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Oscillations and evolution of a hot and dense gas of flavor neutrinos: A quantum field theory study
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We study the time evolution of the distribution functions for hot and or degenerate gases of two flavors of
Dirac neutrinos as a result of flavor mixing and dephasing. This is achieved by obtaining the time evolution of
the flavor density matrix directly from quantum field theory at finite temperature and density. The time
evolution features a rich hierarchy of scales which are widely separated in the nearly degenerate or relativistic
cases and originate in interference phenomena between particle and antiparticle states. In the degenerate case
the flavor asymmetnAN(t) relaxes to the asymptotic limikN(«) =AN(0)coZ(26) via dephasing resulting
from the oscillations between flavor modes that are not Pauli blocked, with a power fafer1t>t
~2ke /AM?. ke is the largest of the Fermi momenta. The distribution function for flavor neutrinos and
antineutrinos as well as off-diagonal densities are obtained. Flavor particle-antiparticle pairs are produced by
mixing and oscillations with typical momentuk~ M, the average mass of the neutrinos. An effective field
theory description emerges on long time scales in which the Heisenberg operators obey a Bloch-type equation
of motion valid in the relativistic and nearly degenerate cases. We find the nonequilibrium propagators and
correlation functions in this effective theory and discuss its regime of validity as well as the potential correc-
tions.
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[. INTRODUCTION the time relevant for BBN or during the time scale of neu-
trino trapping in a protoneutron star, the neutral current in-
Neutrinos are the bridge between particle physics, astroeeraction leads to a contribution to the neutrino self-energy
physics, cosmology and nuclear physits-6], and after al-  from forward scattering off the neutrino background akin to
most four decades of the prescient suggestion that neutrinake contribution from the electron plasma that leads to MSW
may oscillate[7,8], a wealth of experimental data confirms resonance enhancemddi6]. In dense neutrino gases, this
that neutrinos are massive and that different flavors mix andelf-energy contribution leads to a nonlinear problem for the
oscillate [9-13]. Neutrino masses and mixing decidedly evolution of a given neutrino interacting with the neutrino
points to new physics beyond the standard model and prdsackground.
foundly impacts the physics, astrophysics and cosmology of The dynamics of neutrino oscillations was originally stud-
neutrinos. Neutrino oscillations in matter may provide anied in terms of Bloch-type equations akin to the equation of
explanation of the solar neutrino problem by the resonanmotion for a spin in a magnetic field—3,16,22 which are
conversion of flavor neutrinos in the medium, namely thegenerally valid for single particle descriptions in the relativ-
Mikheyev-Smirnov-WolfensteifMSW) effect [16,17] (for istic limit. For the case o$ingle particle stateshis equation
recent reviews sefl—15]). The dynamical aspects of neu- of motion for neutrino oscillations was derived from the un-
trino oscillations in extreme conditions of temperature andderlying field theory in the relativistic limif5,23]. This for-
density play an important role in big bang nucleosynthesisnulation of the dynamics of oscillations of single particle
(BBN) and in the lepton asymmetry in the early Universestates was extended to a kinetic description of oscillations
[18] (for a recent review sel8]) as well as in the physics of and mixing in a mediuni24—26. The resulting equations in
core collapse supernovae and the formation, evolution angrinciple include the effects of collisions as well as the non-
cooling of neutron starfsl9—21]. The study of the dynamical linearities arising from neutrino forward scattering off a neu-
evolution of a hot and/or dense gas of neutrinos that includegino background. They have been implemented to study the
mixing as well as collisions has been and continues to be thevolution of the neutrino distribution functions in the early
subject of much attention in the literature. Neutrino mixing Universe[6,27—-31 and in supernovag82-34 as well as to
and oscillations introduce a novel aspect in the description oftudy the relic neutrino asymmet{®5]. Novel fascinating
flavor equilibration, since the weak interactions involve fla-self-synchronization phenomena emerge as a consequence of
vor (weak eigenstates while time evolution is described inthe nonlinearities in a neutrino background with potential
terms of mass eigenstates. Therefore in a dense and/or hiatiplications onCP (and baryoih asymmetry in the early
medium where neutrino interactions cannot be neglected colniverse[6,28].
lisional processes must be studied on the same footing as the An alternative quantum field theory treatment of neutrinos
dynamics of oscillations. Furthermore in a dense backgroungh the medium used the ingredients of thermal field theory
of neutrinos such as is the case in the early Universe durinf86,37 combined with a self-consistent treatment in the case
of a neutrino backgroun(88]. Since the main method in this
approach relies on the equilibrium description of thermal
*Electronic address: boyan@pitt.edu field theory, there is an underlying assumption that the neu-
"Electronic address: cmho@phyast.pitt.edu trino background is nearly in equilibrium.
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More recently the validity of the single particle picture free field theory reveals a wealth of subtle and important
that underlies the kinetic equations for neutrinos in a mediunphenomena which leads to a firmer understanding of the va-
has been critically reexaming@9]. lidity of the various approximations as well as highlighting

In our view, the study of neutrino oscillations and mixing the potential corrections.
in the case of a dense and/or hot neutrino background via The problem that we study can be stated succinctly as
either the set of kinetic equatioi24—26 or the thermal follows:! Consider that at a given initial time we have a
field theory approach invokes a variety of approximations,’box” that contains a hot or dense gas of flavor neutrinos
some of which are not very clear. In the kinetic descriptionwith a given single particle distribution consistent with
several approximations are involved, from neglecting inter+ermi-Dirac statistics. How does thensembleevolve in
ference terms between particles and antiparticles by restrictime? How do the populations of flavor neutrinos evolve in
ing the Hamiltoniar[24] to some time averaging and restric- time? How do flavor neutrinopropagatein the medium?
tion to single particle evolution[26]. Some of these While our ultimate goal is to study the evolution in the
approximations motivated the study of RE39]. presence of weak interactions, we begin our study in this

A full quantum field theory treatment of neutrino mixing simplest free field theory case and the case of two flavors
reveals a more complex picture of oscillations beyond that ofvith the following goals in mind.
the single particle descriptidq@0—42. The authors of these (1) A study of the evolution directly from the underlying
references pointed out that a careful treatment of the FocRuantum field theorywithout making any approximations.
representation of flavor states leads to novel contributions tdhis study will clarify the nature of the various approxima-
the oscillation formula even for single particle states. Whiletions invoked in the literature and exhibit the potential cor-
it has been argued recently that Fock states of flavor neutriections.
nos may not be relevant f@matrix processef43] a quan- (2) By keeping the full evolution, the different time scales
tum statistical mechanics of dense and/or hot flavor neutrinwvill emerge, thus paving the way to providing a firmer un-
gases must necessarily rely on the Fock representé@tion derstanding of coherence effects as well as the time averag-
cupation numberfor flavor neutrino states. ing implied by several approximations.

A quantum statistical description of a dense and/or hot gas (3) A first principle derivation of kinetic equations and/or
of flavor neutrinosrequires the notion of an occupation num- Boltzmann equations requires the propagators for the fields
ber which inevitably implies a description in terms of Fock [44] in the medium. Thus the study of the evolution in free
flavor states. Furthermore, a chemical potential associatefield theory is the starting point for a systematic treatment of
with a flavor neutrino is a variable conjugate to the numbeoscillations and collisions in a medium with a neutrino back-
of these flavor neutrinos. ground.

Regardless of whether the variety of approximations usu- (4) As will become clear below, the study of even the
ally invoked are justified for practical purposes, the study ofsimple free field theory case reveals a wealth of phenomena
the dynamics of neutrino mixing and oscillations from theas a consequence of flavor mixing, which to the best of our
point of view of quantum field theory is clearly of fundamen- knowledge has not been recognized and explored fully be-
tal importance as a prelude toward physics beyond the stafiere in the case of finite temperature and density. The full
dard model. While there have been studies of the quanturguantum field theory treatment unambiguously reveals all the
field theory aspects imacuumwe are not aware of any pre- complexities associated with flavor mixing and allows a sys-
vious study of the quantum field theory of mixing in a densetematic implementation of several approximations which
and/or hot medium with neutrinos. clarify the regime of validity of the single particle descrip-

The goal of this studyin the presence of flavor mixing, tion and provide an understanding of the corrections.
individual flavor number is not conserved and a density ma- Brief summary of the result©ur main results are briefly
trix that is diagonal in the flavor Fock basis will evolve in summarized as follows.
time and develop off-diagonal elements. The dynamics of neutrino oscillations of a dense and/or

Hence the time evolution of a dense or hot neutrino gaot gas of flavor neutrinos features a hierarchy of time
has to be studied as a quantum mechanical initial value prolscales. The fast time scales are associated with interference
lem: an initial density matrix which is diagonal in the flavor effects between particle anantiparticle states while the
basis is evolved in time with the full Hamiltonian with flavor slow scales emerge from interference between particle states
mixing. In this article we focus on studying precisely the (or antiparticle statgsof different masses. In the nearly de-
time evolution of a dense or hot flavor neutrino gas in thegenerate or relativistic case the scales are widely separated
simplest case ofree field theory Our goal is to study the and processes which involve interference between particle
evolution of an initially prepared density matrix which is and antiparticle states become subdominant in the slow dy-
diagonal in the flavor basis and describes a quantum gas ¢&mics.
flavor neutrinos at finite density or finite temperature. We An initial flavor asymmetry relaxes toward an asymptotic
undertake the study of the dynamics in free field theory as aalue AN(«)=AN(0)cog(26) (with 6 being the mixing
prelude toward a complete understanding of oscillation pheangle with a power law proportional to flas a consequence
nomena in weak interactions. The first step of any systematiof dephasing Pauli blocking manifests in that neutrinos of
program must be understanding at the simplest level. As will
be detailed below, studying the dynamics of oscillations and™
mixing in a dense and/or hot medium even at the level of D.B. thanks S. Reddy for stating the question.
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one flavor_can oscillate only into un_occgpied states of neu- £=79(x)(iﬂ)ve(x)+7M(x)(iﬁ) v,(X)
trinos of different flavor and dephasing is a consequence of

oscillations between Pauli unblocked flavor states. We obtain — — Mg Mgy | [ ve(X)
the explicit time evolution of the distribution functions as +(ve(X) Vu(x))<m m )(V (x)
well as off-diagonal correlation functions. We discuss the o+ . .
phenomenon oflavor pair productionby mixing and oscil- ~ wherem,,, is the mixing and we have absorbed a potential
lations. This is a consequence of the overlap between particlghase into a field redefinition. The mass matrix can be diago-
and antiparticle states and results in the production of pairgalized by introducing a rotation matrix such that

of flavored neutrinos with typical momenka- M, the aver-

), (2.1

age mass of the neutrinos. ( ve(X) ) — ¢ S) ( "bl(x)) (2.2)
In the nearly degenerate ca@es suggested by the recent v,(X) =S C/\¢a(x)

combined observation®r in the relativistic case as is likely N ) )

to prevail in the early Universe as well as in core collapseVhere for simplicity of notation we defined

supernovae, the different time scales are widely separated. C=cosf, S=sino, 2.3

This allows to one establish an “effectivéfree) field theory

description valid on the slow time scales. The equations ofyhere ¢ is the mixing angle. The diagonalized mass matrix
motion for Heisenberg operators in this effective descriptionthen reads

are the oft quoted Bloch-type equations, but the effective

field theory also describes the quantum fields. This effective (Ml 0 ) (C —S)( Mg meﬂ)< C S)

the.ory allows one to const.r.ucF the Feynman propagators 0 M, s ¢c/img, m,/\-s c|

which feature distinchonequilibriumaspects and to clearly (2.4)
identify the potential corrections and it is valid both in the _ _ _ _
relativistic as well as in the nearly degenerate case. In the mass eigenstate basis, the Lagrangian density be-

Our study is organized as follows. In Sec. Il the theoryCOmes
corresponding to two flavors of neutrinos as well as the den- _ _
sity matrix that describes an initial state of flavor neutrinosis ~ £= $#1(X) (16— M) ¢h1(X) + ¢h2(X) (1§ = M3) ih(x).
presented. In this section we address the quantization aspects
and point out the source of subtle mixing phenomena be-
tween particles andntiparticles confirming previous results
In .the literature[40]. In Secs. Il and IV we study the BVO-  |abel a=e,u for the fields associated with the flavor eigen-
lution of the flavor asymmetry as well as that of the indi- ;otaq),
vidual distribution functions, focusing on the emergence of a Upon quantization in a volum¥, the flavor field opera-
hierarchy of scales and extracting the asymptotic long timg, o v,(x) at timet=0 are written as
dynamics as well as the phenomenon of flavor pair produc-

In what follows, we reserve the latin labiet 1,2 for the
fields associated with the mass eigenstatesnd the greek

tion via oscillations. In Sec. V we present the “effective” 1 o

field theory that describes the long-time dynamics and dis- v, (X)=——= >, v (k)ekX

cuss its regime of validity. In this section we obtain the Feyn- W5

man propagators and discuss their nonequilibrium aspects. In oy (@ (@), pla)ty (@)

Sec. VI we discuss the regime of validity of the several ap- va(k) ; (Vi BV o) 2.6

proximations as well as caveats in the formulation and
present our conclusions. where the index refers to the Dirac spin index and we have
kept the same notation for the field and its spatial Fourier
transform to avoid cluttering of notation. A flavor Fock rep-
II. NEUTRINO MIXING AND FLAVOR DENSITY MATRIX resentation is defined by choosing the spindrand V. In
principle these spinors can be chosen to be the positive and
We focus our attention on the evolution Dfrac neutri-  negative energy solutions of a Dirac equation with an arbi-
nos, postponing the case of Majorana neutrinos for furthefrary mass; in what follows we will choose these to be
discussion elsewhere. Furthermore, we restrict the diSCUSSiqﬂe,mM, name|y the masses of the flavor eigenstates in the
to the case of two flavors which provides the simplest sceahsence of mixingVhile we consider this to be a physically
nario. Most of the results can be extrapolated to the case Gfiotivated choice, it is by no means unique and different
three active flavors including the case of sterile neutrinosgjternatives have been discussed in the literadée-432.

but for the subtleties associated wi@P violating phases, Thus the spinors) andV are chosen to be solutions of the
which of course are of great interest but will not be ad-fg|lowing Dirac equations:

dressed here. We will call the flavors the electron and muon

neu_trinp, but the results apply more broadly to active-sterile VO(y- K+ ma)U(ga2=wa(k)Uf;a£,
oscillations. : :
Consider the Dirac neutrino fields with the Lagrangian o> @ _ (@)
density given by Y (y-k+Emy)VI == VI, (2.7)
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LK) =K+ m?. 2.8
@a(k) g 28 o= [ exulEomen- S 1ol -0 1
The Dirac spinorsJ andV are normalized as follow$no (2.16

sum over the indexy):
(a),r (@) are time independent.
Ugx Vo =0 The discussion that follows will focus on describing a
(2.9  statistical density matrix which idiagonalin the flavor basis
. T and describes a hot and/or dense ensemble of flavor neutri-
and the creation and annihilation operatarg, Bk 0beY  nos This discussion requires tHavor Hamiltonian that is

the usual canonical anticommutation relations. obtained from the Lagrangian densitg.1) for vanishing
On the other hand, upon quantization the field operatorﬁqixing Me, =0, namely
M ’

i (x) associated with mass eigenstates at timed are
given by

(@)1 (@) () Ty /(@)
U Uk)\,—V ka, Sy

Hi=HetH,=2 [vo(K)(y-k+m,)v,(K)]
K, a

1 o
tﬂ.(X)—W; pi(K)e'kx
_E ka}zT (@) IB(a)TB(a) 1)wa(k). 217

a® g® (I)T (I)

FoTbig, Go 2.1 I L . .
; kAT ko ) (2.10 The flavor Hamiltonian above is invariant under indepen-
dent phase transformations of the flavor fielgs thus the
where the spinor$,G are now solutions of the following individual flavor charges commute witH;

Dirac equations:

Yy k+MOFD =E(FE) qazf d3xv1(i)va(i)=% 1K) v(K)
o (1) (i)
’yo()/'k+Mi)G_ —E;(k)G* o (2.11 :Z[ (kazT (@) ﬁ(a)TBk +1]. (2.19
K,\

Ei(k)=Vk?+M? (2.12
Using the transformation law2.2) between flavor and
with the normalization condition§o sum over the label mass eigenstates it is straightforward to find that the total
charges are the same, namely

F(I)TF(I) _G(I)TG(I)

Ot _
k)\,—5)\’)\r, FE’)\Gilz’}\,—O.

(2.13

Similarly, the operatora andb satisfy the usual canonical
anticommutation relations.

> KDkt = 2 1K D ok, )

ik
=Q1+tQ2=0ct0q,. (2.19
A. Hamiltonian and charges

The total free field Hamiltonian for mixed neutrinos in the B. Density matrix and time evolution

diagonal(mas$ basis is given by As stated in the Introduction, our focus and goal are to
study the time evolution of the distribution function of flavor
H= 2 [l#. (7 K+ M. )¢|(k)] neutrinos, at the level of free field theory at this stage. The

question that we posed in the Introduction and address here
is the following: consider that at some given time the gas of
— OLPNOBMNOMNC; flavor neutrinos and antineutrinos are described by a quan-
a; +b: bt —1)Ei(K). 2.1 - ; T2 b
gl( o BTG DER. (219 tum statistical ensemble with a Fermi-Dirac distribution
function with a fixed chemical potential for each flavor,

Therefore the time evolution of the operatard is given  namely
by

. @)=~
al) (t)=ag) e 1B, 0= Bty 1”

b(') (t) b(') —iE; (k)t (215) 1
0= T 229
The free field Lagrangian densit@.1) is invariant under efleal)Fra 1
independent phase transformations of the fields; hence

the individualU (1) charges with 8= 1/T and u, the chemical potential for each flavor.
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1/3

Such an ensemble is described by a quantum statistical A(@)
density matrix which igliagonalin the Fock space of flavor  k{®¥= (372N ()P=k®) (ev)=6.19 ———
ei is Qi 10% cm™3

genstates and is given by

(2.28

with (¥ the neutrino density for each flavor. Although the
zero temperature limit is described by a pure state, this state
is a truly many bodystate.

An important many bodyaspect of the situation under
consideration can be gleaned by studying how the creation
and annihilation operators of mass eigenstates act on the
state|FS). Consider for example the action of the annihila-

;J:;)(e)@);)(ﬂ) (2.21)
with the flavor density matrices
pl@) =g AlHa=rala), (2.22

Hence the initial distribution functions are given by

(a)t (a) ~(@) (a)T (a)_ (a) tion operatora(}) on the state. To understand this question
X ) Trp n'“(k), a )
we must first obtaire,’; in terms of the creation and anni-
(@7 (a) (@) pl@d)T H@) _ ) hilation operators of flavor eigenstates. From E10 and
<'Bk > Trp Bix Bin=n(K). 223 the relation between fields given by E@.2) we find
In the expressions above we have assumed that the distribu- @) (1) 1 >\ %
tions of flavor neutrinos are spin independent; of course a &= Fi [Cre(k) =Sy, (k)] (229

spin dependence of the distribution function can be mcorpoand the expansion for the flavor fields given by E2.7)
rated in the description. learl dicates that ifk<kZ<ke, f le. th
Although we have stated the problem in terms of a gaceary indicates that i F. TOF exampie, hen
flavor neutrinos in thermal equilibrium with Fermi-Dirac dis- & c2IFS) is a superposition of states with an electron neu-
tributions, this restriction can be relaxed to arbitrary non—'frlno “hole,” an electron antineutring a muon neutrino
equilibrium single particle distributions consistent with “hole” and a muon antineutrino The antiparticle compo-
Fermi-Dirac statistics. Regardless of the initial distributionsnents of the wave functloak }\|FS) are a result of the non-
the ensuing time evolution with the full Hamiltonian with vanishing overlap between the positive energy spinors for
mixing will be out of equilibrium mass eigenstates and thegativeenergy spinors for flavor
eigenstate$40].
C. Cold degenerate case

The case of a cold, degenerate gas of neutrinos is de- D. Time evolution

scribed by the zero temperature limit but fixed chemical po- Within the framework of free field theory of mixed neu-
tential of the density matrix2.21) with (2.22. In this limit  trinos, the time evolution is completely determined by the
the individual flavor neutrino gases form Fermi seas “filled total Hamiltonian Hgiven by Eq.(2.14).

up” to the Fermi momentunk!®). Consider the case of a In the Schrdinger picture the density matrix evolves in
positive chemical potential corresponding to a degeneratéme with the full Hamiltonian as follows:
gas of neutrinos without antineutrinos at zero temperature.

The degenerate ground state is given by p(t)=e Hip(0)ett, (2.30
IFS)=|FS)®@|FS)~) (2.24 Since the full HamiltonianH does not commute with
. He,H, because of the flavor mixing, the density matrix does
with not commute with the Hamiltonian and therefore evolves in

time. This is the statement that the initial density matrix
(2.21) describes an ensemhbbeit of equilibriumwhen flavor
IFs)@=]] a(lz“T)Ta({fT|0>(“) (2.25  neutrinos are mixed.

k ' ' Our goal is to obtain the time evolution of the distribution
functions for flavor neutrinos and antineutrinos, namely

k()

and the flavor vacuum sta@)(*) annihilated by the destruc-

tion operatorSa(k“A),,B(“) The initial density matrix in this — p(a)(g t)= Trp(“)(t)a("‘)T (“) Trp(“)(O)aka)T(t)a&‘?(t)

case is that of a pure state,

(2.31
p=|FS)FY|, (2.2 and similarly for the antineutrino distribution function. The
initial distribution functionsn(®(k,0)=n(*(k) (and simi-
the distribution function of flavor neutrinos is given by larly for antineutrino} given by Eq.(2.23 or Eq.(2.20 for
the case of an initial thermal distribution.
n(@ k) =0k —k), n9(k)=0, (2.2 It is more convenient to describe the time evolution in the

Heisenberg picture wherein the density matrix does not de-
and the chemical potential ig,= w,(kg). The Fermi mo- pend on time and the Heisenberg field operators carry the
mentum is as usual given by time dependence as made explicit in E2.31).
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The free fields associated with the mass eigenstétes (1) The amplitude for creating a mass eigenstate out of the
evolve in time with the usual time dependent phases multivacuum of mass eigenstates by an electron neutrino creation

plying the creation and annihilation operators, namely operator is given not only by the cosine or sinespectively
_ _ of the mixing angle, but also by the overlap of the spinor
ik, =e"yi(k,0e wave functionsF ), U( .

_ _ _ _ (2) The electron neutrino creation operat®@stroysanti-
=> (al(zl)xe_iEi(k)tF(El)ﬁb(l)ETxeiEi(k)tG(i)R ). (2.32  particle mass eigenstates. While this aspect is not relevant
A ' ’ ’ ‘ when the electron neutrino creation operator acts on the
. . ) ) ) vacuumof mass eigenstates, it becomes relevant in a me-
The time evolution of the fields associated with ﬂaVOfdium where both partide and antipartide states are popu-

eigenstates, namely, , is not so simple: lated.
. _ . _ These aspects, which were also highlighted in Ref8—
v (kt)y=eMty (k,00e 42], will be at the heart of the subtle many body aspects of

neutrino mixing which contribute to the time evolution of the
- (a) (@) 4 pla)t (a) distribution functions studied below.
; (DU TGV (239 The time dependent distribution functions are obtained by
taking the trace with the initial density matrix
where the time dependent operatm%)(t),ﬁ(f’%a(t) can be . . (@)t (@
obtained by writing the flavor fields in terms of the mass n(“)(k,t)=Trp(“)(0)ah (Day (V) (2.36
eigenstate fields using E¢R.2) and projecting out the com-
ponents using the orthogonality property given by EQ9),
leading for example to

and similarly for the other distribution functions. One can
use the expressiori2.35 for the time evolution of the
Heisenberg field operatdand the equivalent for the Hermit-
ian conjugatg however, in order to compute the time
evolved distribution function we would need to compute the
o1 O . . expectation value of bilinears of the field operatgfsn the
B\ (D =VIL [Cha(k,1) +Syp(K,1)]. (234 flavor diagonal density matrip(0). To dothis we would
have to rewrite the creation and annihilation operators
The expressiofi2.34) reveals several subtle aspects whicha () () “etc i the expressiof®.39 back in terms of the
are highlighted by considering in detail for example the time _** ' "k’ L 0 (@) .
evolution of the operator that creates electron neutri@os creation and annihilation operators, .8y , . €tc. This is

a5 () =UETCyr (K +Sy(K,1)],

A\ K\ !
similar analysis holds for the muon neutrinos and their reOPViously a rather cumbersome method. A more systematic
spective antiparticles manner to carry out this program is presented below.
Using the expression®.17), (2.18 we find the following

@t O i e (DT (&) identities:
ay (D=2 {(Cagy @mMF UL 1

N (R0 (R =n@ (K t)—nl@(k
+Sq(22)TeiEz(k)tF(R?£TU(E‘?3\) 2<Va(k,t)’)/ vo(k,t))=n'(k,t)—n'¥(kt)+1,

A (2.39
(1) —i ()t (e)
+(CbZ}, e 'El(knc;_glk,ulfx 1 o ROGR )
. t PV Va(kvt)(’Y'k+ma)Va(k1t)
S8, e G UC)). (239 20,(K)
=n{®(K,t)+n@(k,t)—1. (2.38

It is a simple and straightforward exercise using the com-
pleteness and orthogonality of the respective spinor wave- s the computation of the distribution functions or
functions to show that the creation and annihilation operatorg,mpinations of them requires us to find general expressions
of flavor states indeed satisfy the canonical anticommutatiops the form
relations. A Fock representation of flavor states is therefore
consistent and moreoveleededt(_) describe a quantum sta- (Ve(K,H) Ove(K,1)) = O [ oK) Ty [ vel(K, 1) 1),
tistical ensemble of flavor neutrinos.

The first term in parentheses in EQ.35 shows that the
annihilation operator for electrons corresponds to the exwhere the Dirac indice$,g are summed over and the aver-
pected combination of creation operators for mass eigerages are in the flavor diagonal density matx1), (2.22.
states multiplied by the cosine and sine of the mixing angle, Since the time evolution of the fieldg; is that of usual
but also multiplied by the overlap of the different spinor free Dirac field in terms of positive and negative frequency
wave functions. Furthermore, the electron creation operatatomponents, we write
also involves thennihilation of antiparticles associated with o o R
the mass eigenstates, a feature recognized in[Reff. There Py (kD) =(AD(k)e Eit+ AD(k)eEit) gy (k,0),
are two important consequences of thectrelation (2.35: (2.40
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where we have introduced the positive and negative fre- To (kt) T ,e=CSY[F, (K,H)—F4 (kD)7

qguency projector operators , (k) and A _(k) respectively,
which are given by

k(|)+ Mi

)Ry — ) (Mt _
ADK) =2 FLFy 3E

KAT KA

7°, (2.4)

Ky~

M;
A(')(k) 2 G(') G(I)T :70(2—Ei>’ (2.42

Keiy=7°Ei(K)— y-Kk. (2.43

These projection operators have the following properties:

AD=AP), AYTR=ADK), (244
ADRADK)=0, ADK)AD(K)=0, (2.45
ADR)+AOR)=1. (249

PHYSICAL REVIEW D69, 125012 (2004
(2.59

Top(K,)=7°T 5k, — 1) ¥° (2.60

Furthermore, since the initial density matrix is flavor di-
agonal, we find the following expectation values:

([ve(k, DI ve(k, 1))
=([ve(K,0) 1, [ ve(K,O) 1) Ted K, 11l Ted K, D) 1gs

([, (KO L[ 7, (KO T Ten(K ) 1L Ten(K ) Igs,
(2.61

and similarly for the muon neutrino fields, whefe- -)
stands for the trace with the initial density matrix.

A noteworthy feature of the abovexactexpressions is
that the time evolution of the flavor neutrino fieldsx posi-
tive and negative frequen@omponents of the mass eigen-

We can now write the time evolution of the flavor fields in states; namely a flavor neutrino state is a linear combination
a rather simple manner by using the relations between thef particles andantiparticles of mass eigenstates. Thus a
fields given by Eq(2.2) and the inverse relation, which al- wave packet of flavor neutrinos will necessarily mix positive

lows us to write ;(k,0) in Eq. (2.40 back in terms of

and negative frequencies of mass eigenstates. This mixing

between particles and antiparticles is a consequence of the

v,(K,0). We find _ , ,
fact that a flavor eigenstate is a squeezed state of mass eigen-

1K) =y°F1(K,D[Cre(K,0 S, (K,0)], (247  states and vice vergdO]. _ _
A simple calculation yields the following expectation val-
El(lz,t)=[C;e(IZ,O)—S;#(E,O)]ﬁl(lz,t)yo, (2.49 ues in the initial density matrix:
Pa(K,1) = ¥OF (K, )[ C,(K,0) + Sve(K,0)], 249  {[va(KO) ] [va(k0]s)
da(k,) =[Cr,(k,0)+ Sve(K,0) TF (K, 1) 7, (250 [z (al" U, (UL,
where we have introduced the following time evolution ker-
nels: +2 <B(a)‘r (a) >[v(—a12>\ V(a) x]} (2.62
Fi(k,t) =7 AP (ke Bt AD(k)eEitY, (2.51)
E(kD=F.(k—1)7° j=1,2 (2.52 =n(9(k) k“+ma) +[1-n(k)]| 9° oka”Ma 7P
i(K, iK=0y, J=1le : 20,K) /¢, 2w (k)
After straightforward algebra using the mixing transfor- .
mation (2.2 and Egs.(2.47)—(2.50 we find the following =[Nu(K)Isr, (2.63
result for the time evolution of the flavor fields:
R . B, B, k,=yw?(k)—y-k (2.64
ve(K, 1) =Ted K, 1) ve(K,0)+ Tg, (K, 1) v, (K,0), (2.53
— _TROF (B — S O wheren“(k) ,F”‘(k) are given by the expressioi(d.20 and
ve(k, D)= ve(K O Ted ki) T2, (K0 Teu(k,1), (2.54 there are no flavor off-diagonal matrix elementgat0 be-
- - - - - cause the initial density matrix is flavor diagonal.
V(KD =T,u (kD) v, (KO +T (kD) ve(k,0), (2.59 Combining all the above results, we find the final compact
. - . .. - . - form for the time dependent expectation values in 2439,
Vp,(k!t): V,u.(kIO)T/_L,u,(klt) + Ve(k!O)T,ue(kvt)v (256 namely
where the time evolution operators are given by . . RS .
<Ve(kat)OVe(kvt»:Tr[Ne(k)Tee(kvt)OTee(kvt)]
k,t)=y°[C?F1(K,t)+ S?F (Kt 25 U R
Tedk =71 J+S kb, (259 + TN (K) T (K1) OTe, (K 1)1,
Tuu(K) =Y [C?Fo(k ) + SFa(K,b)], (2.58 (2.69
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1. Exact time evolution of distribution functions

The exact time evolutioriin free field theory of flavor
neutrinos is given by
n®k,t)=1©(k,t)+I®(k,1), (2.66

wherel ©®(k,t) andJ®(k,t) are given by

1 ~ =
1O (k,t) = mTr[Ne(k)Tee(k.t)vo(ke+ Me)

X 0T oK, 1)], (2.67

1 L
J®(k,t)= mTf[NM(k)TW(ki)7’0(kenL me)
Xy Te, (kD)1 (2.69

and
n®k,tH)=1-1©(k,t)—I®(k,t), (2.69

wherel ©(k,t) andJ®(k,t) are given by

1©(k,t)= 4w1(k) TrINe(K) Tee K,t) (Ke=me) Ted ki) ],
(2.70
IOk = g7 TINL (K T (kD) (Kem M) Tey (K1) .
2.71)
For the muon neutrinos and antineutrinos
n(k,t) = 1" (k,t)+ 3™ (k,1) (2.72
wherel ¥ (k,t) andJ®*)(k,t) are given by
1 I
18k t)= Far, (K TN, (KT, (k1)
XYk, +m,)y°T, kD], (273
I (k)= Fo, (K T Ne(K)T (K, 1)
XK+ M) YTk D] (274
and
Nk, t)=1-1®(k,t)—I®(k,t), (2.75

wherel )(k,t) andJ®)(k,t) are given by

_ 1 o N .
1) (k,t)= mTr[Nﬂ(k)TW(k,t)(kM— m) T, (Kb,
g (2.76)

PHYSICAL REVIEW D 69, 125012 (2004

1 U B,
I (k,t)= mTr[Ne(k)T#e(k,t)(kM— m,)T ek D]
" 2.77

The calculation of the traces is simplified by the observa-
tion that all of the different terms that enter in the trace, such
as N, (K); Ty o (K1) 7% 9T 4 o (K1), can be written in the
form

YPA(K, 1) — - A(K, ) +B(K,t)=A(K,t) + B(K,t)
(2.78

where the coefficient functions(k,t),A(k,t),B(k,t) can

be read off each individual term. Thus the traces in the terms
above can be calculated by using the standard formulas for
the traces of two and four Dirac matrices.

E. Fast and slow time scales

While the exact compact expressions above describe the
full time evolution and provide a set of closed form expres-
sions, they hide the fact that there twadely differenttime
scales. These different time scales can be revealed by unrav-
eling the different contributions to the distribution functions
as follows. Consider the expectation value on the right hand
side of Eq.(2.39 for the case of the electron neutrino:

([ve(K.D I ve(K,D)g)
=CH[ (KO ][ Pa(KD)]g)
+ S [ (K O L h2(K, 1) 1g) + C[ (K, D) ]
X [a(K, 1) g+ (KO L a (K, ) 1g)s (2.79

the case of the muon neutrino can be obtained from the ex-
pression above by replacirg—C,C— —S.

By writing each one of the fieldg; in terms of the posi-
tive and negative frequency contributions which evolve in
time with the phases™'Fi(W! respectively, it is clear that in
the productsy;(Kk,t) ;(k,t) there is a contribution that does
not depend on time and terms that oscillate in time with the
phasese®2EiW These oscillatory terms, which arise from
interference between particles and antiparticles akin to
Zitterbewegungdo not vanish when the density matrix is
diagonal in the flavor basis. In the general expectation values
in EqQ. (2.39 these oscillatory terms will multiply the matrix

elements of the forrrEE’)A(’)G(_')lzm; thus if these matrix ele-
ments do not vanish, these oscillatory terms are present. In
the second line in Eq2.79 a similar argument shows that
there are two types of oscillatory ternes;'[E1(K+E2(1t gnq
e*[E1(~E(It The former arise from the interference be-
tween the particle and antiparticle states of different masses,
and the latter from interference between particle states of
different massesor antiparticles

The combined analysis from solar neutrinos and Kam-
LAND data [45] suggests that for two flavor mixiny!?
—M3=AM2~7x10"° (eV)? and cosmological constraints

from the Wilkinson Microwave Anisotropy Prob@VMAP)
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[46] suggest that the average mass of neutrinosMis
=0.23 eV. Therefore even in the nonrelativistic limit with
k<M; the ratio|E; (k) — E,(K)|/(E1(k) + E5(k)) <10 and
certainly much smaller in the relativistic limit>M; . Hence Using Egs.(2.47)—(2.50), it follows that
because of the near degeneracy, or in the relat|V|st|c limit for

any value of the masses, there are two widely different time 202

scales of evolution for the flavor distribution functions. The x(k,t)=
longer one corresponds to the interference between particle

states(or antiparticle statgsof different masses while the

x(Kt)= > ([lﬂl(kt)t//z(kt)+ yak )k D]). (33

Tr{[Ne(K) =N, (K I[F1(k, ) F (K, t)

shorter one corresponds to the interference between particle +Fa(KOF (KD 3.4
and antiparticle states of equal or different masses. This point
will be reconsidered below. The computation of the traces is simplified by writing
The evolution of the flavoflepton asymmetnhighlights
these time scales clearly and is studied below. Fi(k,H)=P;(t)+M;(t), (3.5
IIl. DEGENERATE GAS OF NEUTRINOS: EVOLUTION PY(t)=Ccog E;(K)t], (3.6

OF FLAVOR ASYMMETRY

The results obtained above are general and valid for any . ik
temperature and chemical potentidensity. In this section P;(t)= ——~=sin E;(k)t], 3.7
; : . E;(k)
we focus on understindlng the time evolution of the flavor
asymmetryn{®@(k,t) —n(®)(k,t) in the case of a cold, degen-
erate gas of flavor neutrinos. From E¢3.37) and(2.79 we M (t)= — IM; —Lsin(E;(kt], (3.9
find E; (k)
n®(k,t)—n®(K,t) and similarly we write
c? .. - S . _
= 5 (kD gk D)+ S (P D Ya(k D)~ 1 No(k)=Q,+M,, (3.9
C S RO UKo + PR (R Qu=7"Q0~7-Qu. (310
+ 7<¢1(k,t)¢z(k,t)+ Po(K, 1) (K1), (3.9 @ T '
. N 0 1
(K, )~ n(K,1) Qo= 5[k +1-n(K)], (311
S R c? .. .
= S (UKD Yk D)+ (YK D (K D)~ 1 c B
Q.= [n@(k) = 1+n{(k)], (3.12
CS , . N - N 2w4(k)
- 7<¢1(k,t)¢z(k.t)+ Po(K,t) (K1), (3.2
M,= @ (k)= 1+n@(K)]. 3.1
The first line on the right of the expressions above is time “ 2wa(k) [0 =1+ k] 313

independent because the overlap between positive and nega-

tive frequency components vanishes, and the time depefeor further convenience, we define

dence arises solely from the interference between different

mass eigenstates. The time dependent tésmsond lines in - - -

on the right the above expressiorase opposite for the two AQ=Qc~Q@,, AM=M.=M,, 3.14
flavors, realizing the fact that the total charge of mass eigen-

states equals that of flavor eigenstates and is time indepeit terms of which we obtain

dent[see Eq(2.19].

Furthermore the expectation valugs! (K,t) ;(K,t)) (no . C*
sum oni) are time independertin the case of the free field x(k,H)=
theory under consideratiprsince the interference term be-

TH(AQ+AM)[Py(—t)+My(—1)]

tween positive and negative frequency spinors vanishes. The X Y[ P,(t) +My(t) ]+ (AQ+AM)[P,(—1)

time dependence is completely encoded in the contribution 0

that mixes the mass eigenstates. M=y TP + My (D]} 315
Therefore the time dependence of the flavor asymmetry is

completely determined by the quantity After some lengthy but straightforward algebra we find
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k,t)= x(k,0)—2C2S[ (n® (k) — n(®(k)) — (n(®) (k) K K&
x( x( [(n®( ( (nt( LI @20
— K>+ MM, KE kg
—n((k))] 1——)
E1(K)Ex(k) — 2_ 2
— M 2 2 o Mi=Mj
2 E1(k)+Ex(k) k?+ MM, m=k—e, Sm*=mi—m;5= K (3.22
s 2 EL(K)E(K) F F
[ Ex(K)—Ea(K) . AM? . Am?
X sir? fl’)}, (3.16 my=m{ 1+ amz)’ my=m _W
(3.23
whereX(IZ,O) is given by
81:\/q2+m%, Er= q2+mg (324)

x(K0)=2C*SL(n (k) —n' (k) — (n k)~ (k))]. Hence, in terms oV ()= (k{)*/37 [see Eq(2.28], we

(317 find that the time evolution of the flavor charge densities is

The expressioii3.16 for the time dependence of the fla- 91IV€N by
vor asymmetry clearly shows that neutrino mixing results in

. . t
a time evolution of the flavor asymmetrynlessthe flavor e )=N(e)—6C282N(e)(If(r)+ls( 7)), (3.25
asymmetry for both flavors is the same. This is obviously a
consequence of Pauli blocking: if the neutrino states are oc-
cupied up to the same momentum electron neutrinos cannot qu(t):N(,L)JFGCzSzN(e)('f(TH| (7)), (3.26
transform into anfoccupied muon neutrino state and vice- \Y s

versa.
In the case of a cold, degenerate gas of flavor neutrino¥/here
(we assume here both chemical potentials to be pogitixe

1 2+ mm [e1te, ]

have If(T)=J dqqz(l—q 1 z)sinz 1ter |

ar €1E9 L 2 ]
n@k)—0k9-k), n@k—0. (318 (3.27

) o

If the chemical potential is different for the different fla- | (7)= fldqqz 1+q +m1m2)sin2 F1—%2 |

vors, the expression above shows that each wave vector qr €182 | 2 ]
mode will evolve with a different frequency and as a conse- (3.28

guence of free field evolution there is no mode mixing. The o

important question is what is the time evolution of togal We have separated the contributions from the ffagtr) |

chargewhich is the integral of the flavor asymmetry over all @nd slow] I(7)] time scales as discussed in Sec. Il E above.
momenta. This time evolution will be a result of thephas- N particular, as discussed above, the term that oscillates with

ing through the oscillations between different modes that aréhe Sume; +&, is a consequence of the overlap between

not Pauli blocked. particles and antiparticles. The prefactors that multiply the
We now proceed to study analytically and numerically theSine functions in Eqs(3.27), (3.28 arise from the overlap

time evolution of the flavor charge densitigqs/V with q,, betweenparticle-antiparticle spinors in(3.27 and particle-

given by Eq.(2.18 andV the volume. We begin by defining particle, antiparticle-antiparticle spinors (8.28. The over-
lap between particle and antiparticle spinors is nonvanishing

M;+M, P, for different masses. Similar contributions from the overlap
— AM“=Mi—M3, (3.19  between particle and antiparticle states of different masses
have been found in the studies of Re#0-47.

) ) _ Since the mass eigenstates are almost degenerate or alter-
so thatM; andM, can be written in terms dft andAM?as  patively for any values of the masses in the relativistic limit
we find

M=

A 2
1+ —
4M?

2
1-— ). (3.20 2 2.2
2 +mim m
AM q LS q

M:L:M

) M2:M 2 4

AM?
4M?2

AM?
4M?2

8182 g4
We take the following as representative values for the two
flavor case [9,10; M=0.25eV and AM?=7 e=\g2+m? (3.29
X 10°° (eV)2. In what follows we assume th&g>k# and
introduce dimensionless variables by takkfyas the com-  with AM2/4M?~3x 10~*. Therefore the coefficient that re-
mon scale; the opposite limit for the Fermi momenta can besults from the overlap between the particle and antiparticle
obtained simply from the results below. Hence we define spinors of different mass is given by
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In the opposite limit, forr>1/m the dynamics is com-
pletely dominated by(7).

Figure 1 displays the early time evolution bf(7) and
I¢(7) for 0O<7=<1/m. It is clear from this figure that¢()
averages out to its asymptotic value on a short time scale

2.00e-12

1.50e-12 | ~1 (t~1/kg) and thatli( 7) begins to dominate the dynam-
| f(q;) ics on time scales= 1/m as discussed above. In the case of
Fig. 1, withki>M the time scale of averaging ts- 1/kg,
1.00e-12 i

but for ke<M it would be of order .
In terms of dimensionful quantities the inequality ob-

tained in Eq.(3.32 above translates intb< 1/M. With the

current estimateM ~0.25 eV the analysis above suggests
that the particle-antiparticle interference is dynamically rel-
evant during time scaldss 10 *° s. Although this time scale

is comparable to the expansion time scale at the time of the
electroweak phase transition, it is far shorter than the time
scales relevant either for primordial nucleosynthesis or for
dynamical processes during the collapse of supernovae or
neutron star cooling.

While the behavior ot (7) andl(7) as a function ofr
must in general be studied numerically, the long time limit
can be extracted analytically.

The asymptotic long time behavior 6f(7) andl¢(7) is
and the coefficient that results from the overlap of particledetermined by the end points of their integrands, in particular
particle or antiparticle-antiparticle of spinad#ferentmasses for momenta near the Fermi surface. Two relevant cases
is yield the following results.

AM2 M )2 Relativistic limit: max(kg ,kE)>M,,M,
(3.3

am? E(k) 1 Ll gP+mm, 2 [ [6m?
|S(T):—j dgg| 1+ + sin T
2 qr 27'
a factor at least of orderAM?%/4M?)2~10"7 smaller than

€182 om 2
4. ( ﬁsz) ] N
—q,sin
/7 . o 2g,
that of I4(7). Furthermore it is clear that the interference
terms between particle and antiparticle average out on a time 1j1 (
1_

scale t;=1/M whereas the particle-particle contributions 1¢(7)=> dqq?
r

va —ga(M—my)?
evolve on a much slower time scalg~ M/AM?2>t;.
However, despite the fact that the coefficients of the os- 1
cillatory terms inl4(7) andl(7) differ by several orders of —2) ;
magnitude, the fact that the time evolutionlgf7) is much T
slower allows for a time scale within which both contribu- 5 i )
tions arecomparable This can be gleaned from the follow- where 6m” is defined by Eq.(3.21) along with the other
ing argument. dlmen5|onI¢§s yar_laples.
The integrals forl(7) and |(7) are dominated by the Nonrelativistic limit: kZ ,kf<M1,M
regiong~1. Consider an intermediate time scale so that the

5.00e-13

0.00e0 T T T T T
0 50 100 150 200 250

300 "C
FIG. 1. I(7) andl(7) for k=100 eV, k&=0, M=0.25 eV,

AM?=7x10"% (eV)?, vs r. For these values t=400.

AM2 M \?

am? E(k)

g°+mym,

€182

(3.30

24+ mym
1+ 37540

€182

whereE(K) is an energy scale.
Therefore the coefficient of the oscillatory termlir) is

, (3.33

(6m?7)?
q>+ mlmz) 1

q €182

X[sin(27)—sin2q,7]+ O (3.39

argument of the oscillatory function in(7) is of order one, (1)= lfldqqz( - q°+ mlmz) m;m;
but the argument of the oscillatory function lig(7) is <1. s 2)q, £€1€5 (my—my) 7
The contribution to the integral in¢(7) is of order

m2(Am?/4m?)2 while the contribution to the integral(7) is " Sir{(m . )( ot ) q

of order 2(m?7?). Therefore, it is clear that even when the v 2mym, '

prefactor of its oscillatory term is small, the integrand of
I¢(7) will be larger thanthat of I4(7) in the time domain
during which

2
> (6m?7)2= r=<1/m.

[ 6m?
m2 e
4m?

(3.32
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20 40 60 80 100 Op

0.25 eV,AM?=7x1075 (eV)?, vs Qr, with

IV. DISTRIBUTION FUNCTIONS OF NEUTRINOS

AND ANTINEUTRINOS

The distribution functions are given by Eq2.66—(2.77)
for which after lengthy but straightforward algebra we find

the following expressions:

m;—m
for u<1; (3.35
m;m,
1M1 g+ mym, (my—m,)?
If(T)_zfqrdqqz(l_ £18, | mumy(mi+tmy) 7
L 1®(k,t)
. .3
X S|r{(m1+m2) 1+ Zmlmz)r} q;
Xsin (m;+m,)| 1+ q;z +0 i
v 2m;m; ! 72
m;+m
m;m; J@(k,t)=
1(1 q?+mym,
|f(7)—§fqrdqq2(1_—8182
(my+my) 7
x{1-cog(m;+m,)7]} for W<l.
(3.36

In both cases, the flavor asymmetry density at asymptoti-
cally long time is given by

=n®(k)—2n®(k).A(k,t)

2

[n®(k)—(1-n®(k))]1B(k,1),

w3(k)
4.2

C2S?’(M;—M,)?+ M M,+k?

oK), (K) (k)

—[1-n®™K) D+ (™ (k) +[1-n(k)])
2

weKw, ()

X[ (k)—(1-n"(k))]C(k 1),

X A(k,t)—

4.2

wheren®(k) and n®(k) are the initial distribution func-

tions given by Eq(2.20 and

1 (&) _ A/(w)
v[qe(t)—qﬂ(t)]—{J\/’ —NW]cog(26)+ O(1k).

(3.37 2 2[( k2+M1M2) . (El(k)+E2(k) )
Ak t)=C?S?| | 1—- —————|sir| —————t
(ot Ex(KIEo(K) 2
The power law falloff is a consequence of dephasing be- k2+ MM, E;(K)— E,(K)
tween different flavor modes that are not Pauli blocked. Fig- + 1+E WE (k))sinz( 5 t”
1 2

ure 2 displays the slow contributidg(r) and its asymptotic
limit given by Eq.(3.33 in the relativistic case.
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B(k,t)=C*S*(M,— M )2[ L i) il 14 AM il 1AM
)= - ——si = = —
1 2 EL(K) 1 me=M| 1+ Ve cog260)|, m,=M|1 Ve cog20)]|.
1 2 4.1
2 In terms of the small ratidM?2/M2~10"2 we find the
202 average of the distribution functions over the longest time
C(k,t)=C2S%(M;— M,)? 0 SIN2(E4(K)t) scale to be given by
1
n{®(k)=n®(k)—2C282[n(® (k) —n*) (k)]
. c?s? . 202821 ’ B
si B — _ (a) (@)
B3k - Ex(KE,(k) Rlk,nt,nt], .13
nl®(k)=n®)(k)—2C?Sn® (k) —n¥) (k
X sin E1(K)t]sin Ex(k)t]]. (4.5 a () o B [k (]
—R[k,n(® nla], (4.12
The expressions for®(k,t) and J®©(k,t) are obtained
from those forl (9(k,t) andJ®(k,t) above by the replace- g (k) =n(k) +2C2&2 (k) —n‘ (k)]
ments —R[k,n(®,nl)], (4.13
n@(k)-[1-n@(k)], n®(k)—[1-nM(K)]. _ _ _
( ) [ ( )] ( ) [ ( )] (46) Hgl,;)(k):n(M)(k)+2C282[n(e)(k)_n(ﬂ)(k)]
Finally the expressions for —R[k,n(®@,nl@], (4.14
1 (K, 1), 18 (k,t), 3™ (k,t),J®)(k,t) are obtained from
those for the electron neutrino by the replacements with
@) on®@ k). n@(K)wnt(k _ K2M2 2\ 2
n®(k)—=n*(k), n'®(k)=n'*(k), R[k,n(“),n(“)]=E4 | C282{4C2S[n(® (k)
wg(K) e, (K), C?- 32, (4.7) ()

+n®(k)— 1]+ [n®™ (k) +n¥ (k) —1
These dynamical factord(k,t),5(k,t),C(k,t) are deter- ) = L+ + 20 — 113

mined by the time evolution while their prefactors in the AM2\ 3
expressions for the distribution functions are determined by +0 = , (4.15
the initial state. The dynamical factors clearly reveal again 4M

the different time scales. Terms that feature the contributions o _
e~ 2Eaat e*(E1* B! grise from particle-antiparticle interfer- E(k)= VK2+ M2, (4.16
ence and their contribution is proportional taNI?/M?),
and those that featues™'(F1~E2)t arise from particle-particle The termR[k,n{® n{®] arises from the overlap between
(or antiparticle-antiparticle interference. We can find the particle and antiparticle spinors which features the small
asymptotic distribution functions at long time by averaging . VY

. . quantity AM</4AM<).
the oscillatory terms over a time scdtager than the long- Flavor pair production and normal orderingthe expres-

estscale~M/AM?. This time averaging procedure leads 10 sjons(4.11)—(4.14) with that for the corrections given by Eq.
- (4.19 point out an important and subtle aspect of the dynam-
A(k,t)=C?, (4.8 ics of mixing. Consider that the initial density matrix is the
flavor vacuum namely set n(®(k)=n®(k)=n) (k)
+ L ) =F(”“)(k)=0. The asymptotic limit of the distribution func-
E2(k) E3(k) tions (4.11)—(4.14) is given to lowest nontrivial order in the
(4.9  ratio AM?/M? by
The above expressions are exact and therefore valid for

any value of the neutrino massé4,,M,. However, the
most recent compilatiofil0,45 of data suggests that in the

B(k,t)zC(k,t)=%C4S4(M1—M2)2

n®(k,) :F(e)(k,go) = n(¥)(k,) =W(“)(k,oo)
2

2\ 2 2
two flavor case the mass eigenstates are almost degenerate = k_M AM sSin?(26)(1+sir?(26))
with AM?~7x10"° (eV)? and the most recent cosmologi- 4E*(k) | 4M?
cal constraint from WMAH46] suggests that the average 5\ 3
value of the mas#! is <0.25 (eV). In terms of thé/ and +0O AM (4.17
AM? introduced in Eq(3.19, we find 4M?
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This result clearly indicates that the time evolution resultstheory, which subtracts a constant, in the case of mixing such
in the creation of particle-antiparticle pairs of electron andnormal ordering requires a subtraction dadiatribution func-
muon neutrinos. This is of course a consequence of the nortion.
vanishing overlap between positive and negative energy This is a novel and subtle phenomendayor pair pro-
spinors with the result that a destruction operator for flavorduction which is a direct many particle consequence of mix-
neutrinos develops a component correspondingdeeation  ing and oscillations. Since this phenomenon is a consequence
operator of antineutrinos during time evolution, and viceof the interference between particle and antiparticle states it
versa. In leading order in the degeneracy, the typical momensg suppressed by the small quantityN! Z/M)Z_
tum of the pair created is~M; therefore these are typically Regardless of whether this phenomenon of flavor pair
low momentum pairs of flavor neutrinos. production has any bearing on the cosmology and/or astro-

Furthermore a remarkable aspect of this pair productiorphysics of neutrinos, it is a genuine many body aspect inher-
process via neutrino mixing is that the distribution functionent to the field theory of neutrino mixing that deserves to be
of the produced particles falls off vesslowly at high ener-  studied in its own right as a fundamental aspect of the field
gies, namely"lprod(k,oo)ocllkz. As a result there is diver-  theory of mixing.
gentnumber of pairs produced as a consequence of mixing Off-diagonal densitiesEven when the initial density ma-
and time evolution. Since the particles and antiparticles arérix is diagonal in the flavor basis and therefore there are no
produced in pairs, the flavor charge vanishes, but the indieff-diagonal initial correlations, these develop upon time
vidual distribution functions feature a contribution from the evolution as a consequence of flavor mixing. Following the
pair production process. A normal ordering prescription mussame steps described above for the distribution functions, we
be appended to subtract the infinite number of particles crefind the off-diagonal density to be given by the following
ated, however unlike normal ordering in the usual free fieldexpression

282

CS

(VLK D, (kb))=—-2 [(N® (k) —n®(k))— (n® (k) — ¥ (k))]A(k,t) +iCSsin (Ey (k) — Ex(K))t]
M, C3M,

1
_ _ (m)
X Ex(K) Ez(k)” PRTI

[N®(k)—(1-n®(k))]

C?M; S*M,
Ei(k)  Ea(k)

+iCSsin (Eq(K) + E(K)t]

—(1—Wﬂ><k>>]{[El<k>+Ez(k>]—<M1—M2>(

1 _
wo(K) [ﬂ(e)(k)—(1—n(e)(k))][[E1(k)—Ez(k)]—(Ml— Mz)(

X

C?M, SZM2>H .19

[n“”(k)—(1—F<M>(k>>][[E1(k>—E2<k>]—(M1—Mz>(El(k) 0

(k)

with A(k,t) given by Eq.(4.3). The expressions for the dis- leading expressions in Eq&.11)—(4.14. The off-diagonal
tribution functions and the off-diagonal density can be sim-density simplifies to the following expression:
plified by expanding the coefficients of the oscillatory func-

tions up to leading order in the small quantitx12/M?).

e _
We find (ve(k,Dv, (kD)
n®(k,t)=n®(k)—[n®(k)—n(k)]2C?s? =—zsc[2(02—82)[(n(6‘>(k)—H<6>(k))—(n<ﬂ«>(k)
M2 7 _ t
X{1—cod (E (k) —Ex(K)t]}+O aniz) — (k) ]sir?| [Eq(k)— Ex(k)]3
(419 L)+ (K) — (k) + 10 (K))]

the other distribution functions may be found from the ex- M2\ 2
pression above by the replacements in E4%),(4.7). Their X Sin{[Eq(K) —Ex(K)Jtht + O] —= | . (4.20
time averages over the long time scale coincide with the 4M?
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The terms ofO(AM?/4M?)2 again involve terms that os-
cillate with the sum of the frequencies corresponding to
particle-antiparticle interference as well as terms that oscil-
late with the difference of the frequencies arising from the
overlap of the particléor antiparticle¢ spinor wave functions
for different masses. The analysis that was presented for the
same type of contribution ihg(7),l¢(7) above highlights
that the particle-antiparticle interference becomes subdomi-

nant on time scalest>1/M. Hence the first terms

O(AM?4M?)° in the approximationg4.19, (4.20 deter-
mine the dynamics of the distribution functions and the off-
diagonal correlator in leading order in the small ratio

AM?Z2/4M? for t>1/M.

Equilibrated gas of mass eigenstates

Although we have focused on the case in which the initial
density matrix is diagonal in the flavor basis, for complete-
ness we now study the case in which the initial density ma-
trix describes an ensemble afass eigenstateim equilib-
rium. Therefore this initial density matrix is diagonal in the
mass basis and commutes with the Hamiltonian. This situa-
tion thus describes a state of equilibrium in which the occu-
pation numbers do not evolve in tinge the noninteracting
theory). In this case we find

PHYSICAL REVIEW D69, 125012 (2004

© (K _C_Z[(HM) S
=3 WE (k)"
+ 1_M) 1 k }
R E (k) (L)
s? k?+mM,
T\ we<k>E2<k>)”(2)(k)
+( ——k2+meM2) 1-n®@(k } 4.2
waRiE )| 1M (428
c? k24+m.M
e _1_= - e'Vi1
nto=1 2[(1 we<k>E1<k))”(l)“‘)
k2+mM ) —1
P TIERT A
s? k?+mgM,
_?( _we<k>E2<k>)”2)(k)

k?+mM,
+ 1+ (4.29

we(K)Eo(K)

)(1 n®(k))|.

Using the relations given by E¢4.10 we find to leading

order iNnAM?2/M?2

M;

k; + —
([ (KT L#i(K 0] =n" (k) ( Eqo, T(A-nVk) Am2\2
T s Ok =CnMo+ Sk +0| =] (430
Kk —
0! O —rNL(E
X|:7 2E|(k)y :| _[Nl(k)]srv 5
sf AM?
(4.21) n®(k)=S?nM (k) +C?n@ (k) + O iz
ki=Y°Ei(K)— y-K, (4.22 22
i ne Zn(1) 2n(2) AM
where n®)(k) are the occupation numbers of mass eigen- N (K)=Cn'2(k)+S (k) + O az)
states, assumed to depend only on the energy. Just as we did
in our previous analysis it proves convenient to write the A2\ 2
above correlator in the following form: F(“)(k)=SZF(1)(k)+CZW(2)(k)+O( 4,\72) @31
Ni(K)=Q;+M;, (4.23
0= ?’OQP_ ,;, (ji , (4.24) V. “EFFECTIVE” (FREE) FIELD THEORY DESCRIPTION
. Let us summarize the lessons learned in the analysis of
o_ 1 ) the previous section in order to establish a set of criteria with
Qi 2[n (k) +(1=n" (k)] (4.29 which to develop an effective description of the dynamics in
the case in which the mass eigenstates are nearly degenerate
. < _ _ as confirmed by the experimental situation or in the relativ-
Qi= 2E,(K) [nMOk)—(1-nW(k))], (4.2 istic case.
: For nearly degenerate mass eigenstates there is a hierar-
M B chy of scales detErmined hy) ke or temperature ), (ii)
M= 2E-(Ik) [nMk)—(1-nW(k))]. (4.27)  the average madd and (iii) the mass differenc®;—M,.

Since the density matrix commutes with the full Hamil- €racy with[M,—

The experimental situation seems to confirm the near degen-
M,|<M; therefore at least two scales are

tonian, the distribution functions of thtavor eigenstates do Widely separated. Furthermoieky and/orT (temperaturg
not depend on time. Following the procedure detailed abovare such thakg,T>M which describes a relativistic case,

we find the following results:

then all three scales are widely separated with the hierarchy
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ke , T>M>|M;—M,|. The dynamics studied above reveals
all three scales.
The time evolutions of the distribution functions, flavor

PHYSICAL REVIEW D 69, 125012 (2004

E(k)=VK?+M?,

and the upper sign correspondsater e and the lower sign to

(5.2

asymmetry and off-diagonal correlators all feature terms thatr= x. The spinordf , , Vi, are positive and negative en-

oscillate with the frequencieg; (k) + E,(k), 2E; k), and
also terms which oscillate with the differencE (k)

ergy solutions respectively of the Dirac equation with mass
M with unit normalization. Similarly for the positive and

—Ey(k). The former arise from the interference betweenpegative energy spinors associated with the mass eigenstates

particle and antiparticle states of equal or different masseg ()

and determine the short time scates1/M, while the latter
arise from interference between particle statesantiparticle
state$ of different masses and determine the long time scale

t=M/AM?2. The terms that oscillate with the fast time scales

average out on these fast scales and their coefficients are

order AM%M? and hence small in the nearly degenerateg().
case. These coefficients result from the overlap between »

positive and negative energy spinors of slightly different
masses. The coefficients of the terms that oscillate on th
long time scale are o®)(1) and result from the overlap
between positive energy spindicr between negative energy
spinorg of different masses.

The contributions to the distribution functions and off-

G(i)lz‘x [see Eq(2.10], we find

k,\ !
— — — 2
SE0) _ 1+AM2 M [ y’E(k)—M AM? ”
KA | 77 a2 & = = K\
4M? E(k)\  2E(k) 4M
of _ _ _
AM2 M [ 4°E(k)+M AM2\?
=15v—= = = = |Vka
4M? E(k) | 2E(k) 4M? ‘
(5.3

e
with the same spinor& , ,Vk, , Where the upper sign cor-

responds ta=1 and the lower sign to=2.
It is clear from the approximation$.1) and(5.3) that the
overlap between positive and negative energy spinors of dif-

diagonal correlators from the terms with fast and slow oscilferent masses i©(AM?/4M?2)2. For times much larger than

lations arecomparablewithin the short time scalé< 1M

the fast time scale, the corrections to the spinors are sub-

but for times longer than this scale the contributions from thel®minant and can be neglected and the fields associated with

terms with fast oscillations are suppressed with respect t
those with slow oscillations at least E)(AM2/4M?)2.

: - TV R Y ot
We seek to obtain a description of the oscillation dynam- 5, (K t)= >, (ale}f(t) UE,AJFB(_E,X(UV*;Z,)\HO

ics on scales much larger tharMLiwhen the contributions

from the fast oscillations have averaged out to quantities that

are proportional to powers of the small ratiavi 2/AM? and
can therefore be neglected in the nearly degenerate case.

In the nearly degenerate caseM?2/M2<1 the masses
Me,M, ,M1,M,~M [see Egs(4.10,(3.20]; thus in order

to isolate the leading order terms as well as to understand

corrections in the degeneracy parameté?/ M2 it proves

the flavor and mass eigenstates are expanded as

AM2>
M 1

yivel
(5.4)

N

k=2 (@) Ugre 50 +DU Vg @B

AM?
4M?2

+0 (5.5

convenient to expand the positive and negative energy We can now find the relation between the creation and
spinors in terms of this small parameter. A straightforwardannihilation operators of flavor states and those of mass

computation in the standard Dirac representation of the Dira

eigenstates by using E(2.2). To leading order in the degen-

gamma matrices leads to the following result for the flavoreracy parameter we find

positive and negative energy spingsee Eq.2.6)]:

U|Z)\= 1=+ — __C0$20) —_—
~ 4M? E(k) 2E(K)
AM2\?
+0 = U\
AM? OE(K)+M
V@ =155 " cog20)| (k)
' 4M? E(k) 2E(k)
AM2\?
+0| —=;| |V (5.1)

with

o) (t)=Cale F1i4 54?) @712, (5.6
al)(t)=Ca)e E2t - sge EaY, (5.7

where we have neglected terms@fAM?%/4M2), and simi-
lar relations hold for the annihilation operators of the respec-

tive antiparticlesB&f‘z(t). It is clear that the approximations
leading to the relation$5.6) and (5.7) are more generally
valid not only in the nearly degenerate case but also in the
relativistic casek>M  , regardless of the value of the mass
difference, since in this case the common spinors are those of
massless Dirac fermions in all cases.

In this approximation, the evolution equation for the
Heisenberg operatorafff(t) doesnot follow directly from
any Dirac equation, but can be obtained straightforwardly by
taking time derivatives of these operators in Egs6), (5.7)
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and using the relations.6), (5.7) to rewrite the result in The time evolution of the distribution functions in an ini-
terms of the operators themselves. In the leading order apial density matrix that is diagonal in the flavor basis follows
proximation particles and antiparticles do not mix since thefrom a straightforward calculation using the above time evo-
overlap between the spinatk , andV_g , vanishedin free  lution. We find

field theory and a straightforward calculation leads to the

following equations of motion: n®(k,t)=(a; (E)T (e)(t)>
(e 1
WO [ (10 —n(@(k)— = sirk(26)(n® (k) —n((k))
dt( a&#}?(o) Z{E(k)(o 1>_Q(k) 2
’ X (1—cog[Es(k)—Ex(K)]t}), (5.13
—cog26) sin(260) (D
sin(26)  cos20)/ || ol (1) n®@(k,t)=(a® () a)(1))
6.8 :n(")(k)+%sin2(26)(n(e)(k)—n(")(k))
ith
. X (1-cod[Es (K~ Ex(W]t).  (5.14
_ 1 — AM? L . . . .
_ = _ Jr2 2 The distribution functions for antiparticles to leading or-
E(k) Z[El(k)jL Ea(l]= VKA M7+ O 4|W2> 59 der are obtained from the above results by the replacements

n@_n(® A straightforward calculation following the

2 above steps leads to the result

AM?2
4M?2

1 A
Q(k) = 5[Es(k) —Eax(k)]=

—— 10
4E(k) (vi(KDv, (K1)

(5.10
and a similar equation of motion for the annihilation opera- - —sm(2¢9)[ 2 cog26)[(n(k) ~n®(k))
tors for flavor antlpartlcless?(a)(t). These equations of mo-
tion look to be the familiar ones for neutrino oscillations —(n®™(k) —n(k))]sin
[1-4,12,16,22,2 but these are equations for the Heisen-
berg field operators, rather than for the single particle wave
functions. Once the time evolution of the operators is found,
we can find the time evolution adiny multiparticle state
Furthermore the regime of validity of these equations is more X sin{[E4(k) — Ez(k)]t}] . (5.1
general; they are vali@ither in the nearly degenerate case

2 2 ¢ H _ .
AM ./M. <.1 for any value of the momentum, or |nlthe rela The resultg5.13 and(5.15 reproduce the leading order
tivistic limit for arbitrary value of the masses provided that expressions found in the previous section, E4s18),(4.19
k>My,M,. Thus this “effective” free field theory description reproduces

Inverting the relation between the operators for flavor andy,q |eading order results either in the nearly degenerate case
mass states at the |n|t|al time, namely writing the operators, — ,  —,
AM<“<M~* or in the relativistic case. Furthermore, either the

Q) =
3y, In terms Ofa (O) using Eqs(5.6),(5.7) att=0, we effective equations of motiofb.8) or alternatively the time

t
[E1(k)— Ez(k)]z}

—iL(n® k) +n (k) = (n¥(k) +nl)(K))]

f'”d (again to Ieadmg ordgr evolution(5.11), (5.12 (and those for antiparticlesead to a
(e) (e) . set of closed evolution equations fbilinears These are
A(D=a;) (0)[CPe Pl e 1Rl most conveniently written by introducing a fiducial sgin

+SCa(-“)(O)[e“EZ(")‘—e“El(k)‘] (5.11) =(5.S,,S,) with the following components:

K, ’ :

Sk =i(a) (el () -al) e (1), (516
a(RM)z( ) (M)(O)[CZ |E2(k)t+ SZefiEl(k)t]

T e et
+SCald (O)e Bt e B0, 51p SN (@) Ol O+l Oaf)1), (517
SO = (o) (D -V (Dal)), (518
For the antlpart|cle operators we find the same equations
with a ,Bk}\ and a fiducial magnetic fiel= (Bx,By,B;,) with compo-

The Helsenberg field operators given by EqS.11), Nents
(5.12 (and the equivalent for the antiparticle operatase _
the solutions of the equations of moti@.8). B(k)=20Q(k)(0,—sin(20),c0526)), (5.19
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in terms of which the equations for the bilinears are akin tothe field operators allows us to obtaamy correlation func-
the Bloch equations for a Spé precessing in the magnetic tion in the.fre.e field theory at equaf dlfferent timeSThese
field B namely, are the building blocks of any systematic perturbative expan-
’ ’ sion of processes of weak interactions. In particular the
d Skt - - ) Feynman propagators, which are an essential ingredient in
T:S(k,)\;t)x B(k). (5.20  anycalculation that involves neutrinos, are given by
F o - ’
The antiparticle operators independently obey a simila?s(cw’)(x_X L)
set of equations. To leading order XM?/M? there is no 3 o
_If eik~(X*X’) [<V(a)(|zat)v(a')(|zit,)>

mixing between particles and antiparticlésuppressed by =
two powers of this small ratip therefore the number of elec-

tron plus muon neutrinos is conserved independently of that

for antineutrinos, namely

(2m)®
XO(t=t") = (v(an (Kt ) v (K 1)O —t)] (5.22

d  (or © ot W Wh_ere @he expectation vqlues are_in the initial densi.ty matrix,
&(am (t)aﬁ,x(tHaﬁlf)\ (t)alzf‘)\(t))zo, (5.21)  which is taken to be diagonal in the flavor basis in the
present discussion.
The correlation(Wightman functions that enter in the
Feynman propagator are found by using the leading order
Cgxpansion(SA) with the time evolution of the creation and

and similarly for the operators(ﬁaz. The set of equations

above for Heisenberg operators is akin to the equations
motion for the “single particle” density matrix obtained in D . .
. . . . . annihilation operators given by Eq$.11),(5.12 and similar

Ref.[28], which are equivalent to those investigated in Refs. (a) b . g y Eq D.( .2) .
[26,29,30,32,3F ones for g, | (t). With the purpose of highlighting the fast

In the study of synchronized oscillatiofi28,30,31,35 a  and slow time scales in the propagators, it is convenient to
self-consistent Hartree-Fock approximation is introducedntroduce t{he following functions that evolve on the slow
which leads to a Bloch equation lik&.20 but where the Ume scale:

magnetic field B acquires a correction from the self- f () =cog Q(K)t]—i cog26)sim Q(K)t] (5.23
consistent Hartree terms which arise from forward scattering '
off neutrinos in the medium. ge() =i sin(20)siM Q(K)t], (5.24)

This effective formulation neglects the dynamics of flavor
pair production discussed above since this phenomenon g terms of which the Heisenberg creation and annihilation

suppressed by two powers of the small ratib2/M?2. operators of flavor states are written as follows:
Propagators: Nonequilibrium correlation functions affi(t) =efiE(k)t[C¥(|;i)\(0)fk(t)+ af{;\)(O)gk(t)], (5.29

While the set of equations of motigh.8) and (5.20 are () CiEon () . ©
reminiscent of those for the single particle wave functions @y ()=~ [afl(0)f§ (1) + a7 (0)gu(1)],
and the single particle density matrix, in fact there is more (5.26
information in the “effective” free field theory description o ] ] ]
afforded by theoperator equations(5.8) and (5.20 com- ar(1d) similarly for the antiparticle Heisenberg operators
bined with the field expansiof6.4). In particular, inserting By (t)-
the solution of the equations of motid¢f.11),(5.12 (and the A straighforward calculation of the Wightman functions
similar ones for the antiparticlggto the expansioi5.4) for  yields the following results:

I K+M Y =
(v (kD (kt"))= Zg(k))e'ﬂk)(“ H1-n@ ) IfO T () +[1-n® (k) g gk (')}
+( y°—kim yO) SEOEOME ) £ (1) + N (K g (Dgi(t)] (5.27
2E(K) K : ’

e B @ (k) (1) F (1) + (k) gy(D)gg (1)]

<;(e)(|21t/)V(e)(Evt)>:

2E(K)
k—M — ) _ _
+ y(’?(k) y°> e B —n@ k)] (D) F () +[1—n™ (k) ]gy (1) gw(t’)} (5.28
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where
k=y°E(k) — y-K. (5.29

The Wightman function for the muon neutrino is obtained from that of the electron by the repIacmﬁé(M}sﬁ(e)(k)
—n®(k),n(k), andf— f . The off-diagonal Wightman functions are given by

. —_ - k+|\7 [y ’
<v(ﬂ>(k,t>v(e)<k.t'>>=(—) e B —nW(K)1fE (D gF (1) +[1—-n@ k) IFF (1) gy(t)}

2E(K)
+( y°'t—my°) R0 (k) gy (1) (1) + O (K)gi (D (1] (5.30
2E(K) ’

(;e)(ﬁyt')V(u)(lz.t))=( ey )e_iE(k)“_"’[n(“’(k)fi(t)gff(t’)+n(e)(k)fi2(t’)9k(t)]

2E(K)
k—M — _ _
+ ( 70?“() vo) e B 1 -l (k) Jgi(t!) fi() +[1-n @ (k) g (D Fi(t')} (5.3)

and the other off-diagonal Wightmann function is obtainedstudy the physics of oscillations and mixing in the weak
from the one above by replacing® —n*) and f,—f5 . interactions, this study reveals a wealth of dynamical phe-

We have specifically separated the “fast” evolution en-nomena that has not been explored before within the context
coded in the exponentia&iE(k)(“t/) and the “slow” evo-  Of neutrino oscillations in a medium with neutrinos at finite
lution encoded in the functionk,,g, which oscillate with ~ density and temperature.

the small frequency (k) ~AM2/2E(k). We emphasize that The_ most salieljt aspects of our study are the foI_Iowi_ng.
the propagators above are functions not only of the differ- A hierarchy of time scales emerges associated with differ-
ence (—t’) but also of thesum(t+t’) which reveals a truly ~ €nt interference phenomena. Oscillations on fast time scales
nonequilibriumevolution. The manifest lack of time transla- t<1/M are associated with the interference between particles
tional invariance reflects the fact that the density matrixand antiparticles while oscillations on slow time scates
which i.s diago_nal in the f_Iavor representatidoes not com-  ~ M/AM?2 arise from the interference between particte
mutewith the time evolution operator. . . antiparticle states with different masses. Observationally the
The discussion at the beginning of this section points outiyyation for two flavors is that of near degeneracy, which
that these propagators are valid on time scglés>1/M, for  entails that these time scales are widely separated. Further-
which the corrections arising from the interference betweeRyore in the relativistic limit with typical energyE
particle and antiparticle can be neglected. Therefore the CoL 1
relation functions obtained from the effective field theory T

must be understood as being averaged over the fast t'mtﬁat are determined by the overlap of positive and negative

scales and their validity is restricted to slow time scales. . . X
. ) ., frequency wave functions of different masses. In the relativ-
The free field theorypropagators obtained above provide. "7~ . .
o . . istic limit or in the case of near degeneracy as suggested by
the main ingredients to carry out a study of the weak inter-,

. . . . : the recent observations, these terms are of order
actions in a neutrino background in a loop expansion. . e i o
(AM?4/M“)>~10"° (or smaller in the relativistic cage

while the coefficients of terms that oscillate on the slow
VI. CONCLUSIONS AND DISCUSSION scales are of9(1) in terms of this ratio. During the short

. time scales both contributions are comparable, but tfor
Our focus was to study the evolution of a dense and/or hot | — Lo .
1/M the contribution from the overlap between particle

gas of flavor neutrinos as a consequence of oscillations and L X .
mixing. The goal was to establish an understanding of th&nd antiparticle states becomes subdominant, being at least a
dynamics directly from the underlying quantum field theory, factor (AM?/M?#)?~10"° smaller than the oscillations on
beginning with the simplest case of free field theory andthe slow time scale. For values & consistent with the
restricted to the two flavor case. recent boundp46] the scale for fast oscillations is10 *° s.

Such study leads to a deeper understanding of the variouEhese are clearly too fast for relevant processes during BBN
approximations invoked in the literature as well as recogniz-or neutrino processes in astrophysics, but may be relevant for
ing the potential corrections. Even at the level of free fieldearly Universe cosmology. Of course this possibility requires
theory, which must be the starting point of any program tofurther and deeper studies.

1,M, there is an even shorter time scate 1/E.
he terms that oscillate on fast scales feature coefficients
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An initial flavor asymmetry relaxes to equilibrium via rections could conceivably be comparable to perturbative
dephasing between modes that are not Pauli blocked with eorrections inGg the Fermi coupling, in which case the
power law 1f on slow time scales>kg/Am? in the relativ-  terms neglected in the effective theory must be kept on the

istic casekg> M. We have obtained exact as well as ap-same footing as the contributions in the weak coupling in the
proximate expressions for the time evolution of the distribu-Perturbative expansion. Clearly this possibility must be
tion functions and off diagonal densities and discussed theigvaluated for the particular situation under consideration.
asymptotic behavior, all of which display Pauli blocking be- ~While we have focused on the dynamics in free field
tween different flavordsee Eqs.(4.11)—(4.14)]. For com- theory, the results will likely be valid in the interacting case
pleteness we have also studied the case of an equilibrated giisthe case of a low density neutrino ges low tempera-

of mass eigenstates which describes a situation of equilifires. Under these circumstances the corrections to the evo-
rium in the absence of interactions. The nonequilibrium os/ution equations associated with forward scattering off the
cillation dynamics leads to the production of particle- neutrino backgroundmean field, which are of ordeiGg,
antiparticle pairs of flavored neutrinos with typical momentawould be much smaller thanM?/M and the free field

k~M. Since this phenomenon is a direct consequence of th&1eory results for the evolution of the asymmetry may very

overlap between particle and antiparticle states the pair yiel#ell be valid. Furthermore, the weak interactions affect only
M?2)2 the left handed neutrinos but not the right handed neutrinos

is suppressed by the factoh 12/M . _ . . :
The wide separation between the different time scales al\[vhlch will oscillate as in a free field theory. The mass term

lows us to describe the dynamics on the longer time scales iWi” then entangle the oscillation; of the right and Ieft handed
terms of an “effective” theory. In this effective description components. Such a process will be suppressed in the rela-

the Heisenberg creation and annihilation field operators foPV'St'ﬁ limit but mayf Hqtroduce. yet 3nother scale, th%'rg”?u'
flavor neutrinos and antineutrinos obey the familiar Bloch'"d Phenomenon of flavor pair production, a many body fea-

type equations and the spinor structure is common to botf/ré intrinsic to the field theory of neutrino mixing and

flavors as well as the mass eigenstates. This effective dé)-h ld h ial bearing i | q
scription allows us to obtain in a simple manner the dynamp enomenon could have potential bearing in cosmology an

ics of the distribution functions, off diagonal correlation aStroPhysics, it certainly is one of the fundamental aspects of

functions anchonequilibriumpropagators, all of which must neutrino mixing and oscillgtions and deserves furthgr study.
be understood as an average over the fast time scales andWe are currently studying these and other possible sce-

valid only on the slow scales narios including interactions.
While we have focused on the evolution of a gas of flavor Having understood the regime of validity of the effective

neutrinos as ainitial value problemwe have not discussed N9 time” theory as well as having obtained the necessary

how the initial state is “prepared.” This is an important as- nonequilibrium propagators we expect to address the issue of

pect of the physics of neutrino mixing and the weak interac-f[he propagation (.)f neutrinos in a dense andfor hot medium,
cluding a neutrino background including not only forward

tions. Since weak interactions produce only flavor states thi! : e
initial state(or density matrix must be “prepared” by weak _scatterlng .bUt also_collisional proce_s_s{agG,Z4—26 by_
interaction processes that occur on time scales much shortlfpPlementing the methods of nonequilibrium quantum field
than those in which such a state will relax either via colli- €Y [47]-
sions or by oscillations. Clearly we have nothing to say yet
on this aspect which deserves a thorou_gh §tudy. ACKNOWLEDGMENTS
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