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Mergers of irrotational neutron star binaries in conformally flat gravity
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We present the first results from our new general relativistic, Lagrangian hydrodynamics code, which treats
gravity in the conformally fla{CF) limit. The evolution of fluid configurations is described using smoothed
particle hydrodynamicéSPH), and the elliptic field equations of the CF formalism are solved using spectral
methods in spherical coordinates. The code was tested on models for which the CF limit is exact, finding good
agreement with the classical Oppenheimer-Volkov solution for a relativistic static spherical star as well as the
exact semianalytic solution for a collapsing spherical dust cloud. By computing the evolution of quasiequilib-
rium neutron star binary configurations in the absence of gravitational radiation back reaction, we have con-
firmed that these configurations can remain dynamically stable all the way to the development of a cusp. With
an approximate treatment of radiation reaction, we have calculated the complete merger of an irrotational
binary configuration from the innermost point on an equilibrium sequence through merger and remnant for-
mation and ringdown, finding good agreement with previous relativistic calculations. In particular, we find that
mass loss is highly suppressed by relativistic effects, but that, for a reasonably stiff neutron star equation of
state, the remnant is initially stable against gravitational collapse because of its strong differential rotation. The
gravity wave signal derived from our numerical calculation has an energy spectrum which matches extremely
well with estimates based solely on quasiequilibrium results, deviating from the Newtonian power-law form at
frequencies below 1 kHz, i.e., within the reach of advanced interferometric detectors.
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I. INTRODUCTION PSR1913 16 that currently provides our best indirect evi-
dence for the existence of GW$5-17.

Gravitational wave(GW) astronomy stands at a crucial At large separations, the dynamics of compact object bi-
moment in its history, with the LIGQLaser Interferometer naries can be well approximated by high-order post-
Gravitational Wave Observatorgcientific Collaboration re- Newtonian(PN) (see[18] and references thergiand other
porting results from their first scientific rufig—3], GEO600 formalisms[19,20 which treat the compact objects as point-
having completed two scientific rurg,5], TAMA taking masses, including the effects of spin-orbit and spin-spin an-
data[6,7], and VIRGO reporting its first lock acquisition gular momentum couplings for systems containing a BH
[8-10]. As such, it is now more important than ever to have[21-23. In general, these methods are more appropriate for
accurate theoretical predictions of the main candidate sigdescribing a BH than a NS, since the finite-size effects ig-
nals, both to aid in their detection and to facilitate the inter-nored by point-mass formulas are of greater magnitude in
pretation of any future detections. systems containing NS.

It has long been recognized that coalescing relativistic For smaller binary separationss= 10Rys, whereRys is
binary systems containing compact objects, either neutrofhe radius of the NS, these finite-size corrections play an
stars(NS) or black holes(BH), are likely to be important increasingly significant role in the evolution of NS-NS bina-
sources of detectable GWs. Recent population synthesis caies. As long as the coalescence time scater/r remains
culations indicate that an Advanced LIGO detector should béonger than the dynamical time scale, the evolution is qua-
able to see at least tens of coalescences per year of NS-N§adiabatic, and the binary will sweep through a sequence of
NS-BH, and BH-BH binarie$11]. Empirical rate estimates configurations representing energy minima for given binary
based on three of the four observed binary pulsar systemseparations. The infall rate will be given by
expected to merge within a Hubble time, PSR B1918,

PSR B1534-12, and PSR J0737-30342], are in general dr [(dE dE(r)| !
agreement, with the latter making the dominant contribution gt \ar T) , (D)
to the probabilistic rate because of its short coalescence time GW eq

of 85 Myr (see[13,14 and references therein; the fourth
system is located in a globular cluster, rather than the galaahere dE/dt)gy is the energy loss rate to gravitational ra-
tic plang. NS-NS binaries are the only known systems withdiation, and § E/dr). is the slope of the equilibrium energy
coalescence times shorter than a Hubble time to have beaurve. Equilibrium energy sequences were first constructed
conclusively observed, and it is the orbital decay ofin Newtonian and then PN gravit{see[24] and references
therein. More recently, general relativistiGGR) sequences
have been calculated for binary NS systems in quasicircular
*Current address: Laboratoire de Matraiques et de Physique orbits[25-32. An important result from these studies is that
Theorique, Universitede Tours, Parc de Grandmont, 37200 Tours,the slope of the equilibrium energy curve is flatter when
France. relativistic effects are included, compared to the Newtonian
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value. This becomes especially pronounced at small separafall velocity. The calculations of Shibata and Urjdd,42]
tions, near the point where equilibrium sequences encountersed initial conditions generated by Uryu, Eriguchi, and col-
an energy minimum(often associated with the “innermost laborators[31,32, and the more recent work by Shibata,
stable circular orbit,” or ISCQ or terminate when a cusp Taniguchi, and Uryy43] used initial conditions generated
develops on the inner edge of the NS. Based on this obseby TG. This restricts studying the behavior of the infall ve-
vation, it was noted that a flatter slope in the equilibriumlocity and GW signal when the stars begin their plunge, dur-
energy curve results in not only a faster infall rate buting which time detected signals may yield important infor-
also a decrease in the energy spectrudE/df mation, as mentioned above. The lack of information about
~(dE/dr)/(df/dr). In fact, based on the relativistic equi- the dynamics of binaries before the plunge also hinders test-
librium sequences of Taniguchi and Gourgoulh@27], ing the validity of the initial matter and field configurations
hereafter TG, Faberet al. ([33], hereafter FGRIconcluded used in full GR calculations. While the assumptions defining
that the dependence of finite-size corrections on the NS comhe quasiequilibrium configuration are certainly reasonable,
pactnesgi.e., Mys/Rys) would leave an imprint in the GW it is difficult to gauge how well such configurations agree
energy spectrum at frequencies 500-1000 Hz, within the  with those evolved dynamically from larger separations. Also
band accessible to Advanced LIGO. Hugh&4] proposed a unknown in detail is the effect that errors in the initial con-
method using these results which would allow for a determifiguration will have on the system as they propagate in non-
nation of the NS compactness to within a few percent basetinear fashion during the calculation.
on 10-50 observations with Advanced LIGO if it employs a A further technical difficulty with full GR calculations
narrow-band detector in addition to the current broadbandesults from computational limits, since numerical grids are
setup, with the required number of observations dependermurrently constrained to have their boundaries lie within ap-
upon both the true compactness and the particular setup gfoximately half of a GW wavelength, within the near zone.
the detector. This can induce possibly significant errors into the GW ex-
Shortly before the ISCO or the end of the equilibrium traction process, which would ideally be performed by study-
sequencéwhen it terminates at the formation of a cugpe  ing the behavior of the metric in the wave zone.
binary will begin a transition toward a rapid plunge inward, A possible middle road, at least at present, is provided by
eventually leading to merger. Once the binary passes thithe conformally flat(CF) approximation to GR, first de-
point, the dynamical evolution becomes too complicated tascribed by Isenber§d4] and developed in greater detail by
describe using semianalytical methods, requiring instead ®ilson and collaboratorg45] (note that their original ver-
3D hydrodynamic treatment. Such calculations were persion contained a mathematical error, pointed out by Flanagan
formed first for Newtonian gravitation, using both Eulerian, [46], accounting for spurious results with regard to “crush-
grid-based codes and Lagrangian smoothed particle hydrodyng” effects on NS prior to mergér This formalism includes
namics (SPH; for a review, see, e.g.35] and references much of the nonlinearity inherent in GR, but yields a set of
therein. It was always recognized that any results would becoupled, nonlinear, elliptic field equations, which can be
at best qualitatively accurate, since the extreme compactnessolved stably. The first dynamical 3D calculations to make
of the NS would induce a host of GR effects. Noting this, use of the CF framework were performed by Shibata, Baum-
some attempts were made to calculate the evolution of binargarte, and Shapira7], who created a PN variant by discard-
NS systems in lowest-order PN grav[§5—39, using a for-  ing some of the nonlinear source terms in the field equations
malism developed bj40]. Unfortunately, using realistic NS while retaining the vast majority of the nonlinearity in the
equations of statéEOS violated the basic assumption of the system. They found, among other things, that the maximum
PN approximation that the magnitude of the 1PN terms arelensity of the NS is smaller for binary configurations than in
small relative to Newtonian-order effects. As a result, all PNisolation, and that NS in binaries have a higher maximum
calculations were forced to make unphysical approximationsnass as well, strongly indicating that collapse to a BH prior
either by evolving NS with a fraction of their proper physical to merger is essentially impossible. The first calculations to
massg 38,39, or by reducing the magnitude of all 1PN terms use the full formalism were performed by Oechséihal.
[[35—37, hereafter denoted FR1-3, or collectively FR [48], using a Lagrangian SPH code with a multigrid field
While the ultimate goal of studying binary NS coales- solver. Using corotating initial configurations, which are
cences should be a full GR treatment, only one group hathought to be unphysicasince viscous effects are thought to
been able to calculate the full evolution of a binary systembe much too weak to tidally synchronize the \¥8,50),
from an equilibrium binary configuration through merger andthey found that mass loss during the merger is suppressed in
the formation of a remnan#1—-43. While these calculations relativistic gravitational schemes, as had been previously
represent a breakthrough in our understanding of the hydrasuggested based on calculations in PN grafiR3).
dynamics of coalescing NS binaries, they still leave a great While the CF formalism appears to be safer than full GR
deal of room for further research into a variety of questionswith regard to evolving the system stably, the grid-based
Currently, full GR calculations are extremely difficult, and approaches used so far suffer from many of the same prob-
are vulnerable to several numerical instabilities. In order tdems faced by full GR calculations. Since the CF field equa-
guarantee the stability of calculation through coalescencéons are nonlinear and lack compact support, approximate
and the formation of either a stable merger remnant or a BHpoundary conditions for the fields must be applied at the
binaries were started from the termination points of equilib-boundary of the grid, which can lead to errors in the solution.
rium sequences, from quasicircular configurations with zerAdditionally, very large grids are required to satisfy the
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tradeoff between large grid sizes, required to improve theondensates, and we plan to extend our studies to include
accuracy of the boundary conditions, and small grid cellappropriate treatments of these conditions in the future.
sizes, necessary to improve the resolution of the NS. Multi- Our paper is structured as follows. In Sec. I, we summa-
grid techniques can be very valuable for such cases, but gri'ﬂze the theo_re_tical_ basis for our new _relativistic Lagrangian
refinement techniques can also act as a source of numericgpde: describing in turn the numerical methods used to

errors. Noting this, we have taken an entirely new approacHﬂplement both the dynamical equations of the CF formal-

. . ) . ism in SPH and the details of our spectral methods field
to the dynamical evolution of binary NS systems with S’PH’soIver. In Sec. Ill, we turn to the computational aspects of

whm_h requires no use of rectangular 3D grids to sqlve er thehe code relevant to coalescing binary systems. We detail the
metric fields. Instead, we use the LORENE numerical librar-chgices we have made with regard to SPH discretization, the
ies, developed by the Meudon group, which are freely availtechniques used to convert between particle-based and spec-
able onliné (see[51], hereafter BGM, and52] for a thor-  trally decomposed descriptions of various quantities, and the
ough description of the numerical techniques used ircoordinate transformations implemented to describe binary
LORENE). These routines, which use spectral methods angdystems, merging systems, and the resulting remnants. In
iterative techniques to solve systems of coupled nonlineaPec. 1V, we report the results of several test calculations,
multidimensional PDEs, have been used widely to study qualncluding two well-known exact CF solutions as well as the
siequilibrium sequences of binary NS systems in NewtoniarfV0!ution of quasiequilibrium configurations in the absence
[53,54 and CF gravity(TG [26,55), as well as a number of of dissipative effects, producing cwcglar orbits. In Sec. V, we

. i . L . show our results from the calculation of a full NS binary
other fluid configurations. The CF quasiequilibrium solutions

coalescence started from the innermost quasiequilibrium
of Gourgoulhonet al. [26] and TG have been used as the ¢qnfiguration, and followed through the merger and the for-

initial configurations for the most recent full GR calculations mation of a merger remnant. We compare our results to pre-

of Shibata, Taniguchi, and Ury§i43], and will be used in  vious work in the field, including full GR calculations using

this work as well. the same initial condition. Finally, in Sec. VI, we summarize
Our work here represents the first time that spherical coeur results and lay out some of the many classes of

ordinates and spectral methods have been used to study theoblems in relativistic hydrodynamics where our code may

dynamical evolution of binary NS systems in any gravita-Prove useful.

tional formalism, including Newtonian gravity. It has long

been known that these techniques are ideal for describing

both binary systems with large separations as well as the The CF approximation assumes that the spatial part of the

merger remnants formed during the coalescence, since tigR metric is equal to the flat-space form, multiplied by a

spherical coordinates correspond much more naturally to theonformal factor which varies with space and time. Setting

metric fields than rectangular coordinates can. TraditionallyG=C¢=1, as we will do throughout this paper, the CF metric

rectangular grids have been used anyway, both because thigkes the form

are more widespread throughout_ computational fluid dynam- 42 _ (N2—N;N))dt2— 2N;dtdx +A2fijdxidxj, )

ics, but also because they are viewed as more robust. It has

often been assumed that spherical coordinate field solvemhereN is the lapse functionlN; is the shift vector, and\

may fail to calculate fields properly during the merger, whenwill be referred to here as the conformal facteee Table |

the matter can be described neither as two spheroids nor & a comparison of our notation to those [@6,45,47,48

one, but rather some combination of the two, with mass los@hich are all based on the same exact assumptiorise

streams and other phenomena confusing the picture. \Wat-space three-metric is denoted y. We follow the stan-

show here, however, that spectral methods can be used si@rd notation for relativistic tensors, denoting spatial three-

cessfully in this regime, taking advantage of the mum_vectors.Wth Latin mdlces, and relatlv[stlc _four—vectors with

domain techniques of LORENE. This allows us to take ad-Créek indices. While the CF approximation cannot repro-

vantage of the many advantages inherent to spectrﬂu.ce thg exact GR solution .for an arb|trary matter configu-

methods: improved speed, vastly improved computerr"?lt'on’ it is exact for spherically symmetric systems, and

memory efficiency, and a coordinate system which allows fOIy|elds field s_oIL_Jtlons which agree with those calculatt_ed using
o full GR to within a few percent for many systems of interest
a natural treatment of the exact boundary conditions.

... [56].
The. code we have d.evelopeq to pgrform 3D.’ relativistic, As is typical for any relativistic calculation utilizing a
numerical hydrodynamic evolutions is well-suited for the

) ) olytropic EQS, there is a single physical scale which de-
study of a number of physical systems. While we focus her‘gnes the units for the problem. We choose to define this scale

on merging binary NS, our code is capable of evolving es+q, single-body test calculationSecs. IV A and IV B by
sentially any binary or single-body relativistic fluid configu- dividing all mass, length, and time-based quantities by the
ration. These include collapsing stellar cores and supermagravitational(ADM) massM, of the object. For all binary
sive stars, and rapidly rotating fluid configurations. Modulescalculations, we scale our results by the “chirp mass” of the
currently exist to handle a number of physically-motivatedsystem M .= %M t2/5, whereM, is the total gravitational
EOS, including models with phase transitions and bosoni¢nass of the system at large separation, areM ;M , /M, is
the reducedgravitational mass. This quantity is expected to
] be the most directly measurable physical parameter deduced
http://www.lorene.obspm.fr from any GW observatiolsee, e.g.[57]). For a binary sys-

II. NUMERICAL METHODS
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TABLE I. A comparison of our notation for various relativistic quantities to previous works using the CF
formalism:[26,45,47,48 For those cases where no unique terminology was defined, we give the simplest
equivalent algebraic form. We also list the equation in this paper where the quantity is defined.

Quantity Here Gourgoulhon Oechslin Shibata Wilson See Eq.
Lapse N N a a a (2
Shift N; N; =B =B = Bi 2
Conf. Fact. A A WP e $® )
Rest dens. Px I',A3p Px Ps D ¢® (5)
Lorentz Fact. Vn r, au® au® w (6)
Velocity v NU +N' v v Vi 7
Spec. Momentum 0 W, 0 T, S /(D ¢%) (10
Enthalpy h h w 1+Te h (11

tem consisting of twaMy=1.4 M NS, the chirp mass is where the rest mass density is defined by
Mp=1.22Mg, which vyields characteristic distance and 0n3 3
time scalesR=1.80 km andT=6.00x10 ° sec, respec- px =NUAp=y,A’p, ®)
tively. To compare our results with the equivalent relativistic
model (run M1414 of [43], who use the total gravitational
mass of the binary at large separation as their unit, one can =Nu°

. . Yn=NU", (6)
divide our quoted masses and radii by a factor df* 2
=2.30. To convert our time evolution results into the timeand the physical velocity is given by
units used in43], which are defined in terms of the initial
binary orbital period, divide our time units by a factor of 443 0 U
(their unit P,_,=2.66 ms for two NS each withM, v'=u’/u"=N +A2

u

=1.4Mg).

the Lorentz factor of the fluid is defined as

5 (7)

Note that u® is the timelike element of the covariant
A. CF smoothed particle hydrodynamics 4-velocity; all other numerical superscripts refer to expo-
In what follows, we will assume that the stress-energy”e”ts- Following the SPH .prescription, this cpnservative
tensor of the fluid is that of a perfect fluid, with form_ of the continuity equation al!ows us to define a set of
particles, each of which has a fixed masg and a well
T,,=(p+petP)u,u,+Pg,,, 3 defined velocity given bylx /dt=wv; . For each particle “a,”
we also define a “smoothing lengthti,, which represents
where p is the rest-mass density, is the specific internal the physical size of the particle. SPH particles do not have
energy,P the fluid pressure, and, the four-velocity of the  delta-function density profiles; rather, each particle repre-
fluid. For our initial data, we assume a polytropic E®S sents a spherically symmetric density distribution centered at
=kp", with constant values fdk and the adiabatic indeR,  the particle’s positiorx, with compact support. This density
and throughout the calculation we assume that the evolutiogjstribution, determined by our chosen form of the smooth-
is adiabatic, such tha®=(I'-1)pe. The maximum infall  ing kernel function, is second-order differentiable, and drops
velocity of the two stars relative to each other during ourtg zero at a radius equal to two smoothing lengths from the
dynamical calculations was found to bg =0.06c, whereas particle’s position. For each particle, we define a set of
the sound speed at the center of the NS is initi@ly neighboring particles by the condition that all particles
=0.85c. Since the sound speed for our EOS depends oRphose centers fall within a given particle’s compactly sup-
density such thatsp'?, we expect that the only supersonic ported density distribution are its neighbors. To determine
fluid flows will occur in the very tenuous outer regions of the the proper smoothing length for each particle, we define an
NS. During the merger, we do expect that low-density mattefdeal number of neighbors for each partidig, and we use
from the inner edge of each NS will cross over to the binarya relaxation technique to adjuis, after every time stegas
companion at high relative velocity( ~0.3c), but the ve-  described in detail in, e.g., FR1 afB]). We note in passing
locity field is dominated by the circular motion, rather than athat “neighborhood” is not a reflexive property; we handle
converging flow. All motion within the cores of the NS this through the use of a “gather-scatter” algoritiisee[59]
should remain strongly subsonic throughout the merger profor details.
cess. The primary advantage of the SPH method over tradi-
Using our CF metric and stress-energy tensor, EB5. tional grid-based codes is that fluid advection is handled in a
and(3), the Lagrangian continuity equation is given by natural way, such that one can define the edge of a fluid
distribution without recourse to artificial “atmospheres” or
other tricks necessary to prevent matter from bleeding into
the vacuum. Particles simply follow their trajectories in the

dp .
5t TPeVv'=0, )
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fluid flow. As such, SPH is extremely computationally effi- when we assume the maximal slicing condition KF:0).
cient, since all numerical resources are focused automaticalljo lower the indices of the extrinsic curvature tensor and
on those regions containing matter. Because of this, SPH alsather spatially-defined quantities, we use the conformal flat-
allows for high spatial resolution. The primary disadvantagespace metrigi.e., K;; =A45ik5”Kk' in Cartesian coordinates,
of SPH compared to shock-capturing grid-based codes is iwhere §;; is the Cartesian flat-space mejriCombining the
the lower resolution of shock fronts, which, as we discussmaximal slicing assumption with the Hamiltonian constraint
below, is unimportant here. yields a pair of elliptic equations fow=In(N) and B

All hydrodynamic quantities can be defined using stan-=In(AN) (GGTMB), in the form
dard SPH summation techniques over each particle’s neigh- - ,
bor list (see, e.9.[58,60,6] for a thorough discussignwith ViVr=47GA%(E+S)+A%K; K - V1V B, (14)
the rest mass density, taking the place of the standard
Newtonian density. Thus the rest-mass density for particle

3 1 . )
kpo— 2 A Kl (v i A i
“a” can be defined via SPH summation over a set of neigh- VVIB=4nGATST Z ATK; K= S (Vv Vi + VBV g),

boring particles denoted by “b” as (15
where the matter energy density and the trace of the stress
(P*)azg MpWap, (8)  energy tensor are given by
E=»:(ph)—P, (16)

whereW,;, is theW, smoothing kernel function for a pair of
particles first introduced by Monaghan and Lattan#@],

2
used in FR][58] and many other implementations. The mo- S= 7n_1(E+ P)+3P (17)
mentum equation is given by yﬁ '

du, NA3 - S UgUy Note that Eqs(14) and (15) are algebraically equivalent to
rTE ?ViP_NhUOViN_UjViN]J‘_ WWA, (9 the field equations found in other papers on the CF formal-

ism, although most groups have typically solved the corre-
sponding Poisson-type equations fge= A and Ny. Fi-
nally, the momentum constraint gives us the equation for the
shift vector,

where the specific momentum is defined by

aiEhUi y (10)
. 1 ) N ~
and the specific enthalpy is defined as VIVIN'+ 2 VIVINI = — 167TGhy (E+P)u;
n
h=(1+e+P/p)=1+Te. (11 +2NA’KIV(38—-4v). (18)

In this expression and throughout this paper, covariant deSince the CF formalism is time-symmetric, we can define
rivatives are associated with the flat-space metric. In the alseveral conserved quantities. The total baryonic mass,
sence of nonadiabatic artificial viscosity terms, the energy
equation merely implies that the value lofin the EOS re-

mains constant. In our calculation, we ysg andu; as the
basic hydrodynamic variable§n addition to our uniform
value ofk). To find u®, which enters into the momentum
equation, we take the normalization condition for the
4-velocity,u,u*=—1, and find

M= f o, dx, (19

is automatically conserved in our SPH scheme, since we use
the rest mass density to define particle masses. The total
angular momentum of the system can be defined as

uju; uiu; Tkpt~1 172 Ji=¢g;; f xIu, d3x. (20)
'Vﬁ:(NUO)zzl"';:l-l—# 1+L ’ i~ €ijk | PxX Uy
A2 AZ (’ynAg)Fil .
(12) Finally, the ADM mass is given by
which can be solved implicitly in terms of the density and _f 3. A5 il
the field values. Mo= | papmd™;  papm=A>" E+ 75— =K;jK! |.

To solve the field equations of GR, we need to fix the (22
slicing condition for timelike hypersurfaces. Following the .
standard approach to the CF formalism, we find that the exlt is important for numerical reasons to note that the two

trinsic curvature tensor is given in terms of the shift vector agerms that make up the ADM mass densitypy have dif-
ferent behaviors: the contribution from the matter energy

1 5 density,
K= ——| VINI+VIN' - Z fl g NK], (13
2NAZ 3k p1=A%E, 22
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has compact support, and is nonzero only in the presence ¢
matter, whereas the term involving the extrinsic curvature,

1 .
p2= RAS/ZK” Kij (23

extends throughout all space with power-law fall-off at large
radii.
FIG. 1. Radial domains used to evaluate the field equations of
B. The spectral methods field solver the CF method. The boundaries of the inner two domains are shown
s lattices, with all collocation points within these domains shown

as well. The outermost domain, which extends to spatial infinity, is
not shown.

The spectral methods techniques we use to solve the
field equations, Eqs(14), (15) and (18), discussed in great
detail in[52], provide a number of important advantages not
present in traditional grid-based approaches. First and fore-
most is their speed and computational efficiency. Finite difthe spectral decomposition. The radii of the points are deter-
ferencing schemes typically require 3D grid sizes=of(°® mined from the collocation points of the Chebyshev polyno-
elements[43,48. In contrast, GGTMB show that spectral mial expansion used for the radial coordinate, as described in
method field solvers can be used to construct field solutionBGM and GGTMB. For all calculations described in this
yielding ADM masses and angular momenta convergent t®aper, these domains consisted of ax1Bx12 grid, in
within 104 and satisfying the virial theorem to the sameterms of radial, latitudinal, and longitudinal directions, re-
level using only 3 grids of size 3713x12. These grids, SPectively, an acceptable trade-off between speed and accu-
extremely small compared to those used in Cartesian multiacy, based on the description above.
grid solvers, result in a great increase in speed. Additionally, A key feature of the LORENE libraries is their handling
the use of spherical coordinates allows for a more natura®f binary systems in a straightforward and natural way. This
treatment of boundary conditions. In the approach we usdnvolves “splitting” the source terms of the field equations
taken from GGTMB and summarized here, space is delnto two distinct components, each of which is centered on
scribed using spherical coordinates, split into a set of neste@ne of the stars in the binary. Since the field equations in this
“computational domains.” The outermost domain can becase are nonlinear the split cannot be performed uniquely;
compactified by rewriting the field equations in terms af 1/ the fields present around one star cannot be determined from
a”owing us to impose the exact boundary conditions at injts source terms Only. Rather, this method seeks to minimize
finity, rather than “fall-off” boundary conditions which ap- the contribution of one star to the fields around the other. In
proximate the behavior of the fields at the edges of a rectarractice, both field variables and hydrodynamic source terms
gular grid. As such, we avoid the classic tradeoff between &an be broken down, as shown in Eqg:9)-(87) of
grid with large grid spacing, which yields accurate boundarySGTMB, such that
conditions but poor spatial resolution of the matter source,
and a grid with small spacing, and the opposite concerns.

Combining the LORENE methods with particle-based

SPH requires some small but significant changes from th@vhere quantities labelefll) and(2—1) are defined at the

previous approach described in detail in Sec. IVA Ofcollocation :
, points of star 1, an@) and(1—2) at those of
GGTMB. As in that work, we construct a set of three com-Btar 2. The autopotentials of each stay, and v, are

V:V<l>+ V<2>:V<l>+ V<2*>1>:1/<1*,2>+ V(2y s etc. (24)

putatlpnal dom"?"”s around eac_h star to evalu_ate the fiel rimarily generated by matter from the star itself, while the
equations. The innermost domain has a spheroidal topolog

: . . -’comp-potentials,” v,_.qy and v(;_.,y are primarily gener-
W'th.a bognd,ary roughly correspondlng to the SPH partICIeated by the other star. It is this conversion of fields between
configuration’s surface, as described in Sec. Ill A. The othe

wo d . velv | ) in radii 'thlEhe two sets of coordinates which represents the greatest
0 domains COVEr SUCCESSIVEly farger regions in radil, Withy, ., nt of numerical effort during a calculation. In practice,
the outermost domain extending out to spatial infinity, a

A ) ; . Swe attempt to minimize the magnitude of the comp-
shown in Fig. 1. The field equations are solved in each dox otentials since they are centered around the other star and

main. and th? glpbal sqlution.is thained by matching th ot as well described by spherical coordinates. The detailed
function and its first radial derivative at each boundary. Ap'description of how these quantities are defined and calcu-

propriate boundary conditions at radial infinity are also im-Iated can be found in Sec. IV C of GGTMB
posed. All fields can be described in one of two complemen- ' '

tary representations, either in terms of their coefficients in
the spe“ctral degompo§|t|o?, or by means of their vaIueg ata ||| NUMERICAL TECHNIQUES FOR COALESCING
set of “collocation points.” The coordinate representations
. . - BINARIES
for these points are defined such that the origin of the system
describing each NS is located at the position of the star’s Integrating the LORENE library routines into an SPH-
maximum density, The collocation points are spaced equallpased Lagrangian code introduces a number of rather subtle
in both sind and ¢, as required by the angular component of numerical issues. The simplest of these is deciding the shape
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of the innermost computational domain’s surface. The closemodels of TG, which are publicly availabteThese models
the boundary of the innermost domain lies to the surface oflescribe the complete 3-dimensional structure of both the
the fluid, the more Gibbs effect errors are minimized, so londield values and hydrodynamic quantities at every point in
as the surface is sufficiently smooth and convex everywhergpace, in terms of a spectral decomposition. Specifically, we
Gibbs effects, which are common to all spectral decompositake the results of their irrotational run for stars of equal
tion techniques, result from the attempt to describe a nondifass and equal compactne8$1/Rc’=0.14 with al'=2
ferentiable density distribution as a weighted sum of smootfPolytropic EOS. Each star has a baryonic mass in isolation
functions; they are relevant here when we attempt a spectr@iven byG Mg/R¢?=0.1461. _ , _
decomposition of a region of space where the density drops, 10 convert these models, which are stored in the coeffi-
to zero within the boundarysee BGM for more details cient basis, into spatially defined particle-based quantities,

Unfortunately, the smoothness and convexity conditions dcy\ie first I"’Il(y C?SVCVS) :IJI tgt]_rid ofthSPH ptarticllet.:,_ in a hgxagongl
not necessarily apply to the region in space where the Sp&°S¢-Packe attice with constant lattice spacing an

density is nonzero, since a single SPH particle being she article smoothing length. This grid is then treated as if we

from the star can greatly affect the nonzero density boundar flected around the=0 plane, to take advantage of the
ang y S y ertical symmetry inherent in the problem. Each particle is
even though it may represent an insignificant amount o

reated as if it were really two particles for all SPH summa-
. o &lons, one located above tize=0 plane, the other an equal
attempts to take the middle ground, defining a boundary fogistance below, both with half the true mass of the ‘real”
the innermost domain which encloses as much of the mass d3ticle. Since the vertical symmetry is enforced on a
possible, in such a way that smoothness and convexity argarticle-based level, we solve all our field equations only for
guaranteed. The second domain is bounded by a sphere @értical angles € 6< /2, and reflect the solutions for all
radius twice that of the outermost point of the first domain,points below the plane. The mass of each particle is initially
and a third domain extends to spatial infinity. set to be proportional to the density at the particle’s position
Once the configuration of the computational domains isaccording to the quasiequilibrium model.
determined, there are several choices which need to be made Next, using an iterative process, we calculate the SPH
with regard to the most accurate and efficient way to calcuexpression for the density of each particle, using By.and
late various terms in the evolution equations. Some hydrodyadjust each particle’s mass so that the SPH density matches
namic quantities, such as the rest mass densjtyneed to  the proper value from the initial model, stopping once the
be defined for each of the SPH particles. Here, we Nse maximum difference for any particle is less than 0.25% of
~100000 SPH particles for each run, which was found to bdhe star’s central density. Particle velocities are assigned to
sufficient for achieving numerical convergence of the gwmaich the quasiequilibrium model's velocity field, as are all
signal to the ~1-2% level in our studies with post- other thermodynamic variables. Finally, we advance the ve-

Newtonian SPH35]. Other quantities, such as those appear—lc:‘:'t'(‘jas gythali_a t|||'ne—step,bu|S|ng the same methods asdm a
ing in the source terms for the field equations, need to pg'andard iteration oogsee below, since we use a second-

defined at every point among the 273x12 spheroidal E)égﬁr accurate leapfrog algorithifdescribed in detail in

grids of collocation points for each of the three domains.

(;ompared to solutions .com_put.e_d using larger gnd SIZES, Whon of each particle’s neighbor list, and the associated SPH
find that these agree with significantly larger grids to Wlthmforms for the density and other hydrodynamic terms. Once

~ 0, I
0.1% for the value of the S.h'ﬂ vector, and even better forthis is done, we perform a Euclidean transformation on our
the values of the lapse function and conformal factor.

In ceneral. however. man antities do not need to bcoordinates into a new fran{denoted by primed quantitigs
ng ,» however, y quantit “Whose origin is defined to be the system center-of-mass, with
defined both ways, so long as a full set of thermodynami

variables is known in both representations. Details abou he center-of-mass of each star lying on thaxis, making
\ o ' rep P ._“sure to transform the positions, velocities, and accelerations
which quantities are used in each representation are giv

below. Briefly, it is most efficient to perform the majority Ofef%r each particle. In terms of the inertial frame coordinates of

our algebraic operations on quantities defined at collocatiof!® NS centers-of-mass; and x,, the transformation is
points, reading in and exporting back as small a set of pad'Ven by

During each iteration, the first step is always the calcula-

rameters as possible to the full set of SPH particles. While Yo V1

reading quantities from SPH particles to collocation points is ¢'=tan 1m, (29
relatively quick, requiring an SPH summation at every col- 2 M

location point position, the reverse process is much more X1+ X, y1t+Yo

involved. To calculate the value of a quantity known in the Xcom="5 "+ Ycom= 5 (26)

spectral representation at SPH particle positions requires per- _
forming a sum over all spectral coefficients with the weights X" (X,Y)=(X—Xcom)COSP' +(Y—YcomSing’,

appropriate to each particle position, consuming a great deal (27)
of time. Y (X,Y)=(Y=Ycom)COSP' — (X—Xcom)Sine’,
. (28)
A. Binary systems

To construct the initial SPH particle configuration for a
binary NS evolution, we use the quasiequilibrium irrotational 2http://www.lorene.obspm.fr/data/
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FIG. 2. A pictorial demonstration of the coordinate transformations described in Secs. Il A and Il B; the particle configuration is for
demonstration purposes only, and was not taken from our calculations. In the upper left panel, we show a NS-NS binaryyiritiestial)
frame, as well as the’ —y' frame, defined so that the centers-of-mass of the &tavsseslie equidistant from the origin on the axis[see
Egs.(25—(29)]. In the upper right, we see the same system inxthey’ frame. The angle®; and®, are determined from the respective
moment of inertia tensors using EO). The best fit ellipsoidal configurations, determined from E§$—(38) are shown around each star,
aligning with theX;— Y/, axes, determined from Eq&9) and(60). In the bottom left, we show isocontours for the radial functibpand
f,, defined by Eq(58), as well as the boundary of the overlap regibravy solid ling. Finally, in the bottom right, we show the rescaling
of the surface function for very close configurations, showing only star 2 for clarity. Here, the binary sepandtiofjs- 6.0, implying the
maximum extent of the surface of star 2 istd M ,=r/4M,=1.5. We linearly rescale the surface function, as well as the corresponding
values off,, for all points withx’>0.

along any ray where the SPH density drops to zero,
v =(+,0,0); R=\(X,—x1)2+ (Yo,—y1)2. (29  TspH(fq.¢q), we have found that such a set of points leads
to unacceptable results from the field solver, especially with
regard to the convexity of the matter distribution. If we ig-
nore the density contributions of all particles whose density
~ This transformation is shown in the upper left panel offalls below some fixed value, s@y,i,=0.0001, the resulting
Flg.'2. The next comput.at|onal task is defining the shape of | t5ce fUNCtior spy( 04,¢) is typically much more regu-
the innermost computational domains, calculated for sets %\r, but still is not an ideal choice, since we still cannot
rays equally spaced ifhand 4, as measured from the center- gyarantee convexity. It should be noted that the field solver is
of-mass of each star. We denote these surface functionsntirely capable of handling matter sources which lie outside
r(6q,¢q), where the “q” subscript, taking the value 1 or 2, the innermost domain, although it does work best in the case
refers to angles measured in the primed frame of 28~  where the surface of the matter matches the domain bound-
(29 outward from the center-of-mass of starThese sur- aries closely. For this reason, we restrict the shapes of the
faces are used to determine the position of the collocatiomnermost domains to triaxial ellipsoidal configurations, ori-
points, which in turn are used as the basis for the entir@nted along the principal axes of the moment of inertia ten-
spectral decomposition. While it is easy to find the pointsor for each star. The growing misalignment between the
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stars and thdrotated coordinate system is a well-known the SPH expression for the rest mass density, the “rest pres-
effect, reflecting the tidal lag that develops in close binariesure” P, =kp! , and the density-weighted average velocity
as matter tries to reconfigure itself in response to the rapidlgIi . Using these values, as well as the field values from the
changing gravitational fiel@68]. Thus, for each star, we cal- previous iteration, we calculatg, from Eq.(12), and therE

culate the angledq such that and S at every collocation point, and proceed to solve the
1 ol field equations, using the iterative techniques described in

<Dq=—tan‘1 Xy ) (300 GGTMB. Typically, we require~50 iteration loops to
2 Lo lyy achieve a solution for which no field value varies by more

than 1 part in 18 from one iteration to the next.
Once we have solved the field equations, we use the spec-
tral expansion of the fields to calculate as much as we can of

wherelj; == m,(X;—Xq)i(X3—Xg); » and define our surface
functionr(6,,¢,) such that

2 92 52] 12 the terms in the forcg gquatiop, before rea(_jing _off the values
[(0q,bq) = {_Jr LA _l ' (31) at every particle position, which takes a significant amount
a2 b? c? of time. In practice, we use the spectral decomposition to
calculate the prefactor for the pressure force te¥AS, the
where vector sum of the terms involving derivatives of the confor-
- ) . ) mal factor and lapse function, the nine first derivatives of the
X(0q,¢q)=Sin4(COSP 1COSPhq+SIND SN ) shift vector, and the radiation reaction terms. While it would
— 5in ,C08 bg— D), (32) be faster to calculate the force term involving the derivative

of the shift vector completely in the spectral basis, we have
S0 —sing P si _sind found it to be inadvisable. This term alone is linear in the
Y(8q . hq) =SiN (COSPSIN g — SINP 1COS ) velocity, and it is inconsistent to use an averaged velocity in
=i fSin( g — D), (33  this term on the RHS of the force equation to calculate the
rate of change of each particle’s individual velocity on the
5 — LHS. Thus, denoting terms calculated within the spectral ba-
Z(0y,¢4)=cC0Sb, 34 . ) "
(04 ba) a 39 sis and exported to particle positions by “sh,” and those
anda, b, andc are the axis lengths of the ellipse. calculated using SPH techniques only by “SPH,” Ef) is
We have found it best to fix the axis ratios of the ellipsetruly evaluated as
by computing the maximum extent of the surface defined by _

~ i L. . . du V.P Nh 2_1)
r(6q,¢q) in each principal direction, such that d_t':[_NAs]Sb ML + (ALViA_h')’nViN
~ ~ * ISpPH '}’n sb
aozmaﬁrspH( 0q ,¢q)'X( 9q1¢q)|' (35) . ~
5 A —[ViN'Jsd UjIsph- (39)
bo=maxrspi( Oq,bq) - Y(bq, P, (36)
0=MaXrspi( 0q, $a) Y (0q, o] After calculating the forces on each particle and advancing
Co=ma>4?spH(9q .q’>q)'i( 0y ’¢q)|. (37) the velocities by a full time step, we are still left with the

task of recomputing Eq7), which relatesy’ andu;. Since
Since this prescription can lead to some particles with the sources for the field equations are velocity dependent,
>pmin falling outside of the surface, we multiply the dis- and we have just advanceq we rerun the field solver with

tance in all directions by the smallest facteg required t0 e new values o . and compute Eq7) in the form
encompass all SPH particles whose density is greater than v

Pmin,» typically leading to an increase in linear size of no
more than 2%, such that=ayF,, b=byFy, c=cyF,, and v'=[N]gp+ —— [ai]SPH. (40)
Achu
~ 2 v 7 sb
Fo=max r(6g,¢q) ;"' ?"' 2| (38 Finally, we record the GW strains, ADM mass and system
0 0 0

angular momentum, after rotating all positions, velocities,
A typical surface fit is shown in the upper right panel of Fig. gnd accelere}tlons back to the_lnertlal frame by means .of Fhe
2 The outer two domains are defined in terms of these nelWiverse Euclidean transformation to the one at the beginning

coordinate systems as well, to allow us to match field valueS' the iteration. _
and their derivatives at the boundaries. There are several different ways to calculate the ADM

Using the collocation points derived from these surfacesm@ss numerically, all of which should be equivalent to Eq.
our next task is to calculate the value of the field equatio2Y): yielding an important check on the code. First, we cal-
source terms at these points. Since calculafingnd S for ~ culate the system's ADM mass using by taking a surface
each SPH particle from EqéL6) and (17) would require a  Integral at spatial infinitjsee Eq/(65) of GGTMBY],
great deal of ultimately needless algebraic work, we do not 1
c_alcula.te the SPH expressions for the_se qugntities at colloca- Mo=— — 3€ AV . (41)
tion points. Instead, at every collocation point, we calculate 27 Jo
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This quantity can be compared to the particle-based exprese the RHS of Eq(9). We define the radiation reaction po-
sion, with two important caveats. Since the extrinsic curvatential y in a similar but slightly different way than their Eq.
ture contribution to the ADM mass, E(3), does not have (56), such that

compact support, there is no way to convert the integral into

a sum over particles that have a different spatial extent. Sec- L A

ond, noting our concerns about exporting large numbers of X~ gXX Qi
terms from the spectral representation to particle positions,

we perform some of the algebra involved in determining thesimilar to the approach taken [48]. As they do, we define
ADM mass in the spectral representation. In the end, thghe quadrupole moment as

particle-based expression for the ADM mass becomes

Moz(fpzdax +2 ma
a
noting that our ‘papy” corresponds to many other authors’

and we defing=p,/p, as the ratio of ADM mass density S,, or some multiple thereof. The expression “STF” refers
to rest mass density, calculated using LORENE techniques 4@ the symmetric, trace-free component of the tensor, which
all SPH particle positions. is linked to the gravitational radiation production in the

In a similar fashion, there are two ways to calculate thequadrupole limit. As noted previously in our calculations of
system angular momentum. We check the behaviod of  the system’s ADM mass, we can evaluate the contribution
the spectral basisee Eq.(67) of GGTMB], from p, using standard SPH summation techniques, but the
second term can only be found using LORENE integration
techniques. Thus,

(46)

p1 , (47)

Px

=STFU X, X d3x
, 42) Qui PADMAKX|

sh

sh

1 _ .
1= 167 ik ﬁc(X]KkI_XkK“)dS, (43

+( f d3xp,xkx!

_ — Kyl
. =Q;+Q,=
as well as the SPH expression for the angular momentum, Qu=Q1+ Qo STF{(; MapaXaXa sb

(48)

Ji= Eiik; Max! U (44 whereQ, and Q, reflect the contributions from, and p,,
respectively. Using SPH, we can take the first time derivative

Since the CF formalism is time-symmetric, the dissipativeof the former half, so long as we ignore the Lagrangian de-
effects of gravitational radiation back reaction have to berivative dp,/dt, which should be essentially negligible dur-
added in by hand, just as they are for PN calculations. Preng our calculations. We find
vious PN calculations of binary NS systerffSR and[39])
have typically employed the exact 2.5PN formulas intro- . 3
duced by[40] to describe lowest-order GW losses from the (Q=ST J P}V + X0 ) d°X . (49
system. Unfortunately, those equations are not applicable to
CF calculations, since they are written in terms of fields de-To calculate the rate of change of the extrinsic curvature, we
fined in the PN approximation that differ from those definedassume that the time variation in the tensor is due solely to
in the CF approximation. For this work, we follow the ap- the orbital motion(rather than an overall change in magni-
proach of[45], using the slow-motion approximation to es- tude of the tensor components in a corotating framéaich
timate the radiation reaction potential of the system. Whileyields
this method contains some obvious flaws, most obviously the
fixed spatial dependence of the radiation reaction potential, it (Q)gu= — (QZ)yy“zw(QZ)xy’ (50)
does yield a back reaction force which is quantitatively cor-
rect in overall magnitude. These approximations should not
affect our calculations to a large degree. While the infall ('Qz)xy”2w
velocity of the binary prior to plunge is driven by the GW

back reaction, a different regime occurs after dynamical in-
stability sets in. During this period, the evolution is almostWhere the factor @ reflects the fact that the quadrupole

completely hydrodynamic in natuf&8]. While the chosen tensor makes two cycles during every orbital period. To cal-

GW back reaction treatment may affect the final mass an§ulate the fifth time derivative of the quadrupole tensor, we
angular momentum of the resulting merger remnant, it willYSe the same technique with both components of the tensor,

(QZ)xx;(QZ)yy , (51)

play only a secondary role in the detailed evolution of thefinding
fluid configuration, since GW back reaction becomes less .
important during the coalescence. Ql'~160°Qy, (52)
From Eq.(51) of [45], the radiation reaction force in the
slow-motion approximation is given by adding a term, where in all cases the system’s instantaneous angular veloc-
ity is calculated as the ratio of the angular momentum to the
aj:reac=NZhulV x, (45  moment of inertia,

124036-10



MERGERS OF IRROTATIONAL NEUTRON STR.. .. PHYSICAL REVIEW D 69, 124036 (2004

bound, we declare particle “a” a member of the first star if

; Ma(Xa(vy)a=Ya(vy)a) x,<0 and a member of the second staxjf>0, at least for
0= , (53)  the purposes of defining each star’s center of mass and tidal
D ma(x§+y§) lag angle, as described in E¢25)—(38).
a This approach entails further alterations once the ellipsoi-

dal computational domains from each star begin to overlap.
which holds exactly in the quadrupole limit for synchronized ysing they’-axis as the dividing line between the two stars
binaries. is fine for determining the center-of-mass, tidal lag angle,
Calculating the GW signal and energy spectrum is a mor@nd ellipsoidal surface for each star, but it is inappropriate to
straightforward task which can be done after the calculationyraw a fixed line aix’ =0 when calculating field equation

is finished. We calculate the GW strain in two independentgyrce terms. These would induce a sudden density drop
polarizations for an observer located at a distasé®m the  from finite density at small negative values %f to zero
system perpendicular to the orbital plane from the lowestyensity at positive’ values(for the first star, vice versa for
order quadrupole expressions, the secony leading to large Gibbs effects. It is equally in-
dh, —Ql2l_ Q2! (54 a_ppropriate to count one particle as a m_ember (_)f both stars,
+ = Uxx yy since we would end up double-counting its density contribu-
tion to the field equations. Instead, we introduce a weight

function f,=f(x.), for each particle in the overlapping re-
where we calculate the second time derivatives of the quaddion in such a way that=0 at the surface of star =1 on

rupole tensor by numerically differentiating the results fromthe surface of star 2, and<0f <1 in a spatially differentiable
Eq. (49). In terms of the Fourier transform of the quadrupoleWay within the overlap region. To do so, we defineandf,,

dh,=2Q%, (55)

moment, the fractional squared distance outward a point lies from the
center of each star to the surface. For the first star,
O fow= | e offiwat, (56 o YR @
fX )=t =t (58)
where fow=2f,,, is the GW frequency, the GW energy
spectrum is computed §63] where
AE o [ 8 R pee, @i B Xq=Xqc0sPq+y’sin®q, (59
dfGW_W GW| 15 (Qxx ny) (Qxx sz) (ny
Yés—xqsin¢q+y’cos<bq, (60)

. (57

8
_ 321y Zridh2a (3224 (Bl2]2
Qzz)°] 3[(Qxy) Qi)™ +(Qyz)7] are the rotated coordinates used to defindtidally lagging
ellipsoidal surface of the star, ang(x")=x’ —x(; is the dis-
B. Merging systems tance in thex’-direction from the center-of-mass of starA

. . - icture of these quantities is shown in the bottom left panel
As the stars in the binary system spiral inward, they reaclyt rig 5 in terms off,, we define our overlap functiof,
a point where the density distributions begin to overlap as,, each particle suchqthat

matter from the inner edge of each star falls onto the surface

of the other. Our field solver can handle this situation, since —_§.)3

. ) . -, (1-1y)

it does not assume that the matter sources are spatially dis- fa="1(x))= 3 3 (61
tinct, but the surfaces required to envelop the particles from (1=1)7+(1-Tp)

each star would become poorer and poorer fits to the two N
Noting this, we alter the approach described above in a nu
ber of ways when the particles first cross through the inne
Lagrangian point at the center of the system, in such a way

that the surfaces we define for each star always remain (p*)1:2 Maf W, , (62)
smooth and still do an acceptable job of describing the true a

density distribution in a meaningful way.

—or the first star, source terms in the field equations are
pvaluated as

Once the binary separation shrinks sufficiently, matter P ). — (ps)1 K r
streams from the inner edge of each NS toward the other NS, (Po)1= (Pe)1t+(Py)2 [(px)1t(ps)al’
flowing along the surface of the companion. These counter- (63

streaming, low-density flows lead to the formation of a vor-
tex sheet(FR3). Mass transfer typically occurs before the

triaxial ellipsoidal surfaces used to define the two stars over- g Mafa(Ui)aWa
lap, since particles crossing from one star to another gener- u),=—mm—, (64)
ally fall beneath the density cut used to define each surface. 2 m.f-W.
. . . a'a‘‘a
To account properly for the star to which each particle is a
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TABLE Il. A summary of the runs presented in this paper.

Run Description See Sec. no.
Oovi Equilibrium OV model,GM,/Rc?=0.126 VA
ov2 Nonequilibrium OV modelRy=1.1R, VA
oVv3 Same as OV2, w/relaxation drag VA
DC5 Collapsing dust cloudi;=1, Ry=5 IVB
DC10 Collapsing dust cloudVl;=1, Ry=10 IVB
DC50 Collapsing dust cloudVl;=1, Ry=50 IV B
QC1 Quasicircular binary orbit w/o rad. reac., IvVC
ro/Mcp=19.91
QC2 Quasicircular binary orbit w/o rad. reac., IvVC
ro/ Mcgh=20.42
QC3 Quasicircular binary orbit w/o rad. reac., IvVC
ro/ Mg=22.98
RR1 Full binary evolution w/rad. reaa.q/ Mgy, VB
=19.91
RR2 Full binary evolution w/rad. reaa.q/ Mg, VA
=22.98

where W, is the smoothing kernel function evaluated be-fails to converge. Before this happens, we reach a point
tween the collocation point and overlapping particles.where we can describe the system as a rapidly rotating single
Complementary expressions hold for the second star by sulstar, using all the methods described above for computing the
stituting (1—f,) for f,. evolution, but now assuming that all particles comprise the
This approach allows us to calculate the fields properlysame star. We have foun_d that our resuI.tS are mde_pendent of
using spectral methods well into the merger, but a final modithe exact moment at which we make this conversion. In the
fication is necessary to bring us to the point where the denf0llowing discussion, we will show the results for runs where
sity profile of the matter can better be described by viewing""ﬁ, pﬁrfﬁm;, tlrgje ccljnversllf)n at the earliest [lno_ssmlehtlmehfor
it as a single object. When the inner edge of one star overlap¥ It(t: the f'.e stc_) ver V¥' ctoréverge to al sotut|on when the
the center of the other star, the density profile typically be MA!Er contiguration Is freated as a single star.
comes _blmodal, leading to spurious result_s from the spectral V. TEST CALCULATIONS
expansion. To guard against this happening, we use a rela-
tively simple approach. If the surface of one ellipse extends We have performed several tests to check the accuracy
more than halfway fronx’ =0 toward the center-of-mass of and numerical stability of our code, for both single-star and
the other star ak/=+R/2, we linearly rescale all surface binary systems. We have studied the behavior of the code for
points that lie across thg'-axis. Thus, definingy( g, ¢q) spherically symmetric problems for which the exact field so-

=1 (6q. b3 Sin B,COS¢h, in accordance with our previous no- lution can be calculated semi-analytically: the Oppenheimer-

tation. If the surface of either star extends to a maximumV°|k0V solution for a static spherical star and the collapse of

value Xq;maxEmaXGqu)>3R/4 [or in other words, if a pressureless dust cloud initially at rest. We have also cal-

. , . . culated the dynamical evolution of the binary quasiequilib-
max(r (6, ) Sin 6,c0Sdy—x;)>R/4], we adjust all points i models calculated in TG, without the inclusion of ra-

on the other side of thg’-axis, yielding diation reaction forces. A summary of all our calculations,
R Xqota g bq) — RI2 including those used for testing the code, can be found in

R
R R Table II.
Xq:ne\l\x 0q ’d)q) 2 + 4 Xq;ma)& 0q*¢q)_ R/2

for all points with X( 60, ¢q)>R/2.

A. The Oppenheimer-Volkov (OV) test

Since the CF formalism is exact for spherically symmetric
(65  systems, which can always be described in isotropic coordi-
nates, it is fair to expect that any working code should be
able to reproduce the well-known Oppenheimer-Volkov so-
lution exactly, noting that the traditional form of the OV

To evaluate the weight function, we adapt #iedependence

correspondingly, such that for particles with>R/2
- - solution needs to be rewritten into CF coordinates. With

Fanew(Xq) = faola( K Xq), (66) =p(1+ ¢€) as the total energy densifincluding both the rest
where the rescaling factore=R/2+ (Xq— R/2)[ (Xq:max an_d internal energy densitieshe OV equations are typically
—R/2)/(R/4)]. The bottom right panel of Fig. 2 demon- Wrtten
strates this last coordinate transformation. q

Eventually, the system will reach a point where it can no _m: 2
. : : ==4mrp’, (67)

longer be properly described as a binary, and our field solver dr
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dP  (p'+P)(m+4nPrd)

R _’ — , 68
dr r—2mr 8
d® (m+47Prd)
dr re—2mr
for an interior metric in the form
-1
2m .
dsz=—e2(bdt2+ 1—:> dr2+r2d92, (70)
r
and exterior metric in the Schwarzchild form
-1
2M 2M .
ds?= ( 1- T") dt?+ ( 1- T°> dr2+r2dQ?,
r r
(71

where the star’s total gravitationalADM) mass Mg

=m(rg), andrg is the Schwarzchild coordinate radius of the
stellar surface. A quick comparison with the CF metric, Eq.
(2), shows thatN=e?® inside the star, but the conversion
betweenA and ® requires more care, since we have to de-

termine the relationship between the two coordinate radiit NS Yields an expression fop(r) which is defined up to an

r(r_). The simplest way to determine the change of coordi

nates is to solve for the values of andrg, the radii of the

stellar surface, using the asymptotic behavior of the exterio

PHYSICAL REVIEW D 69, 124036 (2004

1 — —
rszi(rs_ Mo+ Vrg(rs—2Mg)),

the surface value for the conformal factor is

(78

r 2r.
As=r= -

Te—Mo+\r(r—2Mg)’

(79

and the lapse function at the surface is given by

2M
NSZ 1-—.
rS

To solve for the interior metric, we add an equation to the
OV set to take into account the different radial schemes,
defining a scale free conformal radius satisfying a boundary

condition Iim;oro=r_whose radial behavior is given by

(80)

drg ro

dr Jr(r—2m)

(81)

arbitrary multiplicative constank, such thatr0=k-f(r_),
wheref is determined from the mass distribution. To find

F(E' we merely setk=rg/(rg)s, Which implies r

solution (following the same logic used in exercise 31.7 of =I's/(ro)s and determine\ from Eq. (73).

[64]). Comparing the radial and angular parts of the metric,

we find
A2dr2=(1—$ 71dr2, (72)
A?r2=r2, (73
Dividing and taking a square root, we find
dr dr
e r(\/r_%ZMO)' (74
Integrating yields
Int+k=2 In(\r+\r—2Mo), (75
and we find
kr=(\r+\Vr—2Mg)2=2r—2My+2 r(r_—ZMO).(76)

The asymptotic behavior at infinity indicates that we must

havek=4, so our final expression fai(r) takes the form
1 —
r= E(r— Mo+ Vr(r—2My)).

For a star with Schwarzchild surface radﬂs we find that
the CF surface radius is given by

(77

To test the code, we ran three calculations whose results
could be compared with well-known semi-analytic solutions.
First, we constructed an equilibrium model for an isolated
NS, whose density profile was given by an OV solution for a
I'=2 EOS, with unit ADM mass, and a conformal radius
rs=6.874. The solution has a total baryonic madg,

=1.066, and an areal radiug=7.913. We started run OV1
by taking this solution as an initial condition, and used it to
test the overall stability of the code for equilibrium configu-
rations. Next, we constructed a similar model with the same
mass and EOS, but scaled to an initial radius 10% larger.
Run OV2 is a dynamical calculation started from this initial
condition using our standard evolution code, enabling us to
study the oscillations around our equilibrium solution. Last,
we took the nonequilibrium configuration from run OV2, but

added a “relaxation” drag term of the form U /t,e1ax tO the
RHS of the force equation, Eq9), with t,qax/M=7.9.
This provides an overdamped force for run OV3 since the
dynamical time scaléy /M= (Gp) °°=18. All three runs
were followed untilt/My=120, corresponding to 6.7 dy-
namical times for the NS, and in all cases radiation reaction
was turned off.

In Fig. 3, we show the radial profiles of the lapse function
and conformal factor at/M =100 for runs A and C, along
with the correct OV solution. It is no surprise that run A has
essentially remained the same, since the initial field values
were essentially exact, but it is reassuring that run C has
converged as well toward the same solution. Indeed, results
for configurations at later times continue to converge toward
the exact solution. In Fig. 4, we show the evolution of the
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FIG. 3. Conformal factorA and lapse functionN for an

Oppenheimer-Volkov solution with & =2 polytropic EOS, and

conformal radius ;/M = 6.874(solid lineg, compared to our com-

puted values at/M =100 for two models: run OV1 started from result from typical uncertainties in SPH summation. Run G
equilibrium (crosses and run OV3 started from a configuration esult from typical uncertainties summation. Ku l

. . . . ted ling used the same EQOS, but was started from a radius 10%
10% larger with a velocity damping term used to drive the system

toward equilibrium(triangles. The agreement is within 1% for all Sr,?ﬁ II:r tg?géhffiwhgnlulrg \;ilse},jh:v:tr;%z:gs(ﬂ?tals Sﬁ”g'/%ns
particles. Units are defined such tiatc=1. All masses, lengths, Wi pen 0~ Y : . R

and times in the OV and dust cloud calculations are made dimen(-daShed lingwas started from the same configuration as run B, but

sionless by scaling results against the system’s initial gravitationa\fylth an overda_lmped d_g?g tterm tg f;)hrce the systerr tov;izrd equilib-
(ADM) mass. Note that the conformal radius is not equivalent to thélu(;n(,)ogonverglng rapidly towar € proper vaiué Blopmax
areal radius typically used in solving the OV equation. T

FIG. 4. Evolution of the maximum density for three runs based
on the OV solution described in Fig. 3. Run OVolid line) was
started from equilibrium, and shows only small variations which

dust cloud make the resulting expressions considerably more
maximum central density for the three runs, as well as theomplicated. The complete description of the metric as a
predicted value from the OV solution. The maximum densityfunction of time was derived for the case of both maximal
from run A stays near this value throughout the evolution,time-slicing[66] and polar time-slicing67]; it is the former
with small deviations which result from the unavoidable dis-case which can be compared to our results. In this approach,
cretization effects present in SPH; in general, SPH will yieldthe field values and CF time and position variable values are
very accurate global integrals over a mass distribution, sinceomputed by solving a set of ordinary differential equations
numerical noise smoothes out, but demonstrates significamthich describe the behavior of the fields in terms of the
noise in quantities defined for individual particles, which comoving time and space variables. Using these, it is a
vary iteration to iteration as each particle’s neighbor listsimple process of interpolation to derive the fields as func-
adapts to current conditions. The maximum density for run Bions of CF time and position. We checked our integration
oscillates around the proper value with a periodTéM,  code by comparing our results against the plot#l, find-
=112, showing no signs of systematic drift. This is verying perfect agreement.
close to the proper value for the limiting case of infinitesimal  To construct our initial configuration, we used essentially
radial variationsT/M,= 104, which we find by interpolating the same techniques described above. Particles were laid out
from the values given in Table A18 65|, after scaling their in an HCP lattice, with masses set proportional to the ana-

results to our units. lytically known value ofp, (r), which we derive as follows.
Note thatp, varies with radius; it isp(r) that is initially
_ uniform.
B. Spherical dust cloud collapse The total mass of the cloud was set to unity, and the initial

To further test the dynamical aspects of the code, we comradius in comoving coordinates tg, the parameter used for
puted the evolution of a uniform density dust cloud, i.e., aall figures in[66]. The initial metric in comoving coordi-
spherical distribution of matter with zero pressure, startegyates, for a cloud with unit mass and comoving radiysis
initially from rest. This is a familiar problem from cosmol- giyen by
ogy, and the solution is well known, but the conversion to CF
coordinates and the matching conditions at the surface of the ds?’=—d7r?+a(7)2(dy?+sirfydQ?), (82
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a(r=0)=2/(siny,)3, (83 50 |- ]
EE 2/(SinXS)21 (84) Black Hole
with the exterior metric described by the Schwarzchild form, 4o - ., N .
Eq. (71), with r=a(r=0)siny. In terms ofy,, the CF ra- L ~ 1
dius is given by i N 1
1 30 — -
rszz(rs_M0+\/rs(rs_2Mo)) g 1
1 2 1 [ 4 4 B0 ]
= — — 1+ - -
2\ sirfys sinfys  SirPxs
1 1+cos or ]
e ey (85 : ]
2 1—cosys 1
Equating interior metric coefficients, we s&tir=ady and ol ! .
— i nidi i i 1 e ey g
Ar=asiny, dividing and then integrating to find 5 . ” s 5 o
1—cosy | ? /Mo
‘X( 1+COSX) ' (86) FIG. 5. A comparison between the actual paths traced out by a
set of equally-spaced Lagrangian tracers in run DC10, our calcula-
1[1—cosy 12/ 1 4 COSYs 312 tion of a collapsing dust cloud with unit ADM mass and initial areal
= 5 1+COSX) 1—cosy ) ) (87) radiusr =10, (dashed linesand the exact semianalytical solution
S

of [66], shown as solid lines. All radii are shown here in conformal

where the proportionality constant is determined from Eq_coordlnates. We see excellent agreement up until the point where an

(85). The initial conformal factor can now be written down, €Vent horizon forms at the center of the cloud/dfl,=38. The
since event horizon moves outwarteavy dotted ling eventually en-

closing the entire cloud atM,=43.4, shown as a horizontal line

in the figure. At this point, when the matter can be properly defined
- ’ (89) as a BH, our field solver stops converging. For comparison with

r (1+COSXS)3 Fig. 9 of[66], we also show, as a long-dashed line, the exact solu-
tion for the cloud’s surface in comovin@grea) radii,r_s(t).

and we can simplify the resulting expression by noting that
cosys=(2rs—1)/(2rs+1) and coy=(1—r%2r g)/ (1 in CF coordinates, rather than comoving coordinates, and our
+r2/2r¥). Since the matter starts from rest, we know thattracers are equally-spaced in radius, not in increments of
u;=0 initially, and thusy,=1 everywhere, and we find the €enclosed mass. For comparison with their Fig. 9, we also
initial rest-mass density profile is given as a function of ra-show the more familiar areal radius of the cloud, which
dius by roughly satisfies the relationj~r¢—1 initially. We see the
agreement between our calculation and the exact solution is
very good throughout the evolution, up untiMy~ 38,

B asiny _ 4(1+cosy)

[ 3M 3 I+ 2rg where a slight discrepancy begins to develop, primarily at
Ps= YA =] g 2| (89  the surface of the cloud. This time corresponds closely with
s T the formation of an event horizon for the system, shown as a

2r§ dotted line, starting at the center @M =38 and moving

outward, reaching the surface of the cloudtd¥l,=43.4,

Once the initial particle configuration was set, we calcu-shown as a horizontal line. This late time discrepancy has
lated the dynamical evolution of the system using the sam@yo sources. The first is that SPH, which by definition pro-
techniques described above for the OV case. Since the pregyces a differentiable density field, cannot reproduce the
sureless material had no outwardly directed force, the inEVistep-function density drop at the surface of the dust cloud.
table fate of the system was collapse to a BH. This explains to a large degree why the outermost tracers

To allow for direct comparison with the figures shown in giverge furthest from their exact path. In addition, the large
[66], we computed the evolution of a dust cloud with unit fie|g values and gradients found around the event horizon
ADM mass and an initial areal radiug=10, just as they present a challenge for our field solver. We typically see a
did. In Fig. 5, we show the evolution of a set of equally dramatic increase during this period in the number of relax-
spaced Lagrangian tracer particles compared to the exaation iterations required to converge to a sufficiently accurate
semianalytic solution we computed. This corresponds to theisolution.
Figs. 8, 9, with two slight differences. Our figures are plotted In Fig. 6, we show the evolution of the conformal facfor
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C. Circular orbits of quasiequilibrium configurations

Finally, to test out the overall stability of the code, we
evolved several quasiequilibrium binary configurations using
our code, but without adding in the radiation reaction drag
terms. Since the CF formalism is time-symmetric, we expect
that any stable quasiequilibrium model should yield a circu-
lar orbit, maintaining a constant binary separation, ADM
mass, and internal rotation profile, among other parameters.
Here, we chose models at an initial binary separation of
ro/Mcp=19.91, 20.42, and 2297 from theM/R
=0.14, 0.14 equal-mass sequence of TG, denoting the result-
ing calculations as runs QC1, QC2, and QC3, respectively.
For NS with ADM masses oMy=1.4 Mg, these separa-
tions correspond to 33.64, 34.51, and 38.81 km, respectively.
The innermost of these represented the limiting case found
for this sequence just before formation of a cusp at the inner
edge of the two NS.

As a first check of our code, we compared the orbital

0 2 4 8 8 frequency determined from our dynamical runs to the known
/Mo value for each model taken from the quasiequilibrium se-
FIG. 6. The evolution of the conformal factérand Lapse func- quence. We found excellent agreement between the orbital

tion N for the dust cloud in run DC10, compared to the exact solu-P€riods computed from our run¥/M.,=422.6, 438.2, and
tion. We see, at/My=0, 20, 30, and 40, the SPH particle values 506.4, and those determined by TG M.,=422.8, 438.0,
for the lapsethe four curves with values less than Jlahd confor-  and 519.7, for runs QC1, QC2, and QC3, respectively.
mal factor(values greater than 1,0shown as points, and the exact ~ There are several conserved quantities which should be
solutions, shown as dashed lines. The agreement is good up untiéspected in the time-symmetric CF formalism, allowing for
t/Mo=30, but att/M,=40 we see some quantitative disagreement,further code tests. In Fig. 7, we show the evolution of the
since the field solver breaks down as we near the point where thbinary separation for the runs. For each run, the orbital pe-
cloud collapses completely into a BH. riod is shown with tick marks. We see in each case that the
orbit is stable, with variations in the binary separation of no
and lapse functioiN for the dust cloud, again in comparison more than 4% during the first two orbits. The time scale for
to the exact solution, at time$M,=0, 20, 30, and 40. We the radial variations is similar to the orbital period, but not an
see again that our code can reproduce the proper solutiagskact match; this reflects both the effects of GR as well as
pastt/M =30, but byt/My=40 shows nontrivial deviations the slight degree of time-asymmetry present in the numerical
from the proper solution. At/M =40, the relative error in  jmplementation of the CF formalism. We note that the devia-
the metric fields and position of the Lagrange radii is ap-tions from circularity were largest for run QC3, which had
proximately 4%, growing to roughly 15% by the time the the largest binary separation. We believe this results from the
event horizon encompasses the entire mass distribution. larger relative magnitude of the spurious initial velocities
all cases, the deviations from the correct solution take thehat result from deviations away from equilibrium in the ini-
same form: our computed field values are closer to unitytial condition; while these terms are of essentially constant
(and the previous timestep’s solutjoiiian we would expect magnitude in all three runs, the equilibrium velocity field has
from the semianalytic solution. the smallest magnitude at the largest separation.

This behavior was confirmed by testing the collapse of Run QC1 was started from the innermost point along this
dust clouds with initial areal radii of ;=5 andr,=50. In  binary NS equilibrium sequence, and the binary performs
both cases, we find extremely accurate results until the evetliree complete orbits with no sign of plunging behavior. As
horizon forms, at which point our accuracy degrades to such, these results can be taken as the first direct proof that
noticeable extent. The effect seems to depend primarily othe entire equilibrium sequence is stable, and suggest that
the formation of an event horizon in the system, and not orthese configurations should be reasonably accurate approxi-
the relative change of the density or various field quantitiesmations to the true physical state of merging binaries. Fur-
We have concluded that the relaxation techniques used in thber evidence of this claim is presented below in Sec. V B,
code have difficulty in their current form in handling the when we describe the results of our calculations with radia-
steep spatial gradients in the shift function near the evertion reaction effects included. Note that this result is not
horizon (see Fig. 2 of[66]), and we are working on tech- unexpected given the absence of a turning p@imnimum
nigues to better handle this situation. Of particular impor-of ADM mass and total angular momentuadong this irro-
tance is altering the relaxation parameters of the iterativéational equilibrium sequence. Indeed, while such a turning
scheme used by the field solver in the presence of these larg@int along an equilibrium sequence odrotating binaries
field values and gradients near the event horizon, to correcharks the onset o$ecular instability a truedynamical in-
for the systematic drift away from the expected values.  stability is usually associated with a turning point along an

Field Value
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FIG. 8. ADM mass and total angular momentum, calculated

FIG. 7. Binary separation as a function of time for the binariesfrom Eqgs.(42) and(44), runs QC1, QC2, and QC3. We see that the
in runs QC1, QC2, and QC3, using initial data generated23y, ADM mass is conserved almost exactly, and the angular momentum
evolved forward in time with radiation reaction terms neglected.to within 1%, with the variation occurring primarily on the orbital
The calculations use binaries with initial separationsr §fM time scale.
=19.91, 20.42, and 22.97, respectively. Full orbital periods, with

T/Mgy=422.8, 438.0, and 519.7, respectively, are shown with tickye,ia1ions in the binary separation, oscillating on the orbital

Changes In separation of o more than 4% over the first wo orbdiMe Scale: W see much more variation on an iteration to
ang P . ) 0 . . |Eeration basis when we look at the same quantities computed
This is the strongest available evidence that the innermost poin

along this equilibrium sequence is actually stable against merger. using the spectral basis. This is hardly surprising, since these

[
0 200 400 600 800 1000
t/ My,

irrotational sequenc¢55,68,69. L ]
While this result may appear at first glance to disagree i %WW““WMMWMWWM
with those of{ 70], who find that the ISCO occurs at a greater 5L |
binary separation than the termination point of an equilib-
rium sequence, we believe that the difference is purely se- i WWWWWWMW
mantic. We define an initial configuration to be dynamically ~ ,,[ ! ]
stable ifin the absence of dissipative radiation reaction ef- - 1
fects the circular orbit remains stabl@o merger occujs 1
when evolved forward in time. 1f70], a configuration is 16
described as within the ISCO if in full GRi.e., including 229
dissipative radiation reaction effegts binary starts merging
(the surfaces of the two NS come into conjagithin one 2.28
orbit when evolved forward in time. Clearly, using these 5
definitions, the same initial configuration can be dynamicallysﬁ -
stable (in the time-symmetric CF sensat a separation =
within the “ISCO” as defined by[70].
In order to estimate how well our code respects conservec
guantities, we show in Figs. 8 and 9 the evolution of both the
ADM mass and system angular momentum, calculated from 225 s—————l b b b S
the SPH expressions, Eggl2) and (44), and the spectral /M,
basis forms, Eqs41) and (43)_, respectively. In the f_ormer, FIG. 9. ADM mass and total angular momentum, calculated in
we see that the SPH expression for the ADM mass is remarkne spectral basis from Eqét1) and (43), for the runs shown in
ably constant over time, with only very minor deviations of fig. 7. we see roughly the same amount of variation in the angular
relative magnitude less than a tenth of a percent. The systefiomentum as was found for SPH summation in Fig. 8. The ADM
angular momentum varies more, but is still conserved tamass shows considerably more variation than the SPH version, but
within 1%, with no sign of a systematic drift in either direc- remains well within 1% of the original value with no systematic
tion. We note that much of the variation is correlated with thedrit.

sb/Mih
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values are computed at the end of a relaxation routine, anc o3[ T T ]
we expect some degree of variation on a step-by-step basi - 1
depending on the exact phase space path traced out by tt
iterative solution. All the same, we see that the angular mo- L
mentum is conserved to roughly the same level in the spec 225
tral basis as it was when computed using SPH, and while the I
variation in the ADM mass is larger, we see no sign of a
systematic drift.

22 -

V. DYNAMICAL CALCULATIONS w/RR, corr.

r/M,,

While dynamical calculations including the effects of ra- 5,5
diation reaction are the only way to study the coalescence o - w/RR, uncorr.
binary NS systems, they have several additional uses whict i
are often overlooked. Of particular importance is the ability L
to determine the validity of quasiequilibrium models as ini- =L
tial conditions for dynamical calculations, regardless of I
whether CF or full GR gravity is used. Thus, we computed
two dynamical runs including radiation reaction. Run RR1 [ | . | . L
was started from the cusp point of the sequefthe same 0 500 1000
initial configuration used in run Q@land was used to study M
the details of the Coa!escence prch;s. Run_ RRZ,WaS started FIG. 10. Binary separation over time for run RR2, started from
from a larger separatiofthe same initial configuration used g, jnjtial separation of o/ M, =22.97, the same initial configura-
in run QC3, and was used to test out the deviations Wetion that was used for run QC3. The dotted line shows the original,
expect from quasiequilibrium prior to reaching the termina-«yncorrected” result, including a separation increase froiM.;,

tion point along the equilibrium sequence. =700-950. This is primarily due to oscillations associated with
numerical noise and deviations from equilibrium in the initial con-
A. Stable regime figuration. Correcting for deviations from circularity in run QC3,

. . . ._which ignored radiation reactiodashed curve yields the “cor-
The evolution of the binary separation for run RR2 is rected” result, shown as a solid line. We see monotonic decrease in

shown in Flg' 10. The dotted curve, ShOW'r_]g the result fromthe separation over time, with an ellipticity induced by our initially
the calculation, does not have the behavior one would €Xsicular orbit.

pect. Notably, after the binary separation decreases mono-
tonically until reachingr/M.,=21.2 att/ M.,=700, the _
system turns around and expands briefly back to a separatiéh fair to say that no computational scheme can currently be
of r/ M.,=21.5 att/ M_,= 950 before shrinking again. This trusted to remain stable over the period required to circular-
does not reflect any inherent problem in our radiation reacize the orbit.

tion formalism, since oscillations in the binary orbit were

found for calculations which ignored all radiation reaction B. Coalescence

effects. In fact, if we “correct” the binary separation by
looking at the difference in separation at equivalent timesDi

between runs RR2 and QC3, which were started from the equilibri denoted RR1. In Fig. 11
same initial configuration, with and without radiation back quasiequitiorium sequence, denoted run - NG L1, We

reaction terms, we see a pattern of monotonic decreasg!'OW density contours from the system during the binary
shown as a solid line. This seems to indicate that deviation@Nase, which lasted untl/ M.,=883. The contours are
from circularity in the orbit of the quasiequilibrium binary €dually spaced logarithmically, two per decade, ranging from
configurations represent a systematic effect in the evolutiordensity values ofM Z,p, =10"%°-10"'. We recognize a
The “corrected” infall curve shows clear signs of an or- familiar pattern from past PN and relativistic calculations
bital eccentricity with a time scale roughly corresponding to(FR [39,43,48), including the development of tidal lag
the orbital period. This is a natural consequence of startingngles as the time scale on which the gravitational field
out from an initial condition with zero infall velocity, and has evolves becomes comparable to the dynamical time scale.
been seen before in virtually every PN and CF calculationThis gives rise to an “off-axis” collision, as matter from the
(FR [39,48)). Its origins are clear: the framework used by inner portion of each star runs along the trailing edge of the
GGTMB to construct quasiequilibrium initial conditions as- other, forming a turbulent vortex shesee FR3 Some frac-
sumes a helical Killing vector exists, which enforces an ini-tion of the mass in these flows eventually crosses through the
tial circularity in the orbit, rather than the proper infalling outer Lagrange point on the opposite side of the binary,
trajectory. If calculations could be started from sufficiently forming the very low-density spiral arm structures seen at
large separations, GW emission would cause the orbit to citt/ M.,=850. In contrast to Newtonian binaries, in which
cularize, but the process works slowly, and breaks down aangular momentum transfer outward leads to massive spiral
the binary makes the transition toward a dynamical merger. larm formation, the very low-density arms formed here have

We have also computed the full dynamical evolution of a
nary system started from the innermost point along the
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FIG. 11. The evolution of the matter run RR1, started from just . . . . -
. - FIG. 12. Detailed view of the binary to single-star transition
outside the separation where a cusp develops. We followed the evo-

lution through the merger and formation of a remnant. Density Con_performed during run RR1 af.Mc;,=883. We show the positions

I ; of all SPH particles, as well as density contours, shown as dashed
tours are logarithmically spaced, two per decade, ranging fro

M2p. =10 65-10"1. We see the development of significantn?ines’ logarithmically spaced two per decade. The surface of the
tidaclhf;g angles at/M. — 500, followed by an “off-center” coll inner computational domain in both the binary and single-star rep-
ch= 200, - -

. : : resentations are shown as heavy solid lines, with good agreement
sion. This process leads to the formation of a vortex sheet and y 9 g

small amount of matter ejection kyM.,=850 from matter run- etween the two.
ning along the surface of the other NS.
tical shape toward a more spheroidal one. This is to be ex-

velocities much smaller than the escape velocity, and the vagiected, as our choice of EOS with=2.0 should not be able
majority of the mass remains gravitationally bound to theto support a long term ellipsoidal deformatidb8]. By
system. t/M.,= 1220, the remnant has relaxed to a nearly circular

At t/M.,=883, shortly before the binary field solver profile, but the differential rotation, as shown in Fig. 15,
fails to converge, we take our matter and field configurationgersists. The latter will dissipate slowly on either the viscous
and transform them into the single-star description describedr magnetic braking time scales, beyond the scope of what
in Sec. lll B. In Fig. 12, we show the particle configuration we can reasonably calculdtél—73. Differential rotation is
at t/ M ,=883, which can be described as a bar with twoexpected to stabilize the star against gravitational collapse in
low-density arms trailing off the edges. While it may seemthe short-term[74,75. Quantitatively accurate determina-
inappropriate at first to describe the configuration as an eltions of the rotational velocity profile in terms of the param-
lipse, we note that the low-density contours, shown asters of the initial system are likely to be crucial for making
dashed lines, do form a much more elliptical pattern than ongrediction as to which systems will or will not collapse
might at first expect. In interpreting SPH particle plots, it is promptly to BHs, especially since these systems will likely
important to remember that low-density particles have largdave very large masses. As we see in Fig. 16, the vast ma-
smoothing lengths, implying that the matter distribution ex-jority of the rest mass of the system ends up in the merger
tends well beyond the apparent sharp edge. The boundariesmnant itself, with a fraction of a percent of the total mass
of the innermost computational domains are shown in thdorming a low-density, bound halo around the remnant. This
figure as heavy solid lines, for both binary and single-staiseems to be the consensus from PN and relativistic calcula-
configurations. We see that they align rather well, failing totions of irrotational binariesFR3 [43]) and even PN and
overlap only in low-density regions near the boundary. Torelativistic calculations of synchronized binari¢sR3[48]),
confirm the validity of the switch, we compare the field so-which traditionally yielded significantly higher mass ejection
lutions for the particles before and after the transition. In Figfractions in Newtonian calculations. We note that PN calcu-
13, we show the relative change in the lapse funchiofiop  lations of irrotational binaries yielded an ejected mass frac-
pane) and conformal factoA (bottom panel as a function tion of =1% (FRJ), rather than the 6% quoted p%3].
of the x-coordinate. We see that in all cases the relative error To compare with the relativistic results ¢43,48, we
is <1%. show the evolution of the maximum density as a function of

The evolution of the single-body configuration is showntime in Fig. 17. We see at the earliest times a low-amplitude
in Fig. 14. We see a strong pattern of differential rotation inpulsation, resulting from small deviations from equilibrium
the merger remnant, which slowly relaxes from a very ellip-in the initial SPH particle configuration. This pulsation
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FIG. 13. The relative change in the lapse functid(top panel FIG. 15. Angular velocity of the merger remnant of run RR1 at
and the conformal factoA immediately preceding and following t/M,,=1220, shown as a function of cylindrical radius,y,
the conversion from binary to single-star representations during rurt,/xhy?_ We see strong differential rotation, with the highest
RR1 for every particle, shown as a function of the particle’s posi-angular velocity in the center, decreasing monotonically with ra-
tion in thex direction. The maximum error is approximately 0.8%, djus.
with a mean difference of-0.2%.

damps away almost completely by the time the stars plunge
inward. As the system begins to accelerate rapidly inward
prior to the merger itself, the maximum density decreases as
the stars are tidally stretched. This effect, seen in a number of
calculations, further indicates that these systems will not un-
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FIG. 14. The evolution of the matter in run RR1, after the tran- /M,

sition to a single-star representation, following the same conven-

tions Fig. 11. We see that a dense remnant forms in the center of the FIG. 16. Enclosed mass as a fraction of tb&al mass of the
system, surrounded by a thin halo. Some ellipticity is seen shortlynerger remnant in run RR1, &tM.,= 1220, expressed as a func-
after the merger, but the system quickly relaxes toward a spheroiddion of (spherical radius. All but a few percent of the total mass of
configuration, with maximum density in the center of the systemthe system forms the body of the merger remnant, with no more
unlike the toroidal configuration found B#3]. than a small fraction of a percent ejected from the system.
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FIG. 17. Maximum density as a function of time for run RR1. FIG. 18. The GW signal in thb, andh, polarizations for run
We see the SPH configuration oscillates slightly around equilibRR1, as seen by an observer situated along the vertical axis, fol-
rium, decreasing slowly as the binary plunges toward merger. Durtowing Egs. (54) and (55). We see a chirp signal followed by a
ing the merger, we see a sharp decrease, followed by a large spikgodulated ringdown spike. The modulation is caused by the align-
upward and evidence for sharp, nonsinusoidal oscillations. ment between quadrupole deformations in the inner regions of the

remnant core and those at larger radius. When there is strong mis-

dergo a pre-merger gravitational collapse. This process wagignment, there is destructive interference and the signal amplitude
originally suggested if45], but is likely to have been a grops, as we see atM.,=920 andt/Mg,=1220 in Fig. 14. At
numerical artifact since they used a version of the CF fort/ 1., =1080 the density contours are more aligned, and the am-

malism containing an error in one of the evolution equationsplitude reaches a temporary maximum.

Indeed, the quasiequilibrium sequences in TG show a slow

decreasen the central baryonic and energy densitigs,and  very center, 2—3 times the adiabatic value, and a correspond-
p, as the binary separation decreases. After contact, we seer@ decrease in the density, giving the remnant its toroidal
strong rise in the maximum density, followed by a rapid, profile. Only calculations using their new shock-capturing
high-amplitude oscillation. This result is similar to that seenscheme[76] produce this behavior; previous calculations
by [48], although they found a relatively higher maximum yielded remnants with centrally condensed density profiles
density value during both the peak and the trough of thg¢41,42. It will be of great future interest to determine
oscillation. This is almost certainly a result of using differentwhether or not SPH studies of rapidly rotating collapsing
initial spin configurations. Irrotational systems, such as thematter configurations can produce these toroidal configura-
one used in run RR1, concentrate relatively more angulations with “hot” cores, and if so, which aspects of shock
momentum at small radii compared to initially synchronizedphysics are crucial for understanding this process.

systems, like run A of48]. Thus, when a remnant is formed  In Fig. 18, we show the GW signal for run RR1, calcu-
from an initially irrotational binary, the central density will lated from Eqs(54) and(55). The waveforms show a famil-
typically be lower, since there is a greater centrifugal barrieiiar chirp signal up untik/ M ,~850, followed by a modu-
and less pressure support is needed to stabilize the configlated, high-frequency ringdown component. The strength of
ration. Our results differ rather significantly from those of our signal at peak amplitude matches extremely well with the
[43], who found a smaller-amplitude, more sinusoidal oscil-results o0f[43,48, as one would expect from simple dimen-
lation after merger. It is possible that this discrepancy can bsional analysis. Our modulated remnant signal, though, is
attributed to the use of the CF approximation rather than fulinuch more similar to the results p43] than[48], who find

GR. A much more likely explanation, however, is that thea damped ringdown signal of lower amplitude for this model,
difference results from the numerical methods used to dewith no obvious modulation. Previous PN calculatigR&R2,
scribe shock heating in the matter. Lagrangian SPH codeBR3) identified the source of the GW amplitude modulation
were used here and [@8], whereas Shibata and collabora- as a combination of differential rotation and ellipticity in the
tors [41-43 use an Eulerian grid-based code, which mayremnant. When the inner and outer regions of the remnant
have a better ability to resolve shock fronts. It seems clear bhave ellipsoidal deformations which are roughly aligned, as
examining the results from run M1414[i43] that as the NS  we see at/ M ,~900 in Fig. 11, the GW amplitude will be
cores converge, the increase in the central density is sugt a maximum. When differential rotation drives the inner
pressed by the conversion of kinetic energy into heat. Theegions into misalignment, as we sed/at1.,~1020 in the
merger remnant shows a spike in the internal energy in theame figure, the GW amplitude reaches a minimum. Eventu-
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ally, these effects dissipate away as the remnant relaxes to- 206
ward a more spheroidal configuration. We believe the lack of Mchfew:7(r/Mch)_1'5— 1.592r/ M) ~%°
modulation in the waveforms shown in Fig. 10 p48]
merely reflects the use of a different initial spin configura- +6.3251/ M) 3> (93
tion. As stated above, synchronized initial configurations
contain relatively less angular momentum at smaller radiiNext, we assume that the GW signal amplitude is given by a
and the lack of a centrifugal barrier allows the remnant el-slightly modified version of the quadrupole form,
lipticity to damp away much more quickly as the densest
regions in the NS cores fall into the remnant's center. Our QI (H)=—Q(t)
results are in broad agreement with thos¢4d]|, who find a
modulated waveform immediately after the merger on a = (1.0-x) 2% Mo *fgncod ow( 1)), (94)
similar time scale as our results, before a longer-lived, 2] 02 2 2e2
smaller-amplitude damped modulation eventually appears. Qiy (D=(1.0-r) 27T Mcpr “fow

Calculating the GW energy spectrum for the merger -
waveform is more complicated than simply applying Eg. X sin(few(t)), ©9

(57), since taking the Fourier transform of a signal with NON-\yhere the prefactok is used to match the amplitude of the
zero initial and final values introduces aliasing of the bou”d‘mspiral signal onto that at the beginning of our calculated
ary conditions into the resulting waveform. To correctly de'signal. We find thak=0.015 throughout the early phases of
rive the proper spectrum, one must also “attach” analytic, - cajculated waveform, indicating that it can be well-
solutions to the beginning and end of the calculated Sig”aﬁpproximated by the expected quadrupole form. Further-
representing the portions of the inspiral and ringdownyare we note that the resulting energy spectrum is essen-
phases, respectively, which fall outside the bounds of thgg)y independent ofc; as « increases, the GW amplitude
numerical evolution. In the past, .th? ayth(JIfR3), and OFh' decreases, decreasing both the energy loss rate and the fre-
ers[48,63,71, have modeled the initial inspiral phase via thequency sweep rate in the same proportion, leawiigdf

Newtonian point-mass approximation, but that is clearly not,n-nanged. Finally, we assume that the energy loss rate in
physically realistic. Indeed, it has been shown in FGRT thabWs is given by the standard quadrupole expression,
relativistic effects should have a significant effect on the GW

spectrum even before the dynamical merger. Summarized, dE/dt=O.2<4772f2WQ-[-2]Q-[-2]>. (96)
we know that for an equal-mass binary system, the total GW=I <l

mass-energy is given byE=M—M?/8?=2"M.,  To construct the inspiral waveform, we start from a point
— MZ/(2°%?), and the(Keplerian orbital frequency by along our calculated waveform and evolve backward in time
fKepz(\/Mt/rg)/er. In terms of the GW emission fre- from that point. At every time step, we calculate the instan-
quency,fGWEZfKepz(20'6/77) VMen /13, we find taneous energy loss rate from HQ6). After adjusting the

o3 total energy, we calculate the new GW frequency by implic-

a12 ™ 5/3¢2/3 itly solving Eq. (92), and adjust the phase of the GW signal
En(fow) =2""Men= TM chiGw (90 appropriately. We find the new binary separation by solving
Eqg. (93 implicitly, and finally evaluate the waveform via
dE, 723 Egs.(94) and (95). o
=—M S/ﬁfé\}f' (91) The question of where to match the quasiequilibrium
dfew 3 waveform to the calculated one deserves some attention.

Matching the two at=0 is very much a mistake, because it

where the latter equation demonstrates the familiar powerepresents a transition from an infalling configuration to a
law dependence of the GW energy spectrum. circular one; beforehand, the frequency sweep ddtg,,/dt

For the quasiequilibrium sequence from which we takeis positive and increasing, while afterward it is reset instan-

our initial condition, we found that the system ADM mass taneously to zero. This mismatch in the infall velocity, and

can be given in terms of the GW frequency byphenom-  thus the frequency sweep rate, results in energy “piling up”

enological fit of the form at the transition frequency, as can be seen in FR3 and to a
smaller degree in Fig. 12 ¢#8]. We find that matching the
E(fow)/ Mcn=En/Mep—0.4905 Mcpfow) inspiral waveform to the calculated signaltatO reproduces
this error, but that by/ M.,,= 250, the match in the inspiral
+23U Menfow)®. (92 velocity is sufficient to leave no measurable trace in the re-

sulting spectrum.

Differentiating this equation yields what we term the “qua- We note tha{48] also match their inspiral waveform to
siequilibrium energy spectrum,” but we require additional their calculated one at some time into the calculation, but we
assumptions to be made before we can construct the tineelieve that they place too much trust in the behavior of the
history of the inspiral waveform. First, we determine a fit for energy spectrum near this transition frequency. In their paper,
the GW frequency as a function of conformal separationthey alter the frequency of a Newtonian inspiral waveform to
finding that we can approximate the proper function tomatch their relativistic calculation by adjusting by hand the
within 0.1% with the form coalescence time;=(dr/dt)/r. We believe this approach to
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be a mistake. The effect of this change is to use a Newtoniar 56 fow(Hz) 556 S—
waveform with different physical parameters from those I ‘ e I e RN
used in the calculation; in particular, it is equivalent to cal-  1°
culating a Newtonian waveform using the wrotogal mass
and thus the wrong limit for the spectrum at low frequencies.
It is only through the use of an inspiral waveform whose
frequency approaches the proper Keplerian limit at low fre-
guencies and theelativistic form at high frequencies that
accurate energy spectra can be constructed. Indeed, since oz
initial condition was taken from the same quasiequilibrium %
sequence used to generate our frequency data, the initial Gy !
frequency derived from our calculation matched that of the =
inspiral waveform within 0.1% without requiring further ma-
nipulation.

In Fig. 19, we show as a solid line what we believe to be
the first complete and consistent relativistic waveform for a
binary NS merger at frequencidg,w=<1.5 kHz. The fre-
guencies listed on the upper axis assume our “standarc
model” parameters, i.e., each NS has an ADM masg 0.1
=1.4My . The two dotted lines show the components which
make up the energy spectrum. At low frequencies, Mgy foy
Mcnfew<0.004, we see the primary contribution is from 5 i
the quasiequilibrium inspiral waveform, whereas at higher F(IB?N %9' W energfy SpefC"“WRgEiE_/r‘:]f’ ;S adfllJ_nctlonhof
frequencies it is from our calculated waveform. The short-ne GW requencyMenfoy, for run RR1. The dotted lines show,
dashed line shows the Newtonian point-mass relation, givehespectlvely at high and low frequencies, the components contrib-

. ... = —Uted by our calculated signal and the quasiequilibrium inspiral com-
by Eq.(91), and the long-dashed curve the quaSIequ'l'b”umponent. Also shown are the Newtonian point-mass energy spectrum

result, found by numerically differentiating E(@2). We see (dE/df ) news (short-dashed line Eq. (91), and the quasiequilib-
excellent _agregmgnt bgtween our calculated_ waveform ang,, it (dE/dfew)oe derived from Eq(92). We see confirmation
the quasiequilibrium fit, up until frequenciesfchfew  that the “break frequency” calculated from a fit &(f) for the
~0.007-0.009. This peak represents the “piling up” of en- equilibrium sequencé.e., the frequency at which the energy spec-
ergy at the frequency corresponding to the phase of maXirum decreases to a given fraction of the Newtonian leigelepro-
mum GW luminosity, as the stars make contact and the infalljuced by a full numerical evolution. On the upper axis, we show the
rate drops dramatically. The second peak, Jet.,fcyw  corresponding frequencies in Hz assuming the NS each have a mass
~0.010-0.011, represents emission from the ringdown ofM,=1.4M The two peaks correspond to the phases of maximum
the merger remnant. It is likely that we underestimate theSW luminosity and ringdown oscillations, respectively.
true height of this second peak, since we assume that the GW
signal after our calculation damps away exponentially. Still[34], appears extremely feasible, and may allow GW mea-
it is extremely unlikely that including the ringdown phase surements to constrain the NS compactness and EOS.
will increase the strength of this peak by more than a factor One possible cause for concern with our code is noncon-
of a few, since our chosen EOS will not support a long-livedservative behavior caused by numerical errors that develop
ellipsoidal deformation, and it is likely that the ringdown after t/ M.,=500. In Fig. 20, we show the change in the
oscillations will smear the GW emission over a small rangesystem’s angular momentum over time. The dotted curve is
of frequencies rather than coherently emitting at a single frethe uncorrected result derived from our calculation, which
guency. shows two periods of angular momentum generation, the first
In general, the energy spectrum we calculated here corfrom t/ M ,=600-700, and the second &t M.,=875
firms the general conclusions we put forward in FR3 and—900. The former is associated with the numerical inaccu-
FGRT, albeit in a much more consistent way. The GW en+acies discussed in Sec. V A for run RR2. All of our runs
ergy spectrum does show a significant drop away from theshow some spurious angular momentum generation and
Newtonian point-mass form at frequencies significantly beslowing of the binary infall during this period. The latter
low 1 kHz, in almost the exact same form as we predictedspike occurs immediately before and after the transition from
from quasiequilibrium data alone in FGRT. Nowhere doesa binary to a single-star description. Correcting for both of
the spectrum rise above the Newtonian value, including th¢hese spurious terms yields the solid line on the plot, which
peaks associated with maximum GW luminosity and thestill underestimates by a nontrivial amount the angular mo-
ringdown oscillations. These results suggest that the weakentum loss we would expect from the quadrupole formula,
signal amplitude of the peaks above 1 kHz, which lie outside
the Advanced LIGO broadband frequency range, may inhibit (I ew=0.4eij (QIIQRD). (97)
detections by high-frequency narrow-band interferometers as
well. However, combining lower-frequency narrow-band de-Using the quadrupole formula on our results yields a total
tectors with broadband LIGO measurements, as suggested amgular momentum loss fraction which very nearly equals

00

(dE/df)

Newt
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FIG. 20. Angular momentum loss for the binary in run RR1  FIG. 21. The evolution of the total ADM mass for the system in
measured using the SPH integral, E44) (dotted ling, and the  run RR1, calculated using the SPH integral, Ep) (solid line).
result after correcting for spurious angular momentum creation durdp until t/ M.,= 600, we see a slow decrease as energy is emitted
ing the binary to single-object transitigeolid ling). We see that the in GWSs, at approximately the rate predicted by the quadrupole for-
result yields an angular momentum loss approximately half that wenula, Eq.(96) (dashed ling Beyondt/ M ,=600 numerical inac-
would have predicted from the quadrupole formula, E87) curacies lead to oscillations of total amplitude2%. From the
(dashed ling primarily because our estimate for the system’s an-quadrupole estimate, we find that 0.4% of the system’s energy is
gular velocity used in the back reaction force is systematicallyradiated away as GWSs, in line with previous estimated from rela-
lower than the GW signal would indicate. The quadrupole result wetivistic calculations.
derive shows that about 7% of the system angular momentum is

emitted in GWSs, in line with previous relativistic estimates. nitude 0.2—-0.3% of total value, in good agreement with
other calculations and our own quadrupole estimate. From
that found by[43,48, with approximately 7% of the sys- that point on, we see a small spurious increase from the point
tem’s angular momentum converted into GW emission. Théhe numerical errors begin to become significant, followed
discrepancy between this amount and what we derive frorRY @ sharp decrease 6f2% immediately prior to our tran-
the SPH particle configuration, E@4), can be easily under- Sition from binary to single-star descriptions. Once we have
stood. First, we do not see strong angular momentum loss d8ade the transition, the ADM mass oscillates slightly, with
the NS first make contact, since this is where we push ough overall peak-to-trough amplitude of 1%. Thus, we con-
field solver to its limit. Second, our method for estimating clude that while the instantaneous value we measure from
the instantaneous angular velocity, E§3), underestimates the particles directly is liable to be off by up to 2%, we can
the proper value ob, yielding a radiation reaction force, Eq. feconstruct the proper energy loss rate after the calculation is
(45), smaller than the correct quadrupole valuehich we  OVer.
can determine after the facfThis error could be decreased
in magnitude by calculating the angular velocity from the
change of position of the NS centers-of-mass in time, but
such a prescription is difficult to define consistently in the We have developed and tested a new relativistic 3D La-
single-body regime. Even defining the orbital frequency ingrangian hydrodynamics code, which should prove useful for
terms of the rate of change of the quadrupole tensor, as dorgudying a wide variety of physical systems. Here, as an
by [48], underestimates the correct angular momentum loskitial investigation, we have performed the first full evolu-
rate by up to 40% during the GW emission peak. tions of the coalescence and merger of irrotational binary NS
We see a similar pattern at work in the evolution of thein the CF approximation to GR. Moreover, these calculations
system’s ADM mass, shown in Fig. 21, comparing the en+epresent the first numerical evolution of coalescing binary
ergy loss to GWs from the quadrupole approximation for-systems performed with either a spectral methods field solver
mula (dashed ling Eq. (96), to the value we find from SPH or the use of spherical coordinates adapted to a binary envi-
summation via Eq(42) (solid line). The quadrupole value ronment.
agrees well with other calculations, which typically find The code has been validated using several tests. We can
AM apm /M apm=0.004. Looking at our particle summation accurately reproduce static spherical stellar configurations as
value, we see a slow decrease frofm.,=0-500, of mag- well as the known solution for a collapsing pressureless dust

VI. CONCLUSIONS
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cloud. In both cases, the CF approximation yields the exadbroidal remnant. We believe the difference results from their
solution in GR, as it will for any spherical configuration. We use of a capturing scheme, whereas our runs were performed
find that we can reproduce these known semianalytic soludsing an adiabatic treatment.
tions to high accuracy, up until the formation of an event By combining our calculated GW signal with a relativistic
horizon for the collapsing dust clouds. quasiequilibrium inspiral precursor, we have generatr—;d the
Our dynamical evolution calculations for quasiequilib- first GW energy spectrum from a binary NS merger which is
rium models at a number of different binary separations in-complete at all sub-kHz frequencies and consistent through-
dicates that we can successfully integrate forward for severg@ut- We find that the energy spectrum deviates from the
orbits, with typical errors in conserved quantities-efL%.  Newtonian power-law relation by more than 50% at frequen-
In doing so, we have demonstrated directly for the first timeci€S few<1 kHz (the “break frequencyj, in very good

that theM/R=0.14, equal-mass sequence of TG is stable alfgreement with the predictions of FGRT. There are distinct
' eaks in the power spectrum corresponding to the phases of

the way to its innermost configuration, at which point a cuspD . S .
develops on the inner edge of each NS. maximum GW luminosity and merger remnant ringdown,

Our dynamical calculation of a complete binary NS but at levels significantly below the point-mass power-law

merger, including radiation reaction effects, demonstrateé(allue' fut K bi NS ; h ;
that our spherical coordinates, spectral method approach is N our futureé work on binary systems, we nhopé 1o

robust enough to follow the system from the point just beforeaddress a number of topics, many of which deserve much

the formation of a cusp through merger and the formation oforé careful study. Based on the excellent agreement be-
{ween our calculated GW energy spectrum and that based

a stable remnant. Some errors were introduced during thi | ilibri dat h o d broad
period into the globally conserved quantities such as th&Urely on equilibrium sequence data, we hope to do a broa
hase space survey to determine the dependence of the

ADM mass and system angular momentum, but we find tha? ., ,

the field values were computed consistently throughout, an reak fr_etuency donh_both the NS E%S afnlc\ilsthls Ssystems

that the global dynamics was treated in a quantitatively acass ratio. Beyond this parameter study of NS-NS mergers,
we also plan to investigate in detail the formation process for

curate way. i " :
4 the merger remnant, to determine the conditions which may

We find that the merger remnant formed in our calculationI dtothe f i f itoroidal t Thi
is differentially rotating, with a transient quadrupole defor- €ad lo the formation of a quasitoroidal merger remnant. This
will necessarily involve the use of a relativistic artificial vis-

mation. This combination of effects produces a GW ampli-""" . ! .
tude with a modulated form, similar to what has been seer‘fos'ty scheme to treat shocks. The density profile of the

before in PN calculation$FR3 and more recent full GR merger remnant is likely to influence the final fate of the

calculations of the same modet3]. We find that the rem- system, and may prove crugia[ for determining the coinci-

nant is initially stable against gravitational collapse, as diadence properties of GW emissions gnd short-perlod GRBs,
[43], with the supermassive N®vhich has a baryonic mass should they_ result from compact object binary mergers, as
essentially twice that of either NS in isolatiosupported by has been widely suggested.

strong differential rotation. We find that a density maximum

develops rather rapidly in the center of the merger remnant,
as has been seen in all other PN and CF calculations, but not This work was supported by NSF grants PHY-0133425
that of [43], whose full GR merger calculation yielded a and PHY-0245028 to Northwestern University.
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