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Witten’s ghost vertex made simple
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First, we diagonalize thbc-ghost 3-string Neumann matrices using the technique described in Phys. Rev. D
68, 066003 (2003. Their eigenvalues are in complete agreement with the previous authors. Second, we
diagonalize theN-string gluing vertices for the bosonized ghost system. Third, we verify the descent and
associativity relations for the combined bosonic matignost gluing vertices. We find that in order for these
relations to be true, the vertices must be normalized by the fagjorHere 2y is the partition function of the
bosonic matterghost CFT on the gluing surface, which is the unit disk with the Neumann boundary condi-
tions and the midpoint conelike singularity specified by the angle exeéNs-2).
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[. INTRODUCTION and other associativity relations for the combined bosonic
matter-ghost gluing vertexVy|. The need to verify them
Witten’s open cubic string field theofl] is usually for-  arises from several inconsistencies in the calculations per-
mulated in terms ofN-string gluing vertice§2,3]. The ex- formed in the past two years. First, there is a strange
pressions for these vertices in the basis which diagonalizeanomaly in the multiplication of the wedge statés,0| [13]
L, lead to complicated calculations. Using the fact tkat  [Eq. (5.40 thereinl. Second, the direct calculation of the in-
=L,+L_, commutes with Witten’s vertex, Rastedif al.[4]  ner product of two wedgeéhs,3h3,0) differs from the ex-
transformed it to the basis witk; diagonal. They found that pected unity[8,14]. This result is in contradiction with the
the Neumann matrices in the zero momentum vertex take statement of 3] [Eq. (5.59 therein. And third, assuming
simple diagonal form in this basis. Further it was realizedthat the descent relatior(4.1) are true for the vertices de-
that many calculations in the string field theory which looksfined in [2] the authors of15] find some contradictions in
complicated in thel, basis can be done easily and analyti- their calculationdcompare Eqs(3.34) and (3.38 thereir.
cally in theK; basis. Using their techniqyé] the succeed- In the present paper we show that for critical bosonic string
ing authors generalized their result to include mom¢bial, there is a finite constarffy , ; 1.y in the right-hand sidérhs)
ghosts[6—8], a background field [9], and fermiong10].  of the descent relatiofll.1). This constant can be written as
However, all of these calculation were intrinsically indirect.
Recently the authors dfL1] formulated a simple and direct z 2N 192
method of changing the basis. This method is so powerful N+LINT z Zyi1’ 1.2
that it allowed them to diagonalize at ondéstring Neu-
mann matrices for all scale dimensions in the matter sectokyhere the functionzy is
3-string Neumann matrices fg8y and bc ghosts, and to
resolve the momentum difficulty. However, unlike all other
cases, the 3-strinfpc-ghost vertex was diagonalized indi-
rectly by relating it to the 6-string matter Neumann matrices
[2]. The explicit expression fdb(N) is given in the text of this
The present paper has three aims. First, we diagonalizgaper. Here one only needs to know that e 1 it mono-
the 3-stringbc-ghost vertex by directly changing the basis in tonically increases, and goes to zero as.1Now it is obvi-
its Neumann functions. Second, we consider the generaus that in order to satisfy the descent relation one has to
bosonized ghost systefd2] which is characterized by the normalize the vertices by
background charg® and the paritye==*=1. We find an
expression for th&l-string gluing vertex of this system in the (Vnl— Z(Vy| for N=1. (1.4
K basis. Then we show that ghost numbers can be added to
the vertex by a unitary transformation, and discuss the difWe also verify that the normalized vertices satisfy all other
ferences of this construction from the one for the matter secassociativity conditions. Notice that fdf=2 the normaliza-

ZN: N

9/2
exp[;[Do(N)—Do(zn NG

tor [11]. tion Zy equals 1, therefore the string inner product is not
Third, we test the descent relations affected by Eq(1.4). The functionZy is nothing else but the
partition function of the matterghost CFT on the gluing

? surface, which is the unit disk with Neumann boundary con-

1NV Ve 1= 1. (VA (1.))  ditions and midpoint cone-like singularity specified by the

angle excessr(N—2).
For N= 3 the vertex normalized as in E(L.4) coincides
*On leave from Steklov Mathematical Institute, Moscow, Russia;with Witten’s original definition[1]. In that paper he defined
electronic address: belov@physics.rutgers.edu it as the Polyakov integral over the gluing surface. It seems
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that in most succeeding papers the Polyakov integral was z=i tanhw, (2.4
changed into the correlation function on that surface, and the
normalization factorZy was lost. which takes the unit disk into the stripmw|< 7/4. We

The paper is organized as follows. In Sec. Il we reviewassume that under a map>w the vectorf(z) transforms in
the notations used if11]. In Sec. Il we diagonalize the a trivial way
3-string Neumann matrices for thme-ghost system. In Sec.
IV we consider theN-string gluing vertices for the general f(2)—f[z(w)]. (2.4)
bosonized ghost system. We find its representation irkthe Then
basis, and describe how to change the ghost number by a
unitary transformation. In Sec. V we prove the associativity d
properties of the gluing vertices for the combined bosonic Ky=—i m+2istanhw. (2.5
matter-ghost system. In Sec. VI we discuss the influence of
the vertex normalizatior(1.4) on numeric calculations in  gjnce this is a hyperbolic generator, its eigenvalues are all

S_FT. The Appendix contains necessary technical informaseg| numberse. The normalized eigenfunctions of EQ.5)
tion.
are

Il. NOTATION | k,8)(2) =[As( k) ] coshw)?5e' ¥, (2.6

In this section we review the notations and main formulasvhereAg(«) is the normalization constant:
from [11].

Consider the primary discrete seri®s of the SL(2R) Ay(K)=
representations. Heres is the scale dimension,s S T

=0,1,1,... . Forexamples=1 corresponds to the zero mo- . .
’ pes b One sees that as—0 the function(2.8) becomes ill-

. T . _
mentum bpsomc mat_tes— 2 10 the fermions, and O o . defined atk=0. Nevertheless the=0 K; eigenfunctions
the bosonic matter with the zero modes. An appropriate Hil-

bert spaceH consists of the function§(z) analytic inside are well defined 11

2s—2

r

ik ik
s+ ?)F(s— ?)' (2.7

the unit disk and square-integrable on the boundary. The in- A A )
ner product i 16] |k,0)(z)="P i(K) e'"W="p i(K) + |k, Q)(2).

(2.9

1 S
fy=——r—- d?z[1-27*5%g(2)f(2).
alf) ml'(2s=1) Jiz=1 [ 1™ 70(2)1(2) HereP means the principal value, and the functjan( )(z)
(2.9 can also be written as the integral of the 1 K, eigenfunc-
tion
The s= 3 singularity is spuriou$16], but there is a real one

as s approaches zero. The algebra skRjs generated by _[*
Lo, L+, which are defined by |« Q) (2)= 0d§|"'1>(§)' (2.9
d The vector|x,Q)(z) is that which was found by Rastelli
—n+1l_— ’
La=2" dz+(n+1)sz”. 22 etal [4]. The important identity with«,Q)(z) is [11]
This representation is unitary fer>0. %Iog(1+zz)= foc dKP\/Aj((K) 1, Q)(2). (2.108

A. The discrete basis . . . .
o _ . Differentiating this with respect ta and using Eq(2.9) one
The elliptic generatorL, has discrete eigenvaluesn(  optains another useful identity

+s), m=0,1,2.... Its eigenfunctions normalized by Eq.
(2.1 are 7 o JAS (K

- =f depiiate) |, 1)(z).  (2.10b

_ I'(m+2s)|"2 1+z° Jo= K
|m,s)(z)=N§§)zm with NSﬁ)Z m
2.3 We will frequently use the notatiofw,s|(z)=|«,s)(z).
Notice that fors=0 the only singular vector i0,0)(z). C. The transition matrix
The transition matrix between the discrete and continuous
B. The continuous basis bases is an orthogonal matrix with elements
The generatoK;=L,+L_; commutes with Witten’s star [A(x)]Y2

product[1], which therefore becomes simpler when it is di- (m,s|k,s)=VE (k) — S (2.1
agonalized 4]. It is convenient to map Np,
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Here the polynomials\/ﬁ)(x) are given by the generating
function

©

(coshw)25gi<W= 20 VO (k)™
m=

(2.12

Due to Eq.(2.9) the transition matrices fos=0 ands
=1 are related agl1]

=

(m+1,0«,00=(m,«x,1) (m=0), (2.13

sos=1 is justs=0 with m=0 omitted.
lll. 3-STRING VERTEX FOR bc SYSTEM

A. Overview

The be-ghost system has a background cha@e — 3.

PHYSICAL REVIEW D69, 126001 (2004

andNy.=[3/3/4]%. Here the map#,(z) are

. —iz\%?

hi(z)=¢e' 15z =g vtV (3.53
4

h,’(z)=—§(coshw)2h|(z), (3.5h

wherez=i tanhw, and ¢, = (27/3) (2—1) for I=1,2,3.

B. Diagonalizing Witten’s 3-string ghost vertex

The aim of this section is to rewrite the operator

MLJC(Z,?) in the K, basis. It is known that the vertices
commute with the operatoK; [2]. So one expects that

Due to conservation of this charge it is convenient to write aM 'bJC(z,?) takes a simple form in th&, basis.

3-string vertex over the vacuuti- |, which is the conjugate
of the ghost number 1 vacuufr) (i.e.,(+|—)=1). These
vacua are defined by

b, —)=0 (n>-1); (+|b,=0 (n<0); (3.19

Cml—)=0 (m=1); (+]|cp,=0 (M=<O0);
(3.1b

so{bg,by, ...} and{cy,c,, ...} are the annihilation opera-
tors. The vacuunj—) is related to the SL(®) invariant
vacuum|0) by | —)=c(0)|0). The 3-string vertex over these
vacua was constructed &, paper Il, and in our notations it
reads

©

)y

m=0,n

b%’(ML%cmnc#’]
1
(3.2

(V3|=Npe1of +]X ex;{ -

To diagonalize the Neumann matri3.4) we first notice
that the strange factors in E¢3.4) have a very simple ex-
pression in the variables

h(z)]®-1
% = —4ie?"(coshw)? (3.6a
and
T3 _
M =+4ie?"'(coshw’)2.  (3.6b
z

Now we proceed as ifl1]—first do a binomial expansion of
Eq. (3.4), then rewrite it as a contour integral, and finally do

a Watson-Sommerfeld transformation. Assuming ﬁe(
—w) <0 we obtain

Here 1,4 +| means the tensor product of three Fock vacua

(+], (ML) mn are the 3-string ghost Neumann matrices and .,

Con= (_ 1)n5mn-
To obtain an expression for the matrix elememd ) mn
one can calculate the function
(ValcW(2)bD(z')| =) 109 (3.3
in two different ways: using expressidB.2) and using the
conformal definition of the vertex. The details of this calcu-

lation can be found, for example, in Sec. 4 7] or in [18].
In our notations the result is

o0

ML%(z,?)EmE (MB)nme12'2 ™

)12 [h(2)]3-1
[hy(-2z)]*-1

_[h @] hy(-7
hi(2)—hy(=2")

—r 5|J

X e |
z+7'

z

+

(3.9

— A —
bc(Z,Z'):§(COSM’)2(_1)|—J
X é feile[el(¢,]—<p|)e4/3(w _W)]J+1/2
c2isinmj
5”
Tz @7
z+7'

where the contou€ encircles the positive real axis counter-
clockwise(see Fig. 1 Notice that we have a sign ambiguity
in the exponential, which comes from the analytic continua-
tion of (—1).

Before deforming the contour as in Fig. 1 we must worry
about the convergence at infinity. Starting from here we will
consider the casds#J and|=J separately.

C. Matrices M i for 1 #J
For I #+J Eq. (3.7) can be rewritten as
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MP(z,2')=(-1)'"(coshw’)?

0 e(71'1(/4)(2I —2J+3) _
Xf dx gl r(w=w'),

2 costi3mkl4)
(3.10

Notice that the integral here converges now forvaw’ in
the strip|Imw|<(m/4). Therefore(by the standard analytic
continuation argumenisthe right-hand side represents the

operator(3.4) for all zandz' in the unit disk.
Comparing the cosh-factors in E®.10 with the ones in
Eqg. (2.6) one concludes that the continuuldy eigenfunc-
FIG. 1. The dots represent the poles of the integrand in Eqtjons correspond te=0 ands=1. From Eqs(2.8) and(2.6)
(3.7). ContourC encircles the positive real axis counterclockwise. it follows that the normalization factor of their tensor product

3 -2 -1 i 1 2 3 - Re j

Then we deform it to the conto®_,,, which lies parallel to the st be PLAL(k)/ k] Insertion  of unity 1
. . . . 1 .
imaginary axis at Re=—3. =kl A1(k) P[A1(k)/ k] into Eq.(3.10 yields
0T = A N2 _1\1-d I 19 =
Mi(2.2')=(F1) 5 (coshw')*(~1) Mpz2)=~ | drpli(0)]k,0(2)8(x1(2),
di B (3.11a
é _ ] [l (62— o1 g3 —w))j+12
c2sin(mj) where
3.8
38 1 4y SINh 2
Mpe(k)=+e , (3.11b
To deform the contour as it is shown in Fig. 1 we must worry cosh X
about convergence gémj|—c. To this end forl<J we
choose the upper+ " sign in the exponential. This guaran- 13 _, Sinh 2
tees that for &1<J<3 Mic(k)=—€ " (3.110
T with x= (m«/4).
les— et ml=3.
D. Matrix M},
Taking into account the following asymptotics &snj| For I =J expressior(3.4) becomes
— 00
I 1 4i — 5
1 Mp2,2')= —=+ = (coshw’)
e mImil z+z' 3
sin(mj) dj B
% T orimipgdBw —w)pi+ 12
and $ ]

(3.12
|e4/3(W’ —w)jlge4/3\|m(W’ —w)fimjj.
This expression contains two terms, and we will consider
_ them separately. In the second term we want to deform the
one concludes that for arbitrary sma#>0 and [Im(w'  contourC as in Fig. 1. To this end we must first worry about
—w)| < (m/2) = & the integrand has at least the exponential,,ergence at infinity. For genenalandw’ the integrand

=d[Im | i .
falloff “e ’ "71 . _(Opposr[ely, for._J<| one has to choose the does not go to zero agimj|—w=. However for O
lower “—"sign in the exponential. This guarantees the same<_I W W< (7/2) the int 4 h tial
falloff as [Imj|—<.) Now we can shift the contou€ to +Im(w’ ~w)< (w/2) the integrand has an exponentia
Rej=—1 by writing falloff. In this case we deform the contoQras in Fig. 1 by

writing Eq. (3.9 to get

j=—--2% (3.9 second terns * (coshw’ )2

. e137rk/4 » 7/)
X dK—eIK w—w .
to get(for I<J) f_w 2 cosli3mkl/4)
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Comparing the cosh-factors here with the ones in @) E. The Neumann matrices in the discrete basis
one concludes that the continuum eigenfunctions correspond Collecting Eqs.(3.16 and(3.11), one concludes that the

to s=0 ands=1. Therefore we can write ghost 3-string Neumann functiori8.4) have the following
diagonal representation in the, basis:

. sinh% . o _
second terrs if dxe=3m/ P Mpu(z,2')=~ f_ dicppe( k)| k,0)(2)@(k,1(2")
- cosh——
” VA1(x) —
— +5”Jd7> ®(x,1(z'),
x| x,00(2)®(x,1|(Z'), (3.13 WP ek 1l(z)
where the eigenfunctior|{%,0) and(«,1| are defined in Egs. (3.173
(2.8 and (2.6), respe@vely. The representatidB.13 is
valid only for 0< ¥ Im(w’ —w)< (/2). where I=I,J<3,
Now we need to represent the first term in E§.12
through the tensor product e=0 ands=1 eigenfunctions. | cosh x
The details of this calculation can be found in the Appendix. Mo €)= oo 3y (3.17b
The result is
1 * + /2 1 |'|+1(K):+eXSinh 2x (3 170
Z+? = - _dee_ |K,O>(Z)®<K,1|(Z ) Hpc COSh 3){ )
» VA1 (k) — sinh 2x
+j dxP ®(k,1(z2"). (3.149 [T
— K { e (K)= =€ o ax (3179

The first integral here converges for<0:|m(v_v’—w)

) i — and x= (m«/4).
< (m/2), while the second integral converges for allin

To find the Neumann matricesM{ p) . m+1 We can cal-

the unit disk. . 3/, 5
Substitution of Egs.(3.13 and (3.14 into Eqg. (3.12 culate the matrix elements of the ope_ralzbtbc(z,z_ ) be-
yields tween the vectorgn,0 and|m,1). In this calculation one

obviously gets a divergence far=0 [see Eq(2.3)]. We can
- " \/m - handle this divergence by considering instead of the operator
Mlblc(Z,Z’)=f dxP——a(x,1(z) M p(z,2') the vector M.(0z') and calculate its inner
o product with|m,1). Proceeding in this way one obtains
. hﬂTK
sinh—-
* . 2 . ym+1 (=
+ f dic| +e 3 e (MO 1mer=~ == f drepatye( )
coshT
X {n+1,0 «,0(x,1Jm,1) (3.183
X |k,00(z)®(x,1(Z"). (3.1

. ) ) o for n,m=0 and
This expression has a sign ambiguity in the second term.

However, if we want the first integral to be convergent in the .
region |Im(w—w')|< (7/2) we must choose the upper (ME)oms1=— \/m+1f dul uph(k)— 6]

“+7” sign in this expression. Finally, we get
TP ST = X ‘Al(K)< 1)m,1) (3.18h
Mi2z)== [ depl 0l 0@ o(1E) o (elim. -

+F VAL(k)

drP— ®(x,1(z'), (3.163

Here the square roots come from the calculation of the inner
products ofz" or z’™, appearing in the definitioli3.4) of
ML, with the vectorgn,0| or |m,1).

where Taking into account Eq(2.13 and u(-(0)= 6" we find

that the representatiof8.18 and eigenvalue$3.179 com-

coshx TK ; ; :
I _ : _TK pletely agree with the ones obtained[itl] [Egs.(6.7) and
Fpo(K) cosh X with - x 4 (3169 (6.8 therein.
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IV. N-STRING VERTEX FOR BOSONIZED GHOSTS where the Neumann function coefficiey, are defined by
A. Overview Eg]e ;,re]léne formula as the ones for the matter part of the vertex

The aim of this section is to review a construction of
LeClair etal. [3] of the N-string gluing vertex for the ” hi(z)
bosonized ghosts. K'(z)= 21 Kinz'= h) (4.9
Here we consider CFT for the general bosonized ghost " !
system [12], which is characterized by the background The fact that the terms in the exponent contain the coefficient
chargeQ and the paritye ==1. The ghost number current q js a direct consequence of the transformation lawl).
1(2)=2d¢(2) is an anomalous primary operator of dimen- ysing the anomalous momentum conservation law and

sion 1 and transforms under a conformal nigg) as (—g—Qljo=(—q—Q|q we can rewrite the exponential as
: : o Qh"(2)
j(2)=(hej)(2)=h"(2)j[h(2)]+ 2h) (4.) . >
s 3 I+, 3, I
This current has the following mode expansion: .
8 — —
+3 > a,Npan (4.6
1,J mn=1

. jo < PR
(=7 +2 Vnfajz" a2 " Y
=1 . ..
3 where the new Neumann-function coefficients are related to
with the old ones by

_ 1 1
[a, !a:q]:_‘?émn- (4.2) NB%: NB%— EN:)IO_ ng‘J)’ (4.79
Herea,, are creation/annihilation operators over the vacuum 1
|q), which is an eigenvector of the operatgr with eigen- /\['OJm: NlOJm_ —Kfm (4.7b
value g. Due to the anomalous transformation l&vl) the 2

conjugate vacuum t¢q) is (—g—Q|. From this it follows 13l
thatjg): —jo— Q. Nan= N (4.79
The OPEs of the fieldg(z) andj(z) are The new coefficients can be expressed in terms of the gluing
, , maps{h;(z)} as follows[3]:
$(2)$(2')~ ¢ log(z—2'), (4.3 i@
[h,(0)—h,(0)]
q ' No=(1-38")log , T 2] (4.89
j(z)eq¢(z)~ eq¢(z ) (43b) |h| (O)hJ(O)|
z—7'
The matter fieldX* can be obtained from the expression NBJ(Z)EZ N'o‘]n\/ﬁzn_l
above by identifyinge with —»*", jo=—1y2a'p* and =t
an=F(i/ym) a% . h}(2) SN ni2)
The gluing vertex for the bosonized ghosts differs in two TPz 2h2)’ (4.8b
ways from that for theX field. First, it has nonzero back- ! J J
ground charg®), and second the momentum eigenvalues are o
no longer continuous but form a discrete set. The vertex N(z2)= AN JmnZn1z/n-1
reads[3] [Eq. (5.1) therein (z.2) m,;:1 mn
N h/(z)h}(z") &Y
(VQl=2 814+ 0o® 1 (—0'— Q| = -5 (480
O e [h(2)—hyZ)P  (z-7)?
e e Notice that all functions here are manifestly PSL(2) invari-
Xex;{— > g (Q+gh+= > q'Nyg’ ant[3, pp. 487-488 i.e., they do not change undéh,}
2151 2 17 —{Teh,} with T(z) e PSL(2). Therefore all Neumann coef-
m N o ficients\,, are SL(2R) invariant. Let us remember that, for
_g > QKla, -¢ >y q'N'OJna;(J) example, the generating function for the coefficiehty,
2 =1 0=0 I,J=1n=1 doesdepend on a choice of the SL{), frame. However,
N o this dependence is cancelled by the nonanomalous momen-
8 . .
L2 E 2 a-ONN 2= | (4.4) tum conservation, and therefore thé vertex is SL(2)
21571 mneg o mn invariant.
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Writing the vertex in the forni4.6) eliminates the explicit
dependence on the background chaggén this notation the
X*# vertex can be obtained simply by changingo — »*”,
jo=—iV2a'p* anda; — Fi (a’;n/\/ﬁ). Of course some of
the terms in Eq(4.8b) will drop out due to the normdahona-
nomalou$ momentum conservatiorB].

For Witten's N-string vertex the mapk,(z) are

2N

h(z)= 1;:; —giighN, (4.93
4i
h|’(z)=—ﬁ(coshw)2h,(z), (4.9

wherez=i tanhw and ¢, =(27/N) (any—1). Here ay is a
real number which is chosen in such a way that all angles
lie in the range ¢ &, 7].

B. Diagonalization of the Neumann coefficients
1. OperatorA/™
The operatot\NY(z,z') was diagonalized in Sec. IIl of

[11]:

Nz-7)= | dkpb(ol kD@,
(4.10

where |«,1)(z) is defined in Eq. (2.6), («x,1(z')
=|k,1)(z') and

| - sinh(N—2)x 411
N =T T ginhNx 4113
sinh 2

1J — atX(N+21-27J)
/‘Ll,N(K) € sinhNx (|<‘])1
(4.11b
sinh 2x
13 — a—x(N=21+2J)
/*Ll,N(K) € SinhNX (I>‘])
(4.119

Herex= (mkl/4).

2. Matrix N5
Substitution of the map&t.9) into Eq. (4.89 yields

NE=(1-8Y)lo Esin(z|l—\l|” 4.12
00~ g 2 N . .

This expression coincides with the matii{’o, which is

defined by Eq(5.9) in [11]. The numbers/\/'oJ0 can also be
represented by the following integral:

PHYSICAL REVIEW D69, 126001 (2004

Imj‘

A
[
Y
C
2 -1 1 2 3 e Re ]
:

FIG. 2. The dots represent the poles of the integrand in Eg.
(4.15. ContourC encircles the positive real axis counterclockwise.
Then we deform it to the conto@® _, . 3, which lies parallel to the
imaginary axis at Rg=—1 and passes the pole gt —1 on the
right.

% Ai(k)[ 1
= [ o Gttt
~ Wiy (r)+ 8- 1] - 13

The simplest way to obtain this expression is to notice that it
can also be written as the following limit:

— lim r dKAS(K)(%[M';N k) + (6]

s—+0Y =%

- MISI,N(K) +6— 1] ,

which was calculated in Eqg5.7)—(5.9) in [11] with the

resultM g,

3. Vector A/
Substitution of the mapgt.9) into Eq. (4.8b yields

el (e3— @) ghwr/N

/\/'J(—?)zﬂ(cosh\ﬁ’)2
0 N 1—giles—engtwr/N

SV z/
+:_ p—
z 1472

2i —
+ W(coshw')z. (4.19

Assuming Rev’ <0 we can expand the first term in a bino-
mial series, and then rewrite it as a contour integral. All other
terms we leave as they are for a while. So the first term
becomes

dj
2i sin(m))

Xei(%—(pliw)(jﬂ)eﬂ'm(j+1), (4.1

, 4
first term= — — (coshw’)? §
N c

where the contouC encircles the positive real axis in the
counterclockwise directiofsee Fig. 2 Notice the sign am-
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biguity in the exponential, which comes from the analyticIn order to write the vertex we also need a twist oper&or

continuation of 1)/,
Now we are going to deform the contodrto lie parallel

to the imaginary axis as in Fig. 2. To this end we need to_( 1)ra

worry about the convergence #snj|—. Let us assume

I<J. In this case the integral will have the exponential fall-

off if we choose the upper+ " sign and temporarily assume
o< -
deform the contou€ as in Fig. 2 by writing

J:_1+O_T
to get

o dx

first term:(coshW’)zf

““25sin K +i0
4

w @TKIAN+21~23) g i KW’ .

(4.19

Using the fact that

1 B 1 4j 5
~ (@#Nk \ " @Nk N ()
sin T+|0 sth

one finds that the term in Eq4.16 coming from theé$
function cancels the last term in E@t.14). Now we repre-

sent 12’ in Eq. (4.14 as in Eq.(3.14 with the “+ " sign,
and writez’/(1+2'?) as in Eq.(2.10b to get

NloJ(_?):fj dx \/Al( )

Ny

P

W(K) =1+ 89k, 1(z), (4.1

where u\(x) is defined in Eq(4.11). Notice now that the

integral in the rhs converges for all’ in the strip|Imw’|
<(m/4). Therefore(by the standard analytic continuation
arguments this expression represents the veotéh;](z) for
all z in the unit disk. One can easily check that E4.17)
remains the same if we assurheJ and choose the +”
sign in Egs.(4.14) and(3.14).

C. The N-string vertex in the continuous basis
1. Vertex in the continuous basis

We introduce thes=1 continuum oscillators

a* ()= 2, ay.y(x1n.1)
with

[a (k),a"(k')]=—ed(k—K'). (4.18

Which roughly speaking corresponds to the substitution
——7'. It is defined[2] in the discrete basis byQa®),
. - Hence in the continuous basis it becomes

(Ca™)(k)=—a"(—«k).

(4.19

Imw’ <(w/4). With these assumptions we can safely Finally, substituting Egs(4.10, (4.17) into Eq. (4.6) and

using Eq.(4.18 one obtains

(Vi ol =2 ®|< q'=Qld, .

'} 1=1

xex;{ 2,4 lf drxa™ O(k)ul N(K)
N f VAL(x)
K

><(c:a—<J>)(K)+s|2 it dkP

+ih+Q0

— o0

X{puin(r)—1+ 8V} (Ca” D) (k)

N

8 .
£ i @20
1,J=1

wherej, is the ghost number operatdr-q—Q|j,=0(—q
—Q)|, the continuous oscillatora™(«) are defined in Eq.
(4.18), the N-string Neumann matrix e|genvalu¢;u§lJ are
defined in Eq.(4.11), and the coefﬂuents\/ are listed in
Eq. (4.12. Notice that the gluing vertex for the matter field
X* can be obtained from this by puttiri@=0 and replacing
e with —7**, jo=—iy2a'p, anda”V—a, ") [compare
Eq. (4.20 with Eq. (5.12 from [11]].

2. The unitary transformation

In [11] it was shown that the=0 N-string matter vertex
can be obtained from the zero moment(ima., s=1) vertex
by the unitary transformation

Upzexp[ i \/2a'f)fjc d«P All((K)

x[a*(K)+a(K)]}. (4.2

In the case of nonzero background cha@éhe appropriate
unitary operator is
J dxP

. Q
Ujo=exp’s(10+5

X[a+(K)+a_(K)]}.

VA1(x)
K

(4.22

Here the linear combination gf, andQ was fixed from the
conjugation property12] of jo: ji=—jo,— Q. Notice that in
contrast to Eq(4.21) the unitary transformatior4.22 re-
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mains nontrivial even fojy=0. Under this unitary transfor- e N
mation thes=1 continuum oscillatoma™(«) transforms to X(Ca’(J))(K)—E E (q'+§)
the s=0 oscillator 1,J=1

a*(x,jo)=Uj a” (1)U, X qJ+% f di &(K)[ i K)+5”]gs(,<)}.
— 4 Q| VA(x) * . . . .
=*ljot 5 |P— —ta (k). (423 One sees that the integrals in the first and second term in the

exponential are well defined as-0, but there is a problem
Now let us try to proceed as ifl1] and add the ghost With the s—0 limit in the third term.
numbers by applyingN copies of the unitary transformation In the second term we can substit@e=—,q' and use
(4.22). To this end we have to regularize the principal valuethat =[ u" (k) + 5'7]=2 to obtain
in Eq. (4.22. It does not matter what regularization we

choose, the final result should be regularization independent. N [ VA1(K)
For definite we will assume the following regularization second terrﬁsljzl q fﬁdeP
[11]: '
X[uin(r)+ 87 =1](Ca~ ) (k).
U, =ex 8'+9foodK§(K)
Jors™ o o)) 0KEs In the third term, we can use E(.13 and the anomalous
conservation law to get
><[a+(f<)+a(f<)]], (4.24 N
&
third term== >, q'N5g’
2,521
where
A S s stfwd Aal)
- K
gS(K)_ S(K \/78 l+S(K)- (425) 2 —* K2
' sQ2 (N 2)2
Now U;  can be normal ordered X[ n(K) = in(0)] = —— (&s.€s)-
_ £ . The integral here is easy to calculate, and we finally get the
Ujo,s_eXp{ JO+ <§s:§s>] JOS ' (4-26) relation
where (ViZhlia'h) = im e
s—+0
<§S!§S>: j_deAS(K):F(ZS) X Uql® e ®UqN5ql+,,.+qN+Q’0,
(4.28
Whenever possible we will writés, &) instead of its value
I'(2s). We will do this in order to be able to choose anotherwhere
regularization without extra problems.
So we want to calculate £Q? (N 2) £Q? N N-
FN,S_ 2 <53155>+ IOgE__Ing
lim <v<1>|®u,| $SiLe .. +iNeQos (4.27 (4.29

s—+0
Notice that for genera@ the functionFy 4 is zero only for

where the vertex V()| is defined by the first line in Eq. N=2. This means that the string inner prod¢et”)| is not

(4.20. Substitution of Eq(4.26) yields affected by this singularity. FoQ=0 Fy ¢ is identically
zero, and hence after replacimg—>—i\/2a’pL Eq. (4.28
reproduces the result §11] for the matter sector.

lim > ®.< q'— Q| i+ 1qN+00

s—+0qg-, ..., gN 1=1
V. ASSOCIATIVITY OF WITTEN'S STAR PRODUCT
Xexp{ > f dxa™ (I)(K)M )(Ca_(J))(K) A. Descent relation between the gluing vertices
1=t The aim of this section is to verify the following descent
N Q\ (= relation:
re 3 (a3 [ deetorafiio+ o
1J=1 2) )= ' 1 nUNE= 1o iUl Ve (5.1

126001-9



D. M. BELOV

where (V| is the combined matterghost gluingN-string

vertex. The combined verte®/y| has the form(4.20 with
the replacementsa—a, (u=-1,...D—1) where u
=—1 corresponds to the ghost oscillator ane-0,... D
—1 to the matter oness— — »*" where n*"=diag(— ¢,

,1); ando—j4=(jo,—iv2a’p).

We know that the vertex depending on the momenta anéfrom this it follows thatz; ;.,=
ghost numbers can be obtained from #el vertex by the

PHYSICAL REVIEW D 69, 126001 (2004

1
1<K>=;[<§s,§s>+log 2]

47T$

+2')/E

o1

1. If the descent relation
(5.1 were true, allZy. ;5 With N>1 would be 1. But as

unitary transformation as in E¢4.28). Since adding the mo- we will see in a momengy, ; ;. iS a nontrivial function of

mentum does not produce any divergendig$] we put it

N, and therefore the vertices must contain an additional nor-

equal to zero. So we need to calculate the following productmalization factor.

Frns1otF 1 1
e N+ls 1’51-~-N,N+1<V§\14)rl|vg. )>N+1

XUq® - ®@UgNSgis... 1 gN+00- (5.2

The inner product in theN+ 1)th tensor component is easy

to calculate:

1-- -N,N+1<V§\114)rl|vg.1)>N 1

—de(l /“ ) (D+1)/2
N<0|exr{ E E dKa - O (k)
,uvf—llJ
T Nt
+ +
x[uﬁm —}( )(Ca, ‘”)(:«)l
1_,U«N+1

where uy'= u; Ml N

Itis a matter of simple algebra to show
that the term in{ } equalsuy(x). Hence we see that the

For the critical bosonic string{=26, e=1, and Q
=—3) Zy4+11n IS a finite function ofN

9 27
Iog ZN+1,1;N: - E EA Sa Iog a+t 7 EA SaDO(a)i

N (5.6

whereA={2N,N+ 1,1}, {s,JaeA}={1,1-1,—1}, and

t
=dt a t 1 1

Oo()= | | 3aiit| 67

The details of this calculation will be presented 19]. From
the representatio(b.6) it follows that 2y, 1,y can be writ-
ten as

2N

ZN+1,1;N=m- (5.8

descent relation is actually satisfied up to a numeric coeffiyya e the logarithm ofZ, is given by

cient

1-- -N,N+1<VN+1|V1>N+l: (ZN+1,1;N) 1. ~N<VN|= (53)

where

log Zy 1 an=——5— |09 detl— 'ty
+FN+1,S+F1,S_FN,S (5-4)

andF s is defined in Eq(4.29. In other words logZy 1 1
is

eQ? N+1
log 2y 108=+ 510055
D+1
_T dklog(l pa 1 (K))pa(x)

eQ? (N—=1)(N+2)
2 N(N+1)

{(&s.&5) +log 2},
(5.9

where p;1(«) is the trace density which was calculated inrelated to the string field redefinition.

[14]

9 N 27

log Zy=—slog=+ = [Do(N)—Dy(2)]. (5.9
2792 2

Notice that the functiorZy cannotbe uniquely determined

from the relation(5.8). It is defined up to a rescaling

(5.10

The functionZ defined in Eq.(5.9) monotonically goes to
zero on the intervgll,:), and its asymptotic at infinity is

il

Now it is obvious that in order to have the descent rela-
tion (5.1) one has to introduce the normalized gluing vertices
{Vnl, which are defined by

N

The normalizationZy is given by Eq.(5.9) or any of Eq.
(5.10. Notice thatZ,=1 independently on the choice of the
scaling factor in Eq(5.10. The ambiguity(5.10 is closely
Indeed the factor
(const]~? in the vertex can be cancelled by simultaneous

Zy—(constN™2z,.

2

9/2 27
= exp[ — 5 Do(2)+0

ZNOC N

=Z\(Vp| for N=1. (5.11)
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rescaling of the string fieldl— (const) 1.4 and the coupling
constantg,—(const) 1g,. The natural choice of the factor
in Eq. (5.10 is that whereZy coincides with the partition
function of the bosonic matterghost CFT on the gluing

PHYSICAL REVIEW D69, 126001 (2004

condensatioi23]. First, the calculations in which one uses
only vertices(V,| and(V3| (see, for examplg,24]) are not
affected by the normalizatiof5.11). One can simply cancel
the factorZ; in the cubic vertex by simultaneous rescaling of

surface, which is the unit disk with Neumann boundary conhe string field and the coupling constant.4s> 25 *A and

ditions and the angle excegsgN—2). This choice basically
follows from the relation

Zy=(VnI(|0)1@ - - - ®|0)y),

where (V| is supposed to be a surfa¢multi)state, and
therefore the rhs must be the partition function of this surfac
(see Fig. 5 in20]).

For N=3 the normalized as in E@5.11) 3-string vertex
coincides with Witten’s original definitiofil]. In that paper

he defined it as the Polyakov integral over the gluing surfac

which, of course, includes the partition function in its defi-
nition.
Notice that in Moyal formulation of SFTIMSFT) [21] the

gOHZ§190 correspondingly. However, the calculations in
the bosonic string which involve the higher vertigésany
were dong have to be revised.

Second, the fact thaBy#1 (N=1 andN=3) for the
bosonic string may potentially affect the numeric calcula-
tions in the nonpolynomial fermionic string field thedisee,

Ror example,[25]). To check this one has to calculate the

contribution of the matter fermions and superghosts into the
partition functionZy . For the same reason as for the bosonic
cubic SFT the calculations in the cubic fermionic string field

?heory(see, for exampld,26]) are not affected.
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APPENDIX: REPRESENTATION OF (Z+z')~!
THROUGH s=0Xs=1 K; EIGENFUNCTIONS

In this Appendix we derive a representation of the first

is only about the normalization factors, since the exponenterm in Eq.(3.12) through the tensor product =0 ands

tials were worked out if3,22].
We claim that the normalized vertic€S.11) indeed sat-
isfy the relations like Eq(5.12. The proof is simple and

does not require complicated calculations. Let us prove, for

example, the first relation in Eq5.12. Suppose that it is
false, and there is a constafit- 1 in the rhs:

(124(V3l ® 456(V3D)[V2)3a= A 1256(Val.

Now we contract this equation with the identity stig))s
in the sixth tensorial space. Using the descent relatibriy
we obtain

(124(Va|® 45(Va) [VoDza=A  124(V3|.

Noticing that 45(V2|V,)34= 553 one finds that the constaAt
equals 1. So the first relation in E(5.12) is true. Actually
all relations like Eq.(5.12 can be proved in this manner.
Therefore the normalized vertic€s.11) do satisfy the asso-
ciativity relations.

VI. DISCUSSION

=1 K, eigenfunctiong2.8) and(2.6).
We start from the following equation for <0+ Im(w’
W) =< (7/2) ands>0:

I'(2s) —
—( +_’)23=(coshwcoshw’) s
z+z

X f diA()e= T2l KW=w") (A7)

This expression follows from Eg$3.14) and(3.23 in [11_].
Obviously differentiating the left-hand side with respectto

and taking the limits—0 one obtains—(z+?)‘1. Hence
the problem is to perform these operations on the rhs.

Differentiation byz’' = —i tanhw’ of Eq. (A1)'s rhs yields
(Coshw)zs(cosh\ﬁ’)zsﬂf d et ™2

— o0

X A k)W 287 + ). (A2)

Here | want to discuss some consequences of the normal-

ization (5.11) for the numeric calculations of the tachyon

Using the following relations
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Ag+s(K) K 1
A(k)=———, lim———=P—,
s K2+4s? s0K’+ 452 K
and
Im———==md(«),

one can take the—0 limit in Eq. (A2):

— o Ai(k) | =, z'
(coshw’ )2J dre” ’TK/ZP—l( glelwwh
—o0 K 1+2'2

PHYSICAL REVIEW D 69, 126001 (2004

The last term in this expression comes from the midpoint and
therefore can be written as in E.10h. Using Egs.(2.8
and(2.6) we finally obtain

1 o -

_ — *mkl2 !

S f,dee |k,00(2)®(k,1|(Z")
[ e aizy. ey

Here the first integral converges for<0¥|m(W’—W)

< (7/2), while the second integral converges for allin
the unit disk.
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