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Reflection, radiation, and interference near the black hole horizon
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The event horizon of black holes is capable of reflection: there is a finite probability for any particle that
approaches the horizon to bounce back. The albedo of the horizon depends on the black hole temperature and
the energy of the incoming particle. The reflection shares its physical origins with the Hawking process of
radiation; both of them arise as consequences of the mixing of the incoming and outgoing waves that takes
place due to quantum processes on the event horizon.
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[. INTRODUCTION below as an illustration of this statement. Thus classically the
horizon cannot reflect approaching particles.

Classically the event horizon of black holes is presumed The quantum description reveals a new unexpected fea-
to be unable to emit anything into the outside world and isture of the problem. The wave function of the incoming par-
supposed to possess perfect absorption ability, i.e., to be abliele necessarily includes both the incoming and outgoing
to take in everything that comes close to the horizon. Therevaves. The presence of the outgoing wave in the wave func-
is, however, a known limitation to this simple intuitive pic- tion of the incoming particle has important physical implica-
ture that stems from thermodynamics, which attributes temtions. One of them is the effect offlection from the horizon
perature and entropy to black holes. The first indication thatRH) which is discussed in some detail in this work. The RH
gravitational fields could have entropy came when the invesmeans that there is a finite probability for an incoming par-
tigation of Christodouloy1] of the Penrose proce$g] for ticle to be reflected off the event horizon, back to the outside
extracting energy from a Kerr black hole showed that there isegion. Another effect is the well-known Hawking mecha-
a quantity which could not decrease. Hawking folil@fithat ~ nism of radiation. We show that the radiation can be consid-
it is proportional to the area of the horizon. Further researclered as a consequence of the mentioned interference. This
of Bardeenet al. [4] demonstrated that black holes should new point of view provides an attractive physical picture that
obey laws similar to the laws of thermodynamics. An impor-sheds new light on the radiation process.
tant step made by Bekenstdif—7] revealed that the area An important, intrinsic property of the RH is that it is due
was actually the physical entropy. This suggestion was supo those events that take plastictly on the horizon. This
ported and enriched by the discovery of the Hawking radiafeature distinguishes it from a number of known phenomena
tion phenomenof8,9]. These works provided the foundation that take place outside the horizon. One of them is related to
for the thermodynamics approach to black holes; for a recerthe well-known graybody factors that arise from energy-
review, see Wald10] and references therein and also thedependent potential barriers outside the horizon. These fac-
books by Frolov and Novikoy11], Thorne[12], and Chan- tors filter the incoming and outgoing waves, producing a
drasekhaf13] for a comprehensive discussion of other blackstrong impact on the scattering process. In particular, they
hole properties. make the absorption cross sections finite, proportional to the

The thermodynamics properties of black holes reveal thagvent horizon area in the infrared regidi#]. The graybody
the black hole horizon has a finite temperatlirand, corre- factors also manifest themselves in the Hawking radiation
spondingly, is capable of radiation through the Hawkingprocesd8,9], filtering the initially blackbody spectrum ema-
mechanism, in contradiction to the naive expectations. In thimating from the horizorisee Ref[15] devoted to a number
work | address another, new property of the horizon, its abil-of different aspects relevant to the graybody effe€he dis-
ity for reflection. The classical description of motion in the tinction between the RH effect and the graybody factors be-
vicinity of the black hole horizon includes two types of tra- comes particularly prominent in the infrared region, when
jectories. There are the ingoing trajectories, describing théhe distances related to the graybody factors are much larger
motion toward the black hole center. There are also the outhan the radius of the horizon, while the RH remains local-
going trajectories that lead out of the black hole center. Clasized on the horizon. There are a number of other effects
sically, these two types of motion are quite different. If arelated to the potential barriers outside the horizon, for ex-
particle following the ingoing trajectory approaches theample, gravitational lensin¢for theory and references, see
event horizon, then it inevitably crosses it into the insidethe book[16]). Lensing, in particular, can be caused by
region. After that it stays inside; there is no classically al-strong bending of light which, for the Schwarzschild black
lowed way for it to switch to any outgoing trajectory that hole, happens in the vicinity of=(3/2)r,>ry, whererg is
leads into the outside region, in full accord with intuitive the Schwarzschild radiugsee Ref.[17] and references
feelings. Discussing this point later on, we will use Fig. 1thereirn).

In contrast with other phenomena mentioned above, the
RH is localized precisely on the horizon. This means that, in
*Email address: kuchiev@newt.phys.unsw.edu.au principle, this phenomenon can be studied both theoretically
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and experimentally separately from other phenomena, which Notably, the probability of RH(1.1) coincides with the
are localized outside the horizon. The corresponding experiiemperature factor that governs the Hawking radiation pro-
mental study would require that an experimental facility iscess, although the physical manifestation of the RH differs
brought into the close vicinity of the horizofthe obvious from the radiation since the flux of the reflected particles is
difficulty of such an experimental setup is irrelevant here; itproportional to the magnitude of the incoming flux. Never-
is important only that this is possible in principlélowever, theless, the similarity between the probability of RH1)
if we consider experimental conditions in which a particleand the temperature factor is not accidental. As was men-
propagates from large distances toward the horizon, then thigoned above, the RH and radiation share the same physical
events in the outside region, in particular those described bgrigin, namely, the interference of the incoming and outgoing
the graybody factors, and the effect of the RH should bevaves due to effects that take place on the horizon. We de-
considered simultaneously. velop a convenient way to prove the existence of this inter-
A situation of this type takes place in scattering. The dis-ference and to establish its magnitude by deriving @&dl)
covery of the Penrose proce§®] and the works of for the RH.
Zel'dovich [18] and Misner[19] devoted to the energy ex- This paper is based on the eternal approach to black holes.
traction from the Kerr black hole greatly stimulated interestFor practical applications one needs to verify that the results
in the scattering problem, which for the Kerr black hole canobtained are applicable to the collapsing black holes as well.
be formulated in terms of the superradiation process. Th&here are reasons indicating that this is probably the case.
corresponding amplification factor was calculated numeriFirst, the result is very robust. This paper employs two dif-
cally by Press and Teukolskj20,21] and analytically by ferent (though related approaches to verify it. The recent
Starobinsky[22] for the scalar field and by Starobinsky and referencd 29] presents another two different ways that lead
Churilov [23] for electromagnetic and gravitational waves. to the same conclusion. Considered by itself, this fhotv-
Independently, in parallel with this line of research, Unruhever positive it i$ is probably not decisive, because all the
[24] found the absorption cross section for scalar and ferabove mentioned methods of derivation are based on the
mion particles scattered off a Schwarzschild black hole. Theternal approach. However, there is a second reason support-
results of these, as well as the following wortsee, e.g., ing the validity of the presented results for collapsing black
[25]), take into account phenomena associated with the grayroles. This paper shows that the reflection on the horizon and
body factors; see the book%1,13,26 which summarize the the Hawking radiation process share similar physical origins.
results of the mentioned studies and provide further referThis claim is discussed from different perspectivegaii—
ences on the subject. However, RgX7], which follows in  30], making this conclusion reliable. Therefore, since it is
the footsteps of the present work and R¢&8-30, shows firmly established that the radiation phenomenon is relevant
that the RH effect has a significant, qualitative influence orto the collapsing black hole, one should expect the effect of
scattering, which has not been considered previously. Thigeflection to possess this property also.
fact allows the RH effect to be measured by an observer Relativistic unitsh=c=1 are used, supplemented by the
located far away from the black hole. However, this topiccondition 25m=1 imposed on the gravitational constdht
will remain outside the scope of the present work, which isand the black hole mass, if not stated otherwise. The
focused on those events that take place in the close vicinitgchwarzschild radius in these units reads simply
of the horizon. This formulation makes the discussion more=2Gm/c?=1.
transparent(and permits one to neglect complications in-
duced by the graybody factors
To describe the main result of this work, consider a par-
ticle in the outside region that approaches the black hole

II. SINGULARITY OF THE WAVE FUNCTION
ON THE HORIZON

horizon. It is shown that there is a finite probabifffor the Consider a static black hole described by the conventional
particle to be reflected off the horizon, Schwarzschild metric
e—Qd—Jw 1, 2 o
P—exp(—T), (1) ds?=— 1—F)dt + g Fredo? (2.1

in other words, the horizon possesses albetibe probabil- wherngzzdazfsinngwz. The Hamilton-Jacobi classical

ity of RH depends on the energy of the incoming particle ~€quations of motiorg“*d,Sd,S=—u* for a particle with

its chargeQ, and its projection of the orbital momentuhon ~ the massu in the metric(2.1) take the form

the axis of rotation of the black hole. The essential param-

eters of the black hole that govern the process are the tem- ? 1\/9S\2 1/9S

peratureT, the electric potential on the horizeh, and the = -— —
. ; 1-1k ar de

angular velocity of the horizow.

2
) +u? (2.2

r r2

Separating the variabled(r,t)=—et+Lo+ S(r), wheree
This should not be confused with the well-known albedo of theandL are the energy and the momentum of the particle, and
black hole related to the graybody factors. ¢ is its azimuthal angle, one finds the radial action
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i, ) L2 1\1¥2 dr point of view of the conventional Schidimger-type equation.
S(T)ZIJ et | wt (1_F> 1 (2.3 Making the substitution(r)— w(r)=[r(r—1)]*?¢(r),
one rewrites Eq(2.7) as
In the vicinity of the black hole horizon—1, which plays ) ,
an important role in the following discussion, the acti@rB) PY(r)=—"(r)+U(r)(r), (2.8
simplifies to
where
S(ry=F¢elIn(r—1), (2.9
_ ) , 1 1 , ., L(L+1)
which givesS(r,t)= —et*e In(r—1)+Le. The correspond- U(r)=— Sl et — |~ 1le +p°— — ]
ing equation of motiory,S(r,t)=0 yields the radial trajec- (r=1 4r
tories (2.9
r=1+expt). (2.5  Equation(2.9) has the form of a Schdinger-type equation if

we consideltJ(r) as an effective, energy-dependent potential

The minus and plus signs in Eq&.3),(2.4),(2.5) correspond and accept the momentup? on the left-hand side as the
to the incoming and outgoing trajectories, respectivelyeigenvalue. For—1 the potential exhibits the notable fea-
These equations are conveniently written for the outside reture
gion r>1 (the inside region is discussed in Sec. Ut is
important that the classical action for a probing particle has e2+1/4
the logarithmic singularity(2.4) on the horizon. The coeffi- ur)—-— 5
cient in front of the logarithm function is equal to the energy (r=1)
of the particlee (erg/c in absolute units which plays an
important role in what follows, eventually finding its way X . 5
into the exponential function in Eq1.1). Importantly, the ~ that in the potential(z) = —U,/z° for U,>1/4 the wave
logarithmic singularity is an invariant property of the action; function collapses to the poirt=0. Since the necessary
it persists even in those coordinates that eliminate the singyf€duality is obviously satisfied in Eq(2.10, &°+1/4
larity of the metric on the horizon, as is discussed in Sec. V= 1/4, one concludes that E@.8) indicates the collapse of

The classical action allows one to find the semiclassicajn® wave function on the event horizor 1. This fact could
wave functiond(r,t) that describes the coordinate motion of P& interpreted as the absorption of the particle by the black

the particle(leaving aside possible spin variableSeparat- hele. Thus at first sight the quantum description seems to
ing the variables,d(r,t) =exp(ist)Y, (6,¢)H(r), where 2adree with classical arguments based on the incoming trajec-

Y_w(8,¢) is the conventional spherical function describing {Y in Ed. (2.5 which converges to the event horizon, sup-
the motion with orbital momenturh and its projection, porting also the intuitive perception of the black hole horizon

one presents the semiclassical radial wave funci#iér) as as an ideal absorbgr._quever, a more care_ful discussion
below exposes the limitations of this point of view.

d(r)cexdiS(r)]=exd FieIn(r—1)]. (2.6) Summarizing, we demonstrated that the wave function
¢(r) has a singularity2.6) on the event horizon.
We will verify below [see after Eq(2.7)] that the preexpo-

(2.10

It is well known in nonrelativistic quantum mechanif&3]

ne_ntial factor in I_Eq(2.6) _is a constan_t, which we chose to be IIl. REELECTION BY THE HORIZON
unity. Thus the singularity of the action et 1 results in the
corresponding singularity of the wave function. Consider a particle that approaches the event horizon of

In order to scrutinize this result one needs to assess tH&e black hole. Let us describe its radial motion with the help
validity of the semiclassical description in the vicinity of the of the wave functionp(r). According to Eq(2.6), the wave
horizon. To this end, consider the wave functibgr,t) as a  function in the vicinity of the horizon can be written as
solution of the Klein-Gordon equation for the scalar field.

From Eq.(2.2) one finds that the radial wave functia(r) d(r)=exd —ieln(r—=1)]+RexdieIn(r—1)]. (3.1
satisfies the equation
The first term here describes the proper incoming wave,

1 1 1 g2 , L(L+1) while the second one, which presents the outgoing wave, is
i e m) ¢+ |10y # "2 |®  written in order to allow for the opportunity of possible in-
r terference of the incoming and outgoing waves in the wave
=0. (2.7 function. If this interference takes place, i.e.;Rf#0, then

the outgoing wave in Eq3.1) clearly indicates that there is
In the vicinity of the horizonr=1 the solution can be a probability for the incoming particle to be reflected on the
approximated by¢(r)=(r—1)”7 where Eq.(2.7) yields horizon. The unitarity condition implies th&#R|<1. More-
n=*ie. The agreement with the semiclassical re¢Rl6)  over, intuitively one would expect the reflection coefficient
supports its validity and verifies that the preexponential facin Eq. (3.1) to be zero,R=0. This assumption would agree
tor in Eq.(2.6) is, indeed, a constant. It is instructive also to with a naive perception of the black hole horizon as a perfect
look at the singularity of the wave functiof2.6) from the  absorber. However, in order to verify, approve, or reject this
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intuitive claim (we will reject it, in fac) one needs to exam-
ine carefully what happens to the wave function on the ho-
rizon.

A straightforward discussion of the events that happen
strictly atr=1 faces an obstacle produced by the singular
nature of the wave functiofB.1) at this point. Fortunately,
one can avoid discussion of the events that take place strictly
on the horizorr =1 by using the analytical continuation of
the wave function in the vicinity of this point. Consider the
distance from the horizom=r —1, treatingz as a complex
variable. The wave functio(8.1) is explicitly analytical inz,

except for the power-type singularity z&0 which induces FIG. 1. Kruskal coordinates. Areas | and Il represent two iden-
a cut emerging from this point on the complex planket us  tical copies of the outside region; Il and IV show two inside re-
taker in the outside region of the black hole in the closegions. Hyperbolic curvesUV=const describe the condition

vicinity of the event horizon, which means that@<1, and  =const, the dotted curve shows the locationr ef0, and the in-
examine what happens to the wave function when one rotatesined straight line presents the conditioaconst. The direction of
zin the complexz plane over an angle of2 clockwise[the  time flow in | and IIl is opposite. The incoming particle followds,
counterclockwise rotation is forbidden; see the discussiorrossing the horizok) =0 and residing in Il. The outgoing particle
after Eq.(3.9)]. We can keefz| small, |z|<1, during this CD escapes from IV, crossing the horizdh=0 and coming to I.
rotation, thus justifying the validity of the semiclassical wave Areas I and IV are not connected, which ensures classical confine-
function(3.1). This analytical continuation necessarily incor- ment in Il. The wave function(3.1) or (5.3 describes mixing of
porates a crossing of the cut on the complex plane. Therevents that correspond to incoming and outgoing classical trajecto-
fore, after f|n|sh|ng this rotation and returnlng to a realyrles (AB andCD), resulting in the phenomena of RH and radiation.
physical value>0, the wave function acquires a new value 1he symmetrically located point, A’, A" are used to reveal the
on its Riemann surface: let us Ca||di(2”)(l’). A procedure symmetry (3.8) of the space-time. The wave functidB.1) de-

of this type is usually referred to as a monodromy. In ourSc"Pes mixing of events corresponding to incoming and outgoing
case theyFr)nonodromyycan be read from E1): Y trajectories(AB and CD), which results in the phenomena of RH

and radiation.

dCD(r)=pexg—isIn(r—1)]+ Eexr[is In(r—1)71, An appropria_te gnalytiqal continuation allows one to define
them in the inside regiom<1 as well. Overall, theJ,V
(32 plane shown in Fig. 1 represents the complete space-time;
for a comprehensive discussion of the Kruskal coordinates,
where o =exp(—2we). The analytically continued function see Ref[32].
$™(r) satisfies the same real differential equation as the The areas | and IIl in the Kruskal plane give twdentical
initial function ¢(r). Moreover, one has to expect that the representation of the outside woifld1,32. This means that
wave function®>™(r) satisfies the same normalization con- a transformation that brings an arbitrary pofnof the region
ditions as the initial wave functiog(r). This implies that | into the symmetrically located poirA’ in the region Il
one of the coefficients in Eq3.2), eitherp or R/p, should (see Fig. 1is a space-time symmetry. Therefore the wave
have an absolute value equal to unity. Sirce 1, we de-  function transforms according to some representation of the

duce thafR|/e =1, thus concluding that symmetry group related to this transformation. The wave
function (3.1) is a scalar; therefore this symmetry transfor-

20r e mation can manifest itself only as— ¢’ =\ ¢, where\ is a
|R|=ex;{ — hcg ) (3.3 constant. Applied twice, the considered transformation

brings the pointA back to its initial value, being accompa-

. ) nied by the transformation of the wave functign—\?4¢,
where the conventional units are used to make the resulfjnich can differ from its initial value only by a phase factor.
more transparent. We see that the reflection coefficient igphis shows that = expie, where« is a phase that is not

nonzero. In other words, the black hole horizon is capable ofjetermined by the symmetry conditions. Thus the transfor-

reflection, i.e., the RH takes place. mationA— A’ results in
There is a more general and rigorous way to prove this
statemenf28] that uses a symmetry of the black hole space- b— ' =explia)b. (3.6)

time. It is convenient to present this argument in the Kruskal
coordinatedJ,V [31], which in the outside region>1 are

defined by There is a convenient way to make use of this symmetry

condition. Let us first fulfill the complex rotatiore
—exp(—2mi)z. Equations(3.4),(3.5 show that it results in

U=—r—lexg(r—-t)/2], (34  the transformatiod — —U,V— —V which brings the point
Ato A” in Fig. 1. After that we can use the operation of time
V=yr—21exqd(r+t)/2]. (3.5  inversionT. According to Eqs(3.4),(3.5) the time inversion
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t——t is equal to the transformatiol——V,V——U, this problem, it is convenient to use the Kruskal coordinates
which transformsA” to A’ in Fig. 1. The appearance of the (3.4),(3.5. It is known from the analysis of Hartle and
time inversion is related to the fact that the arrows of timeHawking[34] that the propagator of the scalar particle in the
flow in areas | and Ill are opposite; see the inclined straighSchwarzschild metric is an analytical functionfandV in

line of constant time in Fig. 1. As usual, the inversion of timethe upper half plane of the complékplane and in the lower
t— —t in the argument of the wave function should be ac-half plane of the comple¥X plane. In terms of the variable
companied by the complex conjugation of the function, i.e.this means that the propagator remains an analytical function

the operator of the time inversion is defined Hsp(r,t)] ~ When it is continued from the real semiaxas>0 in the
=¢*(r,—t). For the stationary wave functiong  Clockwise direction over the anglen2 There is a slight dis-

xexp(—iet), this definition reads tinction in our case. Our analysis relies on the wave function,
while the work[34] refers to the properties of the propagator.
TLb(r)]=o*(r). (3.7) However, the analytical properties of the wave function are

similar to those of the propagator. We conclude that the ana-
Combining the 2r rotation on the complex plane with the ~ ytical continuation used in the derivation of E(.2) is
time inversion Eq.(3.7), we fulfill the transformationA justified. In contrast, an attempt to use the analytical continu-
—A’. The symmetry of the space-time under this transfor-ation rotatingz from the regiorz>0 in the counterclockwise

Equations(3.1),(3.3) indicate that the horizon is capable
[¢?M]* =explia) d. (3.9 of reflecting the incoming particle with a probability given in

Eqg.(1.1). By the same token, it means that the probability for
Using the wave function$3.1) and (3.2), we find that the the incoming particle to cross the horiz@%,, penetrating
symmetry Eq(3.8) requires thalR =exp(—2me—ica), in ac-  into the inside region, is less than unity,
cord with Eq.(3.3). An alternative derivation of this result
[29], which relies more heavily on dynamical properties of Pa=1-"P. (3.10
the problem, supports the validity of E@.3) as well; it also
provides a way to determine the phagg27], which van-
ishes for low energies, i.eq=0 whene<1.

From Eq.(3.3) we see that the incoming and outgoing
waves interfere in the wave functidB.1). Correspondingly,
there is RH. The probability of RH can be found &s
=|RJ|?, which in view of Eq.(3.3) gives P=exp(—4e) in
full accord with Eq.(1.1) stated in Sec. I. The paramefér
that appears in Eq1.1) arises from the coefficient in front of
the logarithmic function in Eq(2.4):

We will use Eq.(3.10 in Sec. V when discussing the Hawk-
ing radiation process.

Let us summarize the ideas used in the derivation of Egs.
(3.1 and (3.3. We employed two important facts, the dis-
crete symmetry of the space-time presented by Egs.
(3.6),(3.7),(3.8), and the logarithmic singularity in the wave
function Eq.(3.1) in the vicinity of the event horizon. The
symmetry condition given by Eq$3.6),(3.7), (3.8) implies
that the wave functiomy>™(r) satisfies the same normaliza-
tion conditions as the initial wave functiaf(r). This state-
ke ment can be considered as a shortcut way to express the
(3.9 symmetry of the space-time. Its simplicity makes it conve-
nient for applications to the more sophisticated black holes

(absolute units Notably, it proves equal to the Hawking discussed below.

temperature of the black hole. In applying Ed.1), one
should remember, of course, that the electric potential an
rotational frequency for the Schwarzschild case are absent,

P=w=0. This section extends the results derived above for the

Let us go back to examine why it was necessary to Us&chwarzschild black hole to other, more complex types of
specifically the clockwise rotation when the analytical con-pjack holes.

tinuation of the wave function1.1) in the complexz plane
was obtained. A simplified answer to this question is that an
attempt to use the counterclockwise rotation leads to a self-
contradiction. Trying it, i.e., making the counterclockwise Consider the Reissner-Nordstndblack hole with masms
rotation, one arrives at a result similar ¢8.2), but with a  and charge. Its metric is given by

different coefficient ¢’ instead of ¢, o—p'=1lp 5
=exp(2me). Proceeding further, one would be forced to con- 4= | 1- 1+ a9 de2+ dr 42402

clude that the reflection coefficient|iR'| = exp(2me), which roor2 1—1/r + q2/r2 '

comes into obvious contradiction with the unitarity condition (4.2)

for the reflection which specifiesR’|<1. It is a known,

common feature of the semiclassical wave function that dif\We use conventional gravitational units for the charge, which
ferent ways of analytical continuation lead to different re-means thay?=47Ggq?. The Hamilton-Jacobi equation for
sults, and one needs to choose carefully an appropriatdie particle with masg, chargeQ, and orbital momenturh
method of continuatiori3.1). To outline the deeper roots of for the metric(4.1) reads

kT=

477!’9

&v. REFLECTION BY HORIZONS OF DIFFERENT BLACK
HOLES

A. Charged black holes

2
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(S— Qq))z ( 1 qz)(aS)2+ 1 ((98>2 , B. Rotating black holes
/u‘ 1
r2

1—1r+q2r2 T2 Je Consider the Kerr black hole, which possesses the mass
4.2) and the spinj, which is conveniently parametrized kg
=j/m. The Kerr metric reads

where®(r)=q/r is the black hole electric potential. Sepa-

rating the variable$(r,t)=—et+Le+S(r), one derives ds2= — é(dt—asinzedgo)er Sinze[(r2+a2)dgo—adt]2
p p2

2 12

L 1 9
(-0 wir = || 1- 1+ %

2

ry==«
Sy +f +%dr2+p2d02. 4.9

dr?

><1 Ur+a2ir2’ (4.3 HereA=r2—r+a? andp?=r?+a’cog6. The poles ofy,,
—1r+q%r

=p?/A, i.e., the nodes ok, are located on two spheres with
The poles ofg,, =1— 1/r + q°/r? are located on two spheri- radi
cal surfaces with radii 1 1

re=s= Z—az, (4.10
N7 q°. (4.4

re=

N| =

the larger of which represents the black hole horizon. The

The larger of them, with the radius, , represents the black Hamilton-Jacobi equations of motion for the metc9),

hole horizon. In the vicinity of the horizon—r , one finds

2 2 2 2
from Eq. (4.3 i<r2+a2+%sin20) Sz_%(is) _i(o"_s)
- A p p2lor] 2106
S(r)y==ZIn(r—r_), (4.5
here ! (1_L>(a_s)2+2<ﬁ ‘9_8‘5_ 2
" A sirt6 p?)\de p?A ) de K
2
re .
{=[e=QP(r )l —— (4.6) (412

allow the full separation of variable§(r,t)=—et+J¢p
In analogy with Eq.(2.4) the action(4.5) possesses a loga- + 2 (60)+S(r), which results in the following equation for
rithmic singularity. We can therefore follow the way paved the radial actiorS(r):
by Egs.(3.1), (3.2, and(3.3). First we construct the wave
function
S(r)zf A YJRdt, (4.12
d(ry=exg —iZIn(r=1)]+RexdilIn(r—21)], (4.7
which describes the radial motion of the particle in the vi- R=P?-A[nr*+K], (4.13
cinity of the event horizon. Then, introducing the variable
z=r—r_ and assuming that>0,|z|<r_ . —r_, i.e., takingr P=¢(r?+a%-aJ. (4.149
in the external region in a close vicinity of the event horizon,
we make the analytical continuation of rotatini the com-  HereJ is the conserved projection of the orbital momentum
plex planez—exp(—iy)z,y=0, eventually takingy=2. of the particle on the axis of rotation of the black hole, &d
The discrete symmetry of the space-time requires that this an additional“accidental”) integral of motion. In the vi-
analytical continuation does not change the normalizatioreinity of the horizonr—r, ,A—0, one finds from Eq.
conditions of the wave function; see the discussion at the en@.12 that S(r) has a logarithmic singularity that satisfies

of Sec. lll. Eq. (4.5 in which the parametef equals
The described procedure gives the coefficient of reflection
R=exp(—2n{) and the probability of RH P=|R|? r2 +a?
=exp(—4m{). The latter result agrees with E(L.1), where {=(e—Jw) o (4.19

the value for the parametdrfollows from Egs.(4.5),(4.6),

her.—r Here w=al/(r? +a?) is the frequency of rotation of the
KT= — = (4.8  black hole horizon. Using the method well discussed above,
A ri we derive from the logarithmic singularity that the rotating
black hole is capable of RH; the probability of reflection is
(absolute unitp It proves equal to the Hawking temperature given by Eq.(1), in which Eq.(4.15 predicts for the param-
of the charged black hole. eterT
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sidered(see recent work of Bekenstein devoted to this sub-
(4.16  ject [35,36). However, for the purpose of this work this
subtlety is not essential.
We discussed in this section several types of black holes
(absolute units which coincides with the temperature of the that possess either charge or momentum or both, verifying

hcro—r_

4 r2 +3a2

rotating black hole. that in each and every case the black hole is capable of
reflection. Our most general result, which is presented for
C. Charged rotating black holes the Kerr-Newman solution, is described in Egs.

Consider the general case of the Kerr-Neumann blacl%l.l),(4.16),(4.18).Anumber of more sophisticated solutions
hole, which possesses both the chasgend the spirj. The or black holes with hair are knowgsee the revieW37]) but

Kerr-Newman metric in the Boyer-Lindquist coordinates is '€ leave them outside the scope of the present work.

described by Eq(4.9), in which the parametek reads
V. REFLECTION AND RADIATION

—r2__ 2 2
A=ri-r+at+ags (4.1 Let us show that the reflection ability of the black hole

horizon and the phenomenon of Hawking radiation have the
same physical origin. Consider the Schwarzschild case for
simplicity. It is convenient to rewrite our results in the
r. :E + /E_az_qz’ (4.18 Kruskal coordinates. As a first step let us return to the time-
-2 4 dependent description. The time-dependent action equals
S(r,t)=95(r) —et, in which the radial component in the vi-
the larger of which represents the black hole horizon. Theinity of the horizon read$(r) = * ¢ In(r—1); here the signs
electromagnetic field of the black hole is described by the‘minus”and “plus” correspond to the incoming and outgo-
vector potential A, dx*= —(qr/p?)(dt—asirfdde). The ing trajectories, respectively. Using the Kruskal coordinates
Hamilton-Jacobi equations of motion for a charged particleEgs. (3.4),(3.5), the action can be conveniently rewritten as
moving in the gravitational and electromagnetic fields cre-
ated by a black hole allow the full separation of variables; S(r)=—eln(r—1)—et=—¢InV? (5.9
see, e.g., Ref32], p. 901. One promptly finds that the radial ) . .
action is described by Eq&.12),(4.13, in which the param-  for the incoming trajectory, and

eterP equals S(r)=eIn(r—1)—et=g InU2 (5.2

The nodes ofA are located on spheres with radii

P=e(r?+a*—-aJ-qQr. (419 for the outgoing trajectory. Let us rewrite correspondingly
. ) the radial wave function3.1). Multiplying it by the time-
From Egs.(4.12,(4.13,(4.19 we find that on the horizon gependent factor exp(et), one can present it in a conve-

r—r the action has the logarithmic singularity nient abstract notation
S(r)y=%¢In(r—r,), (4.20 |p)=| in)+R| out), (5.3
where where | ¢)=exp(—ist)¢(r), and ¢(r) is given in Eq.(3.1).
The two terms on the right-hand side of E§.1) are
g=[s—Qq>(r+)—Jw]rrj+fra2. (4.20) liny=exd —ie In(V?)], (5.9
louty =exie In(U?)]. (5.5

Here d)(r+)=qu+/(ri+a2) is the potential describing

interaction of the particle with the electromagnetic field of We restrict our discussion to the events that take place in the
the black hole on the horizon. Using B4-21) and applying vicinity of the horizon, where the semiclassical description
the method well described above, one proves that the refletolds, justifying Eqs(5.4),(5.5). The classical trajectory that
tion probability for the Kerr-Newman black hole is given by corresponds to the incoming waven) follows from the
Eqg. (1.1. The parameteT that appears in Eq1.1) satisfies equation of motiony,S=0, where the action is given in Eq.
Eq. (4.16 with r.. from Eq.(4.18; this T coincides with the  (5.2). Therefore the ingoing trajectory is described by the
temperature of the Kerr-Newman black hole. Setting in EgsequationV=const. Similarly, the outgoing waveut) in the
(4.16),(4.18 eitherq orj or both of them to zero, one returns vicinity of the horizon corresponds to the classical trajectory
to the cases of the Kerr black hole, the Reissner-Nordstro U=const. Inr,t variables these two trajectories are pre-
black hole, and the Schwarzschild black hole, respectively.sented in Eq(2.5 for the outside region.

We relied above on the semiclassical approach. Equation Figure 1 shows classical trajectories in Kruskal coordi-
(4.18 can be improved to account more accurately for thenates. This graphical presentation emphasizes the unex-
quantum properties of the momentunby substitutingj? pected, nontrivial nature of the interference between the in-
—j(j+1) ina?in Eq.(4.18. This issue becomes important coming and outgoing waves in E@5.3. A particle that
when the quantum properties of the black hole itself are confollows the incoming trajectory has no classically allowed

124031-7



M. YU. KUCHIEV PHYSICAL REVIEW D 69, 124031 (2004

chance to switch to the outgoing trajectory in the classicalvave is P=|R|2. Following the classical outgoing trajec-
approximation. Figure 1 visualizes this argument, showingory, which corresponds to this wave, the particle can reach
that inside the event horizon the incoming and outgoing trathe event horizon and therefore can escape into the outside
jectories belong to different regions of theV plane. Thus  world.
the incoming and outgoing trajectories seem to be com- Thus there exists the probability that the particle escapes,
pletely unrelated. However, E@5.3) indicates that on the Pes<|R|2="P. We can be more specific. We know that the
quantum level there arises a connection between the inconwave that reaches the event horizon is partially reflected.
ing and outgoing waves. It manifests itself as the interferencéccording to Eq.(3.10 the probability of RH equals,
of these waves in the wave function. We verified this state=1—7. We proved this result when we considered the scat-
ment above for the outside regiom-1, but it holds for the tering process that takes place in the outside region. One can
inside region as well. Indeed, the Kruskal coordinates in Eqs/erify that this result holds when we consider the scattering
(5.4),(5.5) show that the logarithmic singularity of the wave that takes.ple.xce for the wave that comes to the horizon on its
function does not depend on the sign WfandV, i.e., it W&y frqm inside out as well. Combl!’ung the two factors, the
exists on both sides of the horizon. Therefore inside the hoProPability of populating the outgoing wave and the prob-
rizon one can use same method that we used above for tiility of crossing the event horizon we conclude that the
outside region, which leads to the same result, which remain@robability for the particle to escape into the outside world
valid on both sides of the horizon: the incoming and outgo-£dualSPesc=P(1—P). Itis instructive to compare this result
ing waves do interfere in the wave functiés.3 (see also With the probability of the particle to be absorbed. Suppose
the discussion in Ref28]). we hgve an incoming partlclg in the_out5|de region in a state
We discussed in Secs. Il and IV the physical manifestadescribed by the wave functidb.3) with the same quantum
tion of this interference for the outside region, claiming thathumberss,L,M. The probability for this particle to populate
it leads to the reflection of the probing incoming particle the ingoing wave in Eq5.3) is unity; therefore the probabil-
from the event horizon. Let us now consider the physicalty {0 be absorbe,into the inside region equals the prob-
manifestation of this interference for the region inside theablility to cross the event horizof8.10, which gives Py
horizon. The classical ingoing trajectow= const describes =1~ 7. We can consider now the ratio of the probability for
here the motion toward the black hole center; the outgoin particle to escape from the inside region to the probability
U=const trajectory describes the motion that eventuallyfo be absorbed:
brings the particle from the inside region, over the horizon,
into the outs!de region>1. If a parti_cle follows the ingoin_g —Pp= exp( _ i) (5.6)
classical trajectory then, as mentioned above, there is no Pabs
classical way for it to switch to the outgoing trajectory and _ . )
escape into the outside region. However, &g shows that Discussing the_ probabll_ltles above, we con5|dered_only those
the perception based on the classical picture is not confactors that originate directly from the wave functih3).
pletely correct. In the quantum wave function the proper in_The physical probabilities include also _addmonal normaliza-
going wavelin) is mixed with the proper outgoing wave tOn factors related to the flux of particles and. Fhe surface
louty. This mixing indicates that the particle that moves to-aréa of the event 'horlzon. However, these additional factors
ward the black hole center in the inside region has a finitéf® canceled out in the rati.6), which presents therefore
chance to simultaneously populate the outgoing wave thdpe result fo_r the ratio of the two ph_y3|cal rates,_emlttance
brings it to the outside region. Thus there is a finite probabil-2nd absorption. It states that the ratio of the emittance and
ity for the particle to escape from the region inside the hori-@bsorption rates .c0|nc:|des V\_/lth the conventional temperature
zon into the outside region. factor that describes the ratio of these rates for a blackbody
Let us calculate this probability. Suppose that there is &Vith temperaturel. This means that if the black hole is put
particle confined in the inside region. Assume that this parinside a thermostat with temperatureit remains in equilib-
ticle occupies a state with the quantum numberk,M rium with it. One concludes therefore that E§.6) indicates
moving from the horizon deeper inside the black hole, eventhat the black hole possesses temperaiyreadiating as a
tually aiming at the singularity at the origfnAccording to blackl:_)ody with thls temperature, as was first discovered by
the above discussion one should describe this particle by tHdawking [3,9] using dlffe_zrent arguments. _
wave function(5.3), which shows that there is an admixture  1here is a conventional physical explanation for the

of the outgoing wave. The probability of populating this Hawking process that refers to the creation of pairs. The
gravitational field in the vicinity of the horizon creates a pair;

then a particle goes into the outside world, while its antipart-

2Generally speaking, to be certain that the particle is located in th@€T 1S absorbed by the black hole. This explanation of the
inside region, one needs to describe its motion with the help of th®0CesS needs effort to prove the fact that the antiparticle
wave packet that propagates from the horizon into the deeper rdfings into the black hole the negative amount of energy that
gion. However, for our purposes it suffices to take into account onlycompensates the energy of the created particle. Equation
one wave with the given quantum number&,M. In proving be-  (5.3) suggests an alternative simple explanation. The radia-
low that each wave of the packet has a chance to escape from tii®n happens because the particle confined inside the horizon
inside region, we prove simultaneously that the wave packet cagan escape into the outside world. This point of view auto-
escape as well. matically accounts for the reduction of the mass of the black
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hole; when the particle escapes from the black hole it nsupposed to absorb very well everything incoming; therefore

longer contributes to the mass of the black hole. naively the particle that approaches the horizon is described
Summarizing, we verified that both the RH and the Hawk-by a purely incoming wave. From this perspective the exis-

ing radiation stem from the interference of the incoming andence of the interference and, consequently, the existence of

outgoing waves in the wave functidb.3). the reflected outgoing wave is surprising.
We discussed two effects that originate from the interfer-
VI. DISCUSSION AND CONCLUSION ence between the incoming and outgoing waves. One of

) ) them is a novel effect, RH. For any particle that approaches

The existence of the event horizon that separates the oUihe event horizon there is a finite probability to bounce back,
side and inside regions is the main property of black holes. lfntg the outside world. The probability of RH depends on the
is well known that one can always choose a coordinate fram@nergys of the incoming particle and the temperatdref
that makes the metric smooth on the horizon. Correspongne plack hole. Foe <T the black hole horizon behaves as a
ingly, the classical equations of motion for a probing particleefiector, which is unusual.
in these coordinates are also smooth on the horizon. From apether effect that follows from the interference of the
this fact follows a known conclusion: a probing particle thatincoming and outgoing waves is the well-known phenom-
follows the cIassjcaI trajgctory on its way to the black_holeenon of Hawking radiation. The suggested new explanation
crosses the horizon quite smoothly, but after that will beor thjs effect is simple and appealing. The radiation happens
forced to stay inside forever. However, quantum correctiong,ecause, when the incoming particle is confined in the inside
influence the fate of this particle. The arguments presentegbgion' it still maintains an opportunity to escape back into
indicate that the horizon makes a strong impact on the wavg,e qutside world. This fact changes the perception of the
function of a probing particle. It manifests itself in the form oyent horizon. Conventional arguments claim that, when the
of interference, mixing of the incoming and outgoing wavesjncoming particle comes into the inside region, it stays there
in the wave functiort5.3). Without this mixing the incoming  torever; the horizon is impassable for the backward transi-
wave crosses the event horizon quite uneventfully, in accorgon This argument, however, holds only in the classical ap-
with the similar smooth transition through the horizon of theproximation. Quantum corrections make the horizon partially
classical trajectory. The mentioned mixing indicates that theiransparent; the particles can cross it and go away, creating
incoming wave inevitably incorporates some admixture ofie Hawking radiation spectrum of the black hole.
the outgoing wave. , Both the radiative and reflective abilities of the black hole

This result was derived from two facts: the discrete sym+,qrizon arise from quantum corrections; both these processes

o ity o i hoson Tha . Qoverd by he vl tamperatr of e i el
! : : - . ut experimentally they are easily distinguishable. The re-
coefficientR obtained possesses a typically semiclassical nagjected flux depends on the nature, flux, and spectrum of the
ture for a classically forbidden quantity, incoming particles, as well as on the black hole properties,
A while the radiation is governed entirely by the black hole.
|R|=exp( -, 6.1 The radiation.phenomgnon provides support for important
h thermodynamic properties of black holes. The suggested new
whereA has the meaning of some effective classical actionf”‘ppro"’lCh to the origins of the radiation.may help one to look
For example, for the Schwarzschild geometry of the black‘r’m?lwbat tr?_e thgrn:pdynra]lmlgs properties of black holes as
- ' . - . . well, but this topic lies ahead.
?Oli;?;;aev;’ggi: ?fslfwh?hg"z;gssliggl Olifr:igiv(\)”t?héhe In conclusion, we showed that the black hole horizon is
r%ie(ing (6. disappegrs..Thus from the point of view of the ca_pgble of_reflection and found a general common physical
classical approximation the physical manifestations of quang)rlgln of this effect and the Hawking radiation.
tum interference look unusual. Generally speaking, there is

nothing ur)usual about interference bgtvyeen.the incpming ACKNOWLEDGMENTS
and outgoing waves; on the contrary, it is quite noriigl
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