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Softly massive gravity
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Large-distance modification of gravity may be the best mechanism for solving the cosmological constant
problem. A simple model of the large-distance modification—four-dimensional~4D! gravity with a hard mass
term—is problematic from the theoretical standpoint. Here we discuss a different model,brane-induced grav-
ity, that effectively introduces a soft graviton mass. We study the issues of unitarity, analyticity, and causality
in this model in more than five dimensions. We show that a consistent prescription for the poles of the Green’s
function can be specified so that 4D unitarity is preserved. However, in certain instances 4D analyticity cannot
be maintained when the theory becomes higher dimensional. As a result, one has to sacrifice 4D causality at
distances of the order of the present-day Hubble scale. This is a welcome feature for solving the cosmological
constant problem, as was recently argued in the literature. We also show that, unlike 4D massive gravity, the
model has no strong-coupling problem at intermediate scales.
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I. LARGE-DISTANCE MODIFICATION OF GRAVITY:
FORMULATING THE PROBLEM

The reason underlying the observed acceleration of
Universe is puzzling. It could be a tiny amount of vacuu
energy. However, this possibility is hard to reconcile w
known particle-physics models. Instead, it might well be t
a new physical scale exists in the gravitational sector and
laws of gravity and cosmology are modified at this scale.
be consistent with data and be able to predict the acceler
expansion, the new scale should be roughly equal toH0

21

;1028 cm—the present-day value of the Hubble length.
this regard, developing models in which gravity gets mo
fied at cosmological distances becomes a timely endeavo
generally covariant theory of the large-distance modificat
of gravity is the Dvali-Gabadadze-Porrati~DGP! model @1#.
The gravity action of the model can be written as follows

S5
MPl

2

2 E d4xAgR~g!1
M

*
21N

2 E d4x dNyAḡR41N~ ḡ!,

~1!

where R and R41N are the four-dimensional an
(41N)-dimensional Ricci scalars, respectively, andM*
stands for the gravitational scale of the bulk theory. Ex
dimensions are not compactified; they asymptote at infin
to Minkowski space. The higher-dimensional and fo
dimensional metric tensors are related as

ḡ~x,y50![g~x!. ~2!

*Present address.
†Permanent address.
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The first term on the right-hand side of Eq.~1! acts as a
kinetic term for a 4D graviton while the second term acts
a gauge invariant mass term. The observable matter is
sumed to be localized on a 4D surfacey50.

The present work is devoted to the study of the DG
scenario in the caseN>2 ~see Refs.@2,3#!. Such models
have a string theory realization@4#. More importantly, these
models are potential candidates for solving@5,6# the cosmo-
logical constant problem~see also Refs.@7–24# for interest-
ing cosmological and astrophysical studies!.

The equation of motion for the theory described by t
action ~1! takes the form

d (N)~y!MPl
2 Gmn

(4)dA
mdB

n 1M
*
21NGAB

(D)52Tmn~x!dA
mdB

n d (N)~y!.

~3!

Our conventions are as follows:

hAB5diag@122•••2#, A,B50,1, . . . ,31N,

m,n50,1,2,3, a,b54,5, . . . ,31N. ~4!

Gmn
(4) and GAB

(D) denote the four-dimensional andD-dimen-
sional Einstein tensors, respectively. We choose~for simplic-
ity! a source localized on the brane,Tmn(x)d (N)(y).

Gravitational dynamics encoded in Eq.~3! can be inferred
from both the four-dimensional ~4D! as well as
(41N)-dimensional standpoints. From the 4D perspecti
gravity on the brane is mediated by an infinite number
Kaluza-Klein ~KK ! modes that have no mass gap. Und
conventional circumstances~i.e., with no brane kinetic term!
this would lead to higher-dimensional interactions. Howev
the large 4D Einstein-Hilbert~EH! term suppresses the wav
functions of heavier KK modes, so that in effect they do n
©2004 The American Physical Society32-1
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participate in the gravitational interactions on the brane
observable distances@25#. Only light KK modes, with
massesmKK&mc ,

mc[
M

*
2

MPl
, ~5!

remain essential, and they collectively act as an effective
graviton with a typical mass of the order ofmc and a certain
smaller width.

Assuming thatM* ;1023 eV or so, we obtainmc;H0
;10242 GeV. Therefore, the DGP model withN>2 predicts
@26# a modification of gravity at short distancesM

*
21

;0.1 mmand at large distancesmc
21;H0

21;1028 cm, give
or take an order of magnitude. Since gravitational inter
tions, nevertheless, are mediated by an infinite numbe
states at arbitrarily low energy scale, the effective theory~1!
presents, from the 4D standpoint, anonlocal theory @5#.
Moreover, as was suggested in@27#, nonlocalities postulated
in pure 4Dtheory can solve an ‘‘old’’ cosmological consta
problem @27#, and give rise to new mechanisms for th
present-day acceleration of the Universe@27,28#. ~It is inter-
esting to note that the nonlocalities in a gravitational the
that are needed to solve the cosmological constant prob
could appear from quantum gravity@29# or matter loops@30#
in a purely 4D context.!

On the other hand, from the (41N)-dimensional perspec
tive, gravitational interactions are mediated by a sin
higher-dimensional graviton. This graviton has two kine
terms given in Eq.~1!, and, therefore, can propagate diffe
ently on and off the brane; namely, at short distances, i.e
r ,mc

21;H0
21;1028 cm, the graviton emitted along th

brane essentially propagates along the brane and med
4D interactions. However, at larger distances, the ex
dimensional effects take over and gravity becomes 41N di-
mensional.

As was first argued in Ref.@2#, the results inN>2 DGP
models are sensitive to ultraviolet~UV! physics, in contra-
distinction to theN51 model@1#. In other words, one should
either consistently smooth out the width of the brane@26#, or
introduce a manifest UV cutoff in the theory@26,31,32#, or
do both. With a finite thickness, more localized operat
appear on the worldvolume of the brane, in addition to
worldvolume Einstein-Hilbert term already present in Eq.~1!
@26#. For instance, one could think of a higher-dimensio
Ricci scalar smoothly spread over the worldvolume@3#.

In general, terms that are square of the extrinsic curva
can also emerge. Some of these terms can survive in the
when the brane thickness tends to zero~i.e., in the low-
energy approximation!. For instance, in the zero-thicknes
limit of the brane the following terms might be important:

d (N)~y!hm
m]a

2ha
a , d (N)~y!hmn]m]nha

a ,

d (N)~y!hm
m]a]bhab, ~6!

whereh denotes small perturbations on flat space. Althou
the main features of the model, such as interpolation betw
the 4D power-law behavior of a nonrelativistic potential
12403
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short distances and the higher-dimensional behavior at la
distances, are not expected to be changed by adding t
terms, nevertheless, the tensorial structure of a propag
could in general depend on these terms and self-consist
of the theory may require some of these terms to be pre
in the actions in a reparametrization invariant way.

In the low-energy approximation the exact form of the
‘‘extra’’ terms and their coefficients are ambiguous, becau
of their UV origin. They will be fixed in a fundamenta
theory from which the DGP model can be derived@4,33#. In
the present paper, in the absence of such a fundame
theory ~but in the anticipation of its advent!, we would like
to study a particular parametrization of these ‘‘extra’’ term
for demonstrational purposes. According to our expectatio
physics in the self-consistent theory will have properties v
similar to those discussed below. We will show that the
properties are rather attractive since they do avoid sev
problems of 4D massive gravity.

Consider the action

S5
MPl

2

2 E d4xAg@aR~g!1bR41N#

1
M

*
21N

2 E d4x dNyAḡR41N~ ḡ!, ~7!

where, in addition to the 4D EH term, aD-dimensional EH
term localized on the brane is present. Herea andb are some
numerical coefficients. We will study the properties of t
system described by Eq.~7! for different values ofa andb.
The action~7! is fully consistent with the philosophy of Ref
@1#: if there is a~113!-dimensional brane inD-dimensional
space, with some ‘‘matter fields’’ confined to this bran
quantum loops of the confined matter will induce all possi
structures consistent with the geometry of the problem, i.e
~113!-dimensional wall embedded inD-dimensional space.

The equation of motion in the model~7! takes the form

d (N)~y!MPl
2 ~aGmn

(4)1bGmn
(D)!dA

mdB
n 1M

*
21NGAB

(D)

52Tmn~x!dA
mdB

n d (N)~y!. ~8!

In deriving the above equation we first introduced a fin
brane widthD, and then took theD→0 limit in such a way
that no surface terms appear. In general, the results de
on the regularization procedure for the brane width. In
present work, we adopt a simple prescription in which d
rivatives with respect to the transverse coordinates calcul
on the brane vanish in theD→0 limit ~a unique prescription
could be specified only by a fundamental theory!. As previ-
ously, G(4) and G(D) denote the four-dimensional an
D-dimensional Einstein tensors, respectively, whilea and b
are certain constants. In order to be able to describe 4D g
ity at short distances with the right value of the Newton
coupling we set

a1b51. ~9!

Note that the first two terms in parentheses on the left-h
side of Eq.~8! can be identically rewritten as
2-2
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~a1b!Gmn
(4)1b~2]m]ahn

a2]n]ahm
a 2]a

2hmn1hmn]a
2hC

C

1]m]nha
a2hmn]a

2ha
a12hmn]a]ahaa1hmn]a]bhab!.

~10!

The above equation of motion~8!—which should be viewed
as a regularized version of the DGP model—could be
tained from the action~1! as well, provided the latter is
amended by certain extrinsic curvature terms~for more de-
tails, see Ref.@33#!. Below we will study this version of the
regularized DGP model for various values of the parame
a andb. Certain issues in thea50, b51 case, regularized
with a finite brane width, have been recently analyzed in R
@3#. We will find below that phenomenologically more attra
tive is thea51, b50 case.

The issues to be addressed are as follows.
Assume that gravity measurements are done at pointx1

andx2 that are confined to the brane. At distancesux12x2u
,H0

21 the graviton propagatorimitatesthat of a massive 4D
unstable particle with mass;mc . Given that the model itsel
is intrinsically 41N dimensional, the following question
must be answered:~i! Does the graviton propagato
G(x1 ,x2 ,y50) satisfy the requirements of four-dimension
unitarity? ~ii ! Do ‘‘abnormalities’’ occur at 4D momenta
much smaller than the ultraviolet cutoff and larger than
infrared ~IR! crossover scale, such as a precocious onse
the strong-coupling regime?

Needless to say, the answers to these questions deter
whether the DGP model is intrinsically self-consistent a
phenomenologically viable. The answer to the first quest
will be demonstrated to be positive and to the second ne
tive. That is to say, the situation is most favorable. We has
to add that it is not trivial to see that this is indeed the ca
It is necessary to carry out a rather subtle analysis wh
circumvents stereotypes in, at least, one point.

For what follows it is instructive to confront the DG
model with 4D ‘‘hard’’ massive gravity@34# @or Pauli-Fierz
~PF! gravity# which also leads to a large-distance modific
tion of interactions.@The action of ‘‘hard’’ massive gravity is
given below in Eq.~98!.# In particular, we compare the pe
turbative treatments of these two models. Perturbation the
in Newton’s constant in 4D massive gravity breaks down a
scale much lower than the cutoff scale of the theory—t
was first obtained for spherically symmetric sources in R
@35#. The origin of this breaking can be traced back@36# to
Feynman diagrams involving nonlinear interactions of gra
tons. In terms of degrees of freedom, it is the longitudi
polarizations of the massive gravitons that are respons
for the perturbation theory breaking. This can be readily
ferred from the dynamics of these modes analyzed in R
@37#. ~Note also that the PF graviton propagates six degr
of freedom instead of five@38# in the full quantum theory.
This makes the corresponding Hamiltonian unbound fr
below @38#. As a result, solutions exist that destabilize t
empty Minkowski space@39# and the instability can develo
practically instantaneously.!

As will be shown, in this respect the DGP gravity~7!
presents a drastic improvement. In contradistinction with
4D Pauli-Fierz theory of massive gravity, the precocio
12403
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breakdown of perturbation theory does not occur in the D
model with N>2. A direct analogy with the Higgs mecha
nism for non-Abelian gauge fields is in order here.

For non-Abelian gauge fields with a hard gauge bos
mass term, appropriate nonlinear amplitudes invalidate
perturbative expansion~i.e., violate the unitarity bound! at a
scale set by the gauge boson mass divided by the ga
coupling constant. To cure this disaster, one introduces
extra scalar—the Higgs field.1 By the same token, certain
nonlinear perturbative amplitudes of the 4D ‘‘hard’’ massi
gravity blow up precociously@35–37# at a scale significantly
lower than a naive UV cutoff of the theory under conside
ation. The unwanted growth of the amplitudes is cance
however, in the DGP model at the expense of introducing
infinite number of the KK fields. Thus, the action~7! gives
rise to a gravitational analogue of the Higgs mechanis
with an infinite number of ‘‘Higgs’’ fields which include both
vector and scalar states.

It has been recently argued@40# that the spectrum of the
DGP model contains tachyonic states with a negative no
~‘‘tachyonic ghosts’’!. The conclusion was based on a
analysis of the poles in the graviton propagator derived fr
the action~1!. In fact, the analysis of Ref.@40# leaves aside
subtle points of appropriately defining the Green’s functi
poles. We formulate and discuss an appropriate rule for
fining the would-be poles. With this rule accepted, the
unitarity of the Green’s functions is guaranteed. This is n
the case with respect to 4D analyticity and causality, thou
In certain instances we will have to sacrifice 4D causality
distances of the order of today’s Hubble scale. As was arg
in Ref. @27# this is a welcome feature for solving the cosm
logical constant problem.

The organization of the paper is as follows. In Sec. II w
discuss in detail a simplified version of the phenomen
with a tensorial structure suppressed. We consider a sc
field with a Lagrangian similar to Eq.~1! and derive the
Green’s function. There are complex poles of the Gree
function on the second and subsequent nonphysical Riem
sheets. This corresponds to the resonance nature of the
massive scalar. In Sec. III we discuss the same problem
gravity, i.e., including the graviton tensorial structure. T
issue of proper definition of poles in the graviton propaga
emerges in earnest in the trace part. In certain cases, a n
way of defining the poles leads to inconsistent results
violations of unitarity. For these cases we indicate a way o
treating the would-be poles in the Green’s function in suc
way that unitarity is not violated. Finally, in Sec. IV theN
>2 DGP model is argued to have no strong-coupling pr
lem at intermediate scales, in contradistinction to 4D Pa
Fierz gravity with a hard mass term.

II. THE SIMPLEST EXAMPLE: SCALAR FIELD

To warm up, we start our discussion with a simple mod
of a scalar fieldF in (41N)-dimensional space-time. Fo

1The mass of the Higgs field itself needs a stabilization mec
nism. This is a separate story, however.
2-3
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convenience, we separate the dependence of the scalar
F on four-dimensional and higher-dimensional coordina
F(xm ,ya)[F(x,y). The two-kinetic-term action—the sca
lar counterpart of Eq.~1!—has the form

S5
MPl

2

2 E d4x ]mF~x,0!]mF~x,0!

1
M

*
21N

2 E d4x dNy ]AF~x,y!]AF~x,y!. ~11!

It is important to understand that in scalar case the analo
of the new term included in Eq.~8! but absent in Eq.~3!
reduces, identically, to the already existing localized te
This is a consequence of our choice of the regularization
the brane widthD and the boundary conditions according
which transverse derivatives vanish on the brane in theD
→0 limit.

To study interactions mediated by the scalar field we
sume thatF couples to a sourceJ localized in the 4D sub-
space in a conventional way,*d4x F(x,0)J(x). Then the
equation of motion takes the form

d (N)~y!MPl
2 ]m

2 F~x,0!1M
*
21N ]A

2F~x,y!5J~x!d (N)~y!.
~12!

The very same equation applies to the scalar field Gre
function.

A. Spectral representation

First, using the scalar field example, we will summar
general arguments for the existence or absence of a spe
representation in higher-dimensional theories with the wo
volume kinetic terms as in Eq.~11!. The explicit formulas
below refer to the scalar case. In the next section we
consider gravity, with the appropriate tensorial structure,
will emphasize crucial differences between the present sc
example and full-blown gravity.

By the ‘‘spectral representation’’ we mean the Ka¨llen-
Lehmann~KL ! representation for the free tree-level propag
tor in the model~11! in terms of four-dimensionalMandel-
stam variables. Since the theory described by Eq.~11! is
intrinsically higher dimensional, it is not cleara priori why
the spectral representation in terms of the 4D variab
should hold at all. Indeed, on the one hand, the KL repres
tation expresses the fact that a given amplitude, as a func
of p2 ~the 4D momentum squared!, is analytic in the com-
plex p2 plane everywhere except for possible isolated po
plus a branch cut along the real positive semiaxis. On
other hand, the model~11! is nonlocal from the 4D stand
point; hence, it is not obvious why analyticity of the amp
tude with respect to the 4D variablep2 should occur in the
regime where higher-dimensional effects become crucial

There is an alternative point of view on the KL represe
tation of the model~11!. We can assume that the extra d
mensionsy are compactified, with a finite~albeit arbitrarily
large! compactification radiusR. Then, the spectrum of th
theory must consist of ‘‘discretized’’ Kaluza-Klein mode
From the 4D standpoint they are just certain massive sta
12403
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Then one could certainly obtain the KL representation
writing the ~tree-level! 4D propagator summing up the entir
tower of the KK eigenstates.

This strategy is readily implemented in the convention
compactifications, when the brane worldvolume term is
sent. In this case the spectrum of the Kaluza-Klein eig
modes

F~x,y!5(
n

Fn~x!fn~y! ~13!

becomes trivially discrete, with the eigenvaluesmn
2

;n2/R2. If so, the expression for the Green’s functio
G(p,y50) takes the form

G~p,y50!5(
n

fn* ~0!fn~0!

mn
22p22 i e

, p25pmpm. ~14!

In other words,G(p,y50) is the sum over an infinite num
ber of poles, with positive-definite residues. AsR→` the
sum goes into the standard dispersion integral,

G~p,y50!5
1

pE0

`

dt
r~ t !

t2p22 i e
, ~15!

wherer(t) is a positive-definite spectral density.
The argument above, as well as the simple representa

~14! or ~15! following from it, neglects the existence of th
brane worldvolume kinetic term in the action@the first term
on the right-hand side of Eq.~11!#. This term is crucial and
by no means can be neglected. It gives rise to kinetic m
ings of the KK modes on the brane worldvolume,

MPl
2

2 E d4xS (
m

]mFm~x!fm~0! D S (
n

]mFn~x!fn~0! D .

~16!

Therefore, the KK modes defined in Eq.~13! are not the
eigenstates of the Hamiltonian in the presence of the br
kinetic term. Diagonalization is needed. For the scalar fi
example~11!, explicit diagonalization is possible and was
fact carried out@25#. As a result, the spectral representati
can be argued to exist in the desired form Eq.~15!.

In the case of gravity things are more complicated, ho
ever. The worldvolume EH term gives rise to kinetic mixin
between the massive KK modes of distinct spins. It is n
obvious how to diagonalize the full linearized Hamiltonia
Even if the diagonalization is possible, it is not clear wheth
the diagonal eigenstates are states of a definite 4D spin,
not the mixed states. This is all because of the large kin
mixings between all the KK states on the brane. Thus,
spectral representation we look for is hard to obtain throu
explicit summation of the eigenstates of the Hamiltonian~if
possible at all!. The best one can do is to write down th
spectral representations in the limiting regimes when the
EH term is either dominant or negligibly small. We will re
2-4
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turn to this issue in Sec. III. Prior to delving into the gravi
problem, we want to conduct detailed studies of the sc
example~11!.

B. Solving Eq. „12… in the general case

To solve this equation it is convenient to Fourie
transform it with respect to ‘‘our’’ four space-time coord
natesxm→pm , keeping the extray coordinates intact. Mark-
ing the Fourier-transformed quantities by a tilde,

F~x,y!→F̃~p,y!, ~17!

we then get from Eq.~12!

d (N)~y!MPl
2 ~2p2!F̃~p,0!1M

*
21N~2p22Dy!F̃~p,y!

5 J̃~p!d (N)~y!, ~18!

wherep2[p0
22p1

22p2
22p3

2, and the notation

Dy[ (
a51

N
]2

]ya
2 ~19!

is used.
We will look for the solution of Eq.~18! in the following

form:

F̃~p,y![D~p,y!x~p!, ~20!

where the functionD is defined as a solution of the equatio

~2p22Dy2 i ē !D~p,y!5d (N)~y!. ~21!

Note that the functionD is uniquely determined only afte
the i ē prescription specified above is implemented. We a
introduce the convenient abbreviation

D0~p![D~p,y50!. ~22!

Now, it is quite obvious that a formal solution of Eq.~18! can
be written in terms of the functionD as follows:

F̃~p,y!52
J̃~p!

MPl
2

D~p,y!

p2D0~p!2M
*
21N/MPl

2
1cF̃hom~p,y!,

~23!

whereF̃hom(p,y) is a general solution of the correspondin
homogeneous equation@i.e., Eq.~18! with a vanishing right-
hand side#, andc is an arbitrary constant. Equation~23! pre-
sents, in fact, the Green’s function too, up to the fac
J̃(p)/MPl

2 , which must be amputated. In particular, for th
Green’s function on the brane we have

G~p,0!5
MPl

2

J̃~p!
F̃~p,y50!,

Ghom~p,0!5
MPl

2

J̃~p!
F̃hom~p,y50!, ~24!
12403
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while for arbitrary values ofy

G~p,y!52
D~p,y!

p2D0~p!2uN1cGhom~p,y!, ~25!

where

uN[
M

*
21N

MPl
2

5mc
2M

*
N22 . ~26!

The presence or absence of the homogeneous part is r
lated by thei e prescription. Note that, if the first term on th
right-hand side of Eq.~25! has poles on the real axis ofp2,
then the homogeneous equation has a solution

Ghom~p,y!5D~p,y!d„p2D0~p!2uN
…. ~27!

This fact will play an essential role for gravity, as will b
discussed in due course in Sec. III.

In what follows we will examine the poles of the Green
functionG(p,y). The positions of these poles depend on t
functionsGhom(p,y) andD0 as defined in Eqs.~21! and~22!.
The choice of a particular rule of treatment of the poles c
responds to the choice of appropriate boundary condition
the coordinate space. Note that the latter are dictated
physical constraints on the Green’s functionG rather than on
the auxiliary functionD.

To get to the main point, we will try the simplest strateg
of specifying the poles and check,a posteriori, whether this
strategy is self-consistent. Let us put

c50

and defineD in the Euclidean momentum space. Since in t
Euclidean space the expression forD is well defined and has
no singularities,

D~pE ,q!5
1

pE
21q2

, D~pE ,q![E dNy eiqyD~pE ,y!,

q25(
a

~qa!2, ~28!

one can perform analytic continuation from the Euclidean
the Minkowski space. This is not the end of the story, ho
ever. It is the Green’s functionG that we are interested in
not the auxiliary functionD. As will be explained below, the
above procedure is consistent, for the following reason. T
function G obtained in this way has a cut extending fro
zero to infinity. In addition, we find two complex conjuga
poles on the secondnonphysicalRiemann sheet of the com
plex p2 plane. Moreover, there are additional poles on s
sequent unphysical sheets.

Since the poles are not on the physical Riemann sh
they do not correspond to any asymptotic states of the the
A pole on the second Riemann sheet is a well-known sig
ture of a resonance state@41#. Therefore, our toy scala
‘‘gravity’’ is mediated by a massive resonance. Th
2-5
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resonance-mediated gravity was first discussed in Refs.@42–
44# in a different brane-world model.

Before passing to consideration of particular cases i
worth recalling that the Green’s functions in theN>2 DGP
models need a UV regularization@2,26,31,32#. This has been
mentioned already. An appropriate UV regularization can
achieved either by introducing an explicit UV cutoff, or, a
ternatively, by keeping a nonzero brane width in a consis
manner~defined in Ref.@26#!. For brevity we choose the
former prescription by consistently taking the limit of ze
brane width. However, we should stress that all our res
hold equally well in the brane-width regularization meth
of @26#.

C. Six dimensions

It is instructive to demonstrate how things work by co
sidering separately the six-dimensional case. In six dim
sions, sensitivity to the UV cutoff is only logarithmic, and
is conceivable that the results obtained in the cutoff the
could be consistently matched to those of a more fundam
tal UV-completed theory to come.2

It is not difficult to calculate

D0~s!5
1

4p
lnS L2

2s
11D , s[p2, ~29!

whereL2 is an ultraviolet cutoff. With this expression forD0
the functionG(p2,0) develops acut on the positive semi-
axes ofs due to the logarithmic behavior ofD0(s). This fact
has a physical interpretation. Since the extra dimensions
noncompact in the model under consideration, the spect
of the theory, as seen from the 4D standpoint, consists o
infinite gapless tower of the KK modes. This generates a
in the Green’s function fors ranging from zero to1`.

In addition, there might exist isolated singular points
G(p2,0). These singularities~for s!L2) are determined by
the equation

G21~s,0![s2mc
2F 1

4p
lnS L2

2sD G
21

50, ~30!

wheremc
2 is defined in Eq.~5!. Let us introduce the notation

s[s0 exp~ ig!, ~31!

wheres0 is a real positivenumber. Then, Eq.~30! has two
solutions of the form

s0'4pmc
2F ln

L2

mc
2G21

, ~32!

and

2The D.6 models of brane-induced gravity are power sensit
to UV physics. In general one expects all sorts of higher-deriva
operators in this case.
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g1.2
p

log~L2/mc
2!

, g2.2p1
p

log~L2/mc
2!

. ~33!

We conclude that there are two complex-conjugate poles
the nearby nonphysical Riemann sheets. These poles ca
be identified with any physical states of the theory. They a
in fact, manifestations of a massive resonance state. All o
complex poles appear on subsequent nonphysical Riem
sheets.

D. More than six dimensions

Physics atD.6 is similar to that of the six-dimensiona
world which was described in Sec. II C. There are min
technical differences between odd- and even-dimensio
spaces, however, as we will discuss momentarily.

In seven dimensions we find

D0~s!5
1

2p2 H L2A2s arctan2S L

A2s
D J . ~34!

As in the 6D case, there is a branch cut. The cut in this c
is due to the dependence of the Green’s function onAs. No
other singularities appear on the physical Riemann sheet
poles are on nonphysical Riemann sheets, as previously

In the eight-dimensional space the expression forD0
reads

D0~s!5
1

16p2 H L21sS ln
L2

2s
11D J . ~35!

Again, we find a cut due to the logarithm, similar to that
the 6D case. All isolated singularities appear on nonphys
Riemann sheets.

The nine-dimensional formula runs parallel to that
seven dimensions,

D0~s!5
1

12p3 H L3

3
1sS L2A2s arctan

L

A2s
D J . ~36!

Finally, in ten dimensions

D0~s!5
1

128p3 H L4

2
1sFL21sS ln

L2

2s
11D G J . ~37!

The pole structure ofG is identical to that of the eight-
dimensional case. Since the pattern is now well establis
and clear-cut, there seems to be no need to dwell on hig
dimensions.

Before turning to gravitons we would like to make com
ments concerning the UV cutoffL. The crossover distanc
r c;mc

21 depends on this scale: in 6D the dependence
logarithmic, while inD.6 this dependence presents a pow
law @2,4#. Hence, the crossover scale in theN>2 DGP mod-
els, unlike that in theN51 model, is sensitive to particula
details of the UV completion of the theory. Since in th
present work we adopt an affective low-energy field-theo
strategy, we are bound to follow the least favorable scen

e
e

2-6
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in which the cutoff and the bulk gravity scale coincide wi
each other and both are equal toM* ;1023 eV. If a particu-
lar UV completion were available, it could well happen th
the UV cutoff and bulk gravity scale were different from th
above estimate. In fact, in the string-theory-based const
tion of Ref. @4#, the UV completion is such that the cuto
and bulk gravity scale are in the ballpark of TeV.

In conclusion of this section it is worth noting that th
Green’s functionD0 in theN>3 case contains terms respo
sible for branch cuts. These terms are suppressed by po
of s/L, and, naively, could have been neglected. It is tr
though, that the explicit form of these terms is UV sensit
and cannot be established without the knowledge of
physics. One should be aware of these terms since the
flect underlying physics—the presence of the infinite tow
of the KK states. Fortunately, none of the results of
present work depend on these terms.

III. THE GRAVITON PROPAGATOR

Now it is time to turn to gravitons with their specifi
tensorial structure. We will consider and analyze the equa
of motion of the DGP-type model presented in Eq.~8!,
which we reproduce here again for convenience:

d (N)~y!MPl
2 ~aGmn

(4)1bGmn
(D)!dA

mdB
n 1M

*
21NGAB

(D)

52Tmn~x!dA
mdB

n d (N)~y!. ~38!

Here G(4) and G(D) denote the four-dimensional an
D-dimensional Einstein tensors, respectively, whilea and b
are certain constants satisfying the constraint

a1b51.

For simplicity we choose a source term localized on
brane, namely,Tmn(x)d (N)(y). At the effective-theory level
the ratioa/b[a/(12a) is a free parameter. The only guide
lines we have for its determination are~i! phenomenologica
viability; ~ii ! intrinsic self-consistency of the effective theor
which, by assumption, emerges as a low-energy limit o
self-consistent UV-completed underlying ‘‘prototheory
Specifying the prototheory would allow one to fix the rat
a/(12a) in terms of fundamental parameters.

Our task is to study the gravitational field produced by
sourceTmn(x)d (N)(y). To this end we linearize Eq.~38!. If
gAB[hAB12hAB , in the linearized inh approximation we
find

GAB
(D)5]D

2 hAB2]A]ChB
C2]B]ChA

C1]A]BhC
C2hAB]D

2 hC
C

1hAB]C]DhCD, ~39!

where]D
2 []D]D. On the other hand, the four-dimension

Einstein tensor in the linearized approximation is

Gmn
(4)5]b

2hmn2]m]ahn
a2]n]ahm

a1]m]nha
a2hmn]b

2ha
a

1hmn]a]bhab. ~40!

In what follows we will work in the harmonic gauge,
12403
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]AhAB5
1

2
]BhC

C . ~41!

The advantage of this gauge is that in this gauge the exp
sion for GAB

(D) significantly simplifies,

GAB
(D)5]D

2 hAB2
1

2
hAB]D

2 hC
C . ~42!

Additional conditions which are invoked to solve the$ab%
and$am% components of the equations of motion are

ham50, hab5
1

2
habhC

C . ~43!

Using the last equation it is not difficult to obtain the relatio

Nhm
m5~22N!ha

a . ~44!

This relation obviously suggests that we should consi
separately two cases:~i! N52; ~ii ! N.2. We will see, how-
ever, that the results in theN52 andN.2 cases are some
what similar.

A. Brane-induced gravity in six dimensions„NÄ2…

In two extra dimensions Eq.~44! implies

hm
m50. ~45!

Therefore, the trace of theD-dimensional graviton coincide
with the trace of the extra-dimensional part,

hA
A5ha

a . ~46!

As a result, the four-dimensional components of the h
monic gauge condition~41! reduce to

]mhmn5
1

2
]nha

a . ~47!

Let us now have a closer look at the$mn% part of Eq.~8!.
Taking the trace of this equation and using Eqs.~42!, ~40!,
~45!, and~47! we arrive at3

~3b21!d (N)~y!MPl
2 ]m

2 ha
a12M

*
21N ]A

2ha
a5Tm

md (N)~y!.
~48!

The obtained equation is very similar to the scalar-field eq
tion ~12!. Therefore, we will follow the same route as in th
scalar-field case, until we come to a subtle point, a would
obstacle, which was nonexistent in the scalar-field case.

Let us Fourier-transform Eq.~48!,

3As before, we put the transverse derivatives to be zero in thD
→0 limit.
2-7



t

fo
o

.

n
th

ns

n
l R
a
e
r

he

a-

el

first

y

the
ther
ified
the
Rie-
re of
re-
v-

en
e-

G. GABADADZE AND M. SHIFMAN PHYSICAL REVIEW D 69, 124032 ~2004!
~3b21!d (N)~y!MPl
2 ~2p2!h̃a

a~p,y!

12M
*
21N~2p22Dy!h̃a

a~p,y!5T̃~p!d (N)~y!.

~49!

The general solution of the above equation is

h̃a
a~p,y!5

T̃~p!

MPl
2

G~p,y!, ~50!

G5
D~p,y!

2mc
22~3b21!p2D0~p!

1cGhom, ~51!

where the solution of the homogeneous equation takes
form

Ghom5D~p,y!d„2mc
22~3b21!p2D0~p!…. ~52!

To begin with, let us consider the case 3b.1. Then the first
term on the right-hand side of Eq.~51! has poles for complex
values ofp2, as can be readily seen from the expressions
D0 obtained in Sec. II. For instance, in the 6D case this p
is determined by the equation

s5
2mc

2

~3b21!D0~s!
5

4p2mc
2

~3b21! F ln
L2

2sG
21

. ~53!

This equation has at least two solutions of the form

s* '
4p2mc

2

3b21 F ln
L2

mc
2G21

, ~54!

and

g1.2
p

log~L2/mc
2!

, g2.2p1
p

log~L2/mc
2!

. ~55!

The quantity h̃a
a(p,y) is not a gauge invariant variable

Therefore, the presence of certain poles in the expression
h̃a

a(p,y) depends on a gauge. However, explicit calculatio
~see below! show that the poles found above also enter
gauge invariant physical amplitude. Therefore, we need
take these poles seriously and analyze their physical co
quences.

B. bÌ1Õ3

If b.1/3 there are no poles on the physical Riema
sheet. Instead, poles appear on the nearest nonphysica
mann sheets. These poles cannot be identified with
physical states of the theory. They represent a signatur
massive resonance states. All other complex poles appea
subsequent nonphysical Riemann sheets.

Using a contour integral one can easily write down t
spectral representation for the Green’s functionG
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G~p,y50!5
1

pE0

` r~ t !dt

t2p22 i ē
, ~56!

where the spectral function is defined as

r~ t !5
2mc

2 Im D0~ t !

@~3b21!t ReD022mc
2#21@~3b21!t Im D0#2

,

~57!

and

Im D05pE dNq

~2p!N d~ t2q2!5
p (N12)/2

~2p!NG~N/2!
t (N22)/2.

~58!

We see thatr(t) satisfies the positivity requirement. Equ
tion ~56! guarantees that the Green’s functionG is causal.

The next step is applying the expression forG to calculate
h̃mn . In fact, it is more convenient to calculate the tree-lev
amplitude

A~p,y![h̃mn~p,y!T̃8mn~p!, ~59!

whereT̃8mn(p) is a conserved energy-momentum tensor,

pmT̃8mn5pnT̃8mn50.

Using Eqs.~38!, ~50!, and~70! we obtain the following ex-
pression for the amplitudeA(p,y):

A~p,y!5
1

MPl
2

D~p,y!

p2D0~p!2mc
2

3H T̃mnT̃8mn2
T̃T̃8

2 F ~2b21!p2D02mc
2

~3b21!p2D022mc
2G J .

~60!

Let us study the above expression in some detail. The
question to ask is about poles. It is quite clear that thep2

poles ofA are of two types; their position is determined b

p2D0~p!5mc
2

or

~3b21!p2D0~p!52mc
2 .

As was explained previously, all these poles appear on
second Riemann sheet, with the additional images on o
nonphysical sheets. None of these poles can be ident
with asymptotic physical states. As was elucidated above,
occurrence of the poles on the second and subsequent
mann sheets corresponds to the massive-resonance natu
the effective 4D graviton. Our previous analysis can be
peated practically verbatim, with minor modifications, pro
ing the analyticity and causality of the amplitudeA.

Next, we observe that at large momenta, i.e., wh
p2D0(p)@mc

2 , the scalar part of the propagator has 4D b
2-8
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havior; the tensorial structure is not four dimensional, ho
ever. The terms in the braces in Eq.~60!, namely,

H T̃mnT̃8mn2
2b21

2~3b21!
T̃T̃8J , ~61!

correspond to the exchange of massive gravitons and s
degrees of freedom. This would give rise to additional co
tributions in the light bending and is excluded phenome
logically, unless the contribution due to extra polarizations
canceled by some other interactions~such as, e.g., an add
tional repulsive vector exchange!. Note also that whenb
@a, i.e., b→1, one obtains the tensorial structure of 6
gravity, as expected from Eq.~7!.

On the other hand, at large distances, i.e., atp2D0(p)
!mc

2 , we get the following tensorial structure of the amp
tude ~60!:

H T̃mnT̃8mn2
1

4
T̃T̃8J . ~62!

This exactly corresponds to the exchange of a s
dimensional graviton, as was expected.

C. bË1Õ3

This case is conceptually different from that of Sec. III
As we will see momentarily, ifb,1/3 there are no problem
in ~i! maintaining 4D unitarity and~ii ! getting the appropriate
4D tensorial structure of gravity at subhorizon distanc
This is achieved at the price of abandoning 4D analyticity
its standard form, which could presumably lead to the loss
causality at distances of the order ofmc

21;1028 cm. The
absence of causality at distances*1028 cm was argued re
cently @27# to be an essential ingredient for solving the co
mological constant problem.

Although all derivations and conclusions are quite simi
for any ratio a/b as long as 2b,a, we will stick to the
technically simplest exampleb50, a51. In the situation at
hand, the homogeneous part~52! need not be trivial, i.e.,c
need not vanish. The value of the constantc is determined
once the rules for the pole atp2D0(p)12mc

250 are speci-
fied. In Ref. @40# the vanishing ofc was postulated. This
choice leads to anonunitaryGreen’s function. Therefore, w
abandon the conditionc50 in an attempt to make a mor
consistent choice that would guarantee 4D unitarity.
stress that we are after unitarity here, not unitarity plus c
sality.

To begin with we pass to the Euclidean space inp2 ~i.e.,
p2→pE

2) and introduce the following notation:

P(E)~pE
2 ![

1

2mc
22pE

2D0~pE!2 i e
. ~63!

The functionP(E) is a Euclidean-space solution of Eq.~49!,
with the particular choicec5 ip. @The choice c52 ip
would lead to Eq.~63! with the replacemente→2e.#

As the next step we will analyze the complex plane
pE

2 . Since the functionD0(pE) is real, the functionP(E)(pE
2)
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must ~and does! have an isolated singularity in thepE
2 plane

which is similar to a conventional massive pole, except t
it lies in the Euclidean domain. This singularity occurs at t
point pE

25p
*
2 is defined by the condition

p
*
2 D0~p* !52mc

2 , p
*
2 real and positive. ~64!

This is the only isolated singularity in Eq.~63!; it is located
in the complexpE

2 plane on the real positive semiaxis. I
addition to this pole singularity, the function~63! has a
branch cut stretching from zero to2` due to the imaginary
part of D0(pE

2) appearing at negative values ofpE
2 . As be-

fore, this branch cut is the reflection of an infinite gaple
tower of the KK states. As a result, the following spect
representation obviously emerges forP(E)(pE

2):

P(E)~pE
21 i e!5

1

pE0

2` Im P(E)~u!du

u2pE
2

1
R

p
*
2 2pE

22 i e
,

~65!

with the Euclidean pole term being ‘‘unconventional.’’ Th
residue of the poleR is given ~for any N) by

R215E dNq

~2p!N

q2

~q21p
*
2 !2 . ~66!

Note that in the first term on the right-hand side of E
~65! the integration runs from zero to minus infinity; thu
the integrand never hits the would-be pole atu5pE

2.0.
Therefore, thei e prescription is in fact used only to specif
the isolated pole atpE

25p
*
2 .

We proceed further and define asymmetricfunction

P (E)~pE
2 ![

1

2
$P(E)~pE

22 i e!1P(E)~pE
21 i e!%. ~67!

It is just this symmetric function on which we will focus i
the remainder of the section. Let us return to Minkows
space. This is done by substituting

pE
2→exp~2 ip!p2, u→exp~2 ip!t

in Eq. ~65!. Furthermore, observing that ImP5Im P, we
obtain the following representation for the MinkowskianP:

P~p!5
1

pE0

` Im P~ t !dt

t2p22 i ē
1P0~p!, ~68!

where

P0~p![
1

2 S R

p
*
2 1p22 i e

1
R

p
*
2 1p21 i e

D . ~69!

It is necessary to emphasize thate and ē are two distinct
regularizing parameters,eÞē. The parametere is used to
regularize the pole atp252p

*
2 , while ē sets the rules for

the branch cut. The most important property ofP is that the
pole at p252p2 has no imaginary part, by constructio
*

2-9
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Hence, there is no physical particle that corresponds to
pole. In the conventional local field theory the only possib
additions with no imaginary part are polynomials. Here
encounter a new structure that will be discussed in m
detail at the end of this section.

Our goal is to show that a 4D-unitarity-compliant spect
representation holds for the Green’s function on the brane
least in the domain where the laws of 4D physics are ap
cable. To this end we turn to the functionG(p,y), defined as

G5D~p,y!P~p2!, ~70!

with the purpose of studying its properties. It is convenien
pass to the momentum space with respect to extra coo
nates too. Then the propagator~70! takes the form

G̃~p,q!5
P~p2!

q22p22 i ē
. ~71!

With these definitions in hand, we can write down the 4
dispersion relation. We start from the Ka¨llen-Lehman repre-
sentation for the propagator~71!. As we will check below,
this representation takes the form

G̃~p,q!5
1

pE0

` Im G̃~ t,q!dt

t2p22 i ē
1

P0~p2!2P0~q2!

q22p22 i ē
. ~72!

The imaginary part ofG̃ is defined as follows:

Im G̃~ t,q!5pd~q22t !ReP~ t !1Im P~ t !P 1

q22t
,

~73!

whereP stands for theprincipal valueof a singular function,

P 1

q22t
5

1

2 S 1

q22t1 id
1

1

q22t2 id D . ~74!

The fact that Eq.~72! holds can be checked by substitutin
Eqs.~74! and ~73! into Eq. ~72! and exploiting the relation

1

pE0

` Im P~ t !

t2p22 i ē
P 1

q22t
dt

52
ReP~q2!2P0~q2!1P0~p2!2P~p2!

q22p22 i ē
.

~75!

This turns Eq.~72! into an identity.
Finally, we approach the main point of this section—t

dispersion relation forG(p,y50), the Green’s function on
the brane. As such, it must have a spectral representa
with positive spectral density, as we have already seen f
the KK-based analysis. The positivity is in one-to-one cor
spondence with the 4D unitarity.

The dispersion relation can be obtained by integrating
~72! with respect toq,
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G~p,y50!5
1

pE0

` r~ t !dt

t2p22 i ē
1P0~p2!ReD0~2p

*
2 !.

~76!

According to Eq.~72!, the spectral densityr is defined as

r~ t !5E dNq

~2p!N Im G̃~ t,q!. ~77!

The first term on the right-hand side in Eq.~76! is conven-
tional while the second is not, and we hasten to discus
This term has no imaginary part, by construction. Hence
does not contribute to the unitarity cuts in diagrams. The
fore, this term does not affect the spectral properties.

As was mentioned, in conventional 4D theories only
finite-order polynomial inp2 that has no imaginary part ca
be added to or subtracted from the dispersion relation. Th
because normally one deals with Lagrangians that con
only a finite number of derivatives, i.e., a finite number
terms with positive powers ofp2 in the momentum space. In
the problem under consideration this is not the case, h
ever. In fact, no local 4D Lagrangian exists in our model
all, and yet we are studying the spectral properties in te
of the intrinsically 4D variable,p2. The theory~1! is inher-
ently higher dimensional because of the infinite volume
the extra space. One can try to ‘‘squeeze’’ it in four dime
sions at a price of having an infinite number of 4D fields. F
such a theory there is no guarantee that analyticity of
Green’s functions in terms of the 4D variablep2 will hold
because the effective 4D Lagrangian obtained by ‘‘integr
ing out’’ the infinite gapless KK tower will necessarily con
tain @5# nonlocal terms of the type]22. ~Note that a similar
prescription for the poles in a pure 4D local theory@45# is
hard to reconcile with the path integral formulation@46#. In
our case this is not a concern since the theory is not loca
four dimensions in the first place.!

Therefore, it is only natural that 4D unitarity can be mai
tained but 4D analyticity cannot. Nonanalyticity leads to vi
lation of causality, generally speaking. That is to say,
Green’s function~76! is acausal. Therefore, we have an a
parent violation of causality in the 4D slice of the entire
1N)-dimensional theory which, by itself,is causal. The ap-
parent acausal effects can manifest themselves only at
scale of the order ofmc

21;1028 cm. In fact, as was noted in
@27#, this is a welcome feature for a possible solution of t
cosmological constant problem.

Let us now return to the first term on the right-hand si
of Eqs.~76!. Using Eqs.~68! and ~73! we can calculate the
spectral function, which comes out as follows:

r~ t !5
2mc

2 Im D0~ t !

~ t ReD012mc
2!21~ t Im D0!2

, ~78!

where

Im D05pE dNq

~2p!N d~ t2q2!5
p (N12)/2

~2p!NG~N/2!
t (N22)/2.

~79!
2-10
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We see thatr(t) satisfies the positivity requirement.4

Next we observe that at large momenta, i.e., atp2D0(p)
@mc

2 , the propagator we got has the desired 4D behav
For the scalar part of the propagator this is expected from
studies of Sec. II. However, with regard to the tensor
structure this circumstance is less trivial. Ifp2D0(p)@mc

2

the terms in the braces in Eq.~60!,

H T̃mnT̃8mn2
1

2
T̃T̃8J , ~80!

correspond to the exchange of two physical graviton po
izations. Therefore, for the observable distances the tens
structure of the massless 4D graviton~80! is recovered.

On the other hand, for large~superhorizon! distances,
p2D0(p)!mc

2 , we get a different tensorial structure of th
same amplitude,

H T̃mnT̃8mn2
1

4
T̃T̃8J . ~81!

This exactly corresponds to the exchange of the s
dimensional graviton.

D. DÌ6

Corresponding calculations and results are quite simila
those in theD56 case, with minor technical distinction
which we summarize below. ForNÞ2

hab5
1

22N
habhm

m . ~82!

Therefore, we get

]mhmn5
1

22N
]nha

a . ~83!

Then, the trace of the$mn% equation takes the form

kNd (N)~y!MPl
2 ]m

2 ha
a1M

*
21N~N12!]A

2ha
a5NTn

nd (N)~y!,

~84!

wherekN[22N(223b). The above equation can be us
to find the solution we are after. We proceed parallel to
six-dimensional case. Let us introduce the notation

h̃a
a~p,y!5N

T̃~p!

MPl
2

GN~p,y!, ~85!

where

4For N>5 the integral in Eq.~76! diverges. However, since ou
model has a manifest UV cutoffL, the above integral must be cu
off at L. Alternatively, one could use a dispersion relation w
subtractions.
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GN5
D~p,y!

2kNp2D0~p!1uN~N12!
1cGN hom. ~86!

The solution of the homogeneous equation takes the for

GN hom5D~p,y!d„2kNp2D0~p!1uN~N12!…. ~87!

Here

uN[M
*
21N/MPl

2 .

As in the 6D case, we conclude that there exists a solutio
the equation

2kNp2D0~p!1uN~N12!50

with a complex value ofp2. These poles occur on the non
physical sheets as long askN.0, so the Green’s function
admits a spectral representation.

Using the expressions above one readily calculates
tree-level amplitudeA,

A~p,y!5
1

MPl
2

D~p,y!

p2D0~p!2uN

3H T̃mnT̃8mn2
T̃T̃8

2 S ~kN2bN!p2D022uN

kNp2D02~21N!uN D J .

~88!

E. bÌ„2NÀ2…Õ3N

In this case, there are no poles on the physical Riem
sheet. Hence, all the poles are of the resonance type.
tensorial structure at large distances is that of
D-dimensional theory,

H T̃mnT̃8mn2
1

21N
T̃T̃8J . ~89!

However, the tensorial structure at short distances&mc
21

differs from that of 4D massless gravity. Hence, some ad
tional interactions, e.g., repulsion due to a vector field,
needed to make this theory consistent with data.

F. bË„2NÀ2…Õ3N

The consideration below is very similar to that of the 6
case. In perfect parallel with the 6D case, we consider
simplicity only theb50 case and define the function

PN
(E)~pE

2 ![
1

uN~N12!/~2N22!2pE
2D0~pE!2 i e

,

~90!

which has the spectral representation

PN
(E)~pE

21 i e!5
1

pE0

2` Im PN
(E)~u!du

u2pE
2

1
R

p
*
2 2pE

22 i e
.

~91!
2-11
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The residueR is determined by Eq.~66! while p
*
2 is now a

solution to the equation

p
*
2 D0~p* !5

uN~N12!

2~N21!
, p

*
2 .0. ~92!

As in the 6D situation, we use the expression~91! to define
the symmetricfunction

PN
(E)~pE

2 ![
1

2
$PN

(E)~pE
22 i e!1PN

(E)~pE
21 i e!%. ~93!

The latter, being continued to Minkowski space, admits
following spectral representation:

PN~p!5
1

pE0

` Im P~ t !dt

t2p22 i ē
1P0

(N)~p!, ~94!

where

P0
(N)~p![

1

2 S R

p
*
2 1p22 i e

1
R

p
*
2 1p21 i e

D . ~95!

As previously,e and ē are twodistinct regularizing param-
eters,eÞē.

For the Green’s function of interest

GN5
D~p,y!PN~p2!

2N22
, ~96!

we repeat the analysis of Secs. III A, III B, and III C to co
firm with certainty that the functionGN(p,y50) does admit
the spectral representation~76!, with a positive spectral func
tion, similar to the 6D case@see Eq.~78!#.

The expression in Eq.~88! interpolates between the fou
dimensional andD-dimensional patterns. This was alrea
established for the scalar part of the amplitude in Sec. II.
us examine the tensorial part. Forp2D0(p)@uN we get

H T̃mnT̃8mn2
1

2
T̃T̃8J . ~97!

This corresponds to two helicities of the 4D massless gr
ton. In the opposite limit,p2D0(p)!uN, we recover the ten-
sorial structure corresponding to the (41N)-dimensional
massless graviton.

IV. PERTURBATION THEORY IN MASSIVE GRAVITY:
HARD MASS VS SOFT

We start from a brief review of a well-known
phenomenon—the breakdown of perturbation theory fo
graviton with hard mass@34#, occurring at a scale lower tha
the UV cutoff of the theory@35–37#. We then elucidate as to
how this problem is avoided in the models~1!,~7!.

The 4D action of a massive graviton is
12403
e

t

i-

a

Sm5
MPl

2

2 E d4xAgR~g!1
MPl

2 mg
2

2 E d4x@hmn
2 2~hm

m!2#,

~98!

where mg stands for the graviton mass andhmn[(gmn

2hmn)/2. The mass term has the Pauli-Fierz form@34#. This
is the only Lorentz invariant form of the mass term which
quadratic order inhmn does not give rise to ghosts@47#.
Higher powers inh could be arbitrarily added to the mas
term since there is no principle, such as reparametriza
invariance, which could fix these terms. Hence, for defini
ness, we assume that the indices in the mass term are r
and lowered byhmn . Had we usedgmn instead, the differ-
ence would appear only in cubic and higher orders inh,
which are not fixed anyway.

In order to reveal the origin of the problem, let us have
closer look at the free graviton propagators in the mass
and massive theory. For the massless graviton we find

Dmn;ab
0 ~p!5S 1

2
h̄mah̄nb1

1

2
h̄mbh̄na2

1

2
h̄mnh̄abD 1

2p22 i e
,

~99!

where

h̄mn[hmn2
pmpn

p2
. ~100!

The momentum-dependent parts of the tensor structure w
chosen in a particular gauge convenient for our discuss
On the other hand, there is no gauge freedom for the mas
gravity presented by the action~98!; hence the correspondin
propagator is unambiguously determined,

Dmn;ab
m ~p!5S 1

2
h̃mah̃nb1

1

2
h̃mbh̃na2

1

3
h̃mnh̃abD

3
1

mg
22p22 i e

, ~101!

where

h̃mn[hmn2
pmpn

mg
2

. ~102!

We draw the reader’s attention to the 1/mg
4,1/mg

2 singularities
of the above propagator. The fact of their occurrence will
important in what follows.

It is the difference in the numerical coefficients in front
thehmnhab structure in the massless vs massive propaga
~1/2 versus 1/3! that leads to the famous perturbative disco
tinuity @48–50#. No matter how small the graviton mass i
the predictions are substantially different in the two cas
The structure~101! gives rise to contradictions with obse
vations.

However, as was first pointed out in Ref.@35#, this dis-
continuity could be an artifact of relying on the tree-lev
2-12
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perturbation theory which, in fact, badly breaks down a
higher nonlinear level@35,36#. One should note that the dis
continuity does not appear on curved backgrounds@51,52#—
another indication of the spurious nature of the ‘‘mass d
continuity phenomenon.’’

To see the failure of the perturbative expansion in
Newton constantGN , one could examine the Schwarzsch
solution of the model~98!, as was done in Ref.@35# ~see also
@53–55#!. However, probably the easiest way to understa
the perturbation theory breakdown is through examination
the tree-level trilinear graviton vertex diagram. At the no
linear level we have two extra propagators which could p
vide a singularity inmg up to 1/mg

8 .
Two leading terms 1/mg

8 and 1/mg
6 do not contribute@36#,

so that the worst singularity is 1/mg
4 . This is enough to lead

to the perturbation theory breakdown. For a Schwarzsc
source of massM the breakdown happens@35,36# at the scale

Lm;mg~Mmg /MPl
2 !21/5.

The result can also be understood in terms of interaction
longitudinal polarizations of the massive graviton, which b
come strong@37#. For the gravitational sector per se, th
corresponding scaleLm reduces to@37#

mg~mg /MPl!
21/5.

If one uses the freedom associated with possible additio
higher nonlinear terms, one can make@37# the breaking scale
as large as

mg /~mg /MPl!
1/3.

~Note that at the classical level the strong-coupling probl
of PF gravity can be evaded by summing up tree-level n
linear diagrams@35,36#. To determine whether the problem
present at the quantum level, one must perform perturbat
on a stable background; however, the Minkowski-spa
background is not stable for PF gravity, with the instabil
setting in almost instantaneously@39#. For recent discussion
of massive gravity see Refs.@56,57#.!

Summarizing, in the diagrammatic language the rea
for the precocious breakdown of perturbation theory can
traced back to the infrared terms in the propagator~101!,
which scale as

pmpn

mg
2 . ~103!

These terms do not manifest themselves at the linear le
however, they do contribute to nonlinear vertices creat
problems in the perturbative treatment of massive gra
already in a classical theory.

We will see momentarily that similar problems are tota
absent in the propagator of the model~1!. For illustrational
purposes it is sufficient to treat theN52 case. All necessary
calculations were carried out in Sec. III. Therefore, here
just assemble relevant answers.

For N52 andb.1/3 we find
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pmpnD~p,y!

2mc
22~3b21!p2D0~p!1 i e

. ~104!

In the limit mc→0 the above expression, as opposed to
~103!, is regular. Similar calculations can be done in theN
.2 case. The result is proportional to

pmpnD~p,y!

~21N!uN2kNp2D0~p!1 i e
, ~105!

which is also regular in themc→0 limit where it approaches
the 4D expression. Therefore, we conclude that there is
reason to expect any breaking of perturbation theory in
model ~1! below the scale of its UV cutoff.

If b,1/3 andN52 we find, by the same token,

pmpnD~p,y!

2 S 1

2mc
22~3b21!p2D0~p!1 i e

1~e→2e!D .

~106!

Again, in the limit mc→0, the above expression, in contr
distinction with Eq.~103!, is regular. Moreover, in this limit
~and aty50) it approaches the 4D expression, in a particu
gauge. Analogous calculations can be readily done in thN
.2 andb,(2N22)/3N case. The result is

pmpnD~p,y!

2 F 1

~21N!uN2kNp2D0~p!1 i e
1~e→2e!G .

~107!

This expression is also regular in themc→0 limit where it
arrives at the correct 4D limit. We conclude, therefore, tha
the general case there is no reason to expect any breakin
perturbation theory in the model~7! below the scale of its
UV cutoff. Note that the expressions~106! and ~107! are
singular for small Euclidean momentap2;2mc

2 . By con-
struction this singularity has no imaginary part and there
no physical state associated with it. One might expect t
this singularity will be removed after the loop corrections a
taken into account in a full quantum theory. These consid
ations are beyond the scope of the present work.

An analogy with the Higgs mechanism for non-Abelia
gauge fields is in order here. For massive non-Abelian ga
fields nonlinear amplitudes violate the unitarity bounds at
scale set by the gauge field mass. This disaster is cu
through the introduction of the Higgs field. Likewise, no
linear amplitudes of the 4D massive gravity~98! blow up at
the scaleLm . The unwanted explosion is canceled at t
expense of introducing an infinite number of the Kaluz
Klein fields in Eq.~1!.

V. DISCUSSION AND CONCLUSIONS

In the present work we studied the model~7! of brane-
induced gravity in codimensions 2 and higher. This mo
has stringent and testable predictions. Gravity is modified
short distances, of the order of;0.1 mm or so, and simul-
2-13
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taneously at ultralarge distances, of the order of;1029 mm,
give or take an order of magnitude. The short-distance m
fication can be tested in tabletop gravitational experime
@58,59#. Modification of gravity at a millimeter scale and it
relation to the cosmological constant problem was first d
cussed in Ref.@60#.

The modification of gravity at a millimeter scale in th
present model~1! is a consequence of the large-distan
modification and vice versa. These are two faces of one
the same phenomenon. However, we should point out
technically and conceptually the approaches to the cos
logical constant problem discussed in Ref.@60#, on the one
hand, and Refs.@2,5#, on the other, are rather different—th
former relies on the short-distance~UV! modification of
gravity, while the latter is entirely based on the large-dista
~IR! modification of gravity.

The large-distance modification of gravity can manife
itself in cosmological solutions. The caseb50 and a51
seems to be most interesting for these purposes. As we
gued in the present work, it leads to apparent violations
4D causality which could manifest themselves at the sc
of the order of today’s Hubble scale. Manifestations of ac
sality might be tested in cosmological observations. In p
ticular, such an acausal theory might be the reason behind
smallness of the observable space-time curvature@27#.

It is instructive to point out how theb50, a51 model
evades a well-known no-go theorem for massive grav
@49#. Let us first briefly recall the theorem. A 4D massi
graviton has extra polarizations, one of which couples
sources in the leading order in a weak field. The additio
attraction due to this polarization is observationally un
ceptable and has to be canceled. This can be achieve
introducing a ghost that gives rise to a compensating re
sive force@49#. Hence, one ends up either with a theory th
has a ghost or with a theory that has no ghosts but is p
nomenologically unacceptable. This is the essence of
no-go theorem@49#. The theorem can easily be generaliz
for a theory with an infinite number of states@61#. In the
latter case, in order to obtain a phenomenologically acc
able theory of a massive graviton at observable distan
one should give up positivity of the spectral function in t
dispersion relation for the corresponding Green’s functi
This would violate unitarity of the model. However, th
above argument assumes 4D analyticity, the consequenc
D
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which is the existence of a spectral representation for
Green’s function. In our case 4D analyticity is violated, a
so are the conditions of the no-go theorem.

We would like to point out a certain common feature wi
(211) topologically massive gauge and gravity theory@62#
where the large-distance interactions are also powerlike.

Finally, we would like to emphasize that the models~1!
and ~7! give rise to a gravitational analogue of the Hig
mechanism in the following sense—the effective gravito
mediating interaction is massive, and, nevertheless,
growth of the nonlinear amplitudes is softened at the expe
of having an infinite number of fields. This phenomenon c
be rather transparently understood from the standpoint of
KK modes. The manifest reparametrization invariance i
convenient bookkeeping tool in this case for determin
whether or not the amplitudes blow up. The reparametri
tion invariance at each KK level is maintained at the sa
KK level only in the linearized approximation. Nonlinea
effects mix distinct KK levels under the reparametrizati
transformations@63,64#. Hence, if the KK tower is truncated
at some finite level, the breakdown of perturbation theory
nonlinear diagrams is inevitable. However, if the infinite t
tality of the KK modes are kept, as in Eq.~1!, the softening
of the amplitudes should be expected. The present work f
confirms this expectation. In light of this finding, it would b
interesting to discuss the strong-coupling issue in nonlin
interactions of the 5D DGP model studied in Re
@36,65,66#. In particular, the immediate task is to understa
whether this is a problem of the particular perturbati
theory, as advocated in Ref.@36#, or a problem inherent in
the model itself@65,66#. Already, from the equations of th
present work, it is clear that theN51 DGP model withb
51 in Eq. ~7! has no strong-coupling problem. The oth
possibilities are currently under investigation; the answ
will be reported elsewhere.
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