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Dynamical gauge symmetry breaking and mass generation on the orbifoldT2ÕZ2

Yutaka Hosotani, Shusaku Noda, and Kazunori Takenaga
Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan

~Received 10 March 2004; published 29 June 2004!

Dynamical gauge symmetry breaking on the orbifoldT2/Z2 is shown to occur through the quantum dynam-
ics of Wilson line phases. Different sets of boundary conditions onT2/Z2 can be related to each other by
Wilson line phases, forming equivalence classes. The effective potential for Wilson line phases is evaluated at
the one-loop level inSU(2) gauge theory. Depending on the fermion content, theSU(2) symmetry can be
broken either completely or partially toU(1) without introducing additional Higgs scalar fields. WhenSU(2)
is completely broken, each of three components of the gauge fields may acquire a distinct mass. Masses are
generated through the combination ofT2 twists and dynamics of Wilson line phases.
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I. INTRODUCTION

Recently, much attention has been paid to gauge theor
space-time with compact extra dimensions. Gauge theor
an orbifold has been studied extensively with hopes of
solving long-standing problems in grand unified theo
~GUT! such as the gauge hierarchy problem, the doub
triplet splitting problem, and the origin of gauge symme
breaking @1–6#. One intriguing aspect is the gauge-Hig
unification in which Higgs bosons are regarded as a par
extra-dimensional components of gauge fields@7–16#.

Extra dimensions are often compactified on topologi
manifolds. Reflecting the topology of extra dimensions, d
namical gauge symmetry breaking occurs through the Ho
tani mechanism@8,9# ~gauge symmetry breaking by Wilso
lines!. Extra-dimensional components of gauge fields~Wil-
son line phases! become dynamical degrees of freedom a
cannot be gauged away. They, in general circumstances
velop nonvanishing vacuum expectation values@17–21#. The
extra-dimensional components of gauge fields act as H
bosons at low energies. Thus gauge fields and Higgs part
are unified by higher-dimensional gauge invariance. O
does not need to introduce extra Higgs fields to break
gauge symmetry.

To construct a realistic GUT, one can choose extra dim
sions to be an orbifold, which naturally appears in sup
string theory. By having an orbifold in extra dimensions, o
can easily accommodate chiral fermions in the four dim
sions and also rich patterns of gauge symmetry breaking
superstring theory, extra six dimensions must be compa
fied @22–25#, and therefore higher-dimensional gauge the
might naturally emerge.

Gauge theory on the simplest orbifoldS1/Z2 has been
studied extensively from various points of view in the liter
ture @26–31#. In this paper, we extend the analysis to s
dimensional space-time, where two of the space coordin
are compactified on the orbifoldT2/Z2 @32#. In six dimen-
sions there are Weyl fermions which naturally reduce to fo
dimensional Weyl fermions afterZ2 orbifolding. Other orbi-
folds such asT2/Z3 andT2/Z4 have also been considered
explain the generation structure and violation of discr
symmetry@33#. Our main aim is to study dynamics of gaug
symmetry breaking and mass generation onT2/Z2 . We see
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that the dynamics of Wilson line phases can reduce or
hance the symmetry of boundary conditions. Such dynam
aspects of gauge symmetry breaking have been studied
in S1, Tn, andS1/Z2 . The effects of supersymmetry brea
ing and finite masses of matter on the dynamics of Wils
line phases have been analyzed@18,11,19#. The dynamics for
selecting boundary conditions is also discussed@30,31#. Our
analysis given in this paper is expected to provide use
hints for building a realistic unified gauge theory on the o
bifold to incorporate electroweak gauge symmetry bre
ing within the framework of the gauge-Higgs unificatio
@12–15#.

In the next section we classify boundary conditions
fields on the orbifoldT2/Z2 and introduce the notion o
equivalence classes of boundary conditions@9,11,30,31#.
Those equivalence classes are connected with the exist
of Wilson line degrees of freedom.SU(2) gauge theory is
investigated in detail. The effective potential for Wilson lin
phases is evaluated in Secs. III and IV. In Sec. V we exam
gauge symmetry breaking in the presence of matter field
various representations of the gauge group and determ
physical symmetry at low energies. It is found that depe
ing on matter content, theSU(2) gauge symmetry is eithe
completely broken or partially broken. It should be emph
sized that this makes it plausible to have the electrow
symmetry breakingSU(2)3U(1)→U(1)em as a part of the
Hosotani mechanism. In Sec. VI we discuss the masse
four-dimensional gauge fields, scalar fields, and fermio
Scalar fields, which are originally the extra-dimension
components of gauge fields, acquire masses by radiative
rections. The final section is devoted to conclusions an
discussion.

II. ORBIFOLD CONDITIONS ON T2ÕZ2

We study gauge theory onM43T2/Z2 , whereM4 is the
four-dimensional Minkowski space-time. Letxm and yI be
coordinates ofM4 and T2/Z2 , respectively. The size of the
two extra dimensions is denoted byRI (I 51,2). The orbi-
fold T2/Z2 is given by identifying a point (xm,yI) with a
point (xm,yI12pRI) for eachI (51,2) and further identify-
ing (xm,2yI) and (xm,yI). The resultant extra-dimensiona
space is the domain 0<y1<pR1 , 0<y2<2pR2 with four
©2004 The American Physical Society14-1
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fixed points, (y1,y2)5(0,0),(pR1,0),(0,pR2),(pR1 ,pR2).
In order for quantum field theory to be defined on spa

time with compactified spaces, boundary conditions of fie
in the compactified dimensions must be specified. In our c
we need to specify boundary conditions onT2 and for theZ2
orbifolding. As a general guiding principle we require th
the Lagrangian density be single valued. In gauge the
fields can be twisted up to gauge degrees of freedom w
they are parallel transported along noncontractible loops

A. Gauge field

Let us first consider boundary conditions for the gau
field AM(x,yI). The indexM runs from 0 to 5. We define
boundary conditions of the gauge potential along nonc
tractible loops onT2 by

T2: AM~x,yW1 lWa!5UaAM~x,yW !Ua
† ~a51,2!

lW15S 2pR1

0 D , lW25S 0
2pR2

D ,

~2.1!

whereUI (I 51,2) denote global gauge degrees of freed
associated with the original gauge invariance. Gauge po
tials at AM(x,y112pR1 ,y212pR2) are related to
AM(x,y1,y2) either by a loop translation in they1 direction
followed by a loop translation in they2 direction or by a loop
translation in they2 direction followed by a loop translation
in the y1 direction. For consistency it follows that

@U1 ,U2#50. ~2.2!

Let us next consider boundary conditions resulting fro
the Z2 orbifolding. To simplify the expressions, we deno
four fixed points onT2/Z2 by zW i ( i 50,1,2,3):

zW05S 0
0D , zW15S pR1

0 D , zW25S 0
pR2

D , zW35S pR1

pR2
D .

~2.3!

Boundary conditions are specified by unitary parity matric
Pi ( i 50,1,2,3) at the fixed points:

Z2 : S Am

AyI
D ~x,zW i2yW !5Pi S Am

2AyI
D ~x,zW i1yW !Pi

1

~ i 50,1,2,3!. ~2.4!

AyI (I 51,2) must have an opposite sign relative toAm under
these transformations in order to preserve the gauge inv
ance. The repeatedZ2 parity operation brings a field configu
ration back to the original one, so thatPi

251 (i 50,1,2,3)
and, hence,Pi

†5Pi .
At this stage, we observe that not all the boundary con

tions are independent. The transformationpR12y1→pR1
1y1 must be the same aspR12y1→2pR11y1→y1

1pR1 , from which it follows thatU15P1P0 . A similar
relation holds forU2 . We have

Ua5PaP0 ~a51,2!. ~2.5!
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Finally, as the transformation (pR12y1,pR22y2)→(pR1
1y1,pR21y2) is the same as a transformation (pR1
2y1,pR22y2 ) → (2pR11y1,2pR21y2 ) → (pR1 1 y1,
2pR21y2)→(pR11y1,pR21y2), the relation U2U1P0
5P3 must hold. Taking account of Eqs.~2.4!, ~2.5!, and
~2.6!, the parity matrixP3 can be written as

P35P2P0P15P1P0P2 . ~2.6!

The boundary conditions for gauge fields are specified w
Pi ( i 50,1,2) satisfying Pi5Pi

†5Pi
21 and Pi Pj Pk

5PkPj Pi .
Discussions can be generalized to the case ofTn/Z2 . The

orbifold Tn/Z2 is defined by identifications

Tn: yW1 lW j;yW ~ j 51,2,...,n!, ~2.7!

Z2 : 2yW;yW , ~2.8!

where yW is an n-dimensional vector on then-torus andlW j
[(0,...,0,2pRj ,0,...,0)T ( j 51,...,n). The fixed point satisfies
the relationyW52yW1( jmj lW j (mj5an integer!. In the funda-
mental domain ofTn, they are given byyW5(1/2)( jmj lW j
where mj50 or 1. In theT2/Z2 case, there are four fixed
points corresponding to (m1 ,m2)5(0,0),(0,1),(1,0),(1,1).
At each fixed point the parity matrix is defined. Repeati
the same discussion given above,n11 matrices—for ex-
ample,P0 ,P1 ,...,Pn—are independent. The consistency
theZ2 orbifolding and theTn boundary condition defined by
U j ( j 51,...,n) satisfying@U j ,Uk#50( j Þk) yields the rela-
tion U j5Pj P0 . The relationPi Pj Pk5PkPj Pi also holds.

B. Matter fields

As for matter fields, it is convenient to first specifyZ2
boundary condition and then deriveT2 conditions. Let us
consider a scalar fieldH(x,yW ) which satisfies

Z2 : H~x,zW j2yW !5h j
sT@Pj #H~x,zW j1yW ! ~ j 50,1,2,3!.

~2.9!

Here T@Pj # stands for an appropriate representation ma
under the gauge group associated withPj . If H belongs to
the fundamental or adjoint representation,T@Pj #H5PjH or
PjHPj

† , respectively.h j
s is a sign factor taking a value11 or

21. Boundary conditions for theT2 direction are given by

T2: H~x,yW1 lWa!5h0
sha

sT@Ua#H~x,yW ! ~a51,2!,
~2.10!

whereUa is given by Eq.~2.5!. Not all of the sign factors are
independent: h3

s5h0
sh1

sh2
s .

Next we consider a Dirac fermionc(x,yI) in six dimen-
sions. The gauge invariance of the kinetic term of the f
mion Lagrangian demands that
4-2
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Z2 : c~x,zW j2yW !5h j
fT@Pj #~ iG4G5!c~x,zW j1yW !

~ j 50,1,2,3!,

T2: c~x,yW1 lWa!5h0
f ha

f T@Ua#c~x,yW ! ~a51,2!.
~2.11!

The sign factorsh j
f561 satisfyh3

f 5h0
f h1

f h2
f . G4 and G5

are the fourth and fifth components of six-dimensional
38 Dirac’s gamma matrices, respectively.

It is instructive to present the explicit form of gamm
matrices. We employ the representation

Gm5gm ^ 1232 , G45g5^ is1 , G55g5^ is2 ,
~2.12!

where gm is the four-dimensional gamma matrix andg5
[ ig0g1g2g3 with (g5)251434 . In this representation we
have

iG4G551434^ s3 . ~2.13!

One can define six-dimensional chirality similar to t
chirality in four dimensions. It is given by the eigenvalues
G7 defined by

G7[G0G1
¯G5~5g5^ s3!. ~2.14!

Then, we obtain that

G7c656c6 , where c6[
1

2
~16G7!c. ~2.15!

If we write

c25S UL

DR
D , c15S UR

DL
D , ~2.16!

g5UL52UL , g5DL52DL , g5UR5UR , g5DR5DR . In
terms of four-dimensional Dirac spinors the boundary con
tions ~2.11! are recast as

Z2 : UL,R~x,zW j2yW !51h j
fT@Pj #UL,R~x,zW j1yW !,

DL,R~x,zW j2yW !52h j
fT@Pj #DL,R~x,zW j1yW !,

~2.17!

The sign factors$h j
s%,$h j

f% are additional parameter
specifying boundary conditions. They play an important r
in dynamical gauge symmetry breaking.

C. Equivalence classes and symmetry of boundary conditions

The gauge symmetry is apparently broken by nontriv
parity matricesPj ( j 50,1,2) specifying boundary condition
of the Z2 orbifolding. Yet the physical symmetry of th
theory is not, in general, the same as the symmetry of bou
ary conditions, once quantum corrections are incorporate

To elucidate this fact, we first show that different sets
boundary conditions can be related to each other by ‘‘lar
gauge transformations. Under a gauge transformation
12501
f

i-

e

l

d-
.
f
’’

AM8 5VS AM2
i

g
]M DV†, ~2.18!

AM8 obeys a new set of boundary conditions$Pj8 ,Ua8% where

Pj85V~x,zW j2yW !PjV~x,zW j1yW !†,

Ua85V~x,yW1 lWa!UaV~x,yW !†,

provided ]MPj85]MUa850. ~2.19!

The relationUa85Pa8P08 follows from Eqs.~2.5! and ~2.19!.
We stress that the set$Pj8% can be different from the set$Pj%.
When the relations in Eqs.~2.19! are satisfied, we write

$Pj8%;$Pj%. ~2.20!

This relation is transitive and therefore is an equivalen
relation. Sets of boundary conditions form equivalen
classes of boundary conditions with respect to the equ
lence relation~2.20! @9,11,31#.

The residual gauge invariance of the boundary conditi
is given by gauge transformations that preserve the orig
boundary conditions:

Pj5V~x,zW j2yW !PjV~x,zW j1yW !†,

Ua5V~x,yW1 lWa!UaV~x,yW !†. ~2.21!

As shown in@11#, those residual gauge transformations e
tend over the entire group space even for nontrivial$Pj%. All
the Kaluza-Klein modes nontrivially mix under those gau
transformations.

The gauge symmetry realized at low energies is given
yI-independentV satisfying

@Pj ,V~x!#50 ~ j 50,1,2!. ~2.22!

We observe that the symmetry is generated by generato
the gauge group which commute withPj . This is called the
symmetry of boundary conditions at low energies.

The gauge symmetry at low energies can also be un
stood in terms of group generators associated with z
modes of the gauge fieldsAm5Am

a Ta. Let us define

HBC5$Ta;@Ta,Pj #50 ~ j 50,1,2!%,

H̄BC5$Tb;$Tb,Pj%50 ~ j 50,1,2!%.
~2.23!

From the boundary condition~2.4!, it follows that zero
modes (yI-independent modes! of Am andAyI can be written
as

Am~x!5 (
TaPHBC

Am
a ~x!Ta, ~2.24!

AyI~x!5 (
TbPH̄BC

AyI
b

~x!Tb. ~2.25!
4-3
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The residual gauge symmetry at low energiesHBC is spanned
by those generators belonging toHBC.

The zero modesAyI in Eq. ~2.25!, or particularly their
x-independent parts, define Wilson line phases and pla
critical role in dynamical rearrangement of gauge symme
at the quantum level, which we elaborate in the followi
subsection.

D. Wilson line phases and physical symmetry

So far we have discussed the symmetry of the bound
condition $Pj% at the tree level. This is not necessarily t
same as the physical symmetry of the theory. Once quan
corrections are taken into account, the boundary condi
effectively changes as a result ofAyI in Eq. ~2.25! develop-
ing nonvanishing expectation values. The number of z
modes of four-dimensional gauge fieldsAm

a in the new
vacuum also changes. Rearrangement of gauge symm
takes place. This is called the Hosotani mechanism@8,9#.

Constant modes ofAyI satisfying@Ay1,Ay2#50 give van-
ishing field strengths, but become physical degrees of f
dom that cannot be gauged away within the given bound
conditions. Indeed the path-ordered integral along a nonc
tractible loop starting at~x,y!

WI~x,y!5P expS ig R dyIAyI D ~ I : not summed!

~2.26!

transforms, under a gauge transformation, asWI(x,yW )
→V(x,yW )WI(x,yW )V(x,yW1 lW I)

†. Using Eq.~2.21!, one finds
that

WI~x,yW !UI→V~x,yW !WI~x,yW !UIV
†~x,yW !. ~2.27!

The eigenvalues ofWIUI are invariant under gauge transfo
mations preserving the boundary conditions. The phase
the eigenvalues, called Wilson line phases, cannot be ga
away. They are non-Abelian analogues of Aharonov-Bo
phases.

These Wilson line phases parametrize degenerate clas
vacua. At the quantum level the effective potential for W
son line phases becomes nontrivial. When the effective
tential is minimized at nonvanishing Wilson line phases,
physical symmetry of the theory changes from the symme
of boundary conditions.

The effect of nonvanishing vacuum expectation values
Wilson line phases can be understood as an effective ch
in boundary conditions. As explained in the previous subs
tion, there are large gauge transformations which cha
boundary conditions. The existence of such gauge trans
mations is in one-to-one correspondence with the existe
of physical degrees of freedom of Wilson line phases in
given theory.

Suppose that the effective potential is minimized at n
vanishing ^AyI&Þ0, @^Ay1&,^Ay2&#50. Perform a large
gauge transformation

V~yW !5exp$2 ig~^Ay1&y11^Ay2&y2!%. ~2.28!
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Then the new gauge potentials satisfy^AyI8 &50. Simulta-
neously the boundary conditions change as in Eqs.~2.19!:

Pj85V~zW j2yW !PjV~zW j1yW !†5PjV~2zW j1yW !V~zW j1yW !†

5PjV~22zW j ![Pj
sym. ~2.29!

In the second equality we made use of the relat
$^AyI&,Pj%50. Sincê AyI8 &50, the physical symmetry of the
theoryHphys is generated by generators belonging to

Hphys5$Ta;@Ta, Pj
sym#50 ~ j 50,1,2!%. ~2.30!

The physical symmetryHphys can be either larger or smalle
thanHBC.

As emphasized in Refs.@11# and @31#, the physical sym-
metryHphys is the same in all theories belonging to the sa
equivalence class of boundary conditions. The dynamics
Wilson line phases guarantees it.

III. ORBIFOLD CONDITIONS AND MODE EXPANSIONS
IN SU„2… THEORY

Let us examineSU(2) gauge theory for which complet
classification of orbifold boundary conditions can be eas
achieved. Boundary condition matricesPj ( j 50,1,2) must
satisfy Pj5Pj

†5Pj
21 and P1P0P25P2P0P1 . A complete

classification of boundary conditions inSU(N) gauge theory
on the orbifoldS1/Z2 has been given in Ref.@31#.

A. Orbifold conditions

To classify boundary conditions$Pj%, we first diagonalize
P0 , utilizing global SU(2) invariance. Up to a sign factor
P051232 or t 3. If P051232 , P1 can be diagonalized, an
thereforeP151232 or t 3. In the caseP05P151232 , P2 is
diagonalized as well. Even in the caseP051232 , P15t 3,
P2 must be diagonal to satisfyP1P25P2P1 . In other words,
if one of Pj ’s is 1232 , all Pj ’s are diagonal up to a globa
SU(2) transformation.

In the caseP05t 3 and P1 ,P2Þ61232 , we recall that
the most general form ofP(Þ61232) satisfying P5P†

5P21 is given byP5t 3ei (a1t11a2t 2). GivenP05t 3, there
still remainsU(1) invariance. Utilizing the globalU(1) in-
variance, one can bringP1 into the form P15t 3eipat 2

.
Then, to satisfy P1t 3P25P2t3P1 , P2 must be P2

5t 3eipbt 2
.

To summarize, boundary conditions$P0 ,P1 ,P2% are clas-
sified as

~ i! P051232 , P1 ,P251232 or 6t 3,

~ ii ! ~P0 ,P1 ,P2!5~t 3,t 3eipat 2
,t 3eipbt 2

! ~3.1!
4-4
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P35t 3eip~a1b!t 2
,

U15e2 ipat 2
5S cospa 2sinpa

sinpa cospa D ,

U25S cospb 2sinpb

sinpb cospb D . ~3.2!

Boundary condition~3.2! is periodic in real parametersa,b
with a period 2. The symmetry of boundary condition~3.1! is
eitherSU(2) or U(1). Thesymmetry of boundary condition
~3.2! is U(1) if both a and b are integers, and none othe
wise.

B. Wilson line phases

There is no degree of freedom of a Wilson line phase w
boundary condition~3.1!. In the case of boundary conditio
~3.2! with general values ofa andb, there is no zero mode
associated withAm

a , but there are zero modes forAyI and
may develop expectation values:

^Ay1&5
a

2R1g
t 2, ^Ay2&5

b

2R2g
t 2. ~3.3!

The expectation valuesa andb are dynamically determined
such that the effective potential is minimized. They are
lated to the Wilson line phases by

W1U15 K expS ig R dy1Ay1D L e2 ipat 2
5eip~a2a!t 2

,

W2U25 K expS ig R dy2Ay2D L e2 ipbt 2
5eip~b2b!t 2

.

~3.4!

C. Equivalence classes of boundary conditions

Consider boundary conditions~3.2!. We perform a large
gauge transformation with

V~c1 ,c2!5expH i S c1

2R1
y11

c2

2R2
y2D t 2J . ~3.5!

Then the boundary condition matrices change to

~P08 ,P18 ,P28!5~t 3,t 3eip~a2c1!t 2
,t 3eip~b2c2!t 2

!.
~3.6!

In other words, all sets (P0 ,P1 ,P2) of boundary conditions
in Eqs. ~3.2! are in one equivalence class of boundary co
ditions. Each set of the boundary conditions~3.1! forms a
distinct equivalence class.

Under Eq.~3.5!, the zero modes ofAyI in Eqs. ~3.3! are
transformed as (a,b)→(a2c1 ,b2c2). It is recognized that
the combination (a2a,b2b) is invariant under Eq.~3.5!.

Now suppose that the expectation valuesa,b in Eqs.~3.3!
take nontrivial values. With a gauge transformationV~a, b!,
the background field̂AyI& can be removed, and in the ne
12501
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gauge we havê AyI8 &50. The new boundary condition

are (P0
sym,P1

sym,P2
sym)5(t 3,t 3eip(a2a)t 2

,t 3eip(b2b)t 2
).

The physical symmetryHphys is generated by the generato
of the SU(2) commuting withPi

sym ( i 50,1,2).
The physical content of the theory at the quantum leve

the same in a given equivalence class. In particular, it d
not depend on the parameters~a,b! in Eqs.~3.2!. Gauge in-
variance implies that the effective potential for the Wils
line phases is a function of gauge invarianta2a and b
2b. Depending on the content of matter fields, the effect
potential can take the minimum value at nontrivial (a
2a,b2b) as we will see below.

D. Mode expansions

Given the orbifold boundary conditions, each field is e
panded in eigenmodes. OnT2/Z2 there are two types o
mode expansions,Z2 singlets andZ2 doublets.

A Z2 singlet fieldf(x,y) obeys

f~x,zW j2yW !5Pjf~x,zW j1yW !, Pj51 or 2. ~3.7!

Each singlet field is specified with (P0 ,P1 ,P2). Mode ex-
pansions are

f~x,yW !5
1

A2p2R1R2

f00~x!S 1
0D1

1

Ap2R1R2

3 (
~n,m!PK1

fnm~x!S cos
sinD S ny1

R1
1

my2

R2
D

for ~P0 ,P1 ,P2!5 H ~1,1,1 !,
~2,2,2 !, ~3.8!

1

Ap2R1R2
(

n52`

`

(
m50

`

fnm~x!S cos
sinD S ny1

R1
1

S m1
1

2D y2

R2

D
for ~P0 ,P1 ,P2!5 H ~1,1,2 !,

~2,2,1 !, ~3.9!

1

Ap2R1R2
(
n50

`

(
m52`

`

fnm~x!S cos
sinD S S n1

1

2D y1

R1
1

my2

R2

D
for ~P0 ,P1 ,P2!5 H ~1,2,1 !,

~2,1,2 !, ~3.10!

1

Ap2R1R2
(

n52`

`

(
m50

`

fnm~x!S cos
sinD S S n1

1

2D y1

R1

1

S m1
1

2D y2

R2

D for ~P0 ,P1 ,P2!5 H ~1,2,2 !,
~2,1,1 !.

~3.11!
4-5
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In Eq. ~3.8!

(
~n,m!PK1

Bn,m5 (
n51

`

Bn,01 (
n52`

`

(
m51

`

Bn,m . ~3.12!

Zero modes exist only for (P0 ,P1 ,P2)5(1,1,1).
A Z2 doublet fieldf5(f2

f1) appears when a boundary co

dition of the type~3.2! is considered. It obeys

f~x,2y1,2y2!5S 1

21Df~x,y1,y2!,

f~x,y112pR1 ,y2!5S cospa 2sinpa

sinpa cospa Df~x,y1,y2!,

f~x,y1,y212pR2!5S cospb 2sinpb

sinpb cospb Df~x,y1,y2!.

~3.13!

Its mode expansion is given by

S f1

f2
D ~x,yW !5

1

A2p2R1R2
(

n52`

`

(
m52`

`

fnm~x!S cos
sinD

3F S n1
1

2
aD y1

R1
1

S m1
1

2
bD y2

R2

G . ~3.14!

Z2 doublets appear when the Scherk-Schwarz supersym
try ~SUSY! breaking@34,18# is implemented in SUSY theo
ries as well. We see below that twists specified with~a,b!
play an important role to give fermions nonvanishing mas
in four dimensions.

IV. EFFECTIVE POTENTIAL IN SU„2… GAUGE THEORY

In order to study physical symmetry of the theory, o
must take into account quantum corrections. To this end
needs to evaluate the effective potential for Wilson li
phases. Wilson line phases are related to zero modes o
component gauge fields in extra dimensions.

We study patterns of gauge symmetry breaking inSU(2)
gauge theory onM43T2/Z2 in order to get insight into the
electroweak gauge symmetry breaking and the gauge-H
unification in a more realistic framework. We believe that t
analysis here provides us many useful and important hin

Dynamical gauge symmetry breaking or enhancement
take place when the boundary condition in Eqs.~3.2! is
adopted. As explained in the previous section, all the bou
ary conditions in Eqs.~3.2! are in one equivalence class, an
therefore the same physical results are obtained inde
dently of the values of the parameters~a,b!, provided that the
dynamics of Wilson line phases is taken into account. He
we adopt, without loss of generality,

~P0 ,P1 ,P2!5~t 3,t 3,t 3!, ~4.1!
12501
e-

s

e

the

gs

.
n

d-

n-

e

which implies thatP35t 3 and U15U251232 . With this
boundary condition, zero modes forAm

a and AyI
a (I 51,2)

exist for Am
a53 and AyI

a51,2 (I 51,2), respectively. The sym
metry of the theory at the tree level isU(1).

We employ the standard background filed method
evaluate the effective potential for Wilson line phases. Z
modes forAyI

a51,2 are parametrized as

Ay15
1

2gR1
~a1t11a2t 2![

a

2gR1
S 0 e2 iu

eiu 0 D ,

Ay25
1

2gR2
~b1t11b2t 2![

b

2gR2
S 0 e2 i ũ

ei ũ 0
D .

~4.2!

Here one should note that, contrary to the caseS1/Z2 , there
are two directions of the compactified dimensions, so that
tree-level potential is induced for the background giv
above,

Vtree52
g2

2
tr@Ay1,Ay2#25

1

4g2~R1R2!2 ~a1b22a2b1!2.

~4.3!

The vanishing tree-level potential is achieved when

a1b22a2b150, ~4.4!

which implies the vanishing field strength^Fy1y2&50. Once
we restrict ourselves to the case~4.4!, the parametrization of
background fields is further simplified. The relation~4.4!
meansu5 ũ, and by using theU(1) gauge degrees of free
dom, one can takeu5 ũ50. To summarize, we take, as bac
ground fields,

Ay15
1

2gR1
at1, Ay25

1

2gR2
bt1. ~4.5!

The effective potential for~a,b! is obtained by integrating
quantum fluctuations of every field.

A. Gauge fields and ghosts

Contributions from the gauge fields and ghosts to the
fective potential are given by

Vgauge1ghost52
i

2
tr ln DLDL~AyI !, ~4.6!

whereDLDL(AyI)5]m]m2( I 51
2 DyI

2 (AyI). One needs to find
eigenvalues of the mass operatorDyI

2 (AyI) to evaluate the
effective potential.

With Eq. ~4.1!, the parity assignment forAyI is given by

AyI
a51,2: ~P0 ,P1 ,P2!5~111 !, ~4.7!

AyI
a53: ~P0 ,P1 ,P2!5~222 !. ~4.8!
4-6
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The mass operator forAyI
a (a51,2,3) for the background

field configuration~4.5! is obtained by inserting the mod
expansion~3.8!. As a result of the nonvanishing backgroun
~a,b!, AyI

2 andAyI
3 mix with each other. It is given by

(
I 51

2

DyI
2

5
1

R1
2 S n2 0 0

0 n21a2 2na

0 2na n21a2
D

1
1

R2
2 S m2 0 0

0 m21b2 2mb

0 2mb m21b2
D

for ~n,m!PK1 . ~4.9!

The eigenvalues of the operator for (n,m)Þ(0,0) are easily
obtained as

S n

R1
D 2

1S m

R2
D 2

, S n6a

R1
D 2

1S m6b

R2
D 2

for ~n,m!PK1 .

~4.10!

Zero modes (n,m)5(0,0) exist only forAyI
a51,2. Eigenvalues

for the zero modes are given by

0, S a

R1
D 2

1S b

R2
D 2

. ~4.11!

In a similar way, we can compute contributions fro
Am

a51,2,3 to the effective potential. In this case the parity a
signment is

Am
a51,2: ~P0 ,P1 ,P2!5~222 !, ~4.12!

Am
a53: ~P0 ,P1 ,P2!5~111 !. ~4.13!

The mass matrix has the same structure as before. Only
a53 component ofAm

a has a zero mode. Hence eigenvalu
of the mass operator are

S n

R1
D 2

1S m

R2
D 2

, S n6a

R1
D 2

1S m6b

R2
D 2

for ~n,m!PK1 ,

S a

R1
D 2

1S b

R2
D 2

. ~4.14!

The mass matrix for ghost fields is the same as that forAm .
Contributions to the effective potential fromAm and ghosts
are, therefore, 42252 times contributions coming from th
spectrum~4.14!.

In six dimensions there are two extra-dimensional com
nents AyI. Therefore, if one adds Eqs.~4.10!, ~4.11!, and
~4.14!, one obtains two copies of
12501
-

he
s

-

S n

R1
D 2

1S m

R2
D 2

, S n1a

R1
D 2

1S m1b

R2
D 2

,

S n2a

R1
D 2

1S m2b

R2
D 2

~2`,n,m,1`!, ~4.15!

for the mass spectrum. Here we used the fact thatK1 covers
a half of the integer lattice plane after~0, 0! is removed.

The contributions from the gauge fields and ghost fie
are summarized as

Veff~a,b!gauge

52
1

2 E d4pE

~2p!4

1

2p2R1R2

3 (
n52`

`

(
m52`

` H 2 lnFpE
21S n1a

R1
D 2

1S m1b

R2
D 2G

1 lnFpE
21S n

R1
D 2

1S m

R2
D 2G J . ~4.16!

Here the Wick rotation has been made andpE stands for the
Euclidean momenta in four dimensions. As shown in Re
@20,12#,

I ~a,b![
1

2
E d4pE

~2p!4

1

2p 2R1R2

3 (
n52`

`

(
m52`

`

lnFpE
21S n1a

R1
D 2

1S m1b

R2
D 2G

52
1

16p 9 H 1

R1
6 (

n51

` cos~2pna!

n6

1
1

R2
6 (

m51

` cos~2pmb!

m6

12(
n51

`

(
m51

` cos~2pna!cos~2pmb!

~n2R1
21m2R2

2!3 J
1~a,b2 independent terms!. ~4.17!

In terms ofI (a,b),

Veff~a,b!gauge54I ~a,b!12I ~0,0!, ~4.18!

which is depicted in Fig. 1. We note that one unit ofI rep-
resents contributions to the effective potential from tw
physical degrees of freedom onM43(T2/Z2).

B. Scalar fields in the fundamental representation

A scalar fieldH(x,y)5(H1 ,H2) t in the fundamental rep-
resentation satisfies Eq.~2.9! or

H~x,zW j2yW !5h j
st 3H~x,zW j1yW ! ~ j 50,1,2,3!. ~4.19!

Each component ofH is a Z2 singlet. The parity assignmen
is
4-7
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FIG. 1. The effective potentialVeff(a,b), Eq.
~4.18!, in the pure gauge theory withR15R2 .
There are four degenerate minima at (a,b)
5(0,0), ~1,0!, ~0,1!, and~1.1!. All of them corre-
spond toU(1) symmetric states.
of

ent
is

t

H1 : ~P0 ,P1 ,P2!5~1h0 ,1h1 ,1h2!,

H2 : ~P0 ,P1 ,P2!5~2h0 ,2h1 ,2h2!. ~4.20!

Consequently the mode expansion of the doubletH is given
by one of the pairs in Eqs.~3.8!–~3.11!.

Let us first examine the caseh05h15h2511 or 21.
The mode expansion of (H1 ,H2) is given by a pair in Eq.
~3.8!. When the mass operator

(
I 51

2

DyI
2

5S ]y1 2 ia/2R1

2 ia/2R1 ]y1
D 2

1S ]y2 2 ib/2R2

2 ib/2R2 ]y2
D 2

acts on (n,m) (PK1) components in the mode expansion
H, it yields a matrix

1

R1
2 S n21

1

4
a2 ian

2 ian n21
1

4
a2D

1
1

R2
2 S m21

1

4
b2 ibm

2 ibm m21
1

4
b2D , ~4.21!

which has eigenvalues
12501
S n1
1

2
a D 2

R1
2 1

S m1
1

2
b D 2

R2
2 ,

S n2
1

2
a D 2

R1
2

1

S m2
1

2
b D 2

R2
2 where ~n,m!PK1 . ~4.22!

Only one of H1 or H2 has a zero mode (yI-independent
mode!. Its eigenvalue for( I 51

2 DyI
2 is

a2

4R1
2 1

b2

4R2
2 . ~4.23!

Combining Eqs.~4.22! and ~4.23!, one obtains

S n1
1

2
a D 2

R1
2 1

S m1
1

2
b D 2

R2
2 ~2`,n,m,1`!.

~4.24!

The analysis in other cases of parity assignm
(h0 ,h1 ,h2) is almost the same. The mode expansion
given by one of the pairs in Eqs.~3.9!–~3.11!. There is no
zero mode. At this junction it is convenient to introduced j
by

d~h!5H 0 for h511,

1 for h521,

d j5d~h0h j ! ~ j 51,2!.
~4.25!

The only change arising when the mass operator( I 51
2 DyI

2

acts on~n,m! components in the mode expansion is than
4-8
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and m in the matrix ~4.21! are replaced byn1(1/2)d1 and
m1(1/2)d2 , respectively. Consequently the eigenvalues
( I 51

2 DyI
2 are given by

Fn1
1

2
~a1d1!G2

R1
2 1

Fm1
1

2
~b1d2!G2

R2
2 ~2`,n,m,1`!

~4.26!

in all cases.
The contributions of one scalar doublet to the effect

potential is found, from Eq.~4.26!, to be

Veff ~a,b!sF52I F1

2
~a1d1!,

1

2
~b1d2!G . ~4.27!

Here the factor of 2 accounts for the complex nature of
field H.

C. Weyl fermions in the fundamental representation

Let us next consider contributions to the effective pote
tial from fermions in the fundamental representation. W
start with a Weyl fermion satisfyingG7c52c and take all
the sign factor (h0 ,h1 ,h2)5(1,1,1). Then, the mode ex
pansion with the boundary condition~2.11! or ~2.17! is given
by

S UL1

UL2
D ~x,yI !5

1

A2p 2R1R2
S UL1~00!~x!

0 D
1

1

Ap 2R1R2
(

~n,m!PK1

S UL1~nm!~x!

UL2~nm!~x! D S cos
sinD

3S n

R1
y11

m

R2
y2D ,

S DR1

DR2
D ~x,yI !5

1

A2p 2R1R2
S 0
DR2~00!~x! D

1
1

Ap 2R1R2
(

~n,m!PK1

S DR1~nm!~x!

DR2~nm!~x! D S sin
cosD

3S n

R1
y11

m

R2
y2D . ~4.28!

Note that each ofULa or DRa is a four-component spino
with definite four-dimensional chirality. The mass opera
for ULa in this basis is given by
12501
f

e

-
e

r

(
I 51

2

DyI
2 ⇒

1

R1
2 S n21

1

4
a2 ian

2 ian n21
1

4
a2D

1
1

R2
2 S m21

1

4
b2 ibm

2 ibm m21
1

4
b2D ~4.29!

for (n,m)PK1 . Eigenvalues are given by

S n1
1

2
a

R1

D 2

1S m1
1

2
b

R2

D 2

,

S n2
1

2
a

R1

D 2

1S m2
1

2
b

R2

D 2

for ~n,m!PK1 ~4.30!

and

S a

2R1
D 2

1S b

2R2
D 2

~4.31!

for the zero modeUL1(00) . Combining Eqs.~4.30! and
~4.31!, one finds

S n1
1

2
a

R1

D 2

1S m1
1

2
b

R2

D 2

~2`,n,m,1`!.

~4.32!

The spectrum is the same as for a scalar field in the fun
mental representation.

Eigenvalues of the mass operator forDRa are the same as
those forULa . Therefore the contributions to the effectiv
potential from a Weyl fermion in the fundamental represe
tation with (h0 ,h1 ,h2)5(1,1,1) is given by

Vf F524I S a

2
,
b

2 D . ~4.33!

The minus sign is due to fermi statistics.
Extension to other cases of (h0 ,h1 ,h2) is straightfor-

ward. The basis for the mode expansion~4.28!, which corre-
sponds to Eq.~3.8!, is changed to one of Eqs.~3.9!–~3.11!.
The resultant spectrum of the mass operator( I 51

2 DyI
2 is the

same as in the scalar field case.~n,m! in Eq. ~4.32! is re-
placed by (n1(1/2)d1 ,m1(1/2)d2) where d j is defined in
Eqs. ~4.25!. Consequently the contributions to the effecti
potential from a Weyl fermion in the fundamental represe
tation is summarized as

Vf F524I S a1d1

2
,
b1d2

2 D . ~4.34!
4-9
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D. Weyl fermions and scalars in the adjoint representation

Contributions of matter fields in the adjoint representat
are easily obtained as in the preceding subsections. Con
a Weyl fermion. Note thatDMc5]Mc1 ig@AM ,c#. With
the background fields~4.5!,

2Trc̄ i ~G2D51G5D6!c5c̄1i ~G5]y11G6]y2!c1

1~ c̄2,c̄3!i H G5S ]y1 a/R1

2a/R1 ]y1
D

1G6S ]y2 b/R2

2b/R2 ]y2
D J S c2

c3D .

~4.35!

The parity assignment for a Weyl fermion satisfyingG7c
52c is

S UL
a51

DR
a51D ,S UL

a52

DR
a52D : ~P0 ,P1 ,P2!5 H ~2h0 ,2h1 ,2h2!,

~1h0 ,1h1 ,1h2!,

S UL
a53

DR
a53D : ~P0 ,P1 ,P2!5 H ~1h0 ,1h1 ,1h2!,

~2h0 ,2h1 ,2h2!.

~4.36!

The net consequence in the evaluation of the mass op
tor ( I 51

2 DyI
2 is that ~a,b! in the case of fermions in the fun

damental representation is replaced by~2a, 2b!. The contri-
butions to the effective potential are summarized as

Vf ,Ad522H I S 1

2
d1 ,

1

2
d2D12I S a1

1

2
d1 ,b1

1

2
d2D J .

~4.37!

Similarly, for a real scalar field in the adjoint representati
we have

Vs,Ad5
1

2 H I S 1

2
d1 ,

1

2
d2D12I S a1

1

2
d1 ,b1

1

2
d2D J .

~4.38!

Adding contributions from gauge fields and ghosts,
immediately see thatVgauge1ghost1Vf ,Ad50 if d15d250.
This is because in six dimensions (AM ,cad j) forms the vec-
tor multiplet ofN51 supersymmetry@35# and their on-shell
degrees of freedom are equal to each other. Therefore
contributions from bosons and fermions are canceled to y
the vanishing effective potential. It is important to obser
that the cancellation holds only for the sign assignm
(h0 ,h1 ,h2)5(111) or ~2 2 2!. For the other cases, th
effective potential does not vanish. TheN51 supersymme-
try is broken by the different assignment of the sign fact
h i for bosons and fermions. This is similar to the Sche
Schwarz breaking of supersymmetry@34#, in which different
boundary conditions for bosons and fermions are impose
12501
n
der

ra-

e

he
ld

t

s
-

.

E. Z2 doublets

Twists along noncontractible loops onT2 can be intro-
duced for each field by doubling the number of degrees
freedom. As we see below, theseT2 twists give fermions
additional masses in four dimensions. This may be very
portant in the phenomenological viewpoint, as these tw
can substitute Yukawa interactions. We prepare a pair
Weyl fermions (c,c8) satisfying

S c
c8 D ~x,2yW !5h0T@P0#~ iG4G5!S c

2c8 D ~x,yW !,

S c
c8 D ~x,y112pR1 ,y2!5S cospa 2sinpa

sinpa cospa Dh0h1T@U1#

3S c
c8 D ~x,yW !,

S c
c8 D ~x,y1,y212pR2!5S cospb 2sinpb

sinpb cospb Dh0h2T@U2#

3S c
c8 D ~x,yW !. ~4.39!

Nonvanishinga andb give twists on the pair (c,c8). Note
that each pair can have its own~a, b!.

Let us illustrate it by considering fermions in the fund
mental representation for whichT@P0#c5P0c, etc. Take
h051, P05P15P25t3, U15U251232 . With the notation
in Eqs. ~2.16!, (Ua ,Ua8) and (Da ,Da8) (a51,2) form Z2

doublets. Their mode expansions are given, as in Eq.~3.14!,
by

S UR1

UR18 D ~x,yW !5
1

A2 p2R1R2
(

n,m52`

`

ÛR1,nm~x!S cosznm~yW !

sinznm~yW ! D ,

S UR2

UR28 D ~x,yW !5
1

A2p 2R1R2
(

n,m52`

`

ÛR2,nm~x!

3S 2sinznm~yW !

cosznm~yW ! D ,

znm~yW !5S n1
a1d1

2 D y1

R1
1S m1

b1d2

2 D y2

R2
.

~4.40!

Similar expansions hold forDLa andDLa8 as well.

The nonvanishing Wilson line phasesa andb mix Û1,nm

and Û2,nm as in Sec. IV C. The resultant mass matrix tak
the same form as in Eq.~4.29! wheren andm are replaced by
n11/2(a1d1) andm11/2(b1d2), respectively. Hence the
eigenvalues are given by

1

R1
2 S n1

a1d11a

2
D 2

1
1

R2
2 S m1

b1d21b

2
D 2

,

4-10
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1

R1
2 S n1

a1d12a

2 D 2

1
1

R2
2 S m1

b1d22b

2 D 2

,

2`,n,m,1`. ~4.41!

To summarize, the contributions to the effective poten
from eachZ2 doublet of Weyl fermions in the fundament
representation are given by

Vdoublet
f F 524H I F1

2
~a1a1d1!,

1

2
~b1b1d2!G

1I F1

2
~a2a1d1!,

1

2
~b2b1d2!G J . ~4.42!

Extension to fields in other representation is straightforwa

F. Total effective potential

Adding all the contributions ofZ2 singlet fields, we find
that the total effective potential for the Wilson line phases
given by

Veff ~a,b!54I ~a,b!12I ~0,0!1 (
d1 ,d2

2$N~d1d2!
s,F 22N~d1d2!

f ,F %

3I F1

2
~a1d1!,

1

2
~b1d2!G

1 (
d1 ,d2

1

2
$N~d1d2!

s,Ad 24N~d1d2!
f ,Ad %H I S 1

2
d1 ,

1

2
d2D

12I S a1
1

2
d1 ,b1

1

2
d2D J . ~4.43!

Here N(d1d2)
f ,F and N(d1d2)

f ,Ad are the numbers of Weyl fermio

multiplets in the fundamental and adjoint representati
with the parity assignment (d1d2), respectively.N(d1d2)

s,F and

N(d1d2)
s,Ad are defined similarly for scalar fields. (N(d1d2)

s,Ad counts

the number of real scalar field multiplets.! If there exist fields
of Z2 doublets, their contributions need to be added.

The true vacuum is given by the global minimum of E
~4.43!. As we see in the following section, the global min
mum can be located at nonvanishing~a,b!.

V. GAUGE SYMMETRY BREAKING

The true vacuum is determined by the global minimum
the effective potential for the Wilson line phases~4.43!. We
recall thata andb are phase variables with a period 2. T
function I (a,b), which is defined in Eq.~4.17!, satisfies
I (a11,b)5I (a,b11)5I (a,b). It has the global mini-
mum at~0, 0!, the global maximum at~1/2, 1/2!, and saddle
points at~1/2, 0! and ~0, 1/2! ~mod 1!, respectively.
12501
l

.

s

s

.

f

A. Pure gauge field theory

The case of the pureSU(2) gauge theory has been a
ready examined in Sec. IV A. The effective potential is giv
by Eq.~4.18!. The configurations that minimize the potenti
are found to be

~a,b!5~0,0!,~1,1!,~1,0!,~1,1!. ~5.1!

We have seen that the phasesa,b are determined dynami
cally.

Let us discuss the gauge symmetry at low energies. F
of all, the Wilson line for the parametrization is given by

W15eipat1
, W25eipbt1

. ~5.2!

Let us move to a new gauge, in which^AyI8 &50, by a gauge
transformation

V~yW ;a,b!5expH i S ay1

2R1
1

by2

2R2
D t1J . ~5.3!

Then, new parity matrices in Eqs.~2.19! become

P085 t 3, P185eipat1
t 3, P285eipbt1

t 3. ~5.4!

As we have discussed, generators commuting with the n
Pi8 ( i 50,1,2) form a symmetry algebra at low energies. F
(a,b)5(0,0), we haveP085P185P285t 3. Here (1/2)t 3

commutes with all thePi8 , so that theU(1) symmetry sur-
vives at low energies. The symmetry of boundary conditio
at the tree level is not broken even at the quantum level

Taking into account the periodicity of the effective pote
tial, the configurations (a,b)5(1,0),~0, 1!,~1, 1! also give
the vacuum configurations. These configurations are ph
cally equivalent with (a,b)5(0,0). In order to see that, le
us consider (a,b)5(1,0), for which we haveP085t3, P18
52t3, P2852t3. Again, t3/2 commutes with these parit
matrices, so that there isU(1) gauge symmetry at low ener
gies. One can also confirm that the mass spectrum on e
vacuum is the same. Indeed, masses forAm

a53 are given by
(n1a)2R1

221(m1b)2R2
22. Here Am(n,m)5(0,0)

a53 becomes a
massless mode corresponding to theU(1) gauge symmetry
for the configuration (a,b)5(0,0), whileAm(n,m)5(21,0)

a53 is a
massless mode for (a,b)5(1,0). Likewise, a massless mod
for theU(1) gauge symmetry is given byAm(n,m)5(0,21)

a53 and
Am(n,m)5(21,21)

a53 for (a,b)5(0,1) and (a,b)5(1,1), respec-
tively. Hence, the vacuum configurations related by the p
odicity of the potential are physically equivalent to ea
other and the mass spectrum on each vacuum is obtaine
shifting the Kaluza-Klein~KK ! modes by the same amoun
of periodicity.

B. With fermions in the fundamental representation

When there are additional fermions in the fundamen
representation, one of the configurations in Eq.~5.1! be-
comes the global minimum of the effective potential. Tak
as an example, the caseN00

f ,FÞ0. The potential becomes
4-11
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FIG. 2. Veff(a,b) for N(00)
f ,F 53 and R1

5R2 .
in

l

lt,
that

rre-
is

ns
tion

t

ith

in
Veff~a,b!54I ~a,b!12I ~0,0!24N00
f ,FI F1

2
a,

1

2
b G .

~5.5!

As 2I @(1/2)a,(1/2)b# takes the minimum value at (a,b)
5(1,1) ~mod 2!, the global minimum is located at (a,b)
5(1,1). The physical symmetry isU(1). The effective po-
tential for N(00)

f ,F 53 is depicted in Fig. 2.
If N00

f ,F50 andN11
f ,FÞ0, the effective potential becomes

Veff~a,b!54I ~a,b!12I ~0,0!24N11
f ,FI F1

2
a1

1

2
,
1

2
b1

1

2G .
~5.6!

In this case the global minimum is located at (a,b)5(0,0)
~mod 2!.

C. With fermions in the adjoint representation

Let us consider the cases with fermions in the adjo
representation. The effective potential is given by

Veff~a,b!54I ~a,b!12I ~0,0!2 (
d1 ,d2

2N~d1d2!
f ,Ad

3H I S 1

2
d1 ,

1

2
d2D12I S a1

1

2
d1 ,b1

1

2
d2D J .

~5.7!

If only fermions with (d1d2)5(00) exist, then

Veff ~a,b!52~12N00
f ,Ad!$2I ~a,b!1I ~0,0!%. ~5.8!

For N00
f ,Ad>2, the global minimum of the effective potentia

is given by the global maximum ofI (a,b). There are four
degenerate minima located at (a,b)5(1/2,1/2) ~mod 1!.

For the vacuum configuration (a,b)5(1/2,1/2), for in-
stance, the new parity matrices in Eqs.~5.4! are given by
12501
t

P085t 3, P185t 2, P285t 2. ~5.9!

There is noSU(2) generator that commutes with all thePi8 ,
so that theU(1) gauge symmetry is broken. As a resu
there is no massless gauge boson. In fact, remembering
the mass spectrum forAm(n,m)

a53 is given by (n1a)2R1
22

1(m1b)2R2
22, for the vacuum configuration (a,b)

5(1/2,1/2), we immediately see that none ofAm(n,m)
a53 can be

massless. There is no massless mode inAm(n,m)
a53 for noninte-

ger values ofa, b in general.

D. With Nf ,F , Nf ,AdÅ0

In the examples described above, the configuration co
sponding to the global minimum of the effective potential
located at the special points (a,b)5(0,0) wherea andb are
integers or half-odd integers. More generic configuratio
can be chosen if fermions in the fundamental representa
and fermions in the adjoint representation coexist.

As an example let us examine the case withN00
f ,F ,N01

f ,Ad

Þ0. The effective potential is given by

Veff~a,b!54I ~a,b!24N00
f ,FI F1

2
a,

1

2
b G

24N01
f ,AdI S a,b1

1

2D . ~5.10!

In the caseN00
f ,F50 the global minimum is located a

(a,b)5(0,0) ~mod 1! for N01
f ,Ad<1, while at (a,b)

5(1/2,0) ~mod 1! for N01
f ,Ad>2.

Now add fermions in the fundamental representation w
N00

f ,FÞ0. In the vicinity of (a,b)5(1/2,0) ~mod 1!,
I @1/2a,1/2b# has a nonvanishing slope in thea direction.
Hence the location of the global minimum is shifted in thea
direction. Furthermore, the fourfold degeneracy existing
the case ofN00

f ,F50 is partially lifted. For instance, the two
4-12
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FIG. 3. Veff (a,b) for N(00)
f ,F 5N(01)

f ,Ad53 with
R15R2 . The global minima are located a
(a,b)5(60.678,1)~mod 2!.
-

w-

e

i-

f-
degenerate global minima are located at (a,b)
5(60.555,1) ~mod 2! for (N00

f ,F ,N01
f ,Ad)5(1,3) with R1

5R2 . For (N00
f ,F ,N01

f ,Ad)5(3,3), the global minima are lo
cated at (a,b)5(60.678,1) ~mod 2! for R15R2 and
(a,b)5(60.636,1) ~mod 2! for R2 /R151.3. See Figs. 3
and 4. The minima are shifted to (a,b)5(60.600,1)~mod
2! for (N00

f ,F ,N01
f ,Ad)5(3,4).

E. With fermions in Z2 doublets

It is of great interest from the phenomenological vie
point to incorporate fermions inZ2 doublets. Intriguing mod-
els are obtained if there are fermions in the adjoint repres
tation (N00

f ,Ad ,N01
f ,AdÞ0) and fermions inZ2 doublets in the

fundamental representation (N00
f ,FÞ0) with the twist param-

eters (a,b);(0.5,20.5). The effective potential becomes
12501
n-

Veff~a,b!54I ~a,b!24N00
f ,AdI ~a,b!24N01

f ,AdI S a,b1
1

2D
24N00,doublet

f ,F H I F1

2
~a1a!,

1

2
~b1b!G

1I F1

2
~a2a!,

1

2
~b2b!G J . ~5.11!

First take (N00
f ,Ad ,N01

f ,Ad)5(2,0). When N00,doublet
f ,F 50,

there are four degenerate global minima at (a,b)5(61/2,
61/2) and~61/2, 71/2!. We add three generations of ferm
ons in the fundamental representation,N00,doublet

f ,F 53. For
(a,b)5(1/2,21/2), the degeneracy is partly lifted. The e
fective potential has the global minima at (a,b)5(61/2,
61/2). Now we vary the values ofa and b. For (a,b)
5(0.51,20.51), the global mimima move to (a,b)
t

FIG. 4. Veff (a,b) for N(00)

f ,F 5N(01)
f ,Ad53 with

1.3R15R2 . The global minima are located a
(a,b)5(60.636,1)~mod 2!.
4-13
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5(60.486,60.486). For (a,b)5(0.52,20.52), the global
mimima move to (a,b)5(60.472,60.472).

As a second example, take (N00
f ,Ad ,N01

f ,Ad)5(0,3). When
N00,doublet

f ,F 50, there are four degenerate global minima
(a,b)5(61/2,0) and~61/2, 1!. Again we add three genera
tions of fermions in the fundamental representatio
N00,doublet

f ,F 53. For (a,b)5(0.5,0), the degeneracy is part
lifted. The effective potential has the global minima
(a,b)5(60.5,1). For (a,b)5(0.5,1), the global minima
are located at (a,b)5(60.5,0). For (a,b)5(0.52,0), the
global minima are located at (a,b)5(60.479,1).

In all these cases theSU(2) symmetry is completely
broken.

VI. MASS GENERATION

As the Wilson line phases develop nonvanishing expe
tion values (a,bÞ0), the mass spectrum changes from th
at the tree level. We are particularly interested in the m
spectrum in four dimensions.

A. Four-dimensional gauge fields and scalars

Extra-dimensional components of gauge potentialsAyI
a

play the role of four-dimensional Higgs scalar fields. W
the boundary condition~4.1!, the componentsa51,2 of AyI

a

have zero modes which serve as lower-dimensional sca
They are massless at the tree level, but acquire nonvanis
masses at the quantum level.

The fields AyI
a acquire masses in two steps. When t

global minimum of the effective potentialVeff(a,b) is located
at (amin ,bmin)Þ(0,0) ~mod 2!, the fields are expanded aroun
this configuration. Through the gauge coupling all fields
the four dimensions acquire masses ofO(amin /R1) and of
O(bmin /R2). Some ofAyI

a may not be affected by this correc
tion, but they acquire nonvanishing masses from one l
corrections. It is a part of the Hosotani mechanism@9,11#.
The mechanism is similar to that of pseudo-Namb
Goldstone bosons and that of the little Higgs boson@36#.

The best way to understand this is to go to a new gaug
which expectation values of Wilson line phases vanish. P
form a large gauge transformationV(yW ;amin ,bmin) defined in
Eq. ~5.3!. In the new gaugêAyI&50. The boundary condi-
tions change to (P0 ,P1 ,P2)5( t3,eipamint1

t 3,eipbmint1
t 3)

and (U1 ,U2)5(eipamint 1
,eipbmint 1

).
Let us look at the mass spectrum of four-dimensio

gauge fields. In this gaugeAm
1 (x,yW ) has a mode expansion o

a Z2 singlet field with (P0 ,P1 ,P2)5(2,2,2) in Eq. ~3.8!,
while „Am

3 (x,yW ),Am
2 (x,yW )… forms a Z2 doublet with (a,b)

5(2amin,2bmin) in Eq. ~3.14!. The spectrum is, therefore,

Am
1 : S n

R1
D 2

1S m

R2
D 2

where ~n,m!PK1 ,

S Am
3

Am
2 D : S n1amin

R1
D 2

1S m1bmin

R2
D 2

where 2`,n,m,1`. ~6.1!
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When (amin ,bmin)5(0,0), Am
1 and Am

2 have the same spec
trum and only Am

3 has zero modes. When (amin ,bmin)
Þ(0,0), Am

2 andAm
3 mix to form mass eigenstates. With th

mixing in mind, it can be said that all threeSU(2) compo-
nents of the gauge fields have distinct masses.

Similarly the spectrum of the extra-dimensional comp
nentsAyI

a is found.AyI
1 (x,yW ) has a mode expansion of aZ2

singlet field with (P0 ,P1 ,P2)5(1,1,1) in Eq. ~3.8!,
while „AyI

2 (x,yW ),AyI
3 (x,yW )… forms a Z2 doublet with (a,b)

5(22amin ,22bmin) in Eq. ~3.14!. The mass spectrum at th
tree level is

AyI
1 : 0,S n

R1
D 2

1S m

R2
D 2

where ~n,m!PK1 ,

S AyI
2

AyI
3 D : S n2amin

R1
D 2

1S m2bmin

R2
D 2

where 2`,n,m,1`. ~6.2!

There are four zero modes associated withAyI
a for

(amin ,bmin)5(0,0) ~mod 1!, while only two otherwise. These
zero modes become massive at the quantum level.

Case 1: (amin ,bmin)5(0,0) ~mod 2!. In this case there
remainsU(1) symmetry. There are four zero modes asso
ated withAy1

1 , Ay2
1 , Ay1

2 , Ay2
2 . The effective potential is given

by

V̂eff @Ay1
1 ,Ay2

1 ,Ay1
2 ,Ay2

2
#5V̂eff

1-loop

1g2$~Ay1
1

!2~Ay2
2

!21~Ay1
2

!2~Ay2
1

!222Ay1
1 Ay1

2 Ay2
1 Ay2

2 %,

~6.3!

where the second term comes from 1/2Tr(Fy1y2)2 at the tree
level. The evaluation ofV̂eff

1-loop for general configurations
with Fy1y2Þ0 is difficult. We observe that the mass spectru
is U(1) symmetric and expect that fluctuations with vanis
ing Fy1y2 form a normal basis for the zero modes. We the
fore make an approximation

V̂eff
1-loop;Veff @a,b#, ~6.4!

whereVeff @a,b# is the effective potential obtained in the pr

ceding sections witha52gR1A(Ay1
1 )21(Ay1

2 )2 and b

52gR2A(Ay2
1 )21(Ay2

2 )2.
As an example, take the pure gauge theory. The effec

potential is given byVeff@a,b#54I(a,b). @See Eq.~4.18!.#
The mass matrix is given by the second derivatives ofV̂eff

with respect toAyI
a evaluated at vanishingAyI

a . One finds that

~mass!255 8p2g4
2R1

3R2

]2Veff

]a2 U
~a,b!5~0,0!

for Ay1
1 , Ay1

2 ,

8p2g4
2R1R2

3
]2Veff

]b2 U
~a,b!5~0,0!

for Ay2
1 , Ay2

2 .

~6.5!
4-14
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Here the four-dimensional gauge coupling is given byg4
2

5g2/2p2R1R2 . We used the fact]2Veff /]a]bu(a,b)5(0,0)50.
WhenR15R2 , the masses are given by

~mass!25
8C1g4

2

p5R2 ,

C15 (
n51

`
1

n4 1 (
n51

`

(
m51

`
1

~n21m2!2 '1.507

~6.6!

for all zero modes.
Case 2: (amin ,bmin)5(1,1) ~mod 2!. In the example dis-

cussed in Sec. V B, the global minimum of theVeff(a,b) is
located at (amin ,bmin)5(1,1). In the new gauge
(P0 ,P1 ,P2)5(t 3,2t 3,2t 3). There are no zero modes fo
the fermions in the fundamental representation w
(d1 ,d2)5(0,0).

There still remains theU(1) symmetry. The masses of th
four zero modes associated withAyI

a are given by Eq.~6.5!
with Veff in Eq. ~5.5!. For R15R25R they are given by

~mass!25
2~4C11N00

f ,FC2!g4
2

p5R2 ,

C25 (
n51

`
~21!n21

n4 2 (
n51

`

(
m51

`
~21!n1m

~n21m2!2 '0.753.

~6.7!

Case 3: (amin ,bmin)Þ(0,0) ~mod 1!. The examples dis-
cussed in Secs. V C and V D belong to this category. Th
are only two zero modes associated withAy1

1 and Ay2
1 . The

lightest modes of Z2 doublet (AyI
2 ,AyI

3 ) has (mass)2

5(āmin /R1)
21(b̄min /R2)

2 where āmin and b̄min are the dis-
tances to the nearest integers ofamin andbmin , respectively.

The masses of the two zero modes ofAyI
1 are evaluated

from V̂eff (Ay1
1 ,Ay2

1 )5Veff (amin12gR1 Ay1
1 ,bmin12gR2Ay2

1 ). Take
the example in Sec. V D withN00

f ,F50 and N01
f ,Ad>2. The

global minimum is located at (amin ,bmin)5(1/2,0) ~mod 1!.
It follows from Eq. ~5.10! that, forR15R25R,

~mass!255 ~2C31N01
f ,AdC2!

8g4
2

p2R2
for Ay1

1 ,

~1C41N01
f ,AdC2!

8g4
2

p2R2
for Ay2

1 ,

C35 (
n51

`
~21!n21

n4 12(
n51

`

(
m51

`
~21!n21n2

~n21m2!3 '1.152,

C45 (
m51

` 1

m4 12(
n51

`

(
m51

`
~21!nm2

~n21m2!3 '0.776.

~6.8!
12501
re

B. Four-dimensional fermions

From the phenomenological viewpoint it is necessary
accommodate fermions with small, but nonvanishing mas
In the four-dimensional standard model of electroweak int
actions, Yukawa interactions provide such small masses
higher dimensional gauge theory, however, Yukawa inter
tions are sometimes absent, or a part of gauge interaction
that it becomes difficult to allow small, but nonvanishin
fermion masses.

We would like to point out that such small masses mig
be accommodated in the framework of gauge theory on
bifolds through the combination ofT2 twists and dynamics
of Wilson line phases. At the moment such a scenario
realized only if special combinations of matter fields are
ranged. It might occur naturally in supersymmetric theori
We reserve discussions of supersymmetric theories for
future publication.

The models discussed in Sec. V E give nice exa
ples. In the model described by Eq.~5.11! with
(N00

f ,Ad ,N01
f ,Ad ,N00,doublet

f ,F )5(2,0,3), one of the global minima
of the effective potential is located at (a,b)5(0.5,0.5) and
~0.486, 0.486! for (a,b)5(0.5,20.5) and~0.51,20.51!, re-
spectively. Fermions in the fundamental representation h
the mass spectrum given by Eq.~4.41! with d j50. The rel-
evant parameters are (a1a,b1b) and (a2a,b2b). Un-
less one of these two pairs has elements equal or clos
even integers, fermions acquire masses ofO(R1

21) or
O(R2

21). We see that none of four-dimensional fe
mions in the model are light. In the model wit
(N00

f ,Ad ,N01
f ,Ad ,N00,doublet

f ,F )5(0,3,3), the situation does no
change. There are no light fermions in four dimensions.
(a,b)5(0.5,0), the global minima ofVeff are located at
(a,b)5(60.5,1), whereas for (a,b)5(0.5,1) they are lo-
cated at (a,b)5(60.5,0).

This is a general feature. Fermions either inZ2 singlets or
in Z2 doublets give contributions to the effective potential f
Wilson line phases such that the effective potential is m
mized by four-dimensional massive fermions, as can be
ferred from Eq.~5.11!. The tendency is reversed by contr
butions from bosons. In supersymmetric theor
contributions from bosons and fermions cancel if supersy
metry remains unbroken. When supersymmetry is softly b
ken as in the Scherk-Schwarz breaking, a nontrivial dep
dence of the effective potential on twist parameters a
Wilson line phases appears@18,11#. Then fermions in four
dimensions may have small nonvanishing masses.

VII. CONCLUSIONS AND DISCUSSION

We have studied gauge theory with matter onM4

3T2/Z2 . We have classified general boundary conditions
fields on the orbifoldT2/Z2 . The equivalence relation amon
various sets of boundary conditions holds as a result of
existence of boundary-condition-changing gauge transfor
tions. By incorporating Wilson line degrees of freedom c
rectly, one can establish the same physics in each equ
lence class of boundary conditions.

TheZ2-orbifolding boundary conditions, which are spec
4-15
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fied by parity matricesPi ( i 50,1,2), break the gauge sym
metry at the tree level. In order to find physical symmetry
the theory at low energies, which, in general, is differe
from the symmetry of boundary conditions, one must ta
into account dynamics of Wilson line phases by the Hoso
mechanism, through which further gauge symmetry break
can be induced at the quantum level.

We have studied theSU(2) gauge theory in detail to
clarify physical symmetry at low energies. We have chos
boundary conditions of theZ2 orbifolding that break the
SU(2) gauge symmetry down toU(1). Depending on the
matter content, the residualU(1) gauge symmetry is furthe
broken through the Hosotani mechanism and the orig
SU(2) gauge symmetry is completely broken. This indica
that the electroweak gauge symmetry breakingSU(2)L
3U(1)Y→U(1)em can be realized by the Hosotani mech
nism, once a larger gauge group is chosen to start with.
deed, such implementation of symmetry breaking has b
attempted in the literature under the name of the gau
Higgs unification. TheSU(6) model onM43(S1/Z2) real-
izes such a scenario@14#.

Regarding gauge symmetry breaking, the study in
present paper has been limited mostly to the case where
ratio of the size of the two extra dimensions are equar
[R2 /R151. Varying r modifies the shape of the effectiv
potential to give different gauge symmetry breaking patter
g.
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This study may be important in the model building. One c
introduce two distinct scales: the GUT scale and el
troweak scale.

We have also studied the particle spectrum in four dim
sions. Some of the extra-dimensional components of ga
fields, four-dimensional ‘‘Higgs’’ scalar fields, are massle
at the tree level, but become massive by radiative corr
tions. Their typical mass is given byg4 /R1 or g4 /R2 , where
g4 is the four-dimensional gauge coupling constant.

It is interesting to extend our work to higher-rank gau
groups and to study more realistic models of gauge sym
try breaking and gauge-Higgs unification. It is particular
important to consider supersymmetric gauge theory in
framework. A realistic fermion mass spectrum in four dime
sions might be achieved in supersymmetric theories as a
sult of dynamics of Wilson line phases, additionalT2 twists
on matter fields, and supersymmetry breaking. We hope
come back to this point in the near future.
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