
PHYSICAL REVIEW D 69, 125013 ~2004!
Correlations around an interface

A. Bessa,* C. A. A. de Carvalho,† and E. S. Fraga‡

Instituto de Fı´sica, Universidade Federal do Rio de Janeiro, C.P. 68528, Rio de Janeiro, RJ 21941-972, Brazil
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We compute one-loop correlation functions for the fluctuations of an interface using aw4 field theory model
in d52 andd53 dimensions. We obtain them from Feynman diagrams drawn with a propagator that is the
inverse of the Hamiltonian of a Po¨schl-Teller problem. We derive an expression for the propagator in terms of
elementary functions, show that it corresponds to the usual spectral sum, and use it to calculate quantities such
as the surface tension and interface profile in two and three spatial dimensions. The three-dimensional quan-
tities are rederived in a simple, unified manner, whereas those in two dimensions extend the existing literature,
and are applicable to thin films. In addition, we compute the one-loop self-energy, which may be extracted
from experiment or from Monte Carlo simulations. Our results may be applied in various scenarios, which
include fluctuations around topological defects in cosmology, supersymmetric domain walls,Z(N) bubbles in
QCD, domain walls in magnetic systems, interfaces separating Bose-Einstein condensates, and interfaces in
binary liquid mixtures.
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I. INTRODUCTION

Many natural systems exhibit interfaces that separate
gions of different physical characteristics. An interface in
binary liquid mixture separates its two components; a
main wall in a magnetic system separates its magn
phases. Apart from those traditional examples, several
tems of current interest can be viewed as different guise
that same physical situation. They include topological
fects in cosmology@1#, supersymmetric domain walls@2#,
Z(N) interfaces in thermal SU(N) gauge theories@3#, or dif-
ferent types of Bose-Einstein condensates@4#.

Recently, studies of quantum and statistical fluctuatio
around interfaces or domain walls have been the objec
renewed attention. Such studies have concentrated on
loop calculations, which, technically, amount to computi
fluctuation determinants around the interface~domain wall!
background. They include computations around kink ba
grounds in scalar theories in various dimensions@5#, as well
as in supersymmetric models@2#. They use different meth
ods, exploiting connections with special properties of de
minants of differential operators@5#, with scattering data@6#,
and with the spectrum of the operators@2#.

The calculations mentioned in the previous paragraph
restricted to vacuum bubbles, as will become clear in a
lowing paper. In the present article, we will go beyond
computingcorrelationsthat involve one- and two-point func
tions. Determinants, vacuum bubbles, and correlations
all be obtained from a semiclassical propagator that descr
how the fluctuations of an interface~domain wall! evolve.
Our method relies on a systematic semiclassical expan
around the given background, and has the semiclass
propagator as its essential ingredient. It not only serves a
alternative to the methods used in particle physics insp

*Electronic address: abessa@if.ufrj.br
†Electronic address: aragao@if.ufrj.br
‡Electronic address: fraga@if.ufrj.br
0556-2821/2004/69~12!/125013~10!/$22.50 69 1250
e-

-
ic
s-
of
-

s
of
ne-

-

r-

re
l-

ill
es

on
al
an
d

applications@2,5,6#, but also provides a unified framewor
that extends those results to the computation of correlatio
allows for connections with statistical mechanical syste
~for which one-point functions have been obtained by ot
methods!, and introduces calculations of two-point function
that lead to novel results.

We shall profit from the connections with statistical m
chanical systems to present our method. Indeed, it is w
known@7,8# that interface fluctuations may be described b
scalar field theory model with a double-well potential. T
model admits a classical solution, a kink profile depend
on only one spatial~longitudinal! coordinate, which is asso
ciated with the mean-field configuration of the interface.

Fluctuations of the interface have been taken into acco
in 42e dimensions, via renormalization group metho
@7,9#, as well as directly in three dimensions@10,11#. As a
result of their inclusion, calculations of the modified surfa
tension @7,10,12–14# and of the modified interface profile
@9,11# were successfully carried out: the surface tension w
computed up to two-loop order@13#, leading to the predic-
tion of universal ratios for an interface in the thre
dimensional Ising model~which belongs to the same unive
sality class of the scalar field model!; the interface profile
was computed up to one-loop order@9,11#, leading to a de-
tailed comparison with experimental data@15# for the reflec-
tivity of binary liquid mixtures near a phase transition.

The three-dimensional calculations listed above can al
viewed as the result of computing the Feynman diagram
a semiclassical expansion around the mean-field inter
background @16#. The diagrams involve a semiclassic
propagator and semiclassical vertices@17#: the former is the
inverse of the Hamiltonian of a Po¨schl-Teller problem in one
dimension; the latter include a background-dependent cu
vertex, in addition to the quartic vertex of the double wel

In this paper, we use a closed analytic form for the se
classical propagator that has been recently obtained@16#, and
show that it amounts to summing up the spectral represe
tion for the inverse of the Po¨schl-Teller Hamiltonian. Indeed
from our expression, we recover the eigenvalues and eig
©2004 The American Physical Society13-1



re
e

on

th

iv
sl

ts
W
a

o-
th
p
io
c

th
e
he
nt

A
at
no

ld

e
id

ra
a
e

tio
a

k

i-
po-
ed
s,

the

lu-
the
ain

ac-

r a

s

t
own
for
s.

BESSA, DE CARVALHO, AND FRAGA PHYSICAL REVIEW D69, 125013 ~2004!
functions of that problem. We then use that compact exp
sion to rederive previous results, to extend them to low
dimensions, and to compute two-point correlations up to
loop.

The two-point vertices that we compute correspond to
self-energy at large relative distances~zero relative mo-
menta!. They depend on the position of those points relat
to the interface, a consequence of the breaking of tran
tional invariance. That self-energy is the sum of a mass~in-
verse correlation length! squared and a potential that reflec
the influence of the interface on the fluctuation modes.
comment on how to compare our predictions for those qu
tities to experiments and simulations.

The article is organized as follows. In Sec. II, we intr
duce the field theory model, and outline the derivation of
mean-field interface solution and of the semiclassical pro
gator, as well as the semiclassical expansions for the var
generating functionals. In Sec. III, we compute the surfa
tension from the vacuum bubbles. In Sec. IV, we extract
interface profile from the graphs for the one-point Gre
function. In Sec. V, we obtain the self-energy from t
graphs for the two-point vertex function. Section VI prese
conclusions and suggestions for further work. Appendix
presents a detailed derivation of the semiclassical propag
and explores its properties. Appendix B describes the re
malization procedure we have adopted.

II. THE FIELD THEORY MODEL

We consider the generating~partition! functional for a
self-interacting scalar field theory model

Z@ j #5 R @Dw#expH 2
S

l
1E j w

Al
ddxJ , ~1!

whose action functional ind spatial dimensions is given by

S@w#5E ddxF1

2
~¹w!21

1

4!
~w22wv

2!2G , ~2!

wherel is a dimensional coupling,wv is the vacuum value
of the fieldw, and j (x) is an external current.

The model may be used to describe an interface and
fluctuations: for instance, we may associate the scalar fie
the difference in concentration of the phases~components! of
a binary system, as in a binary liquid mixture. Similarly, w
may relate it to an Ising-like spin. The phases of the liqu
mixture are described by the two degenerate vacua6wv of
the model. Analogously, the two homogeneous configu
tions where the spins are either all up, or all down, m
likewise be described by those two vacua. The mean-fi
interface will emerge as a classical solution of the equa
of motion of the model. Its fluctuations will be captured by
semiclassical expansion around that solution.

The classical solution of interest is the well-known kin
profile, which depends on only one longitudinal coordinatez,

ŵ~z!56wvtanhu~z!, ~3a!
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u~z!5
M

2
~z2 z̄!, ~3b!

whereM[wv /A3. The solution breaks translational invar
ance along the longitudinal direction as it depends on a
sition z̄, the point where it vanishes, which can be identifi
with the position of the kink. For two and three dimension
the dependence ofz̄ on the transverse coordinate~s! charac-
terizes the interface.

The semiclassical expansion includes fluctuations of
interface in a systematic way@16,17#. Setting

w~x!5ŵ~z!1l1/2h~x!, ~4!

we expand the action functional around the classical so
tion, regarded as a mean-field profile to be modified by
fluctuations, and perform a saddle-point integration to obt
the generating functional of Eq.~1! in the form of an infinite
~semiclassical! series.

The quadratic term in the functional expansion of the
tion defines the semiclassical propagatorG(x,x8) around the
kink background

F2¹21
1

2
~ ŵ22M2!GG~x,x8!5dd~x2x8!. ~5!

Using the expression forŵ, and Fourier transforming the
transverse coordinates, leads to

F2]z
21kW21M22

3

2
M2sech2uGḠ~kW ;z,z8!5d~z2z8!,

~6!

where kW is the transverse momentum, andḠ is a hybrid
momentum-position propagator.

Ḡ can be viewed as the inverse of the Hamiltonian fo
Schrödinger problem in one dimension with a Po¨schl-Teller
potential U(u)[kW21M22(3/2)M2sech2u. We may obtain
an expression forḠ from two linearly independent solution
of the homogeneous version of Eq.~6!. It is a hypergeomet-
ric equation, but it so happens@16# that its two independen
solutions are hypergeometric series that terminate, as sh
in Appendix A. Therefore, we end up with an expression
Ḡ which can be written in terms of elementary function
Using the dimensionless quantitieskW [2kW /M , u[(1

2tanhu)/2, andb[A41kW 2,

Ḡ5
2

M H 1

2b
@f~b,u!f~2b,u8!Q~u82u!

1f~2b,u!f~b,u8!Q~u2u8!#J , ~7a!

f~b,u![S u

12uD b/2F12
6u

b11
1

12u2

~b11!~b12!G
[S u

12uD b/2

f ~b,u!. ~7b!
3-2
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CORRELATIONS AROUND AN INTERFACE PHYSICAL REVIEW D69, 125013 ~2004!
In Appendix A, we show that the above form is equivalent
the usual spectral sum over eigenmodes. In fact, we use
derive the eigenvalues and eigenfunctions of the Schro¨dinger
problem.

The cubic and quartic terms in the functional expansion
the action define the vertices of the semiclassical series

V35
l1/2

3!
ŵh3, V45

l

4!
h4. ~8!

The cubic vertex involves the kink background. Saddle-po
integration implies expanding the exponential of the cu
and quartic parts of the action in a power series, and t
performing the resulting functional integrals, which redu
to powers of the fluctuation times a Gaussian, leading t
series for the generating functional.

The translational invariance of the model requires the
troduction of a collective coordinate. The background so
tion explicitly breaks the invariance along the longitudin
direction ~it is centered onz̄). However, as there are solu
tions for any value ofz̄, translational invariance must b
restored in the calculation by adding over all possible val
of z̄. Indeed, translational invariance manifests itself throu
the appearance of a zero-energy eigenmode of the fluctua
kernel of Eq.~6!. Physically, it costs zero energy to infin
tesimally translate a classical solution. The restoration of
symmetry is accomplished by means of the Faddeev-Po
procedure, and yields a Jacobian. We trade integration
the zero-mode subspace for integration over the collec
coordinatez̄.

The generating functional, after the introduction of t
collective coordinate, becomes

Z@ j #5E
2L/2

L/2 dz̄

L
S Ŝ

2pl
D 1/2

~D8!21/2PF ŵ,
]

] j
z8@ j #G

3expH 2
Ŝ

l
1E j ŵ

Al
ddxJ . ~9!

We have introduced a longitudinal infrared cutoffL, the lon-
gitudinal size of the system; the (Ŝ/l)1/2 factor comes from
the Jacobian, while the (2p)21/2 comes from the functiona
measure;D8 is the determinant of@G8#21, with G8 denoting
the semiclassical propagator with the zero-mode subsp

excluded;z8@ j #[exp$1
2* j(x)G8(x,y)j(y)ddxddy%; and P@ŵ,h#

is defined by the power series expansion of the expone
in

P@ŵ,h#[S 12
l1/2

Ŝ
E U8@ŵ#h D e2dS, ~10a!

dS[E ~V31V4!ddx. ~10b!

U8@ŵ# is the derivative of the double-well potentialU[(w2

2wv
2)2/4! with respect tow, computed at the kink solution

V3 and V4 are the vertices of Eq.~8!. The Faddeev-Popov
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Jacobian expanded aroundŵ yields the combination
(Ŝ/l)1/2P appearing in Eq.~9!.

Connected correlation functions can be derived from
free energy functionalF@ j #52 limL→`$ logZ@ j#% by func-
tional differentiation with respect toj (x). A Legendre trans-
form leads to the effective action~Gibbs! functional G@f#
5F@ j #1* j f/Alddx, with f(x)[^w(x)& denoting the ex-
pectation value of the fieldw. Its functional derivatives with
respect tof(x) lead to one-particle irreducible~1PI! vertex
functions. Connected correlations and 1PI vertex functio
can all be expressed in the usual language of Feynman
grams, as in the explicit examples of the forthcoming s
tions. We note that a semiclassical expansion aroundŵ (wv)
leads naturally to correlations and vertex functions in
interface~vacuum! sector, as we take functional derivative
at j 50, for the former, and atf5ŵ (wv), for the latter.

Finally, renormalization is required to connect the vario
correlation functions to physical parameters. As we are in
ested in comparing correlations in the presence of an in
face with those of the homogeneous~vacuum! phase~i.e.,
with bulk values!, we will use counterterms computed in th
vacuum sector. The diagrams in the kink and in the vacu
sector will then be related to the bulk physical parameters
means of a standard renormalization procedure, which is
lined in Appendix B. We note that the extension of our fin
ings to d54 ~obtained as the zero temperature limit of t
results presented in Ref.@16#! coincides with those of Ref
@2#, as explicitly shown in the Erratum quoted in Ref.@16#.

III. THE SURFACE TENSION

The surface tension for the interface may be obtain
from the difference between the free energy functionals
zero external current in the interface and vacuum sector

s[ lim
A→`

DF@0#

A
5 lim

A→`

Fi@0#2Fv@0#

A
, ~11!

whereA denotes the ‘‘area’’ spanned by the transverse dir
tion~s!. Its leading~zero-loop! value is given by the differ-
ence of the classical actions in the two sectorss0

5 limA→`(Ŝ/lA)52M3/l, which is independent of the
space dimension.

Up to one-loop order, the free energy and effective act
functionals coincide@18#, so we have

DF@0#5G@ŵ#2G@wv#5
Ŝ

l
1

1

2
logS D8

Dv

2pl

Ŝ
D , ~12!

whereDv is the ~free! determinant of the quadratic fluctua
tion kernelGv

21 in the vacuum sector. Neglecting terms th
vanish as (logA/A), we have

s5s01s15s01 lim
A→`

S 1

2A
log

D8

Dv
D . ~13!
3-3
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BESSA, DE CARVALHO, AND FRAGA PHYSICAL REVIEW D69, 125013 ~2004!
The s1 contribution can be computed from the semicla
sical propagator of Appendix A, as shown in Ref.@16#. In-
deed,

s15
1

2E dd21k

~2p!d21
log

D~k!

Dv~k!
, ~14!

where D(k) and Dv(k) are the determinants of@Ḡ(k)#21

and @Ḡv(k)#21, and we sum over transverse momenta. E
clusion of the zero mode fork50 is guaranteed by writing

log
D~k!

Dv~k!
5 logk2~k!1 log

D8~k!

D8~0!
2 log

Dv~k!

Dv~0!
1 log

D8~0!

Dv~0!
.

~15!

The second term on the right-hand side~rhs! is expressible in
terms of the semiclassical propagator

log
D8~k!

D8~0!
5E

0

k2

dsE
2`

`

dzḠ8~As;z,z!, ~16!

whereas the third is given by a similar expression withḠ8
replaced byGv . Then

log
D8~k!

D8~0!
2 log

Dv8~k!

Dv8~0!
5 logFb~k!21

b~k!11G22 log@b~k!12#

1 log 48. ~17!

The fourth term may be computed following Ref.@19# and
yields log@D8(0)/Dv(0)#52log 48. Using~14! and ~17!, we
derive the unrenormalized expression

s15
1

2E dd21k

~2p!d21
logH @b~k!21#@b~k!22#

@b~k!11#@b~k!12#J , ~18!

which is valid fork.0.
In d52 andd53, expression~18! needs to be regular

ized and renormalized. We use a cutoff in transverse mom
tum space to regularize: ind52, we integrate over the in
terval @2L,L#, whereas, ind53, we integrate over a disk
of radiusL. Neglecting terms that vanish as 1/L, we obtain

s152
3M

2p
logS 2L

M D1S 1

4A3
2

3

2p D , d52, ~19a!

s152
3ML

4p
1S 3

8p
2

3 log 3

32p D M2, d53. ~19b!

The renormalization procedure is described in Appen
B. We adopt renormalization conditions at zero momenta

ḠR
(1)~0!50, ḠR

(2)~0!5M2, ~20!

which specify the Fourier transformed one- and two-po
1PI vertex functions. They lead to the renormalized resu
12501
-

-

n-

x

t

s1R5S 1

4A3
2

3

2p D , d52, ~21a!

s1R5
3

32p
~ log 324!M2, d53.

~21b!

For d52, the result coincides with the correction to the kin
mass obtained previously@19#. The results ford53 are
shown, in Appendix B, to coincide with those in the liter
ture @2,7,10,12,14#.

We could go beyond one loop in our expansion by inclu
ing contributions which are first order in the cubic and qu
tic semiclassical vertices. Using Eqs.~9! and~10! to compute
F@0# to that order, we obtain the two-loop Feynman d
grams and the Jacobian contribution depicted in Fig. 1. S
diagrams were computed in Ref.@13#, using the spectral sum
representation for the semiclassical propagator. We bel
that our~resumed! expression for the propagator will confirm
their results, and simplify the calculation, but we shall po
pone that verification for a future publication, and conce
trate on one-loop correlations in the present article. As
two-loop results have been compared to those obtained f
Monte Carlo simulations@20#, it is important to have an in-
dependent check. Presumably, the calculation will be m
direct if one makes use of the compact expression for
resummed propagator.

IV. THE INTERFACE PROFILE

The interface profile is given by the expectation value
the order parameterf(x)5^w(x)&, which we compute from
the first derivative ofF@ j # with respect to the external cur
rent j (x), at j 50. The calculation was carried out in th
kink sector using the semiclassical expansion aroundŵ. We
may express the correction to the interface profile in terms
the Feynman diagrams of Fig. 2. As we shall show, this
equivalent to solving a one-loop corrected equation forf, as
was done in Refs.@7,9,11#. It can be calculated in a muc
simpler and compact way using our semiclassical propaga

Before proceeding, we return to the discussion of trans
tional invariance. Inspection of the diagrams in Fig. 2 sho

FIG. 1. Diagrams that contribute to the surface tension at tw
loop order.

FIG. 2. Contributions to the interface profile. Diagram~b! rep-
resents the Jacobian term.
3-4
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CORRELATIONS AROUND AN INTERFACE PHYSICAL REVIEW D69, 125013 ~2004!
that diagram~a! is ultraviolet divergent ind53 if we com-
pute it with the semiclassical propagator in the subspace
thogonal to the zero mode. Indeed, the excluded zero-m
contribution behaves as

E
L

d2k

~2p!2E2`

`

dz
h̄0

2~z!

kW2
} log

2L

M
, ~22!

which accounts for the divergence. The problem does
exist in lower dimensions, suggesting thatd53 is a marginal
dimension@7#. Were we to work with the full propagator, n
ultraviolet problem would occur, but we would have an i
frared problem for vanishingkW .

Following the interpretation of Refs.@7,9,11# for the case
of binary liquid mixtures, we take this to indicate the inst
bility of a translationally invariant interface in three dime
sions. To cope with this problem, we explicitly break tran
lational invariance by introducing a small massm in the
zero-mode subspace. Physically, in three-dimensional bin
liquid mixtures that can be attributed to the action of a gra
tational field, or some other pinning effect, and is negligib
in the other subspaces (m!M ). In other physical applica-
tions, the fact that the interfaces or domain walls have th
positions pinned down by some external effect that bre
translational invariance will be encoded in the dependenc
m on whatever parameter characterizes that pinning effe

Breaking translational invariance has the following imp
cations for our calculation:~i! we no longer need to work in
the subspace orthogonal to the zero mode, so that no J
bian will emerge;~ii ! for the semiclassical propagator, w
use the expression in the subspace orthogonal to the
mode, added to a zero-mode part with massm

Ḡ~kW ;z,z8!5Ḡ8~kW ;z,z8!1
M

2

h̄0~z!h̄0~z8!

m2
, ~23!

where h̄0 is the normalized zero eigenmode shown in A
pendix A.

The preceding paragraph implies that the only diagram
be considered in one-loop order is the first diagram of Fig
We compute it by integrating over longitudinal coordinat
and transverse momenta. With the renormalization con
tions defined in Eq.~20!, we derive the renormalized profil

fR~u!5A3M tanhu2l~au sech2u1b tanhu sech2u!,

d52 or 3. ~24!

The profile has the functional form above, and only the
efficients change with the spatial dimension. That is a dir
consequence of the form of the semiclassical propagator.
computed coefficients area5(2p23A3)/(16pM ), b
52(6A314p23A3pM /m)/(24pM ), for d52, and a
53A3(log 321)/(32p), b5(A3/16p)log(4M/3m), for d
53. It should be noted that, ford53, our calculation will
coincide with that of Ref.@11# for a judicious choice of
renormalization conditions. The latter reference confron
its findings with experimental results@15#, being compatible
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with the data available at the time. Our new results ford
52, depicted in Fig. 3, illustrate the dependence of the p
file on the ratiom/M . Obviously, the lower that ratio, the
more striking the effect will be. Those results can be tes
experimentally by studying the interface of thin films of b
nary mixtures@21#, for instance. More recent application
such as the ones involving Bose-Einstein condensates, c
also be used in experimental checks ind52 andd53 @22#.

As we have already remarked, it is only ind53 that we
are forced to break translational invariance. Ind52, a trans-
lationally invariant mean-field interface solution is stable,
that we may compute its fluctuations by usingḠ8, and in-
cluding diagram~b! of Fig. 2. However, in the limit of large
transverse area~in the present case, a length!, that contribu-
tion is negligible. The result we obtain has the function
form presented in Eq.~24! with a5(2p23A3)/(16pM )
andb52(6A314p)/(24pM ) ~which is equivalent to tak-
ing m→` in the expression forb). This should be compared
with the profile obtained previously, without translational i
variance.

V. THE TWO-POINT CORRELATIONS

We may take a second derivative of the free-energy fu
tional F with respect to the external currentj to obtain the
connected two-point functionGc

(2) . That leads to the Feyn
man diagrams of Fig. 4. Just as in the preceding section,
has to omit the diagram coming from the Jacobian, whene
translational invariance is broken.

The calculation of the two-point functionGc
(2) up to one-

loop order is rather involved, so we shall postpone it fo
future publication. Instead, we will concentrate on mea

FIG. 3. Profile diagrams ind52 for l50.1. The solid line is
the kink configuration. The dashed curve correspond tom/M
50.01 and the dotted one tom/M50.001.

FIG. 4. Diagrams that contribute to the two-point function up
one-loop order.
3-5
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field results obtained from its lowest-order expression, wh
is given by our semiclassical propagator, and on one-l
corrections toG (2).

As our classical interface profile depends on a collect
coordinatez̄, the hybrid Fourier transformḠ(kW ;z,z8) de-
pends on bothz and z8, not just on their difference. Intro
ducing center-of-mass and relative coordinates
-
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12501
h
p

e

R5
z1z8

2
, ~25a!

r5z2z8, ~25b!

we may reexpressḠ in terms ofR andr. The expression has
a particularly simple form forkW50W ,
Ḡ~R,r,0W !5
eMr@6~M /m!22423Mr#18e(M /2)rcosh~MR!1cosh~2MR!

M @11eMr12eMr/2cosh~MR!#2
Q~r!1~r↔2r!. ~26!
self

on

pa-

ec-

u-

m

ne-
If we now perform a Fourier transform in ther coordi-
nate, we obtain a functionG̃ depending onR, kr , and kW .
Settingkr50 andkW50W amounts to integrating over all rela
tive coordinates.

One may define a susceptibilityx as

x5 lim
L→`

1

LE2L/2

L/2

dRG̃~R;0,0W !. ~27!

Likewise, one may exclude the lowest mode and definex8

usingG̃8 in the previous formula. For both cases, we obt
x51/M2, just as in the vacuum sector. That is a conseque
of the fact that the two lowest modes are localized, wher
the continuum ones behave asymptotically as plane wave
massM. Accordingly, the exponential decay of our propag
tor as the relative distance becomes large is of the fo
exp(2MAr21rT

2), whererW T is the relative transverse coo
dinate. The correlation length is thus set by 1/M , being in-
dependent ofR, even when we give a small massm to the
lowest mode. In principle, the susceptibility and the corre
tion length could depend on the position of the two poi
with respect to the interface, i.e., onR. However, the phase
on either side of the interface are degenerate in our mo
They have the same correlation length 1/M . It is then natural
that M should set the scale. A model wherein the coexist
phases could have different masses~inverse correlation
lengths! would probably lead to position-dependent quan
ties.

The calculation of the two-point vertexG (2) up to one-
loop order involves fewer integrals than that of its inver
Gc

(2) . Setting

G (2)~x,x8![@Gc
(2)#21~x,x8!5G21~x,x8!1S~x,x8!,

~28!

where the first term on the rhs is the inverse of the semic
sical propagator, thenS(x,x8) will be the contribution to the
self-energy from the kink sector, and can be identified w
two of the diagrams of Fig. 4 without external legs, as sho
in Fig. 5 @diagram~d! is obtained as a combination ofG (1)

andG (3) with G21].
ce
s
of
-
m

-
s

el.

g

-

s-

h
n

We should stress that the semiclassical propagator it
already gives a contributionSsc to the self-energy when
compared with the vacuum sector

G21~x,x8!5Gv
21~x,x8!1Ssc~x,x8!, ~29!

where Gv
21 is the inverse of the free propagator. Equati

~29! definesSsc , just as Eq.~28! definesS. Furthermore,
the diagrams of Fig. 5, when computed with the free pro
gator, and withwv instead ofŵ at the cubic vertices, will
yield Sv(x,x8), defined by

Gv
(2)~x,x8![@Gv

(2)#21~x,x8!5Gv
21~x,x8!1Sv~x,x8!.

~30!

Equations~28!, ~29!, and~30! lead to

DG (2)~x,x8!5G (2)~x,x8!2Gv
(2)~x,x8!

5Ssc~x,x8!1S~x,x8!2Sv~x,x8!

5DS, ~31!

the difference in self-energy between kink and vacuum s
tors.

As in the case of the two-point function, the hybrid Fo
rier transformDS̄(kW ;z,z8) will depend on bothz andz8, not

just on their difference, so that we may reexpressDS̄ in
terms ofR andr. Performing, as before, a Fourier transfor

in the r coordinate, we obtain a functionDS̃ depending on
R, kr , andkW

DS̃~R;kr ,kW !5G̃ (2)~R;kr ,kW !2G̃v
(2)~R;kr ,kW !. ~32!

FIG. 5. Diagrams that contribute to the self-energy up to o
loop order.
3-6
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In order to understand the physical meaning of the s
energy in the present situation, it is instructive to consi
the lowest-order term defined in Eq.~29!. From Eq.~6! we
have

Ḡ21~kW ;z,z8!5F2]z
21kW21M22

3

2
M2sech2uGd~z2z8!,

~33!

with the u(z) previously defined. In terms ofR and r, we
have

Ssc~R,r!5F2
3

2
M2sech2uS R1

r

2D Gd~r!. ~34!

Integrating over ther coordinate, i.e., taking the Fourie
transform atkr50, yields aR-dependent potentialVsc(R)
52(3/2)M2sech2u(R) that vanishes at infinity. Therefore

the lowest-order contribution toG̃ (2)(R;kr ,kW ) at zero rela-
tive momenta is given by the mass squared plus a fluctua
potential that vanishes asR→`. The first-order contribution
can be split likewise: the constant term asR→` can be
interpreted graphically as coming from the diagrams of F
5 computed at zero relative momenta with vacuum propa
tors, and withŵ replaced bywv in diagram~b!. Those are
exactly the corrections to the mass~inverse bulk correlation
length! squared. Our renormalization condition~20! guaran-
tees that the constant term is just the renormalized m
squared; on the other hand, the contribution to the fluctua

potential, which vanishes asR→`, is given byDS̃(R;0,0W ).
The fluctuation potential reflects the presence of the in
face.

Using our propagator to compute the diagrams, we ob
for diagram~a! of Fig. 5

l

24
sech2uFA3 tanh2u1

9

4 S M

m
2

2

p D sech2uG , d52,

~35a!

3lM

32p
sech2uF ~ log 3!tanh2u1 logS 2M

m D sech2uG , d53.

~35b!

The calculations were done usingMATHEMATICA . The inte-
grations for diagram~b! of Fig. 5 had to be performed nu
merically, so that we have computed it for several values
R in order to draw the curve of the modified potential illu
trated in Fig. 6. As before, we have adopted the renormal
tion conditions in~20!. The modified potential is very sens
tive to the value of the ratiom/M , especially in the cased
52. A comparison between Figs. 6 and 3 suggests that
probably easier to measure the effects of fluctuations on
potential than on the interface profile.

Radiation scattered through the interface may be use
probe structure factors, which ultimately measure the tw
point function. A numerical evaluation ofG̃(2)(R;kr ,kW )
would then allow a direct comparison with data from bina
liquid mixtures, or from more recent applications, especia
those involving Bose-Einstein condensates. As we have
12501
f-
r

n

.
a-

ss
n

r-

in

f

a-

is
e

to
-

y
id

before, that calculation is feasible, but rather involved. Sin

G̃ (2)(R;kr ,kW ) measures the change in free energy~which co-
incides with the effective action to first order! as the profile
changes, one might hope to have a direct test of our com
tation by measuring those changes for well-separated po
at different values ofR. Alternatively, Monte Carlo compu-
tations might be used as a test.

VI. CONCLUSIONS

We have cast all previous results for the correlation fu
tions of interface fluctuations in the unified framework of
semiclassical expansion. Besides making contact with
existing literature, we have extended previous results t
lower dimension, making use of the closed analytic form
the semiclassical propagator. We have also computed sus
tibilities and two-point correlations, which may eventual
be checked experimentally.

It is important to note that our technique for resummi
the spectral representation for the semiclassical propag
might be of use in other contexts, as long as we can red
the differential equation for the propagator to an ordina
one. In the present case, an additional simplification ca
from the fact that the hypergeometric series involved ter
nated. In particular, spherically symmetric backgroun
would be natural candidates to be investigated.

We should emphasize that with our basic ingredient,
semiclassical propagator, we have reduced the calculatio
physical quantities to computing Feynman diagrams, wh
propagators and vertices carry information about the ba
ground solution.

Many systems of interest may profit from the semiclas
cal treatment that we have presented. Thus, computing
relations in supersymmetric models is clearly a direction
future work. Likewise, correlations for mixtures of Bos
Einstein condensates separated by an interface are cert
worth pursuing. For this latter example, existing experime
tal techniques@22# may open up a host of possibilities fo
experimental tests and checks. Also promising are the po
bilities of comparison with experimental data in the mo
traditional binary liquid mixtures. We should emphasize th

FIG. 6. Potential as a function ofR for m/M50.1 andl50.1.
The solid line stands forVsc(R); the other lines correspond to th
modified potential ind53 ~dashed! andd52 ~dotted!.
3-7
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BESSA, DE CARVALHO, AND FRAGA PHYSICAL REVIEW D69, 125013 ~2004!
our treatment allows for a complete and separate treatme
capillary ~those in the zero-mode subspace! and noncapillary
waves. Reflectivities and form factors extracted from sc
tered radiation are the physical quantities to be measured
comparison. Monte Carlo simulations might also be used
a test.

Finally, we may hope to calculate other correlations
interest to experimentalists, as long as their defining Fe
man diagrams lead to tractable integrals. As mentioned
fore, the two-loop calculation done previously for the surfa
tension may serve as a test of the simplification introdu
by our expression for the propagator.
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APPENDIX A

The homogeneous version of Eq.~6! can be written in
terms of dimensionless variables

@2]u
21b226 sech2u#f50, ~A1!

where u[(12tanhu)/2, as before. Defining f
[(coshu)2bF(u), the functionF satisfies a hypergeometri
equation

u~12u!
d2F

du2
1@~b11!22~b11!u#

dF

du
1@62b~b11!#

50, ~A2!

whose general solution is

F~u!5c1@ 2F1~b22,b13;11b;u!#

1c2@u2b
2F1~3,22;12b;u!#, ~A3!

where 2F1(A,B;C;u) is a hypergeometric function. Th
identity

2F1~A,B;C;u!5~12u!C2A2B
2F1~C2A,C2B;C;u!

~A4!

yields

F~u!5c1~12u!2b@ 2F1~3,22;11b;u!#

1c2u2b@ 2F1~3,22;12b;u!#. ~A5!

Both series terminate. The two solutions in the linear co
bination of Eq.~A5! correspond tof(b,u) andf(2b,u) of
Eq. ~7b!.

From the solutions of the homogeneous equation,
constructs the semiclassical propagator by a standard pr
dure @16#, which leads to Eq.~7a!. That expression can b
rewritten as
12501
of

t-
or
s

f
n-
e-
e
d

,

-

e
ce-

Ḡ5
e2AkW21M2(z2z8)

2AkW21M2
f ~b,u! f ~2b,u8!Q~z2z8!

1
e2AkW21M2(z82z)

2AkW21M2
f ~2b,u! f ~b,u8!Q~z82z!.

~A6!

The latter expression appears as one of the terms of the
tegral

I[E
2`

` dq

2p

c~q,z!c* ~q,z8!

q21kW21M2
, ~A7!

where c(q,z)[eiqzf (22iq/M ,u). Indeed, its Q(z2z8)
part has poles in the upper half of the complexq plane at

iAkW21M2, 2 iM and1 iM , with residues given by

e2AkW21M2(z2z8) f ~b,u! f ~2b,u8!/4p iAkW21M2,
~A8a!

212Mu~12u!u8~12u8!/4p ikW2, ~A8b!

26MAu~12u!~122u!Au8~12u8!

3~122u8!/4p i S kW21
3M2

4 D , ~A8c!

respectively. TheQ(z2z8) part has similar contributions
Combining them, we derive

I5Ḡ~kW ;z,z8!2S M

2 D h̄0~z!h̄0~z8!

kW2
2S M

2 D h̄1~z!h̄1~z8!

kW213M2/4
,

~A9!

which leads to the spectral representation forḠ,

Ḡ5
M

2 H h̄0~z!h̄0~z8!

kW2
1

h̄1~z!h̄1~z8!

kW21
3M2

4
J

1E
2`

` dq

2p

c~q,z!c* ~q,z8!

q21kW21M2
, ~A10!

where one clearly identifies the eigenvalues and the eig
functions for the Po¨schl-Teller problem at hand. Using th
variableu, we have

l05kW2, h̄0~u!52A3u~12u!,

l15kW213M2/4, h̄1~u!5A6u~12u!~122u!,

lq5q21kW21M2, h̄q~u!5eiqzf ~22iq/M ,u!.

~A11!
Having shown that our semiclassical propagator does

respond to the usual spectral representation, we now inv
gate its limit whenk→0 (b→2) in the subspace orthogona
3-8
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CORRELATIONS AROUND AN INTERFACE PHYSICAL REVIEW D69, 125013 ~2004!
to the zero eigenmode. That limit is required for the calcu
tions of Sec. V. Unfortunately, the expression for the lim
that appeared in Ref.@16# is wrong ~it is not orthogonal to
the zero-mode subspace!. We profit from this occasion to
exhibit the correct expression

Ḡ~0W ;u,u8!5
2

M H u~12u8!

4u8~12u!
G~u,u8!

1
3

2
u~12u!u8~12u8!logFu~12u8!

u8~12u!
G

2
11

2
u~12u!u8~12u8!J Q~u82u!

1~u↔u8!, ~A12!

where

G~u,u8!5~12u!216u8~12u!216u82~12u!1u82.
~A13!

The corrected expression forḠ is indeed orthogonal to the
zero-mode subspace, as can be verified in a straightforw
calculation.

APPENDIX B

In this Appendix, we shall outline the renormalizatio
procedure adopted in the text. We start from the effect
action functional, up to one-loop order

A@f~x!#[lG@f~x!#5S@f~x!#1
l

2
logS D@f~x!#

Dv
D ,

~B1!

written in terms of renormalized parameters, and add t
counterterms, in order to obtain a renormalized expressi

AR@f~x!#5A@f~x!#2
C1

2 E ddx~f22wv
2!

2
C2

4 E ddx~f22wv
2!22

C3L

2 E ddx~]Lf!2

2
C3T

2 E ddx~¹Tf!2. ~B2!

In the formulas above,f(x)[^w(x)& is the expectation
value of the field. The renormalization constan
C1 ,C2 ,C3L , and C3T are associated with mass, couplin
and longitudinal and transverse wave function renormal
tion. They will be fixed by renormalization conditions in th
vacuum sector.

Functional derivatives of~B2! with respect tof(x) lead
to the n-point vertex functions. Derivatives taken atf(x)
5ŵ(x) yield vertices in the kink sector. Asŵ satisfies the
equation of motion, for the renormalized one-point functi
in the kink sector, we obtain
12501
-
t

rd

e

it

-

GR
(1)@ŵ#5

l

2
ŵG2C1ŵ2C2ŵ~ ŵ22wv

2!1C3L~]zŵ !2,

~B3!

where all quantities are taken at a given pointx, so thatG
5G(x,x) is the semiclassical propagator at coincide
points. For the two-point vertex, we have

GR
(2)@ŵ;x1 ,x2#5G21~x1 ,x2!1

l

2
d (d)~x12x2!G

2
l

2
ŵ~x1!G~x1 ,x2!ŵ~x2!G~x2 ,x1!

2@C11C2~3ŵ22wv
2!2C3L]z

2

2C3T¹T
2#d (d)~x12x2!, ~B4!

where againŵ5ŵ(x1), andG5G(x1 ,x1).
Expressions for thevacuum sectorare obtained from

functional derivatives atwv . In the formulas above, tha
amounts to replacingŵ andG with wv andGv , respectively.
One may derive expressions forGR

(3) andGR
(4) , as well. The

translational invariance in the vacuum sector makes it c
venient to go to momentum space. Furthermore, we s
adopt zero-momentum renormalization conditions. If we d
fine the Fourier transformed vertices as

G̃ (n)~p1 , . . . ,pn![~2p!dd (d)S (
i

pi D Ḡ (n)~p1 , . . . ,pn21!,

~B5!

we arrive at the following relations at zero momenta

ḠR
(1)5

l

2
wvE G̃v~k!2C1wv , ~B6a!

ḠR
(2)~pi50!5M21

l

2E G̃v~k!

2
lwv

2

2 E G̃v~k!2C122C2wv
2 , ~B6b!

S ]ḠR
(2)

]@pz
2#
D 512

lwv
2

2

]

]@pz
2#

F E G̃v~k!G̃v~k1p!G
pi50

2C3L ,

~B6c!

S ]ḠR
(2)

]@pT
2#
D 512

lwv
2

2

]

]@pT
2#

F E G̃v~k!G̃v~k1p!G
pi50

2C3T ,

~B6d!

ḠR
(4)~pi50!5l2

3l

2 E G̃v
2~k!16lwv

2E G̃v
3~k!

23lwv
4E G̃v

4~k!26C2 , ~B6e!
3-9
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BESSA, DE CARVALHO, AND FRAGA PHYSICAL REVIEW D69, 125013 ~2004!
where all integrals are calculated with a cutoff in transve
momentum space. If we define

I n~d,L!5E
L

dd21kT

~2p!d21E2`

` dkL

2p
G̃v

n~k! ~B7!

(kT and kL amount to transverse and longitudinal mome
tum, respectively! relations~B6! become

ḠR
(1)5

l

2
wvI 1~d,L!2C1wv , ~B8a!

ḠR
(2)~pi50!5M21

l

2
I 1~d,L!2

lwv
2

2
I 2~d,L!

2C122C2wv
2 , ~B8b!

S ]ḠR
(2)

]@pz
2#
D 512

lwv
2

2 F3I 3~d,L!24M2I 4~d,L!

2
16p2Vd

Vd12
I 4~d12,L!G2C3L , ~B8c!

S ]ḠR
(2)

]@pT
2#
D 512

lwv
2

2 F I 3~d,L!2
16p2Vd

dVd12
I 4~d12,L!G

2C3T , ~B8d!
-

rin

en

k

Le
s.

l,

,

is

12501
e

-

ḠR
(4)~pi50!5l2

3l

2
I 2~d,L!16lwv

2I 3~d,L!

23lwv
4I 4~d,L!26C2 , ~B8e!

whereVd is the usuald-dimensional solid angle.
The renormalization conditions~20! for the vacuum sec-

tor which were adopted in the text lead to the determinat
of the constants:C15lI 1(d,L)/2, C252lI 2(d,L)/4, C3L
5C3T50. Using such values in theL-regulated Fourier
transformed expressions~B3! and~B4! at zero momenta can
cels the ultraviolet divergences asL→`.

As a consistency check on our procedure, we have u
the renormalization conditions

ḠR
(1)50, ḠR

(2)5M2, S ]ḠR
(2)

]@pL
2#
D

0

51, ~B9!

that were adopted in Ref.@2#, in order to calculate correc
tions to the kink mass. The results we have found coinc
with those of Ref.@2# in d52,3,4 ~see Ref.@16#!, illustrating
that the calculation of the determinant via the semiclass
propagator is not afflicted with mode-counting ambiguitie
That allows us to use a simple momentum cutoff regulari
tion, which is more directly related to condensed matter p
nomenology.
.E.
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