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Failure of gauge invariance in the nonperturbative formulation of massless Lorentz-violating QED
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We consider a Lorentz-violating modification to the fermionic Lagrangian of QED that is known to produce
a finite Chern-Simons term at leading order. We compute the second order correction to the one-loop photon
self-energy in the massless case using an exact propagator and a nonperturbative formulation of the theory.
This nonperturbative theory assigns a definite value to the coefficient of the induced Chern-Simons term;
however, we find that the theory fails to preserve gauge invariance at higher orders. We conclude that the
specific nonperturbative value of the Chern-Simons coefficient has no special significance.
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There has been much recent interest in the possibility 0bf the vacuum polarization. Alternatively, while the use of
addingCPT- and Lorentz-violating terms to the Lagrangians dimensional regularization leads to unambiguously trans-
of quantum field theoriell —4]. These terms may arise from verseCPT-even terms, this regularization restores the com-
violations of these symmetries at the Planck scale. There afglete ambiguity in theCPT-odd terms, becausgs does not
many strong experimental constraints on Lorentz-violatinghave a unique dimensional extension.
corrections to the standard model, and such corrections must We shall introduce the massless theory and exhibit an
generally be small. However, the subject of Lorentz violationextremely simple rationalization of the exact propagator. We
in quantum field theory is still of great theoretical and ex-then move on to calculate the one-loop photon self-energy
perimental interest. I[1#¥(p). We shall interpret our results with the help of an

The simplest perturbatively nontrivial correction to the analogy to a simpler theory, in which apparent violations of
fermion sector of quantum electrodynamics involves the adthe Ward identityp,[1#*(p)=0 can be eliminated by a
dition of a CPT-violating axial vector term to the action. change in the regularization; however, the corresponding
There has been a great deal of interest in the effect of suchehange in regularization for the theory of interest is funda-
term on the radiative correctiofid—11] to the theory. At one mentally nonperturbative. We conclude with a discussion of
loop order, the theory generates a term of the Chern-Simori§e implications of our result.
form Lcg= %(kcs)MG“aBVFaBAy [12—-14. Astrophysical The Lagrange density for our theofincluding a possible
measurements constrain the physical coefficiegt), to be ~ mass termis
very small[14—-16. However, while the radiatively induced
value of kcg),, is unambiguously finite, it is also completely 1 —
undetermined(and possibly vanishing its value depends L==ZFHF ,+d(id—m—eA-bys)y. (1)
upon how the theory is regulated. Moreover, since an arbi-
lvely induced term, the calociated value of the indycectiOWeVer, we shall be concerned here only with the-0
Chern-Simons coeff}cient can have no experimental signifif:ase'.Although we can ellmlnate from thg massless La-
cance. grangian by making the chiral transformation

There is, however, one particular value of the coefficient 4 — —
that appears to enjoy a special status. It is pointed o[f]in e TNy, s eSO, ()
that if the theory is defined nonperturbatively in tG&T-
violating axial vector interaction, then there can be a prethis transformation is anomalous and does not leave the
cisely determined value for the induced coefficient. Evengauge invariantly regulated fermionic measure invariant
though the authors di5] do not insist that their regulariza- [17]. However, we should keep in mind that, if we account
tion scheme is necessarily the correct one, their work raisesorrectly for the anomaly associated with ), we can
the interesting question of whether this nonperturbative foreliminateb from the rest of the theory.
mulation has any special significance. In this paper, we an- There are several reasons for considering only the mass-
swer that question, at least for the case of massless fermiorigss case. Setting=0 simplifies the algebra in the calcula-
by analyzing higher-order contributions to the photon self-tion of the self-energy, but this is a minor point. There are
energy. We find that the nonperturbative formalism cannot béwo other, more important reasons. The first is the chiral
consistently applied to the calculation of the radiatively in-symmetry mentioned above. The existence of this symmetry
duced,CPT-even corrections to the theory. A nonperturbativesignificantly simplifies our discussion; in particular, it allows
regularization of the sort used [5] leads unavoidably to a us to construct a clear analogy that will illuminate the origin
violation of the Ward identity that enforces the transversalityof the difficulties we encounter. The second reason is more

subtle. We shall use power-counting arguments to determine
the structure of thé dependence of the vacuum polarization.
*Electronic address: baltschu@indiana.edu In order to apply these arguments, we must suppose that the
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theory can be expanded in a power serieb.itf there exists
a nonvanishing momentum scat€ in the theory, it is con- S(k)=
ceivable that the power series description might break down k=b 2 k+b 2
at the scaleb?>~m?. This actually occurs in the calculation
of the Chern-Simons terti,7]. To avoid similar problems i k=b 1-s " kKtb 1+vs
here, we sem=0. (k—b)?2 2 (k+b)? 2

The exact fermion propagator for the massive theory is (4)

This rationalization of the propagator is substantially simpler
than other versions. The numerators have fewer Dirac matri-
ces, and the denominators are simpler as well. The presence

S(k)y= ———. (3) of the right- and left-handed projectors will also simplify the
K—m—bys algebra.
In particular, the one-loop self-energy,
4
Whenm=0, this is most easily rationalized by breaking it H*"(p)= —lezth (2m)* YK y'Sk+p).
into two terms, corresponding to the two eigenvaluey£f
Doing this, we have may be simplified in the massless case to

YH(K+B)y"(K+p+B)+ y*(K+1b) y"(K+p+B)ys
(k+b)?(k+p+b)?

I#(p) ieztj d%k
"(p)= —tr
T2 2

N YH(K=B)y"(k+p—b)— y“(K—b) y"(k+p—b)ys

(k—b)%(k+p—b)? ©

Through an analysis of the structure of E6), we may learn lator that does treat the even and odd terms differently; how-
a great deal about the nature of the nonperturbative theoryever, this is just speculationVe shall therefore use the same
We observe that all the information necessary for the calmethods used ini5] to fix the coefficient of the induced
culation of [T**(p) is contained in the function Chern-Simons term to determine the higher-or@-even
contributions to the self-energy.
d*k (k—b) (k+ p—b)g If we shift the integration variable—k—b in f,z(p,b),
faﬁ(p’b):f (27)* (k—b)2(k+p—b)? ' () then the integrand becombsndependent. Since the integral
is superficially quadratically divergent, the surface term gen-
The self-energy involves symmetric and antisymmetric sum&rated by the shift is at most quadratictinTherefore, there
fos(P,b) = f,5(p,—b) contracted with tensors in &€ no contributions to the self-energy that are higher than
(w,v,a,B). The terms off ,5(p,b) that are even ib give second order irb. This result has been previously demon-
rise to contributions tdI#*(p) with different Lorentz struc-  strated for theb-odd terms, and it might be expected on
ture from the terms that are odd b since the odd terms dimensional grounds for tHeeven terms as well, since there
involve a trace ovelys. We might conclude that, because of is no mass scale in the problem. However, the ease with
the differences in their Lorentz structures, the two types ofwvhich it has been demonstrated here shows the usefulness of
terms will need to be regulated differently. However, as athe propagato(4).
formal object,f,z(p,b) still contains everything needed to ~ The O(b°) part of f ,5(p,b) gives the usual QED photon
determine the one-loop self-energy. self-energy. Th&(b) contribution tol1#”(p) has also been
In fact, the nonperturbative viewpoint requires that thecalculated; this is the Chern-Simons term. In a specific non-
same regulator be used for all the terms, regardless gferturbative formalism, which is presented [i5-7], this
whether they are even or odd Im Since there is only a term has a fixed value, but more generally—in particular, if
single Feynman diagram in the nonperturbative formulationthe theory is defined perturbatively br+—its value is unde-
a truly nonperturbative calculation would involve a singletermined and regularization depend¢hf]. However, this
evaluation off ,4(p,b) to all orders inb using a unique ambiguity and the structure of this term in general are well
regularization prescription. It would not be consistent to usaunderstood. We shall therefore focus our attention on the
the nonperturbative regularization for theodd terms and a  O(b?) terms.
different regulator for the even term@t is possible that in a If we were interested only in finding the ultraviolet diver-
more fundamental theory, we may be required to use a reggent part off ,5(p,b) at second order ib, we could simply
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shift the integration as outlined above and evaluate the re- To understand how this violation of gauge invariance
sulting integral; since the initial integral is superficially qua- arises, it is useful to consider an analogy. For a theory with
dratically divergent, thed(b?) part of the surface term ac- Lagrange density
companying the shift is ultraviolet finite. We would find that
the ultraviolet divergent part df, 5(p,b) vanishes a(b?). 1 .
However, if we wish to calculate the ultraviolet finite contri- L=— ZF’”FW+ Yidb—eA—a)y, (17
butions (which are derived entirely from the surface term
accompanying the integration shifas well, we must take
more care. there is a field rescaling similar to E(R),
We shall evaluate th@(b?) terms inf,5(p,b) by a direct
expansion of the integrand in powersofThe integral that
appears at second orderhnis finite when the integration is
performed symmetrically. This is the correct prescription for
performing the integration in the nonperturbative formalism,which eliminatesa from the theory. Moreover, this rescaling
because the same propefgbserver Lorentz invariangés is not anomalous. However, we may choose not to eliminate
being used to fix the value of the vacuum polarization at bott from the Lagrangian. If we consider the theory directly as
O(b) andO(b?). [Of course, the same technique cannot bedefined by £’ and attempt to calculate the photon self-
used to deal with thé€(b°) term in the photon self-energy if €nergy, we will immediately be led to an evaluation of
gauge invariance is to be preserved. We shall set this formdl.z(p,a). The violation of the Ward identity in this instance
difficulty aside, however, since th@(b°) is necessarily di- is clearly an artifact of our unconventional choice of momen-
vergent in any regularization scheme and is thus qualitativeljum coordinates. A shift in the integration varialte-k

y—e Y, ey, (12)

different from the higher-order ternis. —a eliminates the problematic term. This shift is precisely
We begin our calculation by writing equivalent to the field redefinitiof12).
Returning to the axial vector theofg), it seems now that
dk 0 \ke Kj the correct solution to our difficulties would be to shift the
faﬁ(p,b)zf 4exp< —by7>—2 ——, (8  origin of the integration in Eq(7) so thath,z(p,b) is set to
(27r) IRyl K? (K") zero. While we believe that this is the physically correct way

_ ) ) of regulating this theory, it is inconsistent with the nonper-
where we have defined =k+p. The portion of this expres-  yrbative formalism. In the vector theory with there arises
sion that is quadratic inb, which we shall denote as ip the calculation ofl1#*(p) only a single term of the form
h.p(p.b), is f.5(p,a). However, in the axial vector theory, we encounter

the sumf ,45(p,b) +f (P, —b). The essence of the nonper-
d’k 9 d k, kg turbative formulation is that both terms in E¢6) must
haﬁ(p,b)=§byb5f Wg?a_kaﬁ(k,)z ©) be regulated in the same way. We are allowed only a
7 single shift in the integration variabl&k—k+q. This
shift  transforms f,4(p,b)+f,s5(p,—b)—f,5(P,q+Db)
_ 1 (b,bs— g, 5b?) (10) +f.5(P,g—b)#0. We see that in order to eliminate the
962 a0k GapD)- Ward-identity-violating surface term, we must be free to shift
the integrations in different terms by different amounts,

Transversality of the vacuum polarization requires thatvhich is equivalent to defining the theory perturbativeh-
(2p*g*P— p”g“ﬁ)haﬂ(p,b)zo. This condition does not though _the theory is r_nassless,_ a chiral skiftk+ ysq can-.
hold; even thougth,,4(p,b) is unambiguously finite, it stil nofc be implemented in a fashion that aIIows_ us to retain a
violates the Ward identity. If we insist on gauge invariance aginique result aO(b), for reasons we shall outline belgvn
a fundamental property of the theory, then this result is unthe perturbative formulation, we treat the termpBysy in
acceptable. Such an insistence on gauge invariance is comi-as defining a new vertex of the theory. We are then free to
mon practice; indeed, in theories with regularization ambigushift the integrations independently in the evaluations of dif-
ities, gauge invariance is usually the first property that weferent Feynman diagrams, and this allows us to enforce
turn to in an attempt to fix the correct regularizatid8]. gauge invariance.

Moreover, even though Ward-identity-violating terms in the  Although we are working with a massless theory, we are
effective action may not spoil the renormalizability of a not allowed to make naive chiral shifts in the integration

purely Abelian gauge theory, the physical photon, whichvariable k if we are to retain the special nonperturbative

must be embedded within the standard model, contains avalue for kcg), , because the corresponding transformation
underlying non-Abelian component. The violation of the (2) is anomalous. To properly account for the anomaly, we
Ward identity that we have encountered will make the non-must use the functional integral formalism. The Fujikawa

Abelian theory nonrenormalizable, and the resulting diver-determinanf17] accompanying the shift then reproduces the
gences render the theory undefined. Therefore, if we take theorrect nonperturbative value of the induced Chern-Simons
viewpoint either of requiring gauge invariance or of consid-coefficient; however, there is another, completely undeter-
ering only physical standard model fields, then the rgd@t  mined contribution that arises from the ambiguity in the defi-

for h,g(p,b) cannot be correct. nition of the axial current operatt9]. So it is impossible to
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shift the integrations separately for the left- and right-handederm. (This is closely analogous to the situation we encoun-
components ofy without giving up the uniqueness of the tered when using the functional integral formalism and a
O(b) result. Fujikawa regulatoy. The b-odd terms involveys, which does

It is the necessity of using a single regulator for bothnot have a unique extension te-4 dimensions. Any exten-
terms in Eq.(6) that gives rise to a unique specification of sion that commutes with-4ne y matrices(for arbitraryn)
the induced Chern-Simons term@(b). However, it proved || have the correct limit ag—0, and each extension will
impossible to regulate th@(b?) terms in the same fashion give a different result for the Chern-Simons coefficient.
without violating the Ward identity. Therefore, there seems toyjoreover, it is not possible to determine the correct exten-

be no special significance to the nonperturbative value of thgjo, from other sectors of the theory. The dimensional exten-
induced Chern-Simons term. This is in some ways unsurpris-.

ing. Although there are stability problems for theories with S|Sor1hzf tc:;?n;%ail?rgﬁég;gfgﬁ ?};gec:ji noé;ienthtians?r:g €
nonvanishing Chern-Simons coefficients, we are always fre pp 9

to add an additional Chern-Simons term to the bare Lagranq%hg?;tg?sgv?/hsigﬁtgéfogeeﬁsvn;pé?%gpeeni? ?Jrr? dgptcljri?r%r?slisgrr:;lt
ian so as to make the total coefficient zero. P ’ Y y

. X . regularization. Therefore, whil imensional regularization
The existence of a surface term that violates gauge invari—J4'a atio eretore, € a dimensional regularizatio

ance atO(b?) is perhaps also unsurprising, given what is presctiption may t_)e used 1o implem_ent a completely nonper-
known about the behavior of the nonpertur,bative theory afurbatwe formulation of the theory, it also renders the coef-
O(b). In the massless case, the only contribution to the in—'CIent of the induced Chern-Simons term completely unde-

. ' termined.
duced Chern-Simons coefficient comes from the surface In this paper, we have demonstrated that the ambiguity in

.term.l The associated induced Lagrange density is. npt 9augge yalue of the induced Chern-Simons term for the theory
invariant; however, because the density necessarily mvolve&

; L . efined by Eq.(1) is unavoidable. The specific value pre-
téig;aférgfin\évzgjuIg(]j:?r:%rliz&re'?ﬁgg?sagg ;Bir:nrfg%ﬁgnag%icted by );heqn(or)wperturbative formulationIO can have nopspe—
the form of the induced term &(b?). and without the pro- ial significance, because the nonperturbative regularization

tection of a specific structure for the self-energy, the gaug of the theory used if5] cannot be extended to higher orders

invariance of the action is lost. At each order, the surfac%?n b without violating the Ward identity; and therefore, even

. . . . . f it contains no tree-level contribution, the coefficient of
term S|mply_ violates gauge invariance in the strongest Wa% hern-Simons term in the effective action can be fixed only
allowed by its tensor structure.

Finally, we must discuss the possibility of dimensional by experiment. Although this result was derived only in the

0 ! ) . limit of massless fermions, the massive theory may well be-
regularization. A dimensional regulator preserves gauge ing

variance at all orders ib and setd,5(p,b)=0. Moreover, have similarly. ;

it solves the formal problems associated with the nonpertur- The author is grateful to R. Jackiw and V. A. Kostelecky
bative evaluation of th€(b®) contributions, since it allows for many helpful discussions. This work is supported in part
us to regulate all the terms, even the divergent ones, in thiey funds provided by the U.S. Department of Ene(GyOE)
same fashion. However, dimensional regularization also rednder  cooperative research  agreement DE-FGO02-
stores the complete ambiguity of the induced Chern-Simon81ER40661.
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