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Witten’s ghost vertex made simple

D. M. Belov*
Department of Physics, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854, USA

~Received 25 August 2003; published 2 June 2004!

First, we diagonalize thebc-ghost 3-string Neumann matrices using the technique described in Phys. Rev. D
68, 066003 ~2003!. Their eigenvalues are in complete agreement with the previous authors. Second, we
diagonalize theN-string gluing vertices for the bosonized ghost system. Third, we verify the descent and
associativity relations for the combined bosonic matter1ghost gluing vertices. We find that in order for these
relations to be true, the vertices must be normalized by the factorZN . HereZN is the partition function of the
bosonic matter1ghost CFT on the gluing surface, which is the unit disk with the Neumann boundary condi-
tions and the midpoint conelike singularity specified by the angle excessp(N22).
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I. INTRODUCTION

Witten’s open cubic string field theory@1# is usually for-
mulated in terms ofN-string gluing vertices@2,3#. The ex-
pressions for these vertices in the basis which diagonal
L0 lead to complicated calculations. Using the fact thatK1
5L11L21 commutes with Witten’s vertex, Rastelliet al. @4#
transformed it to the basis withK1 diagonal. They found tha
the Neumann matrices in the zero momentum vertex tak
simple diagonal form in this basis. Further it was realiz
that many calculations in the string field theory which loo
complicated in theL0 basis can be done easily and analy
cally in theK1 basis. Using their technique@4# the succeed-
ing authors generalized their result to include momenta@5,6#,
ghosts@6–8#, a backgroundB field @9#, and fermions@10#.
However, all of these calculation were intrinsically indire
Recently the authors of@11# formulated a simple and direc
method of changing the basis. This method is so powe
that it allowed them to diagonalize at onceN-string Neu-
mann matrices for all scale dimensions in the matter sec
3-string Neumann matrices forbg and bc ghosts, and to
resolve the momentum difficulty. However, unlike all oth
cases, the 3-stringbc-ghost vertex was diagonalized ind
rectly by relating it to the 6-string matter Neumann matric
@2#.

The present paper has three aims. First, we diagona
the 3-stringbc-ghost vertex by directly changing the basis
its Neumann functions. Second, we consider the gen
bosonized ghost system@12# which is characterized by th
background chargeQ and the parity«561. We find an
expression for theN-string gluing vertex of this system in th
K1 basis. Then we show that ghost numbers can be adde
the vertex by a unitary transformation, and discuss the
ferences of this construction from the one for the matter s
tor @11#.

Third, we test the descent relations

1•••N,N11^VN11uV1&N115
?

1•••N^VNu ~1.1!
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and other associativity relations for the combined boso
matter1ghost gluing vertex̂ VNu. The need to verify them
arises from several inconsistencies in the calculations
formed in the past two years. First, there is a stran
anomaly in the multiplication of the wedge states^hN,0u @13#
@Eq. ~5.40! therein#. Second, the direct calculation of the in
ner product of two wedgeŝh3,3uh3,0& differs from the ex-
pected unity@8,14#. This result is in contradiction with the
statement of@3# @Eq. ~5.59! therein#. And third, assuming
that the descent relations~1.1! are true for the vertices de
fined in @2# the authors of@15# find some contradictions in
their calculations@compare Eqs.~3.34! and ~3.38! therein#.
In the present paper we show that for critical bosonic str
there is a finite constantZN11,1;N in the right-hand side~rhs!
of the descent relation~1.1!. This constant can be written a

ZN11,1;N5
ZN

Z1ZN11
, ~1.2!

where the functionZN is

ZN5F 2

NG9/2

expH 27

2
@D0~N!2D0~2!#J . ~1.3!

The explicit expression forD0(N) is given in the text of this
paper. Here one only needs to know that forN>1 it mono-
tonically increases, and goes to zero as 1/N. Now it is obvi-
ous that in order to satisfy the descent relation one ha
normalize the vertices by

^VNu→ZN^VNu for N>1. ~1.4!

We also verify that the normalized vertices satisfy all oth
associativity conditions. Notice that forN52 the normaliza-
tion ZN equals 1, therefore the string inner product is n
affected by Eq.~1.4!. The functionZN is nothing else but the
partition function of the matter1ghost CFT on the gluing
surface, which is the unit disk with Neumann boundary co
ditions and midpoint cone-like singularity specified by t
angle excessp(N22).

For N53 the vertex normalized as in Eq.~1.4! coincides
with Witten’s original definition@1#. In that paper he defined
it as the Polyakov integral over the gluing surface. It see
;
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that in most succeeding papers the Polyakov integral
changed into the correlation function on that surface, and
normalization factorZN was lost.

The paper is organized as follows. In Sec. II we revi
the notations used in@11#. In Sec. III we diagonalize the
3-string Neumann matrices for thebc-ghost system. In Sec
IV we consider theN-string gluing vertices for the genera
bosonized ghost system. We find its representation in theK1
basis, and describe how to change the ghost number
unitary transformation. In Sec. V we prove the associativ
properties of the gluing vertices for the combined boso
matter1ghost system. In Sec. VI we discuss the influence
the vertex normalization~1.4! on numeric calculations in
SFT. The Appendix contains necessary technical inform
tion.

II. NOTATION

In this section we review the notations and main formu
from @11#.

Consider the primary discrete seriesD s
1 of the SL(2,R)

representations. Heres is the scale dimension,s

50,1
2 ,1, . . . . Forexample,s51 corresponds to the zero mo

mentum bosonic matter,s5 1
2 to the fermions, ands50 to

the bosonic matter with the zero modes. An appropriate H
bert spaceHs consists of the functionsf (z) analytic inside
the unit disk and square-integrable on the boundary. The
ner product is@16#

^gu f &5
1

pG~2s21!
E

uzu<1
d2z@12zz̄#2s22g~z! f ~z!.

~2.1!

The s5 1
2 singularity is spurious@16#, but there is a real one

as s approaches zero. The algebra sl(2,R) is generated by
L0 , L61 which are defined by

Ln5zn11
d

dz
1~n11!szn. ~2.2!

This representation is unitary fors.0.

A. The discrete basis

The elliptic generatorL0 has discrete eigenvalues (m
1s), m50,1,2, . . . . Its eigenfunctions normalized by Eq
~2.1! are

um,s&~z!5Nm
(s)zm with Nm

(s)5FG~m12s!

G~m11! G1/2

.

~2.3!

Notice that fors50 the only singular vector isu0,0&(z).

B. The continuous basis

The generatorK15L11L21 commutes with Witten’s sta
product@1#, which therefore becomes simpler when it is d
agonalized@4#. It is convenient to map
12600
s
e

a
y
c
f

-

s

l-

n-

z5 i tanhw, ~2.4!

which takes the unit disk into the stripuIm wu< p/4. We
assume that under a mapz°w the vectorf (z) transforms in
a trivial way

f ~z!° f @z~w!#. ~2.48!

Then

K152 i
d

dw
12is tanhw. ~2.5!

Since this is a hyperbolic generator, its eigenvalues are
real numbersk. The normalized eigenfunctions of Eq.~2.5!
are

uk,s&~z!5@As~k!#1/2~coshw!2seikw, ~2.6!

whereAs(k) is the normalization constant:

As~k!5
22s22

p
GS s1

ik

2 DGS s2
ik

2 D . ~2.7!

One sees that ass→0 the function ~2.8! becomes ill-
defined atk50. Nevertheless thes50 K1 eigenfunctions
are well defined@11#:

uk,0&~z!5P
AA1~k!

k
eikw5P

AA1~k!

k
1uk,V&~z!.

~2.8!

HereP means the principal value, and the functionuk,V&(z)
can also be written as the integral of thes51 K1 eigenfunc-
tion

uk,V&~z![E
0

z

dzuk,1&~z!. ~2.9!

The vectoruk,V&(z) is that which was found by Rastel
et al. @4#. The important identity withuk,V&(z) is @11#

1

2
log~11z2!5E

2`

`

dkP
AA1~k!

k
uk,V&~z!. ~2.10a!

Differentiating this with respect toz and using Eq.~2.9! one
obtains another useful identity

z

11z2
5E

2`

`

dkP
AA1~k!

k
uk,1&~z!. ~2.10b!

We will frequently use the notation̂k,su( z̄)[uk,s&(z).

C. The transition matrix

The transition matrix between the discrete and continu
bases is an orthogonal matrix with elements

^m,suk,s&5Vm
(s)~k!

@As~k!#1/2

Nm
(s)

. ~2.11!
1-2
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WITTEN’S GHOST VERTEX MADE SIMPLE PHYSICAL REVIEW D69, 126001 ~2004!
Here the polynomialsVm
(s)(k) are given by the generatin

function

~coshw!2seikw5 (
m50

`

Vm
(s)~k!zm. ~2.12!

Due to Eq.~2.9! the transition matrices fors50 and s
51 are related as@11#

^m11,0uk,0&5^m,1uk,1& ~m>0!, ~2.13!

so s51 is justs50 with m50 omitted.

III. 3-STRING VERTEX FOR bc SYSTEM

A. Overview

The bc-ghost system has a background chargeQ523.
Due to conservation of this charge it is convenient to writ
3-string vertex over the vacuum̂1u, which is the conjugate
of the ghost number 1 vacuumu2& ~i.e., ^1u2&51). These
vacua are defined by

bnu2&50 ~n.21!; ^1ubn50 ~n,0!; ~3.1a!

cmu2&50 ~m>1!; ^1ucm50 ~m<0!;
~3.1b!

so $b0 ,b1 , . . . % and$c1 ,c2 , . . . % are the annihilation opera
tors. The vacuumu2& is related to the SL(2,R) invariant
vacuumu0& by u2&5c(0)u0&. The 3-string vertex over thes
vacua was constructed in@2, paper II#, and in our notations it
reads

^V3u5Nbc 123̂ 1u3expF2 (
m50,n51

`

bm
(I )~M bc

IJ C!mncn
(J)G .

~3.2!

Here 123̂ 1u means the tensor product of three Fock vac
^1u, (M bc

IJ )mn are the 3-string ghost Neumann matrices a
Cmn5(21)ndmn .

To obtain an expression for the matrix elements (M bc
IJ )mn

one can calculate the function

^V3uc(I )~z!b(J)~z8!u2&123 ~3.3!

in two different ways: using expression~3.2! and using the
conformal definition of the vertex. The details of this calc
lation can be found, for example, in Sec. 4 of@17# or in @18#.
In our notations the result is

M bc
IJ ~z,z̄8![ (

m,n50

`

~M bc
IJ !n,m11znz̄8m

5
@hI8~z!#21@hJ8~2 z̄8!#2

hI~z!2hJ~2 z̄8!

@hI~z!#321

@hJ~2 z̄8!#321

3F z̄8

z
G1

d IJ

z1 z̄8
, ~3.4!
12600
a

a
d

-

andNbc5@3A3/4#3. Here the mapshI(z) are

hI~z!5eiw IS 12 iz

11 izD 2/3

5eiw Ie4w/3, ~3.5a!

hI8~z!52
4i

3
~coshw!2hI~z!, ~3.5b!

wherez5 i tanhw, andw I5(2p/3) (22I ) for I 51,2,3.

B. Diagonalizing Witten’s 3-string ghost vertex

The aim of this section is to rewrite the operat
M bc

IJ (z,z̄8) in the K1 basis. It is known that the vertice
commute with the operatorK1 @2#. So one expects tha
M bc

IJ (z,z̄8) takes a simple form in theK1 basis.
To diagonalize the Neumann matrix~3.4! we first notice

that the strange factors in Eq.~3.4! have a very simple ex-
pression in the variablew

@hI~z!#321

z
524ie2w~coshw!2 ~3.6a!

and

@hJ~2 z̄8!#321

z̄8
514ie2w̄8~coshw̄8!2. ~3.6b!

Now we proceed as in@11#—first do a binomial expansion o
Eq. ~3.4!, then rewrite it as a contour integral, and finally d
a Watson-Sommerfeld transformation. Assuming Re(w̄8
2w),0 we obtain

M bc
IJ ~z,z̄8!5

4i

3
~coshw̄8!2~21! I 2J

3 R
C

d j

2i sinp j
e6 ip j@ei (wJ2w I )e4/3(w̄82w)# j 11/2

1
d IJ

z1 z̄8
, ~3.7!

where the contourC encircles the positive real axis counte
clockwise~see Fig. 1!. Notice that we have a sign ambiguit
in the exponential, which comes from the analytic continu
tion of (21) j .

Before deforming the contour as in Fig. 1 we must wor
about the convergence at infinity. Starting from here we w
consider the casesIÞJ and I 5J separately.

C. MatricesM bc
IJ for IÅJ

For IÞJ Eq. ~3.7! can be rewritten as
1-3
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D. M. BELOV PHYSICAL REVIEW D 69, 126001 ~2004!
M bc
IJ ~z,z̄8!5~71!

4i

3
~coshw̄8!2~21! I 2J

3 R
C

d j

2 sin~p j !
@ei (wJ2w I6p)e4/3(w̄82w)# j 11/2.

~3.8!

To deform the contour as it is shown in Fig. 1 we must wo
about convergence asuIm j u→`. To this end forI ,J we
choose the upper ‘‘1 ’’ sign in the exponential. This guaran
tees that for 1<I ,J<3

uwJ2w I1pu<
p

3
.

Taking into account the following asymptotics asuIm j u
→`:

1

sin~p j !
}e2puIm j u

and

ue4/3(w̄82w) j u<e4/3uIm(w̄82w)uuIm j u,

one concludes that for arbitrary smalld.0 and uIm(w̄8
2w)u< (p/2) 2d the integrand has at least the exponen
falloff e2duIm j u. ~Oppositely, forJ,I one has to choose th
lower ‘‘2 ’’ sign in the exponential. This guarantees the sa
falloff as uIm j u→`.! Now we can shift the contourC to
Re j 52 1

2 by writing

j 52
1

2
2

3ik

4
~3.9!

to get ~for I ,J)

FIG. 1. The dots represent the poles of the integrand in
~3.7!. ContourC encircles the positive real axis counterclockwis
Then we deform it to the contourC21/2, which lies parallel to the
imaginary axis at Rej 52

1
2 .
12600
l

e

M bc
IJ ~z,z̄8!5~21! I 2J~coshw̄8!2

3E
2`

`

dk
e(pk/4)(2I 22J13)

2 cosh~3pk/4!
eik(w2w̄8).

~3.10!

Notice that the integral here converges now for allw,w̄8 in
the stripuIm wu,(p/4). Therefore~by the standard analytic
continuation arguments! the right-hand side represents th
operator~3.4! for all z and z̄8 in the unit disk.

Comparing the cosh-factors in Eq.~3.10! with the ones in
Eq. ~2.6! one concludes that the continuumK1 eigenfunc-
tions correspond tos50 ands51. From Eqs.~2.8! and~2.6!
it follows that the normalization factor of their tensor produ
must be P@A1(k)/k#. Insertion of unity 1
5k/A1(k)P@A1(k)/k# into Eq. ~3.10! yields

M bc
IJ ~z,z̄8!52E

2`

`

dkmbc
IJ ~k!uk,0&~z! ^ ^k,1u~ z̄8!,

~3.11a!

where

mbc
12~k!51e1x

sinh 2x

cosh 3x
, ~3.11b!

mbc
13~k!52e2x

sinh 2x

cosh 3x
~3.11c!

with x[ (pk/4).

D. Matrix M bc
II

For I 5J expression~3.4! becomes

M bc
II ~z,z̄8!5

1

z1 z̄8
1

4i

3
~coshw̄8!2

3 R
C

d j

2i sin~p j !
e6 ip j@e4/3(w̄82w)# j 11/2.

~3.12!

This expression contains two terms, and we will consid
them separately. In the second term we want to deform
contourC as in Fig. 1. To this end we must first worry abo
convergence at infinity. For generalw and w̄8 the integrand
does not go to zero asuIm j u→`. However for 0
,7Im(w̄82w)< (p/2) the integrand has an exponenti
falloff. In this case we deform the contourC as in Fig. 1 by
writing Eq. ~3.9! to get

second term56~coshw̄8!2

3E
2`

`

dk
e73pk/4

2 cosh~3pk/4!
eik(w2w̄8).

.
.

1-4
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Comparing the cosh-factors here with the ones in Eq.~2.6!
one concludes that the continuum eigenfunctions corresp
to s50 ands51. Therefore we can write

second term56E
2`

`

dke63pk/4

sinh
pk

2

cosh
3pk

4

3uk,0&~z! ^ ^k,1u~ z̄8!, ~3.13!

where the eigenfunctionsuk,0& and^k,1u are defined in Eqs
~2.8! and ~2.6!, respectively. The representation~3.13! is
valid only for 0,7Im(w̄82w)< (p/2).

Now we need to represent the first term in Eq.~3.12!
through the tensor product ofs50 ands51 eigenfunctions.
The details of this calculation can be found in the Append
The result is

1

z1 z̄8
52E

2`

`

dke6pk/2uk,0&~z! ^ ^k,1u~ z̄8!

1E
2`

`

dkP
AA1~k!

k
^ ^k,1u~ z̄8!. ~3.14!

The first integral here converges for 0,7Im(w̄82w)
< (p/2), while the second integral converges for allz̄8 in
the unit disk.

Substitution of Eqs.~3.13! and ~3.14! into Eq. ~3.12!
yields

M bc
II ~z,z̄8!5E

2`

`

dkP
AA1~k!

k
^ ^k,1u~ z̄8!

1E
2`

`

dkF 6e63p/4

sinh
pk

2

cosh
3pk

4

2e6pk/2G
3uk,0&~z! ^ ^k,1u~ z̄8!. ~3.15!

This expression has a sign ambiguity in the second te
However, if we want the first integral to be convergent in t
region uIm(w2w̄8)u< (p/2) we must choose the uppe
‘‘ 1 ’’ sign in this expression. Finally, we get

M bc
II ~z,z̄8!52E

2`

`

dkmbc
II ~k!uk,0&~z! ^ ^k,1u~ z̄8!

1E
2`

`

dkP
AA1~k!

k
^ ^k,1u~ z̄8!, ~3.16a!

where

mbc
II ~k!5

coshx

cosh 3x
with x[

pk

4
. ~3.16b!
12600
nd

.

.

E. The Neumann matrices in the discrete basis

Collecting Eqs.~3.16! and ~3.11!, one concludes that the
ghost 3-string Neumann functions~3.4! have the following
diagonal representation in theK1 basis:

M bc
IJ ~z,z̄8!52E

2`

`

dkmbc
IJ ~k!uk,0&~z! ^ ^k,1u~ z̄8!

1d IJE
2`

`

dkP
AA1~k!

k
^ ^k,1u~ z̄8!,

~3.17a!

where 1<I ,J<3,

mbc
II ~k!5

cosh x

cosh 3x
, ~3.17b!

mbc
I ,I 11~k!51ex

sinh 2x

cosh 3x
, ~3.17c!

mbc
I 11,I~k!52e2x

sinh 2x

cosh 3x
~3.17d!

and x[ (pk/4).
To find the Neumann matrices (M bc

IJ )n,m11 we can cal-

culate the matrix elements of the operatorM bc
IJ (z,z̄8) be-

tween the vectorŝn,0u and um,1&. In this calculation one
obviously gets a divergence forn50 @see Eq.~2.3!#. We can
handle this divergence by considering instead of the oper
M bc

IJ (z,z̄8) the vectorM bc
IJ (0,z̄8) and calculate its inner

product withum,1&. Proceeding in this way one obtains

~M bc
IJ !n11,m1152

Am11

An11
E

2`

`

dkmbc
IJ ~k!

3^n11,0uk,0&^k,1um,1& ~3.18a!

for n,m>0 and

~M bc
IJ !0,m1152Am11E

2`

`

dk@mbc
IJ ~k!2d IJ#

3
AA1~k!

k
^k,1um,1&. ~3.18b!

Here the square roots come from the calculation of the in
products ofzn or z̄8m, appearing in the definition~3.4! of
M bc

IJ , with the vectorŝ n,0u or um,1&.
Taking into account Eq.~2.13! and mbc

IJ (0)5d IJ we find
that the representation~3.18! and eigenvalues~3.17d! com-
pletely agree with the ones obtained in@11# @Eqs. ~6.7! and
~6.8! therein#.
1-5
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IV. N-STRING VERTEX FOR BOSONIZED GHOSTS

A. Overview

The aim of this section is to review a construction
LeClair et al. @3# of the N-string gluing vertex for the
bosonized ghosts.

Here we consider CFT for the general bosonized gh
system @12#, which is characterized by the backgroun
chargeQ and the parity«561. The ghost number curren
j (z)5«]f(z) is an anomalous primary operator of dime
sion 1 and transforms under a conformal maph(z) as

j ~z!°~h+ j !~z!5h8~z! j @h~z!#1
Q

2

h9~z!

h8~z!
. ~4.1!

This current has the following mode expansion:

j ~z!5
j 0

z
1 (

n51

`

An$an
1zn212an

2z2n21%

with

@an
2 ,am

1#52«dmn . ~4.2!

Heream
6 are creation/annihilation operators over the vacu

uq&, which is an eigenvector of the operatorj 0 with eigen-
valueq. Due to the anomalous transformation law~4.1! the
conjugate vacuum touq& is ^2q2Qu. From this it follows
that j 0

†52 j 02Q.
The OPEs of the fieldsf(z) and j (z) are

f~z!f~z8!;« log~z2z8!, ~4.3a!

j ~z!eqf(z);
q

z2z8
eqf(z8). ~4.3b!

The matter fieldXm can be obtained from the expressio
above by identifying« with 2hmn, j 052 iA2a8pm and
am

657( i /Am) a7m
m .

The gluing vertex for the bosonized ghosts differs in tw
ways from that for theX field. First, it has nonzero back
ground chargeQ, and second the momentum eigenvalues
no longer continuous but form a discrete set. The ver
reads@3# @Eq. ~5.1! therein#

^VN, Q
(0) u5(

$qI %

dq11•••1qN1Q,0^
I 51

N

I ^2qI2Qu

3expF«

2 (
I 51

N

qI~Q1qI !1
«

2 (
IÞJ

qIN00
IJqJ

2
«

2 (
I 51

N

(
n50

`

QKn
I an

2(I )2« (
I ,J51

N

(
n51

`

qIN0n
IJ an

2(J)

1
«

2 (
I ,J51

N

(
m,n51

`

am
2(I )Nmn

IJ an
2(J)G , ~4.4!
12600
st

e
x

where the Neumann function coefficientsNnm
IJ are defined by

the same formula as the ones for the matter part of the ve
@3# and

KI~z![ (
n51

`

Kn
I Anzn5

hI9~z!

hI8~z!
. ~4.5!

The fact that the terms in the exponent contain the coeffic
Q is a direct consequence of the transformation law~4.1!.
Using the anomalous momentum conservation law an
^2q2Qu j 05^2q2Quq we can rewrite the exponential a
@3#

expF«

2 (
I ,J

j 0
I N 00

IJ j 0
J2«(

I ,J
(
n51

`

j 0
I N 0n

IJ an
2(J)

1
«

2 (
I ,J

(
m,n51

`

am
2(I )N mn

IJ an
2(J)G , ~4.6!

where the new Neumann-function coefficients are related
the old ones by

N 00
IJ5N00

IJ2
1

2
N00

II 2
1

2
N00

JJ , ~4.7a!

N 0m
IJ 5N0m

IJ 2
1

2
Km

J , ~4.7b!

N mn
IJ 5Nmn

IJ . ~4.7c!

The new coefficients can be expressed in terms of the glu
maps$hI(z)% as follows@3#:

N 00
IJ5~12d IJ!logF uhI~0!2hJ~0!u

uhI8~0!hJ8~0!u1/2G , ~4.8a!

N 0
IJ~z![ (

n51

`

N 0n
IJ Anzn21

52
hJ8~z!

hI~0!2hJ~z!
2

d IJ

z
2

hJ9~z!

2hJ8~z!
, ~4.8b!

N IJ~z,z8![ (
m,n51

`

N mn
IJ Amnzm21z8n21

5
hI8~z!hJ8~z8!

@hI~z!2hJ~z8!#2
2

d IJ

~z2z8!2
. ~4.8c!

Notice that all functions here are manifestly PSL(2) inva
ant @3, pp. 487–488#, i.e., they do not change under$hI%
→$T+hI% with T(z)PPSL(2).Therefore all Neumann coef
ficientsNmn are SL(2,R) invariant. Let us remember that, fo
example, the generating function for the coefficientsN0n

IJ

doesdepend on a choice of the SL(2,R) frame. However,
this dependence is cancelled by the nonanomalous mom
tum conservation, and therefore theX vertex is SL(2)
invariant.
1-6
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Writing the vertex in the form~4.6! eliminates the explicit
dependence on the background chargeQ. In this notation the
Xm vertex can be obtained simply by changing« to 2hmn,
j 052 iA2a8pm andan

6→7 i (a7n

m /An). Of course some of

the terms in Eq.~4.8b! will drop out due to the normal~nona-
nomalous! momentum conservation@3#.

For Witten’sN-string vertex the mapshI(z) are

hI~z!5S 12 iz

11 izD 2/N

5eiw Ie4w/N, ~4.9a!

hI8~z!52
4i

N
~coshw!2hI~z!, ~4.9b!

where z5 i tanhw and w I5(2p/N) (aN2I ). Here aN is a
real number which is chosen in such a way that all anglesw I
lie in the range (2p,p#.

B. Diagonalization of the Neumann coefficients

1. OperatorN IJ

The operatorN IJ(z,z8) was diagonalized in Sec. III o
@11#:

N IJ~z,2 z̄8!5E
2`

`

dkm1,N
IJ ~k!uk,1&~z! ^ ^k,1u~ z̄8!,

~4.10!

where uk,1&(z) is defined in Eq. ~2.6!, ^k,1u( z̄8)
[uk,1&(z8) and

m1,N
II ~k!52

sinh~N22!x

sinhNx
, ~4.11a!

m1,N
IJ ~k!5e1x(N12I 22J)

sinh 2x

sinhNx
~ I ,J!,

~4.11b!

m1,N
IJ ~k!5e2x(N22I 12J)

sinh 2x

sinhNx
~ I .J!.

~4.11c!

Herex[ (pk/4).

2. Matrix N 00
IJ

Substitution of the maps~4.9! into Eq. ~4.8a! yields

N 00
IJ5~12d IJ!logFN

2
sinS p

N
uI 2Ju D G . ~4.12!

This expression coincides with the matrixMN, 008IJ which is
defined by Eq.~5.8! in @11#. The numbersN 00

IJ can also be
represented by the following integral:
12600
N 00
IJ52E

2`

`

dk
A1~k!

k2 H 1

2
@m1,N

IJ ~k!1m1,N
JI ~k!#

2m1,N
II ~k!1d IJ21J . ~4.13!

The simplest way to obtain this expression is to notice tha
can also be written as the following limit:

2 lim
s→10

E
2`

`

dkAs~k!H 1

2
@ms,N

IJ ~k!1ms,N
JI ~k!#

2ms,N
II ~k!1d IJ21J ,

which was calculated in Eqs.~5.7!–~5.9! in @11# with the
resultMN, 008IJ .

3. VectorN 0
IJ

Substitution of the maps~4.9! into Eq. ~4.8b! yields

N 0
IJ~2 z̄8!5

4i

N
~coshw̄8!2

ei (wJ2w I )e4w̄8/N

12ei (wJ2w I )e4w̄8/N

1
d IJ

z̄8
2

z̄8
11 z̄82

1
2i

N
~coshw̄8!2. ~4.14!

Assuming Rew̄8,0 we can expand the first term in a bino
mial series, and then rewrite it as a contour integral. All oth
terms we leave as they are for a while. So the first te
becomes

first term52
4i

N
~coshw̄8!2 R

C

d j

2i sin~p j !

3ei (wJ2w I6p)( j 11)e4w̄8/N( j 11), ~4.15!

where the contourC encircles the positive real axis in th
counterclockwise direction~see Fig. 2!. Notice the sign am-

FIG. 2. The dots represent the poles of the integrand in
~4.15!. ContourC encircles the positive real axis counterclockwis
Then we deform it to the contourC2110, which lies parallel to the
imaginary axis at Rej 521 and passes the pole atj 521 on the
right.
1-7
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biguity in the exponential, which comes from the analy
continuation of (21) j .

Now we are going to deform the contourC to lie parallel
to the imaginary axis as in Fig. 2. To this end we need
worry about the convergence asuIm j u→`. Let us assume
I<J. In this case the integral will have the exponential fa
off if we choose the upper ‘‘1 ’’ sign and temporarily assume
0,2Im w̄8,(p/4). With these assumptions we can safe
deform the contourC as in Fig. 2 by writing

j 521102
iNk

4

to get

first term5~coshw̄8!2E
2`

` dk

2 sinhS pNk

4
1 i0D

3epk/4(N12I 22J)e2 ikw̄8. ~4.16!

Using the fact that

1

sinhS pNk

4
1 i0D 5P 1

sinh
pNk

4

2
4i

N
d~k!

one finds that the term in Eq.~4.16! coming from thed
function cancels the last term in Eq.~4.14!. Now we repre-
sent 1/z̄8 in Eq. ~4.14! as in Eq.~3.14! with the ‘‘1 ’’ sign,
and writez̄8/(11 z̄82) as in Eq.~2.10b! to get

N 0
IJ~2 z̄8!5E

2`

`

dkP
AA1~k!

k

3„m1,N
IJ ~k!211d IJ

…^k,1u~ z̄8!, ~4.17!

wherem1,N
IJ (k) is defined in Eq.~4.11!. Notice now that the

integral in the rhs converges for allw̄8 in the strip uIm w̄8u
,(p/4). Therefore~by the standard analytic continuatio
arguments! this expression represents the vectorN 0

IJ(z) for
all z in the unit disk. One can easily check that Eq.~4.17!
remains the same if we assumeI>J and choose the ‘‘2 ’’
sign in Eqs.~4.14! and ~3.14!.

C. The N-string vertex in the continuous basis

1. Vertex in the continuous basis

We introduce thes51 continuum oscillators

a6~k!5 (
n50

`

an11
6 ^k,1un,1&

with

@a2~k!,a1~k8!#52«d~k2k8!. ~4.18!
12600
o

In order to write the vertex we also need a twist operatorC,
which roughly speaking corresponds to the substitutionz̄8

→2 z̄8. It is defined @2# in the discrete basis by (Ca6)n

5(21)nan
6 . Hence in the continuous basis it becomes

~Ca6!~k!52a6~2k!. ~4.19!

Finally, substituting Eqs.~4.10!, ~4.17! into Eq. ~4.6! and
using Eq.~4.18! one obtains

^VN, Q
(0) u5(

$qI %
^
I 51

N

I^2qI2Qud j
0
11•••1 j

0
N1Q,0

3expF2
«

2 (
I ,J51

N E
2`

`

dka2(I )~k!m1,N
IJ ~k!

3~Ca2(J)!~k!1« (
I ,J51

N

j 0
I E

2`

`

dkP
AA1~k!

k

3$m1,N
IJ ~k!211d IJ%~Ca2(J)!~k!

1
«

2 (
I ,J51

N

j 0
I N 00

IJ j 0
JG , ~4.20!

where j 0 is the ghost number operator,^2q2Qu j 05q^2q
2Qu, the continuous oscillatorsa2(k) are defined in Eq.
~4.18!, the N-string Neumann matrix eigenvaluesm1,N

IJ are
defined in Eq.~4.11!, and the coefficientsN 00

IJ are listed in
Eq. ~4.12!. Notice that the gluing vertex for the matter fie
Xm can be obtained from this by puttingQ50 and replacing
« with 2hmn, j 052 iA2a8pm and a2(I )→am

2(I ) @compare
Eq. ~4.20! with Eq. ~5.12! from @11##.

2. The unitary transformation

In @11# it was shown that thes50 N-string matter vertex
can be obtained from the zero momentum~i.e., s51) vertex
by the unitary transformation

Up5expH iA2a8p̂E
2`

`

dkP
AA1~k!

k

3@a1~k!1a2~k!#J . ~4.21!

In the case of nonzero background chargeQ the appropriate
unitary operator is

U j 0
5expH «S j 01

Q

2 D E
2`

`

dkP
AA1~k!

k

3@a1~k!1a2~k!#J . ~4.22!

Here the linear combination ofj 0 andQ was fixed from the
conjugation property@12# of j 0 : j 0

†52 j 02Q. Notice that in
contrast to Eq.~4.21! the unitary transformation~4.22! re-
1-8
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mains nontrivial even forj 050. Under this unitary transfor
mation thes51 continuum oscillatora6(k) transforms to
the s50 oscillator

a6~k, j 0![U j 0

21a6~k!U j 0

56S j 01
Q

2 DPAA1~k!

k
1a6~k!. ~4.23!

Now let us try to proceed as in@11# and add the ghos
numbers by applyingN copies of the unitary transformatio
~4.22!. To this end we have to regularize the principal val
in Eq. ~4.22!. It does not matter what regularization w
choose, the final result should be regularization independ
For definite we will assume the following regularizatio
@11#:

U j 0 ,s5expH «S j 01
Q

2 D E
2`

`

dkjs~k!

3@a1~k!1a2~k!#J , ~4.24!

where

js~k!5AAs~k!5
sgn~k!

Ak214s2
AA11s~k!. ~4.25!

Now U j 0
can be normal ordered

U j 0 ,s5expH 2
«

2 S j 01
Q

2 D 2

^js ,js&J :U j 0 ,s :, ~4.26!

where

^js ,js&5E
2`

`

dkAs~k!5G~2s!.

Whenever possible we will writêjs ,js& instead of its value
G(2s). We will do this in order to be able to choose anoth
regularization without extra problems.

So we want to calculate

lim
s→10

^VN
(1)u ^

I 51

N

U j
0
I ,sd j

0
11•••1 j

0
N1Q,0 , ~4.27!

where the vertex̂ VN
(1)u is defined by the first line in Eq

~4.20!. Substitution of Eq.~4.26! yields

lim
s→10

(
q1, . . . ,qN

^
I 51

N

I^2qI2Qudq11•••1qN1Q,0

3expH 2
«

2 (
I ,J51

N E
2`

`

dka2(I )~k!m1,N
IJ ~k!~Ca2(J)!~k!

1« (
I ,J51

N S qI1
Q

2 D E
2`

`

dkjs~k!@m1,N
IJ ~k!1d IJ#
12600
nt.

r

3~Ca2(J)!~k!2
«

2 (
I ,J51

N S qI1
Q

2 D
3S qJ1

Q

2 D E
2`

`

dk js~k!@m1,N
IJ ~k!1d IJ#js~k!J .

One sees that the integrals in the first and second term in
exponential are well defined ass→0, but there is a problem
with the s→0 limit in the third term.

In the second term we can substituteQ52( Iq
I and use

that ( I@m IJ(k)1d IJ#52 to obtain

second term5« (
I ,J51

N

qIE
2`

`

dkP
AA1~k!

k

3@m1,N
IJ ~k!1d IJ21#~Ca2(J)!~k!.

In the third term, we can use Eq.~4.13! and the anomalous
conservation law to get

third term5
«

2 (
I ,J51

N

qIN 00
IJqJ

2
«Q2

2 E
2`

`

dk
A1~k!

k2

3@m1,N
II ~k!2m1,N

II ~0!#2
«Q2

2

~N22!2

2N
^js ,js&.

The integral here is easy to calculate, and we finally get
relation

^VN,Q
(0) u$qI%&5 lim

s→10
eFN,s^VN,Q

(1) u

3Uq1^ •••^ UqNdq11•••1qN1Q,0 ,

~4.28!

where

FN,s[
«Q2

2

~N22!2

2N
^js ,js&1

«Q2

2 F log
N

2
2

N22

N
log 2G .

~4.29!

Notice that for generalQ the functionFN,s is zero only for
N52. This means that the string inner product^V2

(0)u is not
affected by this singularity. ForQ50 FN,s is identically
zero, and hence after replacingqI→2 iA2a8pm

I Eq. ~4.28!
reproduces the result of@11# for the matter sector.

V. ASSOCIATIVITY OF WITTEN’S STAR PRODUCT

A. Descent relation between the gluing vertices

The aim of this section is to verify the following desce
relation:

1•••N^VNu5 1•••N,N11^VN11uV1&N11 , ~5.1!
1-9
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where ^VNu is the combined matter1ghost gluingN-string
vertex. The combined vertex̂VNu has the form~4.20! with
the replacements:a2→am

2 (m521, . . . ,D21) where m
521 corresponds to the ghost oscillator andm50, . . . ,D
21 to the matter ones;«→2hmn where hmn5diag(2«,
21,1, . . . ,1); andj 0→ j 0

m5( j 0 ,2 iA2a8pW ).
We know that the vertex depending on the momenta

ghost numbers can be obtained from thes51 vertex by the
unitary transformation as in Eq.~4.28!. Since adding the mo
mentum does not produce any divergencies@11# we put it
equal to zero. So we need to calculate the following produ

eFN11,s1F1,s
1•••N,N11^VN11

(1) uV1
(1)&N11

3Uq1^ •••^ UqNdq11•••1qN1Q,0 . ~5.2!

The inner product in the (N11)th tensor component is eas
to calculate:

1•••N,N11^VN11
(1) uV1

(1)&N11

5det~12mN11
11 !2(D11)/2

3 1•••N^0uexpF1

2 (
m,n521

D21

(
I ,J51

N E
2`

`

dkam
2(I )~k!hmn

3H mN11
IJ 1

mN11
I ,N11mN11

N11,J

12mN11
11 J ~k!~Can

2(J)!~k!G ,

wheremN
IJ[m1,N

IJ . It is a matter of simple algebra to sho
that the term in$ % equalsmN

IJ(k). Hence we see that th
descent relation is actually satisfied up to a numeric coe
cient

1•••N,N11^VN11uV1&N115~ZN11,1;N! 1•••N^VNu, ~5.3!

where

logZN11,1;N[2
D11

2
log det~12mN11

11 !

1FN11,s1F1,s2FN,s ~5.4!

andFN,s is defined in Eq.~4.29!. In other words logZN11,1;N
is

logZN11,1;N[1
«Q2

2
log

N11

2N

2
D11

2 E
2`

`

dk log„12mN11
11 ~k!…r1~k!

1
«Q2

2

~N21!~N12!

N~N11!
$^js ,js&1 log 2%,

~5.5!

where r1(k) is the trace density which was calculated
@14#
12600
d

t:

-

r1~k!5
1

p
@^js ,js&1 log 2#

2
1

4p FcS 11
ik

2 D1cS 12
ik

2 D12gEG .
From this it follows thatZ2,1;151. If the descent relation
~5.1! were true, allZN11,1;N with N.1 would be 1. But as
we will see in a momentZN11,1;N is a nontrivial function of
N, and therefore the vertices must contain an additional n
malization factor.

For the critical bosonic string (D526, «51, and Q
523) ZN11,1;N is a finite function ofN

logZN11,1;N52
9

2 (
aPA

sa loga1
27

2 (
aPA

saD0~a!,

~5.6!

whereA5$2,N,N11,1%, $sauaPA%5$1,1,21,21%, and

D0~a!5E
0

`dt

t
H coth

t

a
2

a

t

et21
2

1

3a

1

11t
J . ~5.7!

The details of this calculation will be presented in@19#. From
the representation~5.6! it follows that ZN11,1;N can be writ-
ten as

ZN11,1;N5
ZN

Z1ZN11
. ~5.8!

Here the logarithm ofZN is given by

logZN52
9

2
log

N

2
1

27

2
@D0~N!2D0~2!#. ~5.9!

Notice that the functionZN cannotbe uniquely determined
from the relation~5.8!. It is defined up to a rescaling

ZN°~const!N22ZN . ~5.10!

The functionZN defined in Eq.~5.9! monotonically goes to
zero on the interval@1,̀ ), and its asymptotic at infinity is

ZN}F 2

NG9/2

expH 2
27

2
D0~2!1OS 1

ND J .

Now it is obvious that in order to have the descent re
tion ~5.1! one has to introduce the normalized gluing vertic
^̂ VNu, which are defined by

^̂ VNu5ZN^VNu for N>1. ~5.11!

The normalizationZN is given by Eq.~5.9! or any of Eq.
~5.10!. Notice thatZ251 independently on the choice of th
scaling factor in Eq.~5.10!. The ambiguity~5.10! is closely
related to the string field redefinition. Indeed the fac
(const)N22 in the vertex can be cancelled by simultaneo
1-10
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WITTEN’S GHOST VERTEX MADE SIMPLE PHYSICAL REVIEW D69, 126001 ~2004!
rescaling of the string fieldA°(const)21A and the coupling
constantgo°(const)21go . The natural choice of the facto
in Eq. ~5.10! is that whereZN coincides with the partition
function of the bosonic matter1ghost CFT on the gluing
surface, which is the unit disk with Neumann boundary co
ditions and the angle excessp(N22). This choice basically
follows from the relation

ZN5 ^̂ VNu~ u0&1^ •••^ u0&N),

where ^̂ VNu is supposed to be a surface~multi!state, and
therefore the rhs must be the partition function of this surf
~see Fig. 5 in@20#!.

For N53 the normalized as in Eq.~5.11! 3-string vertex
coincides with Witten’s original definition@1#. In that paper
he defined it as the Polyakov integral over the gluing surf
which, of course, includes the partition function in its de
nition.

Notice that in Moyal formulation of SFT~MSFT! @21# the
star product is associative by construction and there is a
to obtain the Neumann matrix elements from it@21#. There-
fore it should be also possible to extract the normalization
the gluing vertices and compare them withZN .

B. Associativity

The associativity requires many relations between the
ing vertices. For example,

~ 123̂ V3u ^ 456̂ V3u!uV2&345 1256̂ V4u,
~5.12!

~ 123̂ V3u ^ 456̂ V3u ^ 78̂ V2u!uV3&3685 12457̂ V5u,

and many more. The question is if these relations are s
fied for the normalized vertices~5.11!. Actually the question
is only about the normalization factors, since the expon
tials were worked out in@3,22#.

We claim that the normalized vertices~5.11! indeed sat-
isfy the relations like Eq.~5.12!. The proof is simple and
does not require complicated calculations. Let us prove,
example, the first relation in Eq.~5.12!. Suppose that it is
false, and there is a constantAÞ1 in the rhs:

~ 123̂ ^V3u ^ 456̂ ^V3u!uV2&&345A 1256̂^V4u.

Now we contract this equation with the identity stateuV1&& 6
in the sixth tensorial space. Using the descent relations~5.1!
we obtain

~ 123̂ ^V3u ^ 45̂ ^V2u!uV2&&345A 125̂ ^V3u.

Noticing that 45̂ ^V2uV2&&345d53 one finds that the constantA
equals 1. So the first relation in Eq.~5.12! is true. Actually
all relations like Eq.~5.12! can be proved in this manne
Therefore the normalized vertices~5.11! do satisfy the asso-
ciativity relations.

VI. DISCUSSION

Here I want to discuss some consequences of the nor
ization ~5.11! for the numeric calculations of the tachyo
12600
-

e

e

ay

f

-

is-

-

r

al-

condensation@23#. First, the calculations in which one use
only vertices^V2u and ^V3u ~see, for example,@24#! arenot
affected by the normalization~5.11!. One can simply cance
the factorZ3 in the cubic vertex by simultaneous rescaling
the string field and the coupling constant asA°Z 3

21A and
go°Z 3

21go correspondingly. However, the calculations
the bosonic string which involve the higher vertices~if any
were done! have to be revised.

Second, the fact thatZNÞ1 (N51 and N>3) for the
bosonic string may potentially affect the numeric calcu
tions in the nonpolynomial fermionic string field theory~see,
for example,@25#!. To check this one has to calculate th
contribution of the matter fermions and superghosts into
partition functionZN . For the same reason as for the boso
cubic SFT the calculations in the cubic fermionic string fie
theory ~see, for example,@26#! are not affected.
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APPENDIX: REPRESENTATION OF „Z¿z̄8…À1

THROUGH sÄ0ÃsÄ1 K1 EIGENFUNCTIONS

In this Appendix we derive a representation of the fi
term in Eq.~3.12! through the tensor product ofs50 ands
51 K1 eigenfunctions~2.8! and ~2.6!.

We start from the following equation for 0,7Im(w̄8
2w)< (p/2) ands.0:

G~2s!

~z1 z̄8!2s
5~coshw coshw̄8!2s

3E
2`

`

dkAs~k!e6pk/2eik(w2w̄8). ~A1!

This expression follows from Eqs.~3.14! and ~3.23! in @11#.
Obviously differentiating the left-hand side with respect toz̄8

and taking the limits→0 one obtains2(z1 z̄8)21. Hence
the problem is to perform these operations on the rhs.

Differentiation byz̄852 i tanhw̄8 of Eq. ~A1!’s rhs yields

~coshw!2s~coshw̄8!2s12E
2`

`

dke6pk/2

3As~k!eik(w2w̄8)$22sz̄81k%. ~A2!

Using the following relations
1-11



nd
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As~k!5
A11s~k!

k214s2
, lim

s→0

k

k214s2
5P1

k
,

and

lim
s→0

2s

k214s2
5pd~k!,

one can take thes→0 limit in Eq. ~A2!:

~coshw̄8!2E
2`

`

dke6pk/2PA1~k!

k
eik(w2w̄8)2

z̄8

11 z̄82
.

d

nd

ys

12600
The last term in this expression comes from the midpoint a
therefore can be written as in Eq.~2.10b!. Using Eqs.~2.8!
and ~2.6! we finally obtain

2
1

z1 z̄8
5E

2`

`

dke6pk/2uk,0&~z! ^ ^k,1u~ z̄8!

2E
2`

`

dkP
AA1~k!

k
^k,1u~ z̄8!. ~A3!

Here the first integral converges for 0,7Im(w̄82w)
< (p/2), while the second integral converges for allz̄8 in
the unit disk.
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