4

Tr@2~Fmn
(2)!21l̄ ȧ@M ,l̄ ȧ%2 i l̄ ȧs̄ ȧa

m
¹mla

1D2#1
i t

4pER4
Tr F`F,

where the kernelM, which is an~anti-!commutator depend
ing on Am ,l̄, is defined by

@M ,•%ª2
1

2
Cmn$Fmn ,•%1Cmn$Am ,¹n •%

1
i

4
Cmn$Am ,@An ,•#%2

i

16
Cmn

2 $ll,•%.

Again, the last term is a topological invariant, so the act
functional has a critical point at which

Fmn
(2)50, i s̄m¹ml50, l̄50, D50. ~13!

These equations are the standard self-duality equations,
being independent ofCab, they are apparently unmodifie
by the non~anti-!commutativity deformation.

Actually, the self-duality equations ~13! involve
some highly nontrivial effects arising from th
non~anti-!commutative deformation. This can be seen by
sorting to the ‘‘broken’’ antichiral supersymmetry generat
by Q̄. The antichiral field strength superfield is given in t
Wess-Zumino gauge by

W̄ȧ5 i l̄ ȧ~ ȳ!1@ ū ȧD~ ȳ!2 iF ȧḃ~ ȳ!ū ḃ#1 ū2@M ,l̄ ȧ%.

Under the antichiral supersymmetry~generated byQ̄), the
component fields transform as

d̄ l̄ ȧ52 i ē ȧD22F ȧḃē ḃ ,

d̄Aaȧ522ilaēȧ ,

d̄F ȧḃ5 i ē (ȧ¹aḃ)l
a,

d̄D52 ē ȧ¹aȧla1 i ē ȧ@M ,l̄ ȧ%2Cab]aȧ]bḃē ȧl̄ ḃ,

d̄la5 ē ḃCgb]bḃF i eagD12S Fag1
i

2
Cagl̄l̄ D G .

~14!

Take now the limitt̄→`. In this limit, the action localizes to
the field configuration satisfying

05Tr eȧḃ@W̄ȧ!W̄ḃ# ūū

5Tr eȧḃF2
1

2
~ d̄l̄ ȧ!~ d̄l̄ ḃ!1 i l̄ ȧd̄ ḃDG .

Here, we have used the cyclicity of color trace and the s
duality of the parameterCab to simplify the last term in the
second line. Thus the partition function is localized at a pla
where variations under the broken antichiral supersymm
12600
n

nd

-
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vanish. Recall that, thoughQ̄’s are broken explicitly by the
non~anti-!commutativity, linear transformations under the
antichiral supersymmetry are well defined. Therefore for
finitesimal variations, the localization is a meaningful notio
We now see from Eq.~14! that the localization takes plac
precisely at the critical point~13!. We will call the solutions
of Eq. ~13! holomorphic instantons, since their amplitude is
proportional to exp(2pit).

For holomorphic instantons, chiral fermion zero mod
are protected. A nontrivial solution to thel equation in Eq.
~13! breaks theN5 1

2 supersymmetry spontaneously. Ther
fore these zero modes are true Goldstino modes, assoc
to the spontaneously brokenN5 1

2 supersymmetry generate
by Qa . There will be also superconformal zero modes, sin
the theory is actually invariant under theN5 1

2 superconfor-
mal transformations, part of which includes the antichi
superconformal generatorsS̄ȧ. Essentially, from the view-
point of N51 super-Yang-Mills theory, theN5 1

2 supersym-
metry coincides with the part spontaneously broken by
instantons.

Summarizing the above considerations, antiholomorp
instantons are solutions of the anti-self-duality equations

Fmn
(1)1

i

2
Cmnll50, ism¹ml̄50,

l50, Tr
1

8p2E
R4

F`F5Z2 , ~15!

while holomorphic instantons are solutions of the self-dua
equations

Fmn
(2)50, i s̄m¹ml50, l̄50, Tr

1

8p2E
R4

F`F5Z1 .

~16!

IV. CONSTRUCTING INSTANTONS FOR GÄU„2…

We will begin with the gauge groupG5U(2), as inthis
case the back-reaction of the fermion quasi-zero mode
rather trivial.6 We will always trade the U~2! color indices
for chiral or antichiral SU(2)3U(1) indices, so we expres
the gauge potential as

Aaȧ
$ab%[~2iT2Aaȧ!ab .

Of the Lie algebrau(2), thesymmetric part~ab! realizes the
su(2) subalgebra, while the antisymmetric part@ab# realizes
the u(1) subalgebra.

As elaborated in the previous section, the self-dua
equations~16! are exactly the same as that ofN51 super-
Yang-Mills theory, i.e., these equations are not deformed
turning on the non~anti-!commutativity. Hence the antiholo
morphic instanton solutions are the same as those ofN51

6This case ofG5U(2) was also considered in Refs.@11# and@12#.
4-6
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super-Yang-Mills theory. For a single antiholomorphic i
stanton of sizer and centerx0, the gauge potential and th
field strength are

Abḃ
$ab%

52
2i

@~x2x0!21r2#
db

(axḃ
b) ,

Fab
$ab%5

8ir2

@~x2x0!21r2#2 da
(adb

b) ,

while the supersymmetry and the superconformal z
modesz,h̄ of the chiral fermionl ~associated with the spon
taneously brokenN5 1

2 supersymmetry! enter as

la5Fabjb, where ja5za1xȧ
ah̄ ȧ.

Since the anti-instanton is unaffected by t
non~anti-!commutativity and does not entail any new fe
tures, we shall not discuss it further.

The anti-self-duality equations~15! show that the gauge
field strength is modified by quasi-zero modes of the ferm
l̄. The coupled first-order equations~16! are solvable by
formally treating the deformation parameterCab as a pertur-
bation and iterating fermion back reactions. Because of
Grassmann nature of the fermion zero modes, the itera
procedure will terminate, and we will be able to construct
exact instanton solution.

So, begin with the solution at zeroth order inCab. This is
the standard instanton solution, solving the anti-self-dua
equation, and is given by

Abḃ
(0)$ab%

52
2i

@~x2x0!21r2#
dḃ

(a
xb

b) ,

F ȧḃ
(0)$ab%

5
8ir2

@~x2x0!21r2#2
dȧ

(adḃ
b) . ~17!

The zeroth-order solution for the quasi-zero modes ol̄
@transforming as an adjoint under the SU~2! subgroup# is also
standard:

lȧ
2(0)

5F ȧḃ
(0)

j̄ ḃ, where j̄ ḃ[z̄ḃ1xa
ḃha. ~18!

In computing first-order corrections to the gauge pot
tial, it is useful to keep track of the color indices. For t
gauge groupG5U(2), thebilinear (l̄l̄) $ab% is antisymmet-
ric in the color indicesa,b for an arbitrary spinorl̄, so the
O(C) perturbation acts only on the diagonal U~1! subgroup,
not on the SU~2! subgroup. In particular, one can express
perturbation as

i

2
Cmn~ l̄ (0)l̄ (0)!$ab%52eab

i

4
Cmnecd~ l̄ (0)l̄ (0)!$cd%.

~19!

This observation is elementary but simplifies the ba
reaction computation considerably, and rendersthe SU(2)
part of the instanton solution unaffected by the non(an
12600
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e
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)

commutativity. On the other hand, as we will see in the ne
section, this simplification no longer works for gauge grou
G5U(N>3).

The anti-self-duality equation of the diagonal U~1! part
now reads

~F1* F !mn52
i

2
Cmn~ll!$cd%ecd .

To solve this equation, we first take the exterior derivative
the equation and obtain~after using the Bianchi identity!

d* F~x!52
i

2
C`d~ll!$cd%~x!ecd .

This equation reduces in the Lorentz gauge to

h * A~x!5F i

2
C`d~ll!$cd%~x!ecdG .

Introduce a prepotentialF(x) for the gauge potential, and
denote the fermion bilinear as a sourceJ:

A~x!5 * @C`dF~x!# and J~x!5
i

2
ecd~ll!$cd%~x!.

Notice that this prepotential ansatz for the gauge potentia
consistent with the choice of the Lorentz gauge. We ha
thus reduced the first-order perturbation problem to solvin
Poisson equation:

hF~x!5J~x! where J~x!53326i
r4

~x21r2!4
z̄ ȧz̄ ȧ.

~20!

Three remarks are in order. First, it is worth emphasizing t
the above procedure applies to the construction of mu
instantons as well. Second, concerning the field profile
R4, not only is the zeroth-order solution~17!, ~18! SO~4!
rotationally symmetric, but the deformed solution~20! is
also. The SO~4! symmetry is certainly larger than the spac
time symmetry identified in Sec. II. Third, the fermion ze
modes are not deformed by the non~anti-!commutativity at
all. In the latter two points, the gauge groupG5SU(2) is
exceptional. In the next two sections, for higher-rank gau
groups, we will show that the instanton solution is only a
symmetric, retaining symmetries belonging to SO~3! ,
SO~4! and that the fermion zero modes are deformed furth

V. DEFORMED INSTANTONS FOR GÄU(NÐ3…:
HALF OF THE STORY

We next consider the gauge groupG5U(N) for N>3
and find an exact solution for the antiholomorphic instant
We do so by adopting the same iterative procedure, a
truncates at a finite order in the perturbative expansion.
procedure is, however, far more nontrivial than theG
5U(2) case, since there are extra fermion zero modes
illustrate our strategy for constructing instantons exactly,
4-7
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consider in this section a special solution in which the sup
conformal quasi-zero modes are all set to zero.

Again, we start with the standard SU~2! instanton as the
zeroth-order solution7 and then use perturbation theory
powers ofCab to construct deformed solutions of Eq.~15!.
At zeroth order, the SU~2! instanton is embedded insid
U(N), so we will decompose various U(N) fields into
U(2)3U(N22): an adjoint (3% 1,1), fundamentals
(2,NÀ2) and antifundamentals (2̄,NÀ2), and singlets
(1,NÀ2^ NÀ2) under U~2!. We use the freedom of globa
gauge transformation under U(N22) to put the gaugino
components transforming as fundamentals to some arbit
unidirectional components in the U(N22) subspace. More
precisely, we consider the zero mode

l̄ ȧ
(0)$a% i

5
x i

~x21r2!3/2
dȧ

a ,

and perform a U(N22) rotation to putx i in the form x3

Þ0, x45x55•••5xN50.8 In this way, we have reduce
the effective number of gaugino equations to be solved
color space. Notice that the same gauge rotation does n
general put the gauge fields to the same unidirectional c
ponents in color space—they are generically nonzero
need to be solved through the anti-self-duality equations

We expand the gauge field and Fermionic zero mode
powers ofCmn :

Am5Am
(0)1Am

(1)1••• and l̄ ȧ5l̄ ȧ
(0)

1l̄ ȧ
(1)

1•••,
~21!

whereAm
(k) and l̄ ȧ

(k) are of orderO(Ck), andAm
(0) and l̄ ȧ

(0)

refer to the undeformed single instanton solution. Norma
such an iterative procedure would never yield an exact s
tion. In the present case, what saves us is the fact tha
back reaction is generated by a finite number of fermion z
modes. As they are Grassmann valued, after some fin
many steps of the iteration, the back reaction terminates
tomatically. This is the motivation to first consider a spec
solution without superconformal zero modes, as the itera
there stops already at second order.

A. First-order back reaction

We now solve explicitly the first-order back reaction
the gauge and gaugino fields. Those residing in the UN
22) subgroup are not affected at all, so we only need
concentrate on the U~2! subgroup.

First, the self-dual gauge field equation becomes

7Our conventions and notations are summarized in Appendix
and the explicit form of the undeformed instanton solution is giv
in Appendix B.

8From this point onward, all equations should be interpreted
equations in this particular frame, wherex i50 for i .3. However,
for presentational purposes, we will still keep the indexi for x i

50. Notice that we do not impose any restriction on the conjug

representation spinorx̄ i .
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~¹mAn
(1)2¹nAm

(1)!(1)52
i

2
Cmnl̄

(0)l̄ (0).

Notice that in this paper we always use¹m to denote a co-
variant derivative with respect to the background gauge
tential Am

(0) . A more proper notation would be¹m
(0) , but we

hope that using¹m does not lead to confusion. An equatio
of this sort can be reduced to a Laplace equation~see the
discussion in Appendix C! by taking an ansatz expressing th
first-order gauge field in terms of a matrix-valued prepote
tial F (1):

Am
(1)~x!5Cmn¹nF (1)~x!.

The resulting Laplace equation for the (N3N) matrix pre-
potentialF(x) can be easily solved:

Fa
(1)b~x!5da

bS f1~x!z̄ ȧz̄ ȧ1f2~x!
x̄ ix

i

r2 D
and

F i
(1) j5f3~x!

x̄ ix
j

r2
,

where

f1528i F 1

~r 21r2!
1

r2

~r 21r2!2G ,

f25
i

8

1

r2~r 21r2!
,

f35
i

4

1

r2~r 21r2!
.

Next, we simplify the Weyl equation forl̄ (1). Substituting
the value ofAm

(1) into the equation forl̄, we get in the first
order inCmn :

saȧ
m

¹ml̄ (1)ȧ52
i

2
@Am

(1) ,saȧ
m

l̄ (0)ȧ#

52
i

2
Cmn@~¹nF (1)!,saȧ

m
l̄ (0)ȧ#.

Using the Fierz identity:

Cmnsaȧ
m

5snbȧCbgega ,

and the Weyl equation forl̄ (0), one can show that

Cmnsaȧ
m

¹nl̄ (0)ȧ5Cbgegasnbȧ¹nl̄ (0)ȧ50.

This simplifies the first-order Weyl equation forl̄ (1) as

saȧ
m

¹ml̄ (1)ȧ5
i

2
Ca

bsbȧ
m

¹m@F (1),l̄ (0)ȧ#.

,
n

s

e

4-8
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We take an ansatz forl̄ (1) in terms of a spinor prepotentia
Ĉ (1) as

l̄ (1)ḃ5s̄mḃb¹mĈb
(1) .

Using the anti-self-duality conditionFab
(0)50, we then get

¹2Ĉa
(1)52

i

2
Ca

bsbȧ
m

¹m@F (1),l̄ (0)ȧ#. ~22!

Here ¹2[¹m¹m is the covariant Laplacian with respect
the background gauge potentialAm

(0) . We look for the solu-
tion in a form which factorizes out theC dependence from
the prepotential:9

Ĉa
(1)5Ca

bCb
(1) .

Then one can re-express Eq.~22! as

iCa
bsbȧ

m
¹mF2 i s̄nȧg¹nCg

(1)2
1

2
@F (1),l̄ (0)ȧ#G50.

A particular solution to this equation obeys

s̄nȧg¹nCg
(1)5

i

2
@F (1),l̄ (0)ȧ#.

One can solve this equation again by using Green’s funct
for the Dirac operator. We obtain the solution

~Ca
(1)!a

b52
i

4
da

b xaȧ

r2
z̄ ȧF 1

~r 21r2!2G x̄kx
k,

~Ca
(1)! i

j51
i

2

xaȧ

r2
z̄ ȧF 1

~r 21r2!2G x̄ ix
j ,

~Ca
(1)! i

a52
xa

a

r4
x̄ iF 1

~r 21r2!1/2
1

r4

~r 21r2!5/2G z̄ ḃz̄ ḃ,

~Ca
(1)!a

i51
xaa

r4
x iF 1

~r 21r2!1/2
1

r4

~r 21r2!5/2G z̄ ḃz̄ ḃ.

~23!

This completes the first-order computation for back react
of the fermion quasi-zero modes.

B. Second-order back reaction

Next we compute the second-order back reaction. T
second-order perturbation for the gauge fieldAm

(2) satisfies
the equation

9This step need not work in general, but will be justified by o
explicit solution.
12600
s

n

e

~¹mAn
(2)2¹nAm

(2)!(1)1
i

2
@Am

(1) ,An
(1)#1

1
i

2
Cmn~ l̄ ȧ

(1)
l̄ (0)ȧ1l̄ ȧ

(0)
l̄ (1)ȧ!50. ~24!

Again, we remind the readers that the superscript (1) de-
notes projection onto self-dual components of the antisy
metric tensor. Begin in Eq.~24! with the term

@Am
(1) ,An

(1)# (1)5S CmkCnl1
1

2
emnpqCpkCqlD¹[kF

(1)¹l ]F
(1).

For an arbitrary antisymmetric tensorTkl , by straightforward
computation, one finds an identity:

S CmkCnl1
1

2
emnpqCpkCqlDTkl

52
1

2
CklCklTmn

(1)1CmnCklTkl .

This allows us to simplify the commutator:

@Am
(1) ,An

(1)# (1)52
1

2
CklCkl~¹[m~F (1)¹n]F

(1)!!(1)

1CmnCkl¹[kF
(1)¹l ]F

(1).

Next, express the fermion contribution in Eq.~24! in terms
of the prepotentialCa

(1) in Eq. ~23!:

l̄ ȧ
(0)

l̄ (1)ȧ5
1

2
Ckll̄ ȧ

(0)
s̄mȧaskl

a
b¹mCb

(1) .

Using the identity

s̄mskl5
1

2
~hmls̄k2hmks̄ l2emklns̄n!,

and the self-duality of the non~anti-!commutativity tensor
Ckl , the fermion contribution in Eq.~24! can be simplified as

l̄ ȧ
(0)

l̄ (1)ȧ5Ckll̄ ȧ
(0)

s̄kȧa¹lCa
(1) .

Substituting these two expressions into Eq.~24! for Am
(2) ,

one finds

~¹[mAn]
(2)!(1)2

i

8
CklCkl~¹[m~F (1)¹n]F

(1)!!(1)

1
i

4
CmnCkl~¹[kF

(1)¹l ]F
(1)1s̄kȧa@ l̄ ȧ

(0) ,¹lCa
(1)# !50.

This equation is solvable by taking again a prepotential
satz of the form

Am
(2)5

i

8
CklCklF¹mF1Cmn¹nF (2),

and reducing it to the Poisson equation for the (N3N)
matrix-valued prepotentialF (2):
4-9
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¹2F (2)5 iCkl~¹[kF
(1)¹l ]F

(1)1s̄kȧa@ l̄ ȧ
(0) ,¹lCa

(1)# !.

Again, the solution is obtained by convolving the sca
Green function on the right-hand side. We find thatF (2) has
nonzero components on the SU~2! subspace only:

~F (2)!a
b522iCmk~ s̄kn!b

a

3Fxmxn

r4 S 1

~r 21r2!2
1

r2

~r 21r2!3D G x̄ ix
i z̄ ȧz̄ ȧ.

~25!

To complete the iteration, one would next substitute
solution found above into thel̄ ȧ

(2) field equations and solve
the second-order back reaction to the fermion quasi-z
modes. It is readily counted that the source term in the c
responding Weyl equation contains fifth powers of the f
mion quasi-zero modes. Now that there are only four z
modesz̄ ȧ , x̄ i , andx i , the source term vanishes identical
We thus find that second-order back reaction to the fermi
is absent, i.e.,l̄ ȧ

(2)
50. By the same reasoning, all highe

order back reactionsAm
(k) and l̄ ȧ

(k) vanish identically fork
.2.

In summary, in the special situation where the superc
formal zero mode is set to zero, we have succeeded in
taining the exact solution for the anti-instanton as

Am5Am
(0)1Cmn¹nF (1)1

i

8
CklCklF

(1)¹mF (1)1Cmn¹nF (2),

l̄ ȧ5l̄ (0)ȧ1s̄mȧaCa
b¹mCb

(1) , ~26!

where the Bosonic prepotentialsF (1),F (2) are given in Eqs.
~22! and~25!, while the Fermionic prepotentialCa

(1) is given
in Eq. ~23!.

VI. DEFORMED INSTANTONS FOR GÄU„NÐ3…:
FULL STORY

We now extend the result of the previous section a
obtain an exact solution for the antiholomorphic instanton
which all quasi-zero modes of the antichiral gaugino
turned on. Compared to the previous section, the itera
steps do not truncate at the second order because the s
conformal zero modes of the fermions render the sou
terms in the Poisson equation far more complicated. Ne
theless, as there are only a finite number of fermion z
modes, the iteration is truncated beyond some higher or
One can thus follow the Green-function method illustrated
the previous section to obtain the instanton solution.

We performed the computation in the way indicated a
obtained the exact anti-instanton solution in the followi
form:
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Am5Am
(0)1Cmn¹n~F (1)1F (2)1F (3)!

1
i

16
CklCkl@F (1),¹nF (1)#,

l̄ ȧ5l̄ (0)ȧ1s̄mȧaCa
b¹m~Cb

(1)1Cb
(2)!

2
CklC

kl

32
@F (1),@F (1),l̄ (0)ȧ##. ~27!

Here the superscripts denote the order ofC expansion they
contribute. The zeroth-order, undeformed solutionAm

(0) is
summarized in Appendix B. Now that we have 2N fermion
zero modes, reduced effectively via U(N22) gauge rotation
to six zero modes (z̄ ȧ , ha, x̄ i , x i), the perturbation expan
sions continue to the third order for the gauge field and to
second order for the fermion zero modes. We relegate c
putational details to Appendix D, and collect below the fin
result, order by order, using the shorthand notationj̄ ȧ[z̄ȧ

1xa
ȧha. The Bosonic prepotentials are

~F (1)!a
b528i F r2

~r 21r2!2
j̄ ȧj̄ ȧ1

1

r 21r2
~ z̄ ȧz̄ ȧ1r2haha!

2
1

r 21r2

x̄ ix
i

64r2Gda
b ,

~F (1)!a
i52

2j̄ ȧx i

~r 21r2!3/2
; ~F (1)! i

a52
2x̄ i j̄

ȧ

~r 21r2!3/2
;

~F (1)! i
j5 i

1

r 21r2

x̄ ix
j

4r2
~28!

at O(C),

~F (2)!a
b522iCmk

1

~r21r 2!3 ~ s̄kn!b
a

xmxnx̄ ix
i

r2

3F z̄ ȧz̄ ȧ

r2
~r 212r2!2r2haha2haxaȧz̄ ȧG

12i
1

~r21r 2!2

x̄ ix
i

r2
@ z̄a~ x̄C!baha1 z̄b~ x̄C!a

aha#,

~F (2)! i
a528

x̄ i

~r 21r2!5/2F ~r 212r2!
z̄ ȧz̄ ȧ

r2
~ x̄C!aaha

1haha~ x̄Cx!a
ȧz̄ ȧG , ~29!
4-10
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~F (2)!a
i 528

x i

~r 21r2!5/2F ~r 212r2!
z̄ ȧz̄ ȧ

r2
~ x̄C!a

aha

1haha~ x̄Cx!aȧz̄ ȧG
at O(C2), and

F (3)5 i
CklCkl

2

hahaz̄ȧz̄ ȧx̄ ix
i

r4~r 21r2!3
diag@r 416r 2r213r4,r 4

16r 2r213r4,2~r 414r 2r21r4!# ~30!

at O(C3), respectively. Here,x denotes the matrixxaȧ, x̄

denotesxȧa, andC is a matrix with components

Ca
b5eagCgb5

1

2
Cmn~smn!a

b .

The Fermionic prepotentials are

~Ca
(1)!a

b52
i

4
da

bFxaȧj̄ ȧ

r2

1

~r 21r2!2
2

r 2ha

r4

1

~r 21r2!G x̄kx
k,

~Ca
(1)! i

a52
xa

a

r4
x̄ iF ~r 213r2!

~r 21r2!3/2
z̄ ḃz̄ ḃ1

2r4

~r 21r2!5/2
j̄ ḃj̄ ḃG

2
4z̄ahax̄ i

~r 21r2!3/2
, ~31!

~Ca
(1)!a

i5
xaa

r4
x iF ~r 213r2!

~r 21r2!3/2
z̄ ḃz̄ ḃ1

2r4

~r 21r2!5/2
j̄ ḃj̄ ḃG

1
4z̄ahax i

~r 21r2!3/2
,

~Ca
(1)! i

j5
i

2

x̄ ix
j

r2~r 21r2!
Fxaȧj̄ ȧ2

r 2

r2
haG

at O(C) order, and

~Ca
(2)!a

b5
x̄ ix

i

r2~r 21r2!3 F4Cmnxm~ s̄nk!b
axkxaȧz̄ ȧhbhb

22~xaax̄bbCb
ghg1 x̄bbCbahgxga!z̄ ȧz̄ ȧ

2
r 21r2

r2
~xaax̄bbCb

ghg1xb
axsahgCg

s!z̄ ȧz̄ ȧG ,

~Ca
(2)!a

i528i
Ca

bxbax i

~r 21r2!5/2
hghgz̄ȧz̄ ȧ;

~Ca
(2)! i

a528i
Ca

bxb
a x̄ i

~r 21r2!5/2
hghgz̄ȧz̄ ȧ ~32!
12600
at O(C2) order.
We emphasize again the reasoning behind truncation

the iterative process at the third order, notNth order. Though
there are 2N fermion zero modes, by making use of th
U(N22) gauge rotation, we have brought the b

fundamental fermionsx,x̄ to a unidirection. Therefore, with
the aid of the gauge freedom, we have effectively redu
the independent components of the fermion zero modes t

two ~would-be! supersymmetryz̄ ’s, two ~would-be! super-

conformal h ’s, and two gauge zero modesx,x̄. As such,
with U(N22) gauge orientation chosen to be unidirection
the iterative procedure terminates at third order. We str
that for presentational purposes we kept an indexi for the
zero modesx i , even though the results are relevant only
the particular frame where the only nonvanishing compon
is x3.

VII. INSTANTON TOMOGRAPHY: POLARIZATION
AND GEOMETRY OF MODULI SPACE

Having obtained the exact solution for one antiholom
phic instanton, we are now ready to learn aspects of se
classical or nonperturbative physics inN5 1

2 super Yang-
Mills theory. The simplest gauge-invariant quantity w
would like to study is the action functional density, which
the present case is simply the topological charge densityF.
Notice that we are interested in thedensityof the topological
charge, since the latter is nothing but the zeroth momen
the former. The zero modes supported by the instanton s
the moduli space, which we denote asM.

With particular attention to the fate of spacetime symm
tries discussed in Sec. II, we are primarily interested in
five-dimensional subspace inM spanned by the instanto

centerXaȧ and sizer. The instanton densityF then depends

not only on the coordinatesxaȧ of R4 but also on the coor-
dinates ofM. Therefore one needs to examine moments
the instanton densityF separately onR4 and onM, respec-
tively. This is precisely what we will do in this section. Firs
we will examine the profile ofF on R4 for a fixed position
on M. We will then find that the instanton charge densityF
contains a dipole-moment component@in addition to the
O~4!-symmetric monopole-moment component#. The dipole-
moment component refers to axially symmetric polarizat
of the instanton and is invariant only under O~3! , O~4!.
Second, we will examine the profile ofF on M ~after inte-
grating it overR4). We will compute Hitchin’s information
metric and study the deformation of the geometry ofM.
Remarkably, we will discover that, though the metric is d
formed, the volume measure is independent of the non~anti-!
commutative deformation.

A. Instanton density

The topological charge density~which is the same as th
action functional density for instantons! is defined by
4-11
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F@x;ZA#5TrU(N)~F`F ! instanton.

The field configurations of the instanton are functions both
the coordinates onR4 and of the Bosonic and Fermioni
quasi-zero modes. The quasi-zero modes span the mo
spaceM, so we will denote coordinates onM as ZA

5(Xaȧ,r,ha ,z̄ ȧ,x i ,x̄ i). Therefore the instanton densityF
could depend not only on coordinatesxaȧ of R4 but also on
coordinatesZA on M.

Substituting the exact one-instanton solution construc
in the previous section, after a straightforward algebra,
obtain the action functional density as

F52
96r4

~r 21r2!4 F12
CklCkl

r2

~r 426r 2r213r4!

~r 21r2!2 x̄ ix
i z̄ ȧz̄ ȧ

12
CklCkl

r2

~2r 2r223r4!

~r 21r2!2 ~haxaȧz̄ ȧx̄ ix
i

116r2r 2z̄ ȧz̄ ȧhaha!G . ~33!

We have shown that SO~4! Lorentz symmetry is broken ex
plicitly on non~anti-!commutative superspace. Still, as is e
dent from the spinor index contractions, the instanton den
is invariant under SO~4! rotations,provided, in addition to
xaȧ, all Fermionic zero modes are rotated simultaneou
Notice that, under this SO~4! symmetry transformation,Ckl
transforms nontrivially butCklC

kl is invariant. We will refer
to this invariance as SO~4! ~pseudo!symmetry and make fur
ther use of it in the following subsections.

One learns from the result ~33! that, with
non~anti-!commutativity turned on, the instanton density
deformed from the standard one byO(C2) contributions.
Notice that, though the antiholomorphic instanton solut
itself is modified up to cubic order in the non~anti-!
commutativity parameterCab, the instanton density termi
nates at quadratic order. Notice also that there is noO(C)
deformation in the instanton density. These features are
due to any delicate cancellations, but originate from SU(2L
symmetry and the Grassmann-odd nature of the fermion
modes.

As it stands, the result~33! is quite complicated, primarily
because of the last two terms involving various combinati
of fermion zero modes. To expose further puzzles, recall
the topological charge of the antiholomorphic instanto
which is defined by the integral of the action functional de
sity F over the Euclidean spaceR4, equals

Qinstanton[E
R4

d4x
F

8p2
521.

It takes an integer value, though in general the integral
12600
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pends on the fermion zero modes. On the other hand,
topological charge ought to be integer valued, and he
independentof the fermion zero modes whatsoever. It is al
independent of the instanton sizer, but this is a well-known
result for the ordinary instanton, again from a topologic
argument. What isa priori not so obvious in the present cas
is that the result is also independent of the fermion z
modes.10 The way this independence on fermion zero mod
comes about is highly nontrivial: integrals overx of the sec-
ond and the third terms vanish individually. We are thus
to examine tomographically the instanton density and und
stand how precisely the Fermionic zero-mode dependenc
distributed.

It would also be illuminating to recast the instanton de
sity F in the context of Maldacena’s gauge-gravity corr
spondence@14#. As is well known in the context of five-
dimensional anti–de Sitter spacetime as holographic dua
N54 super-Yang-Mills theory, the instanton densityF de-
fines the bulk-to-boundary propagator~as introduced in Ref.
@15#! of a massless bulk scalar field that couples to the to
logical charge density of the super-Yang-Mills theory res
ing at the boundary@16#. This can be understood from th
elementary observation that

DAdS
(5) 1

8p2 F~Z;x!U
C50

50 for rÞ0,

lim
r→0

1

8p2 F~Z;x!U
C50

52d (4)~x!

obeying E
R4

F
8p2

521. ~34!

In this context, the coordinates (Xaȧ,r) are interpreted as the
bulk location, while the coordinatex refers to the boundary
location. Once the non~anti-!commutativity is turned on, nei-
ther of the two relations would hold. Therefore one expe
that both the geometry of the five-dimensional gravity ba
ground and the instanton density would be modified. In
following subsections, we will explore aspects of the
modifications in detail.

B. Instanton polarization by non„anti-…commutativity

With a fair amount of guesswork based on underlyi
symmetries, we were able to show that the action functio
density can be packaged into the following form:

10Evidently, dependence of the result on the fermion zero m
would lead to Grassmann-valuedc-number contribution to the to-
pological charge. This is unphysical.
4-12
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F596~r42C2r22x̄ ix
i z̄ ȧz̄ ȧ164C2r2z̄ ȧz̄ ȧhaha!

3F S x1A10Cw2C2
x̄ ix

iw

2r4 D 2

1r212A10CS z̄ ȧz̄ ȧ2
x̄ ix

i

16
D

12C2z̄ ȧz̄ ȧS 18haha

2
x̄ ix

i

r4 D G22F S x2A10Cw2C2
x̄ ix

iw

2r4 D 2

1r2

22A10CS z̄ ȧz̄ ȧ2
x̄ ix

i

16
D

12C2z̄ ȧz̄ ȧS 18haha2
x̄ ix

i

r4 D G22

. ~35!

Here we have introduced the following shorthand notatio

waȧ[haz̄ȧ, C2[
1

4
detCab, C[AC2.

Notice that, in Eq.~35!, the two square brackets are e
changed by the inversionP in R4 ~which is the Euclidean
version of the combined operation of parityP and time re-
versal T); since l̄ is an antichiral fermion,P essentially
rotates all the fermion zero modes byeip/251 i . Therefore
the new expression~35! of the instanton density exhibits th
Z2 antipodal reflection symmetry manifestly. ThisZ2 reflec-
tion is nothing but a subgroup of the~pseudo! SO~4! sym-
metry discussed below Eq.~33!.

In passing, we would like to emphasize that, though e
square bracket in Eq.~35! seems to contain a nonanalyt
expression ofCab, the instanton densityF is actually
analytic—Eq.~35! is merely rewriting Eq.~33!, whose ex-
pression is manifestly analytic inCab.

The alternative expression~35! for the instanton density
now offers an intuitive understanding of the effect
non~anti-!commutativity. From the two square brackets
Eq. ~35!, one readily finds a variety of deformations. A cla
of deformation of the most interest to our discussion is
one arising from the last term in the round brackets, prop
tional to C2x̄ ix

iw. We will now argue that this term corre
sponds to polarizingF so that the dipole moment i
induced.11

11We also note that all deformation terms in Eq.~35! other than
Dp contribute to deformation of the monopole-moment compon
in the instanton densityF.
12600
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Begin by noting that the term proportional t

C2x i x̄ iw
aȧxaȧ flips sign under the aforementioned antipod

Z2 reflection. Bearing in mind thatZ2 is nothing but a sub-
group of SO~4! ~pseudo!symmetry, one finds that the instan
ton densityF is polarized along the direction set by

Dp
aȧ5

C2x̄ ix
i

r4
waȧ. ~36!

As the dipole momentDp is proportional toC2, we discover
that the first moment ofF is induced as a consequence
turning on non~anti-!commutativity—an important indication
that the Grassmann-even spaceR4 and the Grassmann-od
space spanned by (u1,u2) are not merely in a direct produc
but rather intertwined. This is as expected. We have sho
in Sec. II that the conformal extension of th
non~anti-!commutative superspace is nothing butN5 1

2 con-
formal superspace. We will make this more concrete in
next two subsections.

Notice that the dipole momentDp is also set by the prod
uct of supersymmetry and superconformal zero modesand to
the off-diagonal zero modesx i ,x̄ i . In particular, dependenc
on the latter is quite interesting sincex i ,x̄ i zero modes are
the ones present only for higher-rank gauge groupsG
5U(N>3). It also follows that the instanton in the U~2!
gauge theory does not support enough Fermionic z
modes to exhibit the full intricacy of physics on th
non~anti-!commutative superspace. In fact, forG5U(2), the
instanton densityF in Eq. ~33! is considerably simplified and
one observes the maximum atxaȧ50. It is also SO~4! rota-
tionally symmetric and thus carries no first moment.

After all, polarization of the antiholomorphic instan
ton is fully consistent with symmetries of th
non~anti-!commutative superspace. As explained in Sec.
the non~anti-!commutativity breaks the underlying SO~4!
Lorentz symmetry to the antichiral SU(2)R symmetry, acting
on antichiral, dotted indices. This implies that the instan
configuration would no longer be a spherically symmet
configuration onR4, but rather a configuration invariant onl
under SU(2)R . Indeed, we have just observed that the
stanton is polarized such that its topological charge densit
axisymmetric, where the polarization direction is set by t
product of supersymmetry and superconformal zero mod

We should, however, emphasize that the induced polar
tion is set entirely by the fermion zero modes and hen
Grassmann valued. Modulo this point, what underlies
polarization is precisely the same physics as the UV
mixing phenomenon discovered in Ref.@17# and by now
well understood in terms of open Wilson lines@18,19# in the
noncommutative spacetime. We recall that the UV/
mixing phenomenon was also shown to take place
non~anti-!commutative superspace@20#. With such a caveat
we plot the induced dipole-moment component of the inst
ton density in Fig. 1, and contrast it with the monopo
moment component.
t

4-13
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FIG. 1. Contour plots of the instanton density~33!. We consider the simplest case wherez̄ 2̇5h250 and present the section inx3–x4

plane:~a! section of theC-independent, monopole-moment component of Eq.~33!; ~b! dipole-moment component for real part of coefficie

of C2h1z̄1x̄ ix
i ; ~c! dipole-moment component for imaginary part of coefficient ofC2h1z̄1x̄ ix
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C. Geometry of moduli space: Information metric

We will now dwell on the other side of the instanto
density ~33!, ~35!, viz. variation of the density over one
instanton moduli spaceM. Traditionally, the instanton
moduli space is defined in terms of the so-calledL2 metric—
the induced metric on the space of zero modes obtained
choosing a conformal structure onR4.12 Practically, theL2

metric is not so convenient, since it comes with various te
nical complications. For example, the formalism is not ma
festly gauge invariant, the moduli space is typically afflict
with small instanton singularities at a finite distance in t
moduli space,13 and the metric does not exhibit manifest co
formal invariance though the~anti-! self-dual equation does
To remedy these shortcomings, Hitchin proposed an alte
tive definition of the moduli space metric based on the
called information metric@9,21,22#. The idea is that one
views the instanton action density as a family of probabi
distributions onR4, parametrized by the Grassmann-ev
and Grassmann-odd zero modes of instantons. Implicit to
idea is an assumption that the moduli space is a subman
of the infinite-dimensional affine space of allsmoothvolume
forms with unit volume. Since we are more interested
incorporating all the spacetime symmetries inherent to
theory and studying differential geometry on the mod
space, we prefer studying the information metric over theL2

metric.
As mentioned, Hitchin’s information metric is defined e

tirely in terms of the instanton densityF, and is given by

G abdZadZb[dZadZbE
R4

d4x
]aF]bF

F . ~37!

12For a compact hyper-Ka¨hler manifold, it is well known that the
L2 metric on the moduli space is again hyper-Ka¨hler. This assertion
extends also to noncompact hyper-Ka¨hler manifolds such asR4.

13This is particularly a drawback for making contact with Ma
dacena’s gauge-gravity correspondence@14#, since differential ge-
ometry is ill defined at the singularity.
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The information metric has many virtues compared to theL2

metric. First, as the instanton densityF is gauge invariant,
the metric defines the moduli space geometry with mani
gauge invariance. Second, the metric is geodesically c
plete. Third, elementary scaling analysis proves that the m
ric exhibits manifest conformal invariance.

In this section, we shall compute Hitchin’s informatio
metric explicitly for a single antiholomorphic instanton, an
learn the geometry of the moduli spaceM. Recall that the
moduli spaceM is five dimensional@apart from the trivial
SU~2! , U~2! gauge orientations#, spanning the instanton’s
size and center. To introduce the instanton center posit
we first shift the coordinatesxaȧ on R4 in Eq. ~33! by
(x2X)aȧ, whereXaȧ now refers to the center of the ant
instanton, and compute the integrals~37!. After some alge-
bra, we find that

G ABdZAdZB5
2

5 F64
dr2

r2 S 12
15

7r6
C2S12

320

7r2
C2S2D

164
dX2

r2 S 12
5

7r6
C2S12

88

7r2
C2S2D

1
32C2

7r7 TmdXmdr2
16C2

r6
dXmdTm

1
32C2

r7
drdS11

1024C2

r3
drdS2G . ~38!

Here, we introduced the shorthand notationS1 , S2, andTm
for three independent products involving the fermion ze
modes:

S1[z̄ȧz̄ ȧx̄ ix
i , S2[z̄ȧz̄ ȧhaha , Tm[x̄ ix

ihasaȧ
m

z̄ ȧ.
~39!

As they are quartic in Grassmann-odd variables, the prod
of any two such objects vanishes identically.
4-14
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Much as the instanton density itself, the information m
ric ~38! is quite complicated because ofC-dependent Fermi-
onic zero-mode effects. This is again the manifestation
the moduli spaceM is not the standard superconformal s
perspace, but rather its non~anti-!commutative counterpar
with N5 1

2 supersymmetry explained in Sec. II. Nontrivi
mixing between Grassmann-even and Grassmann-odd c
dinates onM as observed in Eq.~38! originates from the
non~anti-!commutativity. All these mixings, however, are r
movable by a suitable change of variables. Introduce the
lowing shift to the Grassmann-even coordinatesXm andr2:

X̃m5Xm2
C2

8r4
Tm and r̃25r2F11

C2

2

S1

r6
116C2

S2

r2G .

Notice that we still maintain the translational invariance
conformal slice ofR4 in X̃m. In terms of the shifted vari-
ables, the information metric becomes

G ABdZAdZB5
128

5 Fdr̃2

r̃2 S 11
6

7r̃6
C2S12

96

7r̃2
C2S2D

1
dX̃2

r̃2 S 12
3

14r̃6
C2S11

24

7r̃2
C2S2D

2C2
13

14r̃7
Tmdr̃dXmG . ~40!

One readily sees that, in the limit that the Grassmann-
coordinates vanish, the information metric is precisely
metric of the hyperbolic spaceH5, describing the five-
dimensional Euclidean anti–de Sitter~AdS! space. There-
fore, for nonzeroCab, one would still interpret the instanto
densityF as the bulk-to-boundary propagator obeying

D̃H
(5) 1

8p2F~Z;x!50 for ZAÞ0,

lim
ZA→0

1

8p2F~Z;x!52d (4)~x! obeyingE
R4

F
8p2

521,

~41!

whereD̃H
(5) refers to the scalar Laplacian operator defined

Hitchin’s information metric~38!, and the limit ZA→0 is
interpreted as taking all Grassmann-even and Grassm
odd coordinates approaching zero while holdingCab finite.

A quantity of interest is the volume measure of Hitchin
information metric, as it defines the sum over instanton
fects inN5 1

2 super-Yang-Mills theory. From Eq.~40!, one
readily finds that

d Vol5AdetGdr̃d4X where detG5S 128

5 D 5 1

r̃10
.

Remarkably, we find that the volume form is exactly t
same as in ordinary Yang-Mills theories. It should be not
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however, that the natural coordinate is notr but r̃. This may
indicate thatr̃ should be interpreted as the size modulus
the deformed instanton.

D. Symmetry considerations

Having examined the instanton density and the inform
tion metric, one might be able to infer the results from co
siderations of the spacetime conformal symmetry identifi
in Sec. II. Indeed, the functional form of various terms in t
information metric~38! ~but not the coefficients! is determin-
able by those symmetries. Let us briefly discuss these s
metries and their consequences for the metric~38!.

~i! Translational invariance on the conformal slice ofR4

guarantees that the metric componentsGab do not depend
upon the translational Bosonic zero modesXm’s.

~ii ! Global rotation in theU(N22) part of the gauge group
~i.e., unitary rotations acting byx i→Ui

jx
j , x̄ i→Ui

j x̄ j )
restricts possible contributions of the bi-fundamen
Fermionic zero modes tox̄ ix

i or d(x̄ ix
i).

~iii ! Chiral SU(2)L and antichiral SU(2)R symmetries~act-
ing on dotted and undotted indices! restrict possible
contractions of supersymmetric and superconform
Fermionic zero modes toz̄ ȧz̄ ȧ,haha ,hasaȧ

m
z̄ ȧ, and

haCabsbȧ
m

z̄ ȧ, haCabCbgsgȧ
m

z̄ ȧ. ~42!

Here we also made use of the Fermionic statistics and of
fact that we can have at most twoCab if only oneh and one
z are present. Notice thathasaȧ

m
z̄ ȧ can appear only in the

combinationdXmhasaȧ
m

z̄ ȧ in order to be consistent with
Lorentz ~pseudo!symmetry and translation symmetry.

The first term in Eq.~42! is removable in the information
metric.14 To show this, we notice that there are only tw
ways of incorporating the first term in Eq.~42! consistently
with Lorentz ~pseudo!symmetry:

dXmhaCabsbȧ
m

z̄ ȧ, CmndXnhaCabsbȧ
m

z̄ ȧ. ~43!

The first term is linear inCab and thus cannot appear in th
instanton densityF or in the information metric. Recall tha
the part of the solution that is linear inC is a singlet under
SU(2). Using the Fierz identity~22!,

Cmnsbȧ
m

5snrȧCrgegb ,

we observe that the second term in Eq.~43! becomes

CmndXnhaCabsbȧ
m

z̄ ȧ5dXnhaCabsnrȧCrgegbz̄ ȧ

52
1

2
CrbCrbdXnhasaȧ

n
z̄ ȧ.

14The second term can be written in terms ofhasaȧ
m

z̄ ȧ due to
relationCabCbg5

1
2 CsbCbsda

g .
4-15
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Putting these considerations together, we find that only
following combinations of zero modes are permitted by
spacetime symmetries:

S1[z̄ȧz̄ ȧx̄ ix
i , S2[z̄ȧz̄ ȧhaha ,

S3[hahax̄ ix
i , dXmTm[dXmx̄ ix

ihasaȧ
m

z̄ ȧ,

and they should be multiplied byC2 in the information met-
ric to be consistent with U~1! ~pseudo!R symmetry.

~i! The fermion zero modes transform under theN5 1
2

supersymmetry as follows:

~dX!aȧ54i eaz̄ȧ ,

dr254ir2~eh!,

dh54ih~eh!,

dx56ix~eh!,

dx̄56i x̄~eh!,

dz̄50.

From these rules, one readily finds that

dS S1

r6D50; dS S2

r2D50; and d~x̄xh2!50.

Both the instanton densityF and the information metricGAB
are invariant under these transformations.15

~ii ! Powers ofr in the instanton densityF and the infor-
mation metricGAB are determinable by elementary dime
sional analysis.
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APPENDIX A: CONVENTIONS AND NOTATION

The conventions and notation we adopt are as
lows. The signature of Lorentzian spacetimeR3,1 is
diag(1222). Wick rotation to EuclideanR4 is achieved
by x0→ ix4 andSLorentzian→ iSEuclidean. We continue adopting

15There is a possible combination of the formC2S3

5C2x̄ ix
ihaha that is consistent with all symmetries; thus it can

principle appear in the instanton densityF and in the information
metric GAB . On the other hand, explicit computation indicates th
the coefficient of this term is zero.
12600
e
e

or
s-
t

s

l-

Lorentzian spinor notation. We freely change between SO~4!
and SU(2)L3SU(2)R indices, viz.

]aȧ5saȧ
m

]m ; ]aȧxbḃ522da
bdȧ

ḃ ,

xaȧ5saȧ
m

xm , xm52
1

2
s̄m

ȧaxaȧ .

We normalize the gauge covariant derivatives as

¹aȧ5]aȧ1
i

2
@Aaȧ ,#.

For the U~2! gauge group, we also freely interchange co
indices between adjoint and spinor indices@23# ~suppressing
spacetime indices!:

AªAaTa; A$ab%
ª~2iT2A!ab; tru(2)T

aTb5
1

2
dab.

In spinor notation, the traceless SU~2! subgroup is symmetric
in the spinor indicesa,b, while the diagonal U~1! subgroup
is proportional toeab. In explicit form,

A$ab%5eacAc
b , Aa

b5eacA
$cb%.

In differential forms, the gauge field strengths are

F5
1

2
Fmndxm`dxn; * F5

1

2
F̃mndxm`dxn,

where F̃mn5
1
2 emnpqFpq . Thus 1

2 (FmnFmn)5 * (F` * F),
and 1

2 (FmnF̃mn)5 * (F`F).
The gauge coupling constantst,t̄ are customarily taken

as per Lorentzian theory conventions:

t5
uYM

2p
1 i

4p

gYM
2

; t̄5
uYM

2p
2 i

4p

gYM
2

.

In Euclidean theory, we interprett andt̄ as two independent
complex-valued coupling constants.

APPENDIX B: SINGLE UNDEFORMED
ANTIHOLOMORPHIC INSTANTON

The zeroth-order~undeformed! solution for the gauge
field is

Abḃ
(0)$ab%

52
2i

x21r2
~dḃ

a
xb

b1dḃ
b
xb

a !,

F ȧḃ
(0)$ab%

5
8ir2

~x21r2!2
~dȧ

adḃ
b
1dȧ

bdḃ
a
!. ~B1!

Consider a fermionā transforming in the adjoint repre
sentation of U~2!. The zeroth-order solution for its zer
modes is

t

4-16
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l̄ (0)
ȧ5F ȧḃ

(0)
z̄ ḃ1F ȧḃ

(0)
xa

ḃha[F ȧḃ
(0)

j̄ ḃ. ~B2!

Consider next fermionsx,x̄ transforming in the fundamenta
and antifundamental representations of U~2!, respectively.
The zeroth-order solution for their zero modes is

l̄ ȧa
(0) i[eacl̄

(0)$c% i
ȧ , l̄ (0)$a% i

ȧ5
x i

~x21r2!3/2
dȧ

a ,

l̄ (0)
ȧ i

a[l̄ (0)$a%
ȧ i5

x̄ i

~x21r2!3/2
dȧ

a .

See Table I for the scaling dimensions andR charges for the
fermion zero modes.

In the instanton solution for gauge groupG5U(N), x i is
the fermion component transforming as a bi-fundamental
der U(N22), andx̄ i is its complex conjugate. Starting wit
an arbitrary zero mode, one can always perform a cons
U(N22) rotation, so that there is only one nontrivial com
ponentx3. In other words, one can reduce the general d
cussion ofG5U(N) with N>3 effectively toG5U(3).

APPENDIX C: SOLVING DIFFERENTIAL EQUATIONS

While constructing the instanton solution in perturbati
theory, we repeatedly encounter equations of the follow
form:

¹mAn2¹nAm1emnkl¹kAl52CmnJ, ~C1!

where the covariant derivative¹n is computed with instanton
background fieldA(0) taken in the appropriate representati
of SU~2!. Applying a differential operatoremnrs¹s to both
sides of the above equation, we find16

2iF nrAn12¹r¹lAl22¹2Ar52emnrs¹sCmnJ.

Here we used the definition ofFmn and its anti-self-duality:

¹m¹n2¹n¹m5
i

2
Fmn , emnrsFsm52Fnr .

In the Lorentz gauge (¹lAl50), we have

16To simplify notation, we useFmn instead ofFmn
(0) in this appen-

dix.

TABLE I. Scaling dimension andR charge of zero modes.

dim U(1)R

Xm 21 0
r 21 0
ha

1
2 21

z̄ ȧ 2
1
2 21

x i 2
3
2 21

x̄ i 2
3
2 21
12600
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iF nmAn2¹2Am52Cmn¹nJ.

This equation is solvable by taking an ansatz

Am5Cmn¹nF, ~C2!

which automatically satisfies the gauge condition¹mAm
5( i /4)CmnFmnF50 because of the anti-self-duality o
Fmn . Using the relationFnmCnk5FnkCnm , the left-hand
side of Eq.~C2! can be rewritten as

iF nmAn2¹2Am52
i

2
@¹k ,Fkl#CmlF2Cml¹l¹

2F.

We thus demonstrated that there exists a natural ansatz~C2!
for the gauge potentialAm , allowing us to reduce Eq.~C1! to
a singledifferential equation of Poisson type:

¹2F5J.

Here¹ is a covariant derivative in an appropriate repres
tation of the gauge groupG.

APPENDIX D: DETAILS OF THE COMPUTATION

In this appendix we present some intermediate step
computing the solution~27!–~32!. We start with the conven-
tional instanton solution and construct the deformed inst
ton in perturbation theory in the non~anti-!commutativity pa-
rameterCab.

1. First order for the bosons

We begin by solving the equation for the first correcti
to the gauge fieldAm

(1) :

~Fab
(1)!a

b52
i

2
Cabdb

aS 3•64r4

~x21r2!4
j̄ ȧj̄ ȧ2

x̄ ix
i

~x21r2!3D ,

~Fab
(1)! i

j51 iCab

x̄ ix
j

~x21r2!3
,

~Fab
(1)!a

i52Cab

12r2

~x21r2!7/2
j̄ ȧx i ,

~Fab
(1)! i

a52Cab

12r2

~x21r2!7/2
x̄ i j̄

ȧ.

As discussed in Appendix C, an ansatz

Am
(1)5Cmn¹nF (1)

reduces the entire problem to solving a Poisson-type eq
tion in the instanton background, and the solution of t
Poisson equation is given by Eq.~28!.

2. First order for the fermions

At the next step, we solve the equation forl̄ (1):
4-17
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saȧ
m

¹ml̄ (1)ȧ52
i

2
@Am

(1) ,saȧ
m

l̄ (0)ȧ#

52
i

2
Cmn@~¹nF (1)!,saȧ

m
l̄ (0)ȧ#.

Using the Fierz identity and equation of motion forl̄ (0), we
reduce this equation to

saȧ
m

¹ml̄ (1)ȧ5
i

2
Ca

bsbȧ
m

¹m@F (1),l̄ (0)ȧ#.

With an ansatz

l̄ (1)ȧ5s̄mȧaCa
b¹mCb

(1) ,

it is reduced further to

sbȧ
m

¹mF2 i s̄nȧg¹nCg
(1)2

1

2
@F (1),l̄ (0)ȧ#G50. ~D1!

Notice that this derivation does not rely on the specific fo
of l̄ (0): the steps above are essentially the same as t
described in more detail in Sec. V for the special situat
ha50.

Using an identity for sigma matrices:sms̄n52hmn
12smn and anti-self-duality of the undeformed solutio
~which leads tosmn¹m¹n50), we can express Eq.~D1! as a
Poisson equation:

¹2Ca
(1)52saȧ

n
¹nJ(1)ȧ, J(1)ȧ[

i

2
@F (1),l̄ (0)ȧ#.

Explicit evaluation of the current gives

~Jȧ!a
b52da

b i j̄ ȧx̄ ix
i

~r 21r2!3
; ~Jȧ! i

j52
i j̄ ȧx̄ ix

j

~r 21r2!3
,

~Jȧ!a
i52eȧa

4x i

~r 21r2!7/2
@~r 21r2!~ z̄ ȧz̄ ȧ1r2haha!

14r2j̄ ḃj̄ ḃ#, ~D2!

~Jȧ! i
a52dȧ

a 4x̄ i

~r 21r2!7/2
@~r 21r2!~ z̄ ȧz̄ ȧ1r2haha!

14r2j̄ ḃj̄ ḃ#.

We used the following relation: 2xmz̄ s̄mh5 j̄ ȧj̄ ȧ2 z̄ ȧz̄ ȧ

2x2haha . The solution of Eq.~D2! is given by Eq.~31!.

3. Second order for the bosons

Repeating the arguments of Sec. V, we find the equat
12600
se
n

n

2~¹[mAn]
(2)!12

i

4
CklCkl@¹[m~F (1)¹n]F

(1)!#1

1
i

2
CmnCkl@¹[kF

(1)¹l ]F
(1)1s̄kȧa@ l̄ ȧ

(0) ,¹lCa
(1)##50.

~D3!

In Sec. V, we put forward the following ansatz forA(2):

Am
(2)5

i

8
CklCklF

(1)¹mF (1)1Cmn¹nF (2). ~D4!

With the ansatz, Eq.~D3! was reduced to an Poisson equ
tion for F (2). Notice that, in special situations, the superco
formal modes were set to zero, the solutionF (1) was such
that TrF (1)¹mF (1)50. As such,Am

(2) did not have a compo-
nent proportional to the identity matrix. In the presence
superconformal modes, TrF (1)¹mF (1) is no longer zero, and
we found it convenient to modify the ansatz~D4! so that the
trace component inAm

(2) is avoided. The simplest such mod
fication is

Am
(2)5

i

16
CklCklF

(1)¹JmF (1)1Cmn¹nF (2), ~D5!

and it does not spoil the Poisson equation forC (2), since the
difference between Eqs. ~D5! and ~D4!, dAm

(2)5

2( i /16)CklCkl¹m(F (1)F (1)), satisfies (¹[mdAn]
(2))150.

With the ansatz~D5!, we get the equation forF (2):

¹2F (2)5 iCkl$¹kF
(1)¹lF

(1)1s̄kȧa@ l̄ ȧ
(0) ,¹lCa

(1)#%[J(2).

Explicit evaluation of the currentJ(2) yields

~J(2)!a
b5

16iCmk

~r21r 2!5
~ s̄kn!b

axmxnx̄ ix
iF z̄ ȧz̄ ȧ

r2
~r 216r2!

1~r 224r2!haha210haxaȧz̄ ȧG
2

40i x̄ ix
i

~r21r 2!4
eaȧ@ z̄ ȧ~ x̄C!baha1 z̄b~ x̄C!ȧaha#,

~J(2)! i
a5

32x̄ i

~r 21r2!9/2
@~r 219r2!z̄ ȧz̄ ȧ~ x̄C!aaha

18r2haha~ x̄Cx!a
ȧz̄ ȧ#,

~J(2)!a
i5

32Aieaḃ

~r 21r2!9/2
@~r 219r2!z̄ ȧz̄ ȧ~ x̄C!ḃaha

18r2haha~ x̄Cx!ḃ
ȧz̄ ȧ#.

Solving the Poisson equation, we get Eq.~29!.
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4. Second order for the fermions

In the second order inC, we get the following equation
for the fermions:

saȧ
m

¹ml̄ (2)ȧ52
i

2
@Am

(1) ,saȧ
m

l̄ (1)ȧ#2
i

2
@Am

(2) ,saȧ
m

l̄ (0)ȧ#

52
i

2
Cmn¹n~@F (1),saȧ

m
l̄ (1)ȧ#

1@F (2),saȧ
m

l̄ (0)ȧ# !

1
i

2
Cmn@F (1),saȧ

m
¹nl̄ (1)ȧ#

1
1

32
CklCkl@F (1)¹JmF (1),saȧ

m
l̄ (0)ȧ#.

After straightforward algebra, this equation is simplified a

saȧ
m

¹ml̄ (2)ȧ52
i

2
Cmn¹n~@F (1),saȧ

m
l̄ (1)ȧ#

1@F (2),saȧ
m

l̄ (0)ȧ# !

2
CklC

kl

32
saȧ

m
¹m†F

(1),@F (1),l̄ (0)ȧ#‡.

This suggests the following ansatz:

l̄ (2)ȧ52
CklC

kl

32
†F (1),@F (1),l̄ (0)ȧ#‡1s̄mȧaCa

b¹mCb
(2) ,

which leads to the following Poisson-type equation:
S.

e

ys
tt

ko

12600
2¹2Ca
(2)5

i

2
saȧ

m
¹m~@F (1),l̄ (1)ȧ#1@F (2),l̄ (0)ȧ# !.

The solution is given in Eq.~32!.

5. Third order for the bosons

Finally, in the third order inC, we need to solve for the
gauge fields only. The equations are

2~¹[mAn]
(3)!11

i

2
2@A[m

(1) ,An]
(2)#11

i

2
Cmn~ l̄ ȧ

(2)
l̄ (0)ȧ

1l̄ ȧ
(0)

l̄ (2)ȧ1l̄ ȧ
(1)

l̄ (1)ȧ!50.

Direct computation of the current yields

~¹mAn
(3)2¹nAm

(3)!152
i

2
Cmn

CklCkl

4

32hahaz̄ȧz̄ ȧx̄ ix
i

r2~r 21r2!5

3diag~3~r 424r 2r22r4!,3~r 4

24r 2r22r4!,2~r 4210r 2r21r4!!,

where the nonzero entries reside in the U~3! block. This
equation is soluble by taking

Am
(3)5Cmn]nF (3),

where

F (3)52i
CklCkl

4

hahaz̄ȧz̄ ȧx̄ ix
i

r4~r 21r2!3
diag~r 416r 2r213r4,r 4

16r 2r213r4,2~r 414r 2r21r4!!.
to

s
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