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Failure of gauge invariance in the nonperturbative formulation of massless Lorentz-violating QED

B. Altschul*
Department of Physics, Indiana University, Bloomington, Indiana 47405, USA

~Received 24 November 2003; published 15 June 2004!

We consider a Lorentz-violating modification to the fermionic Lagrangian of QED that is known to produce
a finite Chern-Simons term at leading order. We compute the second order correction to the one-loop photon
self-energy in the massless case using an exact propagator and a nonperturbative formulation of the theory.
This nonperturbative theory assigns a definite value to the coefficient of the induced Chern-Simons term;
however, we find that the theory fails to preserve gauge invariance at higher orders. We conclude that the
specific nonperturbative value of the Chern-Simons coefficient has no special significance.
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There has been much recent interest in the possibility
addingCPT- and Lorentz-violating terms to the Lagrangia
of quantum field theories@1–4#. These terms may arise from
violations of these symmetries at the Planck scale. There
many strong experimental constraints on Lorentz-violat
corrections to the standard model, and such corrections m
generally be small. However, the subject of Lorentz violat
in quantum field theory is still of great theoretical and e
perimental interest.

The simplest perturbatively nontrivial correction to th
fermion sector of quantum electrodynamics involves the
dition of a CPT-violating axial vector term to the action
There has been a great deal of interest in the effect of su
term on the radiative corrections@4–11# to the theory. At one
loop order, the theory generates a term of the Chern-Sim
form LCS5 1

2 (kCS)memabgFabAg @12–14#. Astrophysical
measurements constrain the physical coefficient (kCS)m to be
very small@14–16#. However, while the radiatively induce
value of (kCS)m is unambiguously finite, it is also complete
undetermined~and possibly vanishing!; its value depends
upon how the theory is regulated. Moreover, since an a
trary tree-level contribution may also be added to the rad
tively induced term, the calculated value of the induc
Chern-Simons coefficient can have no experimental sign
cance.

There is, however, one particular value of the coeffici
that appears to enjoy a special status. It is pointed out in@5#
that if the theory is defined nonperturbatively in theCPT-
violating axial vector interaction, then there can be a p
cisely determined value for the induced coefficient. Ev
though the authors of@5# do not insist that their regulariza
tion scheme is necessarily the correct one, their work ra
the interesting question of whether this nonperturbative
mulation has any special significance. In this paper, we
swer that question, at least for the case of massless ferm
by analyzing higher-order contributions to the photon se
energy. We find that the nonperturbative formalism canno
consistently applied to the calculation of the radiatively
duced,CPT-even corrections to the theory. A nonperturbati
regularization of the sort used in@5# leads unavoidably to a
violation of the Ward identity that enforces the transversa
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of the vacuum polarization. Alternatively, while the use
dimensional regularization leads to unambiguously tra
verseCPT-even terms, this regularization restores the co
plete ambiguity in theCPT-odd terms, becauseg5 does not
have a unique dimensional extension.

We shall introduce the massless theory and exhibit
extremely simple rationalization of the exact propagator.
then move on to calculate the one-loop photon self-ene
Pmn(p). We shall interpret our results with the help of a
analogy to a simpler theory, in which apparent violations
the Ward identitypmPmn(p)50 can be eliminated by a
change in the regularization; however, the correspond
change in regularization for the theory of interest is fund
mentally nonperturbative. We conclude with a discussion
the implications of our result.

The Lagrange density for our theory~including a possible
mass term! is

L52
1

4
FmnFmn1c̄~ i ]”2m2eA” 2b”g5!c. ~1!

However, we shall be concerned here only with them50
case. Although we can eliminateb from the massless La
grangian by making the chiral transformation

c→e2 ig5b•xc, c̄→c̄e2 ig5b•x, ~2!

this transformation is anomalous and does not leave
gauge invariantly regulated fermionic measure invari
@17#. However, we should keep in mind that, if we accou
correctly for the anomaly associated with Eq.~2!, we can
eliminateb from the rest of the theory.

There are several reasons for considering only the m
less case. Settingm50 simplifies the algebra in the calcula
tion of the self-energy, but this is a minor point. There a
two other, more important reasons. The first is the ch
symmetry mentioned above. The existence of this symm
significantly simplifies our discussion; in particular, it allow
us to construct a clear analogy that will illuminate the orig
of the difficulties we encounter. The second reason is m
subtle. We shall use power-counting arguments to determ
the structure of theb dependence of the vacuum polarizatio
In order to apply these arguments, we must suppose tha
©2004 The American Physical Society09-1
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theory can be expanded in a power series inb. If there exists
a nonvanishing momentum scalem2 in the theory, it is con-
ceivable that the power series description might break do
at the scaleb2;m2. This actually occurs in the calculatio
of the Chern-Simons term@6,7#. To avoid similar problems
here, we setm50.

The exact fermion propagator for the massive theory

S~k!5
i

k”2m2b”g5

. ~3!

When m50, this is most easily rationalized by breaking
into two terms, corresponding to the two eigenvalues ofg5.
Doing this, we have
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12500
n
S~k!5

i

k”2b”

12g5

2
1

i

k”1b”

11g5

2

5 i F k”2b”

~k2b!2

12g5

2
1

k”1b”

~k1b!2

11g5

2 G .

~4!

This rationalization of the propagator is substantially simp
than other versions. The numerators have fewer Dirac ma
ces, and the denominators are simpler as well. The pres
of the right- and left-handed projectors will also simplify th
algebra.

In particular, the one-loop self-energy,

Pmn~p!52 ie2trE d4k

~2p!4
gmS~k!gnS~k1p!, ~5!

may be simplified in the massless case to
Pmn~p!5
ie2

2
trE d4k

~2p!4 Fgm~k”1b” !gn~k”1p”1b” !1gm~k”1b” !gn~k”1p”1b” !g5

~k1b!2~k1p1b!2

1
gm~k”2b” !gn~k”1p”2b” !2gm~k”2b” !gn~k”1p”2b” !g5

~k2b!2~k1p2b!2 G . ~6!
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Through an analysis of the structure of Eq.~6!, we may learn
a great deal about the nature of the nonperturbative theo

We observe that all the information necessary for the c
culation ofPmn(p) is contained in the function

f ab~p,b!5E d4k

~2p!4

~k2b!a~k1p2b!b

~k2b!2~k1p2b!2
. ~7!

The self-energy involves symmetric and antisymmetric su
f ab(p,b)6 f ab(p,2b) contracted with tensors in
(m,n,a,b). The terms off ab(p,b) that are even inb give
rise to contributions toPmn(p) with different Lorentz struc-
ture from the terms that are odd inb, since the odd terms
involve a trace overg5. We might conclude that, because
the differences in their Lorentz structures, the two types
terms will need to be regulated differently. However, as
formal object, f ab(p,b) still contains everything needed t
determine the one-loop self-energy.

In fact, the nonperturbative viewpoint requires that t
same regulator be used for all the terms, regardless
whether they are even or odd inb. Since there is only a
single Feynman diagram in the nonperturbative formulati
a truly nonperturbative calculation would involve a sing
evaluation of f ab(p,b) to all orders inb using a unique
regularization prescription. It would not be consistent to u
the nonperturbative regularization for theb-odd terms and a
different regulator for the even terms.~It is possible that in a
more fundamental theory, we may be required to use a re
y.
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s
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lator that does treat the even and odd terms differently; h
ever, this is just speculation.! We shall therefore use the sam
methods used in@5# to fix the coefficient of the induced
Chern-Simons term to determine the higher-order,CPT-even
contributions to the self-energy.

If we shift the integration variablek→k2b in f ab(p,b),
then the integrand becomesb independent. Since the integra
is superficially quadratically divergent, the surface term g
erated by the shift is at most quadratic inb. Therefore, there
are no contributions to the self-energy that are higher t
second order inb. This result has been previously demo
strated for theb-odd terms, and it might be expected o
dimensional grounds for theb-even terms as well, since ther
is no mass scale in the problem. However, the ease w
which it has been demonstrated here shows the usefulne
the propagator~4!.

TheO(b0) part of f ab(p,b) gives the usual QED photon
self-energy. TheO(b) contribution toPmn(p) has also been
calculated; this is the Chern-Simons term. In a specific n
perturbative formalism, which is presented in@5–7#, this
term has a fixed value, but more generally—in particular
the theory is defined perturbatively inb—its value is unde-
termined and regularization dependent@10#. However, this
ambiguity and the structure of this term in general are w
understood. We shall therefore focus our attention on
O(b2) terms.

If we were interested only in finding the ultraviolet dive
gent part off ab(p,b) at second order inb, we could simply
9-2
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shift the integration as outlined above and evaluate the
sulting integral; since the initial integral is superficially qu
dratically divergent, theO(b2) part of the surface term ac
companying the shift is ultraviolet finite. We would find th
the ultraviolet divergent part off ab(p,b) vanishes atO(b2).
However, if we wish to calculate the ultraviolet finite contr
butions ~which are derived entirely from the surface ter
accompanying the integration shift! as well, we must take
more care.

We shall evaluate theO(b2) terms inf ab(p,b) by a direct
expansion of the integrand in powers ofb. The integral that
appears at second order inb is finite when the integration is
performed symmetrically. This is the correct prescription
performing the integration in the nonperturbative formalis
because the same property~observer Lorentz invariance! is
being used to fix the value of the vacuum polarization at b
O(b) andO(b2). @Of course, the same technique cannot
used to deal with theO(b0) term in the photon self-energy i
gauge invariance is to be preserved. We shall set this for
difficulty aside, however, since theO(b0) is necessarily di-
vergent in any regularization scheme and is thus qualitativ
different from the higher-order terms.#

We begin our calculation by writing

f ab~p,b!5E d4k

~2p!4
expS 2bg

]

]kg
D ka

k2

kb8

~k8!2
, ~8!

where we have definedk85k1p. The portion of this expres
sion that is quadratic inb, which we shall denote a
hab(p,b), is

hab~p,b!5
1

2
bgbdE d4k

~2p!4

]

]kg

]

]kd

ka

k2

kb8

~k8!2
~9!

5
1

96p2
~babb2gabb2!. ~10!

Transversality of the vacuum polarization requires t
(2pagnb2pngab)hab(p,b)50. This condition does no
hold; even thoughhab(p,b) is unambiguously finite, it still
violates the Ward identity. If we insist on gauge invariance
a fundamental property of the theory, then this result is
acceptable. Such an insistence on gauge invariance is c
mon practice; indeed, in theories with regularization ambi
ities, gauge invariance is usually the first property that
turn to in an attempt to fix the correct regularization@18#.
Moreover, even though Ward-identity-violating terms in t
effective action may not spoil the renormalizability of
purely Abelian gauge theory, the physical photon, wh
must be embedded within the standard model, contains
underlying non-Abelian component. The violation of th
Ward identity that we have encountered will make the n
Abelian theory nonrenormalizable, and the resulting div
gences render the theory undefined. Therefore, if we take
viewpoint either of requiring gauge invariance or of cons
ering only physical standard model fields, then the result~10!
for hab(p,b) cannot be correct.
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To understand how this violation of gauge invarian
arises, it is useful to consider an analogy. For a theory w
Lagrange density

L852
1

4
FmnFmn1c̄~ i ]”2eA” 2a” !c, ~11!

there is a field rescaling similar to Eq.~2!,

c→e2 ia•xc, c̄→eia•xc̄, ~12!

which eliminatesa from the theory. Moreover, this rescalin
is not anomalous. However, we may choose not to elimin
a from the Lagrangian. If we consider the theory directly
defined by L8 and attempt to calculate the photon se
energy, we will immediately be led to an evaluation
f ab(p,a). The violation of the Ward identity in this instanc
is clearly an artifact of our unconventional choice of mome
tum coordinates. A shift in the integration variablek→k
2a eliminates the problematic term. This shift is precise
equivalent to the field redefinition~12!.

Returning to the axial vector theory~1!, it seems now that
the correct solution to our difficulties would be to shift th
origin of the integration in Eq.~7! so thathab(p,b) is set to
zero. While we believe that this is the physically correct w
of regulating this theory, it is inconsistent with the nonpe
turbative formalism. In the vector theory witha, there arises
in the calculation ofPmn(p) only a single term of the form
f ab(p,a). However, in the axial vector theory, we encount
the sumf ab(p,b)1 f ab(p,2b). The essence of the nonpe
turbative formulation is that both terms in Eq.~6! must
be regulated in the same way. We are allowed only
single shift in the integration variablek→k1q. This
shift transforms f ab(p,b)1 f ab(p,2b)→ f ab(p,q1b)
1 f ab(p,q2b)Þ0. We see that in order to eliminate th
Ward-identity-violating surface term, we must be free to sh
the integrations in different terms by different amoun
which is equivalent to defining the theory perturbatively.@Al-
though the theory is massless, a chiral shiftk→k1g5q can-
not be implemented in a fashion that allows us to retain
unique result atO(b), for reasons we shall outline below.# In
the perturbative formulation, we treat the term2c̄b”g5c in
L as defining a new vertex of the theory. We are then free
shift the integrations independently in the evaluations of d
ferent Feynman diagrams, and this allows us to enfo
gauge invariance.

Although we are working with a massless theory, we a
not allowed to make naive chiral shifts in the integrati
variable k if we are to retain the special nonperturbati
value for (kCS)m , because the corresponding transformat
~2! is anomalous. To properly account for the anomaly,
must use the functional integral formalism. The Fujikaw
determinant@17# accompanying the shift then reproduces t
correct nonperturbative value of the induced Chern-Sim
coefficient; however, there is another, completely unde
mined contribution that arises from the ambiguity in the de
nition of the axial current operator@19#. So it is impossible to
9-3
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B. ALTSCHUL PHYSICAL REVIEW D 69, 125009 ~2004!
shift the integrations separately for the left- and right-hand
components ofc without giving up the uniqueness of th
O(b) result.

It is the necessity of using a single regulator for bo
terms in Eq.~6! that gives rise to a unique specification
the induced Chern-Simons term atO(b). However, it proved
impossible to regulate theO(b2) terms in the same fashio
without violating the Ward identity. Therefore, there seems
be no special significance to the nonperturbative value of
induced Chern-Simons term. This is in some ways unsurp
ing. Although there are stability problems for theories w
nonvanishing Chern-Simons coefficients, we are always
to add an additional Chern-Simons term to the bare Lagra
ian so as to make the total coefficient zero.

The existence of a surface term that violates gauge inv
ance atO(b2) is perhaps also unsurprising, given what
known about the behavior of the nonperturbative theory
O(b). In the massless case, the only contribution to the
duced Chern-Simons coefficient comes from the surf
term. The associated induced Lagrange density is not ga
invariant; however, because the density necessarily invo
emnab, the Ward identity is preserved and the integrated
tion remains gauge invariant. There is no such restriction
the form of the induced term atO(b2), and without the pro-
tection of a specific structure for the self-energy, the ga
invariance of the action is lost. At each order, the surfa
term simply violates gauge invariance in the strongest w
allowed by its tensor structure.

Finally, we must discuss the possibility of dimension
regularization. A dimensional regulator preserves gauge
variance at all orders inb and setshab(p,b)50. Moreover,
it solves the formal problems associated with the nonper
bative evaluation of theO(b0) contributions, since it allows
us to regulate all the terms, even the divergent ones, in
same fashion. However, dimensional regularization also
stores the complete ambiguity of the induced Chern-Sim
v.
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term. ~This is closely analogous to the situation we encou
tered when using the functional integral formalism and
Fujikawa regulator.! Theb-odd terms involveg5, which does
not have a unique extension to 42e dimensions. Any exten-
sion that commutes with 42ne g matrices~for arbitraryn)
will have the correct limit ase→0, and each extension wil
give a different result for the Chern-Simons coefficie
Moreover, it is not possible to determine the correct ext
sion from other sectors of the theory. The dimensional ext
sion of theg5 appearing in2c̄b”g5c need not be the sam
as the dimensional extensions of theg5 appearing in the
chiral gauge sector, for example; these are entirely dist
operators, which may behave differently under dimensio
regularization. Therefore, while a dimensional regularizat
prescription may be used to implement a completely nonp
turbative formulation of the theory, it also renders the co
ficient of the induced Chern-Simons term completely un
termined.

In this paper, we have demonstrated that the ambiguit
the value of the induced Chern-Simons term for the the
defined by Eq.~1! is unavoidable. The specific value pre
dicted by the nonperturbative formulation can have no s
cial significance, because the nonperturbative regulariza
of the theory used in@5# cannot be extended to higher orde
in b without violating the Ward identity; and therefore, eve
if it contains no tree-level contribution, the coefficient
Chern-Simons term in the effective action can be fixed o
by experiment. Although this result was derived only in t
limit of massless fermions, the massive theory may well
have similarly.
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