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Reflection, radiation, and interference near the black hole horizon

M. Yu. Kuchiev*
School of Physics, University of New South Wales, Sydney 2052, Australia

~Received 8 October 2003; published 29 June 2004!

The event horizon of black holes is capable of reflection: there is a finite probability for any particle that
approaches the horizon to bounce back. The albedo of the horizon depends on the black hole temperature and
the energy of the incoming particle. The reflection shares its physical origins with the Hawking process of
radiation; both of them arise as consequences of the mixing of the incoming and outgoing waves that takes
place due to quantum processes on the event horizon.
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I. INTRODUCTION

Classically the event horizon of black holes is presum
to be unable to emit anything into the outside world and
supposed to possess perfect absorption ability, i.e., to be
to take in everything that comes close to the horizon. Th
is, however, a known limitation to this simple intuitive pic
ture that stems from thermodynamics, which attributes te
perature and entropy to black holes. The first indication t
gravitational fields could have entropy came when the inv
tigation of Christodoulou@1# of the Penrose process@2# for
extracting energy from a Kerr black hole showed that ther
a quantity which could not decrease. Hawking found@3# that
it is proportional to the area of the horizon. Further resea
of Bardeenet al. @4# demonstrated that black holes shou
obey laws similar to the laws of thermodynamics. An imp
tant step made by Bekenstein@5–7# revealed that the are
was actually the physical entropy. This suggestion was s
ported and enriched by the discovery of the Hawking rad
tion phenomenon@8,9#. These works provided the foundatio
for the thermodynamics approach to black holes; for a rec
review, see Wald@10# and references therein and also t
books by Frolov and Novikov@11#, Thorne@12#, and Chan-
drasekhar@13# for a comprehensive discussion of other bla
hole properties.

The thermodynamics properties of black holes reveal
the black hole horizon has a finite temperatureT and, corre-
spondingly, is capable of radiation through the Hawki
mechanism, in contradiction to the naive expectations. In
work I address another, new property of the horizon, its a
ity for reflection. The classical description of motion in th
vicinity of the black hole horizon includes two types of tr
jectories. There are the ingoing trajectories, describing
motion toward the black hole center. There are also the
going trajectories that lead out of the black hole center. C
sically, these two types of motion are quite different. If
particle following the ingoing trajectory approaches t
event horizon, then it inevitably crosses it into the insi
region. After that it stays inside; there is no classically
lowed way for it to switch to any outgoing trajectory th
leads into the outside region, in full accord with intuitiv
feelings. Discussing this point later on, we will use Fig.
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below as an illustration of this statement. Thus classically
horizon cannot reflect approaching particles.

The quantum description reveals a new unexpected
ture of the problem. The wave function of the incoming p
ticle necessarily includes both the incoming and outgo
waves. The presence of the outgoing wave in the wave fu
tion of the incoming particle has important physical implic
tions. One of them is the effect ofreflection from the horizon
~RH! which is discussed in some detail in this work. The R
means that there is a finite probability for an incoming p
ticle to be reflected off the event horizon, back to the outs
region. Another effect is the well-known Hawking mech
nism of radiation. We show that the radiation can be cons
ered as a consequence of the mentioned interference.
new point of view provides an attractive physical picture th
sheds new light on the radiation process.

An important, intrinsic property of the RH is that it is du
to those events that take placestrictly on the horizon. This
feature distinguishes it from a number of known phenome
that take place outside the horizon. One of them is relate
the well-known graybody factors that arise from energ
dependent potential barriers outside the horizon. These
tors filter the incoming and outgoing waves, producing
strong impact on the scattering process. In particular, t
make the absorption cross sections finite, proportional to
event horizon area in the infrared region@14#. The graybody
factors also manifest themselves in the Hawking radiat
process@8,9#, filtering the initially blackbody spectrum ema
nating from the horizon~see Ref.@15# devoted to a numbe
of different aspects relevant to the graybody effect!. The dis-
tinction between the RH effect and the graybody factors
comes particularly prominent in the infrared region, wh
the distances related to the graybody factors are much la
than the radius of the horizon, while the RH remains loc
ized on the horizon. There are a number of other effe
related to the potential barriers outside the horizon, for
ample, gravitational lensing~for theory and references, se
the book @16#!. Lensing, in particular, can be caused b
strong bending of light which, for the Schwarzschild bla
hole, happens in the vicinity ofr 5(3/2)r g.r g , wherer g is
the Schwarzschild radius~see Ref. @17# and references
therein!.

In contrast with other phenomena mentioned above,
RH is localized precisely on the horizon. This means that
principle, this phenomenon can be studied both theoretic
©2004 The American Physical Society31-1
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and experimentally separately from other phenomena, wh
are localized outside the horizon. The corresponding exp
mental study would require that an experimental facility
brought into the close vicinity of the horizon~the obvious
difficulty of such an experimental setup is irrelevant here
is important only that this is possible in principle!. However,
if we consider experimental conditions in which a partic
propagates from large distances toward the horizon, then
events in the outside region, in particular those described
the graybody factors, and the effect of the RH should
considered simultaneously.

A situation of this type takes place in scattering. The d
covery of the Penrose process@2# and the works of
Zel’dovich @18# and Misner@19# devoted to the energy ex
traction from the Kerr black hole greatly stimulated intere
in the scattering problem, which for the Kerr black hole c
be formulated in terms of the superradiation process.
corresponding amplification factor was calculated num
cally by Press and Teukolsky@20,21# and analytically by
Starobinsky@22# for the scalar field and by Starobinsky an
Churilov @23# for electromagnetic and gravitational wave
Independently, in parallel with this line of research, Unr
@24# found the absorption cross section for scalar and
mion particles scattered off a Schwarzschild black hole. T
results of these, as well as the following works~see, e.g.,
@25#!, take into account phenomena associated with the g
body factors; see the books@11,13,26# which summarize the
results of the mentioned studies and provide further re
ences on the subject. However, Ref.@27#, which follows in
the footsteps of the present work and Refs.@28–30#, shows
that the RH effect has a significant, qualitative influence
scattering, which has not been considered previously. T
fact allows the RH effect to be measured by an obser
located far away from the black hole. However, this top
will remain outside the scope of the present work, which
focused on those events that take place in the close vic
of the horizon. This formulation makes the discussion m
transparent~and permits one to neglect complications i
duced by the graybody factors!.

To describe the main result of this work, consider a p
ticle in the outside region that approaches the black h
horizon. It is shown that there is a finite probabilityP for the
particle to be reflected off the horizon,

P5expS 2
«2QF2Jv

kT D , ~1.1!

in other words, the horizon possesses albedo.1 The probabil-
ity of RH depends on the energy of the incoming particle«,
its chargeQ, and its projection of the orbital momentumJ on
the axis of rotation of the black hole. The essential para
eters of the black hole that govern the process are the
peratureT, the electric potential on the horizonF, and the
angular velocity of the horizonv.

1This should not be confused with the well-known albedo of
black hole related to the graybody factors.
12403
h
ri-

t

he
y

e

-

t

e
i-

.

r-
e

y-

r-

n
is
r

s
ty
e

-
le

-
m-

Notably, the probability of RH~1.1! coincides with the
temperature factor that governs the Hawking radiation p
cess, although the physical manifestation of the RH diff
from the radiation since the flux of the reflected particles
proportional to the magnitude of the incoming flux. Neve
theless, the similarity between the probability of RH~1.1!
and the temperature factor is not accidental. As was m
tioned above, the RH and radiation share the same phys
origin, namely, the interference of the incoming and outgo
waves due to effects that take place on the horizon. We
velop a convenient way to prove the existence of this int
ference and to establish its magnitude by deriving Eq.~1.1!
for the RH.

This paper is based on the eternal approach to black ho
For practical applications one needs to verify that the resu
obtained are applicable to the collapsing black holes as w
There are reasons indicating that this is probably the c
First, the result is very robust. This paper employs two d
ferent ~though related! approaches to verify it. The recen
reference@29# presents another two different ways that le
to the same conclusion. Considered by itself, this fact~how-
ever positive it is! is probably not decisive, because all th
above mentioned methods of derivation are based on
eternal approach. However, there is a second reason sup
ing the validity of the presented results for collapsing bla
holes. This paper shows that the reflection on the horizon
the Hawking radiation process share similar physical origi
This claim is discussed from different perspectives in@27–
30#, making this conclusion reliable. Therefore, since it
firmly established that the radiation phenomenon is relev
to the collapsing black hole, one should expect the effec
reflection to possess this property also.

Relativistic units\5c51 are used, supplemented by th
condition 2Gm51 imposed on the gravitational constantG
and the black hole massm, if not stated otherwise. The
Schwarzschild radius in these units reads simplyr g
52Gm/c2[1.

II. SINGULARITY OF THE WAVE FUNCTION
ON THE HORIZON

Consider a static black hole described by the conventio
Schwarzschild metric

ds252S 12
1

r Ddt21
dr2

121/r
1r 2dV2, ~2.1!

wheredV25du21sin2udw2. The Hamilton-Jacobi classica
equations of motiongkl]kS]lS52m2 for a particle with
the massm in the metric~2.1! take the form

Ṡ2

121/r
5S 12

1

r D S ]S

]r D 2

1
1

r 2 S ]S

]w D 2

1m2. ~2.2!

Separating the variablesS(r ,t)52«t1Lw1S(r ), where«
andL are the energy and the momentum of the particle, a
w is its azimuthal angle, one finds the radial action
1-2
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S~r !57E r F«22S m21
L2

r D S 12
1

r D G1/2 dr

121/r
. ~2.3!

In the vicinity of the black hole horizonr→1, which plays
an important role in the following discussion, the action~2.3!
simplifies to

S~r !57« ln~r 21!, ~2.4!

which givesS(r ,t)52«t6« ln(r21)1Lw. The correspond-
ing equation of motion]«S(r ,t)50 yields the radial trajec-
tories

r 511exp~7t !. ~2.5!

The minus and plus signs in Eqs.~2.3!,~2.4!,~2.5! correspond
to the incoming and outgoing trajectories, respective
These equations are conveniently written for the outside
gion r .1 ~the inside region is discussed in Sec. V!. It is
important that the classical action for a probing particle h
the logarithmic singularity~2.4! on the horizon. The coeffi-
cient in front of the logarithm function is equal to the ener
of the particle« («r g /c in absolute units!, which plays an
important role in what follows, eventually finding its wa
into the exponential function in Eq.~1.1!. Importantly, the
logarithmic singularity is an invariant property of the actio
it persists even in those coordinates that eliminate the sin
larity of the metric on the horizon, as is discussed in Sec

The classical action allows one to find the semiclass
wave functionF(r ,t) that describes the coordinate motion
the particle~leaving aside possible spin variables!. Separat-
ing the variables,F(r ,t)5exp(2i«t)YLM(u,w)f(r), where
YLM(u,w) is the conventional spherical function describi
the motion with orbital momentumL and its projectionM,
one presents the semiclassical radial wave functionf(r ) as

f~r !}exp@ iS~r !#.exp@7 i« ln~r 21!#. ~2.6!

We will verify below @see after Eq.~2.7!# that the preexpo-
nential factor in Eq.~2.6! is a constant, which we chose to b
unity. Thus the singularity of the action atr 51 results in the
corresponding singularity of the wave function.

In order to scrutinize this result one needs to assess
validity of the semiclassical description in the vicinity of th
horizon. To this end, consider the wave functionF(r ,t) as a
solution of the Klein-Gordon equation for the scalar fie
From Eq.~2.1! one finds that the radial wave functionf(r )
satisfies the equation

f91S 1

r
1

1

r 21Df81
1

121/r S «2

121/r
2m22

L~L11!

r 2 D f

50. ~2.7!

In the vicinity of the horizonr 51 the solution can be
approximated byf(r ).(r 21)h where Eq. ~2.7! yields
h56 i«. The agreement with the semiclassical result~2.6!
supports its validity and verifies that the preexponential f
tor in Eq. ~2.6! is, indeed, a constant. It is instructive also
look at the singularity of the wave function~2.6! from the
12403
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point of view of the conventional Schro¨dinger-type equation.
Making the substitutionf(r )→c(r )5@r (r 21)#1/2f(r ),
one rewrites Eq.~2.7! as

p2c~r !52c9~r !1U~r !c~r !, ~2.8!

where

U~r !52
1

~r 21!2 S «21
1

4r 2D 2
1

r 21 S «21p22
L~L11!

r D .

~2.9!

Equation~2.9! has the form of a Schro¨dinger-type equation if
we considerU(r ) as an effective, energy-dependent poten
and accept the momentump2 on the left-hand side as th
eigenvalue. Forr→1 the potential exhibits the notable fea
ture

U~r !→2
«211/4

~r 21!2
. ~2.10!

It is well known in nonrelativistic quantum mechanics@33#
that in the potentialU(z)52U0 /z2 for U0.1/4 the wave
function collapses to the pointz50. Since the necessar
inequality is obviously satisfied in Eq.~2.10!, «211/4
.1/4, one concludes that Eq.~2.8! indicates the collapse o
the wave function on the event horizonr 51. This fact could
be interpreted as the absorption of the particle by the bl
hole. Thus at first sight the quantum description seems
agree with classical arguments based on the incoming tra
tory in Eq. ~2.5! which converges to the event horizon, su
porting also the intuitive perception of the black hole horiz
as an ideal absorber. However, a more careful discus
below exposes the limitations of this point of view.

Summarizing, we demonstrated that the wave funct
f(r ) has a singularity~2.6! on the event horizon.

III. REFLECTION BY THE HORIZON

Consider a particle that approaches the event horizon
the black hole. Let us describe its radial motion with the h
of the wave functionf(r ). According to Eq.~2.6!, the wave
function in the vicinity of the horizon can be written as

f~r !5exp@2 i« ln~r 21!#1R exp@ i« ln~r 21!#. ~3.1!

The first term here describes the proper incoming wa
while the second one, which presents the outgoing wave
written in order to allow for the opportunity of possible in
terference of the incoming and outgoing waves in the wa
function. If this interference takes place, i.e., ifRÞ0, then
the outgoing wave in Eq.~3.1! clearly indicates that there i
a probability for the incoming particle to be reflected on t
horizon. The unitarity condition implies thatuRu<1. More-
over, intuitively one would expect the reflection coefficie
in Eq. ~3.1! to be zero,R50. This assumption would agre
with a naive perception of the black hole horizon as a perf
absorber. However, in order to verify, approve, or reject t
1-3
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intuitive claim ~we will reject it, in fact! one needs to exam
ine carefully what happens to the wave function on the
rizon.

A straightforward discussion of the events that happ
strictly at r 51 faces an obstacle produced by the singu
nature of the wave function~3.1! at this point. Fortunately
one can avoid discussion of the events that take place str
on the horizonr 51 by using the analytical continuation o
the wave function in the vicinity of this point. Consider th
distance from the horizonz5r 21, treatingz as a complex
variable. The wave function~3.1! is explicitly analytical inz,
except for the power-type singularity atz50 which induces
a cut emerging from this point on the complex planez. Let us
take r in the outside region of the black hole in the clo
vicinity of the event horizon, which means that 0,z!1, and
examine what happens to the wave function when one rot
z in the complexz plane over an angle of 2p clockwise@the
counterclockwise rotation is forbidden; see the discuss
after Eq.~3.9!#. We can keepuzu small, uzu!1, during this
rotation, thus justifying the validity of the semiclassical wa
function ~3.1!. This analytical continuation necessarily inco
porates a crossing of the cut on the complex plane. Th
fore, after finishing this rotation and returning to a re
physical valuez.0, the wave function acquires a new valu
on its Riemann surface; let us call itf (2p)(r ). A procedure
of this type is usually referred to as a monodromy. In o
case the monodromy can be read from Eq.~3.1!:

f (2p)~r !5% exp@2 i« ln~r 21!#1
R
%

exp@ i« ln~r 21!#,

~3.2!

where %5exp(22p«). The analytically continued function
f (2p)(r ) satisfies the same real differential equation as
initial function f(r ). Moreover, one has to expect that th
wave functionf (2p)(r ) satisfies the same normalization co
ditions as the initial wave functionf(r ). This implies that
one of the coefficients in Eq.~3.2!, either% or R/%, should
have an absolute value equal to unity. Since%,1, we de-
duce thatuRu/%51, thus concluding that

uRu5expS 2
2pr g«

\c D , ~3.3!

where the conventional units are used to make the re
more transparent. We see that the reflection coefficien
nonzero. In other words, the black hole horizon is capable
reflection, i.e., the RH takes place.

There is a more general and rigorous way to prove
statement@28# that uses a symmetry of the black hole spa
time. It is convenient to present this argument in the Krus
coordinatesU,V @31#, which in the outside regionr .1 are
defined by

U52Ar 21 exp@~r 2t !/2#, ~3.4!

V5Ar 21 exp@~r 1t !/2#. ~3.5!
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An appropriate analytical continuation allows one to defi
them in the inside regionr ,1 as well. Overall, theU,V
plane shown in Fig. 1 represents the complete space-t
for a comprehensive discussion of the Kruskal coordina
see Ref.@32#.

The areas I and III in the Kruskal plane give twoidentical
representation of the outside world@31,32#. This means that
a transformation that brings an arbitrary pointA of the region
I into the symmetrically located pointA8 in the region III
~see Fig. 1! is a space-time symmetry. Therefore the wa
function transforms according to some representation of
symmetry group related to this transformation. The wa
function ~3.1! is a scalar; therefore this symmetry transfo
mation can manifest itself only asf→f85lf, wherel is a
constant. Applied twice, the considered transformat
brings the pointA back to its initial value, being accompa
nied by the transformation of the wave functionf→l2f,
which can differ from its initial value only by a phase facto
This shows thatl5expia, wherea is a phase that is no
determined by the symmetry conditions. Thus the trans
mationA→A8 results in

f→f85exp~ ia!f. ~3.6!

There is a convenient way to make use of this symme
condition. Let us first fulfill the complex rotationz
→exp(22pi)z. Equations~3.4!,~3.5! show that it results in
the transformationU→2U,V→2V which brings the point
A to A9 in Fig. 1. After that we can use the operation of tim
inversionT̂. According to Eqs.~3.4!,~3.5! the time inversion

FIG. 1. Kruskal coordinates. Areas I and III represent two ide
tical copies of the outside region; II and IV show two inside r
gions. Hyperbolic curvesUV5const describe the conditionr
5const, the dotted curve shows the location ofr 50, and the in-
clined straight line presents the conditiont5const. The direction of
time flow in I and III is opposite. The incoming particle followsAB,
crossing the horizonU50 and residing in II. The outgoing particle
CD escapes from IV, crossing the horizonV50 and coming to I.
Areas II and IV are not connected, which ensures classical confi
ment in II. The wave function~3.1! or ~5.3! describes mixing of
events that correspond to incoming and outgoing classical traje
ries ~AB andCD!, resulting in the phenomena of RH and radiatio
The symmetrically located pointsA, A8, A9 are used to reveal the
symmetry ~3.8! of the space-time. The wave function~3.1! de-
scribes mixing of events corresponding to incoming and outgo
trajectories~AB and CD!, which results in the phenomena of R
and radiation.
1-4
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t→2t is equal to the transformationU→2V,V→2U,
which transformsA9 to A8 in Fig. 1. The appearance of th
time inversion is related to the fact that the arrows of tim
flow in areas I and III are opposite; see the inclined strai
line of constant time in Fig. 1. As usual, the inversion of tim
t→2t in the argument of the wave function should be a
companied by the complex conjugation of the function, i
the operator of the time inversion is defined asT̂@f(r ,t)#
[f* (r ,2t). For the stationary wave functionf
}exp(2i«t), this definition reads

T̂@f~r !#[f* ~r !. ~3.7!

Combining the 2p rotation on the complexz plane with the
time inversion Eq.~3.7!, we fulfill the transformationA
→A8. The symmetry of the space-time under this transf
mation Eq.~3.6! gives that

@f (2p)#* 5exp~ ia!f. ~3.8!

Using the wave functions~3.1! and ~3.2!, we find that the
symmetry Eq.~3.8! requires thatR5exp(22p«2ia), in ac-
cord with Eq.~3.3!. An alternative derivation of this resu
@29#, which relies more heavily on dynamical properties
the problem, supports the validity of Eq.~3.3! as well; it also
provides a way to determine the phasea @27#, which van-
ishes for low energies, i.e.,a50 when«!1.

From Eq. ~3.3! we see that the incoming and outgoin
waves interfere in the wave function~3.1!. Correspondingly,
there is RH. The probability of RH can be found asP
5uRu2, which in view of Eq.~3.3! givesP5exp(24p«) in
full accord with Eq.~1.1! stated in Sec. I. The parameterT
that appears in Eq.~1.1! arises from the coefficient in front o
the logarithmic function in Eq.~2.4!:

kT5
\c

4pr g
~3.9!

~absolute units!. Notably, it proves equal to the Hawkin
temperature of the black hole. In applying Eq.~1.1!, one
should remember, of course, that the electric potential
rotational frequency for the Schwarzschild case are abs
F5v50.

Let us go back to examine why it was necessary to
specifically the clockwise rotation when the analytical co
tinuation of the wave function~1.1! in the complexz plane
was obtained. A simplified answer to this question is that
attempt to use the counterclockwise rotation leads to a s
contradiction. Trying it, i.e., making the counterclockwi
rotation, one arrives at a result similar to~3.2!, but with a
different coefficient %8 instead of %, %→%851/%
5exp(2p«). Proceeding further, one would be forced to co
clude that the reflection coefficient isuR8u5exp(2p«), which
comes into obvious contradiction with the unitarity conditi
for the reflection which specifiesuR8u<1. It is a known,
common feature of the semiclassical wave function that
ferent ways of analytical continuation lead to different r
sults, and one needs to choose carefully an approp
method of continuation~3.1!. To outline the deeper roots o
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this problem, it is convenient to use the Kruskal coordina
~3.4!,~3.5!. It is known from the analysis of Hartle an
Hawking @34# that the propagator of the scalar particle in t
Schwarzschild metric is an analytical function ofU andV in
the upper half plane of the complexU plane and in the lower
half plane of the complexV plane. In terms of the variablez,
this means that the propagator remains an analytical func
when it is continued from the real semiaxisz.0 in the
clockwise direction over the angle 2p. There is a slight dis-
tinction in our case. Our analysis relies on the wave functi
while the work@34# refers to the properties of the propagato
However, the analytical properties of the wave function a
similar to those of the propagator. We conclude that the a
lytical continuation used in the derivation of Eq.~3.2! is
justified. In contrast, an attempt to use the analytical conti
ation rotatingz from the regionz.0 in the counterclockwise
direction meets a difficulty.

Equations~3.1!,~3.3! indicate that the horizon is capab
of reflecting the incoming particle with a probability given
Eq. ~1.1!. By the same token, it means that the probability
the incoming particle to cross the horizonPcr , penetrating
into the inside region, is less than unity,

Pcr512P. ~3.10!

We will use Eq.~3.10! in Sec. V when discussing the Hawk
ing radiation process.

Let us summarize the ideas used in the derivation of E
~3.1! and ~3.3!. We employed two important facts, the di
crete symmetry of the space-time presented by E
~3.6!,~3.7!,~3.8!, and the logarithmic singularity in the wav
function Eq.~3.1! in the vicinity of the event horizon. The
symmetry condition given by Eqs.~3.6!,~3.7!, ~3.8! implies
that the wave functionf (2p)(r ) satisfies the same normaliza
tion conditions as the initial wave functionf(r ). This state-
ment can be considered as a shortcut way to express
symmetry of the space-time. Its simplicity makes it conv
nient for applications to the more sophisticated black ho
discussed below.

IV. REFLECTION BY HORIZONS OF DIFFERENT BLACK
HOLES

This section extends the results derived above for
Schwarzschild black hole to other, more complex types
black holes.

A. Charged black holes

Consider the Reissner-Nordstro¨m black hole with massm
and chargeq. Its metric is given by

ds252S 12
1

r
1

q2

r 2D dt21
dr2

121/r 1q2/r 2
1r 2dV2.

~4.1!

We use conventional gravitational units for the charge, wh
means thatq2[4pGq2. The Hamilton-Jacobi equation fo
the particle with massm, chargeQ, and orbital momentumL
for the metric~4.1! reads
1-5
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~Ṡ2QF!2

121/r 1q2/r 2
5S 12

1

r
1

q2

r 2D S ]S

]r D 2

1
1

r 2 S ]S

]w D 2

1m2,

~4.2!

whereF(r )5q/r is the black hole electric potential. Sep
rating the variablesS(r ,t)52«t1L«1S(r ), one derives

S~r !57E F ~«2QF~r !!22S m21
L2

r D S 12
1

r
1

q2

r 2D G 1/2

3
dr2

121/r 1q2/r 2
. ~4.3!

The poles ofgrr 5121/r 1q2/r 2 are located on two spheri
cal surfaces with radii

r 65
1

2
6A1

4
2q2. ~4.4!

The larger of them, with the radiusr 1 , represents the blac
hole horizon. In the vicinity of the horizonr→r 1 one finds
from Eq. ~4.3!

S~r !.7z ln~r 2r 1!, ~4.5!

where

z5@«2QF~r 1!#
r 1

2

r 12r 2
. ~4.6!

In analogy with Eq.~2.4! the action~4.5! possesses a loga
rithmic singularity. We can therefore follow the way pave
by Eqs.~3.1!, ~3.2!, and ~3.3!. First we construct the wave
function

f~r !5exp@2 i z ln~r 21!#1R exp@ i z ln~r 21!#, ~4.7!

which describes the radial motion of the particle in the
cinity of the event horizon. Then, introducing the variab
z5r 2r 1 and assuming thatz.0,uzu!r 12r 2 , i.e., takingr
in the external region in a close vicinity of the event horizo
we make the analytical continuation of rotatingz in the com-
plex plane z→exp(2ig)z,g>0, eventually takingg52p.
The discrete symmetry of the space-time requires that
analytical continuation does not change the normaliza
conditions of the wave function; see the discussion at the
of Sec. III.

The described procedure gives the coefficient of reflec
R5exp(22pz) and the probability of RH P5uRu2

5exp(24pz). The latter result agrees with Eq.~1.1!, where
the value for the parameterT follows from Eqs.~4.5!,~4.6!,

kT5
\c

4p

r 12r 2

r 1
2

~4.8!

~absolute units!. It proves equal to the Hawking temperatu
of the charged black hole.
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B. Rotating black holes

Consider the Kerr black hole, which possesses the mam
and the spinj, which is conveniently parametrized bya
5 j /m. The Kerr metric reads

ds252
D

r
~dt2a sin2udw!21

sin2u

r2
@~r 21a2!dw2adt#2

1
r2

D
dr21r2du2. ~4.9!

Here D5r 22r 1a2 and r25r 21a2cos2u. The poles ofgrr
5r2/D, i.e., the nodes ofD, are located on two spheres wit
radii

r 65
1

2
6A1

4
2a2, ~4.10!

the larger of which represents the black hole horizon. T
Hamilton-Jacobi equations of motion for the metric~4.9!,

1

D S r 21a21
ra2

r2
sin2u D 2

Ṡ22
D

r2 S ]S

]r D 2

2
1

r2 S ]S

]u D 2

2
1

D sin2u
S 12

r

r2D S ]S

]w D 2

12S ra

r2D
D ]S

]w
Ṡ5m2,

~4.11!

allow the full separation of variablesS(r ,t)52«t1Jw
1S(u)1S(r ), which results in the following equation fo
the radial actionS(r ):

S~r !5E D21ARdt, ~4.12!

R5P22D@m2r 21K#, ~4.13!

P5«~r 21a2!2aJ. ~4.14!

HereJ is the conserved projection of the orbital momentu
of the particle on the axis of rotation of the black hole, andK
is an additional~‘‘accidental’’! integral of motion. In the vi-
cinity of the horizon r→r 1 ,D→0, one finds from Eq.
~4.12! that S(r ) has a logarithmic singularity that satisfie
Eq. ~4.5! in which the parameterz equals

z5~«2Jv!
r 1

2 1a2

r 12r 2
. ~4.15!

Here v5a/(r 1
2 1a2) is the frequency of rotation of the

black hole horizon. Using the method well discussed abo
we derive from the logarithmic singularity that the rotatin
black hole is capable of RH; the probability of reflection
given by Eq.~1!, in which Eq.~4.15! predicts for the param-
eterT
1-6
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kT5
\c

4p

r 12r 2

r 1
2 1a2

~4.16!

~absolute units!, which coincides with the temperature of th
rotating black hole.

C. Charged rotating black holes

Consider the general case of the Kerr-Neumann bl
hole, which possesses both the chargeq and the spinj. The
Kerr-Newman metric in the Boyer-Lindquist coordinates
described by Eq.~4.9!, in which the parameterD reads

D5r 22r 1a21q2. ~4.17!

The nodes ofD are located on spheres with radii

r 65
1

2
6A1

4
2a22q2, ~4.18!

the larger of which represents the black hole horizon. T
electromagnetic field of the black hole is described by
vector potential Amdxm52(qr/r2)(dt2a sin2udw). The
Hamilton-Jacobi equations of motion for a charged parti
moving in the gravitational and electromagnetic fields c
ated by a black hole allow the full separation of variabl
see, e.g., Ref.@32#, p. 901. One promptly finds that the radi
action is described by Eqs.~4.12!,~4.13!, in which the param-
eterP equals

P5«~r 21a2!2aJ2qQr. ~4.19!

From Eqs.~4.12!,~4.13!,~4.19! we find that on the horizon
r→r 1 the action has the logarithmic singularity

S~r !.7z ln~r 2r 1!, ~4.20!

where

z5@«2QF~r 1!2Jv#
r 1

2 1a2

r 12r 2
. ~4.21!

Here F(r 1)5qQr1 /(r 1
2 1a2) is the potential describing

interaction of the particle with the electromagnetic field
the black hole on the horizon. Using Eq.~4.21! and applying
the method well described above, one proves that the re
tion probability for the Kerr-Newman black hole is given b
Eq. ~1.1!. The parameterT that appears in Eq.~1.1! satisfies
Eq. ~4.16! with r 6 from Eq.~4.18!; this T coincides with the
temperature of the Kerr-Newman black hole. Setting in E
~4.16!,~4.18! eitherq or j or both of them to zero, one return
to the cases of the Kerr black hole, the Reissner-Nordst¨m
black hole, and the Schwarzschild black hole, respective

We relied above on the semiclassical approach. Equa
~4.18! can be improved to account more accurately for
quantum properties of the momentumj by substituting j 2

→ j ( j 11) in a2 in Eq. ~4.18!. This issue becomes importan
when the quantum properties of the black hole itself are c
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sidered~see recent work of Bekenstein devoted to this s
ject @35,36#!. However, for the purpose of this work thi
subtlety is not essential.

We discussed in this section several types of black ho
that possess either charge or momentum or both, verify
that in each and every case the black hole is capable
reflection. Our most general result, which is presented
the Kerr-Newman solution, is described in Eq
~1.1!,~4.16!,~4.18!. A number of more sophisticated solution
for black holes with hair are known~see the review@37#! but
we leave them outside the scope of the present work.

V. REFLECTION AND RADIATION

Let us show that the reflection ability of the black ho
horizon and the phenomenon of Hawking radiation have
same physical origin. Consider the Schwarzschild case
simplicity. It is convenient to rewrite our results in th
Kruskal coordinates. As a first step let us return to the tim
dependent description. The time-dependent action eq
S(r ,t)5S(r )2«t, in which the radial component in the vi
cinity of the horizon readsS(r )57« ln(r21); here the signs
‘‘minus’’and ‘‘plus’’ correspond to the incoming and outgo
ing trajectories, respectively. Using the Kruskal coordina
Eqs.~3.4!,~3.5!, the action can be conveniently rewritten a

S~r !52« ln~r 21!2«t.2« ln V2 ~5.1!

for the incoming trajectory, and

S~r !5« ln~r 21!2«t.« ln U2 ~5.2!

for the outgoing trajectory. Let us rewrite corresponding
the radial wave function~3.1!. Multiplying it by the time-
dependent factor exp(2i«t), one can present it in a conve
nient abstract notation

uf&5u in&1Ru out&, ~5.3!

where uf&5exp(2i«t)f(r), andf(r ) is given in Eq.~3.1!.
The two terms on the right-hand side of Eq.~3.1! are

u in&5exp@2 i« ln~V2!#, ~5.4!

uout&5exp@ i« ln~U2!#. ~5.5!

We restrict our discussion to the events that take place in
vicinity of the horizon, where the semiclassical descripti
holds, justifying Eqs.~5.4!,~5.5!. The classical trajectory tha
corresponds to the incoming waveu in& follows from the
equation of motion]«S50, where the action is given in Eq
~5.2!. Therefore the ingoing trajectory is described by t
equationV5const. Similarly, the outgoing waveuout& in the
vicinity of the horizon corresponds to the classical trajecto
U5const. In r ,t variables these two trajectories are pr
sented in Eq.~2.5! for the outside region.

Figure 1 shows classical trajectories in Kruskal coor
nates. This graphical presentation emphasizes the u
pected, nontrivial nature of the interference between the
coming and outgoing waves in Eq.~5.3!. A particle that
follows the incoming trajectory has no classically allow
1-7
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chance to switch to the outgoing trajectory in the class
approximation. Figure 1 visualizes this argument, show
that inside the event horizon the incoming and outgoing
jectories belong to different regions of theU-V plane. Thus
the incoming and outgoing trajectories seem to be co
pletely unrelated. However, Eq.~5.3! indicates that on the
quantum level there arises a connection between the inc
ing and outgoing waves. It manifests itself as the interfere
of these waves in the wave function. We verified this sta
ment above for the outside regionr .1, but it holds for the
inside region as well. Indeed, the Kruskal coordinates in E
~5.4!,~5.5! show that the logarithmic singularity of the wav
function does not depend on the sign ofU and V, i.e., it
exists on both sides of the horizon. Therefore inside the
rizon one can use same method that we used above fo
outside region, which leads to the same result, which rem
valid on both sides of the horizon: the incoming and outg
ing waves do interfere in the wave function~5.3! ~see also
the discussion in Ref.@28#!.

We discussed in Secs. III and IV the physical manifes
tion of this interference for the outside region, claiming th
it leads to the reflection of the probing incoming partic
from the event horizon. Let us now consider the physi
manifestation of this interference for the region inside
horizon. The classical ingoing trajectoryV5const describes
here the motion toward the black hole center; the outgo
U5const trajectory describes the motion that eventua
brings the particle from the inside region, over the horiz
into the outside regionr .1. If a particle follows the ingoing
classical trajectory then, as mentioned above, there is
classical way for it to switch to the outgoing trajectory a
escape into the outside region. However, Eq.~5.3! shows that
the perception based on the classical picture is not c
pletely correct. In the quantum wave function the proper
going waveu in& is mixed with the proper outgoing wav
uout&. This mixing indicates that the particle that moves
ward the black hole center in the inside region has a fin
chance to simultaneously populate the outgoing wave
brings it to the outside region. Thus there is a finite proba
ity for the particle to escape from the region inside the ho
zon into the outside region.

Let us calculate this probability. Suppose that there i
particle confined in the inside region. Assume that this p
ticle occupies a state with the quantum numbers«,L,M
moving from the horizon deeper inside the black hole, ev
tually aiming at the singularity at the origin.2 According to
the above discussion one should describe this particle by
wave function~5.3!, which shows that there is an admixtu
of the outgoing wave. The probability of populating th

2Generally speaking, to be certain that the particle is located in
inside region, one needs to describe its motion with the help of
wave packet that propagates from the horizon into the deepe
gion. However, for our purposes it suffices to take into account o
one wave with the given quantum numbers«,L,M . In proving be-
low that each wave of the packet has a chance to escape from
inside region, we prove simultaneously that the wave packet
escape as well.
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wave is P5uRu2. Following the classical outgoing trajec
tory, which corresponds to this wave, the particle can re
the event horizon and therefore can escape into the out
world.

Thus there exists the probability that the particle escap
Pesc}uRu25P. We can be more specific. We know that th
wave that reaches the event horizon is partially reflect
According to Eq.~3.10! the probability of RH equalsPcr
512P. We proved this result when we considered the sc
tering process that takes place in the outside region. One
verify that this result holds when we consider the scatter
that takes place for the wave that comes to the horizon on
way from inside out as well. Combining the two factors, t
probability of populating the outgoing wave and the pro
ability of crossing the event horizon we conclude that t
probability for the particle to escape into the outside wo
equalsPesc5P(12P). It is instructive to compare this resu
with the probability of the particle to be absorbed. Suppo
we have an incoming particle in the outside region in a st
described by the wave function~5.3! with the same quantum
numbers«,L,M . The probability for this particle to populat
the ingoing wave in Eq.~5.3! is unity; therefore the probabil
ity to be absorbedPabsinto the inside region equals the prob
ability to cross the event horizon~3.10!, which givesPabs
512P. We can consider now the ratio of the probability f
a particle to escape from the inside region to the probab
to be absorbed:

Pesc

Pabs
5P5expS 2

«

kTD . ~5.6!

Discussing the probabilities above, we considered only th
factors that originate directly from the wave function~5.3!.
The physical probabilities include also additional normaliz
tion factors related to the flux of particles and the surfa
area of the event horizon. However, these additional fac
are canceled out in the ratio~5.6!, which presents therefore
the result for the ratio of the two physical rates, emittan
and absorption. It states that the ratio of the emittance
absorption rates coincides with the conventional tempera
factor that describes the ratio of these rates for a blackb
with temperatureT. This means that if the black hole is pu
inside a thermostat with temperatureT, it remains in equilib-
rium with it. One concludes therefore that Eq.~5.6! indicates
that the black hole possesses temperatureT, radiating as a
blackbody with this temperature, as was first discovered
Hawking @8,9# using different arguments.

There is a conventional physical explanation for t
Hawking process that refers to the creation of pairs. T
gravitational field in the vicinity of the horizon creates a pa
then a particle goes into the outside world, while its antipa
ner is absorbed by the black hole. This explanation of
process needs effort to prove the fact that the antipart
brings into the black hole the negative amount of energy t
compensates the energy of the created particle. Equa
~5.3! suggests an alternative simple explanation. The ra
tion happens because the particle confined inside the hor
can escape into the outside world. This point of view au
matically accounts for the reduction of the mass of the bla
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hole; when the particle escapes from the black hole it
longer contributes to the mass of the black hole.

Summarizing, we verified that both the RH and the Haw
ing radiation stem from the interference of the incoming a
outgoing waves in the wave function~5.3!.

VI. DISCUSSION AND CONCLUSION

The existence of the event horizon that separates the
side and inside regions is the main property of black holes
is well known that one can always choose a coordinate fra
that makes the metric smooth on the horizon. Correspo
ingly, the classical equations of motion for a probing parti
in these coordinates are also smooth on the horizon. F
this fact follows a known conclusion: a probing particle th
follows the classical trajectory on its way to the black ho
crosses the horizon quite smoothly, but after that will
forced to stay inside forever. However, quantum correcti
influence the fate of this particle. The arguments presen
indicate that the horizon makes a strong impact on the w
function of a probing particle. It manifests itself in the for
of interference, mixing of the incoming and outgoing wav
in the wave function~5.3!. Without this mixing the incoming
wave crosses the event horizon quite uneventfully, in acc
with the similar smooth transition through the horizon of t
classical trajectory. The mentioned mixing indicates that
incoming wave inevitably incorporates some admixture
the outgoing wave.

This result was derived from two facts: the discrete sy
metry of the space-time and the semiclassical nature of
wave function in the vicinity of the horizon. The mixin
coefficientR obtained possesses a typically semiclassical
ture for a classically forbidden quantity,

uRu5expS 2
A
\ D , ~6.1!

whereA has the meaning of some effective classical acti
For example, for the Schwarzschild geometry of the bla
hole A5«t, where t has the dimension of time with th
typical value t52pr g /c. In the classical limit\→0 the
mixing ~6.1! disappears. Thus, from the point of view of th
classical approximation the physical manifestations of qu
tum interference look unusual. Generally speaking, ther
nothing unusual about interference between the incom
and outgoing waves; on the contrary, it is quite normal~it
happens, for example, due to the graybody factors!. The
point is that the black hole horizon is very special. It
th
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supposed to absorb very well everything incoming; theref
naively the particle that approaches the horizon is descri
by a purely incoming wave. From this perspective the ex
tence of the interference and, consequently, the existenc
the reflected outgoing wave is surprising.

We discussed two effects that originate from the interf
ence between the incoming and outgoing waves. One
them is a novel effect, RH. For any particle that approac
the event horizon there is a finite probability to bounce ba
into the outside world. The probability of RH depends on t
energy« of the incoming particle and the temperatureT of
the black hole. For«,T the black hole horizon behaves as
reflector, which is unusual.

Another effect that follows from the interference of th
incoming and outgoing waves is the well-known pheno
enon of Hawking radiation. The suggested new explana
for this effect is simple and appealing. The radiation happ
because, when the incoming particle is confined in the ins
region, it still maintains an opportunity to escape back in
the outside world. This fact changes the perception of
event horizon. Conventional arguments claim that, when
incoming particle comes into the inside region, it stays th
forever; the horizon is impassable for the backward tran
tion. This argument, however, holds only in the classical
proximation. Quantum corrections make the horizon partia
transparent; the particles can cross it and go away, crea
the Hawking radiation spectrum of the black hole.

Both the radiative and reflective abilities of the black ho
horizon arise from quantum corrections; both these proce
are governed by the Hawking temperature of the black h
but experimentally they are easily distinguishable. The
flected flux depends on the nature, flux, and spectrum of
incoming particles, as well as on the black hole propert
while the radiation is governed entirely by the black ho
The radiation phenomenon provides support for import
thermodynamic properties of black holes. The suggested
approach to the origins of the radiation may help one to lo
anew at the thermodynamics properties of black holes
well, but this topic lies ahead.

In conclusion, we showed that the black hole horizon
capable of reflection and found a general common phys
origin of this effect and the Hawking radiation.
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