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Correlations around an interface
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We compute one-loop correlation functions for the fluctuations of an interface ugifidield theory model
in d=2 andd=3 dimensions. We obtain them from Feynman diagrams drawn with a propagator that is the
inverse of the Hamiltonian of a'Bohl-Teller problem. We derive an expression for the propagator in terms of
elementary functions, show that it corresponds to the usual spectral sum, and use it to calculate quantities such
as the surface tension and interface profile in two and three spatial dimensions. The three-dimensional quan-
tities are rederived in a simple, unified manner, whereas those in two dimensions extend the existing literature,
and are applicable to thin films. In addition, we compute the one-loop self-energy, which may be extracted
from experiment or from Monte Carlo simulations. Our results may be applied in various scenarios, which
include fluctuations around topological defects in cosmology, supersymmetric domainZgal)sbubbles in
QCD, domain walls in magnetic systems, interfaces separating Bose-Einstein condensates, and interfaces in
binary liquid mixtures.
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[. INTRODUCTION applications[2,5,6], but also provides a unified framework
that extends those results to the computation of correlations,
Many natural systems exhibit interfaces that separate reallows for connections with statistical mechanical systems
gions of different physical characteristics. An interface in a(for which one-point functions have been obtained by other
binary liquid mixture separates its two components; a domethod$, and introduces calculations of two-point functions
main wall in a magnetic system separates its magnetithat lead to novel results.
phases. Apart from those traditional examples, several sys- We shall profit from the connections with statistical me-
tems of current interest can be viewed as different guises athanical systems to present our method. Indeed, it is well
that same physical situation. They include topological deknown[7,8] that interface fluctuations may be described by a
fects in cosmology{1], supersymmetric domain wallg], scalar field theory model with a double-well potential. The
Z(N) interfaces in thermal SU) gauge theorieE3], or dif-  model admits a classical solution, a kink profile depending
ferent types of Bose-Einstein condensdiéls on only one spatiaflongitudina) coordinate, which is asso-
Recently, studies of quantum and statistical fluctuationgiated with the mean-field configuration of the interface.
around interfaces or domain walls have been the object of Fluctuations of the interface have been taken into account
renewed attention. Such studies have concentrated on oner 4—e dimensions, via renormalization group methods
loop calculations, which, technically, amount to computing[7,9], as well as directly in three dimensioh0,11]. As a
fluctuation determinants around the interfddemain wal) result of their inclusion, calculations of the modified surface
background. They include computations around kink backtension[7,10,12—14 and of the modified interface profile
grounds in scalar theories in various dimensifls as well  [9,11] were successfully carried out: the surface tension was
as in supersymmetric modefg]. They use different meth- computed up to two-loop ordgf3], leading to the predic-
ods, exploiting connections with special properties of detertion of universal ratios for an interface in the three-
minants of differential operatof$], with scattering datf6],  dimensional Ising modelwhich belongs to the same univer-
and with the spectrum of the operat¢g&. sality class of the scalar field mogiethe interface profile
The calculations mentioned in the previous paragraph araas computed up to one-loop ordé,11], leading to a de-
restricted to vacuum bubbles, as will become clear in a foltailed comparison with experimental d4fis] for the reflec-
lowing paper. In the present article, we will go beyond bytivity of binary liquid mixtures near a phase transition.
computingcorrelationsthat involve one- and two-point func- The three-dimensional calculations listed above can all be
tions. Determinants, vacuum bubbles, and correlations williewed as the result of computing the Feynman diagrams of
all be obtained from a semiclassical propagator that describes semiclassical expansion around the mean-field interface
how the fluctuations of an interfadglomain wal) evolve.  background[16]. The diagrams involve a semiclassical
Our method relies on a systematic semiclassical expansiopropagator and semiclassical verti¢ég]: the former is the
around the given background, and has the semiclassic@lverse of the Hamiltonian of a Bohl-Teller problem in one
propagator as its essential ingredient. It not only serves as afimension; the latter include a background-dependent cubic
alternative to the methods used in particle physics inspiredertex, in addition to the quartic vertex of the double well.
In this paper, we use a closed analytic form for the semi-
classical propagator that has been recently obtdihéjl and

*Electronic address: abessa@if.ufrj.br show that it amounts to summing up the spectral representa-
"Electronic address: aragao@if.ufrj.br tion for the inverse of the Rehl-Teller Hamiltonian. Indeed,
*Electronic address: fraga@if.ufrj.br from our expression, we recover the eigenvalues and eigen-
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functions of that problem. We then use that compact expres- M _

sion to rederive previous results, to extend them to lower 0(2)=~(z—2), (3b)
dimensions, and to compute two-point correlations up to one

loop. whereM = ¢, /+/3. The solution breaks translational invari-

The two-point vertices that we compute correspond to thgynce along the longitudinal direction as it depends on a po-

i}e;t—ﬂe;e_lr_% a(;elaé?“ej (;ﬁl?rt}'ge o?ifggzﬁwrgsée%tiztes rn;gtivesmon z, the point where it vanishes, which can be identified
- Ihey dep P P with the position of the kink. For two and three dimensions,
to the interface, a consequence of the breaking of transla-

tional invariance. That self-energy is the sum of a mass '€ dependence af on the transverse coordinéecharac-
verse correlation lengjtsquared and a potential that reflects €riZes the interface. o _
the influence of the interface on the fluctuation modes. We '€ semiclassical expansion includes fluctuations of the
comment on how to compare our predictions for those quaniNterface in a systematic wey6,17. Setting
tities to experiments and simulations. - 12

The article is organized as follows. In Sec. Il, we intro- ¢(X)=@(2) +A"(X), 4

duce th_e fie_ld theory modgl, and outline the c_jeriva_tion of th%e expand the action functional around the classical solu-
mean-field interface solution and of the semiclassical propago, regarded as a mean-field profile to be modified by the
gator, as well as the semiclassical expansions for the varioyg, . ations, and perform a saddle-point integration to obtain

generating functionals. In Sec. lll, we compute the surfacqs yenerating functional of E€L) in the form of an infinite
tension from the vacuum bubbles. In Sec. IV, we extract th?semiclassicalseries

interface profile from the graphs for the one-point Green 14 ¢ adratic term in the functional expansion of the ac-

function. In Sec. V, we obtain the_ self-ent_argy from thetion defines the semiclassical propagagfx,x’) around the
graphs for the two-point vertex function. Section VI presents, i background

conclusions and suggestions for further work. Appendix A
presents a detailed derivation of the semiclassical propagator,
and explores its properties. Appendix B describes the renor-
malization procedure we have adopted.

1.
~V2 (e M)

5 G(x,x")=8%(x—x"). (5)

Using the expression fofo, and Fourier transforming the
Il. THE FIELD THEORY MODEL transverse coordinates, leads to

We consider the generatingartition functional for a

self-interacting scalar field theory model G(k;z,z')=8(z—2"),

(6)

. S ie ) _
Z[j]1= jg [D‘P]GXP{ _X+f \/_deXJ’ (D wherek is the transverse momentum, a@lis a hybrid
momentum-position propagator.

whose action functional id spatial dimensions is given by _ G can be viewed as the inverse of the Hamiltonian for a
Schralinger problem in one dimension with a $ahl-Teller
potential U(8)=k2+M?2—(3/2)M3secif§. We may obtain

' 2) an expression foG from two linearly independent solutions
of the homogeneous version of E&). It is a hypergeomet-

where\ is a dimensional couplingp, is the vacuum value i equation, but it so happen&é] that its two independent

of the field ¢, andj(x) is an external current. ;olutlons are hypergeometric series tha_\t terminate, as shown

The model may be used to describe an interface and it§ APpendix A. Therefore, we end up with an expression for
fluctuations: for instance, we may associate the scalar field t& which can be written in terms of elementary functions.
the difference in concentration of the phaesmponentsof ~ Using the dimensionless quantitieg=2k/M, u=(1

a binary system, asina bmary !IQUId mixture. S|m|IarIy3 we —tanh6)/2, andb= \/4+—;2

may relate it to an Ising-like spin. The phases of the liquid

mixture are described by the two degenerate vatuysg, of — 1

the model. Analogously, the two homogeneous configura- G=M[%[cﬁ(b,u)(ﬁ(—b,u’)@(u’—u)

tions where the spins are either all up, or all down, may

likewise be described by those two vacua. The mean-field , ,

interface will emerge as a classical solution of the equation +¢(=b,u)¢(b,u")B(u—u )]]' (78

of motion of the model. Its fluctuations will be captured by a

semiclassical expansion around that solution. b2 6u 1202

The classical solution of interest is the well-known kink cﬁ(byu)f(m) {1_b+1 + (b+1)(b+2)
profile, which depends on only one longitudinal coordirmate

. 3
— 92+ k> +M?— EMzseCI‘fﬁ

1 1
§(V<P)2+H(<p2—¢>3)2

Stel- [ dx

u b/2
#(2)=* g tanhé(2), (3a) ( H) f(b,u). (70)
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In Appendix A, we show that the above form is equivalent tojacobian expanded aroung vyields the combination
the usual spectral sum over eigenmodes. In fact, we use it %)5/)\)1/27, appearing in Eq(9)

derive the eigenvalues and eigenfunctions of the Sthger
problem.

The cubic and quartic terms in the functional expansion o{
the action define the vertices of the semiclassical series

Connected correlation functions can be derived from the
ree energy functionaF[j]=—Ilim___.{logZj]} by func-
ional differentiation with respect tp(x). A Legendre trans-
form leads to the effective actiofGibbg functional I'[ ¢ ]

V2 A =F[j]+[j ¢/ Nd, with ¢(x)=(e(x)) denoting the ex-
V3=?<P 7°, V4=m n*. (8)  pectation value of the fielg. Its functional derivatives with
' ' respect tog(x) lead to one-particle irreduciblePl) vertex

The cubic vertex involves the kink background. Saddle-poinfU”CtiO”S- Connected correlations and 1PI vertex functions
integration implies expanding the exponential of the cubicc@n all be expressed in the usual language of Feynman dia-
and quartic parts of the action in a power series, and theframs, as in the explicit examples of the forthcoming sec-
performing the resulting functional integrals, which reducetions. We note that a semiclassical expansion arapirfe,)

to powers of the fluctuation times a Gaussian, leading to &ads naturally to correlations and vertex functions in the
series for the generating functional. interface(vacuun) sector, as we take functional derivatives

The translational invariance of the model requires the inat j=0, for the former, and a¢=§o (¢,), for the latter.

troduction of a collective coordinate. The background solu-  Finally, renormalization is required to connect the various
tion explicitly breaks the invariance along the longitudinal correlation functions to physical parameters. As we are inter-
direction (it is centered org). However, as there are solu- ested in comparing correlations in the presence of an inter-
tions for any value ofz, translational invariance must be face with those of the homogeneo(scuum phase(i.e.,

restored in the calculation by adding over all possible value¥ith bulk values, we will use counterterms computed in the
— . . . . . vacuum sector. The diagrams in the kink and in the vacuum
of z. Indeed, translational invariance manifests itself through ; ;

. . sector will then be related to the bulk physical parameters by
the appearance of a zero-energy eigenmode of the fluctuation o L
: X -~~~ means of a standard renormalization procedure, which is out-

kernel of Eq.(6). Physically, it costs zero energy to infini- lined in Appendix B. We note that the extension of our find-
tesimally translate a classical solution. The restoration of the PP '

symmetry is accomplished by means of the Faddeev—Popo'\r/]gS tod=4 (obtained as the zero temperature limit of the

. : . : sults presented in Ref16]) coincides with those of Ref.
procedure, and yields a Jacobian. We trade integration ovig] as gxplicitly showndij: t]kze Erratum quoted in REE6]
the zero—nlnde subspace for integration over the collective™ :

coordinatez.

The generating functional, after the introduction of the 1. THE SURFACE TENSION
collective coordinate, becomes

The surface tension for the interface may be obtained
from the difference between the free energy functionals at
zero external current in the interface and vacuum sectors

[ s) .
Z[j]= oL\ Zan (A") P[%ﬁ—jz[l]

& . . AF[0] = F[0]-F,[0O]
XEX[{—i‘FJ %ddx]. 9 UEAITOO A :A“an A ’ (11)

We have introduced a longitudinal infrared cutbffthe lon- whereA denotes the “area” spanned by the transverse direc-
gitudinal size of the system; thé&/\ )Y factor comes from tion(s). Its leading(zero-loop value is given by the differ-
the Jacobian, while the ¢) ~*> comes from the functional ence of the classical actions in the two sectarg

measurep’ is the determinant dfG’]~*, with G’ denoting  =|im, _..(3/\A)=2M3\, which is independent of the
the semiclassical propagator with the zero-mode subspaggpace dimension.
excluded;z'[j 1=exp{3/ji(})G’ (xy)j(y)dxd%y}; and [ ¢, 7] Up to one-loop order, the free energy and effective action

is defined by the power series expansion of the exponentiginctionals coincidg¢18], so we have
in
" . 1I A" 27\ 12

P[Zo,n]z( 1-% u’[s‘o]n)eﬁs, (103

>l

AF[0]=T[¢]-T[e,]=

v

whereA, is the (free) determinant of the quadratic fluctua-
53;[ (Va+V,)d%. (10p  tion kernelG; ! in the vacuum sector. Neglecting terms that
vanish as (logvA), we have

U'[ ] is the derivative of the double-well potential= (o2 1 A
— @5)2/4! with respect top, computed at the kink solution; o=+ 0o=09+ lim (—Iog—). (13
V; andV, are the vertices of Eq8). The Faddeev-Popov A=\ 2A A,
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The o, contribution can be computed from the semiclas-

sical propagator of Appendix A, as shown in REE6]. In-

deed,
1
O'lzzf

Where_A(k) and A, (k) are the determinants c{fg(k)]‘1

dd~1k A(K)
(2mi 1298,

(14

and[G,(k)]~%, and we sum over transverse momenta. Ex-

clusion of the zero mode fde=0 is guaranteed by writing

lo ﬂﬂo x2(k)+1o A’(k)—lo A”(k)+|o A'(0)
98, (k) 9 Y0 94,0 %0
(15

The second term on the right-hand sides) is expressible in
terms of the semiclassical propagator

Al(k) J*Kz Joc _
log——= ds| dzG'(Vs;z,2), 16
9S50 Jo 98] 428 (s, (16
whereas the third is given by a similar expression vi@th
replaced byG, . Then

g0 g 2o BT bk +2
+log 48. (17

The fourth term may be computed following R§L9] and
yields lodA’(0)/A,(0)]=—log 48. Using(14) and (17), we
derive the unrenormalized expression

1
O'lzzf

which is valid fork>0.

(18)

dd-1k [b(k)—1][b(k)—2]
(2mo1 9 [b(k)+ 1[b(k) +2] "

PHYSICAL REVIEW D69, 125013 (2004
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FIG. 1. Diagrams that contribute to the surface tension at two-
loop order.

(1 3
O1R™ m_z ’ d—2, (213)

3
— _ 2 —
O1R™— 32’77“093 4)M y d=3.
(21b

Ford=2, the result coincides with the correction to the kink
mass obtained previouslyl9]. The results ford=3 are
shown, in Appendix B, to coincide with those in the litera-
ture[2,7,10,12,14

We could go beyond one loop in our expansion by includ-
ing contributions which are first order in the cubic and quar-
tic semiclassical vertices. Using Eq4S) and(10) to compute
F[O] to that order, we obtain the two-loop Feynman dia-
grams and the Jacobian contribution depicted in Fig. 1. Such
diagrams were computed in R¢L3], using the spectral sum
representation for the semiclassical propagator. We believe
that our(resumeglexpression for the propagator will confirm
their results, and simplify the calculation, but we shall post-
pone that verification for a future publication, and concen-
trate on one-loop correlations in the present article. As the
two-loop results have been compared to those obtained from
Monte Carlo simulation$20], it is important to have an in-
dependent check. Presumably, the calculation will be more
direct if one makes use of the compact expression for the
resummed propagator.

IV. THE INTERFACE PROFILE

In d=2 andd=3, expression(18) needs to be regular- The interface profile is given by the expectation value of
ized and renormalized. We use a cutoff in transverse momerihe order parametep(x) =(¢(x)), which we compute from
tum space to regularize: id=2, we integrate over the in- the first derivative ofF[j] with respect to the external cur-
terval[ — A,A], whereas, ird=3, we integrate over a disk rentj(x), atj=0. The calculation was carried out in the
of radiusA. Neglecting terms that vanish as\l/we obtain  kink sector using the semiclassical expansion aragntive

may express the correction to the interface profile in terms of

3M 2A 1 3 the Feynman diagrams of Fig. 2. As we shall show, this is
01=~ ﬁ'C’g(V + m T oxl d=2, (199 equivalent to solving a one-loop corrected equat_iorgﬁoas
was done in Refs[7,9,11. It can be calculated in a much
3MA 3 3log3 simpler and compact way using our semi_classi(_:al propagator.
o= — —— (_ — ) M2, d=3. (19b Before proceeding, we return to the discussion of transla-
4m \8m 32w tional invariance. Inspection of the diagrams in Fig. 2 shows

The renormalization procedure is described in Appendix
B. We adopt renormalization conditions at zero momenta

b——o ’——-@
(@) (b)

which specify the Fourier transformed one- and two-point FIG. 2. Contributions to the interface profile. Diagrah) rep-
1PI vertex functions. They lead to the renormalized result resents the Jacobian term.

r©0)=0, TR0)=M? 0
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that diagram(a) is ultraviolet divergent ird=3 if we com- 3
pute it with the semiclassical propagator in the subspace or- i
thogonal to the zero mode. Indeed, the excluded zero-mode
contribution behaves as

d?k foo 73(2) 2A
dz——=log—, 22
jA (2m)?) -« K? ™ (22

which accounts for the divergence. The problem does not
exist in lower dimensions, suggesting tllat 3 is a marginal
dimension[7]. Were we to work with the full propagator, no
ultraviolet problem would occur, but we would have an in- . . . .
frared problem for vanishing. 4 2 0 2 4
Following the interpretation of Ref§7,9,11] for the case 0
of binary liquid mixtures, we take this to indicate the insta-  FG. 3. profile diagrams inl=2 for \=0.1. The solid line is
bility of a translationally invariant interface in three dimen- the kink configuration. The dashed curve correspondutd/
sions. To cope with this problem, we explicitly break trans-=0.01 and the dotted one jo/M =0.001.
lational invariance by introducing a small maasin the
zero-mode subspace. Physically, in three-dimensional binaryith the data available at the time. Our new results dor
liquid mixtures that can be attributed to the action of a gravi-=2, depicted in Fig. 3, illustrate the dependence of the pro-
tational field, or some other pinning effect, and is negligiblefile on the ratiou/M. Obviously, the lower that ratio, the
in the other subspaceu(M). In other physical applica- more striking the effect will be. Those results can be tested
tions, the fact that the interfaces or domain walls have theiexperimentally by studying the interface of thin films of bi-
positions pinned down by some external effect that break@ary mixtures[21], for instance. More recent applications,
translational invariance will be encoded in the dependence afuch as the ones involving Bose-Einstein condensates, could
u on whatever parameter characterizes that pinning effect.glso be used in experimental checkdlin 2 andd=3 [22].
Breaking translational invariance has the following impli-  As we have already remarked, it is onlyd=3 that we
cations for our calculation(i) we no longer need to work in - are forced to break translational invariancedia 2, a trans-
the subspace orthogonal to the zero mode, so that no Jac@tionally invariant mean-field interface solution is stable, so
bian will emerge;(ii) for the semiclassical propagator, we that we may compute its fluctuations by usiag, and in-

use the expression in the subspace_: orthogonal to the ZefRuding diagranb) of Fig. 2. However, in the limit of large
mode, added to a zero-mode part with mass transverse are@in the present case, a lengtthat contribu-
- =, tion is negligible. The result we obtain has the functional
E(E;Z,Z')=a'(E;Z,Z')+M 70(2) 770(2_), (23) form presented in Eq(24) with a= (27— 33)/(167M)
2 w? and 8= —(6+/3+4m)/(24wM) (which is equivalent to tak-
. ing u—o° in the expression foB). This should be compared
where 7, is the normalized zero eigenmode shown in Ap-with the profile obtained previously, without translational in-
pendix A. variance.
The preceding paragraph implies that the only diagram to
be considered in one-loop order is the first diagram of Fig. 2. V. THE TWO-POINT CORRELATIONS
We compute it by integrating over longitudinal coordinates
and transverse momenta. With the renormalization condi- We may take a second derivative of the free-energy func-
tions defined in Eq(20), we derive the renormalized profile tional F with respect to the external currento obtain the
connected two-point functio(?). That leads to the Feyn-

dr(6)= \/§M tanh6— \ (a0 seck 6+ B tanhd seci ), man diagrams of Fig. 4. Just as in the preceding section, one
has to omit the diagram coming from the Jacobian, whenever
d=2 or 3. (29 translational invariance is broken.

. _ The calculation of the two-point functiod!® up to one-
The profile has the functional form above, and only the co{oop order is rather involved, so we shall postpone it for a

efficients change with the spatial dimension. That is a directuture publication. Instead, we will concentrate on mean-
consequence of the form of the semiclassical propagator. The

computed coefficients arex=(27—33)/(16xM), B

=—(63+47—337M/u)/(247M), for d=2, and a 0 i
=33(log3-1)/(327), B=(\/3/16m)log(4M/3w), for d — O

=3. It should be noted that, fat=3, our calculation will (a) (b) (c) (d)

coincide with that of Ref[11] for a judicious choice of
renormalization conditions. The latter reference confronted FIG. 4. Diagrams that contribute to the two-point function up to
its findings with experimental resulf45], being compatible one-loop order.
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field results obtained from its lowest-order expression, which z+7'
is given by our semiclassical propagator, and on one-loop R=——, (259
corrections tal’(?).

As our classical interface profile depends on a collective p=z-12', (25b)

coordinatez, the hybrid Fourier transfornG(k;z,z') de- _ _
pends on botiz andz’, not just on their difference. Intro- We may reexpress in terms ofRandp. The expression has
ducing center-of-mass and relative coordinates a particularly simple form fok=0,

— . eM[6(M/w)?—4—3Mp]+8eM2rcosi MR) + cosi2MR)
G(R,p,0)= v s .
M[1+e"P+2e"P“cosiMR)]

O(p)+(p=—p). (26)

If we now perform a Fourier transform in the coordi- We should stress that the semiclassical propagator itself
nate, we obtain a functio® depending orR, k,, andk.  already gives a contributio to the self-energy when
Settingk, =0 andk=0 amounts to integrating over all rela- compared with the vacuum sector

tive coordinates. - N1 / /
One may define a susceptibilify as GTHXX) =Gy H(XX) + ZsXX'), (29
where Gv_l is the inverse of the free propagator. Equation
x= lim lf“z dRG(R;0,0). 27 (29) definesX. ., just as Eq.(28) definesX,. Furthermore,
L2 the diagrams of Fig. 5, when computed with the free propa-
gator, and withe, instead ofe at the cubic vertices, will
Likewise, one may exclude the lowest mode and defihe Yyield X (x,x"), defined by

usingG’ in the previous formula. For both cases, we obtain
x=1/M?2, just as in the vacuum sector. That is a consequence
of the fact that the two lowest modes are localized, whereas
the continuum ones behave asymptotically as plane waves @(quations(28), (29), and(30) lead to
massM. Accordingly, the exponential decay of our propaga-

tor as the relative distance becomes large is of the form AF(Z)(x,x’)=F(2)(x,x’)—F52)(x,x’)
exp(—M\/p2+pT2), WhereﬁT is the relative transverse coor- , , ,
dinate. The correlation length is thus set by1/being in- =2 XX)HZ0OX) =2y (XX
dependent oR, even when we give a small magasto the =AS, (31)
lowest mode. In principle, the susceptibility and the correla-

tion length could depend on the position of the two pointsthe difference in self-energy between kink and vacuum sec-
with respect to the interface, i.e., & However, the phases tors.

on either side of the interface are degenerate in our model. As in the case of the two-point function, the hybrid Fou-

They have the same correlation lengtM1/1t is_ then natur_al_ rier transformA S (K: z,2') will depend on bottz andz’, not

that M should set the scale. A model wherein the coexisting L -

phases could have different massésverse correlation JUSt on their difference, so that we may reexpress in

lengths would probably lead to position-dependent quanti_terms ofRandp. Performing, as before, aNFouner transform

ties. in the p coordinate, we obtain a functiah, depending on
The calculation of the two-point verteR(® up to one- R, k,, andk

loop order involves fewer integrals than that of its inverse

L—o

I'@x,x")=[GP] 1(x,x")=G, (x,x ) +3,(x,x').
(30

GY). Setting AS(Rik, K =T@(Rk, k)~ TORK, K. (32
IF@(x,x)=[GP] 1(x,x") =G 1(x,x") +Z(x,X"),

where the first term on the rhs is the inverse of the semiclas- O

sical propagator, theB (x,x") will be the contribution to the

self-energy from the kink sector, and can be identified with (a) (b)

two of the diagrams of Fig. 4 without external legs, as shown

in Fig. 5 [diagram(d) is obtained as a combination &t FIG. 5. Diagrams that contribute to the self-energy up to one-

andI'® with G™1]. loop order.
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In order to understand the physical meaning of the self- 0,5 - —
energy in the present situation, it is instructive to consider Do
the lowest-order term defined in E9). From Eq.(6) we
have

. . 3
Gl(k;z,z’)z{—&iﬂL k2+M?— EMzsecﬁe} 8(z—12"),
(33

Potentilal

with the 6(z) previously defined. In terms d® and p, we
have

; op). (34 R e B

3
ESC(R,p)=[ - —Mzsecﬁa( R+ g

Integrating over thq’_ coordinate, i.e., taking the Fourier FIG. 6. Potential as a function & for x/M=0.1 and\ =0.1.
transform atk,=0, yields aR-dependent potentia¥s(R)  The solid line stands fov.(R); the other lines correspond to the
=—(3/2)M?secid(R) that vanishes at infinity. Therefore, mogified potential ind=3 (dashe@iandd=2 (dotted.

the lowest-order contribution t6()(R;k,,,k) at zero rela- o , _ _
tive momenta is given by the mass squared plus a quctuatioBefore’ that calculation is feasible, but rather involved. Since
potential that vanishes @&&—o0. The first-order contribution F(Z)(R;kp ,IZ) measures the change in free enepghich co-

can be split likewise: the constant term Bs-« can be incides with the effective action to first ordeas the profile
interpreted graphically as coming from the diagrams of Fig.changes, one might hope to have a direct test of our compu-
5 computed at zero relative momenta with vacuum propagatation by measuring those changes for well-separated points
tors, and withg replaced by, in diagram(b). Those are at _differer_1t values oR. Alternatively, Monte Carlo compu-
exactly the corrections to the maésverse bulk correlation ~tations might be used as a test.

length squared. Our renormalization conditi¢®0) guaran-

tees that the constant term is just the renormalized mass VI. CONCLUSIONS

squared; on the other hand, the contribution to the fluctuation \yie have cast all previous results for the correlation func-

potential, which vanishes &—«, is given byAi(R;O,ﬁ). tions of interface fluctuations in the unified framework of a
The fluctuation potential reflects the presence of the intersemiclassical expansion. Besides making contact with the

face. existing literature, we have extended previous results to a
Using our propagator to compute the diagrams, we obtaitower dimension, making use of the closed analytic form for
for diagram(a) of Fig. 5 the semiclassical propagator. We have also computed suscep-
\ oM 2 tibilities and two-point correlations, which may eventually

—seclg| V3 tanifo+ —| —— —|seckd|, d=2, be checked experimentally. . :
24 V3 4( Mmoo It is important to note that our technique for resumming
(35a  the spectral representation for the semiclassical propagator
M oM might be of use in other contexts, as long as we can reduce
A the differential equation for the propagator to an ordinary
327 secifg) (log 3)tant? g+ log 7) secﬁe}, d=3. one. In the present case, an additional simplification came

(35  from the fact that the hypergeometric series involved termi-
_ ) ) nated. In particular, spherically symmetric backgrounds
The calculations were done USIMRTHEMATICA. The inte-  \ould be natural candidates to be investigated.
grations for diagrantb) of Fig. 5 had to be performed nu-  \we should emphasize that with our basic ingredient, the
merically, so that we have computed it for several values ofemijclassical propagator, we have reduced the calculation of
Rin or_der_to draw the curve of the modified potential iIIu_s- physical quantities to computing Feynman diagrams, whose
trated in Fig. 6. As before, we have adopted the renormalizay opagators and vertices carry information about the back-
tion conditions in(20). The modified potential is very sensi- ground solution.
tive to the value of the ratiq/M, especially in the casé  ~ Many systems of interest may profit from the semiclassi-
=2. A comparison between Figs. 6 and 3 suggests that it iga| treatment that we have presented. Thus, computing cor-
probably easier to measure the effects of fluctuations on thgsjations in supersymmetric models is clearly a direction for
potential than on the interface profile. future work. Likewise, correlations for mixtures of Bose-
Radiation scattered through the interface may be used t@jnstein condensates separated by an interface are certainly
probe structure factors, which ultimately measure the twoyyorth pursuing. For this latter example, existing experimen-
point function. A numerical evaluation 06(2)(R;kp,IZ) tal techniqueg22] may open up a host of possibilities for
would then allow a direct comparison with data from binary experimental tests and checks. Also promising are the possi-
liquid mixtures, or from more recent applications, especiallybilities of comparison with experimental data in the more
those involving Bose-Einstein condensates. As we have saitladitional binary liquid mixtures. We should emphasize that
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our treatment allows for a complete and separate treatment of e Vk2+M2(z—-2")
capillary (those in the zero-mode subsppaed noncapillary G=————Ff(bu)f(=b,u)O(z—2")
waves. Reflectivities and form factors extracted from scat- 2VK2+ M2

tered radiation are the physical quantities to be measured for

comparison. Monte Carlo simulations might also be used as e VKer M -2)

a test. + ————f(—b,u)f(b,u")O(z'-2).
Finally, we may hope to calculate other correlations of 2Vk?+M?

interest to experimentalists, as long as their defining Feyn- (AB)

man diagrams lead to tractable integrals. As mentioned be-

fore, the two-loop calculation done previously for the surfaceThe latter expression appears as one of the terms of the in-
tension may serve as a test of the simplification introducedegral

by our expression for the propagator.

- [ 3 favaz) a
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APPENDIX A
_ 2 2(5_ 51 , . >
The homogeneous version of E@) can be written in e VMTETZIE(b,u)f(—b,u’) /AT VK2 + M2,

terms of dimensionless variables (A8a)

[ &2+ b2— 6 secRA] =0, (A1) —12Mu(1-u)u’(1—u")/4mik?, (A8D)
where u=(1-tanh6)/2, as before. Defining ¢ —6Myu(1-u)(1-2u)vu'(1-u’)
= (cosh#) PF(u), the functionF satisfies a hypergeometric . 3M2
equation X (1—2u")/4mi| k +T , (A8c)

2F dF respectively. The®(z—z') part has similar contributions.
U(l_“)@+[(b+l)_2(b+1)“]@+[6_b(b+1)] Combining them, we derive

-0, A2 . M\ 70(2) 75(2') (M) 54(2) n1(2'
(A2) I:G(k;zlz,)_(_ 70(2) 70 )_(_) (@ m(z)
o 2 k? 2] k>+3M?/4
whose general solution is (A9)
F(u)=cy[ oF1(b—=2,b+3;1+bju)] which leads to the spectral representationGor
+cy[uPF1(3,—2;1—bsu)], A3 T T T
Colu 7P wl. "I = M ([ m@n@) nm@mn)
5 > 2
where ,F(A,B;C;u) is a hypergeometric function. The 2 k? K2+ sM
identity 4
2F1(A,B;C;u)=(1-u)*""7BF (C—A,C—B;C;u) +J°€ dq ¥(a,2)¢*(q,2") (AL0)
(Ad) —22T g2+ k24 M2
yields where one clearly identifies the eigenvalues and the eigen-
functions for the Pschl-Teller problem at hand. Using the
F(u)=cy(1—u) [ ,F(3,—2;1+b;u)] variableu, we have
+¢ou [ LF1(3,—2;1-b;u)]. (A5) No=K2, 7o(U)=2y3u(1-u),
Both series terminate. The two solutions in the linear com- M=K +3M2/4,  7,(u)=y6u(1—u)(1-2u),
kéina(t%] of Eq.(A5) correspond tap(b,u) and ¢(—b,u) of Aq:q2+R2+M2, ;q(u)=eiqu(—2iq/M,u).
g. .
From the solutions of the homogeneous equation, one (A11)

constructs the semiclassical propagator by a standard proce- Having shown that our semiclassical propagator does cor-
dure[16], which leads to Eq(7a). That expression can be respond to the usual spectral representation, we now investi-
rewritten as gate its limit whenk—0 (b—2) in the subspace orthogonal
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CORRELATIONS AROUND AN INTERFACE

to the zero eigenmode. That limit is required for the calcula-

tions of Sec. V. Unfortunately, the expression for the limit
that appeared in Ref16] is wrong (it is not orthogonal to
the zero-mode subspgcalNe profit from this occasion to
exhibit the correct expression

G(Giu,u)= L Gy
ju,u’)=—1 ———G(u,u
4u’(1—u)
3 ) , u(l—u’)
+§U(1—U)U (1—u')log m
11
——u(l wu'(1—u’);O(u’' —u)
+(uesu’), (A12)
where
G(u,u’)=(1—u)®+6u’(1—u)?>+6u’3(1—u)+u’'?

(A13)

The corrected expression f@ is indeed orthogonal to the

PHYSICAL REVIEW D69, 125013 (2004

~. Aa - A oA -
TR¢]= 560G~ C10—Cop(¢®— ¢)) + Car(9,0)%,
(83)

where all quantities are taken at a given poinso thatG
=G(x,x) is the semiclassical propagator at coincident
points. For the two-point vertex, we have

~ A
1ﬂ(Rz)[<P;X1,Xz]ZGil(Xl,Xz)"‘ Egd)(xl_xz)G

A n
- E@(Xl)G(Xl1X2)(P(X2)G(X21X1)

- [C1+ C2(3€02_ (,Di) - C3|_z?§

XZ)! (B4)

~Cy7VF160 (%~
where againp= ¢(X;), andG=G(x;,X;).

Expressions for thevacuum sectorare obtained from
functional derivatives atp,. In the formulas above, that
amounts to replacing} andG with ¢, andG,,, respectively.
One may derive expressions fBE) andI'${’, as well. The

zero-mode subspace, as can be verified in a straightforwartdanslational invariance in the vacuum sector makes it con-

calculation.

APPENDIX B

In this Appendix, we shall outline the renormalization

procedure adopted in the text. We start from the effectivel’

action functional, up to one-loop order

[¢(X)]

U

!

written in terms of renormalized parameters, and add to i
counterterms, in order to obtain a renormalized expression

Al p(X)J=ATTh(x)]= S[¢(X)]+—|09(
(B1)

C
AR $001=AL$(0]~ 5 f d'x(¢?~ ¢?)
C2 d 2)2 d 2
2| dx(e? =)= S | dx(ae)

C
—% f dox(Vy)2. (B2)
In the formulas aboveg(x)=(¢(x)) is the expectation
value of the field. The renormalization constants
C,,C,,C3 , and C3y are associated with mass, coupling

and longitudinal and transverse wave function renormallza—(

tion. They will be fixed by renormalization conditions in the
vacuum sector.

Functional derivatives ofB2) with respect tog(x) lead
to the n-point vertex functions. Derivatives taken &i(x)
=¢(x) yield vertices in the kink sector. Ag satisfies the
equation of motion, for the renormalized one-point function
in the kink sector we obtain

venient to go to momentum space. Furthermore, we shall
adopt zero-momentum renormalization conditions. If we de-
fine the Fourier transformed vertices as

( )(p11 s 1pn)E(277)d5(d)<2| pi)ﬁn)(pli e 1pnfl)7
(BS)

we arrive at the following relations at zero momenta

D
t r=se, J G, (k) —Cip,, (B6a)
F<R2>(pi=0)=|v|2+%f G, (k)
N@? [

- ;Df G,(k)—C,—2C,2, (B6D)

ar® Ne? g [ . }
=1- G,(K)G,(k ~Ca,
(a[p§]> 2 a[pg] J v( ) u( +p) b= 3L
(B60)

&F(RZ)) )\(pg ~ ~

— | =1- Gv(k)Gv(k+p)} —Car,
api] 2 a[p-%]f o
(B6d)

_ 3N [ =~ =
F(R4)(pi:0):)‘_7f Gf(k)+67\¢5f Go(k)

—3ng? f Gl(k)—6C,, (B6e)
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where all integrals are calculated with a cutoff in transverse . 3\ )
momentum space. If we define T(pi=0)=x— - 12(d,A)+Bh g, l5(d,A)

—3N@14(d,A)—6C,, (B8e)

d9 1k, [ dk -
L S @

In(d’A):JAW _5.Cu
o where() 4 is the usuald-dimensional solid angle.
(kr andk,_ amount to transverse and longitudinal momen-  The renormalization condition®0) for the vacuum sec-

tum, respectivelyrelations(B6) become tor which were adopted in the text lead to the determination
— of the constantsC;=\1,(d,A)/2, Co=—AI5(d,A)/4, C5_
F(Rl)ZEQDvIl(dvA)_ClﬁDv’ (B8a =C37=0. Using such values in thé-regulated Fourier

transformed expressioriB3) and(B4) at zero momenta can-
\ N cels the ultraviolet divergences as— .
I‘(RZ)(pi=0)=M2+ 5'1(01,/\)— v 1,(d,A) As a consistency check on our procedure, we have used

2 the renormalization conditions
—C,—2C,¢?, (B8b) _
_ _ ar®
JT@ o2 rg)=o0, r=m?, e =1, (B9)
— =1——"[3I3(d,A)—4M2I4(d,A) [Pil/ g
aps] 2

167204 that were adopted in Ref2], in order to calculate correc-
- —I4(d+2,A)} —Cs, (B8c)  tions to the kink mass. The results we have found coincide
+2 with those of Ref[2] in d=2,3,4 (see Ref[16]), illustrating
_ that the calculation of the determinant via the semiclassical
( <9F(R2)) Mog[l 167729d| (d+2A)} propagator is not afflicted with mode-counting ambiguities.
3l o . 4 ,

That allows us to use a simple momentum cutoff regulariza-
tion, which is more directly related to condensed matter phe-
—Csr, (B8d) nomenology.
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