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Large-distance modification of gravity may be the best mechanism for solving the cosmological constant
problem. A simple model of the large-distance modification—four-dimensi@2)l gravity with a hard mass
term—is problematic from the theoretical standpoint. Here we discuss a different rooatet-induced grav-
ity, that effectively introduces a soft graviton mass. We study the issues of unitarity, analyticity, and causality
in this model in more than five dimensions. We show that a consistent prescription for the poles of the Green'’s
function can be specified so that 4D unitarity is preserved. However, in certain instances 4D analyticity cannot
be maintained when the theory becomes higher dimensional. As a result, one has to sacrifice 4D causality at
distances of the order of the present-day Hubble scale. This is a welcome feature for solving the cosmological
constant problem, as was recently argued in the literature. We also show that, unlike 4D massive gravity, the
model has no strong-coupling problem at intermediate scales.
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|. LARGE-DISTANCE MODIFICATION OF GRAVITY: The first term on the right-hand side of E(L) acts as a
FORMULATING THE PROBLEM kinetic term for a 4D graviton while the second term acts as

a gauge invariant mass term. The observable matter is as-

The reason underlying the observed acceleration of theumed to be localized on a 4D surfage 0.
Universe is puzzling. It could be a tiny amount of vacuum The present work is devoted to the study of the DGP
energy. However, this possibility is hard to reconcile with scenario in the casbl=2 (see Refs[2,3]). Such models
known particle-physics models. Instead, it might well be thathave a string theory realizatidd]. More importantly, these
a new physical scale exists in the gravitational sector and thmodels are potential candidates for solv(ig6] the cosmo-
laws of gravity and cosmology are modified at this scale. Tdogical constant problensee also Refd.7—24] for interest-
be consistent with data and be able to predict the acceleratédg cosmological and astrophysical studies
expansion, the new scale should be roughly equah§d The equation of motion for the theory described by the
~10?® cm—the present-day value of the Hubble length. Inaction(1) takes the form
this regard, developing models in which gravity gets modi-
fied at cosmological distances becomes a timely endeavor. ﬁ(N)(y)M§|G§fV)5ﬁ5E+ M2*NGE) = —T,,(x) 8k s55MN(y).
generally covariant theory of the large-distance modification
of gravity is the Dvali-Gabadadze-PorraBGP) model[1]. ©)

The gravity action of the model can be written as follows: )
Our conventions are as follows:

M2 M2+N o )
5= @Rie)+ 5|y oReO) mma=diad +— =), AB=01,... 3N,

@) w,v=0123, ab=45, ...3N. (4

where R and R,.n are the four-dimensional and G
(4+N)-dimensional Ricci scalars, respectively, ahd,
stands for the gravitational scale of the bulk theory. Extr
dimensions are not compactified; they asymptote at infinity
to Minkowski space. The higher-dimensional and four-
dimensional metric tensors are related as

(" and GYY denote the four-dimensional ari-dimen-
sional Einstein tensors, respectively. We chodsesimplic-
ty) a source localized on the brarig, ,(x) 5™ (y).
Gravitational dynamics encoded in E8) can be inferred
from both the four-dimensional(4D) as well as
(4+ N)-dimensional standpoints. From the 4D perspective,
_ gravity on the brane is mediated by an infinite nhumber of
g(x,y=0)=g(x). (2 Kaluza-Klein (KK) modes that have no mass gap. Under
conventional circumstancése., with no brane kinetic term
this would lead to higher-dimensional interactions. However,
*Present address. the large 4D Einstein-HilbeEH) term suppresses the wave
"Permanent address. functions of heavier KK modes, so that in effect they do not
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participate in the gravitational interactions on the brane ashort distances and the higher-dimensional behavior at large
observable distancef25]. Only light KK modes, with distances, are not expected to be changed by adding these

massesngx=mc, terms, nevertheless, the tensorial structure of a propagator
could in general depend on these terms and self-consistency
2 .
ML of the theory may require some of these terms to be present
M= Mg’ ) in the actions in a reparametrization invariant way.

In the low-energy approximation the exact form of these
remain essential, and they collectively act as an effective 40extra” terms and their coefficients are ambiguous, because
graviton with a typical mass of the order wf, and a certain  of their UV origin. They will be fixed in a fundamental
smaller width. theory from which the DGP model can be deridd33]. In

Assuming thatM, ~10 % eV or so, we obtaim.~H, the present paper, in the absence of such a fundamental
~10 *? GeV. Therefore, the DGP model wih=2 predicts  theory (but in the anticipation of its adventwe would like
[26] a modification of gravity at short distancdﬁ;l to study a part_icular parametrization Qf these “extra” terms,
~0.1 mmand at |arge distancemglealNlozs cm, give for d?mqnstraﬂonal purposes. ACCOYdI.ng to our expeptatlons,
or take an order of magnitude. Since gravitational interacPhysics in the self-consistent theory will have properties very
tions, nevertheless, are mediated by an infinite number ofimilar to those discussed below. We will show that these
states at arbitrarily low energy scale, the effective théayy ~Properties are rather_attractlye since they do avoid severe
presents, from the 4D standpoint, rnlocal theory [5].  Problems of 4D massive gravity.
Moreover, as was suggested[R¥], nonlocalities postulated Consider the action
in pure 4Dtheory can solve an “old” cosmological constant

;OO , VE
problem [27], and give rise to new mechanisms for the S= _Plf d*xalaR(g)+ bR
present-day acceleration of the Univef8&,29. (It is inter- 2 \/6[ (@ a+n]
esting to note that the nonlocalities in a gravitational theory M2+N
that are needed to solve the cosmological constant problem 4 f dx dN R P 7
could appear from quantum gravit29] or matter loopg$30] 2 y\/‘; a+n(0), 0

in a purely 4D context. ) . . .

On the other hand, from the @4N)-dimensional perspec- where, in addition to the 4D EH term,2-dimensional EH
tive, gravitational interactions are mediated by a singleterm localized on the brane is present. Hewndb are some
higher-dimensional graviton. This graviton has two kinetichumerical coefficients. We will study the properties of the
terms given in Eq(1), and, therefore, can propagate differ- System described by E¢?) for different values ofa andb.
ently on and off the brane; namely, at short distances, i.e., &he action(7) is fully consistent with the philosophy of Ref.
r<m;~Hy'~10% cm, the graviton emitted along the [1]: if there is a(1+3)-dimensional brane iD-dimensional
brane essentially propagates along the brane and mediafeace; With some “matter fields” confined to this brane,
4D interactions. However, at larger distances, the extraduantum loops of the confined matter will induce all possible
dimensional effects take over and gravity becomes\Adi- structures consistent with the geometry of the problem, i.e., a
mensional. (1+3)-dimensional wall embedded D-dimensional space.

As was first argued in Ref2], the results ifN=2 DGP The equation of motion in the modél) takes the form

models are sensitive to ultraviolét)VV) physics, in contra- SN (y)M2(aG
distinction to theN=1 model[1]. In other words, one should Y)Nlpi
either consistently smooth out the width of the bré2e], or = =T, (%) sL556MN(y). (8)
introduce a manifest UV cutoff in the theof26,31,33, or
do both. With a finite thickness, more localized operatorSn deriving the above equation we first introduced a finite
appear on the worldvolume of the brane, in addition to thegrane widthA, and then took thés—0 limit in such a way
worldvolume Einstein-Hilbert term already presentin B.  that no surface terms appear. In general, the results depend
[26]. For instance, one could think of a higher-dimensionalon the regularization procedure for the brane width. In the
Ricci scalar smoothly spread over the worldvolufBé present work, we adopt a simple prescription in which de-
In general, terms that are square of the extrinsic curvaturgivatives with respect to the transverse coordinates calculated
can also emerge. Some of these terms can survive in the limgn the brane vanish in the— 0 limit (a unique prescription
when the brane thickness tends to zére., in the low- could be specified only by a fundamental theoAs previ-
energy approximation For instance, in the zero-thickness ously, G® and G® denote the four-dimensional and
limit of the brane the following terms might be important: p-dimensional Einstein tensors, respectively, wkiland b
N) 42 N) v a are certain cqnstants. In.order to. be able to describe 4D grav-
S(y)hydoha, 8 (y)h*"a,0,hy, ity at short distances with the right value of the Newton’s
coupling we set

4 D 2+N D
C+bGL) shop+MITNGRY

M (y)htaaaph®, (6)
a+b=1. (9)
whereh denotes small perturbations on flat space. Although
the main features of the model, such as interpolation betweeNote that the first two terms in parentheses on the left-hand
the 4D power-law behavior of a nonrelativistic potential atside of Eq.(8) can be identically rewritten as
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(a+ b)GEf,}vL b(— %%hi— t%ﬂahi— ‘9§hw+ nwzﬁhg breakdown of perturbation theory does not occur in the DGP
model withN=2. A direct analogy with the Higgs mecha-
+0,0,N5= 1,055+ 27,020 0+ 17,2950 ). nism for non-Abelian gauge fields is in order here.
(10) For non-Abelian gauge fields with a hard gauge boson

mass term, appropriate nonlinear amplitudes invalidate the

The above equation of motiai8)—which should be viewed perturbative expansiofi.e., violate the unitarity boundat a
as a regularized version of the DGP model—could be obscale set by the gauge boson mass divided by the gauge
tained from the actior(1) as well, provided the latter is coupling constant. To cure this disaster, one introduces an
amended by certain extrinsic curvature terffts more de-  extra scalar—the Higgs fiefdBy the same token, certain
tails, see Ref[33]). Below we will study this version of the nonlinear perturbative amplitudes of the 4D “hard” massive
regularized DGP model for various values of the parametergravity blow up precociouslj35—-37 at a scale significantly
a andb. Certain issues in tha=0, b=1 case, regularized lower than a naive UV cutoff of the theory under consider-
with a finite brane width, have been recently analyzed in Refation. The unwanted growth of the amplitudes is canceled,
[3]. We will find below that phenomenologically more attrac- however, in the DGP model at the expense of introducing an
tive is thea=1, b=0 case. infinite number of the KK fields. Thus, the actidi) gives

The issues to be addressed are as follows. rise to a gravitational analogue of the Higgs mechanism,

Assume that gravity measurements are done at paints With an infinite number of “Higgs” fields which include both
andx, that are confined to the brane. At distanges—x,|  Vector and scalar states.
<H, ! the graviton propagatamitatesthat of a massive 4D It has been recently argu¢d0] that the spectrum of the
unstable particle with massm, . Given that the model itself PGP model contains tachyonic states with a negative norm
is intrinsically 4+N dimensional, the following questions (‘tachyonic ghosts). The conclusion was based on an
must be answered(i) Does the graviton propagator analysis of the poles in the graviton propagator derived from
G(x1,%,,y=0) satisfy the requirements of four-dimensional the action(1). In fact, the analysis of Ref40] leaves aside
unitarity? (i) Do “abnormalities” occur at 4D momenta Subtle points of appropriately defining the Green’s function
much smaller than the ultraviolet cutoff and larger than theP0les. We formulate and discuss an appropriate rule for de-
infrared (IR) crossover scale, such as a precocious onset dfing the would-be poles. With this rule accepted, the 4D
the strong-coupling regime? unitarity of the Green’s functions is guaranteed. This is not

Needless to say, the answers to these questions determiHt¢ case with respect to 4D analyticity and causality, though.
whether the DGP model is intrinsically self-consistent and certain instances we will have to sacrifice 4D causality at
phenomenologically viable. The answer to the first questiorfliStances of the order of today’s Hubble scale. As was argued
will be demonstrated to be positive and to the second negd? Ref.[27] this is a welcome feature for solving the cosmo-
tive. That is to say, the situation is most favorable. We haste#Pgical constant problem. _
to add that it is not trivial to see that this is indeed the case. 'N€ organization of the paper is as follows. In Sec. Il we

It is necessary to carry out a rather subtle analysis whickliScuss in detail a simplified version of the phenomenon,
circumvents stereotypes in, at least, one point. with a tensorial structure suppressed. We consider a scalar

For what follows it is instructive to confront the DGP field with a Lagrangian similar to Eq1) and derive the
model with 4D “hard” massive gravity34] [or Pauli-Fierz Gree_n's function. There are complex poles of 'ghe G_reen’s
(PP gravity] which also leads to a large-distance modifica-function on the second and subsequent nonphysical Riemann
tion of interactions[The action of “hard” massive gravity is Sheets. This corresponds to the resonance nature of the 4D
given below in Eq(98).] In particular, we compare the per- massive scal_ar. In _Sec. I we qllscuss the_ same problem for
turbative treatments of these two models. Perturbation theorgravity, i.e., including the graviton tensorial structure. The
in Newton’s constant in 4D massive gravity breaks down at 45SU€ Of proper definition of poles in the graviton propagator
scale much lower than the cutoff scale of the theory—thisSMerges in earnest in the trace part. In certain cases, a naive
was first obtained for spherically symmetric sources in RefWay of defining the poles leads to inconsistent results—
[35]. The origin of this breaking can be traced bi@ﬁ] to VIO|a_tIOHS of unitarity. For the_se cases we |nd|ca_te away out,
Feynman diagrams involving nonlinear interactions of gravi-réating the would-be poles in the Green's function in such a
tons. In terms of degrees of freedom, it is the longitudinalWay that unitarity is not violated. Finally, in Sec. IV tié
polarizations of the massive gravitons that are responsiblg2 DGP model is argued to have no strong-coupling prob-
for the perturbation theory breaking. This can be readily in_lem at |ntgrmeQ|ate scales, in contradistinction to 4D Pauli-
ferred from the dynamics of these modes analyzed in Refi€rz gravity with a hard mass term.

[37]. (Note also that the PF graviton propagates six degrees

of _freedom instead of fivé38;| in the fgll quantum theory. Il. THE SIMPLEST EXAMPLE: SCALAR FIELD

This makes the corresponding Hamiltonian unbound from

below [38]. As a result, solutions exist that destabilize the To warm up, we start our discussion with a simple model
empty Minkowski spac@39] and the instability can develop of a scalar field® in (4+N)-dimensional space-time. For
practically instantaneous)y.

As will be shown, in this respect the DGP gravity)
presents a drastic improvement. In contradistinction with the 1The mass of the Higgs field itself needs a stabilization mecha-
4D Pauli-Fierz theory of massive gravity, the precociousnism. This is a separate story, however.
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convenience, we separate the dependence of the scalar fiéltien one could certainly obtain the KL representation by
& on four-dimensional and higher-dimensional coordinateswriting the (tree-leve] 4D propagator summing up the entire

D(x,,Ya)=P(x,y). The two-kinetic-term action—the sca- tower of the KK eigenstates.

lar counterpart of Eq(l)—has the form This strategy is readily implemented in the conventional

5 compactifications, when the brane worldvolume term is ab-

Mp, sent. In this case the spectrum of the Kaluza-Klein eigen-
S= TJ d*x 3,®(x,0)9“P(x,0) modes
M2+N
bt f dix dy D (xy)PD(xy). (1D D(xy)=3 (¥ dr(y) (13

It is important to understand that in scalar case the analogugecomes trivially discrete, with the eigenvalues?

of the new term included in Eq8) but absent in Eq(3)  —n?%/R2. If so, the expression for the Green's function
reduces, identically, to the already existing localized termgp y=0) takes the form

This is a consequence of our choice of the regularization of

the brane width\ and the boundary conditions according to 6% (0)(0)
which transverse derivatives vanish on the brane inAhe G(p,y=0)=>, % p?=p,p*. (14
—0 limit. nomi—p—ie

To study interactions mediated by the scalar field we as-
sume that® couples to a sourcé localized in the 4D sub- In other wordsG(p,y=0) is the sum over an infinite num-
space in a conventional way,d*x ®(x,0)J(x). Then the ber of poles, with positive-definite residues. Rs- the

equation of motion takes the form sum goes into the standard dispersion integral,
SN(yIMB 3P (x,00+ ML N 7 (x,y)=3(x) 6M(y). 1= p()
(12 G(p,y:o>=—j dt——"—, (15
mJo  t—p°—ile

The very same equation applies to the scalar field Green’s

function. wherep(t) is a positive-definite spectral density.
The argument above, as well as the simple representation
A. Spectral representation (14) or (15) following from it, neglects the existence of the
brane worldvolume kinetic term in the actiftie first term

First, using the scalar field example, we will summarize : . . . .
general arguments for the existence or absence of a spectl%{l] the right-hand side of Eq11)]. Th|_s term Is cru<_:|al _and .
by no means can be neglected. It gives rise to kinetic mix-

representation in higher-dimensional theories with the world-
volume kinetic terms as in Eq11). The explicit formulas ings of the KK modes on the brane worldvolume,
below refer to the scalar case. In the next section we will
consider gravity, with the appropriate tensorial structure, and %f d*x 2 9.®,(X)brn(0)
will emphasize crucial differences between the present scalar 2 & e m m
example and full-blown gravity.

By the “spectral representation” we mean the'lléa- (16)
Lehmann(KL ) representation for the free tree-level propaga-
tor in the model(11) in terms offour-dimensionaMandel-  Therefore, the KK modes defined in E(L3) are not the
stam variables. Since the theory described by B4) is  eigenstates of the Hamiltonian in the presence of the brane
intrinsically higher dimensional, it is not clearpriori why  kinetic term. Diagonalization is needed. For the scalar field
the spectral representation in terms of the 4D variablegxample(11), explicit diagonalization is possible and was in
should hold at all. Indeed, on the one hand, the KL represerfact carried ouf{25]. As a result, the spectral representation
tation expresses the fact that a given amplitude, as a functiozan be argued to exist in the desired form Edp).
of p? (the 4D momentum squargds analytic in the com- In the case of gravity things are more complicated, how-
plex p? plane everywhere except for possible isolated polegver. The worldvolume EH term gives rise to kinetic mixings
plus a branch cut along the real positive semiaxis. On théetween the massive KK modes of distinct spins. It is not
other hand, the modelll) is nonlocal from the 4D stand- obvious how to diagonalize the full linearized Hamiltonian.
point; hence, it is not obvious why analyticity of the ampli- Even if the diagonalization is possible, it is not clear whether
tude with respect to the 4D variabpg should occur in the the diagonal eigenstates are states of a definite 4D spin, and
regime where higher-dimensional effects become crucial. not the mixed states. This is all because of the large kinetic

There is an alternative point of view on the KL represen-mixings between all the KK states on the brane. Thus, the
tation of the model11). We can assume that the extra di- spectral representation we look for is hard to obtain through
mensionsy are compactified, with a finitealbeit arbitrarily ~ explicit summation of the eigenstates of the Hamiltoni#n
large compactification radiu®k. Then, the spectrum of the possible at ajl The best one can do is to write down the
theory must consist of “discretized” Kaluza-Klein modes. spectral representations in the limiting regimes when the 4D
From the 4D standpoint they are just certain massive state&H term is either dominant or negligibly small. We will re-

2 9D (X) pn(0) |.
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turn to this issue in Sec. lll. Prior to delving into the gravity while for arbitrary values of
problem, we want to conduct detailed studies of the scalar

example(11). D(p,y)

G(va)_ pZDO(p)_uN—i_CGhOﬂ‘(p!y)i (25)
B. Solving Eqg. (12) in the general case
. . o . . where
To solve this equation it is convenient to Fourier-

transform it with respect to “our” four space-time coordi- M2+N

natesx,—p, , keeping the extrg coordinates intact. Mark- uN= % —m2mN-2. (26)

ing the Fourier-transformed quantities by a tilde, M3, e

d(x,y)—D(p,y), (17)  The presence or absence of the homogeneous part is regu-

lated by the e prescription. Note that, if the first term on the
right-hand side of Eq(25) has poles on the real axis pf,
then the homogeneous equation has a solution

Ghor( P,Y)=D(p,y) 8(p?Do(p) —uM). (27)

This fact will play an essential role for gravity, as will be
discussed in due course in Sec. lll.
In what follows we will examine the poles of the Green’s

we then get from Eq(12)
SN(Y)ME(—pHD(p,0)+MZ N(—p>=A)D(p,y)
=J(p)sMN(y), (18

wherep?=p3— p2—p5— p3, and the notation

N 2
A= E &_2 (19) functionG(p,y). The positions of these poles depend on the
a=1dYq functionsGpon(p,y) andD as defined in Eqg21) and(22).
. The choice of a particular rule of treatment of the poles cor-
is used. _ _ _ responds to the choice of appropriate boundary conditions in
We will look for the solution of Eq(18) in the following  {he coordinate space. Note that the latter are dictated by
form: physical constraints on the Green'’s functi®mather than on
~ the auxiliary functionD.
@ (p,y)=D(p,y)x(p), (20) To get to the main point, we will try the simplest strategy

of specifying the poles and check,posteriorj whether this
strategy is self-consistent. Let us put

(—p?—Ay—ie)D(p,y)=oM(y). (21) c=0

Note that the functiorD is uniquely determined only after

the i?prescription specified above is implemented. We als
introduce the convenient abbreviation

Do(p)=D(p,y=0). (22

1 .
- = = | gNy day
Now, it is quite obvious that a formal solution of Ed.8) can D(pe.q) p+q?’ D(pe ’Q)_J d”y €¥D(pe.y),
be written in terms of the functio® as follows: 8

where the functioD is defined as a solution of the equation

and defineD in the Euclidean momentum space. Since in the
uclidean space the expression s well defined and has
no singularities,

y J D(p, -
B(py)=— P (P.y) D ponf PLY),

q2=§ (9%)2, (28)
M2, p?Do(p)—M2"N/M3,

(23 one can perform analytic continuation from the Euclidean to
the Minkowski space. This is not the end of the story, how-

where®,(p,y) is a general solution of the corresponding ever. It is the Green’s functiofs that we are interested in,

homogeneous equatighe., Eq.(18) with a vanishing right- ot the auxiliary functiorD. As will be explained below, the
hand sid¢ andc is an arb|t’rary constant. Equatié®3) pre-  apave procedure is consistent, for the following reason. The
sents, in fact, the Green's function too, up to the factornction G obtained in this way has a cut extending from
J(p)/M3,, which must be amputated. In particular, for the zero to infinity. In addition, we find two complex conjugate
Green’s function on the brane we have poles on the secondonphysicaRiemann sheet of the com-
plex p? plane. Moreover, there are additional poles on sub-
sequent unphysical sheets.

Since the poles are not on the physical Riemann sheet,
they do not correspond to any asymptotic states of the theory.

Lw
(pyo)—m‘b([),y—o),

M2 A pole on the second Riemann sheet is a well-known signa-

Pl ~

Ghom(P:0) = =—®pon(p,y=0), (24 lure of a resonance stafd1]. Therefore, our toy scalar
J(p) gravity” is mediated by a massive resonance. The
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resonance-mediated gravity was first discussed in Ré2s-

44] in a different brane-world model. yi=— CYREN
Before passing to consideration of particular cases it is log(A“/mg)

worth recalling that the Green’s functions in thie=2 DGP )

models need a UV regularizati$@,26,31,32 This has been We conclude that there are two complex-conjugate poles on

mentioned already. An appropriate UV regularization can béhe nearby nonphysical Riemann sheets. These poles cannot
achieved either by introducing an explicit UV cutoff, or, al- P& identified with any physical states of the theory. They are,
ternatively, by keeping a nonzero brane width in a consistenf! fact, manifestations of a massive resonance state. All other
manner(defined in Ref.[26]). For brevity we choose the COMPlex poles appear on subsequent nonphysical Riemann
former prescription by consistently taking the limit of zero Sheets.

brane width. However, we should stress that all our results

hold equally well in the brane-width regularization method D. More than six dimensions

of [26]. Physics atD>6 is similar to that of the six-dimensional
world which was described in Sec. Il C. There are minor
C. Six dimensions technical differences between odd- and even-dimensional
spaces, however, as we will discuss momentarily.
In seven dimensions we find

ko

(33

a
o —
72 log(AZ/m?)

It is instructive to demonstrate how things work by con-
sidering separately the six-dimensional case. In six dimen-
sions, sensitivity to the UV cutoff is only logarithmic, and it 1 A
is conceivable that the results obtained in the cutoff theory Do(S)= 5—5{ A— \/—_sarctan—<—) . (39
could be consistently matched to those of a more fundamen- 2m J=s

tal UV-completed theory to confe. _ _ o
It is not difficult to calculate As in the 6D case, there is a branch cut. The cut in this case

is due to the dependence of the Green’s function/enNo
other singularities appear on the physical Riemann sheet. All
poles are on nonphysical Riemann sheets, as previously.

In the eight-dimensional space the expression By
whereA? is an ultraviolet cutoff. With this expression for, ~ reads
the functionG(p?,0) develops aut on the positive semi-
axes ofs due to the logarithmic behavior @fy(s). This fact Do(s)
has a physical interpretation. Since the extra dimensions are
noncompact in the model under consideration, the spectrum
of the theory, as seen from the 4D standpoint, consists of afAgain, we find a cut due to the logarithm, similar to that of
infinite gapless tower of the KK modes. This generates a cuihe 6D case. All isolated singularities appear on nonphysical
in the Green’s function fos ranging from zero totco. Riemann sheets.

In addition, there might exist isolated singular points in ~ The nine-dimensional formula runs parallel to that in
G(p?,0). These singularitiefor s<A?) are determined by Seven dimensions,
the equation

2

_—S+1 . s=p? (29

Do(s)=EIn

2

A
A2+S |I’l_—s+1

. (35

T 1672

1
1 Do(s)= 2.3

=0, (30)

A3 Nare A
5 s A— —sarctaﬁ\/?S . (36)

2

G Xs,0=s—m? iIn A
' C47 | —s
Finally, in ten dimensions

Wheremg is defined in Eq(5). Let us introduce the notation

Do(s) ! A4+ A%+s| 1 A2+1) (37
S)=7 257315 *S s| In— .
s=sy expiy), (31 0 1287° | 2 -s
wheres, is areal positivenumber. Then, Eq(30) has two ~ 1he Pole structure ofS is identical to that of the eight-
solutions of the form dimensional case. Since the pattern is now well establlshed
and clear-cut, there seems to be no need to dwell on higher
2]1-1 dimensions.
30%4wm§ In—| | (32) Before turnipg to gravitons we would like to mal§e com-
mg ments concerning the UV cutoff. The crossover distance

rc~mc_l depends on this scale: in 6D the dependence is
and logarithmic, while inD>6 this dependence presents a power
law [2,4]. Hence, the crossover scale in tie=2 DGP mod-
els, unlike that in theN=1 model, is sensitive to particular
2The D>6 models of brane-induced gravity are power sensitivedetails of the UV completion of the theory. Since in the
to UV physics. In general one expects all sorts of higher-derivativepresent work we adopt an affective low-energy field-theory
operators in this case. strategy, we are bound to follow the least favorable scenario
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in which the cutoff and the bulk gravity scale coincide with 1
each other and both are equalMg. ~ 102 eV. If a particu- <‘7AhAB:§05hg- (41)
lar UV completion were available, it could well happen that
the UV cutoff and bulk gravity scale were different from the : . L
above estimate. In fact, in the string-theory-based construc-[.he adva?é?gg OT Fh|s gauge Is Fhat in this gauge the expres-
tion of Ref.[4], the UV completion is such that the cutoff sion for Gz significantly simplifies,
and bulk gravity scale are in the ballpark of TeV.

In conclusion of this section it is worth noting that the G = 52h, . 577 2hC (42)
Green'’s functiorD in theN=3 case contains terms respon- ABTDTAB o TABTDTC
sible for branch cuts. These terms are suppressed by powers
of s/A, and, naively, could have been neglected. It is true Additional conditions which are invoked to solve thab}
though, that the explicit form of these terms is UV sensitiveand{au} components of the equations of motion are
and cannot be established without the knowledge of UV
physics. One should be aware of these terms since they re- 1 c
flect underlying physics—the presence of the infinite tower hau=0, Nap=2 7avhc- (43)
of the KK states. Fortunately, none of the results of the

present work depend on these terms. Using the last equation it is not difficult to obtain the relation

Ill. THE GRAVITON PROPAGATOR NhZ:(Z_ N)hg. (44)

Now it is time to turn to gravitons with their specific . . ) )
tensorial structure. We will consider and analyze the equatiod his relation obviously suggests that we should consider

of motion of the DGP-type model presented in Hg), Separately two casedl) N=2; (i) N>2. We will see, how-
Wh|Ch we reproduce here again for Convenience: ever, that the results in tm=2 andN>2 cases are some-

what similar.

sM(y)ME(aGy)+bG)) Shop+ M VGLY
_ _TMV(X)5X5E5(N)(V)- (38) A. Brane-induced gravity in six dimensions(N=2)
In two extra dimensions Ed44) implies
Here G and G® denote the four-dimensional and
D-dimensional Einstein tensors, respectively, wiland b h/,=0. (45
are certain constants satisfying the constraint
Therefore, the trace of the-dimensional graviton coincides
atb=1. with the trace of the extra-dimensional part,

For simplicity we choose a source term localized on the hA=h2 (46)
brane, namelyT ,,(x) s™(y). At the effective-theory level AT
the ratioa/b=a/(1—a) is a free parameter. The only guide-
lines we have for its determination afi¢ phenomenological
viability; (i) intrinsic self-consistency of the effective theory,
which, by assumption, emerges as a low-energy limit of a

self-consistent UV-completed underlying “prototheory.” 9"h :E& ha (47)
Specifying the prototheory would allow one to fix the ratio mro2ova

a/(1—a) in terms of fundamental parameters.

Our task is to study the gravitational field produced by thelLet us now have a closer look at the v} part of Eq.(8).
sourceTM(x)é(N)(y). To this end we linearize Eq38). If  Taking the trace of this equation and using E@), (40),
0ag=7as+2hag, in the linearized inh approximation we  (45), and(47) we arrive at
find

As a result, the four-dimensional components of the har-
monic gauge conditiof41) reduce to

3b—1)6MN(y)M3 a2h2+2M2 N gahd=THsN)(y).

GR = dhhag— dadchs — dgdchy + dadghE— napdbhg ( VTIMadN. oo (y)(48)

cD
 7asdcdph ™ B9 1he obtained equation is very similar to the scalar-field equa-
| tion (12). Therefore, we will follow the same route as in the

scalar-field case, until we come to a subtle point, a would-be

obstacle, which was nonexistent in the scalar-field case.
Let us Fourier-transform Ed48),

where 93=0d5d°. On the other hand, the four-dimensiona
Einstein tensor in the linearized approximation is

Ggfgz TG = 3,000,008+ ,0,he—n,,050%
+ 7,900 . (40)

3As before, we put the transverse derivatives to be zero in\the
In what follows we will work in the harmonic gauge, —0 limit.
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(3b—1)sM(y)MZ(—p?)h3(p.y)

+2M5N(=p?=A)h3(p,y) =T(p) s™M(y).
(49) where the spectral function is defined as

B p(t)dt
g(p,y=0)= ft_p = (56)

The general solution of the above equation is (t)= 2mg Im Do(t)
B P [(3b— 1)t ReDy— 2m2]2+ [(3b— 1)t Im D2’
~ T(p) 5
R2(P.y) = —d(p.y), (50) &7
Mbi and
D(p.y) dVq H(N+2)12
G= +CGhom 51 ImDy= j—ét— = ————— (22
2mZ—(3b—1)pDg(p)  Trom OV =7 | 2T N (i)
(58)
where the solution of the homogeneous equation takes the
form We see thap(t) satisfies the positivity requirement. Equa-
tion (56) guarantees that the Green'’s functi@ns causal.
Grom= D(p,y)g(ng_ (3b—1)p2Do(p)). (52 The next step is applying the expressiondoto calculate

h,,. Infact, it is more convenient to calculate the tree-level
To begin with, let us consider the case>81. Then the first amplitude
term on the right-hand side of E(1) has poles for complex

values ofp?, as can be readily seen from the expressions for A(P.Y)=h,..(p.y) T “(p), (59)

D, obtained in Sec. Il. For instance, in the 6D case this pole

is determined by the equation whereT’ K¥(p) is a conserved energy-momentum tensor,
2m? 4m2m? p,T'#"=p,T'#"=0.

s:

271-1
= In—} . (53
(3b=1)Do(s) (3b-1)| " —s Using Eqgs.(38), (50), and(70) we obtain the following ex-

This equation has at least two solutions of the form pression for the amplituda(p,y):

- 1

amamg[ A7) A(p.y)= #
S, =~ 36-1 nm—g , (54 me

~ = TT'[ (2b—1)p?Do—m?
ey _

and X[TWT [(3b 1)p?Dy—2m2

T T (60)
- =2 + 55 o . ,
& log(A?/m?) remem og(A2/m?) ®9 Let us study the above expression in some detail. The first

question to ask is about poles. It is quite clear that gRe
The quantityﬁj(p,y) is not a gauge invariant variable. poles ofA are of two types; their position is determined by
Therefore, the presence of certain poles in the expression for p2D(p)=m2
C

ﬁg(p,y) depends on a gauge. However, explicit calculations
(see below show that the poles found above also enter theor
gauge invariant physical amplitude. Therefore, we need to

take these poles seriously and analyze their physical conse- (3b—1)p®Do(p)=2mZ.

guences. . .
As was explained previously, all these poles appear on the

second Riemann sheet, with the additional images on other
nonphysical sheets. None of these poles can be identified
If b>1/3 there are no poles on the physical Riemanrwith asymptotic physical states. As was elucidated above, the
sheet. Instead, poles appear on the nearest nonphysical Rigscurrence of the poles on the second and subsequent Rie-
mann sheets. These poles cannot be identified with angnann sheets corresponds to the massive-resonance nature of
physical states of the theory. They represent a signature dhe effective 4D graviton. Our previous analysis can be re-
massive resonance states. All other complex poles appear gpeated practically verbatim, with minor modifications, prov-

B. b>1/3

subsequent nonphysical Riemann sheets. ing the analyticity and causality of the amplitude
Using a contour integral one can easily write down the Next, we observe that at large momenta, i.e., when
spectral representation for the Green’s functipn pzDo(p)>m§, the scalar part of the propagator has 4D be-
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havior; the tensorial structure is not four dimensional, how-must(and doeshave an isolated singularity in the plane

ever. The terms in the braces in E§0), namely, which is similar to a conventional massive pole, except that
ob—1 it lies in the Euclidean domain. This singularity occurs at the
= Loz, point p2=p? is defined by the condition
T, T 531 [ (61) *

p2Do(p,)=2mZ, p2 real and positive.  (64)
correspond to the exchange of massive gravitons and scalar
degrees of freedom. This would give rise to additional con-This is the only isolated singularity in E¢63); it is located
tributions in the light bending and is excluded phenomenoin the complexpé plane on the real positive semiaxis. In
logically, unless the contribution due to extra polarizations isaddition to this pole singularity, the functio(63) has a
canceled by some other interactiofssich as, e.g., an addi- branch cut stretching from zero te« due to the imaginary
tional repulsive vector exchangeNote also that wherb  part of Do(p2) appearing at negative values p§. As be-
>a, i.e.,, b—1, one obtains the tensorial structure of 6D fore, this branch cut is the reflection of an infinite gapless
gravity, as expected from Eq7). tower of the KK states. As a result, the following spectral

On the other hand, at large distances, i.e.p#Dq(p) representation obviously emerges R,(ﬁ)(pé);

<m§, we get the following tensorial structure of the ampli-
tude (60): 1f—°° Im P®(u)du . R

P(E)(pé+i€):_ ]
N mJo u—pg p:—pz—ie
TWT"“’— ZTT' . (62 (65)

. _ with the Euclidean pole term being “unconventional.” The
This exactly corresponds to the exchange of a siXjasidue of the pol® is given (for any N) by
dimensional graviton, as was expected.
R_l_ qu q2
C.b<13 ) @emt @ +p)?

(66)

This case is conceptually different from that of Sec. Il B. i i _ ]
As we will see momentarily, ib<1/3 there are no problems _ Note that in the first term on the right-hand side of Eq.
in (i) maintaining 4D unitarity andii) getting the appropriate (65) _the integration runs from zero to minus |nf|n|2ty; thus,
4D tensorial structure of gravity at subhorizon distancesthe integrand never hits the would-be pole uat pg>0.
This is achieved at the price of abandoning 4D analyticity, inTherefore, the e prescription is in fact used only to specify
its standard form, which could presumably lead to the loss othe isolated pole apg=p3 .

causality at distances of the order of, '~10? cm. The We proceed further and definesgmmetricfunction
absence of causality at distanced0?® cm was argued re- 1
cently [27] to be an essential ingredient for solving the cos- E(p2)= E{p(E)(p%_iE)Jr PE(p2+ie). (67)

mological constant problem.

Although all derivations and conclusions are quite similar
for any ratioa/b as long as B<<a, we will stick to the
technically simplest example=0, a=1. In the situation at
hand, the homogeneous p&bR) need not be trivial, i.e.¢
need not vanish. The value of the constaris determined
once the rules for the pole aFDO(p)Jerg:O are speci-

choice leads to aonunitaryGreen’s function. Therefore, we - gpyain the following representation for the Minkowskibin
abandon the condition=0 in an attempt to make a more

It is just this symmetric function on which we will focus in
the remainder of the section. Let us return to Minkowski
space. This is done by substituting

pZ—exp —imp? u—exp —im)t

consistent choice that would guarantee 4D unitarity. We 1 (= ImTI(t)dt
stress that we are after unitarity here, not unitarity plus cau- II(p)=— — =" Io(p), (68
sality. mJo t—p°-ie

To begin with we pass to the Euclidean spacgini.e.,

p2— pé) and introduce the following notation: where

R R

1
[Iy(p)=5 + . 69
(63) olP) 2(pi+p2—ie p2+p’+ie 9

PO (pd)=

2mZ—pEDo(pe) —ie

The functionP(® is a Euclidean-space solution of Eg9), 't IS necessary to emphasize thatand e are two distinct
with the particular choicec=im. [The choicec=—ism  regularizing parameters:#e. The parametee is used to
would lead to Eq(63) with the replacemen¢— — €. ] regularize the pole gp’=— pi , While € sets the rules for
As the next step we will analyze the complex plane ofthe branch cut. The most important propertyl bfis that the
pé. Since the functio® y(pg) is real, the functiorP(E)(pE) pole atp?= —pi has no imaginary part, by construction.
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Hence, there is no physical particle that corresponds to this 1 (= p(t)dt

pole. In the conventional local field theory the only possible  G(p,y=0)=— — =" ITo(p?)ReDy( —p2).
additions with no imaginary part are polynomials. Here we mJo t—p°—ie

encounter a new structure that will be discussed in more (76)

detail at the end of this section.

Our goal is to show that a 4D-unitarity-compliant spectral
representation holds for the Green’s function on the brane, at dVg 5
least in the domain where the laws of 4D physics are appli- p(t)= f ﬁlm Gg(t,q). (77
cable. To this end we turn to the functigiip,y), defined as (2m)

The first term on the right-hand side in E6) is conven-
tional while the second is not, and we hasten to discuss it.

G=D(p,y)TI(p?), (70
- P ; ; - This term has no imaginary part, by construction. Hence, it
with the purpose of studying its properties. It is convenient to Joes not contribute to the unitarity cuts in diagrams. There-

pass to the momentum space with respect to extra coord : :
ore, this term does not affect the spectral properties.

nates too. Then the propagaldo) takes the form As was mentioned, in conventional 4D theories only a
M(p?) finite-order polynomial irp? that has no imgginary part can
G(p,q)= = (71  be added to or subtracted from the dispersion relation. This is
g-—p-—ie because normally one deals with Lagrangians that contain

only a finite number of derivatives, i.e., a finite number of

With these definitions in hand, we can write down the 4Dterms with positive powers qu in the momentum space. In

dispersion relation. We start from the ln-Lehman repre-  the problem under consideration this is not the case, how-
sentation for the propagat¢v1). As we will check below, ever. In fact, no local 4D Lagrangian exists in our model at

According to Eq.(72), the spectral density is defined as

this representation takes the form all, and yet we are studying the spectral properties in terms
_ of the intrinsically 4D variablep®. The theory(1) is inher-
~ 1 (= ImG(t,q)dt IIy(p?) —TIs(q%) ently higher dimensional because of the infinite volume of
9(p.a)= ;fo t— p2—i? 9?— p2—i? - (712 the extra space. One can try to “squeeze” it in four dimen-

sions at a price of having an infinite number of 4D fields. For

such a theory there is no guarantee that analyticity of the

Green’s functions in terms of the 4D varialpé will hold

1 because the effective 4D Lagrangian obtained by “integrat-

Im E(t,q)= w8(q°—t)Rell(t)+ ImII(t)P —, ing out” the infinite gapless KK tower will necessarily con-

—t tain [5] nonlocal terms of the typé 2. (Note that a similar

(73 prescription for the poles in a pure 4D local the¢Ap] is

hard to reconcile with the path integral formulatipt6]. In

our case this is not a concern since the theory is not local in

The imaginary part of; is defined as follows:

whereP stands for therincipal valueof a singular function,

1 1 1 1 four dimensions in the first plage.
P—m—= _( > —+ — — . (74) Therefore, it is only natural that 4D unitarity can be main-
Q°—t 2\g°-t+ié g°-t=id tained but 4D analyticity cannot. Nonanalyticity leads to vio-

. lation of causality, generally speaking. That is to say, the
The fact that Eq(72) holds can be checked by substituting g reen's function(76) is acausal. Therefore, we have an ap-

Egs.(74) and(73) into Eq.(72) and exploiting the refation  arent violation of causality in the 4D slice of the entire (4
+ N)-dimensional theory which, by itselis causal The ap-
1= ImII(t) 1 dt parent acausal effects can manifest themselves only at the
mlo t—p?—ie G°—t scale of the order afn_ '~ 107 cm. In fact, as was noted in
[27], this is a welcome feature for a possible solution of the
Rell(g?)—1I1,(g?) +IIy(p?) —I1(p?) cosmological constant problem.

- 92— pz_i; Let us now return to the first term on the right-hand side
of Egs.(76). Using Egs.(68) and (73) we can calculate the
(75 spectral function, which comes out as follows:

This turns Eq(72) into an identity. 2m?2 Im Dy(t)

Finally, we approach the main point of this section—the p(t)= 75 > (78
dispersion relation fog(p,y=0), the Green’s function on (tReDo+2mg)+(tIm Do)
the brane. As such, it must have a spectral representation
with positive spectral density, as we have already seen fron here
the KK-based analysis. The positivity is in one-to-one corre- N (N+2)/2
spondence with the 4D unitarity. ImDy= WJ _qa(t_ q?) = T e

The dispersion relation can be obtained by integrating Eq. (2m)" (2m)NI'(N/2)
(72) with respect tag, (79
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We see thap(t) satisfies the positivity requiremeht. D(p,y)

Next we observe that at large momenta, i.e.paD,(p) IN="§ 02D (p) - UN(NT2) +COnhom-  (86)
>m§, the propagator we got has the desired 4D behavior. N 0
For the scalar part of the propagator this is expected from th&he solution of the homogeneous equation takes the form
studies of Sec. Il. However, with regard to the tensorial
structure this circumstance is less trivial. gfDo(p)>m? Gn hom=D(P,Y) 8(—knp?Do(p) +UN(N+2)).  (87)
the terms in the braces in E(0),

Here
o o Lo
:T T"“’——TT’], (80) ut=MI"NME,

As in the 6D case, we conclude that there exists a solution to
correspond to the exchange of two physical graviton polarthe equation
izations. Therefore, for the observable distances the tensorial
structure of the massless 4D gravit@0) is recovered. —knp?Do(p) +UN(N+2)=0
On the other hand, for largésuperhorizoih distances,
p?Do(p)<m?2, we get a different tensorial structure of the
same amplitude,

with a complex value op?. These poles occur on the non-
physical sheets as long &§>0, so the Green’s function
admits a spectral representation.

|~ ~ 1 ] Using the expressions above one readily calculates the

T, T/ Z'~I':I"’ (81)  tree-level amplitude\,
This exactly corresponds to the exchange of the six- A(p,y)_iLy)
dimensional graviton. M2, P“Do(p) —u
~r _ 2 _ N
D.D>6 7’ Fru TT' [ (ky—bN)p“Dg—2u
"2 | kyp?Do— (2+N)uN

Corresponding calculations and results are quite similar to
those in theD=6 case, with minor technical distinctions (88)
which we summarize below. Fdd+# 2

E. b>(2N—2)/3N

1
hap=5—x ﬂabhﬁ- (82 In this case, there are no poles on the physical Riemann
2—N
sheet. Hence, all the poles are of the resonance type. The
tensorial structure at large distances is that of the

Therefore, we get D-dimensional theory,

1 1
s @ T Fuv s
I*Nuv=5—Na- (83 T T o 1T (89)
Then, the trace of théuv} equation takes the form However, the tensorial structure at short distaneas, *
N) - i _— b s(N) differs from that of 4D massless gravity. Hence, some addi-
knS™ (Y)Mp dyha+ M (N+2)drha=NT; 6"V (y), tional interactions, e.g., repulsion due to a vector field, is

84 needed to make this theory consistent with data.

whereky=2—-N(2—-3b). The above equation can be used F.b<(2N—=2)/3N

to find the solution we are after. We proceed parallel to the The consideration below is very similar to that of the 6D

six-dimensional case. Let us introduce the notation case. In perfect parallel with the 6D case, we consider for
simplicity only theb=0 case and define the function

= p)
P3(PY) =N {7 Gu(P.). (89 PE)(p)= !
uN(N+2)/(2N—2)—pZDo(pg) —ie
where 0
which has the spectral representation
4For N=5 the in_tegral in Eq(76) diverges. _However, since our 1 (= Im P&E)(u)du R
model has a manifest UV cutoff, the above integral must be cut Pf\,E)(pEvL ie)= _J + .
off at A. Alternatively, one could use a dispersion relation with ™Jo u—p% pi —p%—ie
subtractions. (92
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The residueR is determined by Eq66) while pi is now a
solution to the equation

uN(N+2
( ) p2>0.

Z(N_l) ' * (92)

P2Do(py)=

As in the 6D situation, we use the expressi@i) to define
the symmetricfunction

N (pH=5{PP(pE—ie)+ P (pi+ie). (93

N| =

The latter, being continued to Minkowski space, admits th

following spectral representation:

1 (= ImTI(t)dt

My(p)=—] t_pz_i:mgN’(p), (94)
where
e (95
0"(P 2 pi—l—pz—ie p,2c+p2+ie.

As previously,e and e are twodistinct regularizing param-

eters,e# e.
For the Green'’s function of interest

_ D(p,y)IIn(p%)

e

PHYSICAL REVIEW D 69, 124032 (2004

M2 M2 2
Sv=ms” | dxGR@)+ =5 [ b~ (),
(98

where my stands for the graviton mass and,,=(g,,
— 1,,)/2. The mass term has the Pauli-Fierz fdi3d]. This
is the only Lorentz invariant form of the mass term which at
quadratic order inh,, does not give rise to ghos{«7].
Higher powers inh could be arbitrarily added to the mass
term since there is no principle, such as reparametrization
invariance, which could fix these terms. Hence, for definite-
ness, we assume that the indices in the mass term are raised
and lowered byz,,,. Had we used,,, instead, the differ-
ence would appear only in cubic and higher ordershjn
which are not fixed anyway.

In order to reveal the origin of the problem, let us have a
closer look at the free graviton propagators in the massless
and massive theory. For the massless graviton we find

Do B 1 — +l_ — 1 — 1
,u,y;aﬁ(p)_ 277,ua77vﬁ’ 277,LLB77W1 277,uv77aﬁ’ —p2—ie’
(99
where
— PPy
M= Nur™ ;2 : (100

The momentum-dependent parts of the tensor structure were
chosen in a particular gauge convenient for our discussion.
On the other hand, there is no gauge freedom for the massive

we repeat the analysis of Secs. Il A, Il B, and Il C to con- 9ravity presented by the actié@8); hence the corresponding

firm with certainty that the functiogy(p,y=0) does admit
the spectral representatiéng), with a positive spectral func-
tion, similar to the 6D casksee Eq.(78)].

The expression in Eq88) interpolates between the four-
dimensional andD-dimensional patterns. This was already
established for the scalar part of the amplitude in Sec. Il. Let %

us examine the tensorial part. FofDq(p)=>u™ we get

~ = 1.
(TWT W_ETT ] (97

This corresponds to two helicities of the 4D massless gravi-

ton. In the opposite limitp?Do(p)<uN, we recover the ten-
sorial structure corresponding to the {4)-dimensional
massless graviton.

IV. PERTURBATION THEORY IN MASSIVE GRAVITY:
HARD MASS VS SOFT

We start from a brief

review of a well-known

propagator is unambiguously determined,

m 1. - 1. -~ 1. -
,uv;aﬁ(p): 577,”77»&"' Enﬂﬁnva_ §77uv77aﬁ

! (101
mi—p2—ie’

where

PP
mv 3% ms .

(102)

We draw the reader’s attention to themglllmé singularities
of the above propagator. The fact of their occurrence will be
important in what follows.

It is the difference in the numerical coefficients in front of
the 7,7, Structure in the massless vs massive propagators
(1/2 versus 1/Bthat leads to the famous perturbative discon-
tinuity [48—-50. No matter how small the graviton mass is,

phenomenon—the breakdown of perturbation theory for ahe predictions are substantially different in the two cases.
graviton with hard masf34], occurring at a scale lower than The structure(101) gives rise to contradictions with obser-
the UV cutoff of the theory35-37. We then elucidate as to vations.

how this problem is avoided in the modé€ls,(7).
The 4D action of a massive graviton is

However, as was first pointed out in R¢85], this dis-
continuity could be an artifact of relying on the tree-level
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perturbation theory which, in fact, badly breaks down at a p,p.D(p,y)
higher nonlinear level35,36. One should note that the dis- —— 2' —.
continuity does not appear on curved backgrouids52— 2m;—(3b—1)p“Do(p) +ie

another indication of the spurious nature of the “mass dis- he limi he ab . d
continuity phenomenon.” In the limit m;— 0 the above expression, as opposed to Eq.

To see the failure of the perturbative expansion in the(103)’ is regular. Similar calculations can be done in the

Newton constanG,, one could examine the Schwarzschild ~ 2 case. The result is proportional to

solution of the mode{98), as was done in Ref35] (see also

[53-59). However, probably the easiest way to understand P.P.D(P.y) (105

the perturbation theory breakdown is through examination of (2+N)uN—kyp?Do(p) +i 2

the tree-level trilinear graviton vertex diagram. At the non-

linear level we have two extra propagators which could prowhich is also regular in then.— 0 limit where it approaches

vide a singularity inmg up to 1Mme. the 4D expression. Therefore, we concludg that there' is no
Two leading terms mg and 1m€g5 do not contributd 36], reason to expect any breaking of perturbation theory in the

; oo . del (1) below the scale of its UV cutoff.
so that the worst singularity |smé. This is enough to lead mo = )
to the perturbation theory breakdown. For a Schwarzschild If b<1/3 andN=2 we find, by the same token,
source of masM the breakdown happep35,3€ at the scale

(104)

P.P,D(p.y) 1
Ap~mg(Mmg/M3) =15, 2 2mZ—(3b—1)p?Dy(p) +ie

+(e——¢€)|.

The result can also be understood in terms of interactions of (106

longitudinal polarizations of the massive graviton, which be-
come strong[37]. For the gravitational sector per se, the
corresponding scalé ,, reduces td37]

Again, in the limitm;,— 0, the above expression, in contra-
distinction with Eq.(103), is regular. Moreover, in this limit
(and aty=0) it approaches the 4D expression, in a particular
s gauge. Analogous calculations can be readily done in\the

Mg(Mg/Mp) >2 andb<(2N—2)/3N case. The result is
If one uses the freedom associated with possible addition of D ) 1
higher nonlinear terms, one can md&&] the breaking scale ~ PuPr (P.y +lem—e)l.
as large as 2 (2+N)uN—kyp®Do(p) +ie

my /(Mg /Mp) 2, (107)

. . This expression is also regular in the.—0 limit where it
gl?l%tg thgli"f[‘t T;ncéaeszl\fgcli;vgl tgﬁ;gﬁ:g’SOl:P;':_?esre?br:Enmgrrives at the correct 4D limit. We conclude, therefore, that in
linear giagrgmsESS 36. To deterr):ﬂne Whet%erpthe problem is the general case the_re is no reason to expect any brea_king of
present at the quantum level, one must perform perturbatio e\z/rtLéLtiggonNg:gotrz altn t:ée engogegs)i (?rz%vé) tgﬁ dszzla(;% O;gs

on a stable background; however, the Minkowski—spaceSin ular f(.)r small Euclideanpmomenp.f~ M. Bv con-
background is not stable for PF gravity, with the instability gu! T . . . c- BY .
setting in almost instantaneou$89]. For recent discussions struct|on_ this smgularlty.has no imaginary pgrt and there is
of massive gravity see Ref&56,57.) no physical state associated with it. One might expect that

Summarizing, in the diagrammatic language the reasquis singularity will be removed after the loop corrections are

for the precocious breakdown of perturbation theory can béaken into account in a full quantum theory. These consider-

; : ations are beyond the scope of the present work.
5;?1?5:322?; ;g the infrared terms in the propagatd@l), An analogy with the Higgs mechanism for non-Abelian

gauge fields is in order here. For massive non-Abelian gauge
fields nonlinear amplitudes violate the unitarity bounds at the
o (103 scale set by the gauge field mass. This disaster is cured
9 through the introduction of the Higgs field. Likewise, non-
linear amplitudes of the 4D massive gravi8B) blow up at
These terms do not manifest themselves at the linear levejje scaleA,,. The unwanted explosion is canceled at the
however, they do contribute to nonlinear vertices CreaﬂnQexpense of introducing an infinite number of the Kaluza-
problems in the perturbative treatment of massive gravitycjein fields in Eq.(1).
already in a classical theory.
We will see momentarily that similar problems are totally
absent in the propagator of the modg). For illustrational

PPy
m

V. DISCUSSION AND CONCLUSIONS

purposes it is sufficient to treat tie=2 case. All necessary In the present work we studied the mode) of brane-

calculations were carried out in Sec. Ill. Therefore, here wanduced gravity in codimensions 2 and higher. This model

just assemble relevant answers. has stringent and testable predictions. Gravity is modified at
For N=2 andb>1/3 we find short distances, of the order 6f0.1 mm or so, and simul-
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taneously at ultralarge distances, of the order-dft®® mm,  which is the existence of a spectral representation for the
give or take an order of magnitude. The short-distance modiGreen’s function. In our case 4D analyticity is violated, and
fication can be tested in tabletop gravitational experiment§0 are the conditions of the no-go theorem. _
[58,59. Modification of gravity at a millimeter scale and its _ e would like to point out a certain common feature with
relation to the cosmological constant problem was first dis{2* 1) topologically massive gauge and gravity thef6g]
cussed in Ref[60]. Whe_re the Iarge-dlstance interactions are also powerlike.
The modification of gravity at a millimeter scale in the __Finally, we would like to emphasize that the modéls

present model1) is a consequence of the Iarge—distanceand (7) _give_rise to a grgvitational analogue o_f the Hi_ggs
modification and vice versa. These are two faces of one anlanec'ha'nlsm. n the'follo.vv Ny sense—the effective graviton-
the same phenomenon. However, we should point out tha{Ped'atmg mteracpon IS Massive, and, nevertheless, the
technically and conceptually the approaches to the Cosm(growth of the nonlinear amplitudes is softened at the expense

; ; ; of having an infinite number of fields. This phenomenon can
Ir(])agrllzal a%%ng:?;zp;?béin}htsgtﬁ;egrg] rgfg]r’ (;)ilr‘]fetrheit(f(tah e be rather transparently understood from the standpoint of the

former relies on the short-distand&)V) modification of KK modes. The manifest reparametrization invariance is a

gravity, while the latter is entirely based on the Iarge-distancé:()r]\'enlent bookkeepmg tool in this case for determ|n!ng
(IR) modification of gravity whether or not the amplitudes blow up. The reparametriza-

The large-distance modification of gravity can manifestlion Invariance at each KK level is maintained at the same
itself in cosmological solutions. The cake=0 anda=1 KK level .only n the linearized approximation. Non!me_ar
seems to be most interesting for these purposes. As we ffects mix distinct KK levels under the reparametrization
gued in the present work, it leads to apparent violations o ransformgt.|on$63,64]. Hence, if the KK tower IS truncated_
4D causality which could manifest themselves at the scalegt some f|n|_te level, .the bre_:akdown of pertu_r batlo_n t_heory in
of the order of today’s Hubble scale. Manifestations of acayhonlinear diagrams is inevitable. However, if the infinite to-

’ tality of the KK modes are kept, as in EL), the softening

sality might be tested in cosmological observations. In par- .
ticular, such an acausal theory might be the reason behind tf?et the amplitudes should be expected. The present work fully

smalnes of e observable space-ime curdar (11T e xpectaon 0 lght o e cing L uouigbe
ILis instructive to point out how thé=0, a=1 model 'nteractiogs of the 5D DGPg moc?el gstudied in Refs
evades a well-known no-go theorem for massive gravit )

[49]. Let us first briefly recall the theorem. A 4D massive [36,65,68. In particular, the immediate task is to understand
’ ' whether this is a problem of the particular perturbation

graviton has extra polarizations, one of which couples toheory, as advocated in R4B6], or a problem inherent in

sources in the leading order in a weak field. The additiona[ : )
: : TR . ‘the model itself65,66]. Already, from the equations of the
attraction due to this polarization is observationally unac resent work, it is clear that thi=1 DGP model withb

ceptable and has to be canceled. This can be achieved Y1 "in Eq. (7) has no strong-coupling problem. The other

introducing a ghost that gives rise to a compensating repul N ! e
sive force[49]. Hence, one ends up either with a theory thatp(?SSlbIhtlES are currently under investigation; the answers
' ill be reported elsewhere.

has a ghost or with a theory that has no ghosts but is phé’y

nomenologically unacceptable. This is t_he essence qf the ACKNOWLEDGMENTS
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