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Oscillations and evolution of a hot and dense gas of flavor neutrinos: A quantum field theory study

D. Boyanovsky* and C. M. Ho†

Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
~Received 19 March 2004; published 28 June 2004!

We study the time evolution of the distribution functions for hot and or degenerate gases of two flavors of
Dirac neutrinos as a result of flavor mixing and dephasing. This is achieved by obtaining the time evolution of
the flavor density matrix directly from quantum field theory at finite temperature and density. The time
evolution features a rich hierarchy of scales which are widely separated in the nearly degenerate or relativistic
cases and originate in interference phenomena between particle and antiparticle states. In the degenerate case
the flavor asymmetryDN(t) relaxes to the asymptotic limitDN(`)5DN(0)cos2(2u) via dephasing resulting
from the oscillations between flavor modes that are not Pauli blocked, with a power law 1/t for t.ts

'2kF /DM2. kF is the largest of the Fermi momenta. The distribution function for flavor neutrinos and
antineutrinos as well as off-diagonal densities are obtained. Flavor particle-antiparticle pairs are produced by

mixing and oscillations with typical momentumk;M̄ , the average mass of the neutrinos. An effective field
theory description emerges on long time scales in which the Heisenberg operators obey a Bloch-type equation
of motion valid in the relativistic and nearly degenerate cases. We find the nonequilibrium propagators and
correlation functions in this effective theory and discuss its regime of validity as well as the potential correc-
tions.

DOI: 10.1103/PhysRevD.69.125012 PACS number~s!: 14.60.Pq, 12.15.Ff, 11.90.1t
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I. INTRODUCTION

Neutrinos are the bridge between particle physics, as
physics, cosmology and nuclear physics@1–6#, and after al-
most four decades of the prescient suggestion that neutr
may oscillate@7,8#, a wealth of experimental data confirm
that neutrinos are massive and that different flavors mix
oscillate @9–13#. Neutrino masses and mixing decided
points to new physics beyond the standard model and
foundly impacts the physics, astrophysics and cosmolog
neutrinos. Neutrino oscillations in matter may provide
explanation of the solar neutrino problem by the reson
conversion of flavor neutrinos in the medium, namely t
Mikheyev-Smirnov-Wolfenstein~MSW! effect @16,17# ~for
recent reviews see@1–15#!. The dynamical aspects of neu
trino oscillations in extreme conditions of temperature a
density play an important role in big bang nucleosynthe
~BBN! and in the lepton asymmetry in the early Univer
@18# ~for a recent review see@6#! as well as in the physics o
core collapse supernovae and the formation, evolution
cooling of neutron stars@19–21#. The study of the dynamica
evolution of a hot and/or dense gas of neutrinos that inclu
mixing as well as collisions has been and continues to be
subject of much attention in the literature. Neutrino mixi
and oscillations introduce a novel aspect in the descriptio
flavor equilibration, since the weak interactions involve fl
vor ~weak! eigenstates while time evolution is described
terms of mass eigenstates. Therefore in a dense and/o
medium where neutrino interactions cannot be neglected
lisional processes must be studied on the same footing a
dynamics of oscillations. Furthermore in a dense backgro
of neutrinos such as is the case in the early Universe du
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the time relevant for BBN or during the time scale of ne
trino trapping in a protoneutron star, the neutral current
teraction leads to a contribution to the neutrino self-ene
from forward scattering off the neutrino background akin
the contribution from the electron plasma that leads to MS
resonance enhancement@16#. In dense neutrino gases, th
self-energy contribution leads to a nonlinear problem for
evolution of a given neutrino interacting with the neutrin
background.

The dynamics of neutrino oscillations was originally stu
ied in terms of Bloch-type equations akin to the equation
motion for a spin in a magnetic field@1–3,16,22# which are
generally valid for single particle descriptions in the relat
istic limit. For the case ofsingle particle statesthis equation
of motion for neutrino oscillations was derived from the u
derlying field theory in the relativistic limit@5,23#. This for-
mulation of the dynamics of oscillations of single partic
states was extended to a kinetic description of oscillati
and mixing in a medium@24–26#. The resulting equations in
principle include the effects of collisions as well as the no
linearities arising from neutrino forward scattering off a ne
trino background. They have been implemented to study
evolution of the neutrino distribution functions in the ear
Universe@6,27–31# and in supernovae@32–34# as well as to
study the relic neutrino asymmetry@35#. Novel fascinating
self-synchronization phenomena emerge as a consequen
the nonlinearities in a neutrino background with potent
implications onCP ~and baryon! asymmetry in the early
Universe@6,28#.

An alternative quantum field theory treatment of neutrin
in the medium used the ingredients of thermal field the
@36,37# combined with a self-consistent treatment in the ca
of a neutrino background@38#. Since the main method in thi
approach relies on the equilibrium description of therm
field theory, there is an underlying assumption that the n
trino background is nearly in equilibrium.
©2004 The American Physical Society12-1
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More recently the validity of the single particle pictu
that underlies the kinetic equations for neutrinos in a med
has been critically reexamined@39#.

In our view, the study of neutrino oscillations and mixin
in the case of a dense and/or hot neutrino background
either the set of kinetic equations@24–26# or the thermal
field theory approach invokes a variety of approximatio
some of which are not very clear. In the kinetic descripti
several approximations are involved, from neglecting int
ference terms between particles and antiparticles by rest
ing the Hamiltonian@24# to some time averaging and restri
tion to single particle evolution@26#. Some of these
approximations motivated the study of Ref.@39#.

A full quantum field theory treatment of neutrino mixin
reveals a more complex picture of oscillations beyond tha
the single particle description@40–42#. The authors of these
references pointed out that a careful treatment of the F
representation of flavor states leads to novel contribution
the oscillation formula even for single particle states. Wh
it has been argued recently that Fock states of flavor ne
nos may not be relevant forS-matrix processes@43# a quan-
tum statistical mechanics of dense and/or hot flavor neut
gases must necessarily rely on the Fock representation~oc-
cupation number! for flavor neutrino states.

A quantum statistical description of a dense and/or hot
of flavor neutrinosrequires the notion of an occupation num
ber which inevitably implies a description in terms of Fo
flavor states. Furthermore, a chemical potential associ
with a flavor neutrino is a variable conjugate to the num
of these flavor neutrinos.

Regardless of whether the variety of approximations u
ally invoked are justified for practical purposes, the study
the dynamics of neutrino mixing and oscillations from t
point of view of quantum field theory is clearly of fundame
tal importance as a prelude toward physics beyond the s
dard model. While there have been studies of the quan
field theory aspects invacuumwe are not aware of any pre
vious study of the quantum field theory of mixing in a den
and/or hot medium with neutrinos.

The goal of this study.In the presence of flavor mixing
individual flavor number is not conserved and a density m
trix that is diagonal in the flavor Fock basis will evolve
time and develop off-diagonal elements.

Hence the time evolution of a dense or hot neutrino
has to be studied as a quantum mechanical initial value p
lem: an initial density matrix which is diagonal in the flav
basis is evolved in time with the full Hamiltonian with flavo
mixing. In this article we focus on studying precisely th
time evolution of a dense or hot flavor neutrino gas in
simplest case offree field theory. Our goal is to study the
evolution of an initially prepared density matrix which
diagonal in the flavor basis and describes a quantum ga
flavor neutrinos at finite density or finite temperature. W
undertake the study of the dynamics in free field theory a
prelude toward a complete understanding of oscillation p
nomena in weak interactions. The first step of any system
program must be understanding at the simplest level. As
be detailed below, studying the dynamics of oscillations a
mixing in a dense and/or hot medium even at the level
12501
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free field theory reveals a wealth of subtle and import
phenomena which leads to a firmer understanding of the
lidity of the various approximations as well as highlightin
the potential corrections.

The problem that we study can be stated succinctly
follows:1 Consider that at a given initial time we have
‘‘box’’ that contains a hot or dense gas of flavor neutrin
with a given single particle distribution consistent wi
Fermi-Dirac statistics. How does thisensembleevolve in
time? How do the populations of flavor neutrinos evolve
time? How do flavor neutrinospropagatein the medium?

While our ultimate goal is to study the evolution in th
presence of weak interactions, we begin our study in t
simplest free field theory case and the case of two flav
with the following goals in mind.

~1! A study of the evolution directly from the underlyin
quantum field theorywithout making any approximations
This study will clarify the nature of the various approxim
tions invoked in the literature and exhibit the potential co
rections.

~2! By keeping the full evolution, the different time scale
will emerge, thus paving the way to providing a firmer u
derstanding of coherence effects as well as the time ave
ing implied by several approximations.

~3! A first principle derivation of kinetic equations and/o
Boltzmann equations requires the propagators for the fie
@44# in the medium. Thus the study of the evolution in fre
field theory is the starting point for a systematic treatmen
oscillations and collisions in a medium with a neutrino bac
ground.

~4! As will become clear below, the study of even th
simple free field theory case reveals a wealth of phenom
as a consequence of flavor mixing, which to the best of
knowledge has not been recognized and explored fully
fore in the case of finite temperature and density. The
quantum field theory treatment unambiguously reveals all
complexities associated with flavor mixing and allows a s
tematic implementation of several approximations wh
clarify the regime of validity of the single particle descrip
tion and provide an understanding of the corrections.

Brief summary of the results.Our main results are briefly
summarized as follows.

The dynamics of neutrino oscillations of a dense and
hot gas of flavor neutrinos features a hierarchy of tim
scales. The fast time scales are associated with interfer
effects between particle andantiparticle states while the
slow scales emerge from interference between particle st
~or antiparticle states! of different masses. In the nearly de
generate or relativistic case the scales are widely separ
and processes which involve interference between par
and antiparticle states become subdominant in the slow
namics.

An initial flavor asymmetry relaxes toward an asympto
value DN(`)5DN(0)cos2(2u) ~with u being the mixing
angle! with a power law proportional to 1/t as a consequenc
of dephasing. Pauli blocking manifests in that neutrinos o

1D.B. thanks S. Reddy for stating the question.
2-2
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OSCILLATIONS AND EVOLUTION OF A HOT AND . . . PHYSICAL REVIEW D69, 125012 ~2004!
one flavor can oscillate only into unoccupied states of n
trinos of different flavor and dephasing is a consequenc
oscillations between Pauli unblocked flavor states. We ob
the explicit time evolution of the distribution functions a
well as off-diagonal correlation functions. We discuss t
phenomenon offlavor pair productionby mixing and oscil-
lations. This is a consequence of the overlap between par
and antiparticle states and results in the production of p

of flavored neutrinos with typical momentak;M̄ , the aver-
age mass of the neutrinos.

In the nearly degenerate case~as suggested by the rece
combined observations! or in the relativistic case as is likel
to prevail in the early Universe as well as in core collap
supernovae, the different time scales are widely separa
This allows to one establish an ‘‘effective’’~free! field theory
description valid on the slow time scales. The equations
motion for Heisenberg operators in this effective descript
are the oft quoted Bloch-type equations, but the effect
field theory also describes the quantum fields. This effec
theory allows one to construct the Feynman propaga
which feature distinctnonequilibriumaspects and to clearl
identify the potential corrections and it is valid both in th
relativistic as well as in the nearly degenerate case.

Our study is organized as follows. In Sec. II the theo
corresponding to two flavors of neutrinos as well as the d
sity matrix that describes an initial state of flavor neutrinos
presented. In this section we address the quantization as
and point out the source of subtle mixing phenomena
tween particles andantiparticles, confirming previous results
in the literature@40#. In Secs. III and IV we study the evo
lution of the flavor asymmetry as well as that of the ind
vidual distribution functions, focusing on the emergence o
hierarchy of scales and extracting the asymptotic long t
dynamics as well as the phenomenon of flavor pair prod
tion via oscillations. In Sec. V we present the ‘‘effective
field theory that describes the long-time dynamics and
cuss its regime of validity. In this section we obtain the Fey
man propagators and discuss their nonequilibrium aspect
Sec. VI we discuss the regime of validity of the several a
proximations as well as caveats in the formulation a
present our conclusions.

II. NEUTRINO MIXING AND FLAVOR DENSITY MATRIX

We focus our attention on the evolution ofDirac neutri-
nos, postponing the case of Majorana neutrinos for furt
discussion elsewhere. Furthermore, we restrict the discus
to the case of two flavors which provides the simplest s
nario. Most of the results can be extrapolated to the cas
three active flavors including the case of sterile neutrin
but for the subtleties associated withCP violating phases,
which of course are of great interest but will not be a
dressed here. We will call the flavors the electron and m
neutrino, but the results apply more broadly to active-ste
oscillations.

Consider the Dirac neutrino fields with the Lagrangi
density given by
12501
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L5 n̄e~x!~ i ]” !ne~x!1 n̄m~x!~ i ]” !nm~x!

1„n̄e~x! n̄m~x!…S me mem

mem mm
D S ne~x!

nm~x!
D , ~2.1!

wheremem is the mixing and we have absorbed a poten
phase into a field redefinition. The mass matrix can be dia
nalized by introducing a rotation matrix such that

S ne~x!

nm~x!
D 5S C S

2S CD S c1~x!

c2~x!
D , ~2.2!

where for simplicity of notation we defined

C[cosu, S[sinu, ~2.3!

whereu is the mixing angle. The diagonalized mass mat
then reads

S M1 0

0 M2
D 5S C 2S

S C D S me mem

mem mm
D S C S

2S CD .

~2.4!

In the mass eigenstate basis, the Lagrangian density
comes

L5c̄1~x!~ i ]”2M1!c1~x!1c̄2~x!~ i ]”2M2!c2~x!.
~2.5!

In what follows, we reserve the latin labeli 51,2 for the
fields associated with the mass eigenstatesc and the greek
label a5e,m for the fields associated with the flavor eige
statesn.

Upon quantization in a volumeV, the flavor field opera-
tors na(x) at time t50 are written as

na~xW !5
1

AV
(

kW
na~kW !eikW•xW,

na~kW !5(
l

~akW ,l
(a)

UkW ,l
(a)

1b
2kW ,l
(a)†

V
2kW ,l
(a)

! ~2.6!

where the indexl refers to the Dirac spin index and we hav
kept the same notation for the field and its spatial Fou
transform to avoid cluttering of notation. A flavor Fock re
resentation is defined by choosing the spinorsU and V. In
principle these spinors can be chosen to be the positive
negative energy solutions of a Dirac equation with an ar
trary mass; in what follows we will choose these to
me ,mm , namely the masses of the flavor eigenstates in
absence of mixing. While we consider this to be a physicall
motivated choice, it is by no means unique and differe
alternatives have been discussed in the literature@40–42#.

Thus the spinorsU andV are chosen to be solutions of th
following Dirac equations:

g0~gW •kW1ma!UkW ,l
(a)

5va~k!UkW ,l
(a) ,

g0~gW •kW1ma!V
2kW ,l
(a)

52va~k!V
2kW ,l
(a) , ~2.7!
2-3
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va~k!5Ak21ma
2. ~2.8!

The Dirac spinorsU and V are normalized as follows~no
sum over the indexa):

UkW ,l
(a)†

UkW ,l8
(a)

5VkW ,l
(a)†

VkW ,l8
(a)

5dl,l8 , UkW ,l
(a)†

V
2kW ,l8
(a)

50,
~2.9!

and the creation and annihilation operatorsakW ,l ,bkW ,l obey
the usual canonical anticommutation relations.

On the other hand, upon quantization the field opera
c i(x) associated with mass eigenstates at timet50 are
given by

c i~xW !5
1

AV
(

k
c i~kW !eikW•xW

c i~kW !5(
l

~akW ,l
( i )

FkW ,l
( i )

1b
2kW ,l
( i )†

G
2kW ,l
( i )

!, ~2.10!

where the spinorsF,G are now solutions of the following
Dirac equations:

g0~gW •kW1Mi !FkW ,l
( i )

5Ei~k!FkW ,l
( i ) ,

g0~gW •kW1Mi !G2kW ,l
( i )

52Ei~k!G
2kW ,l
( i ) , ~2.11!

Ei~k!5Ak21Mi
2 ~2.12!

with the normalization conditions~no sum over the labeli )

FkW ,l
( i )†

FkW ,l8
( i )

5GkW ,l
( i )†

GkW ,l8
( i )

5dl,l8 , FkW ,l
( i )†

G
2kW ,l8
( i )

50.
~2.13!

Similarly, the operatorsa andb satisfy the usual canonica
anticommutation relations.

A. Hamiltonian and charges

The total free field Hamiltonian for mixed neutrinos in th
diagonal~mass! basis is given by

H5(
kW ,i

@c̄ i~kW !~gW •kW1Mi !c i~kW !#

5 (
kW ,l,i

~akW ,l
( i )†

akW ,l
( i )

1bkW ,l
( i )†

bkW ,l
( i )

21!Ei~k!. ~2.14!

Therefore the time evolution of the operatorsa,b is given
by

akW ,l
( i )

~ t !5akW ,l
( i )

e2 iEi (k)t,

bkW ,l
( i )

~ t !5bkW ,l
( i )

e2 iEi (k)t. ~2.15!

The free field Lagrangian density~2.1! is invariant under
independent phase transformations of the fieldsc1,2; hence
the individualU(1) charges
12501
rs

Qi5E d3xc i
†~xW ,t !c i~xW ,t !5(

kW ,l
@akW ,l

( i )†
akW ,l

( i )
2bkW ,l

( i )†
bkW ,l

( i )
11#

~2.16!

are time independent.
The discussion that follows will focus on describing

statistical density matrix which isdiagonalin the flavor basis
and describes a hot and/or dense ensemble of flavor ne
nos. This discussion requires theflavor Hamiltonian that is
obtained from the Lagrangian density~2.1! for vanishing
mixing mem50, namely

H f5He1Hm5(
kW ,a

@n̄a~kW !~gW •kW1ma!na~kW !#

5 (
kW ,l,a

~akW ,l
(a)†

akW ,l
(a)

1bkW ,l
(a)†

bkW ,l
(a)

21!va~k!. ~2.17!

The flavor Hamiltonian above is invariant under indepe
dent phase transformations of the flavor fieldsna ; thus the
individual flavor charges commute withH f ,

qa5E d3xna
†~xW !na~xW !5(

kW
na

†~kW !na~kW !

5(
kW ,l

@akW ,l
(a)†

akW ,l
(a)

2bkW ,l
(a)†

bkW ,l
(a)

11#. ~2.18!

Using the transformation law~2.2! between flavor and
mass eigenstates it is straightforward to find that the to
charges are the same, namely

(
i ,kW

c i
†~kW ,t !c i~kW ,t !5(

a,kW
na

†~kW ,t !na~kW ,t !

⇒Q11Q25qe1qm . ~2.19!

B. Density matrix and time evolution

As stated in the Introduction, our focus and goal are
study the time evolution of the distribution function of flavo
neutrinos, at the level of free field theory at this stage. T
question that we posed in the Introduction and address
is the following: consider that at some given time the gas
flavor neutrinos and antineutrinos are described by a qu
tum statistical ensemble with a Fermi-Dirac distributio
function with a fixed chemical potential for each flavo
namely

n(a)~k!5
1

eb(va(k)2ma)11
,

n̄(a)~k!5
1

eb(va(k)1ma)11
~2.20!

with b51/T andma the chemical potential for each flavor
2-4
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Such an ensemble is described by a quantum statis
density matrix which isdiagonal in the Fock space of flavo
eigenstates and is given by

r̂5 r̂ (e)
^ r̂ (m) ~2.21!

with the flavor density matrices

r̂ (a)5e2b(Ha2maqa). ~2.22!

Hence the initial distribution functions are given by

^akW ,l
(a)†

akW ,l
(a)

&5Tr r̂ (a)akW ,l
(a)†

akW ,l
(a)

5n(a)~k!,

^bkW ,l
(a)†

bkW ,l
(a)

&5Tr r̂ (a)bkW ,l
(a)†

bkW ,l
(a)

5n̄(a)~k!. ~2.23!

In the expressions above we have assumed that the dist
tions of flavor neutrinos are spin independent; of cours
spin dependence of the distribution function can be incor
rated in the description.

Although we have stated the problem in terms of a g
flavor neutrinos in thermal equilibrium with Fermi-Dirac di
tributions, this restriction can be relaxed to arbitrary no
equilibrium single particle distributions consistent wi
Fermi-Dirac statistics. Regardless of the initial distributio
the ensuing time evolution with the full Hamiltonian wit
mixing will be out of equilibrium.

C. Cold degenerate case

The case of a cold, degenerate gas of neutrinos is
scribed by the zero temperature limit but fixed chemical
tential of the density matrix~2.21! with ~2.22!. In this limit
the individual flavor neutrino gases form Fermi seas ‘‘fill
up’’ to the Fermi momentumkF

(a) . Consider the case of
positive chemical potential corresponding to a degene
gas of neutrinos without antineutrinos at zero temperat
The degenerate ground state is given by

uFS&5uFS& (e)
^ uFS& (m) ~2.24!

with

uFS& (a)5)
kW

kF
(a)

akW ,↑
(a)†

akW ,↓
(a)†u0& (a) ~2.25!

and the flavor vacuum stateu0& (a) annihilated by the destruc
tion operatorsakW ,l

(a) ,bkW ,l
(a) . The initial density matrix in this

case is that of a pure state,

r̂5uFS&^FSu, ~2.26!

the distribution function of flavor neutrinos is given by

n(a)~k!5Q~kF
(a)2k!, n̄(a)~k!50, ~2.27!

and the chemical potential isma5va(kF). The Fermi mo-
mentum is as usual given by
12501
al
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e-
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te
e.

kF
(a)5~3p2N (a)!1/3⇒kF

(a) ~eV!56.19S N (a)

1015 cm23D 1/3

~2.28!

with N (a) the neutrino density for each flavor. Although th
zero temperature limit is described by a pure state, this s
is a truly many bodystate.

An important many bodyaspect of the situation unde
consideration can be gleaned by studying how the crea
and annihilation operators of mass eigenstates act on
stateuFS&. Consider for example the action of the annihil
tion operatorakW ,l

(1) on the state. To understand this questi

we must first obtainakW ,l
(1) in terms of the creation and ann

hilation operators of flavor eigenstates. From Eq.~2.10! and
the relation between fields given by Eq.~2.2! we find

akW ,l
(1)

5FkW ,l
(1),†

@Cne~kW !2Snm~kW !# ~2.29!

and the expansion for the flavor fields given by Eq.~2.7!
clearly indicates that ifk,kF

m,kF
e , for example, then

akW ,l
(1)uFS& is a superposition of states with an electron ne

trino ‘‘hole,’’ an electron antineutrino, a muon neutrino
‘‘hole’’ and a muon antineutrino. The antiparticle compo-
nents of the wave functionakW ,l

(1)uFS& are a result of the non
vanishing overlap between the positive energy spinors
mass eigenstates and thenegativeenergy spinors for flavor
eigenstates@40#.

D. Time evolution

Within the framework of free field theory of mixed neu
trinos, the time evolution is completely determined by t
total Hamiltonian Hgiven by Eq.~2.14!.

In the Schro¨dinger picture the density matrix evolves
time with the full Hamiltonian as follows:

r̂~ t !5e2 iHt r̂~0!eiHt . ~2.30!

Since the full HamiltonianH does not commute with
He ,Hm because of the flavor mixing, the density matrix do
not commute with the Hamiltonian and therefore evolves
time. This is the statement that the initial density mat
~2.21! describes an ensembleout of equilibriumwhen flavor
neutrinos are mixed.

Our goal is to obtain the time evolution of the distributio
functions for flavor neutrinos and antineutrinos, namely

n(a)~kW ,t !5Tr r̂ (a)~ t !akW ,l
(a)†

akW ,l
(a)

5Tr r̂ (a)~0!akW ,l
(a)†

~ t !akW ,l
(a)

~ t !

~2.31!

and similarly for the antineutrino distribution function. Th
initial distribution functionsn(a)(kW ,0)5n(a)(kW ) ~and simi-
larly for antineutrinos! given by Eq.~2.23! or Eq. ~2.20! for
the case of an initial thermal distribution.

It is more convenient to describe the time evolution in t
Heisenberg picture wherein the density matrix does not
pend on time and the Heisenberg field operators carry
time dependence as made explicit in Eq.~2.31!.
2-5
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The free fields associated with the mass eigenstatec i
evolve in time with the usual time dependent phases mu
plying the creation and annihilation operators, namely

c i~kW ,t !5eiHtc i~kW ,0!e2 iHt

5(
l

~akW ,l
( i )

e2 iEi (k)tFkW ,l
( i )

1b
2kW ,l
( i )†

eiEi (k)tG
2kW ,l
( i )

!. ~2.32!

The time evolution of the fields associated with flav
eigenstates, namelyna , is not so simple:

na~kW ,t !5eiHtna~kW ,0!e2 iHt

5(
l

~akW ,l
(a)

~ t !UkW ,l
(a)

1b
2kW ,l
(a)†

~ t !V
2kW ,l
(a)

! ~2.33!

where the time dependent operatorsakW ,l
(a)(t),b

2kW ,l
(a)† (t) can be

obtained by writing the flavor fields in terms of the ma
eigenstate fields using Eq.~2.2! and projecting out the com
ponents using the orthogonality property given by Eq.~2.9!,
leading for example to

akW ,l
(e)

~ t !5UkW ,l
(e)†

@Cc1~kW ,t !1Sc2~kW ,t !#,

b
2kW ,l
(e)†

~ t !5V
2kW ,l
(e)†

@Cc1~kW ,t !1Sc2~kW ,t !#. ~2.34!

The expression~2.34! reveals several subtle aspects whi
are highlighted by considering in detail for example the tim
evolution of the operator that creates electron neutrinos~a
similar analysis holds for the muon neutrinos and their
spective antiparticles!

akW ,l
(e)†

~ t !5(
l8

$~CakW ,l8
(1)†

eiE1(k)tFkW ,l8
(1)†

UkW ,l
(e)

1SakW ,l8
(2)†

eiE2(k)tFkW ,l8
(2)†

UkW ,l
(e)

!

1~Cb
2kW ,l8
(1)

e2 iE1(k)tG
2kW ,l8
(1)†

UkW ,l
(e)

1Sb
2kW ,l8
(2)

e2 iE2(k)tG
2kW ,l8
(2)†

UkW ,l
(e)

!%. ~2.35!

It is a simple and straightforward exercise using the co
pleteness and orthogonality of the respective spinor wa
functions to show that the creation and annihilation opera
of flavor states indeed satisfy the canonical anticommuta
relations. A Fock representation of flavor states is theref
consistent and moreoverneededto describe a quantum sta
tistical ensemble of flavor neutrinos.

The first term in parentheses in Eq.~2.35! shows that the
annihilation operator for electrons corresponds to the
pected combination of creation operators for mass eig
states multiplied by the cosine and sine of the mixing ang
but also multiplied by the overlap of the different spin
wave functions. Furthermore, the electron creation oper
also involves theannihilationof antiparticles associated wit
the mass eigenstates, a feature recognized in Ref.@40#. There
are two important consequences of theexactrelation~2.35!:
12501
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~1! The amplitude for creating a mass eigenstate out of
vacuum of mass eigenstates by an electron neutrino crea
operator is given not only by the cosine or sine~respectively!
of the mixing angle, but also by the overlap of the spin
wave functionsFkW ,l8

( i )†
UkW ,l

(e) .
~2! The electron neutrino creation operatordestroysanti-

particle mass eigenstates. While this aspect is not rele
when the electron neutrino creation operator acts on
vacuumof mass eigenstates, it becomes relevant in a m
dium where both particle and antiparticle states are po
lated.

These aspects, which were also highlighted in Refs.@40–
42#, will be at the heart of the subtle many body aspects
neutrino mixing which contribute to the time evolution of th
distribution functions studied below.

The time dependent distribution functions are obtained
taking the trace with the initial density matrix

n(a)~kW ,t !5Tr r̂ (a)~0!akW ,l
(a)†

~ t !akW ,l
(a)

~ t ! ~2.36!

and similarly for the other distribution functions. One ca
use the expression~2.35! for the time evolution of the
Heisenberg field operator~and the equivalent for the Hermit
ian conjugate!; however, in order to compute the tim
evolved distribution function we would need to compute t
expectation value of bilinears of the field operatorsc i in the
flavor diagonal density matrixr̂(0). To do this we would
have to rewrite the creation and annihilation operat
akW ,l

( i ) ,bkW ,l
( i ) , etc. in the expression~2.35! back in terms of the

creation and annihilation operatorsakW ,l
(a) ,bkW ,l

(a) , etc. This is
obviously a rather cumbersome method. A more system
manner to carry out this program is presented below.

Using the expressions~2.17!, ~2.18! we find the following
identities:

1

2
^n̄a~kW ,t !g0na~kW ,t !&5n(a)~kW ,t !2n̄(a)~kW ,t !11,

~2.37!

1

2va~k!
^n̄a~kW ,t !~gW •kW1ma!na~kW ,t !&

5n(a)~kW ,t !1n̄(a)~kW ,t !21. ~2.38!

Thus the computation of the distribution functions
combinations of them requires us to find general express
of the form

^n̄e~kW ,t !One~kW ,t !&5Of g^@ n̄e~kW ,t !# f@ne~kW ,t !#g&,
~2.39!

where the Dirac indicesf ,g are summed over and the ave
ages are in the flavor diagonal density matrix~2.21!, ~2.22!.

Since the time evolution of the fieldsc i is that of usual
free Dirac field in terms of positive and negative frequen
components, we write

c ( i )~kW ,t !5~L1
( i )~kW !e2 iEi t1L2

( i )~kW !eiEi t!c ( i )~kW ,0!,
~2.40!
2-6
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where we have introduced the positive and negative
quency projector operatorsL1(k) and L2(k) respectively,
which are given by

L1
( i )~kW !5(

l
FkW ,l

( i )
FkW ,l

( i )†
5S k” ( i )1Mi

2Ei
Dg0, ~2.41!

L2
( i )~kW !5(

l
G

2kW ,l
( i )

G
2kW ,l
( i )†

5g0S k” ( i )2Mi

2Ei
D , ~2.42!

k” ( i )5g0Ei~k!2gW •kW . ~2.43!

These projection operators have the following properties

L1
( i )†~kW !5L1

( i )~kW !, L2
( i )†~kW !5L2

( i )~kW !, ~2.44!

L1
( i )~kW !L2

( i )~kW !50, L2
( i )~kW !L1

( i )~kW !50, ~2.45!

L1
( i )~kW !1L2

( i )~kW !51. ~2.46!

We can now write the time evolution of the flavor fields
a rather simple manner by using the relations between
fields given by Eq.~2.2! and the inverse relation, which a
lows us to writec i(kW ,0) in Eq. ~2.40! back in terms of
na(kW ,0). We find

c1~kW ,t !5g0F1~kW ,t !@Cne~kW ,0!2Snm~kW ,0!#, ~2.47!

c̄1~kW ,t !5@Cn̄e~kW ,0!2Sn̄m~kW ,0!#F̃1~kW ,t !g0, ~2.48!

c2~kW ,t !5g0F2~kW ,t !@Cnm~kW ,0!1Sne~kW ,0!#, ~2.49!

c̄2~kW ,t !5@Cn̄m~kW ,0!1Sn̄e~kW ,0!#F̃2~kW ,t !g0, ~2.50!

where we have introduced the following time evolution ke
nels:

F j~kW ,t !5g0@L1
( j )~kW !e2 iE j (k)t1L2

( j )~kW !eiE j (k)t#, ~2.51!

F̃ j~kW ,t !5F j~kW ,2t !g0, j 51,2. ~2.52!

After straightforward algebra using the mixing transfo
mation ~2.2! and Eqs.~2.47!–~2.50! we find the following
result for the time evolution of the flavor fields:

ne~k,t !5Tee~kW ,t !ne~kW ,0!1Tem~kW ,t !nm~kW ,0!, ~2.53!

n̄e~k,t !5 n̄e~kW ,0!T̃ee~kW ,t !1 n̄m~kW ,0!T̃em~kW ,t !, ~2.54!

nm~kW ,t !5Tmm~kW ,t !nm~kW ,0!1Tme~kW ,t !ne~kW ,0!, ~2.55!

n̄m~kW ,t !5 n̄m~kW ,0!T̃mm~kW ,t !1 n̄e~kW ,0!T̃me~kW ,t !, ~2.56!

where the time evolution operators are given by

Tee~kW ,t !5g0@C2F1~kW ,t !1S2F2~kW ,t !#, ~2.57!

Tmm~kW ,t !5g0@C2F2~kW ,t !1S2F1~kW ,t !#, ~2.58!
12501
-

e
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Tem~kW ,t !5Tme5CSg0@F2~kW ,t !2F1~kW ,t !#, ~2.59!

T̃ab~kW ,t !5g0Tab~kW ,2t !g0. ~2.60!

Furthermore, since the initial density matrix is flavor d
agonal, we find the following expectation values:

^@ n̄e~kW ,t !# f@ne~kW ,t !#g&

5^@ n̄e~kW ,0!# r@ne~kW ,0!#s&@ T̃ee~kW ,t !# r f @Tee~kW ,t !#gs

1^@ n̄m~kW ,0!# r@nm~kW ,0!#s&@ T̃em~kW ,t !# r f @Tem~kW ,t !#gs ,

~2.61!

and similarly for the muon neutrino fields, where^•••&
stands for the trace with the initial density matrix.

A noteworthy feature of the aboveexact expressions is
that the time evolution of the flavor neutrino fieldsmix posi-
tive and negative frequencycomponents of the mass eige
states; namely a flavor neutrino state is a linear combina
of particles andantiparticles of mass eigenstates. Thus
wave packet of flavor neutrinos will necessarily mix positi
and negative frequencies of mass eigenstates. This mi
between particles and antiparticles is a consequence o
fact that a flavor eigenstate is a squeezed state of mass e
states and vice versa@40#.

A simple calculation yields the following expectation va
ues in the initial density matrix:

^@ n̄a~kW ,0!# r@na~kW ,0!#s&

5F(
l

^akW ,l
(a)†

akW ,l
(a)

&@ŪkW ,l
(a)

# r@UkW ,l
(a)

#s

1(
l

^b2kW ,l
(a)†

b
2kW ,l
(a)

&@V̄
2kW ,l
(a)

# r@V
2kW ,l
(a)

#sG ~2.62!

5n(a)~k!S k”a1ma

2va~k! D
sr

1@12n̄(a)~k!#Fg0
k”a2ma

2va~k!
g0G

sr

[@Na~kW !#sr , ~2.63!

k”a5g0va~k!2gW •kW ~2.64!

wherena(k),n̄a(k) are given by the expressions~2.20! and
there are no flavor off-diagonal matrix elements att50 be-
cause the initial density matrix is flavor diagonal.

Combining all the above results, we find the final comp
form for the time dependent expectation values in Eq.~2.39!,
namely

^n̄e~kW ,t !One~kW ,t !&5Tr@Ne~kW !T̃ee~kW ,t !OTee~kW ,t !#

1Tr@Nm~kW !T̃em~kW ,t !OTem~kW ,t !#.

~2.65!
2-7
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1. Exact time evolution of distribution functions

The exact time evolution~in free field theory! of flavor
neutrinos is given by

n(e)~k,t ![I (e)~k,t !1J(e)~k,t !, ~2.66!

whereI (e)(k,t) andJ(e)(k,t) are given by

I (e)~k,t !5
1

4ve~k!
Tr@Ne~k!T̃ee~kW ,t !g0~k” e1me!

3g0Tee~kW ,t !#, ~2.67!

J(e)~k,t !5
1

4ve~k!
Tr@Nm~kW !T̃em~kW ,t !g0~k” e1me!

3g0Tem~kW ,t !#; ~2.68!

and

n̄(e)~k,t !512 Ī (e)~k,t !2 J̄(e)~k,t !, ~2.69!

where Ī (e)(k,t) and J̄(e)(k,t) are given by

Ī (e)~k,t !5
1

4ve~k!
Tr@Ne~kW !T̃ee~kW ,t !~k” e2me!Tee~kW ,t !#,

~2.70!

J̄(e)~k,t !5
1

4ve~k!
Tr@Nm~kW !T̃em~kW ,t !~k” e2me!Tem~kW ,t !#.

~2.71!

For the muon neutrinos and antineutrinos

n(m)~k,t !5I (m)~k,t !1J(m)~k,t ! ~2.72!

whereI (m)(k,t) andJ(m)(k,t) are given by

I (m)~k,t !5
1

4vm~k!
Tr@Nm~kW !T̃mm~kW ,t !

3g0~k”m1mm!g0Tmm~kW ,t !#, ~2.73!

J(m)~k,t !5
1

4vm~k!
Tr@Ne~kW !T̃me~kW ,t !

3g0~k”m1mm!g0Tme~kW ,t !#; ~2.74!

and

n̄(m)~k,t !512 Ī (m)~k,t !2 J̄(m)~k,t !, ~2.75!

where Ī (m)(k,t) and J̄(m)(k,t) are given by

Ī (m)~k,t !5
1

4vm~k!
Tr@Nm~kW !T̃mm~kW ,t !~k”m2mm!Tmm~kW ,t !#,

~2.76!
12501
J̄(m)~k,t !5
1

4vm~k!
Tr@Ne~kW !T̃me~kW ,t !~k”m2mm!Tme~kW ,t !#.

~2.77!

The calculation of the traces is simplified by the obser
tion that all of the different terms that enter in the trace, su
as Na(kW );T̃a,a8(k

W ,t)g0;g0Ta,a8(k
W ,t), can be written in the

form

g0A0~kW ,t !2gW •AW ~kW ,t !1B~kW ,t ![A” ~kW ,t !1B~kW ,t !
~2.78!

where the coefficient functionsA0(kW ,t),AW (kW ,t),B(kW ,t) can
be read off each individual term. Thus the traces in the te
above can be calculated by using the standard formulas
the traces of two and four Dirac matrices.

E. Fast and slow time scales

While the exact compact expressions above describe
full time evolution and provide a set of closed form expre
sions, they hide the fact that there twowidely differenttime
scales. These different time scales can be revealed by un
eling the different contributions to the distribution function
as follows. Consider the expectation value on the right ha
side of Eq.~2.39! for the case of the electron neutrino:

^@ n̄e~kW ,t !# f@ne~kW ,t !#g&

5C2^@c̄1~kW ,t !# f@c1~kW ,t !#g&

1S2^@c̄2~kW ,t !# f@c2~kW ,t !#g&1CŜ @c̄1~kW ,t !# f

3@c2~kW ,t !#g1@c̄2~kW ,t !# f@c1~kW ,t !#g&; ~2.79!

the case of the muon neutrino can be obtained from the
pression above by replacingS→C,C→2S.

By writing each one of the fieldsc i in terms of the posi-
tive and negative frequency contributions which evolve
time with the phasese7 iEi (k)t respectively, it is clear that in
the productsc̄ i(kW ,t)c i(kW ,t) there is a contribution that doe
not depend on time and terms that oscillate in time with
phasese72iEi (k)t. These oscillatory terms, which arise fro
interference between particles and antiparticles akin
Zitterbewegung, do not vanish when the density matrix
diagonal in the flavor basis. In the general expectation val
in Eq. ~2.39! these oscillatory terms will multiply the matrix
elements of the formF̄kW ,l

( i ) OG
2kW ,l
( i ) ; thus if these matrix ele-

ments do not vanish, these oscillatory terms are presen
the second line in Eq.~2.79! a similar argument shows tha
there are two types of oscillatory terms,e7 i [E1(k)1E2(k)] t and
e7 i [E1(k)2E2(k)] t. The former arise from the interference b
tween the particle and antiparticle states of different mas
and the latter from interference between particle states
different masses~or antiparticles!.

The combined analysis from solar neutrinos and Ka
LAND data @45# suggests that for two flavor mixingM1

2

2M2
25DM2;731025 (eV)2 and cosmological constraint

from the Wilkinson Microwave Anisotropy Probe~WMAP!
2-8
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OSCILLATIONS AND EVOLUTION OF A HOT AND . . . PHYSICAL REVIEW D69, 125012 ~2004!
@46# suggest that the average mass of neutrinos isM̄
&0.23 eV. Therefore even in the nonrelativistic limit wi
k!Mi the ratiouE1(k)2E2(k)u/(E1(k)1E2(k)),1024 and
certainly much smaller in the relativistic limitk@Mi . Hence
because of the near degeneracy, or in the relativistic limit
any value of the masses, there are two widely different ti
scales of evolution for the flavor distribution functions. T
longer one corresponds to the interference between par
states~or antiparticle states! of different masses while the
shorter one corresponds to the interference between pa
and antiparticle states of equal or different masses. This p
will be reconsidered below.

The evolution of the flavor~lepton! asymmetryhighlights
these time scales clearly and is studied below.

III. DEGENERATE GAS OF NEUTRINOS: EVOLUTION
OF FLAVOR ASYMMETRY

The results obtained above are general and valid for
temperature and chemical potential~density!. In this section
we focus on understanding the time evolution of the fla
asymmetryn(a)(k,t)2n̄(a)(k,t) in the case of a cold, degen
erate gas of flavor neutrinos. From Eqs.~2.37! and~2.79! we
find

n(e)~kW ,t !2n̄(e)~kW ,t !

5
C2

2
^c1

†~kW ,t !c1~kW ,t !&1
S2

2
^c2

†~kW ,t !c2~kW ,t !&21

1
CS

2
^c1

†~kW ,t !c2~kW ,t !1c2
†~kW ,t !c1~kW ,t !&, ~3.1!

n(m)~kW ,t !2n̄(m)~kW ,t !

5
S2

2
^c1

†~kW ,t !c1~kW ,t !&1
C2

2
^c2

†~kW ,t !c2~kW ,t !&21

2
CS

2
^c1

†~kW ,t !c2~kW ,t !1c2
†~kW ,t !c1~kW ,t !&. ~3.2!

The first line on the right of the expressions above is ti
independent because the overlap between positive and n
tive frequency components vanishes, and the time dep
dence arises solely from the interference between diffe
mass eigenstates. The time dependent terms~second lines in
on the right the above expressions! are opposite for the two
flavors, realizing the fact that the total charge of mass eig
states equals that of flavor eigenstates and is time inde
dent @see Eq.~2.19!#.

Furthermore the expectation values^c i
†(kW ,t)c i(kW ,t)& ~no

sum oni ) are time independent~in the case of the free field
theory under consideration! since the interference term be
tween positive and negative frequency spinors vanishes.
time dependence is completely encoded in the contribu
that mixes the mass eigenstates.

Therefore the time dependence of the flavor asymmetr
completely determined by the quantity
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x~kW ,t ![
CS

2
^@c1

†~kW ,t !c2~kW ,t !1c2
†~kW ,t !c1~kW ,t !#&. ~3.3!

Using Eqs.~2.47!–~2.50!, it follows that

x~kW ,t !5
C2S2

2
Tr$@Ne~kW !2Nm~kW !#@ F̃1~kW ,t !F2~kW ,t !

1F̃2~kW ,t !F1~kW ,t !#%. ~3.4!

The computation of the traces is simplified by writing

F j~k,t !5P” j~ t !1M j~ t !, ~3.5!

Pj
0~ t !5cos@Ej~k!t#, ~3.6!

PW j~ t !5
ikW

Ej~k!
sin@Ej~k!t#, ~3.7!

M j~ t !52
iM j

Ej~k!
sin@Ej~k!t#, ~3.8!

and similarly we write

Na~k!5Q” a1M̃a , ~3.9!

Q” a5g0Qa
02gW •QW a , ~3.10!

Qa
05

1

2
@n(a)~k!112n̄(a)~k!#, ~3.11!

QW a5
kW

2va~k!
@n(a)~k!211n̄(a)~k!#, ~3.12!

M̃a5
ma

2va~k!
@n(a)~k!211n̄(a)~k!#. ~3.13!

For further convenience, we define

DQ” 5Q” e2Q” m , DM̃5M̃e2M̃m , ~3.14!

in terms of which we obtain

x~kW ,t !5
C2S2

2
Tr$~DQ” 1DM̃ !@P” 1~2t !1M1~2t !#

3g0@P” 2~ t !1M2~ t !#1~DQ” 1DM̃ !@P” 2~2t !

1M2~2t !#g0@P” 1~ t !1M1~ t !#%. ~3.15!

After some lengthy but straightforward algebra we find
2-9
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D. BOYANOVSKY AND C. M. HO PHYSICAL REVIEW D 69, 125012 ~2004!
x~kW ,t !5x~kW ,0!22C2S2@~n(e)~k!2n̄(e)~k!!2~n(m)~k!

2n̄(m)~k!!#F S 12
k21M1M2

E1~k!E2~k! D
3sin2S E1~k!1E2~k!

2
t D1S 11

k21M1M2

E1~k!E2~k! D
3sin2S E1~k!2E2~k!

2
t D G , ~3.16!

wherex(kW ,0) is given by

x~kW ,0!52C2S2@~n(e)~k!2n̄(e)~k!!2~n(m)~k!2n̄(m)~k!!#.

~3.17!

The expression~3.16! for the time dependence of the fla
vor asymmetry clearly shows that neutrino mixing results
a time evolution of the flavor asymmetryunlessthe flavor
asymmetry for both flavors is the same. This is obviousl
consequence of Pauli blocking: if the neutrino states are
cupied up to the same momentum electron neutrinos ca
transform into an~occupied! muon neutrino state and vice
versa.

In the case of a cold, degenerate gas of flavor neutri
~we assume here both chemical potentials to be positive! we
have

n(a)~k!→Q~kF
(a)2k!, n̄(a)~k!→0. ~3.18!

If the chemical potential is different for the different fla
vors, the expression above shows that each wave ve
mode will evolve with a different frequency and as a con
quence of free field evolution there is no mode mixing. T
important question is what is the time evolution of thetotal
chargewhich is the integral of the flavor asymmetry over a
momenta. This time evolution will be a result of thedephas-
ing through the oscillations between different modes that
not Pauli blocked.

We now proceed to study analytically and numerically t
time evolution of the flavor charge densitiesqa /V with qa
given by Eq.~2.18! andV the volume. We begin by defining

M̄[
M11M2

2
, DM2[M1

22M2
2 , ~3.19!

so thatM1 andM2 can be written in terms ofM̄ andDM2 as

M15M̄ S 11
DM2

4M̄2 D , M25M̄ S 12
DM2

4M̄2 D . ~3.20!

We take the following as representative values for the t
flavor case @9,10#: M̄.0.25 eV and DM2.7
31025 (eV)2. In what follows we assume thatkF

e.kF
m and

introduce dimensionless variables by takingkF
e as the com-

mon scale; the opposite limit for the Fermi momenta can
obtained simply from the results below. Hence we define
12501
a
c-
ot

s

tor
-

e

e

o

e

q5
k

kF
e

, qr5
kF

m

kF
e

, t5kF
et, ~3.21!

m̄5
M̄

kF
e

, dm25m1
22m2

25
M1

22M2
2

~kF
e !2

, ~3.22!

m15m̄S 11
DM2

4M̄2 D , m25m̄S 12
DM2

4M̄2 D ,

~3.23!

«15Aq21m1
2, «25Aq21m2

2. ~3.24!

Hence, in terms ofN (a)5(kF
a)3/3p2 @see Eq.~2.28!#, we

find that the time evolution of the flavor charge densities
given by

qe~ t !

V
5N (e)26C2S2N (e)~ I f~t!1I s~t!!, ~3.25!

qm~ t !

V
5N (m)16C2S2N (e)~ I f~t!1I s~t!!, ~3.26!

where

I f~t!5E
qr

1

dqq2S 12
q21m1m2

«1«2
D sin2F«11«2

2
tG ,

~3.27!

I s~t!5E
qr

1

dqq2S 11
q21m1m2

«1«2
D sin2F«12«2

2
tG .

~3.28!

We have separated the contributions from the fast@ I f(t)#
and slow@ I s(t)# time scales as discussed in Sec. II E abo
In particular, as discussed above, the term that oscillates
the sum «11«2 is a consequence of the overlap betwe
particles and antiparticles. The prefactors that multiply
sine functions in Eqs.~3.27!, ~3.28! arise from the overlap
betweenparticle-antiparticlespinors in~3.27! and particle-
particle, antiparticle-antiparticle spinors in~3.28!. The over-
lap between particle and antiparticle spinors is nonvanish
for different masses. Similar contributions from the overl
between particle and antiparticle states of different mas
have been found in the studies of Refs.@40–42#.

Since the mass eigenstates are almost degenerate or
natively for any values of the masses in the relativistic lim
we find

q21m1m2

«1«2
512

m̄2q2

«̄4 S DM2

4M̄2 D 2

1OS S DM2

4M̄2 D 4D ,

«̄5Aq21m̄2 ~3.29!

with DM2/4M̄2;331024. Therefore the coefficient that re
sults from the overlap between the particle and antipart
spinors of different mass is given by
2-10
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12
q21m1m2

«1«2
5OS DM2

4M̄2

M̄

E~k!D 2

~3.30!

and the coefficient that results from the overlap of partic
particle or antiparticle-antiparticle of spinorsdifferentmasses
is

11
q21m1m2

«1«2
521OS DM2

4M̄2

M̄

E~k!D 2

~3.31!

whereE(k) is an energy scale.
Therefore the coefficient of the oscillatory term inI f(t) is

a factor at least of order (DM2/4M̄2)2;1027 smaller than
that of I s(t). Furthermore it is clear that the interferen
terms between particle and antiparticle average out on a
scale t f&1/M̄ whereas the particle-particle contribution
evolve on a much slower time scalets;M̄ /DM2@t f .

However, despite the fact that the coefficients of the
cillatory terms inI s(t) and I f(t) differ by several orders o
magnitude, the fact that the time evolution ofI s(t) is much
slower allows for a time scale within which both contrib
tions arecomparable. This can be gleaned from the follow
ing argument.

The integrals forI s(t) and I f(t) are dominated by the
regionq;1. Consider an intermediate time scale so that
argument of the oscillatory function inI f(t) is of order one,
but the argument of the oscillatory function inI s(t) is !1.
The contribution to the integral inI f(t) is of order
m̄2(Dm2/4m̄2)2 while the contribution to the integralI s(t) is
of order 2(dm2t2). Therefore, it is clear that even when th
prefactor of its oscillatory term is small, the integrand
I f(t) will be larger than that of I s(t) in the time domain
during which

m̄2S dm2

4m̄2D 2

.~dm2t!2⇒t&1/m̄. ~3.32!

FIG. 1. I s(t) and I s(t) for kF
e5100 eV, kF

m50, M̄50.25 eV,

DM2.731025 (eV)2, vs t. For these values 1/m̄5400.
12501
-

e

-

e

f

In the opposite limit, fort@1/m̄ the dynamics is com-
pletely dominated byI s(t).

Figure 1 displays the early time evolution ofI s(t) and
I f(t) for 0<t&1/m̄. It is clear from this figure thatI f(t)
averages out to its asymptotic value on a short time scat
;1 (t;1/kF) and thatI s(t) begins to dominate the dynam
ics on time scalest*1/m̄ as discussed above. In the case
Fig. 1, with kF

e@M̄ the time scale of averaging ist;1/kF
e ,

but for kF!M̄ it would be of order 1/M̄ .
In terms of dimensionful quantities the inequality o

tained in Eq.~3.32! above translates intot,1/M̄ . With the
current estimateM̄;0.25 eV the analysis above sugges
that the particle-antiparticle interference is dynamically r
evant during time scalest&10215 s. Although this time scale
is comparable to the expansion time scale at the time of
electroweak phase transition, it is far shorter than the ti
scales relevant either for primordial nucleosynthesis or
dynamical processes during the collapse of supernova
neutron star cooling.

While the behavior ofI s(t) and I f(t) as a function oft
must in general be studied numerically, the long time lim
can be extracted analytically.

The asymptotic long time behavior ofI s(t) and I f(t) is
determined by the end points of their integrands, in particu
for momenta near the Fermi surface. Two relevant ca
yield the following results.

Relativistic limit: max(kF
e ,kF

m)@M1 ,M2

I s~t!5
1

2Eqr

1

dqq2S 11
q21m1m2

«1«2
D1

2

dm2t
H sinS dm2

2
t D

2qr
4sinS dm2t

2qr
D J 1OS 1

~dm2t!2D , ~3.33!

I f~t!5
1

2Eqr

1

dqq2S 12
q21m1m2

«1«2
D2

1

8t
~m12m2!2

3@sin~2t!2sin 2qrt#1OS 1

t2D , ~3.34!

where dm2 is defined by Eq.~3.21! along with the other
dimensionless variables.

Nonrelativistic limit: kF
e ,kF

m!M1 ,M2

I s~t!5
1

2Eqr

1

dqq2S 11
q21m1m2

«1«2
D1

m1m2

~m12m2!t

3H sinF ~m12m2!S 12
1

2m1m2
D tG2qr

3sinF ~m12m2!S 12
qr

2

2m1m2
D tG J 1OS 1

t3/2D
for

~m12m2!t

m1m2
@1,
2-11
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FIG. 2. I s(t) and @ I s(t)2I s(`)#3(Vt) for kF
e5100 eV, kF

m50, M̄50.25 eV,DM2.731025 (eV)2, vs Vt, with
V5dm25731029.
o

be
ig

d

I s~t!5
1

2Eqr

1

dqq2S 11
q21m1m2

«1«2
D $12cos@~m12m2!t#%

for
~m12m2!t

m1m2
!1; ~3.35!

I f~t!5
1

2Eqr

1

dqq2S 12
q21m1m2

«1«2
D2

~m12m2!2

m1m2~m11m2! t

3H sinF ~m11m2!S 11
1

2m1m2
D tG2qr

3

3sinF ~m11m2!S 11
qr

2

2m1m2
D tG J 1OS 1

t2D
for

~m11m2!t

m1m2
@1,

I f~t!5
1

2Eqr

1

dqq2S 12
q21m1m2

«1«2
D

3$12cos@~m11m2!t#% for
~m11m2!t

m1m2
!1.

~3.36!

In both cases, the flavor asymmetry density at asympt
cally long time is given by

1

V
@qe~ t !2qm~ t !#→@N (e)2N (m)#cos2~2u!1O~1/t !.

~3.37!

The power law falloff is a consequence of dephasing
tween different flavor modes that are not Pauli blocked. F
ure 2 displays the slow contributionI s(t) and its asymptotic
limit given by Eq.~3.33! in the relativistic case.
12501
ti-

-
-

IV. DISTRIBUTION FUNCTIONS OF NEUTRINOS
AND ANTINEUTRINOS

The distribution functions are given by Eqs.~2.66!–~2.77!
for which after lengthy but straightforward algebra we fin
the following expressions:

I (e)~k,t !5n(e)~k!22n(e)~k!A~k,t !

2
k2

ve
2~k!

@n(e)~k!2~12n̄(e)~k!!#B~k,t !,

~4.1!

J(e)~k,t !5FC2S2~M12M2!21M1M21k2

ve~k!vm~k!
~n(m)~k!

2@12n̄(m)~k!# !1~n(m)~k!1@12n̄(m)~k!# !G
3A~k,t !2

k2

ve~k!vm~k!

3@n(m)~k!2~12n̄(m)~k!!#C~k,t !, ~4.2!

where n(e)(k) and n̄(e)(k) are the initial distribution func-
tions given by Eq.~2.20! and

A~k,t !5C2S2F S 12
k21M1M2

E1~k!E2~k! D sin2S E1~k!1E2~k!

2
t D

1S 11
k21M1M2

E1~k!E2~k! D sin2S E1~k!2E2~k!

2
t D G ,

~4.3!
2-12
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B~k,t !5C4S4~M12M2!2F 1

E1~k!
sin„E1~k!t…

2
1

E2~k!
sin@E2~k!t#G2

, ~4.4!

C~k,t !5C2S2~M12M2!2F C2S2

E1
2~k!

sin2
„E1~k!t…

1
C2S2

E2
2~k!

sin2@E2~k!t#2
2C2S221

E1~k!E2~k!

3sin@E1~k!t#sin@E2~k!t#G . ~4.5!

The expressions forĪ (e)(k,t) and J̄(e)(k,t) are obtained
from those forI (e)(k,t) andJ(e)(k,t) above by the replace
ments

n(e)~k!↔@12n̄(e)~k!#, n(m)~k!↔@12n̄(m)~k!#.
~4.6!

Finally the expressions fo
I (m)(k,t), Ī (m)(k,t),J(m)(k,t),J̄(m)(k,t) are obtained from
those for the electron neutrino by the replacements

n(e)~k!↔n(m)~k!, n̄(e)~k!↔n̄(m)~k!,

ve~k!↔vm~k!, C2↔S2. ~4.7!

These dynamical factorsA(k,t),B(k,t),C(k,t) are deter-
mined by the time evolution while their prefactors in th
expressions for the distribution functions are determined
the initial state. The dynamical factors clearly reveal ag
the different time scales. Terms that feature the contributi
e62iE(1,2)t,e6 i (E11E2)t arise from particle-antiparticle interfer
ence and their contribution is proportional to (DM2/M̄2),
and those that featuree6 i (E12E2)t arise from particle-particle
~or antiparticle-antiparticle! interference. We can find th
asymptotic distribution functions at long time by averagi
the oscillatory terms over a time scalelonger than the long-

estscale;M̄ /DM2. This time averaging procedure leads

A~k,t !5C2S2, ~4.8!

B~k,t !5C~k,t !5
1

2
C4S4~M12M2!2F 1

E1
2~k!

1
1

E2
2~k!

G .

~4.9!

The above expressions are exact and therefore valid
any value of the neutrino massesM1 ,M2. However, the
most recent compilation@10,45# of data suggests that in th
two flavor case the mass eigenstates are almost degen
with DM2;731025 (eV)2 and the most recent cosmolog
cal constraint from WMAP@46# suggests that the averag
value of the massM̄ is &0.25 (eV). In terms of theM̄ and
DM2 introduced in Eq.~3.19!, we find
12501
y
n
s

or

rate

me5M̄F11
DM2

4M̄2
cos~2u!G , mm5M̄F12

DM2

4M̄2
cos~2u!G .

~4.10!

In terms of the small ratioDM2/M̄2;1023 we find the
average of the distribution functions over the longest ti
scale to be given by

nav
(e)~k!5n(e)~k!22C2S2@n(e)~k!2n(m)~k!#

2R@k,n(a),n̄(a)#, ~4.11!

n̄av
(e)~k!5n̄(e)~k!22C2S2@ n̄(e)~k!2n̄(m)~k!#

2R@k,n(a),n̄(a)#, ~4.12!

nav
(m)~k!5n(m)~k!12C2S2@n(e)~k!2n(m)~k!#

2R@k,n(a),n̄(a)#, ~4.13!

n̄av
(m)~k!5n̄(m)~k!12C2S2@ n̄(e)~k!2n̄(m)~k!#

2R@k,n(a),n̄(a)#, ~4.14!

with

R@k,n(a),n̄(a)#5
k2M̄2

Ē4~k!
S DM2

4M̄2 D 2

C2S2$4C2S2@n(e)~k!

1n̄(e)~k!21#1@n(m)~k!1n̄(m)~k!21#%

1OS S DM2

4M̄2 D 3D , ~4.15!

Ē~k!5Ak21M̄2. ~4.16!

The termR@k,n(a),n̄(a)# arises from the overlap betwee
particle and antiparticle spinors which features the sm
quantity (DM2/4M̄2).

Flavor pair production and normal ordering.The expres-
sions~4.11!–~4.14! with that for the corrections given by Eq
~4.15! point out an important and subtle aspect of the dyna
ics of mixing. Consider that the initial density matrix is th
flavor vacuum, namely set n(e)(k)5n̄(e)(k)5n(m)(k)
5n̄(m)(k)50. The asymptotic limit of the distribution func
tions ~4.11!–~4.14! is given to lowest nontrivial order in the
ratio DM2/M̄2 by

n(e)~k,`!5n̄(e)~k,`!5n(m)~k,`!5n̄(m)~k,`!

5
k2M̄2

4Ē4~k!
S DM2

4M̄2 D 2

sin2~2u!~11sin2~2u!!

1OS S DM2

4M̄2 D 3D . ~4.17!
2-13
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This result clearly indicates that the time evolution resu
in the creation of particle-antiparticle pairs of electron a
muon neutrinos. This is of course a consequence of the n
vanishing overlap between positive and negative ene
spinors with the result that a destruction operator for fla
neutrinos develops a component corresponding to acreation
operator of antineutrinos during time evolution, and vi
versa. In leading order in the degeneracy, the typical mom
tum of the pair created isk;M̄ ; therefore these are typicall
low momentum pairs of flavor neutrinos.

Furthermore a remarkable aspect of this pair produc
process via neutrino mixing is that the distribution functi
of the produced particles falls off veryslowly at high ener-
gies, namelynprod(k,`)}1/k2. As a result there is adiver-
gent number of pairs produced as a consequence of mix
and time evolution. Since the particles and antiparticles
produced in pairs, the flavor charge vanishes, but the i
vidual distribution functions feature a contribution from th
pair production process. A normal ordering prescription m
be appended to subtract the infinite number of particles
ated, however unlike normal ordering in the usual free fi
-
m
c-

x

th

12501
s

n-
y
r

n-

n

g
re
i-

t
e-
d

theory, which subtracts a constant, in the case of mixing s
normal ordering requires a subtraction of adistribution func-
tion.

This is a novel and subtle phenomenon,flavor pair pro-
duction, which is a direct many particle consequence of m
ing and oscillations. Since this phenomenon is a conseque
of the interference between particle and antiparticle state
is suppressed by the small quantity (DM2/M̄ )2.

Regardless of whether this phenomenon of flavor p
production has any bearing on the cosmology and/or as
physics of neutrinos, it is a genuine many body aspect inh
ent to the field theory of neutrino mixing that deserves to
studied in its own right as a fundamental aspect of the fi
theory of mixing.

Off-diagonal densities. Even when the initial density ma
trix is diagonal in the flavor basis and therefore there are
off-diagonal initial correlations, these develop upon tim
evolution as a consequence of flavor mixing. Following t
same steps described above for the distribution functions
find the off-diagonal density to be given by the followin
expression
^ne
†~kW ,t !nm~kW ,t !&522

C22S2

CS
@~n(e)~k!2n̄(e)~k!!2~n(m)~k!2n̄(m)~k!!#A~k,t !1 iCSsin@~E1~k!2E2~k!!t#

3H 1

ve~k!
@n(e)~k!2~12n̄(e)~k!!#F @E1~k!1E2~k!#2~M12M2!S S2M1

E1~k!
2

C2M2

E2~k! D G2
1

vm~k!
@n(m)~k!

2~12n̄(m)~k!!#F @E1~k!1E2~k!#2~M12M2!S C2M1

E1~k!
2

S2M2

E2~k! D G J 1 iCSsin@„E1~k!1E2~k!…t#

3H 1

ve~k!
@n(e)~k!2~12n̄(e)~k!!#F @E1~k!2E2~k!#2~M12M2!S S2M1

E1~k!
1

C2M2

E2~k! D G
2

1

vm~k!
@n(m)~k!2~12n̄(m)~k!!#F @E1~k!2E2~k!#2~M12M2!S C2M1

E1~k!
1

S2M2

E2~k! D G J ~4.18!
with A(k,t) given by Eq.~4.3!. The expressions for the dis
tribution functions and the off-diagonal density can be si
plified by expanding the coefficients of the oscillatory fun
tions up to leading order in the small quantity (DM2/M̄2).
We find

n(e)~k,t !5n(e)~k!2@n(e)~k!2n(m)~k!#2C2S2

3$12cos@~E1~k!2E2~k!!t#%1OS DM2

4M̄2 D 2

;

~4.19!

the other distribution functions may be found from the e
pression above by the replacements in Eqs.~4.6!,~4.7!. Their
time averages over the long time scale coincide with
-

-

e

leading expressions in Eqs.~4.11!–~4.14!. The off-diagonal
density simplifies to the following expression:

^ne
†~kW ,t !nm~kW ,t !&

522SCH 2~C22S2!@~n(e)~k!2n̄(e)~k!!2~n(m)~k!

2n̄(m)~k!!#sin2F @E1~k!2E2~k!#
t

2G
2 i @~n(e)~k!1n̄(e)~k!!2~n(m)~k!1n̄(m)~k!!#

3sin$@E1~k!2E2~k!#t%J 1OS DM2

4M̄2 D 2

. ~4.20!
2-14
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The terms ofO(DM2/4M̄2)2 again involve terms that os
cillate with the sum of the frequencies corresponding
particle-antiparticle interference as well as terms that os
late with the difference of the frequencies arising from t
overlap of the particle~or antiparticle! spinor wave functions
for different masses. The analysis that was presented fo
same type of contribution inI s(t),I f(t) above highlights
that the particle-antiparticle interference becomes subdo
nant on time scalest.1/M̄ . Hence the first terms
O(DM2/4M̄2)0 in the approximations~4.19!, ~4.20! deter-
mine the dynamics of the distribution functions and the o
diagonal correlator in leading order in the small ra
DM2/4M̄2 for t@1/M̄ .

Equilibrated gas of mass eigenstates

Although we have focused on the case in which the ini
density matrix is diagonal in the flavor basis, for comple
ness we now study the case in which the initial density m
trix describes an ensemble ofmass eigenstatesin equilib-
rium. Therefore this initial density matrix is diagonal in th
mass basis and commutes with the Hamiltonian. This si
tion thus describes a state of equilibrium in which the oc
pation numbers do not evolve in time~in the noninteracting
theory!. In this case we find

^@c̄ i~kW ,0!# r@c i~kW ,0!#s&5n( i )~k!S k” i1Mi

2Ei~k! D
sr

1~12n̄( i )~k!!

3Fg0
k” i2Mi

2Ei~k!
g0G

sr

[@Ni~kW !#sr ,

~4.21!

k” i5g0Ei~kW !2gW •kW , ~4.22!

where n( i )(k) are the occupation numbers of mass eig
states, assumed to depend only on the energy. Just as w
in our previous analysis it proves convenient to write t
above correlator in the following form:

Ni~kW !5Q” i1M̃ i , ~4.23!

Q” i5g0Qi
02gW •QW i , ~4.24!

Qi
05

1

2
@n( i )~k!1~12n̄( i )~k!!#, ~4.25!

QW i5
kW

2Ei~k!
@n( i )~k!2~12n̄( i )~k!!#, ~4.26!

M̃ i5
Mi

2Ei~k!
@n( i )~k!2~12n̄( i )~k!!#. ~4.27!

Since the density matrix commutes with the full Ham
tonian, the distribution functions of theflavor eigenstates do
not depend on time. Following the procedure detailed ab
we find the following results:
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n(e)~k!5
C2

2 F S 11
k21meM1

ve~k!E1~k! Dn(1)~k!

1S 12
k21meM1

ve~k!E1~k! D ~12n̄(1)~k!!G
1

S2

2 F S 11
k21meM2

ve~k!E2~k! Dn(2)~k!

1S 12
k21meM2

ve~k!E2~k! D ~12n̄(2)~k!!G , ~4.28!

n̄(e)~k!512
C2

2 F S 12
k21meM1

ve~k!E1~k! Dn(1)~k!

1S 11
k21meM1

ve~k!E1~k! D ~12n̄(1)~k!!G
2

S2

2 F S 12
k21meM2

ve~k!E2~k! Dn(2)~k!

1S 11
k21meM2

ve~k!E2~k! D ~12n̄(2)~k!!G . ~4.29!

Using the relations given by Eq.~4.10! we find to leading
order inDM2/M̄2

n(e)~k!5C2n(1)~k!1S2n(2)~k!1OS DM2

4M̄2 D 2

, ~4.30!

n(m)~k!5S2n(1)~k!1C2n(2)~k!1OS DM2

4M̄2 D 2

,

n̄(e)~k!5C2n̄(1)~k!1S2n̄(2)~k!1OS DM2

4M̄2 D 2

,

n̄(m)~k!5S2n̄(1)~k!1C2n̄(2)~k!1OS DM2

4M̄2 D 2

. ~4.31!

V. ‘‘EFFECTIVE’’ „FREE… FIELD THEORY DESCRIPTION

Let us summarize the lessons learned in the analysi
the previous section in order to establish a set of criteria w
which to develop an effective description of the dynamics
the case in which the mass eigenstates are nearly degen
as confirmed by the experimental situation or in the rela
istic case.

For nearly degenerate mass eigenstates there is a hi
chy of scales determined by~i! kF or temperature (T), ~ii !
the average massM̄ and ~iii ! the mass differenceM12M2.
The experimental situation seems to confirm the near deg
eracy withuM12M2u!M̄ ; therefore at least two scales a
widely separated. Furthermoreif kF and/orT ~temperature!
are such thatkF ,T@M̄ which describes a relativistic case
then all three scales are widely separated with the hierar
2-15
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D. BOYANOVSKY AND C. M. HO PHYSICAL REVIEW D 69, 125012 ~2004!
kF ,T@M̄@uM12M2u. The dynamics studied above revea
all three scales.

The time evolutions of the distribution functions, flav
asymmetry and off-diagonal correlators all feature terms
oscillate with the frequenciesE1(k)1E2(k), 2E1,2(k), and
also terms which oscillate with the differenceE1(k)
2E2(k). The former arise from the interference betwe
particle and antiparticle states of equal or different mas
and determine the short time scalest&1/M̄ , while the latter
arise from interference between particle states~or antiparticle
states! of different masses and determine the long time sca
t*M̄ /DM2. The terms that oscillate with the fast time sca
average out on these fast scales and their coefficients a
order DM2/M̄2 and hence small in the nearly degener
case. These coefficients result from the overlap betw
positive and negative energy spinors of slightly differe
masses. The coefficients of the terms that oscillate on
long time scale are ofO(1) and result from the overlap
between positive energy spinors~or between negative energ
spinors! of different masses.

The contributions to the distribution functions and o
diagonal correlators from the terms with fast and slow os
lations arecomparablewithin the short time scalet&1/M̄
but for times longer than this scale the contributions from
terms with fast oscillations are suppressed with respec
those with slow oscillations at least byO(DM2/4M̄2)2.

We seek to obtain a description of the oscillation dyna
ics on scales much larger than 1/M̄ when the contributions
from the fast oscillations have averaged out to quantities
are proportional to powers of the small ratioDM2/4M̄2 and
can therefore be neglected in the nearly degenerate cas

In the nearly degenerate caseDM2/M̄2!1 the masses
me ,mm ,M1 ,M2;M̄ @see Eqs.~4.10!,~3.20!#; thus in order
to isolate the leading order terms as well as to underst
corrections in the degeneracy parameterDM2/M̄2 it proves
convenient to expand the positive and negative ene
spinors in terms of this small parameter. A straightforwa
computation in the standard Dirac representation of the D
gamma matrices leads to the following result for the flav
positive and negative energy spinors@see Eq.~2.6!#:

UkW ,l
(a)

5F16
DM2

4M̄2

M̄

Ē~k!
cos~2u!S g0Ē~k!2M̄

2Ē~k!
D

1OS DM2

4M̄2 D 2GUkW ,l ,

V
2kW ,l
(a)

5F17
DM2

4M̄2

M̄

Ē~k!
cos~2u!S g0Ē~k!1M̄

2Ē~k!
D

1OS DM2

4M̄2 D 2GVkW ,l ~5.1!

with
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Ē~k!5Ak21M̄2, ~5.2!

and the upper sign corresponds toa5e and the lower sign to
a5m. The spinorsUkW ,l , VkW ,l are positive and negative en
ergy solutions respectively of the Dirac equation with ma
M̄ with unit normalization. Similarly for the positive an
negative energy spinors associated with the mass eigens
FkW ,l

( i ) ,G
2kW ,l
( i )

@see Eq.~2.10!#, we find

FkW ,l
( i )

5F16
DM2

4M̄2

M̄

Ē~k!
S g0Ē~k!2M̄

2Ē~k!
D 1OS DM2

4M̄2 D 2GUkW ,l ,

G
2kW ,l
( i )

5F17
DM2

4M̄2

M̄

Ē~k!
S g0Ē~k!1M̄

2Ē~k!
D 1OS DM2

4M̄2 D 2GVkW ,l

~5.3!

with the same spinorsUkW ,l ,VkW ,l , where the upper sign cor
responds toi 51 and the lower sign toi 52.

It is clear from the approximations~5.1! and~5.3! that the
overlap between positive and negative energy spinors of
ferent masses isO(DM2/4M̄2)2. For times much larger than
the fast time scale, the corrections to the spinors are s
dominant and can be neglected and the fields associated
the flavor and mass eigenstates are expanded as

na~kW ,t !5(
l

~akW ,l
(a)

~ t ! UkW ,l1b
2kW ,l
(a)†

~ t !V2kW ,l!1OS DM2

4M̄2 D ,

~5.4!

c i~kW ,t !5(
l

~akW ,l
( i ) UkW ,le2 iEi (k)t1b

2kW ,l
( i )† V2kW ,leiEi (k)t!

1OS DM2

4M̄2 D . ~5.5!

We can now find the relation between the creation a
annihilation operators of flavor states and those of m
eigenstates by using Eq.~2.2!. To leading order in the degen
eracy parameter we find

akW ,l
(e)

~ t !5CakW ,l
(1)

e2 iE1(k)t1SakW ,l
(2)

e2 iE2(k)t, ~5.6!

akW ,l
(m)

~ t !5CakW ,l
(2)

e2 iE2(k)t2SakW ,l
(1)

e2 iE1(k)t, ~5.7!

where we have neglected terms ofO(DM2/4M̄2), and simi-
lar relations hold for the annihilation operators of the resp
tive antiparticlesbkW ,l

(a)(t). It is clear that the approximation
leading to the relations~5.6! and ~5.7! are more generally
valid not only in the nearly degenerate case but also in
relativistic casek@M1,2 regardless of the value of the ma
difference, since in this case the common spinors are thos
massless Dirac fermions in all cases.

In this approximation, the evolution equation for th
Heisenberg operatorsakW ,l

(a)(t) doesnot follow directly from
any Dirac equation, but can be obtained straightforwardly
taking time derivatives of these operators in Eqs.~5.6!, ~5.7!
2-16
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and using the relations~5.6!, ~5.7! to rewrite the result in
terms of the operators themselves. In the leading order
proximation particles and antiparticles do not mix since
overlap between the spinorsUkW ,l andV2kW ,l vanishes~in free
field theory! and a straightforward calculation leads to t
following equations of motion:

i
d

dt S akW ,l
(e)

~ t !

akW ,l
(m)

~ t !
D 5F Ē~k!S 1 0

0 1D 2V~k!

3S 2cos~2u! sin~2u!

sin~2u! cos~2u!
D G S akW ,l

(e)
~ t !

akW ,l
(m)

~ t !
D

~5.8!

with

Ē~k!5
1

2
@E1~k!1E2~k!#5Ak21M̄21OS DM2

4M̄2 D ~5.9!

V~k!5
1

2
@E1~k!2E2~k!#5

DM2

4Ē~k!
1OS DM2

4M̄2 D ,

~5.10!

and a similar equation of motion for the annihilation ope
tors for flavor antiparticlesbkW ,l

(a)(t). These equations of mo
tion look to be the familiar ones for neutrino oscillation
@1–4,12,16,22,23#, but these are equations for the Heise
berg field operators, rather than for the single particle w
functions. Once the time evolution of the operators is fou
we can find the time evolution ofany multiparticle state.
Furthermore the regime of validity of these equations is m
general; they are valideither in the nearly degenerate cas
DM2/M̄2!1 for any value of the momentum, or in the rel
tivistic limit for arbitrary value of the masses provided th
k@M1 ,M2.

Inverting the relation between the operators for flavor a
mass states at the initial time, namely writing the operat
akW ,l

( i ) in terms ofakW ,l
(a)(0) using Eqs.~5.6!,~5.7! at t50, we

find ~again to leading order!

akW ,l
(e)

~ t !5akW ,l
(e)

~0!@C2e2 iE1(k)t1S2e2 iE2(k)t#

1SCakW ,l
(m)

~0!@e2 iE2(k)t2e2 iE1(k)t#, ~5.11!

akW ,l
(m)

~ t !5akW ,l
(m)

~0!@C2e2 iE2(k)t1S2e2 iE1(k)t#

1SCakW ,l
(e)

~0!@e2 iE2(k)t2e2 iE1(k)t#. ~5.12!

For the antiparticle operators we find the same equat
with akW ,l

(a)→bkW ,l
(a) .

The Heisenberg field operators given by Eqs.~5.11!,
~5.12! ~and the equivalent for the antiparticle operators! are
the solutions of the equations of motion~5.8!.
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The time evolution of the distribution functions in an in
tial density matrix that is diagonal in the flavor basis follow
from a straightforward calculation using the above time e
lution. We find

n(e)~k,t !5^akW ,l
(e)†

~ t !akW ,l
(e)

~ t !&

5n(e)~k!2
1

2
sin2~2u!~n(e)~k!2n(m)~k!!

3~12cos$@E1~k!2E2~k!#t%!, ~5.13!

n(m)~k,t !5^akW ,l
(m)†

~ t !akW ,l
(m)

~ t !&

5n(m)~k!1
1

2
sin2~2u!~n(e)~k!2n(m)~k!!

3~12cos$@E1~k!2E2~k!#t%!. ~5.14!

The distribution functions for antiparticles to leading o
der are obtained from the above results by the replacem
n(a)→n̄(a). A straightforward calculation following the
above steps leads to the result

^ne
†~kW ,t !nm~kW ,t !&

52sin~2u!H 2 cos~2u!@~n(e)~k!2n̄(e)~k!!

2~n(m)~k!2n̄(m)~k!!#sin2F @E1~k!2E2~k!#
t

2G
2 i @~n(e)~k!1n̄(e)~k!!2~n(m)~k!1n̄(m)~k!!#

3sin$@E1~k!2E2~k!#t%J . ~5.15!

The results~5.13! and ~5.15! reproduce the leading orde
expressions found in the previous section, Eqs.~4.18!,~4.19!.
Thus this ‘‘effective’’ free field theory description reproduce
the leading order results either in the nearly degenerate
DM2!M̄2 or in the relativistic case. Furthermore, either t
effective equations of motion~5.8! or alternatively the time
evolution~5.11!, ~5.12! ~and those for antiparticles! lead to a
set of closed evolution equations forbilinears. These are
most conveniently written by introducing a fiducial spinSW
5(Sx ,Sy ,Sz) with the following components:

Sx~kW ,l;t !5 i ~akW ,l
(m)†

~ t !akW ,l
(e)

~ t !2akW ,l
(e)†

~ t !akW ,l
(m)

~ t !!, ~5.16!

Sy~kW ,l;t !5~akW ,l
(m)†

~ t !akW ,l
(e)

~ t !1akW ,l
(e)†

~ t !akW ,l
(m)

~ t !!, ~5.17!

Sz~kW ,l;t !5~akW ,l
(e)†

~ t !akW ,l
(e)

~ t !2akW ,l
(m)†

~ t !akW ,l
(m)

~ t !!, ~5.18!

and a fiducial magnetic fieldBW 5(Bx ,By ,Bz) with compo-
nents

BW ~k!52V~k!„0,2sin~2u!,cos~2u!…, ~5.19!
2-17
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D. BOYANOVSKY AND C. M. HO PHYSICAL REVIEW D 69, 125012 ~2004!
in terms of which the equations for the bilinears are akin
the Bloch equations for a spinSW precessing in the magneti
field BW , namely,

d SW ~kW ,l;t !

dt
5SW ~kW ,l;t !3BW ~k!. ~5.20!

The antiparticle operators independently obey a sim
set of equations. To leading order inDM2/M̄2 there is no
mixing between particles and antiparticles~suppressed by
two powers of this small ratio!; therefore the number of elec
tron plus muon neutrinos is conserved independently of
for antineutrinos, namely

d

dt
~akW ,l

(e)†
~ t !akW ,l

(e)
~ t !1akW ,l

(m)†
~ t !akW ,l

(m)
~ t !!50, ~5.21!

and similarly for the operatorsbkW ,l
(a) . The set of equations

above for Heisenberg operators is akin to the equation
motion for the ‘‘single particle’’ density matrix obtained i
Ref. @28#, which are equivalent to those investigated in Re
@26,29,30,32,35#.

In the study of synchronized oscillations@28,30,31,35#, a
self-consistent Hartree-Fock approximation is introduc
which leads to a Bloch equation like~5.20! but where the
magnetic field BW acquires a correction from the sel
consistent Hartree terms which arise from forward scatte
off neutrinos in the medium.

This effective formulation neglects the dynamics of flav
pair production discussed above since this phenomeno
suppressed by two powers of the small ratioDM2/M̄2.

Propagators: Nonequilibrium correlation functions

While the set of equations of motion~5.8! and ~5.20! are
reminiscent of those for the single particle wave functio
and the single particle density matrix, in fact there is mo
information in the ‘‘effective’’ free field theory description
afforded by theoperator equations~5.8! and ~5.20! com-
bined with the field expansion~5.4!. In particular, inserting
the solution of the equations of motion~5.11!,~5.12! ~and the
similar ones for the antiparticles! into the expansion~5.4! for
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the field operators allows us to obtainany correlation func-
tion in the free field theory at equalor different times. These
are the building blocks of any systematic perturbative exp
sion of processes of weak interactions. In particular
Feynman propagators, which are an essential ingredien
any calculation that involves neutrinos, are given by

S (a,a8)
F

~xW2x8W ;t,t8!

52 i E d3k

~2p!3
eik•W (x2W xW8) @^n (a)~kW ,t !n̄ (a8)~kW ,t8!&

3Q~ t2t8!2^n̄ (a8)~kW ,t8!n (a)~kW ,t !&Q~ t82t !# ~5.22!

where the expectation values are in the initial density mat
which is taken to be diagonal in the flavor basis in t
present discussion.

The correlation~Wightman! functions that enter in the
Feynman propagator are found by using the leading or
expansion~5.4! with the time evolution of the creation an
annihilation operators given by Eqs.~5.11!,~5.12! and similar
ones forbkW ,l

(a)(t). With the purpose of highlighting the fas
and slow time scales in the propagators, it is convenien
introduce the following functions that evolve on the slo
time scale:

f k~ t !5cos@V~k!t#2 i cos~2u!sin@V~k!t#, ~5.23!

gk~ t !5 i sin~2u!sin@V~k!t#, ~5.24!

in terms of which the Heisenberg creation and annihilat
operators of flavor states are written as follows:

akW ,l
(e)

~ t !5e2 iĒ(k)t@akW ,l
(e)

~0! f k~ t !1akW ,l
(m)

~0!gk~ t !#, ~5.25!

akW ,l
(m)

~ t !5e2 iĒ(k)t@akW ,l
(m)

~0! f k* ~ t !1akW ,l
(e)

~0!gk~ t !#,
~5.26!

and similarly for the antiparticle Heisenberg operato
bkW ,l

(a)(t).
A straighforward calculation of the Wightman function

yields the following results:
^n (e)~kW ,t !n̄ (e)~kW ,t8!&5S k”1M̄

2Ē~k!
D e2 iĒ(k)(t2t8)$@12n(e)~k!# f k~ t ! f k* ~ t8!1@12n(m)~k!#gk~ t !gk* ~ t8!%

1S g0
k”2M̄

2Ē~k!
g0D eiĒ(k)(t2t8)@ n̄(e)~k! f k* ~ t ! f k~ t8!1n̄(m)~k!gk* ~ t !gk~ t8!#, ~5.27!

^n̄ (e)~kW ,t8!n (e)~kW ,t !&5S k”1M̄

2Ē~k!
D e2 iĒ(k)(t2t8)@n(e)~k! f k~ t ! f k* ~ t8!1n(m)~k!gk~ t !gk* ~ t8!#

1S g0
k”2M̄

2Ē~k!
g0D eiĒ(k)(t2t8)$@12n̄(e)~k!# f k* ~ t ! f k~ t8!1@12n̄(m)~k!#gk* ~ t !gk~ t8!% ~5.28!
2-18
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where

k”[g0Ē~k!2gW •kW . ~5.29!

The Wightman function for the muon neutrino is obtained from that of the electron by the replacementsn(e)(k),n̄(e)(k)
→n(m)(k),n̄(m)(k), and f k↔ f k* . The off-diagonal Wightman functions are given by

^n (m)~kW ,t !n̄ (e)~kW ,t8!&5S k”1M̄

2Ē~k!
D e2 iĒ(k)(t2t8)$@12n(m)~k!# f k* ~ t !gk* ~ t8!1@12n(e)~k!# f k* ~ t8!gk~ t !%

1S g0
k”2M̄

2Ē~k!
g0D eiĒ(k)(t2t8)@ n̄(m)~k!gk~ t8! f k~ t !1n̄(e)~k!gk* ~ t ! f k~ t8!#, ~5.30!

^n̄ (e)~kW ,t8!n (m)~kW ,t !&5S k”1M̄

2Ē~k!
D e2 iĒ(k)(t2t8)@n(m)~k! f k* ~ t !gk* ~ t8!1n(e)~k! f k* ~ t8!gk~ t !#

1S g0
k”2M̄

2Ē~k!
g0D eiĒ(k)(t2t8)$@12n̄(m)~k!#gk~ t8! f k~ t !1@12n̄(e)~k!#gk* ~ t ! f k~ t8!% ~5.31!
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and the other off-diagonal Wightmann function is obtain
from the one above by replacingn(e)↔n(m) and f k↔ f k* .

We have specifically separated the ‘‘fast’’ evolution e
coded in the exponentialsei 6Ē(k)(t2t8) and the ‘‘slow’’ evo-
lution encoded in the functionsf k ,gk which oscillate with
the small frequencyV(k);DM2/2Ē(k). We emphasize tha
the propagators above are functions not only of the diff
ence (t2t8) but also of thesum(t1t8) which reveals a truly
nonequilibriumevolution. The manifest lack of time transla
tional invariance reflects the fact that the density ma
which is diagonal in the flavor representationdoes not com-
mutewith the time evolution operator.

The discussion at the beginning of this section points
that these propagators are valid on time scalest,t8@1/M̄ , for
which the corrections arising from the interference betwe
particle and antiparticle can be neglected. Therefore the
relation functions obtained from the effective field theo
must be understood as being averaged over the fast
scales and their validity is restricted to slow time scales.

The free field theorypropagators obtained above provid
the main ingredients to carry out a study of the weak int
actions in a neutrino background in a loop expansion.

VI. CONCLUSIONS AND DISCUSSION

Our focus was to study the evolution of a dense and/or
gas of flavor neutrinos as a consequence of oscillations
mixing. The goal was to establish an understanding of
dynamics directly from the underlying quantum field theo
beginning with the simplest case of free field theory a
restricted to the two flavor case.

Such study leads to a deeper understanding of the var
approximations invoked in the literature as well as recogn
ing the potential corrections. Even at the level of free fie
theory, which must be the starting point of any program
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study the physics of oscillations and mixing in the we
interactions, this study reveals a wealth of dynamical p
nomena that has not been explored before within the con
of neutrino oscillations in a medium with neutrinos at fini
density and temperature.

The most salient aspects of our study are the followin
A hierarchy of time scales emerges associated with dif

ent interference phenomena. Oscillations on fast time sc

t,1/M̄ are associated with the interference between parti
and antiparticles while oscillations on slow time scalest

.M̄ /DM2 arise from the interference between particle~or
antiparticle! states with different masses. Observationally t
situation for two flavors is that of near degeneracy, wh
entails that these time scales are widely separated. Fur
more in the relativistic limit with typical energyĒ

@M1 ,M2 there is an even shorter time scalet;1/Ē.
The terms that oscillate on fast scales feature coefficie

that are determined by the overlap of positive and nega
frequency wave functions of different masses. In the rela
istic limit or in the case of near degeneracy as suggested
the recent observations, these terms are of or
(DM2/M̄2)2;1026 ~or smaller in the relativistic case!,
while the coefficients of terms that oscillate on the slo
scales are ofO(1) in terms of this ratio. During the shor
time scales both contributions are comparable, but fot

@1/M̄ the contribution from the overlap between partic
and antiparticle states becomes subdominant, being at le
factor (DM2/M̄2)2;1026 smaller than the oscillations o
the slow time scale. For values ofM̄ consistent with the
recent bounds@46# the scale for fast oscillations is;10215 s.
These are clearly too fast for relevant processes during B
or neutrino processes in astrophysics, but may be relevan
early Universe cosmology. Of course this possibility requi
further and deeper studies.
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An initial flavor asymmetry relaxes to equilibrium vi
dephasing between modes that are not Pauli blocked w
power law 1/t on slow time scalest.kF /Dm2 in the relativ-
istic casekF@M̄ . We have obtained exact as well as a
proximate expressions for the time evolution of the distrib
tion functions and off diagonal densities and discussed t
asymptotic behavior, all of which display Pauli blocking b
tween different flavors@see Eqs.~4.11!–~4.14!#. For com-
pleteness we have also studied the case of an equilibrate
of mass eigenstates which describes a situation of equ
rium in the absence of interactions. The nonequilibrium
cillation dynamics leads to the production of particl
antiparticle pairs of flavored neutrinos with typical momen
k;M̄ . Since this phenomenon is a direct consequence of
overlap between particle and antiparticle states the pair y
is suppressed by the factor (DM2/M̄2)2.

The wide separation between the different time scales
lows us to describe the dynamics on the longer time scale
terms of an ‘‘effective’’ theory. In this effective descriptio
the Heisenberg creation and annihilation field operators
flavor neutrinos and antineutrinos obey the familiar Blo
type equations and the spinor structure is common to b
flavors as well as the mass eigenstates. This effective
scription allows us to obtain in a simple manner the dyna
ics of the distribution functions, off diagonal correlatio
functions andnonequilibriumpropagators, all of which mus
be understood as an average over the fast time scales
valid only on the slow scales.

While we have focused on the evolution of a gas of flav
neutrinos as aninitial value problemwe have not discusse
how the initial state is ‘‘prepared.’’ This is an important a
pect of the physics of neutrino mixing and the weak inter
tions. Since weak interactions produce only flavor states
initial state~or density matrix! must be ‘‘prepared’’ by weak
interaction processes that occur on time scales much sh
than those in which such a state will relax either via co
sions or by oscillations. Clearly we have nothing to say
on this aspect which deserves a thorough study.

Another aspect that deserves attention is that of the
rections to the ‘‘effective’’ theory described above. The
corrections entail powers of the ratios that are small eithe
the nearly degenerate case or in the relativistic limit. In p
turbation theory in the weak interactions, these ‘‘small’’ co
-
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rections could conceivably be comparable to perturba
corrections inGF the Fermi coupling, in which case th
terms neglected in the effective theory must be kept on
same footing as the contributions in the weak coupling in
perturbative expansion. Clearly this possibility must
evaluated for the particular situation under consideration

While we have focused on the dynamics in free fie
theory, the results will likely be valid in the interacting ca
in the case of a low density neutrino gas~or low tempera-
tures!. Under these circumstances the corrections to the e
lution equations associated with forward scattering off
neutrino background~mean field!, which are of orderGF ,
would be much smaller thanDM2/M̄ and the free field
theory results for the evolution of the asymmetry may ve
well be valid. Furthermore, the weak interactions affect o
the left handed neutrinos but not the right handed neutri
which will oscillate as in a free field theory. The mass te
will then entangle the oscillations of the right and left hand
components. Such a process will be suppressed in the
tivistic limit but may introduce yet another scale, the intrig
ing phenomenon of flavor pair production, a many body fe
ture intrinsic to the field theory of neutrino mixing an
oscillations. While it is not clear to the authors whether th
phenomenon could have potential bearing in cosmology
astrophysics, it certainly is one of the fundamental aspect
neutrino mixing and oscillations and deserves further stu

We are currently studying these and other possible s
narios including interactions.

Having understood the regime of validity of the effectiv
‘‘long time’’ theory as well as having obtained the necessa
nonequilibrium propagators we expect to address the issu
the propagation of neutrinos in a dense and/or hot medi
including a neutrino background including not only forwa
scattering but also collisional processes@4,6,24–26# by
implementing the methods of nonequilibrium quantum fie
theory @47#.
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