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This paper reports results from numerical simulations of the gravitational radiation emitted from non-
rotating compact objectéboth neutron stars and Schwarzschild black Hotessa result of the accretion of
matter. We adopt aybrid procedure in which we evolve numerically, and assuming axisymmetry, the linear-
ized equations describing metric and fluid perturbations coupled to a fully nonlinear hydrodynamics code that
calculates the motion of the accreting matter. The initial matter distribution, which is initially at rest, is shaped
in the form of extended quadrupolar shells of either dust or obeying a perfect fluid equation of state. Self-
gravity of the accreting layers of fluid is neglected, as well as radiation reaction effects. We use this idealized
setup in order to understand the qualitative features appearing in the energy spectrum of the gravitational wave
emission from compact stars or black holes, subject to accretion processes involving extended objects. A
comparison for the case of point-like particles falling radially onto black holes is also provided. Our results
show that, when the central object is a black hole, the spectrum is far from having only one clear, monochro-
matic peak at the frequency of the fundamental quasi-normal mode. On the contrary, it shows a complex
pattern, with distinctive interference fringes produced by the interaction between the infalling matter and the
underlying perturbed spacetime, in close agreement with results for point-like particles. Remarkably, most of
the energy is emitted at frequencies lower than that of the fundamental mode of the black hole. Similar results
are obtained for extended shells accreting onto neutron stars, but in this case the contribution of the stellar
fundamental mode stands clearly in the energy spectrum. Our analysis illustrates that the gravitational wave
signal driven by accretion onto compact objects is influenced more by the details and dynamics of the process,
and the external distribution of matter, than by the quasi-normal mode structure of the central object. The
gravitational waveforms from such accretion events appear to be much more complex than former simplified
assumptions predicted.
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I. INTRODUCTION ing (see e.g[2] and references therginTherefore, another
plausible source of gravitational radiation involves the rapid
Most of the different astrophysical scenarios suggested agccretion of large clumps of matter onto a compact object
potential sources of gravitational radiation have in commor(€ither a neutron star or a black hple recurrent and ubig-
the presence of compact objects, such as neutron stafgifous phenomenon in relativistic astrophysics. Accretion is
strange stars or black holes. The coalescence of a binagxpected to happen following the gravitational collapse of
system formed by two black holes, two neutron stars or ondh€ core of a massive star, once a neutron star has already
black hole and one neutron star is the main target of th&een formed. Part of the remaining ste!le_lr material, which
ground based interferometefisaser Interferometer Gravita- 1as not been expelled by the shock driving the supernova
tional Wave ObservatorfLIGO), VIRGO], but other possi- explosion, may fall back onto the neutron star, until a critical
bilities such as galactic supernovas are also worth explorin gf: ﬁzéi?jdrig ari]r? ;B?ns;g:rﬁogi%iesnt\?e%b?:rlft:?]?deéﬁome
especially in anticipation of the capabilities of future detec- Y 9 ' gaty

tors. Isolated black holes, in particular, are reckoned to bégﬂ]peogfndoi(:‘:u; (rjgt:tlif; if the collapsing star had initially

characterized by a unigug emissiqn pattern k”OV.V” as gquast- Semi-analytical studies of extended obje¢thells or
normal mode(QNM) ringing—rapidly damped sinusoidal y1s ot qust falling isotropically onto a black hole are
modes. This signal has been studied extensively using peLyajiaple in the literatur3—8]. These studies shed the first
turbation theory and frequency-domain techniques for mosfignt in understanding the modification of the gravitational
classes of black hole solutiorisee e.g[1,2] and references \yave (GW) emission pattern of the black hole due to the
therein. The detection of such QNM signals dependspresence of matter. Collectively, these works showed that for
strongly on the luminosity of the source or, in other words, fixed amount of infalling mass, the energy released in
on how strongly the black hole is excited, but also on thegravitational radiation is reduced compared to the value of
knowledge of the power spectrum. It is also well known thatthe point-particle limit E~0.01m?/M [9], M being the mass

a relativistic star has a very rich non-radial oscillation specof the black hol& This reduction is interpreted as due to
trum, and it can emit gravitational waves through QNM ring- cancellations of the emission from distinct parts of the ex-
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tended object. Such conclusions were later confirmed by Pderms, computing the GWs that are emitted in the process.
padopoulos and Foritl0], who performed numerical simu- Full numerical relativity computations of QNM ringing in
lations of the gravitational radiation emitted during the spherical gravitational collapse using the characteristic for-
accretion process of an extended object onto a black hole. Imulation of general relativity are also reported [ig8].

[10] the first-order deviations from the exact black hole ge-Within the same formalism, the imprints of fluid accretion on
ometry were approximated by the Teukolsky equafibh] the emitted GWs from a black hole were studied[29],

for Schwarzschild black holes, i.e. the inhomogeneoudinding the familiar damped-oscillatory GW decay, but both
Bardeen-Press equatidt 2], including curvature perturba- decay rate and frequencies being modulated by the mass ac-
tions induced by matter sources, whose nonlinear evolutiooretion rate.

was integrated using a hydrodynamics code. This was the In this paper, we analyze the similarities and differences
first numerical study in the time domain of the gravitationalin the gravitational wave emission pattern from black holes
radiation emitted by extended objects accreted by blacland neutron stars as a result of the radial accretion of matter.
holes and showed the gradual excitation of the black hole detailed realistic modelization of the gravitational emis-
fundamental QNM frequency by sufficiently compact shells.sjon from accretion flows would require of three-dimensional
In the thin shell limit, the energy asymptotes to a finite value, magnetoyhydrodynamical simulations in general relativity,

which is about a third of the point-particle limit. coupled to radiation transport and diffusive processes. How-

Correspondingly, linear perturbation studies in the timegyer some preliminary steps can be taken to understand the
domain of neutron star spacetimes, aimed at addressi

L ; . eSSINhderlying basic physics in a qualitative way before getting
':?1’:’\I?t(-frxaiﬁfg(zz,eh:\/e[;]llsa?l(;erceefol:-:\‘/reei(?g:?;]deerré?r?'ll'i:t(t)esgllon "?engaged in large scale computational efforts. Our numerical
9 Procedure lies, hence, in the borderline of full numerical

lation properties are obtained from analysis of non-radia o . . .
stellar perturbations. For non-rotating stars with pontropichIat'VIty and perturbation theory. As if10], the accreting

equations of state, the spectrum naturally splits into an axia{nlhatter IS evolved in a curyed statlc_ background by solving
(or odd-parity and a polaror even-parity part, according to the nonlmegr hydrodynqmms_ equations. Thg response of the
the terminology used to address the behavior of the pertu€omMPact object to the infalling matter, which triggers the
bation equations under parity transformations. The axial pagmission of gravitational radiation, is computed using pertur-
of the spectrum includes only gravitational modes, the sdation theory. More precisely, we use the gauge invariant
calledw modes, which are purely relativistic, being absent informalism of[26] and study the excitation of QNMs of both
Newtonian gravity[13]. The polar part, on the other hand, Schwarzschild black holes and neutron stars by numerically
containsw modes as well as fluid modes. The excitation ofsolving in the time domain the even-parity perturbation
axial parity modes was analyzed by Andersson and Kokkotagquations with matter sources. For the case of black holes,
[14], by sending pulses of gravitational waves to the neutrorihese equations reduce to the inhomogeneous Zerilli-
star and studying its response, and by Ferrari and Kokkotasloncrief [30,31] equation. One key assumption of our ap-
[15], by the scattering of point-like particles. The excitation proach is that the mass of the accreting fluid is much smaller
of polar modes was first investigated by Allenal. [16],  than the mass of the central compact object. Flsdf-
also as a scattering problem using gravitational wave pulsegjravity andradiation reactioneffects are also neglected; i.e.,
The same approach was later followed by Ruoff and cowe ignore the first-order metric corrections to the fluid equa-
workers in[17,18, using both Gaussian pulses and point-tions of motion. The first approximatiofmo self-gravity is
particle scattering. A framework for constructing initial data in general valid for fluid motions in the vicinity of the com-
sets for perturbations was developed 19] and applied to pact object, where tidal forces dominate over the fluid self-
study neutron star collisions in the close limit approximationgravity. The second approximati@no radiation reactionis
in Ref.[20]. valid as long as the energy in the form of gravitational radia-
Alternately, in a series of papers Seidel and co-workergion is much smaller than the kinetic or internal energy of the
computed the gravitational radiation emanating from slightlyfluid. Our procedure follows then the sarhgbrid approach
non-spherical stellar core collapse, in the aX@l] as well  previously adopted ifi10], but departs from it in the formal-
as in the polar cas22], and the waveforms associated with ism. We anticipate that, for a given numerical resolution and
the formation of neutron stars. The zeroth-order solution wasiumerical scheme, the use of the Zerilli-Moncrief equation
a spherical collapsing star, whose dynamics was computegsults in improved long-term numerical stability as com-
by solving the coupled system of Einstein and hydrodynampared to the Bardeen-Press equation employefl1by, al-
ics equations using the Lagrangian May-White approachlowing for an accurate computation of late time features of
The GWs were extracted using perturbation theory on thé¢he GW signal(namely tailg. The results reported in the
spherical background within the Gerlach-Sengu@@| for- present investigation are further restricted to the case of ra-
malism. More recently, Haradet al. [24] have reexamined dially accreting shells of either dust or obeying a perfect
the axial part of this problem, using null coordinatesfluid equation of stat¢éEOS, where the mass density profile
(Hernandez-Misngrand a gauge invariant and coordinateis shaped in the form of quadrupolar shells of Gaussian ra-
independent perturbative formalism developed by farti dial extent. In this respect this work can be considered as a
Garca and Gundlaci25—27. Within this approach Harada necessary assessment of our numerical approach, in anticipa-
et al.[24] have been able to follow the spherical collapse oftion of the study of more interesting scenarios, namely the
both supermassive stars and neutron stars, until a black hoéxcitation of QNMs from perfect fluid thick accretion tori
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orbiting around compact objects, which will be presented TABLE I. Frequencies of the first fluid and gravitational modes

elsewherd32]. for the two neutron star models considered.

The paper is organized as follows: Section Il describes in
some detail the theoretical framework adopted, namely the Mode A[kHz] B [kHz]
construction of the unperturbed stellar models, the general f 2584 1666

relativistic hydrodynamics equations, the perturbation equa-

: . 3.948 4.045
tions for neutron stars and black holes, and the generation of VF:Il 11.609 10.380
time-symmetric initial data to describe the accreting shells. W, 20.197 18429

The numerical methods used for both the hydrodynamics
equations and the perturbation equations are outlined in Sec.
[ll. Section 1V is devoted to presenting the main results of _ _
our investigation, splitting the description of the black holeM=1.4Mc~2.067 km, and the same adiabatic exporiént
and neutron star cases into two separate subsections. Finalfy,2, one model being more compact than the other. These
Sec. V summarizes the main conclusions of this work andWo models are meant to bracket the interval of possible radii
outlines future directions in this research. Appendix A con-Of realistic neutron stars. The more compact madel has
tains technical information regarding the general form of the€c=2.455< 10"° g/cnt and K=122.25 kni, so that the ra-
source term for the inhomogeneous Zerilli-Moncrief equa-dius is R=9.80 km. The less compact modé) has e,

tion, and Appendix B presents a comparison with point-like=0.92<10" g/cn?® and K=180 knf which leads toR
particles falling onto black holes. We use units such that =13.44 km.

-G=1. Our analysis is further restricted to polar perturbations
induced by external matter flows. For the sake of reference,
Il. THEORETICAL FRAMEWORK the first frequencies of the polar part of the spectrum of the
two stellar models considered are listed in Table I. They have
A. Unperturbed stellar models been obtained using a frequency-domain code based on the
The background metric of a non-rotating, sphericallyclassical Lindblom-Detweiler formulation of the perturbed
symmetric star is given by the line element Einstein equation33] and described i34].

— _e23d {2+ @2bqr24 2 24 g 2
ds’ e*dt’ +edr+r¥(do*+sirdde), () B. General relativistic hydrodynamics equations

wherea andb are functions of the radial coordinateonly. The motion of a fluid in a curved spacetime is governed
Assuming the star is a perfect fluid whose energy momenturgy the local conservation laws of baryonic number and en-
tensor reads ergy momentum:

Tu=(e+p)u,u,+pg,,, 2 V,J#=0, V,tr'=0, (6)

with p denoting the pressure,the total energy density, and _ _
u* the fluid 4-velocity, the Einstein’s equations become thewhere J“=pu* is the mass density current ang”

Tolman-Oppenheimer-Volkoff TOV) equations of hydro- =phu*u’+pg*” is the stress energy tensor for a perfect
static equilibrium: fluid. In these expressiong,is the rest-mass density,is the
specific enthalpy, defined &s=1+ e+ p/p, andeis the spe-
d_m:477r26 3) cific internal energy. The system of equations is closed with
dr ' an EOSp=p(p,e).

The equations of general relativistic hydrodynamics are a
da_ (m+4mr3p) system of hyperbolic equations; as shown[Bg], it can be
dr (r2—2mr) ) explicitly written as a system of conservation laws. This is
accomplished by defining quantities which are directly mea-
dp da sured by Eulerian observers, i.e. the rest mass deisity
ar —(e+ p)m, (5)  =pW, the momentum density in thg direction S
=phWPy; and the total energy densitf=phW?—p. In
wherem(r) is the gravitational mass enclosed in a sphere ofhese definitions\ stands for the Lorentz factor, which sat-
radiusr. The surface of the star=R is determined by the isfies W=(1-v%)""2 with v?=y;v'v). Here,v' is the
conditionp=0. At the exterior the geometry reduces to the3-velocity of the fluid, defined as'=u'/W+ g'/a, wherea
Schwarzschild solution. The above system of ordinary differand ' are the spacetime lapse function and shift vector,
ential equation§ODES can be integrated once the EOS is respectively, and;; are the spatial components of the space-
chosen and a value of the central energy denﬁtbs speci- time metric where the fluid evolves. For a generic Spacetime,
fied. We further assume the fluid to be isentropic, so that wéhe system of equations we solve re48s]
adop} a one-parameter EO®+ p(e€), in polytropic formp
=Ke', wherel is the adiabatic exponent. i
For the calculations we discuss in this work, we will con- 1 [97uw) + &\/—_gF (W)
sider two stellar models with the same gravitational mass, \/—_g at ox'

=S(w), )
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where g=det@,,), U(w)=(D,S;,E—-D), and w to computek at every temporal slice. This permits us to

=(p,v;,e) is the vector ofprimitive variables. The expres- obtain the frequencies of the stellar pulsation modes with an

sions for the flux and source vectoF$(w) andS(w), can be  accuracy comparable to frequency domain calculations. The

found in Ref.[35]. We note that in the current work we use set of equations reads

the standard form of the Schwarzschild metric in polar-radial

coordinates t,r,9,¢) to describe the exterior spacetime of _e2ab)
t

the compact object. Hence, the above expressions are spe- Xt Xrr

e - )
cialized accordingly. s o M 6m
=—eY —2| 2e — +4mrp +87Te——3

C. Stellar polar metric perturbations r r
induced by hydrodynamical sources 2 m

1. Interior equations

)

A formulation of the equations describing the polar per- 9)
turbations of a star in the Regge-Wheeler gall&fd, written
in a form suitable for numerical simulations in the time do-

N—2
X(x+kK)+ ——x—|4mr(5p—€)— —+10
r r r

main, was first discussed Ky6]. An alternative derivation |-|’n_cgez(a—b)|_|'rr

of the same equations, based on the linearized Arnowitt-

Deser-MisnertADM) formalism, can be found ifl7]. Re- ba) | M ) 5
cently, building on the work of Gerlach and Senguf2a], =-e r—2(1+Cs)+47Tfp(1—ZCs)

Martin-Garca and Gundlach have developed a gauge-

invariant and coordinate-independent formalism for non-

spherical perturbations of spherically symmetric spacetimes +
[25-27). In our work, we follow the formalism laid out in

[26] specifying the equations to the case of a static spherical

2 2 2
47T|’6_F cs|H —|4m(p+e)(3cs+1)

star and choosing the Regge-Wheeler gd3§d The equa- _ 2£ l m 2 _
tions we obtain are then equivalent to those of Rf§] and Cs r2 H+ 2\ 2 FAmPr (1) x k)
[17], although different metric variables are used. Hence, for
each ¢, m) pair, the even-parity metric perturbatidig ,, is 2(m+4mprd)? 2
parametrized by two scalar quantitiek, (the perturbed W —4m(3pt+e)cs | (x+K) [,
3-conformal factorand y (the actual gravitational wave de-
gree of freedom so that it reads (10
2a a+b
(x+ke e 0 0 \ " o 2b
— et (xy+ke® 0 0 e 2k —| - —8me|k+| Bme— o2 | X" T X
69,0= 0 0 kr2 0o |Yem: ' '
-
0 0 0 krsirtd +<E__m_4wer kr+87T(p+E)H=O, 1)
roor? ' c?

®)

Since the background is statig,is not an independent quan- wherex=£(¢+1) andcgzap/ae is the sound speed. At the

tity, as it can be obtained by quadrature fré&mand y [25]; star surfaces, p andc? vanish, andn(R) =M thereby the
the relationship with the usual Regge-Wheeler variables cag, . ion eqﬂation fo?—| reducés to the ODE’

also be found if25]. We note that, although the polar prob-
lem on a static star is known to have only two metric degrees

of freedom inside the star and one degree of freedom outside M(R—2M) 1 2
(represented by the Zerilli-Moncrief functipnwe have de- Hy=— 3 H, + E(X"_ k,,)} —— (xtk).
cided to consider an additional variable inside the star, the R R

perturbation of the relativistic enthalpyl=a8p/(p+e€), as (12)

suggested by earlier studies of the subjei,17. Corre-
spondingly, at the exterior we evolve twoonstrainegide-  since we are setting=2, the term proportional tél in the
grees of freedom instead of just ofeee below. We notice,  Hapmiltonian constraintll) is regular at =R.
however, that successful evolution algorithms using the ac-
tual number of degrees of freedom have been developed in
the past in more general framewoilkz2].

We formulate, then, the polar perturbation problem The exterior equations in vacuum are readily obtained
through a couple of hyperbolic equations fpandH plus an  from the interior equations setting=p=0 andm=M. As
elliptic equation, the Hamiltonian constraint, which is usedwe have seen, the equations for the induced metric perturba-

2. Exterior equations with a general source term
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tions are basically wave equations with potentials. The pres- ‘ ‘ 1

ence of an extended object outside the star or black hoIeSX::ez(a‘b)|TfT+(T§m)'”—2(T§m)',+—

reflects in the fact that these equations are not homogeneous r

anymore, but they contain source terms involving the stress-

energy tensor of the external fluit,, . Whereas for point- ><(Tgm - E(S_MeZb_ 1)

like particles these source terms can be explicitly computed

by analytic techniqueg18,30, in the case of extended ob-

jects they involve steps that cannot be managed analytically 4M  A+8

[10]. To the best of our knowledge, an explicit expression of Ny T

the source terms for a general stress energy tensor has not yet

been reported in the literature. SH-:e‘zaT““ 17)
Following the notation of Ref.25], the (gauge-invariant ’ 00 -

decomposition ot ,, in polar spherical harmonics reads

ﬂGZb_ 3)
r

4b
_r2 e"’+8

fm_ —
T +r2

e2b

Tim— eZngm] , (16)

It is known that the perturbations of the Schwarzschild
o ¢ spacetime are described by a hyperbolic equation for a single
t = Z 2 ¢fm function, originally written in the frequency domain and in
e e N 4 the Regge-Wheeler gauge by Zelji80] and later in the time
domain by Moncrief[31], but adopting a gauge invariant

w € formulation. Following the normalization convention[df7],
=> > the Zerilli-Moncrief function is related t& and y as follows
(=0 m=—¢ [27,31:
T{hytm TEMeYem).  aze N M|
(13) 2= N o—yrrem | XTIz T ekrke) (18

TANY ™ P2TE™Y Myt To"Z0 |
In presence of matter sources, this function is a solution of

where the capital indexes run over th€ Lorentzian mani- e inhomogeneous Zerilli-Moncrief equation
fold and the lowercase indexes over the unit radius 2-sphere
S?, as the background spacetime can be written as a direct
productM?x S?. We also follow[25] for the definition of
the scalar and vector spherical harmonis™ and (Y‘™).,,
respectively, and of the tensor spherical harmom§!  where the Zerill potentiaV, is given by
EYf£,+()\/2)yabY€m. Here, the notationa stands for the
covariant derivative with respect to the metrig,y
=diag(1,sif9) of S°. In Ref.[25], the homogeneous equa-
tions of linearized nonspherical polar perturbations of a gen-
eral time-dependent spherically symmetric spacetime were AA=2)%r3+6(N—2)>Mr2+36(A —2)M?r +72M3
obtained. If we choose the background spacetime to be the FB[(A—2)r +6M]2 :
Schwarzschild solution and interprtet, as a source induced
by a certain distribution of matter on this spacetime, one can (20
arrive after some algebra at the polar perturbation equations
of a Schwarzschild spacetime with source terms, which ardhe source tern, appearing in Eq(19) for a general matter
given by distribution has not been reported in the literature in a form
suitable for time-domain computations. Its derivation can be

2M
2~z =—e*Z +V,Z+S,, (19
r

2M
ng —(1— T)

found in Appendix A. The final result is
Xu—€C Vx =—e . 26— —6|(x+k)
) T I’3 r 167Te2a [ e—2a [)\(6 5 oM 2)
=_ rs— r
—2)r+ —2)r+
N2 2/EM AM(A=2)r+6M]| (A —2)r+6M
z Xy T X 16mS,, —r3\2-8r3+68Mr2— 108V %r T4
(14) +e P2Mr+r2(N—4) TP+ 2r3 (T —2r (r
—2M)A(TID) +4N(r—2M)T{"
y +(2 M ) o-2b )\k 42 )(T11) ( )Ty
€ rr P L (L X 3M
roor? r r2o2r? oM 1= == N2 T ar -2 T (2
+87S,=0. (15)
In the case of a point particle, this general source term re-
The sourcesS, andS,, read duces to that given if18].
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For any multipole ¢,m) the radiated energy is computed
from the Zerilli function. It is given by

o |

1 (e+2)!
" 64 (£—2)!

fm

dt

dE
dt

f 1™ 2dt. (22)

By defining the Fourier transform of Z=z‘™ as

[}

QZ'(w,r)zfi e l@tz(t,r)dt, (23

m

dw

i

D. Black hole polar metric perturbations induced by
hydrodynamical sources

[

we obtain the energy as follows:
Efm:f
0

1 (e+2)
~ 64n? ((—2)!

dE

dw

0?|Z(w,r)|?do.

(24

PHYSICAL REVIEW D69, 124028 (2004

real part ofY, the axial ones to its imaginary part. At
=3M the term proportional t¢&f ; changes sign: depending
on the relative sign betweei; andY ;, one may viewy ,
either as a damping terfwhen the signs of both coefficients
agree, i.e. for<3M) or an antidamping ternfotherwise.
As argued by Krivaret al. [37], who analyzed in detail the
general case of the Teukolsky equation for Kerr black holes,
this is likely the origin of exponentially growing modes that
appear when the equation is numerically solved by standard
finite-differencing explicit methods. Although some attempts
to delay in time the onset of the instability have been inves-
tigated in the literatur¢10,37, it remains an open issue. As
noted above, this effect is particularly disturbing in the pres-
ence of matter sources, since the instability is always occur-
ring before the late-time state of the system is reached.

On the other hand, using the tortoise coordinate, (E§).
reads

Z’tt—Z’r*r*=VgZ+Sz, (27)

where the source term is the same one given by (Et),

with the derivatives with respect taconsistently replaced by
derivatives with respect ta*. This equation does not
present terms which may cause exponential growing modes,
and, therefore, it permits stable evolutions.

When the neutron star is replaced by a Schwarzschild
black hole, the polar perturbation problem becomes much

simpler, since one only needs to solve the inhomogeneous

Zerilli-Moncrief equation. As mentioned in the Introduction,

consider the black hole case discussed in R, but solv-
ing Eqg. (19 instead of the inhomogeneous Bardeen-Pres
(BP) equation. The underlying motivation behind this choice
is the possibility of performing long-term stable evolutions
that allow for the extraction of late time featur@adiative
power-law tail$ in the GW signals.

Working with the same numerical method, this result

seems to be unreachable with the BP equation, because trg

equation isintrinsically unstable. To make the argument
clearer, let us recall that this equation, written using th
Regge-Wheeler tortoise coordinate [36],

r
* R
r*=r+2M IOg(ZM 1), (25
reads
4(r—3M)
Y,tt_ 'r*r*_r—z(Y,t—’_Y,r*)
A|6M 8mA
=S| tUEE-D Y+ —T  (26)
r

where the(complex functionY is related to the Weyl tensor
tetrad component by =rW¥,; A is thehorizon functionA

E. Initial data

The nontrivial issue of how to specify suitable initial data
ﬁ.e. gravitational radiation freein the presence of sources
has been addressed to some extent in a number of works
f10,16,18,20,3}3 In particular, initial data suitable to de-
scribe point-like particles scattered by stars or falling onto
black holes can be found 18] and[38], respectively. The
common procedure is to choose initial data such that the
Hamiltonian and momentum constraints are satisfied at the
initial temporal hypersurface. If the matter source is initially

?rest, the initial conditions are time symmetric and the mo-
mentum constraint is automatically satisfied if the Hamil-

Sonian constraint is. However, if velocity fields are present

initially, the momentum constraint must be solved for too
[18].

In the simulations reported in this work, we choose time-
symmetric initial configurations where the matter distribu-
tion, shaped in the form of quadrupolar shells of dust or
perfect fluid, is falling onto the central compact object from
rest. Hence, we only need to consider the Hamiltonian con-
straint, Egs.(11) and (15). This constraint is a single equa-
tion for three unknowns, k, and y. By settingH=0, one
of the functionsk or y can be specified freely and the con-
straint is then solved for the remaining one. Furthermore, the
initial data are chosen so as to minimize the amount of gravi-
tational radiation present initially. This is done by choosing
x=0 and solving fok with a given sourcd o, [38]. Givenk,
the initial profile ofZ is then computed using E¢L8). While

=r2—2Mr and 7 is the source term determined by matter this prescription should ensure that the initial data are free of
flows [10]. The polar metric perturbations correspond to theany spurious GW content other than that due to the presence
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of the matter source, in practice this is not exactly the case, aeglecting the effect of a dynamically growing mass.
certain amount of GWs being always present. Its origin is
related to the finite value of the initial location of the shell. A. Evolution of the external fluid

For such a configuration, the impossibility of specifying the 1o hydrodynamics part of our code is the same as that
GW contribution associated with the shell in a way consis;sed in the simulations reported in REEO]. In this code in
tent with its past history provokes a transient burst in whichgrder to evolve dynamically the infalling fluid shells, the
the excess GWs are radiated away. Similar situations wergeneral relativistic hydrodynamics equations are solved us-
considered in Refd.18,38,43, where the source of the per- ing a Godunov-type schem@ee e.g[35] for detaily. In
turbations was a particle orbiting around or scattered off axisymmetry ¢,=0), the vectorU of evolved quantities
star or a black hole. In order to minimize this problem in ourappearing in Eq(7) is updated from time level” to t"*?1
simulations, we freely evolve the perturbations without theaccording to a conservative algorithm
hydrodynamics part until the initial unphysical burst of
gravitational radiation leaves the numerical domain, taking
the final profiles as the initial state for the actual simulations.
In the black hole case, this simple procedure permits us to
avoid completely any kind of initial data interference. For _ At oy £

- - o AglF e~ Fil il HALS ), (28
stars, however, this approach triggers the oscillations of the A
fluid modes. Hence, we further proceed by resettihg 0,
in order to obtain the correct initial model.

At . ~
Uin,;rlz Uin,j - E[Firﬂlz,j - Fir—llzJ]

whereAt=t""1—t" andAr andA ¢ indicate the radial and
angular grid spacing, respectively. In practice, a conserva-
tive, second-order, two-step Runge-Kutta algorithm is em-
ployed instead of Eq28). In the above equationandj label

The numerical schemes we have implemented to solve thée radial and angular zones, respectively. The numerical
hydrodynamics and perturbation equatidiesitined in the  fluxes (e.g. ﬁ{+1,zd-) are calculated at every cell interface
preceding sectionare used with some technical differencesusing an approximatéinearized Riemann solver built upon
in both scenarios under study, neutron stars and black holeghe characteristic information of the Jacobian matrices of the
The first difference is that, in the neutron star case, the ovelsystem. The reader is addressed35] for further details.
all grid is uniformly spaced in the radial coordinatewhile The matter model we choose for the accreting shells can
for the black hole it is uniformly spaced in the tortoise coor-be either dust or perfect fluid. In the former casepas0,
dinater*. The numerical domain chosen to discretize thethe Riemann solver must be specialized accordingly to avoid
hydrodynamics equations is always smaller than that of th@ivergences. For shells accreting onto black holes we employ
perturbation equations, which is extended in both directionsgust, not only to allow for a direct comparison with the re-
towards the horizon of the black holer the origin of coor-  sults of[10], but also because of numerical difficulties en-
dinates in the case of the stand towards large radii. This countered when using a perfect fluid in regions very close to
procedure avoids or minimizes the effect of the spurious rethe event horizon. In Schwarzschild coordinates some metric
flection of waves at both boundaries. For stars, the hydrodyeomponents blow up at the horizon, which affects the evolu-
namics domain begins at the first cell outside the stellar sution of hydrodynamical quantities. In particular, the coordi-
face and extends up 1g,,=108 km. We choose the same nate flow velocity becomes ultra-relativistic and reaches the
resolution Ar~0.07 km) for both stellar models, so that the speed of light at the horizon, making the Lorentz factor in-
interior is covered with 146 points for model A and 200 finite. If the inner boundary needs to be placed very close to
points for model B which, we recall, is less compact. Thethe horizon to capture the falloff of the Zerilli potenti@le
hydrodynamics grid is covered with 1400 zones, a resolutiomave checked that* = —50M is a reasonable value; see
chosen to ensure convergence. The external wave domapelow), the metric and hydrodynamical quantities, despite
extends up to ~1500 km and is covered by roughly 22000 being regular, present steep radial gradients, which make the
zones. On the other hand, in the case of black holes theumerical evolution difficult. In our current code and with
hydrodynamics domain starts very close to the horizon so aghe maximum grid resolutions affordable, we have found se-
to include as much as possible the peak of the potential bakere limitations in the perfect fluid accretion case to move
rier as well as its falloff toward™* = —. The sensitivity of the innermost boundary past values of abotit-—3M
our numerical results to the location of the inner boundary ofwhich, as we show below for the case of dust shells, are not
the hydrodynamics domain is discussed in Sec. IV below. yet close enough to the horizon to capture the gravitational

Before turning to describe the numerical schemes implewave emission unambiguously. We note that this numerical
mented in the code, it is worth commenting that in a realisticdrawback can be entirely removed by ushyizon-adapted
scenario the mass of the compact object would grow in timeoordinate systems such as ingoing Eddington-Finkelstein
as the accretion process proceeds. Such a possibility, howoeordinates employed in simulations of perfect fluid accre-
ever, has not been considered in the present simulationgion onto black holes in Ref39]. Such a procedure for per-
Technically, this would require recomputing at each evolu-fect fluid accretion may be attempted in future work.
tion time step the equilibrium structure of the star with a However, for the case of neutron stars we do not encoun-
massM + M (t) (or, analogously, increasing the black hole ter numerical difficulties in evolving perfect fluid shells.
mass. In our simulations we simply assume thaitl<M, Therefore, in those simulations we do not consider quadru-

I1l. NUMERICAL FRAMEWORK
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polar dust shells, but only perfect fluid shells. This is also Z Z w
further motivated from the reflecting boundary conditions we U= . F=l —wl. s=lv,z+s | (0
impose at the surface of the staee next paragraphwhich w w T

may naturally lead to the appearance of shock waves which

Cou|d not be treated in the case Of dust_ Whel’e we haVe introduced the Val’iable= Zyt+Z’r . The
The boundary conditions to impose upon the hydrody-ime update algorithm is given by

namics variables completely depend on the case under study.

In the black hole case, we adopt ingoing radial boundary urti=yn—

conditions at the innermost grid point of the hydrodynamics ! )

domain, chosen as close as possible to the event horizon. As

for the neutron star, the boundary conditions to impose to the

infalling fluid shell as it arrives at the stellar surface should

take into account the interaction between the shell and the

star. As a result of the complexity in modeling this phenom-where the matrixA reads

enon within our perturbative approach, we impose reflecting 1 0

E[F?H_F?q]
Atz n n n
+ W[Fjﬂ—ZFj +Fj,l]A\+AtS}‘, (3D

*

boundary conditions at the inner edge of the hydrodynamics
domain(i.e. the surface of the staiso that the star is seen by
the external fluid as &ard sphere. This choice includes the
most relevant effect; that is, the pressure gradient stops theo ensure stability of the code, the time stepmust satisfy
infalling matter and avoids the violation of energy conservathe usual Courant-Fredrichs-Lei€FL) condition, i.e. At
tion that outgoing boundary conditions would introdues =\ Ar*, with Agp <1.
happens in the black hole case when the inner boundary is The same radial resolution is used for the two domains
not close enough to the event horizo€orrespondingly, at  (hydrodynamics and perturbationgresent in the computa-
the outermost radial boundary we impose stationary valuegonal grid, namelyAr* ~0.04M. The angular domain of the
of the so-called Michel solution at those grid poif@®] at  hydrodynamics grid extends from 0 te and it is covered
all times. We note that the stationary Michel solution is usedyith 20 zones. As mentioned before, the hydrodynamics do-
in the entire hydrodynamics grid in order to provide a dy-main is within the wave domain, which is much larger. It
namically unimportant, spherically symmetric accretaty  extends fromr* = —50M to r* =30M and is covered with
mospheresurrounding the fluid shell. In the angular direc- ahout 2000 zones. The peak of the Zerilli potential is located
tion, axial symmetry fixes the appropriate boundaryatr~3.1M (r* ~1.9M). Since the potential decays expo-
conditions at the axis{=0 and ). nentially towards the horizom* = —50M is a sufficiently
small value to minimize the effects of the truncation on the
GW signal(see below. On the other hand, in the positivé
direction it is not necessary to extend the hydrodynamics
1. Black hole case grid much beyond the position of the center of the shell,

We can solve the Zerilli-Moncrief equation using either aPecause the shell is always collapsing towards the black
standard three-level leapfrog method, at second-order in bothole- Correspondingly, the grid for the perturbation equations
space and time, or a second-order Lax-Wendroff schemé&Xtends fromr*~—876M to r*~125(M. Standard Som-
Both methods have proved robust and stable enough for longérfeld outgoing-wave conditions are imposed at the exter-
time evolutions. In particular, they allow computation of Nal boundary and ingoing-wave conditions at the black hole
long-term features in the GW signal, namely the distinctiveh0rizon. Obtaining an optimal resolution in the simulations
power-law tails following the black hole ringdown. How- requires us to use 210° points fromr* =0 towards the
ever, when the leapfrog method is used, we find some high0rizon and some 810" zones in the opposite direction.
frequency numerical noise of small amplitude at the very end®uch @ large number of zones, however, does not imply any
of the tail. This numerical noise is not present when using théumerical limitation in the code as solving the Zerilli-
Lax-Wendroff scheme. Therefore, all results reported belowMoncrief equation is a one-dimensional problem.
for black hole spacetimes are obtained using this latter
method. We note, however, that the second-order leapfrog
produces noise-free results in the neutron star case. The par- The numerical algorithm used for solving the stellar per-
ticular form of such a scheme is discussed in the followingturbation equations does not use the gauge-invariant metric
section. perturbation variabley, but insteadS= y/r (the equations

In order to apply the Lax-Wendroff method, the Zerilli- are rewritten accordingly The reason for this modification
Moncrief equation is written as a first order hyperbolic sys-is thaty grows proportionally ta for r —oe, while the am-
tem as follows: plitude of Sremains finite. This is an important property that
helps to avoid unphysical instabilities of a numerical nature.
The evolution equations for the independent variaBesd
H are discretized on a uniformly spaced grid and solved us-
ing the three-level leapfrog method. The remaining elliptic
with equation fork is also discretized in space and then written as

0 -1 (32)

B. Integration of the perturbation equations

2. Neutron star case

U+ ,+F=S, (29)
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a tridiagonal linear system, which is solved at each time stepvents of finite-size objects and to compare the outcome with
inverting the corresponding matrix by a standatdldecom-  the point-particle case amenable to semi-analytic investiga-
position. tions.

In order to avoid numerical problems at the origin, the left The time-domain simulations discussed [ih0] were
interface of the first grid zone is chosen to coincide with thebased on the Newman-Penrose formalism, from which a
center of the star,=0, while the surface of the star=R, is = master wave equation for black hole perturbations was de-
located at a cell center. The first point of the grjes1, is  rived by Teukolsky[11]. As mentioned above, in the case of
then located at=Ar/2, whereAr is the radial grid spacing. a Schwarzschild black hole, the Teukolsky equation reduces
Correspondingly, the surface, which is labeled by dheell,  to the BP equation. Here, we start by reexamining the GW
is located aR=Ar/2+(J—1)Ar. As mentioned beforeis  emission of a Schwarzschild black hole as a result of the
evolved both inside and outside the star, whileis only  radial accretion of a quadrupolar dust shell. In this work,
evolved inside the star according to E@O) and at the sur- however, we use the inhomogeneous Zerilli-Moncrief equa-
face with Eq.(12). The same grid spacing is chosen insidetion for two different reasons: first, because it provides a

and outside the star. direct comparison with the neutron star case and, at the same
The radial derivatives o8, k, andH are discretized to time, allows for cross-checking our results with those of
second order, [10]; second, the main motivation in reexamining this prob-
lem was the fact that the Zerilli-Moncrief equation allows for
[A]]=(A]L 1= 2AM+AT_))/Ar?, (33) long and stable time evolutions. This property permits the
investigation of long time features in the GW spectrum.
[A]]=(Al 1 — Al )/2Ar (34 We consider an external matter distribution of total mass

u, much smaller than that of the black hole, namely
(with A=S, k or H), but atj=J we use backward second- =0.0IM. As in [10], the shell density distribution is param-

order differencing foH , as etrized according to
[H15=(H;-2—4H;_1+3H,)/2Ar. (35 p=po+ pma” 10 sir20, (37)
Similarly, the second time derivatives 8f(andH) are ap-  wherer is the initial position of the center of the shell and
proximated as k controls its width. The background densjty is chosen to
bl e 1 be very small 10 2?2 km™2) to simulate the vacuum out-
[Sulj=(§ "=25/+5 )/At~ (36)  side the black hole. The angular structure of the matter den-

sity is assumed to have a quadrupolar profile, being given by

As for the black hole case, we impose standard Sommeikj9. The value ofp,. is obtained from the condition that
feld outgoing-wave boundary conditions at the outermost rathe volume integral of Eq:37) equalsu. Papadopoulos and
dial zone. Partial reflection from the external boundary iSFont []_O] analyzed the dependence of the black hole QNM
still present, but it can be minimize@r causally disconnect  excitation on the various parameters of the shell, namely its
its influence by placing the outermost point sufficiently far. \idth, initial location, and its initial velocity field. Here, we
At the origin of the radial coordinate=0, all fields are begin by Studying the excitation of the black hole QNMs
regular and vanisf26]. For {=2, as the origin is chosen to varying the compactness of the shell, i.e. its wigtand the
lie at the interface of the first cell, there is no need for reguposition where it is at rest. We restrict ourselves first to shells
larizing the fields, as had to be done[it6,17. which are falling from a fixed locatiomy=15M and are

In order to have an internal consistency test, we haVﬁhitiaIIy at rest. The distant observer is located raj,
studied the evolution of a generic enthalpy profile in the= 128y from the origin of coordinatesrt ~133.5).
Source'free case, Computing the Zerilli-MonCI’ief funCtion in The response Of the b|ack h0|e as a resu't Of the accretion
two different ways. In the first option, it is computed alge- pyrocess when shells of different widthsare considered is
braically at every temporal slice froknandy by Eq.(18), all  shown in the top panel of Fig. 1, in which we plot the time
over the external domain; in the second possibility, it iseyolution of the Zerilli function. Note that in this figure we
matched tdk andX using Eq(18) just at the stellar Surface, use retardedobserve)’ time u=t—r*. The bottom panel
and then it is evolved independently in the exterior region byshows the absolute values of the waveforms, but in logarith-
solving Eq.(19). Both solutions agree very well, and only mjc scale and separating the different models for clarity. The

minor differences are observed during transient states.  yalues ofx are chosen in order to cover the range in which
qualitative differences among the signals are observed. The
IV. RESULTS process can be divided into three phad@smotion of the

shell before the bulk reaches the peak of the Zerilli potential,

from u/2M ~—10 up tou/2M ~50, where the emission is
As mentioned in the Introduction, time-dependent nu-purely due to the variation of the quadrupolar moment of the

merical simulations of the accretion of dust shells fallingshell; (ii) shortly afteru/2M ~50, when the bulk of the shell

isotropically onto a Schwarzschild black hole were presentedpproaches the peak of the potentidlexperiments a rapid

in [10]. The aim of those simulations was to characterize andvariation due to the interaction with the potential barrier,

estimate the gravitational radiation emitted in accretionresulting in a burst-like short signal. For more compact

A. Black hole simulations
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' ' ‘ ' ‘ waveforms shown in Fig. 1. The power spectrum has a complex
K =0.3 shape characterized by various distinctive peaks resulting from the
] interference between emitted and backscattered @#&fs text for
details.

we found that the other QNMs, characterized by frequencies
lower than the fundamental ofé1], can be slightly excited
1077 , ‘ : i during the process. However, as a result of their high damp-
; ing times, the energy that can be released through GWs is
negligible with respect to that generated by the variation of
the quadrupolar moment of the shell during the infall
(roughly three orders of magnitude lower far=0.1). We
s - \ s - note that the interaction of the shell with the black hole po-
0 50 100 150 200 . . .
u/ (2M) tential, even for small values af, is confirmed by the pres-
ence of the distinctive late-time decay.
FIG. 1. Gravitational waves emitted by a Schwarzschild black |t is known that the generation of the fundamental QNM
hole excited by infalling quadrupolar shells of given compactness ringing is associated with the peak of the poterfi]. The
[see Eq.(37)]. The bottom panels show the logarithm of the GW bulk of the shell crosses the peak at titi®\ ~ 50, which is
signals shown in the.top panel in order to highl!ght the onset of theat retarded timai/2M ~49. As argued before, the maximum
fundamental QNM ringing. The_shells are falling frorg=15M GW amplitude and the following QNM ringing are reached
zir;gtt: observer is located = 125M from the origin of coor- o a\vhere around this point. The end of the accretion pro-
' cess occurs at timg2M ~79.5, when the center of the bulk
ro reaches the innermost boundary of the hydrodynamical
shells, higher amplitudes of the Zerilli function are obtained.numerical domain. This time corresponds to a retarded time
(iii) The last part of the signal, fromW2M =55— 60 onward, u/2M~104.5.
is characterized by highly damped oscillations at early times The energy spectra for some selected values< adre
(the fundamental QNM ringing of the black hpléollowed  shown in Fig. 2. For all values of, the spectrum displays a
by the power-law radiative tail at the end. In the right panelcomplex structure, with several distinctive peaks that are
of Fig. 1 it is visible how the onset of the fundamental QNM more or less evenly spaced. The spacing between the
ringing occurs only when=0.3; i.e., wider(less compagt maxima is roughly given by 0.1lin units of 2Mw). The
shells do not succeed in exciting the fundamental mode opresence of these peaks is interpreted as an effect of the
the central black hole, but rather the signals show a largenterference between the gravitational waves emitted by the
wavelength oscillation. This feature is in excellent agreemenshell during its motion and the radiation emitted at earlier
with the results reported byL0] using the BP equation. i times, which has already been backscattered by the potential.
is too small, the impinging GWs cannot be fully transmitted These interference fringes are not new. In fact, similar pat-
beyond the potential barrier to cause the ringing of the funterns were found by Lousto and Priet8] when studying the
damental QNM. Thus, the large wavelength oscillation issignal emitted by a point particle falling radially onto a
determined by the gravitational pulse driven by the shellSchwarzschild black hole from a finite distange However,
which is almost completely reflected back by the potentialsome differences between their case and ours must be
barrier. It is worth mentioning that, also in this case, thestressed. In Ref43], the initial data had some GW content,
black hole spacetime reacts to the external perturbation, and the authors argued that the evenly spaced bumps found

log, 1Z/u]
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FIG. 3. Excitation of thef =2 fundamental QNM as a function 10
of x. The spectrum is computed selecting only the part of the signal
corresponding to the ringing. The dashed vertical line indicates the
fundamental QNM frequency (@ w~0.7473) of a Schwarzschild i
black hole[41]. Note that fork=0.1 the spectrum is barely visible X
at the bottom of the plot. 1o

in the energy spectréawhose amplitude and spacing de-
pended orry) were mainly due to the interference between
the initial data pulse and the GWs emitted by the infalling \
point particle during its motion. In Appendix B, we confirm ] ! !
this result using a time domain code, by comparing the GW ! |
by
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energy spectra generated by a falling point particle with and 107}
without the initial GW content. In the latter case, we find that

the amplitude of the interference bumps is reduced. For the ;4
case of an imploding shell, despite the initial data effect be- 10
ing eliminated by construction, we find well-defined interfer- log,, [£/(2M)]

ence fringe§ in .the energy §pectra. The extendgd size of the FIG. 4. Black hole QNM ringdown and tails for various shell
matter distribution results |n_t_h_e eX|stence_ of_lr_lte_rferenchidtth. The top panel shows that the GW burst resulting from the
patterns even when the_GW 'n'_t'al content Is mlnlmlzed. bulk of the shell crossing the peak of the Zerilli potential occurs at

As for the case of point particlgg3], we notice that the etarded timeu/2M ~49.5 (first vertical dashed line The late-time
part of the waveforms which strongly contributes to theseyower-law tails are all perfectly superposed for the various values
features in the spectrum is that extending up to the secongt « considered. Atu/2M ~104.5 (second vertical dashed lipe
zero of the signal Y/2M ~42), just before the burst. This when the shell leaves the hydrodynamical numerical domain, a sec-
portion of the waveform carries the imprint of the radiation ond ringing appears. This ringing is a numerical artifaete text for
emitted during the accretion process, before the bulk of theletaily. The bottom panel depicts on a log-log plot the late time
shell crosses the peak of the Zerilli potential. This is con-behavior of the longest simulation for a shell with=10. A fit to
firmed by the results shown in the spectra of Fig. 3, obtainedhe solid line giveZ~ (t/2M)"%, in excellent agreement with the
considering only that part of the signal from the third zero ofanalytic late-time fall off derived by Pricet5], Eq. (38).
Z onwards. This helps eliminate as much as possible the GW
contribution related to the motion of the shell and to dig outbeing all nicely overlapped. This important feature was not
the actual QNM ringing signal. The spectrum of this lateaccessible to the simulations reported[it0], due to the
time signal closely corresponds to that of a Schwarzschild&ppearance of numerical instabilities when solving the BP
black hole radiating via the fundamental modeMa equation for sufficiently long evolution times. The late time
~0.7473), whose frequency is marked by the verticalbehavior of gravitational perturbations was first studied in
dashed line in the figure. The width of the peak is consistentletail by Price[45] using analytic techniques. The most re-
with the damping time of the fundamental mogee[41]),  cent and exhaustive discussion of this topic can be found in
confirming that, if the black hole is successfully excited, the[46]. The gravitational multipole perturbations witk=2 are
energy is radiated mostly in the fundamental mode. expected to fall off at largé as

In Fig. 4, we show the superposition of the QNM ring-
downs for some selected valueskofAs expected, the power
law of the late time tail does not depend on the shell wielth

I2.3 10‘24 10'2.5

10 10%°

I
S Vi , (38

2=\ oM
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i.e. as~t~ " in our case { =2m=0). The best fit to the tails x 107
shown in the left panel of Fig. 4, which correspond to simu-
lations that extend up to-3.67 ms of evolution {/2M
~209), givesZ~ (t/2M)~ "¢ The somewhat large differ-
ence with the expected analytic value given by ERp) is 3r
due to the fact that the signal has not reached yet the lates
time state. In order to prove this, we perform a much longer=_
run (up to u/2M ~609) employing a larger grid of 710* § 2
zones, which corresponds to roughly twice the number of 4 !
zones used in the previous simulations. For this run, we se-, A
«x=10, keeping the same values for the remaining param-= M
eters. The bottom panel of Fig. 4 shows the results of this
long run. The best fit to the late time signal is ndv
~(t/2M) 797 in close agreement with the expected value.
In order to further improve the numerical results it simply o , ‘
suffices to perform even longer simulations employing larger ~ ° 0.5
grids.

Some more comments are relevant about Fig. 4. #or  FIG. 5. Dependence of the GW energy spectra on the radial
=1, 10, and 100 the signals present a strange feature, withlacation of the innermost boundary,;,, of the hydrodynamics nu-
second ringing starting at/2M ~ 104.5(indicated by a thick merical domain. The spectra plotted correspond 10 quadru-
vertical dashed line in the top pJotWe have checked that polar shells falling fromr,=15M, the GWs being extracted at
this second ringing starts at the time when the center of th&ps=125M. The unphysical high-frequency components disappear
shell leaves the numerical domain through the innermossr i, becomes smaller than about20M. The spectra converge
boundary. The appearance of this ringing seems to be a nir values ofry;, as small as-50M (solid line).
merical artifact, as a small discontinuity in the fields is intro-
duced when the center of the shell leaves the grid. The blackelevant GW physics of the accretion process. However, us-
hole reacts to this by emitting GWs in the form of the secondng a less conservative value for the radial location of the
ringing, until the late time tail is reached. This unphysicalinner boundary, e.g.xi,=—3M, results in an artificial spec-
ringing could be avoided by extending the numerical domairtrum which is roughly peaked again around the frequency of
as much as possible towards= — (i.e. towards the event the fundamental mode. This was observeili] and attrib-
horizon. In practice, since the accretion processes we argted to QNM ringing. However, it is of completely numerical
interested in happen outside the horizon, where the peak @fature, with the same origin as the second ringing discussed
the Zerilli potential stands, it suffices to choose the innerin Fig. 4: when the shell crosses the inner boundary and
most boundary of the hydrodynamics domain such that théeaves the grid, matter is artificially removed from the sys-
exponential falloff of the potential is properly captured. Thetem, which violates energy conservation and produces the
observation that most of the energy is released at low freexcitation of the black hole normal modes. If this happens at
quencies shows that the choice of the radial extent of the relatively large radius such ag& =—3M, the effect is
hydrodynamics domain with respect to the width of the Zer-amplified. Moving the inner boundary closer to the event
illi potential is of paramount importance to obtain the correcthorizon shifts the second QNM ringing to later times, when
GW signals and the corresponding energy spectra. This ethe signal is much weaker, and highly reduces the unphysical
fect is more important in the case of an extended She”high-frequency part of the power spectrum. Therefore, the
whose size changes with time due to the presence of tidanergy spectrum of the GW emission that one could expect
forces which tend to disrupt it before being swallowed by thein a realistic astrophysical scenario, during anisotropic accre-
black hole. It is the complex interaction with all the structuretion of matter onto a Schwarzschild black hole, is most likely
of the potential which determines the GW emission. to be a collection of interference fringes covering a wide

In order to study how the radial extent of the hydrody- range of low frequencies than a single peak at the frequency
namical domain affects the waveforms and energy emissionf the fundamental mode of the black hole.
we focus on an accreting shell of fixed width= 10 and vary Next, we analyze the dependence of the energy spectra on
the radial location of the innermost boundary;,. The re-  the initial location of the shell. This is shown in Fig. 6 where
sults of these simulations are shown in Fig. 5. We start withwe compare the spectra for three different initial locations,
rhin=—3M and gradually pushy,, towards the event hori- ro,=7.5M,15M, and 30M. The number of interference
zon, choosing the values-10M, —20M, —40M, and fringes rapidly increases with distancg Furthermore, the
—50M. Although the low-frequency part of the spectra correlation between the separation of the fringes and the ini-
(2M w<0.4) is almost unaffected by the location of the in- tial position of the shell is evident: the larger the distance, the
ner boundary, high-frequency components become evidesimaller the separation between consecutive maxima. In order
when rf, is larger than—20M. The energy spectra for to explain these modulations in the spectrum, we can follow
r*. =—40M andr*,,= —50M are in practice identical. This the reasoning of Lousto and Prif43]. Given a GW signal
means that such a radial extent suffices to capture all th&y(t,r*), its Fourier transfornZo(w,r*) is defined accord-

-3M
-10M
-20M

-=. r* -40M

H
*
LU [ I I |

-50M

[y
T

2M®
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TABLE Il. Total energy emitted in gravitational waves for shells

x 10
y — r, = 7.5M accreting onto a Schwarzschild black hole from different distances
——.r_ = 15M
s _ rz = 30M || fo-
ro/M (2M/ u?)E?
s r = 500M
o 2 obs 7.5 1.09<10°*
~ N 7\
3 A K A 15 9.49<10°°
§1 s AN\ 30 7.20¢10°5
! . . . . .
-1 [ /A \‘ the corresponding time shift. In the case of a radially infall-
N5 \ ing point particle, Lousto and Pri¢d3] argued that this time
o.sf |} X, shift roughly coincides with the infalling time. They use this
X & empirical criterion as a rule of thumb to predict the variation
! , , , Mo of the spectra as is increased. We have found a similar
0 0
° 0.2 0.4 0.6 0.8 1 correlation for our extended dust shells.

2M® To close this section, we compute the total energy emitted

FIG. 6. Dependence of the energy spectra on the initial location gravitational waves for shells accreting from the three ini-
of the shell = 10), ro=7.5M (thick solid lin®, r,=15M (dashed tial locations considered previouslyy=7.5M, 15M, and
line), andry=30M (thin solid lind. The number of interference 30M. The energy emitted is computed by integrating in fre-
fringes rapidly increases with the initial location of the shell. quency the energy spectra of Fig. 6, where the integrals are

calculated using a standard trapezoidal rule. As we do in the
ing to Eq.(23). For larger*, where the observer is located, point-particle casésee Appendix B it is convenient to use
the waveform represents only outgoing radiation, Zg. as a reference quantity the rativ2u?E?°. Table Il lists the
=Zy(t—r*), which gives values of the energy for the three positiogconsidered. We
note that the third valuéfor r,=30M) may be slightly un-
5 _ “iwt NS, e derestimated due to some inaccuracies in the resolution of
Zole,1)= ffxe Zo(t=r)dt=e Alw), (39 the power spectrum. It is worth stressing that, irrespective of
the locatiorr 4 of the shell, the values reported in Table Il are
smaller by roughly two orders of magnitude than those ob-
tained in the point-particle limif38,43 [Lousto and Price
40  [43] give (2M/p?)E*°=1.64x 10" for ro=30M and 1.43
X102 for ro=10M]. The reduction we find in the total
energy emitted in gravitational waves is a consequence of the
finite size of the shells considered in the present work.

We note that in the numerical simulations reporte{lif|
the estimation of the energy yielded considerably larger val-
ues than the ones reported here, asymptoting towards a third
of the point-particle limif9] as the compactness of the shell
was increased. We argue that such a high value is overesti-
mated, because it was affected by errors induced by the lo-
cation of the innermost boundary of the hydrodynamics grid
(r*=—-3M), as we have shown in Fig. 5. An indirect vali-
Thus, the Fourier transform of the signal given by the supereation of the current estimation of energy emission comes
position ofZ, andZ, is given by from an inspection of the findings of Shapiro and Wasserman
[5]. These authors compute the total energy radiated in gravi-
tational wavegwhile here we restrict to thé=2 multipole
from non-spherical dust clouds falling into a black hole from
infinity. For any of the models considered, they find that the
energy released in GWs is always smaller by at least two
orders of magnitude with respect to the point-particle limit,
with thinner clouds more efficient than wider ones.

©

where
Alw)= f e 1°uz,(u)du.

Let us now consider another GW sigrfal whose time delay
with Z is Tepire- This signal isZ,=Z(r* ,t— Tgnir), SO that
its Fourier transform reads

’zl(a),r*):J' eiith(t_Tshiﬁ,r*)dt

— e—inshme—iwr*A(w) )

Z(w,r*)=Zg(w,r*)+Z1(w,r*)

=e 1" A(w)(1+ e 1@Tshif), (41)

Then, when computing the spectrum we have

0?[Z(w,r*)|?= 4w2|A(w)|ZCOSZ<1wTShm) . (42
2 B. Neutron star simulations

Therefore, the modulation in the frequency spectrum is re- We turn now to consider the case of quadrupolar perfect

lated to the characteristic timEy,;; Which accounts for the fluid shells accreting onto neutron stars. Two neutron star

delay between consecutive GW signaldw=27/T g - models are considered, models A and B, whose characteris-

From the measure of the peak spacihg, we can thus infer tics (mass and radigshave been described in Sec. Il A
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FIG. 7. Time evolution of the metric variablésand y and of the enthalpy perturbatidth for the two neutron star models considered.
The left panels correspond to model A and the right panels to model B. The burst of gravitational radiation and the subsequent metric and
fluid oscillations are clearly identified for both stellar models. The infalling perfect fluid shell has an initial compactngsnd is located
at a distance ;=20 km. Note that, contrary to the previous figures, the time is now given in ms.

above. Initially, the quadrupolar shell is surrounded by aan extended atmosphere, the accretion process is now fol-
background fluidan “atmospherej satisfying the stationary lowed by the formation of shock waves which propagate off
and spherically symmetric Michel solutidd0]. The initial  the stellar surface. As in the case of the black hole, the im-
rest mass density profile is given by E®7), wherepg is  pact of the shell perturbs the star and triggers its quasinormal
now the profile consistent with the Michel solution. As in the modes of pulsation.
black hole case, the mass of the sheluis-0.0IM, which Figure 7 displays the time evolution of the metric func-
corresponds to a maximum density Opna~3.5  tionsy andk, as well as the enthalpy perturbatibinfor both
X 107® km~? when we fix its width tox=1. The(inhomo-  models. Model AB) is presented in the leftight) panels. In
geneous density profile of the atmospherng, is roughly this figure we show the all the variables and the logarithms
three orders of magnitude lower thap,,. The shell obeys a of the absolute values of the metric functions, in order to
polytropic (p=Kp?) EOS withK=0.01 kn?’® and y=4/3. highlight the oscillating modes of the two stars. Correspond-
The initial internal energy profile is obtained fromandp  ingly, Fig. 8 exhibits the time evolution of the Zerilli-
through the first law of thermodynamics as=p/[(y Moncrief function for both models, in linear and logarithmic
—1)p]. The shell is initially at rest at,=20 km, and the scales, computed at every time step according to(H). In
GW signal is extracted at,,s= 250 km. the behavior o, as well as in the time evolution gf andk

We first present an overview of a typical evolution for shown in Fig. 7, the three phases discussed in the preceding
both models, in order to have an immediate insight on thesection for the black hole case are also visible: first, the
dependence of the gravitational wave signal on the compactnfalling phase, when the bulk of the shell is evolving outside
ness of the star. As a result of the reflecting boundary condithe star, gradually approaching it, which is characterized by a
tions imposed at the surface of the star and the existence steady increase of the amplitude of the signal. This phase is
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o 0 Modela == namics, as the ringdown of the neutron star lasts for much
) longer times. In our idealized setup, with a perfect fluid,
0.04r 1 these pulsations are not quickly damped by the existence of a
= o.02t 1 dense envelope surrounding the star, as happens in the core
Nl collapse situation.
The bulk of the accreting mattéthe center of the shell
~0.02 ‘ ‘ N reaches the stellar surface tat-0.2 ms for model A and

o1z 3 4 s 6 tg~0.14 ms for model B. Atr.,s, where the observer is
located, the GW signals generated by these events are de-
layed in time by

I obs— 2M

At= R—2M

lNobs— R*T2M Iog( } . (43

log, I2/ul

Therefore, the signal generated by the matter bouncing back

0 1 2 time [ms| 5 6 at the stellar surface breaches the observer at titffs t,
+Ata~1.06 ms and3**=tg+Atg~0.97 ms. These values
Model B are consistent with the results of Fig. 7, where the waveforms
0.03 T T T T T T T T

of k and y are found to show bursts of large amplitude fol-
lowed by highly damped oscillations sometime around these
values. This observation is particularly confirmed in the
logarithmic plots of the GW signals. After the short-lived
ringing phase lasting for a fraction of half a millisecond after
the burst, only the fundamental oscillation mode of the star is
visible in all variables plotted in Figs. 7 and 8.

The qualitative behavior found in the GW emission is the
same for both models. Only quantitative differences appear
in the amplitudes at the maximum, which are systematically

§“ larger by roughly a factor of 2 for the more compact model

= (A). This difference in amplitude becomes more apparent in
§‘ the energy spectra of the Zerilli-Moncrief function shown in
Fig. 9. The solid lines in this figure are obtained by Fourier

e transforming the complete signal, i.e. also including the con-

time [ms] tributions from the shell infall phase which precedes the

FIG. 8. Time evolution of the Zerilli-Moncrief function for the burst. Correspondlngly, the, dashed lines are obtained from
two stellar models considered. In close qualitative agreement Witﬁruncateq waveforms, in Wh'(_:h we only take into account the
the results from gravitational core collapse simulati¢ag], the ~ Ccontribution from the beginning of the burst-0.9 ms) on-
burst in the Zerilli-Moncrief function is associated with the moment Ward. We notice that, despite the short evolution times of our
of the bounce of the accreting shell at the stellar surface and occumulations, thei-mode frequency is very well identified in
at a retarded time of about 1 ms. the spectra, the relative difference with respect to the values

listed in Table | being roughly of 1%. The value of the

very short as the shell is initially located very close to thef-mode frequency is indicated with a circle in Fig. 9. Further-
stellar surface. Second, a burst-like peak appears in the GWiore, it is worth stressing that we obtain the same qualitative
signal, which, as found in relativistic simulations of gravita- spectra as for the black hole case—a complex pattern with
tional core collaps¢47], coincides with the moment when interference fringes with the addition, in the neutron star
the shell reaches the surface, creating a shock wave whidatase, of a high peak standing at the frequency of thede.
propagates off the surface. Finally, there is the ringdowrAs we discussed in the preceding section for a Schwarzschild
phase, characterized by a GW signal which is not exactlplack hole, the comparison between the spectra obtained
monochromatic as a result of the complex interaction befrom the total and the truncated Zerilli signal shows that the
tween the gravitational field of the star and the layers of fluidinterference fringes are produced by the interaction of the
captured on top of the stellar surface in the process of reinfalling fluid and the star.
adjusting themselves to a new stationary solution. The dura- There are other small differences between the two stellar
tion of the ringdown phase is now much longer than for themodels. The more compact mod@) is more efficient at
Schwarzschild black hole case discussed previously, as thegh frequencies than model B. This is directly correlated
damping time of the fundamental mode of the fluid is con-with the large amplitudes attained by the peaks of the Zerilli-
siderably larger. We note that despite the waveforms obMoncrief function in the time domaifcf. Fig. 8. The broad-
tained in our simulations showing a remarkable resemblanckand spectrum of model A presents one broad peak with a
with those obtained in core collapse simulatiddg], there  maximum at about 7 kHz, which is however too low to be
are also important differences in the post-bounce phase dydentified with the firstwv mode(see Table)l As mentioned

124028-15



NAGAR, DiAZ, PONS, AND FONT PHYSICAL REVIEW D69, 124028 (2004

Model A 0.018
0.018 T = T -=--p=0.001M
e T eay —u=o.om |
0.016F bt
0.0141
0.014} D R
_ S o.012f
° 0.012 1 8
= M
@ o.01 v 001
o
P !é 0,008
ﬁo 008} _ s
o =.
%0.0067 : | = 0.006f
0.00ak -' ] 0.004
0.002f 1\ 0.0021
s Y L'\\/\/\/\/\/\/’\/\,r\/\
% 2.5 5 7.5 10 12.5 15 0 2.5 5 7.5 10 12.5 15
frequency [kHz] frequency [kHz]
Model B FIG. 10. Energy spectra for two fluid shells differing on the
0.018 : R CPPETRE: initial mass x and infalling from a distance of ;=20 km onto
. without the infall stellar model B. The solid line corresponds de=0.0IM and the
0-016r | dashed line tou=0.00IM. The f-mode excitation and the high
0.014} ﬂ, frequency part of the spectra coincide to high precision for the two
_ shells considered. Only the low frequency peak is affected by the
e 0012 different mass of the shell.
& 0.0 _ . '
5 energy spectra corresponding to two fluid shells which only
Zooos 1 differ on the mass £=0.0IM and 0.00M), falling onto
Zo00sk | ] stellar model B from the same distanag=20 km. Thef
] mode is also properly excited for the less massive shell. Fur-
0.004F i thermore, the interference fringes in the high frequency part
0002k ' of the spectra coincide to high precision for the two shells
! W\/\/\w considered, after normalizing to the corresponding shell
% 2.5 5 7.5 10 - 125 15 masses. However, the structure of t_he Ipvv_ frequency peak is
fraquency [kHz] the only feature of the spectra which is influenced by the

mass of the shell. We argue that the existence of this un-

FIG. 9. Energy spectra corresponding to the time evolution ofphysijcal low frequency peak is an artifact produced by the
the Zerilli-Moncrief function depicted in Fig. 8. Model B) is boundary conditions. Notice, one more time, that we model
shown on the tofgbottom panel. The solid lines show the spectra the surface of the star as a hard surface, with reflecting

for the entire signal while the dashed lines are obtained removm%oundary conditions. In a realistic scenario. the accreted mat-
that part of the waveform which corresponds to the infall phase o er would not simpl.y bounce at the Stellér surface. but it

the shell. The spectra of the entire signal show characteristic inte'i?vould rather interact with the neutron star envelope. result-
ference fringes, qualitatively similar to those found in the black. Pe,

hole case, with a large amplitude peak standing at the frequency c';ﬂ? |nbh%agnq[handtsuﬁer|ng nuclear reactions, untl it is re-
the f mode. The value of the frequency of thenode from Table | absorbed by the star.

is indicated by a circle. The spectra of the truncated signals show no A_S we did for th_e black hole case, let us now_close t.hls
evidence of the interference patterns. section by computing the total energy emitted in gravita-

tional waves for the two stellar models considered. For doing
S0 we integrate in frequency the spectra appearing in Fig. 9.

before, its origin should be related to the motion of the fluid.l.he result of the integration yields

shell and its interference with the gravitational field of the
star or, in other words, on the reflection of the GW pulse
associated with the shell distribution with the “external”
Zerilli potential. Thus, this broad feature depends on details

of the accretion dynamics rather than on the intrinsic char- E2’~8.36x 10" "M c?. (45)
acteristics of the star.

We note that in both spectra there appears a small amplModel A is hence slightly more efficient than model B con-
tude peak at frequencies lower than that of thmode for  cerning GW emission. We note in passing that these values
each model. This second peak is associated with oscillatiorsre as small as those found in core collapse simulafiéris
of that part of the external fluid that has been gravitationallyalthough such a comparison only makes sense in qualitative
captured by the central neutron star as a result of accretiomerms. Finally, the mass of the shell radiated in gravitational
In order to illustrate this affirmation, we plot in Fig. 10 the waves is

E2%=3.02x 10 M c?, (44)
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Ei0:2-15>< 10 %, (46) sources for detection. However, to the light of our findings,
the process of accretion appears to be quite more effective at
EX~5.97x10 4. (47)  frequencies about a factor of 2—-3 lower than that of the black

hole fundamental mode, and therefore the chances of detect-
ing gravitational wave signals from such scenarios may be
V. CONCLUSIONS larger than expected. It must be stressed that the interference

In this paper we have presented a detailed analysis of th attern does not happen only because of the GW content of

gravitational radiation induced by the anisotropic accretiorf€ initial data, but it is a distinctive feature due to the ex-
of quadrupolardust or perfect fluiiishells onto non-rotating €nded size of the object, resulting from the interaction be-
black holes and neutron stars. The numerical framework fofVe€en the infalling matter and the backscattered waves.

our simulations is based uponhgbrid procedure in which In the neutron star case the qualitative results are similar,

the linearized equations describing metric and fluid perturbalUt & considerable part of the energy is emitted at the fre-

tions are coupled to a fully nonlinear hydrodynamics codeduency of the fundamental mode. We have shown thaf the

that calculates the motion of the accreting matter. Thes&'0de of the star is the only one excited at significant levels
equations are integrated numerically in axisymmetry usingnd that the high frequency spectrum is quite sensitive to the
advanced computational techniques. The numerical schemaRatial distribution of the accreting matter, making the con-
developed have proved to be stable and highly accurate. jobutmn of the spacetime modes of the star difficult to be

garding the perturbation equations, the two main technicafntified. The waveforms obtained show a remarkable re-
changes with respect to previous works reported in the itSemblance with those obtained in core collapse simulations

erature are the use of the Zerilli-Moncrief function and thel47): despite the fact that we are considering a very different

in-built conservation of the Hamiltonian constraint. The hy-SCcenario. The main difference is that in our case the ring-
drodynamics equations are solved using high-resolutiotlOWn Of the neutron star lasts for much longer times: the
shock-capturing schemes based upon approximate RiemaRjy!Sations are not quickly damped by the existence of a
solvers. We have shown that a perturbative approach can #nse envelope surrounding the star, as happens in the core

used as a very effective tool to understand the basic gravit£°!lapse situation. o ,
tional physics operating in interesting astrophysical situa- 1 ne results reported in this paper can partly be considered

tions, extending the information which can be gained from@S & Necessary assessment of our numerical approach in an-
the study of point-like particles infalling onto black holes or ticiPation of the study of more interesting astrophysical sce-

orbiting around them. In this context, our hybrid approacharios, namely the excitation of QNMs from perfect fluid
thick accretion tori orbiting around compact obje(tse e.g.

can be extremely useful to understand the gravitational r o .
diation from astrophysical systems, complementing thi4r?,49|[an]d references thergirwhich will be presented else-
where[32].

whole machinery of full numerical relativity.
The simple fluid configurations analyzed in this paper as-
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earlier hydrodynamical simulations j%0], was already ob-

served by Lousto and Pridé3] in the case of a point-like

particle falling onto a black holésee Appendix B a situa- APPENDIX A: GENERAL SOURCE TERM

tion amenable to semi-analytic investigation. However, we FOR THE ZERILLI-MONCRIEF EQUATION

have shown that the appearance of interference fringes is | this appendix we derive the source term given in Eq.
very much amplified when the accreting fluid is an extendeq21) for a general stress-energy tensor. We use the normal-
shell of finite size which, in turn, reduces the amount ofization of the Zerilli-Moncrief functionp given in Ref.[27],
energy which is released in gravitational waves to some twgyjthough the function we evolve in the numerical simulations
orders of magnitude below the point-particle value. It is in-js rescaled aZ=24/\. The inhomogeneous equation writ-

teresting to notice that ground-based interferometric deteGyp, using the frame derivatives notation[f] reads
tors attain the maximum sensitivity at frequencies consider-

ably lower than the QNMs of stellar mass black holes. For )
this reason they are usually not considered as optimal —¢+d"+ved' —V,h=S,, (A1)
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whereV , is the potential an,, the source term. As shown so that the source of the Zerilli equation is found to be
by Moncrief[31], ¢ can be written in terms df and y as

S= Ay B(r)k+C(OK, (A2) Sy=AT,+(B+2vC)T,+[2C’ —2(W+»)C]T,+CTj.

(A14)
where
In polar radial coordinates the sources are, explicitly,
2r2e—2b
=— A3
(N—2)r+6M (A3) Ty=—8mSy, (A15)
r(rn+2M) 5
- =7 T,=—16we?S, , Al6
(A=2)r+6M" (Ad) X X (A1)
C=—rAe. A5 e 2
(A% Tk=87-r[ B R T e P
The derivation of the source ter®, follows from knowl-
edge of the source terms in the evolution equationgfand e2b A+2 Be 2b
k that can be written in vacuuf27]. Using Eq.(A2) in Eq. —2——(T5M r_( — T,
(A1) we get r ' r2 r2
. . .. Al7
—p+¢"+ved'=A(—x+x")—Bk+[B+2C'+vClK" (A1)
+C[—(K) +K"T+L(K,x.K",x"), whereS;, andS, have been defined in Sec. Il C. When Egs.

(A15)—(A17) and the definitions of the coefficienf&3)—
(AB) (A5) are replaced in EqA14), we getS,=\S,/2, with S,

whereL is a linear operator acting dq y, k" andy’, whose given by Eq.(21).

explicit form is not relevant for the computation of the
source. In fact, in Ref27] it is shown that all terms which
arelinear in the fieldsy andk and their first-order spatial
frame derivatives merge together to build the Zerilli poten-
tial. The frame derivatives do not commus],

From the orthogonality properties of the harmonics,

dQY?mYerm/ = 5@(! 5mmr ’ (A18)
(k)= (k') ==uf, (A7)
so that f dOYfm aYerm oY= NS¢ S (A19)
(k") =(k)"+2uvk, (A8)
: ; ; : *¢'m’ ab )\()\_2)
v=0 being on a static background. Equati@®6) becomes dQzz, m= "5 Oct' Omn - (A20)
then
—p+¢"+vd =A(—x+x")+B(—k+K") we obtain the coefficients of the expansiontgf,
+(vC+2C")k"—2vCk+ C(—k+Kk")’
i@=f dot,,Yi,, ABu,v=01, (A21)
+L(K,x. K x"). (A9)
Next, we can write the evolution equations foand y in 1 i
a Schwarzschild spacetime and the Hamiltonian constraint as Tgmz KJ dQ tozY?m,ﬁ— %tos\(?m , (A22)
_j.(—’_X,,:L{k!X!X’}—’_TX! (AlO)
1 im
_ k+ K'"= L{X k} (2W+ )k’ +Tk, (All) Tgm: Xf dQ tlZY?m,f)_ %tle;m y (A23)
K'=L{x,k,x", K} + Ty, (A12)
w_ith Ty Tk andT,, being the sources induce_d by the matter T{Mm= _J t22+ t33 Yi (A24)
distribution. From these equations one obtains

(—k+K") =L{k,x,K' x'}—(2W+»)Ty+Ty, (A13)  and

124028-18

The projections of the source stress-energy tensor onto the
basis of the spherical harmonics is accomplished as follows.



ACCRETION-DRIVEN GRAVITATIONAL RADIATION . ..

0.4 T T T T T T
0.2} R =1M 1
=
< 0
N
-0.2} 1
0.4 . . . . . . .
2100 -75 -50 -25 [ 25 50 75
0.4 T T T T
R = 15M
0.2
N
N 0
-0.2}
0.4 . . . . . . .
2100 =75 -50 -25 0 25 50 75
0.4 . T T
0.2l R, = 20M
N
N 0
-0.2}
-0.4 . L
2100 =75 -50
0.04 :
__.R_= 10M
A\ (]
o — R, = 15M
0.035} r = s00M N - R, = 20M
out iy Ay
1=2 A AN
0.031 7 VN
-~ 1! \
o l' AY
o [ S
< 0.025F il \
P L
2 i
g il
P 0.02 AN
N
-~ 1] / !
~N 7 A 1
Zo.o15- . s '
N Y ’
ial oy ‘
ITERI R ‘\,
0.01 X/
1 A\
ot A\
0.005r ,f
i
i 7
0 kd 1 1 1 |
0 0.25 0.5 0.75 1 1.25
2M®

PHYSICAL REVIEW D 69, 124028 (2004

0.04 T T T T
--. ID

s
—— no ID
0,035 . cws ||

o
o
w
T
N
~
d
L

o
o
N
w»
T
L

2 2,0
1/u? (dE/dw) ¥
o
o
o
= (=]
v N
\l
P

o
[=]
et
T
~
v
L

0.005- 1

2M®

FIG. 12. Effects of the gravitational wave content of the initial
data on the energy spectra of a point-like particle falling radially
onto a black hole froniRy=15M. By eliminating the initial contri-
bution of GWs the amplitude of the bumps is strongly reduced.
Qualitatively, however, the effect is always present.

simple cases, such as the particular case when the source is a
test-mass body moving along a geodesic of Schwarzschild
spacetimg18].

APPENDIX B: POINT-LIKE PARTICLES RADIALLY
FALLING ONTO BLACK HOLES

In this appendix we reexamine the simplified scenario of a

FIG. 11. Gravitational waveforms and energy spectra for a poinpoint particle radially falling onto a Schwarzschild black
particle falllng radially onto a Schwarzschild black hole from dif- hole. This is done with two purposes: first to test our pertur-
ferent distances. The top panels show the waveforms and the bogative numerical code with previous works and, second, to

tom panel the corresponding spectral energy distributions. Excelle
agreement is found with the results of Lousto and Pf##. See

text for further details.
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where, following Regge and Wheelg86], we have defined
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rHmalyze the similarities and differences with the case of ac-
cretion of extended fluid shells onto black holes. The emis-
sion generated by infalling particles has been extensively
studied in the past. The seminal calculation of the GW emis-
sion when a test particle falls from infinit}9] was later
extended to non-radial trajectories by Detweiler and Szeden-
its [50]. In both cases the analysis was done in the frequency
domain. A frequency component treatment based on Laplace
transforms was also employed by Lousto and Pfi&# in

the study of the emission from particles falling from finite
distances. On the other hand, a treatment of the same prob-
lem in the time domain has just recently been approached by
Martel and Poissoh38].

In order to test our numerical code we should be able to
reproduce those results reported in R¢88,43 within the
current time-domain approach. A way to deal withdike
source and with a discontinuous Zerilli-Moncrief function at
the location of the particle was developed by Lousto and
Price[44] and later successfully applied in RE88] follow-

In the general case whete, describes a complex source ing a time domain approach. However, we found it conve-
corresponding to a general distribution of matter evolvingnient and accurate enough for our purposes to represest the
dynamically, these integrals have to be evaluated numerifunction in the particle source terms by a narrow Gaussian
cally. The analytic computation can be done only in somewritten as
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- the same localized bumps due to the interference between the
g~ ("—Ro)“/20° (B1) initial GW pulse and the GWs emitted by the particle during
oN2m its motion. We notice quite good agreement fRg=10M

) ) ) ] and Ry=15M, while some small differences are found for
with o<1. For a given resolution, we fix=2Ar*, so that Ro=20M.

the smallerAr*, the better the approximation of th&func- Next, we analyze the contribution of the initial data on the
tion is. The Zerilli-Moncrief equation is solved on an evenly power spectra. We have studied how the spectrum changes
spaced grid using a standard three-level leapfrog scheme. Wehen the initial GW contribution is eliminated from the evo-
consider particles initially at rest falling from a finite dis- lution. This is accomplished in the same way we used for the
tanceR, to compare with the results of R4#3]. Since the extended shells; that is, the particle is frozen at its location
particle is falling along the axis, the system is axisymmetric until the initial pulse has gone from the numerical domain,
and the only non-vanishing contribution for aflyis them  after which the evolution starts. Figure 12 compares the en-
=0 one. The source terms are specified accordingly and wergy spectra emitted by a particle falling frdRg= 15M with
consider explicitly just =2. (dashed lingand without(solid line) the initial GW contri-

As a test of our numerical method, we consider the parpution. The signal is extracted at=500M in the two cases.
ticle falling from Ro=10M, 15M, and 20M, with the same As suggested in a more general scenario in [Raf], our
initial setup of Ref[43] (i.e. including some initial GW con- results confirm that in the test particle case the bumps in the
tent and compute the evolution of the Zerilli-Moncrief func- spectrum are mainly due to the spurious contribution of the
tion and its corresponding energy spectrum. Figure 11 showsdiation in the initial data. In fact, when removing the initial
the results of these simulations. The top panels show th&W content, the amplitude of the bumps is reduced. Some
temporal evolution ofZ normalized to the particle mass, modulation is, nevertheless, still present and the spectrum
while the bottom panel exhibits the corresponding energyloes not fully correspond to that of a pure QNM ringdown
spectra. The waveforms show good agreement in amplitudsignal. Martel and Poissdi88] argued that this is to be in-
and shape with those of Rdi43]. The energy spectra for terpreted as an interference effect as well, but between the
Ro=10M, 15M, and 20 must be compared with Figs(l§, = waves emitted by the particle during its motion and those
4(b), and 4c) of Ref. [43], respectively. The spectra show previously emitted and backscattered by the potential.

8(r—Rg) ~
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