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Dynamical gauge symmetry breaking on the orhif6fdZ, is shown to occur through the quantum dynam-
ics of Wilson line phases. Different sets of boundary conditionsTétZ, can be related to each other by
Wilson line phases, forming equivalence classes. The effective potential for Wilson line phases is evaluated at
the one-loop level irSU(2) gauge theory. Depending on the fermion content,Sk#2) symmetry can be
broken either completely or partially td(1) without introducing additional Higgs scalar fields. WHgb(2)
is completely broken, each of three components of the gauge fields may acquire a distinct mass. Masses are
generated through the combinationT# twists and dynamics of Wilson line phases.
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[. INTRODUCTION that the dynamics of Wilson line phases can reduce or en-
hance the symmetry of boundary conditions. Such dynamical
Recently, much attention has been paid to gauge theory iaspects of gauge symmetry breaking have been studied well
space-time with compact extra dimensions. Gauge theory oif St, T, andS'/Z,. The effects of supersymmetry break-
an orbifold has been studied extensively with hopes of reing and finite masses of matter on the dynamics of Wilson
solving long-standing problems in grand unified theoryline phases have been analy&8,11,19. The dynamics for
(GUT) such as the gauge hierarchy problem, the doubletselecting boundary conditions is also discusg@|31]. Our
triplet splitting problem, and the origin of gauge symmetry analysis given in this paper is expected to provide useful
breaking[1-6]. One intriguing aspect is the gauge-Higgs hints for building a realistic unified gauge theory on the or-
unification in which Higgs bosons are regarded as a part ofifold to incorporate electroweak gauge symmetry break-
extra-dimensional components of gauge fidlds16|. ing within the framework of the gauge-Higgs unification
Extra dimensions are often compactified on topological12—-15.
manifolds. Reflecting the topology of extra dimensions, dy- In the next section we classify boundary conditions of
namical gauge symmetry breaking occurs through the Hosdields on the orbifoldT?/Z, and introduce the notion of
tani mechanisni8,9] (gauge symmetry breaking by Wilson equivalence classes of boundary conditidi®s11,30,31
lines). Extra-dimensional components of gauge fie(#él- Those equivalence classes are connected with the existence
son line phasesbecome dynamical degrees of freedom andof Wilson line degrees of freedonsU(2) gauge theory is
cannot be gauged away. They, in general circumstances, diwvestigated in detail. The effective potential for Wilson line
velop nonvanishing vacuum expectation vallieé-21. The  phases is evaluated in Secs. Ill and IV. In Sec. V we examine
extra-dimensional components of gauge fields act as Higggauge symmetry breaking in the presence of matter fields in
bosons at low energies. Thus gauge fields and Higgs particlegrious representations of the gauge group and determine
are unified by higher-dimensional gauge invariance. Onghysical symmetry at low energies. It is found that depend-
does not need to introduce extra Higgs fields to break théng on matter content, th8U(2) gauge symmetry is either
gauge symmetry. completely broken or partially broken. It should be empha-
To construct a realistic GUT, one can choose extra dimensized that this makes it plausible to have the electroweak
sions to be an orbifold, which naturally appears in supersymmetry breakingU(2) <X U(1)—U(1)em as a part of the
string theory. By having an orbifold in extra dimensions, oneHosotani mechanism. In Sec. VI we discuss the masses of
can easily accommodate chiral fermions in the four dimenfour-dimensional gauge fields, scalar fields, and fermions.
sions and also rich patterns of gauge symmetry breaking. I8calar fields, which are originally the extra-dimensional
superstring theory, extra six dimensions must be compactieomponents of gauge fields, acquire masses by radiative cor-
fied [22—25, and therefore higher-dimensional gauge theoryrections. The final section is devoted to conclusions and a
might naturally emerge. discussion.
Gauge theory on the simplest orbifoBt/Z, has been
studied extensively from various points of view in the Iiter_a- Il. ORBIFOLD CONDITIONS ON T%Z,
ture [26—31]. In this paper, we extend the analysis to six-
dimensional space-time, where two of the space coordinates We study gauge theory a*xT%/Z,, whereM* is the
are compactified on the orbifol@?/Z, [32]. In six dimen-  four-dimensional Minkowski space-time. L&t andy' be
sions there are Weyl fermions which naturally reduce to fourcoordinates oM* and T?/Z,, respectively. The size of the
dimensional Weyl fermions aftet, orbifolding. Other orbi- two extra dimensions is denoted B (I=1,2). The orbi-
folds such ag?/Z; andT?/Z, have also been considered to fold T?/Z, is given by identifying a point X*,y') with a
explain the generation structure and violation of discretepoint (x“,y'+2#R,) for eachl (=1,2) and further identify-
symmetry[33]. Our main aim is to study dynamics of gauge ing (x“,—y') and (x*,y'). The resultant extra-dimensional
symmetry breaking and mass generationTéhZ,. We see space is the domainQy'< 7R, 0<y?<2#R, with four
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fixed points, ¢1,y?)=(0,0),(7R;,0),(07R,),(7R,,7R,).  Finally, as the transformationmR, —y*, 7R,—y?)— (7R,
In order for quantum field theory to be defined on space-+y!, 7R,+y?) is the same as a transformationrR;

time with compactified spaces, boundary conditions of fields-y*!, 7R,—y?) — (— wR;+y*, — 7R+ y?) — (7R + y*,

in the compactified dimensions must be specified. In our case 7R, +y?)— (7R, +y!, mR,+y?), the relationU,U;P,

we need to specify boundary conditions hand for theZ, =P3; must hold. Taking account of Eq$2.4), (2.5, and

orbifolding. As a general guiding principle we require that (2.6), the parity matrixP5 can be written as

the Lagrangian density be single valued. In gauge theory

fields can be twisted up to gauge degrees of f_reedom when P,=P,P,P,=P,P,P,. (2.6)

they are parallel transported along noncontractible loops.

A. Gauge field The boundary conditions far gauge fields are specified with
, , o P, (i=0,1,2) satisfying P;=P/=P;* and P;P;Py
Let us first consider boundary conditions for the gauge_ P.PP,.
field Ay(x,y"). The indexM runs from 0 to 5. We define Disé:ussions can be generalized to the casE'Z,. The

boundary conditions of the gauge potential along noncongpitqiq T/Z. is defined by identifications
tractible loops oril? by 2

T2 Au(xY+T)=UAu(x,y)U] (a=1,2 ™ y+0~y (j=1,2,..n), 2.7)
. [27R, . 0 e
|1:( 0 ), |2: 27TR2), ZZ' y~y, (28)
(2.1

wherey is an n-dimensional vector on the-torus andrj
whereU, (1=1,2) denote global gauge degrees of freedom= g 0 2:R,0,...,0] (j=1,...n). The fixed point satisfies
associated with the original gauge invariance. Gauge poter%ﬁe relation*; s (m =an integey. In the funda-
tials at Ay(x,y'+27R;,y’+27R,) are related to Y=y midy my ger

Aw(x,y1,y?) either by a loop translation in thg* direction ~ Mental domain ofT", they are given byy = (1/2)2ml;
followed by a loop translation in thg? direction or by aloop Wherem;=0 or 1. In theT*/Z, case, there are four fixed
translation in they? direction followed by a loop translation POINts corresponding tonfy,m) =(0,0),(0,1),(1,0),(1,1).

in the y* direction. For consistency it follows that At each fixed point the parity matrix is defined. Repeating
the same discussion given abovet 1 matrices—for ex-
[Ug,U,]=0. (2.2 ample,Py,P4,...,P,—are independent. The consistency of

) N _ the Z, orbifolding and thel" boundary condition defined by
Let us next consider boundary conditions resulting fromUj (j=1,...n) satisfying[U;,U,]=0(j #k) yields the rela-
the Z, orblfol_dlng. Tg S|mpl|f¥ the expressions, we denote tjgn U;=P;P,. The relationP;P;P,=PP;P; also holds.
four fixed points onT“/Z, by 7 (i=0,1,2,3):

0} _ Ry . 0 . TRy B. Matter fields
:0121: 0 v 2= R v 237 R,/ . - . . )
TR mR2 As for matter fields, it is convenient to first specifiy
boundary condition and then deriVE? conditions. Let us

S‘consider a scalar fieldl(x,y) which satisfies

Ny

0

Boundary conditions are specified by unitary parity matrice
P; (i=0,1,2,3) at the fixed points: Z,: H(X,Zj—y)zanT[Pj]H(x,Zj+37) (j=0,1,2,3.

(2.9
A
Z,: (A;

3 _ g AM s L o\pt
(X,Z—y)= Pi( _ AL (XZHY)P;
Y Here T[P;] stands for an appropriate representation matrix
(i=0,1,2,3. (2.4  under the gauge group associated with If H belongs to
the fundamental or adjoint representatidhP;]H=P;H or
Ay (1=1,2) must have an opposite sign relativeXtpunder  P;H P;r , respectively.n]-S is a sign factor taking a valu¢ 1 or
these transformations in order to preserve the gauge invari-1. Boundary conditions for th&? direction are given by
ance. The repeatet), parity operation brings a field configu-
ration back to the original one, so thﬁle (i=0,1,2,3)
and, hencepP]=P;.
At this stage, we observe that not all the boundary condi-
tions are independent. The transformatioR; —y!'— 7R, o ]
+y! must be the same asrR,—yl——mR,+yl—yl  whereU,is given by Eq(2.5). Not all of the sign factors are

+mR,, from which it follows thatU,=P;P,. A similar  independent: 73= 77175

T2 H(XJ+12)=n573TIUH(x.Y) (a=1,2),
(2.10

relation holds folJ,. We have Next we consider a Dirac fermiog(x,y') in six dimen-
sions. The gauge invariance of the kinetic term of the fer-
U,=P,Py (a=1,2. (2.5  mion Lagrangian demands that
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Zy: Y(%,Z=¥)=nT[P;J(TT®) ¥(x,Z+Y)

A,’V|=Q<AM—|5(9M)QT, (2.18
(j=0,1,23,

N Aj, obeys a new set of boundary conditidi#y ,U,} where
T2 (Y +Ta) = momaTIUalv(xy) (a=12).

(2.11 Pj’ZQ(Xazj_V)PjQ(szj+y)Ta
The sign factorsy|= =1 satisfy ni=ngn}7y. I'* andI'® UL=0Q(x,5+ U Qx5
are the fourth and fifth components of six-dimensional 8
X 8 Dirac’'s gamma matrices, respectively. provided P/ =dyU,=0. (2.19
It is instructive to present the explicit form of gamma
matrices. We employ the representation The relationU/=P.P} follows from Egs.(2.5) and(2.19.

We stress that the sgP; } can be different from the s¢P;}.

Iu=7u8lax2, Ta=ys®ior, T's=ys®ioy, When the relations in Eq$2.19 are satisfied, we write

(2.12
where y, is the four-dimensional gamma matrix ang (P ~{Pi}- (2.20
=iyoY1Y2Ys With (y5)2=14.4. In this representation we

This relation is transitive and therefore is an equivalence
relation. Sets of boundary conditions form equivalence
iT4T5=1,. ,® 0-. 21 classes of.boundary conditions with respect to the equiva-

x4 03 213 lence relation2.20 [9,11,31.
One can define six-dimensional chirality similar to the The residual gauge invariance of the boundary conditions
chirality in four dimensions. It is given by the eigenvalues ofis given by gauge transformations that preserve the original

have

I'7 defined by boundary conditions:
I7=TTL . .T5(= ys® 03). (2.14) Pi=Q(x.Z—Y)P;Q(x.Zj+Y)",
Then, we obtain that U= QXY+ 1)U Q09T (2.21)

As shown in[11], those residual gauge transformations ex-
tend over the entire group space even for nontrif/gl. All
the Kaluza-Klein modes nontrivially mix under those gauge
If we write transformations.

The gauge symmetry realized at low energies is given by
y'-independenf) satisfying

T'p.=+4¢ where EE(1+F7)¢ (2.15
==Y, +=51= . .

U U
¢_:(D;), ¢+:(Df)’ (210

ysUL=—Ur, ysD.=—-D_, ysUr=Ugr, ysDr=Dg. In .
terms of four-dimensional Dirac spinors the boundary condi\Vé observe that the symmetry is generated by generators of

[P; . Q(x)]=0 (j=0,1,2). (2.22

tions (2.11) are recast as the gauge group which commute wil). This is called the
symmetry of boundary conditions at low energies.
Zy: U (X2 =Y) =+ 5 T[P{IU_r(X.Z+Y), The gauge symmetry at low energies can also be under-
stood in terms of group generators associated with zero
Dy r(X,Z—Y)=— 7 T[P;ID_r(X.Zj+Y), modes of the gauge fields,=A%T?. Let us define
(217) HBC:{Ta;[Ta’Pj]:O (j:0’1’2)}|
The sign factors{ nf},{njf} are additional parameters _
specifying boundary conditions. They play an important role Hee={T%{T",P;}=0 (j=0,1,2}.
in dynamical gauge symmetry breaking. (2.23

From the boundary conditiori2.4), it follows that zero
modes §'-independent modgsf A, andA,i can be written
The gauge symmetry is apparently broken by nontrivialas
parity matricesP; (j =0,1,2) specifying boundary conditions
of the Z, orbifolding. Yet the physical symmetry of the _ a a
theory is not, in general, the same as the symmetry of bound- Aulx)= 2 ALOTE, (224
ary conditions, once gquantum corrections are incorporated.
To elucidate this fact, we first show that different sets of
boundary conditions can be related to each other by “large” Ayi(x)= > ASI(X)Tb- (2.29
gauge transformations. Under a gauge transformation TP Hpc

C. Equivalence classes and symmetry of boundary conditions

Tae Hpc
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The residual gauge symmetry at low enerdigg is spanned  Then the new gauge potentials satie{w;l)zo. Simulta-

by those generators belonging e . neously the boundary conditions change as in E24.9:
The zero moded\ in Eq. (2.29, or particularly their

x-independent parts, define Wilson line phases and play a
critical role in dynamical rearrangement of gauge symmetry P; =Q(Zj—Y)P;Q(Z+¥)'=P;Q(~Z+)Q(Z+)"
at the quantum level, which we elaborate in the following
subsection.
D. Wilson line phases and physical symmetry

So far we have discussed the symmetry of the boundarY‘ the second equality we made use of the relation
condition {P;} at the tree level. This is not necessarily the 1{Ay),P;}=0. Since(A;;)=0, the physical symmetry of the
same as the physical symmetry of the theory. Once quantuiieory H s is generated by generators belonging to
corrections are taken into account, the boundary condition
effectively changes as a result Af: in Eq. (2.25 develop-

ing nonvanishing expectation values. The number of zero
modes of four-dimensional gauge field%i in the new
vacuum also changes. Rearrangement of gauge symmetThe physical symmetri ;s can be either larger or smaller
takes place. This is called the Hosotani mechar{id/8). thanHgc.

Constant modes oA, satisfying[ Ay1,A,2]=0 give van- As emphasized in Ref$11] and[31], the physical sym-
ishing field strengths, but become physical degrees of freemetryH ;,,sis the same in all theories belonging to the same
dom that cannot be gauged away within the given boundargquivalence class of boundary conditions. The dynamics of
conditions. Indeed the path-ordered integral along a nonconwjilson line phases guarantees it.
tractible loop starting afx,y)

Honys={T5[T2, PYM=0 (j=0,1,2}. (2.30

I1l. ORBIFOLD CONDITIONS AND MODE EXPANSIONS

W, (X,y)=P exp{ig jgdy'Ay|> (I: not summed IN SU(2) THEORY

2.2
(229 Let us examineSU(2) gauge theory for which complete
transforms, under a gauge transformation, \a&(x,y) classification of orbifold boundary conditions can be easily

- - ST Usi . : achieved. Boundary condition matric® (j=0,1,2) must
QY)W (xy)Q6y+T)T Using Eq.(2.21), one finds satisfy P;= PJT= PJ-_1 and P,Py,P,=P,P,P;. A complete

that
classification of boundary conditions 8UU(N) gauge theory
. l . .
W () U — Q)W (605U, Q T (x0g). (2,27 on the orbifoldS'/Z, has been given in Ref31].
The eigenvalues diV,U, are invariant under gauge transfor- A. Orbifold conditions

mations preserving the boundary conditions. The phases of
the eigenvalues, called Wilson line phases, cannot be gauq;
away. They are non-Abelian analogues of Aharonov—Bohrr]D
phases.

These Wilson line phases parametrize degenerate classic?\ . i N C 45
vacua. At the quantum level the effective potential for Wil- lagonalized as well. Even in the caBg= 1,2, Py=17",
son line phases becomes nontrivial. When the effective po'—32 must be diagonal to satisf§,P,= PP, . In other words,

tential is minimized at nonvanishing Wilson line phases, the'f one of Py's is 1252’ all Pj’s are diagonal up to a global
U(2) transformation.

hysical symmetry of the theory changes from the symmetr
Py y Y y g y ? In the casePy=73 and P,,P,# +1,,,, we recall that

of boundary conditions. 2 S ot
The effect of nonvanishing vacuum expectation values ofhe most general form oP(#*1,,,) satisfying P=P

Wilson line phases can be understood as an effective changeP " is given byP= el ) GivenPo=1r?, there
in boundary conditions. As explained in the previous subsecstill remainsU(1) invariance. Utilizing the globdl (1) in-
tion, there are large gauge transformations which changeariance, one can bring, into the form P1=T3e“7372.

boundary conditions. The existence of such gauge transfoffhen, to satisfy P;73P,=P,7°P;, P, must be P,

mations is in one-to-one correspondence with the existence 3gimbr?

of physical degrees of freedom of Wilson line phases in a T4 summarize, boundary conditiofB,,P; ,P,} are clas-

given theory. . S sified as
Suppose that the effective potential is minimized at non-

vanishing (Ay)#0, [(Ay1),(Ay2)]=0. Perform a large (i) Pg=1,45, P1,Po=15y, Or =73,
gauge transformation

To classify boundary conditio$;}, we first diagonalize
, utilizing global SU(2) invariance. Up to a sign factor,
0=1px, Or 73, If Po=1,,,, P, can be diagonalized, and
fereforeP1= 1,4, or 73, In the casePy=P;=1,,,, P, is

Q) =exp —igADY +(ARYD)}. (228 (i) (Pg,Py,Py)=(r3 73 13gim7?) (3.1)
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R 2
P3: T3el m(a+b)r ,

., [cosma —sinma
Ul: e*lwaf — . ,
sinra coswa
coswb —sinwhb
U,=| . . 3.2
27\ sinmb  cosmb 3.2

Boundary condition(3.2) is periodic in real parameteigb
with a period 2. The symmetry of boundary conditi@l) is
eitherSU(2) orU(1). Thesymmetry of boundary condition
(3.2) is U(1) if both a andb are integers, and none other-
wise.

B. Wilson line phases

PHYSICAL REVIEW D 69, 125014 (2004

gauge we have(A;l)zo. The new boundary conditions
are gymypiymypgym):(7_3'Tseiw(a—a)#’Tseiw(b—ﬁ)rz).
The physical symmetrif . < is generated by the generators
of the SU(2) commuting withPY™ (i=0,1,2).

The physical content of the theory at the quantum level is
the same in a given equivalence class. In particular, it does
not depend on the parametdesb) in Egs.(3.2). Gauge in-
variance implies that the effective potential for the Wilson
line phases is a function of gauge invariamt-a and 8
—b. Depending on the content of matter fields, the effective
potential can take the minimum value at nontriviak (
—a,B—Db) as we will see below.

D. Mode expansions

Given the orbifold boundary conditions, each field is ex-

There is no degree of freedom of a Wilson line phase witiPanded in eigenmodes. OFf/Z, there are two types of

boundary conditior(3.1). In the case of boundary condition
(3.2) with general values o& andb, there is no zero mode
associated withZ, but there are zero modes fé: and
may develop expectation values:

a

B
<Ayl> B 2R.0 i

<Ay2>= ﬁT . (33)

72,

The expectation values and 8 are dynamically determined

such that the effective potential is minimized. They are re-

lated to the Wilson line phases by

W1U1=<eXp(ig 3[7 dylAyl)>e—iva72:ew<a—a>72,

>ei7-rba-2:eiﬂ-(/3b)7-2

(3.9

W2U2=<ex;< ig % dy?A,e

C. Equivalence classes of boundary conditions

Consider boundary condition8.2). We perform a large
gauge transformation with

Cz

~2 5
2R,”

Q(cq,co)=exp i Sy 2 (3.5
1,C2 2Rly T, .
Then the boundary condition matrices change to

(Pé) 'Pi 'Pé):(73'T3ei77'(a—cl)7'2,7_3ei77(b—02)72).
(3.6

In other words, all setsR,,P;,P,) of boundary conditions

in Egs.(3.2) are in one equivalence class of boundary con-

ditions. Each set of the boundary conditiof1) forms a
distinct equivalence class.

Under Eq.(3.9), the zero modes oA, in Egs.(3.3) are
transformed asd,8)—(a—cq,8—Cy). Itis recognized that
the combination ¢ —a,8—Db) is invariant under Eq(3.5).

Now suppose that the expectation valags in Egs.(3.3
take nontrivial values. With a gauge transformatidtx, B3),

the background fieldA,) can be removed, and in the new

mode expansiong, singlets andZ, doublets.
A Z, singlet field ¢(x,y) obeys

Each singlet field is specified withPg,P4,P5). Mode ex-
pansions are

Pj=+ or —.

1 1) 1
¢(Xay)_\/m¢00(x)(o +\/m
cos (nyt my?
< o Gl B R
+,+,+),
f0r (PO!PI’PZ):[E_'_,_;, (38)
m+ 1) 2
= 1 5|y
; 2 E ¢nm(x) C(')S n_y 2
VPR{R,y n==% m=0 sin/\ R, R,
(+1+1_)!
f0r (Po,Pl,Pz): (—,_,+), (39)
i
LS S g0 2 Y
\/Wlen:o m=—o sin Ry R>
(+Y ’+)!
for (Po,P1.Py) [(_,+,_), (310
(n+1 !
= S|y
1 co 2
s 2 el Gl
1
T 1y2
m+2 Y (+1_:_)|
+ R2 fOI‘ (Po,Pl,Pz)::(_,+,+).
(3.11)
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In Eq. (3.8 which implies thatP;=73 and U;=U,=1,,. With this
boundary condition, zero modes f@t‘; and AS. (1=1,2)
exist for A‘;"f3 and A;a,.: 12(1=1,2), respectively. The sym-

> Bom. (312

M s

Bn,m: 2 Bn,0+
n=1

(nmeK, n=—w m=1 metry of the theory at the tree level i5(1).

We employ the standard background filed method to

Zero modes exist only forKy,Py,Py)=(+,+,+). evaluate the effective potential for Wilson line phases. Zero
A Z, doublet fieldp= (il) appears when a boundary con- modes forA;‘f 12 are parametrized as
2
dition of the type(3.2) is considered. It obeys 1 o [0 eif
= — 1 D= .
A1 zgRl(alT +a,79) ZgRl(e"’ 0 ),

1
¢(x,—y1,—y2)=( _1>¢(x,y1.y2),

e? 0

coswma —Sinwa 1
d(X,y",y9), (4.2)

A 2= L 1 2\ B 0 e
yz_ﬁ(ﬁﬂ' +BaT )—zng :

1y 2y
Py +2mRLY7) (sinwa cosma

Here one should note that, contrary to the ca%e,, there

coswb —sinwb . o . '
B(x,yLy2+ 277R2)=( _ ) d(x,yt,y?). are two dlrectlon§ of .the. compactified dimensions, so tha}t the
sinmh  coswb tree-level potential is induced for the background given
(3.13  above,

2

Its mode expansion is given by v =—g—tr[A A= 1 (1B ayBr)
tree 2 yliRAy2 492(R1R2)2 Q02— aP) -

[ ©

b1, . 1 cos 4.3
XY= == 2 2 b g
¢ 2mRyRpn=" m== The vanishing tree-level potential is achieved when
1 1
n+sa y* (m-l— Eb)y2 a1y~ aB1=0, (4.9
X + . (3.
Ry R, 319 which implies the vanishing field streng¢1,2)=0. Once

we restrict ourselves to the cagk4), the parametrization of
Z, doublets appear when the Scherk-Schwarz supersymmeéackground fields is further simplified. The relatig.4)
try (SUSY) breaking[34,18 is implemented in SUSY theo- meansg="1, and by using theJ(1) gauge degrees of free-

ries as well. We see below that twists specified Wllb) 45 one can take=8=0. To summarize, we take, as back-
play an important role to give fermions nonvanishing massearou’nd fields ' '

in four dimensions.
A= somart, Ap= o prt (4.5
IV. EFFECTIVE POTENTIAL IN SU(2) GAUGE THEORY yl 2gR, a7, RAy2 29R, 7T :

In order to study physical symmetry of the theory, one
must take into account quantum corrections. To this end on
needs to evaluate the effective potential for Wilson line
phases. Wilson line phases are related to zero modes of the
component gauge fields in extra dimensions.

We study patterns of gauge symmetry breakin®ly(2) Contributions from the gauge fields and ghosts to the ef-
gauge theory oM*x T?/Z, in order to get insight into the fective potential are given by
electroweak gauge symmetry breaking and the gauge-Higgs
unification in a more realistic framework. We believe that the
analysis here provides us many useful and important hints.

Dynamical gauge symmetry breaking or enhancement can
take place when _the _boundary _condition_ in E¢R.2) is whereDLD'-(Ayl):ﬂﬂaﬂ—EleDjl(Ayu). One needs to find
adopted._As ex_plamed in the previous sgcnon, all the bour‘déig;;envalues of the mass operatbﬁ.(A 1) to evaluate the
ary conditions in Eqs(3.2) are in one equivalence class, and y

: . : effective potential.
therefore the same physical results are obtained indepen- With Eq. (4.1), the parity assignment fok,: is given by

dently of the values of the parametéash), provided that the

ghe effective potential fofa,B) is obtained by integrating
quantum fluctuations of every field.

A. Gauge fields and ghosts

i
ygaugerghost_ _ StrinD D (Ay), (4.6)

dynamics of Wilson line phases is taken into account. Hence a=12, _
we adopt, without loss of generality, Ap % (Po,Py,Py)=(+4+4), “.7
(Po,P1,Py)=(7%7% 1%, (4.2) Ay % (Pg,P1,Py)=(———). 4.9
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2 2 2

The mass operator foA;’l (a=1,2,3) for the background n m)? n+a m+ 3
field configuration(4.5) is obtained by inserting the mode R_l + R_2 ' R, R, |’
expansion3.8). As a result of the nonvanishing background
B), A% and A3 mix with each other. It is given b n—a\?2 [m—p\?2
(@h). Ay Y gen by ( a) +( F)" (Ce<nmetw), (419
Ry Rz
) n? 0 0
1 for the mass spectrum. Here we used the factkhatovers
> pi=—| 0 n*+a* 2na . ! _
= YT Re a half of the integer lattice plane aftéﬁ,_ 0 is removed. _
\o 2N n’+a? The contributions from the gauge fields and ghost fields
) are summarized as
m 0 0
+— 0 m2+32 2mg Ver( @, 8)9219¢
Vo 2mp mP+p? 1 d%Pe 1
=45 | 535 7p R
for (n,m)ekK, . (4.9 2) (2m)" 2w RR
” ~ n+a\? m+ 3 2
The eigenvalues of the operator far,(n) # (0,0) are easily X _E _E ‘2 In D%JF(R— R }
) n=—o m=—® 1 2
obtained as
2 m 2
n z+ m\2  n+a 2+ m+ )2 f ) +1In| p2+ R + R “ (4.1
R TR VR TR, T (nmieke

(4.10 Here the Wick rotation has been made gopdstands for the
Euclidean momenta in four dimensions. As shown in Refs.

. - . 20,12,
Zero modesii,m)=(0,0) exist only forA?. 12, Eigenvalues [ 2
for the zero modes are given by 1 ¢ d*pe 1
I(a,,B)E—f VI s—
2J) (2m)" 27 °RR,
SR
0 —| +|=]. (4.1) * o 2 2
' R R n+a m+ 3
1 2 X > > Inpi+ +
n=—o m=-—wx 1 R2
In a similar way, we can compute contributions from "
A2123 10 the effective potential. In this case the parity as- 1)1 > cog2mna)
signment is 167 ° | RS n=1 n®
=12 — (= — — -
AL (Po,P1Py)=(— =), (4.12 Ly codzmmp)
R2 m=1 m
A3 (Pg,Py,Py)=(+++). 4.1 -
w o (Po,Pr,Po)=( ) .13 cog2mna)cog2mmp)
| 22 X

The mass matrix has the same structure as before. Only the n=1m=1  (N°R{+mM°R3)

— a .
a=3 component oA}, has a zero mode. Hence eigenvalues + (@, B—independent terms 4.17
of the mass operator are

In terms ofl («,B),
n\?2 [m\? [nxa\? [m=p\?
Ny 28 for (numyek, Ve(a,8)9%9=41(a,0) +21(00,  (4.18
Ry R, Ry Ro
which is depicted in Fig. 1. We note that one unitlafep-
al\? [ B2 resents contributions to the effective potential from two
(R_ + R_) (4.19 physical degrees of freedom &h*X (T?/Z,).
1 2

B. Scalar fields in the fundamental representation
The mass matrix for ghost fields is the same as thaAfpr
Contributions to the effective potential fro, and ghosts
are, therefore, 4 2= 2 times contributions coming from the
spectrum(®.14. _— H(xZ-y)=77°H(x2+Y) (j=0123. (419

In six dimensions there are two extra-dimensional compo-

nentsAyi. Therefore, if one adds Eq¢4.10, (4.11), and  Each component dfl is aZ, singlet. The parity assignment
(4.14), one obtains two copies of is

A scalar fieldH(x,y)=(H;,H,)" in the fundamental rep-
resentation satisfies E(R.9) or

125014-7
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FIG. 1. The effective potentiaV¥qx(«,8), EQ.
(4.18), in the pure gauge theory witR;=R,.
There are four degenerate minima at,g)
=(0,0), (1,0, (0,1), and(1.1). All of them corre-
spond toU (1) symmetric states.

Hit (Po,P1,P2)=(+n0,+ 71,+ 72), 1 \2 1 \2 1 \?
n+_-a m+ - n—-—-a
2 2
2 + 2 ' 2
Hat (Po,P1,P2)=(=1m0,— 71,— 72). (4.20 R1 R> R1
1 2
Consequently the mode expansion of the douHlés given (m— Eﬂ)

by one of the pairs in Eq$3.8—(3.11). +————— where (n,meK,. (422
Let us first examine the casgy=7n,=7,=+1 or —1. R2
The mode expansion ofH;,H,) is given by a pair in Eq.

(3.8). When the mass operator Only one ofH; or H, has a zero modey{-independent

mode. Its eigenvalue forE,2=lD§| is

2 i 2 a2 BZ
Z D2 .ayl Ia/2R1) R 4.23
=1 Y\ —ial2R, Ay 4R] 4R5
+( dy2 —iﬁ/ZRz)z Combining Eqs(4.22 and(4.23, one obtains
_|B/2R2 &yz 1 2 l 2
n-+ ECK m-—+ Eﬁ
acts on ,m) (e K,) components in the mode expansion of 5 5 (—o<n,m<+©),
H, it yields a matrix R1 R>
(4.29
1 The analysis in other cases of parity assignment
n2+ — a? ian (70,7m1,7m2) is almost the same. The mode expansion is
i 4 given by one of the pairs in Eq$3.9—(3.11). There is no
Ri 1 zero mode. At this junction it is convenient to introduge
—ian  n?+-—a? by
4
1 5 0 for p=+1,
L m2+Z'82 ism (M=11 tor g=—1,
+—= 1 ,  (4.21
2| 2 2 oj=d(mom;) (j=1,2.
iBm  m+ - i i
B 4B (4.25

The only change arising when the mass operélfz_rlDf,.
which has eigenvalues acts on(n,m components in the mode expansion is that
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and m in the matrix(4.21) are replaced by+(1/2)6, and

m+ (1/2)5,, respectively. Consequently the eigenvalues of

$?_,D; are given by

2

1 1
n+5(a+51) m+§(,8+52)
+ (—oe<n,m<+ox)
R? R
(4.26
in all cases.

PHYSICAL REVIEW D 69, 125014 (2004

1
2 n2+ — a? ian
EDZ 1 4
=
= 2 . 1
—ian 2+ —a?
4
2 1 2 ,8
m2+ — i Bm
1 4'8

for (n,m) e K, . Eigenvalues are given by

The contributions of one scalar doublet to the effective

potential is found, from Eq(4.26), to be

Vesr (a,B)°F=2I (a+ 1), (,8+ 5)|. (427

Here the factor of 2 accounts for the complex nature of the

field H.

C. Weyl fermions in the fundamental representation

Let us next consider contributions to the effective poten-
tial from fermions in the fundamental representation. We

start with a Weyl fermion satisfyin@’ /= — ¢ and take all
the sign factor §q,71,7,)=(+,+,+). Then, the mode ex-
pansion with the boundary conditid8.11) or (2.17) is given

by

(ULI)(X )= 1 (ULl(OO)(X)
Ui, J2m2R;R, 0

1 (ULl(nm)(X)
+ S —
\/71-7R1R2(n,m)e|<+ UL2(nm)(X)

n+m)
“IRY TRY

cos
sin

1 ( 0
27 2R;R, | Dre(0o/(X)
1

\/ o Rle (nmeK,

n m
R TN
&y+&y»

Dri(nm)(X)
DRZ(nm)(X)

sin
Cco

(4.28

X

Note that each ofJ, , or Dg, is a four-component spinor

with definite four-dimensional chirality. The mass operator

for U, in this basis is given by

1 \?2 1 \?2
n+§a N m+§,8
Ry R, ’
1 \?2 1 \?2
"2t " 2F f K, (4.3
R, R, or (n,m)eK, (4.30
and
@ 2 IB 2
(ﬁ) (ﬁ) (430

for the zero modeU 4 qg)-
€(4.31), one finds

Combining Egs.(4.30 and

1 \?2 1 \?
n+§a N m+§B ) .
— 00 [oe]
R, R, ( n,m ).

(4.32

The spectrum is the same as for a scalar field in the funda-
mental representation.

Eigenvalues of the mass operator g, are the same as
those forU,,. Therefore the contributions to the effective
potential from a Weyl fermion in the fundamental represen-
tation with (nq,n1,7,)=(+,+,+) is given by

72
2'2
The minus sign is due to fermi statistics.
Extension to other cases ofpf,71,7,) Is straightfor-
ward. The basis for the mode expansid28, which corre-
sponds to Eq(3.8), is changed to one of Eqé3.9—(3.11).
The resultant spectrum of the mass operélﬁrlD; is the
same as in the scalar field caga,m in Eq. (4.32 is re-
placed by (+(1/2)5,,m+(1/2)5,) where §; is defined in
Egs. (4.25. Consequently the contributions to the effective

potential from a Weyl fermion in the fundamental represen-
tation is summarized as

ViIF=—14] (4.33

a+ 51 B‘l‘ 52

fF_ _
\% 4] —

(4.39
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D. Weyl fermions and scalars in the adjoint representation E. Z, doublets

Contributions of matter fields in the adjoint representation Twists along noncontractible loops oFf can be intro-
are easily obtained as in the preceding subsections. Considduced for each field by doubling the number of degrees of
a Weyl fermion. Note thaDy=dyy+ig[Ay,¥]. With  freedom. As we see below, the3é twists give fermions

the background field&4.5), additional masses in four dimensions. This may be very im-
_ _ portant in the phenomenological viewpoint, as these twists
2Tryi (T?Ds+1°Dg) gh= i (I°dy1+83y2) yrt can substitute Yukawa interactions. We prepare a pair of
Weyl fermions @, ') satisfying
il
+
’ — ¥ R : ¥ R
alRy Iy ( : (X,—y)=noT[Po](IF4T5)(_ (X9,
b b
0\2 B/Rz wz
+16 Y ( 3).
—BIR, 4y U ( ¢) Lon 2 cosma —sinwa .
(XY™ + Y=\
(4.35 g | Y F2TRUYI= Gna cosma | TV
The parity assignment for a Weyl fermion satisfyifidy b -
o ; X\ (%),
=— 1// IS 'ﬂ
Ule) (Uf‘:z) {(—no,—m,—nz), " cosmb —sinwb
—1,| pa=2]: (Pg,P1,Pp)= 12 -
(Dg 1) pa=z)t (PoPuPI={ (b 4y, (w, XYLy +27R) =\ o cosmb )7]07]2T[U2]
Uﬁ_a) [(+770 + 71,7+ 72) ( v Vi
_ : P ,P ,P — ! ’ ’ X ’ (X,y) (439
(Dﬁ 3]t (Po.P1.P2) (=70, = 71, — 72)- v

(4.36 Nonvanishinga andb give twists on the pair,’). Note
that each pair can have its owa, b).

The net consequence in the evaluation of the mass opera- Let us illustrate it by considering fermions in the funda-
tor £7_, D, is that(a,p) in the case of fermions in the fun- mental representation for which[Po]y=Poy, etc. Take
damental representation is replaced(By, 28). The contri-  70=1, Po=P1=P,=7°, U;=U,=1,,,. With the notation
butions to the effective potential are summarized as in Egs. (2.16, (U,,U}) and @,,D}) (a=1,2) form Z,

doublets. Their mode expansions are given, as in(844),

.

+2I

1 1
a+§51,[3+§52

1.1
vf’Ad=—2[|(—51,§52

2
Ri| 1 - ( COSZnn(Y) )
1 (XY)=E T —— U X)) o 1,
(4.3 um)( V= WleRzn’mZ_x reon()| ginz(§)
Similarly, for a real scalar field in the adjoint representation
we have (URZ) . 1 i g
v (XY = — X
L L L L . UR2 ( y) ;—2—277 Rle - R2,nm( )
s,Ad_ — - _ _ _
coSz,n(y) /'’
(4.39 nm(Y)
1 2
Adding contributions from gauge fields and ghosts, we z(¥) = n+ +61)y_+( b+ 4, L'
immediately see thay92u9erohosty yiAd=q jf 5 =5,=0. 2 /Ry 2 JRy
This is because in six dimension&f , ,q;) forms the vec- (4.40

tor multiplet of V=1 supersymmetrj35] and their on-shell ) ,

degrees of freedom are equal to each other. Therefore, th@imilar expansions hold fdb, , andD, as well.
contributions from bosons and fermions are canceled to yield The nonvanishing Wilson line phasesand 8 mix U 5,

the vanishing effective potential. It is important to observeand U, as in Sec. IV C. The resultant mass matrix takes
that the cancellation holds only for the sign assignmenthe same form as in E¢4.29 wheren andm are replaced by

(70,m1,72)=(+ ++) or (— — —). For the other cases, the n+1/2(a+ 6;) andm+1/2(b+ 8,), respectively. Hence the
effective potential does not vanish. TAé=1 supersymme- eigenvalues are given by

try is broken by the different assignment of the sign factors

n; for bosons and fermions. This is similar to the Scherk- 1 at+o+a\? 1 b+ 8,4+ )2
Schwarz breaking of supersymme{4], in which different —S\nt+t— t | Mmt+t———| ,
boundary conditions for bosons and fermions are imposed. 1 2 R> 2
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1 atd—a 2 1 b+6,— B 2 A. Pure gauge field theory
le n+ 2 * R72 m+ 2 ' The case of the pur&U(2) gauge theory has been al-
ready examined in Sec. IV A. The effective potential is given
by Eg.(4.18. The configurations that minimize the potential
—oo<n,m<+o%, (4.41)  are found to be

,B8)=(0,0,(1,1),(1,0,(1,1). 5.1
To summarize, the contributions to the effective potential (@.£)=(0.0.(1.1.(1.0,(1.1 ®-h

from eachZ, doublet of Weyl fermions in the fundamental \We have seen that the phases are determined dynami-
representation are given by cally.

Let us discuss the gauge symmetry at low energies. First
of all, the Wilson line for the parametrization is given by

fF 1 1
Vdoublet: —44 | E(a"_a'i" 51), E(B"_ b+ 52)

W,=em W,=dmhT (5.2

+1

1 1
E(a—a+ 81), 5(’8_ b+ 52)“- (4.42  Let us move to a new gauge, in whi¢A;.>=0, by a gauge
transformation

1 2
Q(Y;a,ﬁ)Zexp{i(g—F{l—l— %) Tl]. (5.3

Then, new parity matrices in Eq.19 become

Extension to fields in other representation is straightforward.

F. Total effective potential

Adding all the contributions o, singlet fields, we find
that the total effective potential for the Wilson line phases is Pi= 73, Pl=dmm 73 pi=dmT 3 (54
given by
As we have discussed, generators commuting with the new
Ver(a,B)=41(a, B)+21(0,00+ > 2{N<S'5F152)_ ZNP&E%)} P/ (i=0,1,2) form a symmetry algebra at low energies. For
81,07 (a,8)=(0,0), we havePj=P;=P,=73% Here (1/2)3
commutes with all theP/ , so that theU(1) symmetry sur-

X %(a‘f- 61), %(,BJr 52)} vives at low energies. The symmetry of boundary conditions
at the tree level is not broken even at the quantum level.
1 1 1 Taking into account the periodicity of the effective poten-
s,Ad f,Ad : . . :
+51252 E{N<5152)_4N<5152>}[|<§51'§52) tial, the configurations ¢,8) =(1,0),(0, 1),(1, 1) also give

the vacuum configurations. These configurations are physi-
1 1 cally equivalent with ¢,8)=(0,0). In order to see that, let
at 5,8+ 552> ) (443 us consider &,8)=(1,0), for which we haveP,=73 P;
=—173, P,=—17°. Again, 7/2 commutes with these parity
matrices, so that there i$(1) gauge symmetry at low ener-
Here N{;fl(sz) and N{;{igz) are the numbers of Weyl fermion gies. One can also confirm that the mass spectrum on each

multiplets in the fundamental and adjoint representationé’aCUUﬁz1 Ifzthe Same.zln_dzeed, masasgssﬁfﬁf3 are given by
with the parity assignments; 5,), respectivelyN(y ;) and  (N+a) Ry “+(m+B)°R, °. Here A,y m - (0,0 PECOMES @
NSAd ©are defined similarly for scalar fieldsl\lf'Ad counts massless mode corresponding to thel) gauge symmetry
th(eflrifj)mber of real scalar field multipletsf. the;refle&f()ist fields for the configuration &, 8) =(0,0), Wh”eAf’“(:“?:m):(‘l'O) Is a
POt massless mode fory, 8) = (1,0). Likewise, a massless mode

of Z, doublets, their contributions need to be added. for the U (1 v is g W:g d
The true vacuum is given by the global minimum of Eq. ' "¢ (1) gauge symmetry is given bY, ;. m - (o,-1) @n

(4.43. As we see in the following section, the global mini- Au(n.m)=(-1.-1) for (¢,8)=(0,1) and @, 8)=(1,1), respec-
mum can be located at nonvanishitg). tively. Hence, the vacuum configurations related by the peri-

odicity of the potential are physically equivalent to each
other and the mass spectrum on each vacuum is obtained by
V. GAUGE SYMMETRY BREAKING shifting the Kaluza-Klein(KK) modes by the same amount

. . . of periodicity.
The true vacuum is determined by the global minimum of

the effective potential for the Wilson line phas@s43. We
recall thata and B are phase variables with a period 2. The
function I(«,B), which is defined in Eq(4.17), satisfies When there are additional fermions in the fundamental
[(a+1,8)=I(a,8+1)=I(a,B). It has the global mini- representation, one of the configurations in E§.1) be-
mum at(0, 0), the global maximum atl/2, 1/2, and saddle comes the global minimum of the effective potential. Take,
points at(1/2, 0 and (0, 1/2 (mod 1), respectively. as an example, the cast%o':aﬁo. The potential becomes

+2]

B. With fermions in the fundamental representation
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FIG. 2. Veg(ap) for Nigy=3 and R,
:Rz.

el 1 Po=73 Pi=712 Py=712 (5.9
Ve(a,8) =4l (a,8)+21(0,0 ~ NG 1| S v, 5 B
(5.9 There is noSU(2) generator that commutes with all tRe ,

- so that theU(1) gauge symmetry is broken. As a result,
As —I[(1/2)a,(1/2)B] takes the minimum value atw(pB) . X
—(1,1) (mod 2, the global minimum is located at(8) there is no massless gauge boson. In fact, remembering that

a=3 ; i 2p—2
=(1,1). The physical symmetry ig(1). The efective po- Te TaSSZRSPZeCUfum ];EA“(“'”“) 'S given ft_)y ®;L )Ry
tential forN{(*)E)=3 is depicted in Fig. 2. (m+p)°R, ", for the vacuum configuration o)

— ; ; =3
If N5& =0 andN!{ 0, the effective potential becomes =(1/2,172), we |mmed|ately see that ”O_L‘gp‘ﬁfnm can be
massless. There is no massless modafjp, ., for noninte-

1 11 1 ger values ofa, B in general.
Ver(@,f)=41(a,f)+21(0,0 = 4NIT || S a+ 5,5 B+ 5.
(5.6 D. With NF, NfAd%Q

In the examples described above, the configuration corre-

In this case the global minimum is located at,8)=(0,0)  g5ing to the global minimum of the effective potential is

(mod 2. located at the special pointa(8) = (0,0) wherex andg are
_ o o . integers or half-odd integers. More generic configurations
C. With fermions in the adjoint representation can be chosen if fermions in the fundamental representation
Let us consider the cases with fermions in the adjointand fermions in the adjoint representation coexist.  Ad
representation. The effective potential is given by As an example let us examine the case Wil ,N;
#0. The effective potential is given by
Veil(a,B)=41(a,f)+21(0,0~ > 2N{35, 11
81,0 Veii(a,B)=4l(a,B) —4Ngy | Ea’E'B
e 15)+2| 15 ,8+15>] 1
501,45 02 o A~ 01, A 02 .
2712 2 2 —4N{)’1Ad|(a,,8+§ . (5.10
(5.7
If only fermions with (5;8,)=(00) exist, then In the caseN{)'OF=0 the global minimum is located at

(a,8)=(0,0) (mod D for Ni <1, while at (,B)
Ver(@,8)=2(1-NggH{21(a,8)+1(0,0}. (5.8  =(1/2,0) (mod 1) for Ni{*=2.
Now add fermions in the fundamental representation with
For Nf£9=2 the global minimum of the effective potential Nig #0. In the vicinity of (a,8)=(1/2,0) (mod 1,
is given by the global maximum df(«,8). There are four 1[1/2«,1/23] has a nonvanishing slope in thedirection.

degenerate minima located at,(8) =(1/2,1/2) (mod 1). Hence the location of the global minimum is shifted in the
For the vacuum configurationa(8)=(1/2,1/2), for in-  direction. Furthermore, the fourfold degeneracy existing in
stance, the new parity matrices in E¢S.4) are given by the case oN{)'Oon is partially lifted. For instance, the two
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FIG. 3. Ve (anf) for Nigy=N{zyy'=3 with
R;=R,. The global minima are located at
(a,B)=(£0.678,1)(mod 2.

degenerate global minima are located ata,f) 1
= (+0.555,1) (mod 2 for (N4 ,NGA%=(1,3) with R, Veﬁ(a,ﬁ)=4l(a,ﬁ)—4N5€‘dl(a,ﬁ)—4NB’f\dl(a,B+5
=R,. For (N;& ,NiA% =(3,3), the global minima are lo-
cated at @,8)=(*=0.678,1) (mod 2 for R;=R, and

(a,B)=(%+0.636,1) (mod 2 for R,/R;=1.3. See Figs. 3
and 4. The minima are shifted te(8)=(+0.600,1)(mod

2) for (Ngg ,Ngi*) =(3,4). 1

1 1
E(a+a),§(ﬁ+b)

f.F
- 4N00,doub|e[ I

1 1
E(a—a),z(ﬁ—b) } (5.1

E. With fermions in Z, doublets . fAd ~if Ad fF
First take WNgp ,Ng;)=(2,0). When Ngg 4oupie= 0,

It is of great interest from the phenomenological view-there are four degenerate global minima at ) =(=1/2,
point to incorporate fermions i, doublets. Intriguing mod- = 1/2) and(+1/2, 51/2). We add three _gelfﬂtzratmns of fermi-
els are obtained if there are fermions in the adjoint represernS in the fundamental representatidigo goupiet=3- FOT
tation (N(f),OAd1NB,1Ad¢O) and fermions inz, doublets in the (a,b)=(1/2,—1/2), the degeneracy is partly lifted. The ef-

. F . . _fective potential has the global minima a&,3)=(*1/2,
fundamental representatioN{; #0) with the twist param +1/2). Now we vary the values & and b. For (a,b)

eters @,b)~(0.5,—0.5). The effective potential becomes —(0.51-0.51), the global mimima move to ofp)

FIG. 4. Veg(a,B) for Nigy=Nigh'=3 with
1.3R;=R,. The global minima are located at
(a,B)=(*0.636,1)(mod 2.
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=(+0.486;+0.486). For &,b)=(0.52,-0.52), the global When (amin,Bmin)=(0,0), A, and A% have the same spec-
mimima move to &,B)=(*0.472;£0.472). trum and only A3 has zero modes Whenatin ,Bmin)
As a second example, takélfs'",Ng;*)=(0,3). When  +(0,0), A2 and A mix to form mass eigenstates. With this
N{g qounie= O, there are four degenerate global minima atmixing in 'mind, it can be said that all thre2U(2) compo-
(a, ﬂ) (=1/2,0) and=1/2, 1). Again we add three genera- nents of the gauge fields have distinct masses.
tlons of fermions in the fundamental representation, Similarly the spectrum of the extra-dimensional compo-
NG doublet= 3- FOr (8,0)=(0.5,0), the degeneracy is partly nentsA 5 is found. A |(x y) has a mode expansion ofZ3
lifted. The effective potential has the global minima atsinglet f|e|d W|th (POvpla P,)=(+,+,+) in Eq. (3.9,
(,p)=(x05,1). For @,b)=(0.5,1), the global minima hjle (A% (x,y),A%(x.Y)) forms aZ, doublet with @,b)

are located at4,B)=(*+0.5,0). For &,b)=(0.52,0), the _ 2 2 n Ea. (3.14. The mass spbectrum at the
global minima are located at(B)=(+0.479,1). = (= 2amn, — Bm'”)l a.(3.14. pectru

! tree level is

In all these cases th&U(2) symmetry is completely

broken. 1 n\?2 2
Ayl: O,(R— + R_) where (n,m)eK,,
VI. MASS GENERATION ! 2

As the Wilson line phases develop nonvanishing expecta- Af,| . (n_amin)2+ ( m—ﬁmin)z
tion values @, B+ 0), the mass spectrum changes from that Ajl ' R; R,
at the tree level. We are particularly interested in the mass
spectrum in four dimensions. where —o<n,m<+co. (6.2

There are four zero modes associated Wi@@l for
(@min»Bmin)=(0,0) (mod 1), while only two otherwise. These
Extra-dimensional components of gauge potenti@@ zero modes become massive at the quantum level.
play the role of four-dimensional Higgs scalar fields. With  Case 1 (amin,Bmin)=(0,0) (mod 2. In this case there
the boundary conditiof4.1), the componenta=1,2 of A2 y remainsU(l) symmetry. There are four zero modes associ-
have zero modes which serve as lower-dimensional scalarated WIthAyl, yz, Ayl, 52. The effective potential is given
They are massless at the tree level, but acquire nonvanishirgy
masses at the quantum level.
The ﬂeldsAy acquire masses in two steps. When theVe[AL
global minimum of the effective potenti®.«(«,B) is located
at (@min»Bmin) #(0,0) (Mod 2, the fields are expanded around + gz{(Ayl)z(AyZ)z’L (Ayl)z(Asl/Z)z_ ZAilAilA;ZAfﬂ}’
this configuration. Through the gauge coupling all fields in (6.3
the four dimensions acquire masses@fa,,/R;) and of
O(Bmin/Ry). Some ofA? ;i may not be affected by this correc- Where the second term comes from 1/24';1(y2)2 at the tree
tion, but they acquwe nonvanishing masses from one loofevel. The evaluation of\/l looP for general configurations
corrections. It is a part of the Hosotani mechanigyll].  with Fy1,2#0 is difficult. We observe that the mass spectrum
The mechanism is similar to that of pseudo-Nambu-is U(1) symmetric and expect that fluctuations with vanish-
Goldstone bosons and that of the little Higgs boEa@l. ing Fy1,2 form a normal basis for the zero modes. We there-
The best way to understand this is to go to a new gauge ifore make an approximation
which expectation values of Wilson line phases vanish. Per- A
form a large gauge transformationy; amin ,Bmin) defined in VIP— v o[, B, (6.9

Eq. (5.3. In the new gauggA,)=0. The boundary condi-
tions change to Ry, P1 P,)=( 73, el maminT 7 3e|7er,n 79 whereV [ a,B] is the effective potential obtained in the pre-

and U;,U,)=(e'™min” e”TBmmTl) ceding sections witha=2g Rlx/(Ail)er(Ail)z and B

Let us look at the mass spectrum of four- d|menS|onaI_zgR2‘/(A 2)2+(A 2)2.
gauge fields. In this gaug®(x,y) has a mode expansion of  As an example take the pure gauge theory. The effective
az, singlet field with Py, Py, P;)=(—,~,~) in Eq. (3.8, potential is given byVd a,8]=4I(a,B). [See Eq.(4.18.]
while (AL(x,¥),A;(x.y)) forms aZ, doublet with @b)  The mass matrix is given by the second derivatived/gf
= (2amin2Bmin) I EQ. (3.14. The spectrum is, therefore, ;i respect toﬁ\; evaluated at vanishing?. . One finds that

A. Four-dimensional gauge fields and scalars

1-loo
y15 y2! yll ] V P

2

& ( n )2+ 4 here (n,m) <K 2,
o = where (n,m)eK, , .
# Ry R, + g4R3R2 e or Ayl, A)zll,
2_ (a,8)=(0,0
AS\[ntamn\? [ Mt Buin| 2 (mas$?= 2y
A/ZL . Ry i R, T2 QiRIR——- 52 for Ayz, A§2_
«,B)=(0,0
where —oo<n,m< + oo, (6.1 (a,8)=(0,0 65

125014-14



DYNAMICAL GAUGE SYMMETRY BREAKING AND MASS . ..

Here the four-dimensional gauge coupling is givengfy
=g?/2m°RyR,. We used the fact?V ey /dadp| . p)-(0,0=O-
WhenR;=R,, the masses are given by

oo

01:2

n=1

1
(nz_'_—mz)zwl.507

1 o0 o0
FJF > >
n=1m=1

(6.6)

for all zero modes.

Case 2 (min,Bmin)=(1,1) (mod 2. In the example dis-
cussed in Sec. V B, the global minimum of thgq(«,B) is
located at €@min.Bmin)=(1,1). In the new gauge

PHYSICAL REVIEW D 69, 125014 (2004

B. Four-dimensional fermions

From the phenomenological viewpoint it is hecessary to
accommodate fermions with small, but nonvanishing masses.
In the four-dimensional standard model of electroweak inter-
actions, Yukawa interactions provide such small masses. In
higher dimensional gauge theory, however, Yukawa interac-
tions are sometimes absent, or a part of gauge interactions so
that it becomes difficult to allow small, but nonvanishing
fermion masses.

We would like to point out that such small masses might
be accommodated in the framework of gauge theory on or-
bifolds through the combination df? twists and dynamics
of Wilson line phases. At the moment such a scenario is
realized only if special combinations of matter fields are ar-
ranged. It might occur naturally in supersymmetric theories.

(Po,P1,P,)= (73— 3 — 73). There are no zero modes for We reserve discussions of supersymmetric theories for the
the fermions in the fundamental representation withfuture publication.

(51 ’ 52) = (010) .

There still remains the)(1) symmetry. The masses of the Pl€s. I

four zero modes associated Wiﬁi. are given by Eq(6.5
with Vg in Eq. (5.5). For R;=R,=R they are given by

2(4C,+N{J C,) 05

7°R?

(masg?=

o0 ©

(_1)n—1 (_1)n+m

S A 5 ' o7ss
n=1 n

n=1m=1 (n2+ mz)
(6.7)

Case 3 (amin,Bmin)#(0,0) (mod 1. The examples dis-

cussed in Secs. VC and VD belong to this category. Ther

are only two zero modes associated and A)1,2. The
lightest modes ofZ, doublet (A§|,A§|) has (mass)
= (@pin/RY)2+ (Byin/Ry)? Where @i and By, are the dis-
tances to the nearest integersagf;, and Bin, respectively.
The masses of the two zero modes/A)f are evaluated
from Ve (Kl,lAl,z):Veﬁ (@mint29Ry A\ilﬁmin*‘ 29 Rzﬁl,z)- Take
the example in Sec. VD wittN}F=0 andN[{**>=2. The

global minimum is located ata,,Bmin)=(1/2,0) (mod 1).
It follows from Eq. (5.10 that, forR;=R,=R,

2

804 1
(—C3+N{)'1A"C2)W for A,
(mas3?=
f,Ad 89‘2‘ 1
(+C4+Ng1 °Cy) 2 for Al
* (_1)!1—1 % e (_1)n—1n2
Cy= _— ———5~1.152,
’ n=1 n* n=1 m=1 (n2+m2)3
i 1 § i (—1)"m?
C,= —+2 ——5—5~0.776.
N m=1 m* n=1m=1 (n2+ m2)3
(6.8

The models discussed in Sec. VE give nice exam-
the model described by Eq(5.1) with
(NGEY NELT NES dounid = (2,0,3), one of the global minima
of the effective potential is located at(8)=(0.5,0.5) and
(0.486, 0.48pfor (a,b)=(0.5,—0.5) and(0.51,—-0.51), re-
spectively. Fermions in the fundamental representation have
the mass spectrum given by E¢.41) with §;=0. The rel-
evant parameters arat «,b+3) and @— «,b— ). Un-
less one of these two pairs has elements equal or close to
even integers, fermions acquire masses QﬂRl_l) or
O(Rz_l). We see that none of four-dimensional fer-
mions in the model are light. In the model with
(NG NELT NG soumd = (0,3,3), the situation does not
change. There are no light fermions in four dimensions. For
a,b)=(0.5,0), the global minima oW.; are located at
%a,ﬁ):(tO.S,l), whereas forg,b)=(0.5,1) they are lo-
cated at &,8)=(=*0.5,0).
This is a general feature. Fermions eitheZinsinglets or
in Z, doublets give contributions to the effective potential for
Wilson line phases such that the effective potential is mini-
mized by four-dimensional massive fermions, as can be in-
ferred from Eq.(5.11. The tendency is reversed by contri-
butions from bosons. In supersymmetric theories
contributions from bosons and fermions cancel if supersym-
metry remains unbroken. When supersymmetry is softly bro-
ken as in the Scherk-Schwarz breaking, a nontrivial depen-
dence of the effective potential on twist parameters and
Wilson line phases appeal$8,11. Then fermions in four
dimensions may have small nonvanishing masses.

VIl. CONCLUSIONS AND DISCUSSION

We have studied gauge theory with matter o
X T?/Z,. We have classified general boundary conditions for
fields on the orbifoldl?/Z,. The equivalence relation among
various sets of boundary conditions holds as a result of the
existence of boundary-condition-changing gauge transforma-
tions. By incorporating Wilson line degrees of freedom cor-
rectly, one can establish the same physics in each equiva-
lence class of boundary conditions.

The Z,-orbifolding boundary conditions, which are speci-
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fied by parity matriced; (i=0,1,2), break the gauge sym- This study may be important in the model building. One can
metry at the tree level. In order to find physical symmetry ofintroduce two distinct scales: the GUT scale and elec-
the theory at low energies, which, in general, is differenttroweak scale.
from the symmetry of boundary conditions, one must take We have also studied the particle spectrum in four dimen-
into account dynamics of Wilson line phases by the Hosotansions. Some of the extra-dimensional components of gauge
mechanism, through which further gauge symmetry breakingje|ds, four-dimensional “Higgs” scalar fields, are massless
can be induced at the quantum level. _ _ at the tree level, but become massive by radiative correc-
We have studied th&U(2) gauge theory in detail t0 jons, Their typical mass is given gy, /R, or g4/R,, where
clarify physical symmetry at low energies. We have cho:serg]4 is the four-dimensional gauge coupling constant.
boundary conditions of the, orbifolding that _break the It is interesting to extend our work to higher-rank gauge
SU(2) gauge symmetry down td(1). Depending on the  groups and to study more realistic models of gauge symme-
matter content, the residubli(1) gauge symmetry is further try preaking and gauge-Higgs unification. It is particularly
broken through the Hosotani mechanism and the originamportant to consider supersymmetric gauge theory in this
SU(2) gauge symmetry is completely broken. This indicate§ramework. A realistic fermion mass spectrum in four dimen-
that the electroweak gauge symmetry break@@(2).  sjons might be achieved in supersymmetric theories as a re-
XU(1)y—U(1)em can be realized by the Hosotani mecha- gyt of dynamics of Wilson line phases, additio&l twists

nism, once a larger gauge group is chosen to start with. Inon matter fields, and supersymmetry breaking. We hope to
deed, such implementation of symmetry breaking has beegome back to this point in the near future.

attempted in the literature under the name of the gauge-
Higgs unification. TheSU(6) model onM*x (S!/Z,) real-
izes such a scenar[d4].

Regarding gauge symmetry breaking, the study in the
present paper has been limited mostly to the case where the This work was supported in part by Scientific Grants from
ratio of the size of the two extra dimensions are equal the Ministry of Education and Science, Grant No. 13135215,
=R,/R;=1. Varying r modifies the shape of the effective Grant No. 13640284, and Grant No. 15340QY3.) and by
potential to give different gauge symmetry breaking patternsthe 21st Century COE Program at Osaka Univer&ityr.).
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