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Accretion-driven gravitational radiation from nonrotating compact objects:
Infalling quadrupolar shells
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This paper reports results from numerical simulations of the gravitational radiation emitted from non-
rotating compact objects~both neutron stars and Schwarzschild black holes! as a result of the accretion of
matter. We adopt ahybrid procedure in which we evolve numerically, and assuming axisymmetry, the linear-
ized equations describing metric and fluid perturbations coupled to a fully nonlinear hydrodynamics code that
calculates the motion of the accreting matter. The initial matter distribution, which is initially at rest, is shaped
in the form of extended quadrupolar shells of either dust or obeying a perfect fluid equation of state. Self-
gravity of the accreting layers of fluid is neglected, as well as radiation reaction effects. We use this idealized
setup in order to understand the qualitative features appearing in the energy spectrum of the gravitational wave
emission from compact stars or black holes, subject to accretion processes involving extended objects. A
comparison for the case of point-like particles falling radially onto black holes is also provided. Our results
show that, when the central object is a black hole, the spectrum is far from having only one clear, monochro-
matic peak at the frequency of the fundamental quasi-normal mode. On the contrary, it shows a complex
pattern, with distinctive interference fringes produced by the interaction between the infalling matter and the
underlying perturbed spacetime, in close agreement with results for point-like particles. Remarkably, most of
the energy is emitted at frequencies lower than that of the fundamental mode of the black hole. Similar results
are obtained for extended shells accreting onto neutron stars, but in this case the contribution of the stellar
fundamental mode stands clearly in the energy spectrum. Our analysis illustrates that the gravitational wave
signal driven by accretion onto compact objects is influenced more by the details and dynamics of the process,
and the external distribution of matter, than by the quasi-normal mode structure of the central object. The
gravitational waveforms from such accretion events appear to be much more complex than former simplified
assumptions predicted.

DOI: 10.1103/PhysRevD.69.124028 PACS number~s!: 04.30.Db, 04.40.Dg, 95.30.Lz, 98.62.Mw
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I. INTRODUCTION

Most of the different astrophysical scenarios suggeste
potential sources of gravitational radiation have in comm
the presence of compact objects, such as neutron s
strange stars or black holes. The coalescence of a bi
system formed by two black holes, two neutron stars or
black hole and one neutron star is the main target of
ground based interferometers@Laser Interferometer Gravita
tional Wave Observatory~LIGO!, VIRGO#, but other possi-
bilities such as galactic supernovas are also worth explor
especially in anticipation of the capabilities of future dete
tors. Isolated black holes, in particular, are reckoned to
characterized by a unique emission pattern known as qu
normal mode~QNM! ringing—rapidly damped sinusoida
modes. This signal has been studied extensively using
turbation theory and frequency-domain techniques for m
classes of black hole solutions~see e.g.@1,2# and references
therein!. The detection of such QNM signals depen
strongly on the luminosity of the source or, in other word
on how strongly the black hole is excited, but also on
knowledge of the power spectrum. It is also well known th
a relativistic star has a very rich non-radial oscillation sp
trum, and it can emit gravitational waves through QNM rin
0556-2821/2004/69~12!/124028~21!/$22.50 69 1240
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ing ~see e.g.@2# and references therein!. Therefore, another
plausible source of gravitational radiation involves the ra
accretion of large clumps of matter onto a compact obj
~either a neutron star or a black hole!, a recurrent and ubiq-
uitous phenomenon in relativistic astrophysics. Accretion
expected to happen following the gravitational collapse
the core of a massive star, once a neutron star has alr
been formed. Part of the remaining stellar material, wh
has not been expelled by the shock driving the supern
explosion, may fall back onto the neutron star, until a critic
mass is exceeded and the star collapses to a black hole. S
more material may in turn form a long-lived, centrifugal
supported torus or disk if the collapsing star had initia
some amount of rotation.

Semi-analytical studies of extended objects~shells or
blobs of dust! falling isotropically onto a black hole are
available in the literature@3–8#. These studies shed the fir
light in understanding the modification of the gravitation
wave ~GW! emission pattern of the black hole due to t
presence of matter. Collectively, these works showed that
a fixed amount of infalling massm, the energy released in
gravitational radiation is reduced compared to the value
the point-particle limit (E;0.01m2/M @9#, M being the mass
of the black hole!. This reduction is interpreted as due
cancellations of the emission from distinct parts of the e
©2004 The American Physical Society28-1
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tended object. Such conclusions were later confirmed by
padopoulos and Font@10#, who performed numerical simu
lations of the gravitational radiation emitted during t
accretion process of an extended object onto a black hole
@10# the first-order deviations from the exact black hole g
ometry were approximated by the Teukolsky equation@11#
for Schwarzschild black holes, i.e. the inhomogeneo
Bardeen-Press equation@12#, including curvature perturba
tions induced by matter sources, whose nonlinear evolu
was integrated using a hydrodynamics code. This was
first numerical study in the time domain of the gravitation
radiation emitted by extended objects accreted by bl
holes and showed the gradual excitation of the black h
fundamental QNM frequency by sufficiently compact she
In the thin shell limit, the energy asymptotes to a finite val
which is about a third of the point-particle limit.

Correspondingly, linear perturbation studies in the tim
domain of neutron star spacetimes, aimed at addres
QNM excitation, have also received considerable attentio
the literature~see e.g.@2# and references therein!. The oscil-
lation properties are obtained from analysis of non-rad
stellar perturbations. For non-rotating stars with polytro
equations of state, the spectrum naturally splits into an a
~or odd-parity! and a polar~or even-parity! part, according to
the terminology used to address the behavior of the per
bation equations under parity transformations. The axial p
of the spectrum includes only gravitational modes, the
calledw modes, which are purely relativistic, being absent
Newtonian gravity@13#. The polar part, on the other han
containsw modes as well as fluid modes. The excitation
axial parity modes was analyzed by Andersson and Kokko
@14#, by sending pulses of gravitational waves to the neut
star and studying its response, and by Ferrari and Kokk
@15#, by the scattering of point-like particles. The excitati
of polar modes was first investigated by Allenet al. @16#,
also as a scattering problem using gravitational wave pul
The same approach was later followed by Ruoff and
workers in @17,18#, using both Gaussian pulses and poi
particle scattering. A framework for constructing initial da
sets for perturbations was developed in@19# and applied to
study neutron star collisions in the close limit approximati
in Ref. @20#.

Alternately, in a series of papers Seidel and co-work
computed the gravitational radiation emanating from sligh
non-spherical stellar core collapse, in the axial@21# as well
as in the polar case@22#, and the waveforms associated wi
the formation of neutron stars. The zeroth-order solution w
a spherical collapsing star, whose dynamics was comp
by solving the coupled system of Einstein and hydrodyna
ics equations using the Lagrangian May-White approa
The GWs were extracted using perturbation theory on
spherical background within the Gerlach-Sengupta@23# for-
malism. More recently, Haradaet al. @24# have reexamined
the axial part of this problem, using null coordinat
~Hernandez-Misner! and a gauge invariant and coordina
independent perturbative formalism developed by Mar´n-
Garcı́a and Gundlach@25–27#. Within this approach Harada
et al. @24# have been able to follow the spherical collapse
both supermassive stars and neutron stars, until a black
12402
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forms, computing the GWs that are emitted in the proce
Full numerical relativity computations of QNM ringing in
spherical gravitational collapse using the characteristic
mulation of general relativity are also reported in@28#.
Within the same formalism, the imprints of fluid accretion o
the emitted GWs from a black hole were studied in@29#,
finding the familiar damped-oscillatory GW decay, but bo
decay rate and frequencies being modulated by the mas
cretion rate.

In this paper, we analyze the similarities and differenc
in the gravitational wave emission pattern from black ho
and neutron stars as a result of the radial accretion of ma
A detailed realistic modelization of the gravitational em
sion from accretion flows would require of three-dimension
~magneto-!hydrodynamical simulations in general relativit
coupled to radiation transport and diffusive processes. H
ever, some preliminary steps can be taken to understand
underlying basic physics in a qualitative way before gett
engaged in large scale computational efforts. Our numer
procedure lies, hence, in the borderline of full numeric
relativity and perturbation theory. As in@10#, the accreting
matter is evolved in a curved static background by solv
the nonlinear hydrodynamics equations. The response o
compact object to the infalling matter, which triggers t
emission of gravitational radiation, is computed using pert
bation theory. More precisely, we use the gauge invari
formalism of@26# and study the excitation of QNMs of bot
Schwarzschild black holes and neutron stars by numeric
solving in the time domain the even-parity perturbati
equations with matter sources. For the case of black ho
these equations reduce to the inhomogeneous Ze
Moncrief @30,31# equation. One key assumption of our a
proach is that the mass of the accreting fluid is much sma
than the mass of the central compact object. Fluidself-
gravity andradiation reactioneffects are also neglected; i.e
we ignore the first-order metric corrections to the fluid equ
tions of motion. The first approximation~no self-gravity! is
in general valid for fluid motions in the vicinity of the com
pact object, where tidal forces dominate over the fluid se
gravity. The second approximation~no radiation reaction! is
valid as long as the energy in the form of gravitational rad
tion is much smaller than the kinetic or internal energy of t
fluid. Our procedure follows then the samehybrid approach
previously adopted in@10#, but departs from it in the formal-
ism. We anticipate that, for a given numerical resolution a
numerical scheme, the use of the Zerilli-Moncrief equati
results in improved long-term numerical stability as co
pared to the Bardeen-Press equation employed by@10#, al-
lowing for an accurate computation of late time features
the GW signal~namely tails!. The results reported in the
present investigation are further restricted to the case of
dially accreting shells of either dust or obeying a perfe
fluid equation of state~EOS!, where the mass density profil
is shaped in the form of quadrupolar shells of Gaussian
dial extent. In this respect this work can be considered a
necessary assessment of our numerical approach, in anti
tion of the study of more interesting scenarios, namely
excitation of QNMs from perfect fluid thick accretion to
8-2
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orbiting around compact objects, which will be presen
elsewhere@32#.

The paper is organized as follows: Section II describes
some detail the theoretical framework adopted, namely
construction of the unperturbed stellar models, the gen
relativistic hydrodynamics equations, the perturbation eq
tions for neutron stars and black holes, and the generatio
time-symmetric initial data to describe the accreting she
The numerical methods used for both the hydrodynam
equations and the perturbation equations are outlined in
III. Section IV is devoted to presenting the main results
our investigation, splitting the description of the black ho
and neutron star cases into two separate subsections. Fi
Sec. V summarizes the main conclusions of this work a
outlines future directions in this research. Appendix A co
tains technical information regarding the general form of
source term for the inhomogeneous Zerilli-Moncrief equ
tion, and Appendix B presents a comparison with point-l
particles falling onto black holes. We use units such thac
5G51.

II. THEORETICAL FRAMEWORK

A. Unperturbed stellar models

The background metric of a non-rotating, spherica
symmetric star is given by the line element

ds252e2adt21e2bdr21r 2~dq21sin2qdw2!, ~1!

wherea andb are functions of the radial coordinater only.
Assuming the star is a perfect fluid whose energy momen
tensor reads

Tmn5~e1p!umun1pgmn , ~2!

with p denoting the pressure,e the total energy density, an
um the fluid 4-velocity, the Einstein’s equations become
Tolman-Oppenheimer-Volkoff~TOV! equations of hydro-
static equilibrium:

dm

dr
54pr 2e, ~3!

da

dr
5

~m14pr 3p!

~r 222mr!
, ~4!

dp

dr
52~e1p!

da

dr
, ~5!

wherem(r ) is the gravitational mass enclosed in a sphere
radiusr. The surface of the starr 5R is determined by the
conditionp50. At the exterior the geometry reduces to t
Schwarzschild solution. The above system of ordinary diff
ential equations~ODEs! can be integrated once the EOS
chosen and a value of the central energy densityec is speci-
fied. We further assume the fluid to be isentropic, so that
adopt a one-parameter EOS,p5p(e), in polytropic formp
5KeG, whereG is the adiabatic exponent.

For the calculations we discuss in this work, we will co
sider two stellar models with the same gravitational ma
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M51.4M ('2.067 km, and the same adiabatic exponenG
52, one model being more compact than the other. Th
two models are meant to bracket the interval of possible r
of realistic neutron stars. The more compact model~A! has
ec52.45531015 g/cm3 and K5122.25 km2, so that the ra-
dius is R59.80 km. The less compact model~B! has ec
50.9231015 g/cm3 and K5180 km2 which leads to R
513.44 km.

Our analysis is further restricted to polar perturbatio
induced by external matter flows. For the sake of referen
the first frequencies of the polar part of the spectrum of
two stellar models considered are listed in Table I. They h
been obtained using a frequency-domain code based on
classical Lindblom-Detweiler formulation of the perturbe
Einstein equations@33# and described in@34#.

B. General relativistic hydrodynamics equations

The motion of a fluid in a curved spacetime is govern
by the local conservation laws of baryonic number and
ergy momentum:

¹mJm50, ¹mtmn50, ~6!

where Jm5rum is the mass density current andtmn

5rhumun1pgmn is the stress energy tensor for a perfe
fluid. In these expressions,r is the rest-mass density,h is the
specific enthalpy, defined ash511e1p/r, ande is the spe-
cific internal energy. The system of equations is closed w
an EOSp5p(r,e).

The equations of general relativistic hydrodynamics ar
system of hyperbolic equations; as shown by@35#, it can be
explicitly written as a system of conservation laws. This
accomplished by defining quantities which are directly m
sured by Eulerian observers, i.e. the rest mass densitD
5rW, the momentum density in thej direction Sj
5rhW2v j and the total energy densityE5rhW22p. In
these definitions,W stands for the Lorentz factor, which sa
isfies W5(12v2)21/2, with v25g i j v

iv j . Here, v i is the
3-velocity of the fluid, defined asv i5ui /W1b i /a, wherea
and b i are the spacetime lapse function and shift vec
respectively, andg i j are the spatial components of the spac
time metric where the fluid evolves. For a generic spaceti
the system of equations we solve reads@35#

1

A2g
S ]AgU„w…

]t
1

]A2gFi~w!

]xi D 5S„w…, ~7!

TABLE I. Frequencies of the first fluid and gravitational mod
for the two neutron star models considered.

Mode A @kHz# B @kHz#

f 2.584 1.666
p1 3.948 4.045
w1 11.609 10.380
w2 20.197 18.429
8-3
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where g5det(gmn), U(w)5(D,Sj ,E2D), and w
5(r,v i ,e) is the vector ofprimitive variables. The expres
sions for the flux and source vectors,Fi(w) andS„w…, can be
found in Ref.@35#. We note that in the current work we us
the standard form of the Schwarzschild metric in polar-rad
coordinates (t,r ,q,w) to describe the exterior spacetime
the compact object. Hence, the above expressions are
cialized accordingly.

C. Stellar polar metric perturbations
induced by hydrodynamical sources

1. Interior equations

A formulation of the equations describing the polar p
turbations of a star in the Regge-Wheeler gauge@36#, written
in a form suitable for numerical simulations in the time d
main, was first discussed by@16#. An alternative derivation
of the same equations, based on the linearized Arnow
Deser-Misner~ADM ! formalism, can be found in@17#. Re-
cently, building on the work of Gerlach and Sengupta@23#,
Martı́n-Garcı´a and Gundlach have developed a gau
invariant and coordinate-independent formalism for no
spherical perturbations of spherically symmetric spacetim
@25–27#. In our work, we follow the formalism laid out in
@26# specifying the equations to the case of a static spher
star and choosing the Regge-Wheeler gauge@36#. The equa-
tions we obtain are then equivalent to those of Refs.@16# and
@17#, although different metric variables are used. Hence,
each (,,m) pair, the even-parity metric perturbationdgmn is
parametrized by two scalar quantities,k ~the perturbed
3-conformal factor! andx ~the actual gravitational wave de
gree of freedom!, so that it reads

dgmn5S ~x1k!e2a 2cea1b 0 0

2cea1b ~x1k!e2b 0 0

0 0 kr2 0

0 0 0 kr2sin2q
D Y,m .

~8!

Since the background is static,c is not an independent quan
tity, as it can be obtained by quadrature fromk andx @25#;
the relationship with the usual Regge-Wheeler variables
also be found in@25#. We note that, although the polar pro
lem on a static star is known to have only two metric degr
of freedom inside the star and one degree of freedom out
~represented by the Zerilli-Moncrief function!, we have de-
cided to consider an additional variable inside the star,
perturbation of the relativistic enthalpyH5dp/(p1e), as
suggested by earlier studies of the subject@16,17#. Corre-
spondingly, at the exterior we evolve two~constrained! de-
grees of freedom instead of just one~see below!. We notice,
however, that successful evolution algorithms using the
tual number of degrees of freedom have been develope
the past in more general frameworks@22#.

We formulate, then, the polar perturbation proble
through a couple of hyperbolic equations forx andH plus an
elliptic equation, the Hamiltonian constraint, which is us
12402
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to computek at every temporal slice. This permits us
obtain the frequencies of the stellar pulsation modes with
accuracy comparable to frequency domain calculations.
set of equations reads

x ,tt2e2(a2b)x ,rr

52e2aH 22F2e2bS m

r 2
14prp D 2

18pe2
6m

r 3 G
3~x1k!1

l22

r 2
x2F4pr ~5p2e!2

2

r
110

m

r 2Gx ,rJ ,

~9!

H ,tt2cs
2e2(a2b)H ,rr

52e2aH F m

r 2
~11cs

2!14prp~122cs
2!

1S 4pr e2
2

r D cs
2GH ,r2F4p~p1e!~3cs

211!

2cs
2 l

r 2GH1
1

2 S m

r 2
14ppr D ~12cs

2!~x ,r2k,r !

1F2~m14ppr3!2

r 3~r 22m!
24p~3p1e!cs

2G ~x1k!J ,

~10!

e22bk,rr 2S l

r 2
28pe D k1S 8pe2

l12

2r 2 D x2
e22b

r
x ,r

1S 2

r
2

3m

r 2
24per D k,r1

8p~p1e!

cs
2

H50, ~11!

wherel5,(,11) andcs
25]p/]e is the sound speed. At th

star surfacee, p andcs
2 vanish, andm(R)5M ; thereby the

evolution equation forH reduces to the ODE

H ,tt52
M ~R22M !

R3 FH ,r1
1

2
~x ,r2k,r !G2

2M2

R4
~x1k!.

~12!

Since we are settingG52, the term proportional toH in the
Hamiltonian constraint~11! is regular atr 5R.

2. Exterior equations with a general source term

The exterior equations in vacuum are readily obtain
from the interior equations settingr5p50 andm5M . As
we have seen, the equations for the induced metric pertu
8-4
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tions are basically wave equations with potentials. The p
ence of an extended object outside the star or black h
reflects in the fact that these equations are not homogen
anymore, but they contain source terms involving the stre
energy tensor of the external fluid,tmn . Whereas for point-
like particles these source terms can be explicitly compu
by analytic techniques@18,30#, in the case of extended ob
jects they involve steps that cannot be managed analytic
@10#. To the best of our knowledge, an explicit expression
the source terms for a general stress energy tensor has n
been reported in the literature.

Following the notation of Ref.@25#, the ~gauge-invariant!
decomposition oftmn in polar spherical harmonics reads

tmn5 (
,50

`

(
m52,

,

tmn
,m

5 (
,50

`

(
m52,

,

3S TAB
,mY,m TA

,m~Y,m! :a

TA
,m~Y,m! :a r 2T3

,mY,mgab1T2
,mZab

,mD , ~13!

where the capital indexes run over theM2 Lorentzian mani-
fold and the lowercase indexes over the unit radius 2-sph
S2, as the background spacetime can be written as a d
product M23S2. We also follow @25# for the definition of
the scalar and vector spherical harmonics,Y,m and (Y,m) :a ,
respectively, and of the tensor spherical harmonic,Zab

,m

[Y:ab
,m1(l/2)gabY

,m. Here, the notation :a stands for the
covariant derivative with respect to the metricgab
[diag(1,sin2q) of S2. In Ref. @25#, the homogeneous equa
tions of linearized nonspherical polar perturbations of a g
eral time-dependent spherically symmetric spacetime w
obtained. If we choose the background spacetime to be
Schwarzschild solution and interprettmn as a source induce
by a certain distribution of matter on this spacetime, one
arrive after some algebra at the polar perturbation equat
of a Schwarzschild spacetime with source terms, which
given by

x ,tt2e2(a2b)x ,rr 52e2aH 2
2M

r 3 F2e2b
M

r
26G~x1k!

1
l22

r 2
x2

2

r S 5M

r
21Dx ,rJ 116pSx ,

~14!

e22bk,rr 1S 2

r
2

3M

r 2 D k,r2
e22b

r
x ,r2

l

r 2
k2

l12

2r 2
x

18pSH50. ~15!

The sourcesSx andSH read
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Sxªe2(a2b)H T11
,m1~T2

,m! ,rr 22~T1
,m! ,r1

1

r S 5M

r
e2b23D

3~T2
,m! ,r2

2

r S 3M

r
e2b21DT1

,m1
1

r 2 F2M2

r 2
e4b18

2S 4M

r
1

l18

2 De2bGT2
,m2e2bT3

,mJ , ~16!

SHªe22aT00
,m . ~17!

It is known that the perturbations of the Schwarzsch
spacetime are described by a hyperbolic equation for a si
function, originally written in the frequency domain and
the Regge-Wheeler gauge by Zerilli@30# and later in the time
domain by Moncrief@31#, but adopting a gauge invarian
formulation. Following the normalization convention of@17#,
the Zerilli-Moncrief function is related tok andx as follows
@27,31#:

Z5
4r 2e22b

l@~l22!r 16M # Fx1S l

2
1

M

r De2bk2rk ,r G . ~18!

In presence of matter sources, this function is a solution
the inhomogeneous Zerilli-Moncrief equation

Z,tt2e2(a2b)Z,rr 5
2M

r 2
e2aZ,r1V,Z1Sz , ~19!

where the Zerilli potentialV, is given by

V,52S 12
2M

r D
3

l~l22!2r 316~l22!2Mr 2136~l22!M2r 172M3

r 3@~l22!r 16M #2
.

~20!

The source termSz appearing in Eq.~19! for a general matter
distribution has not been reported in the literature in a fo
suitable for time-domain computations. Its derivation can
found in Appendix A. The final result is

Sz52
16pe2a

l@~l22!r 16M # H e22a

~l22!r 16M
@l~6r 3216Mr 2!

2r 3l228r 3168Mr 22108M2r #T00
,m

1e22b@2Mr 1r 2~l24!#T11
,m12r 3~T00

,m! ,r22r ~r

22M !2~T11
,m! ,r14l~r 22M !T1

,m

1F2lS 12
3M

r D2l2GT2
,m14r ~r 22M !T3

,mJ . ~21!

In the case of a point particle, this general source term
duces to that given in@18#.
8-5
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For any multipole (,,m) the radiated energy is compute
from the Zerilli function. It is given by

E,m5E
2`

` S dE

dt D
,m

dt

5
1

64p

~,12!!

~,22!! E2`

`

uZ,t
,mu2dt. ~22!

By defining the Fourier transformZ̃ of Z[Z,m as

Z̃~v,r !5E
2`

`

e2 ivtZ~ t,r !dt, ~23!

we obtain the energy as follows:

E,m5E
0

`S dE

dv D ,m

dv

5
1

64p2

~,12!!

~,22!! E0

`

v2uZ̃~v,r !u2dv.

~24!

D. Black hole polar metric perturbations induced by
hydrodynamical sources

When the neutron star is replaced by a Schwarzsc
black hole, the polar perturbation problem becomes m
simpler, since one only needs to solve the inhomogene
Zerilli-Moncrief equation. As mentioned in the Introductio
in order to draw a comparison with the neutron star case,
consider the black hole case discussed in Ref.@10#, but solv-
ing Eq. ~19! instead of the inhomogeneous Bardeen-Pr
~BP! equation. The underlying motivation behind this choi
is the possibility of performing long-term stable evolutio
that allow for the extraction of late time features~radiative
power-law tails! in the GW signals.

Working with the same numerical method, this res
seems to be unreachable with the BP equation, because
equation is intrinsically unstable. To make the argume
clearer, let us recall that this equation, written using
Regge-Wheeler tortoise coordinater * @36#,

r * 5r 12M logS r

2M
21D , ~25!

reads

Y,tt2Y,r* r* 2
4~r 23M !

r 2
~Y,t1Y,r* !

52
D

r 4 F6M

r
1~,12!~,21!GY1

8pD

r
T, ~26!

where the~complex! functionY is related to the Weyl tenso
tetrad component byY5rC4 ; D is the horizon functionD
5r 222Mr and T is the source term determined by matt
flows @10#. The polar metric perturbations correspond to t
12402
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real part of Y, the axial ones to its imaginary part. Atr
53M the term proportional toY,t changes sign: dependin
on the relative sign betweenY,tt andY,t , one may viewY,t
either as a damping term~when the signs of both coefficient
agree, i.e. forr ,3M ) or an antidamping term~otherwise!.
As argued by Krivanet al. @37#, who analyzed in detail the
general case of the Teukolsky equation for Kerr black ho
this is likely the origin of exponentially growing modes th
appear when the equation is numerically solved by stand
finite-differencing explicit methods. Although some attemp
to delay in time the onset of the instability have been inv
tigated in the literature@10,37#, it remains an open issue. A
noted above, this effect is particularly disturbing in the pre
ence of matter sources, since the instability is always oc
ring before the late-time state of the system is reached.

On the other hand, using the tortoise coordinate, Eq.~19!
reads

Z,tt2Z,r* r* 5V,Z1Sz , ~27!

where the source term is the same one given by Eq.~21!,
with the derivatives with respect tor consistently replaced by
derivatives with respect tor * . This equation does no
present terms which may cause exponential growing mo
and, therefore, it permits stable evolutions.

E. Initial data

The nontrivial issue of how to specify suitable initial da
~i.e. gravitational radiation free! in the presence of source
has been addressed to some extent in a number of w
@10,16,18,20,38#. In particular, initial data suitable to de
scribe point-like particles scattered by stars or falling on
black holes can be found in@18# and @38#, respectively. The
common procedure is to choose initial data such that
Hamiltonian and momentum constraints are satisfied at
initial temporal hypersurface. If the matter source is initia
at rest, the initial conditions are time symmetric and the m
mentum constraint is automatically satisfied if the Ham
tonian constraint is. However, if velocity fields are prese
initially, the momentum constraint must be solved for t
@18#.

In the simulations reported in this work, we choose tim
symmetric initial configurations where the matter distrib
tion, shaped in the form of quadrupolar shells of dust
perfect fluid, is falling onto the central compact object fro
rest. Hence, we only need to consider the Hamiltonian c
straint, Eqs.~11! and ~15!. This constraint is a single equa
tion for three unknowns,H, k, andx. By settingH50, one
of the functionsk or x can be specified freely and the co
straint is then solved for the remaining one. Furthermore,
initial data are chosen so as to minimize the amount of gra
tational radiation present initially. This is done by choosi
x50 and solving fork with a given sourceT00 @38#. Givenk,
the initial profile ofZ is then computed using Eq.~18!. While
this prescription should ensure that the initial data are free
any spurious GW content other than that due to the prese
8-6
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of the matter source, in practice this is not exactly the cas
certain amount of GWs being always present. Its origin
related to the finite value of the initial location of the she
For such a configuration, the impossibility of specifying t
GW contribution associated with the shell in a way cons
tent with its past history provokes a transient burst in wh
the excess GWs are radiated away. Similar situations w
considered in Refs.@18,38,43#, where the source of the pe
turbations was a particle orbiting around or scattered o
star or a black hole. In order to minimize this problem in o
simulations, we freely evolve the perturbations without t
hydrodynamics part until the initial unphysical burst
gravitational radiation leaves the numerical domain, tak
the final profiles as the initial state for the actual simulatio
In the black hole case, this simple procedure permits u
avoid completely any kind of initial data interference. F
stars, however, this approach triggers the oscillations of
fluid modes. Hence, we further proceed by resettingH50,
in order to obtain the correct initial model.

III. NUMERICAL FRAMEWORK

The numerical schemes we have implemented to solve
hydrodynamics and perturbation equations~outlined in the
preceding section! are used with some technical differenc
in both scenarios under study, neutron stars and black h
The first difference is that, in the neutron star case, the o
all grid is uniformly spaced in the radial coordinater, while
for the black hole it is uniformly spaced in the tortoise coo
dinate r * . The numerical domain chosen to discretize t
hydrodynamics equations is always smaller than that of
perturbation equations, which is extended in both directio
towards the horizon of the black hole~or the origin of coor-
dinates in the case of the star! and towards large radii. This
procedure avoids or minimizes the effect of the spurious
flection of waves at both boundaries. For stars, the hydro
namics domain begins at the first cell outside the stellar
face and extends up tor max5108 km. We choose the sam
resolution (Dr;0.07 km) for both stellar models, so that th
interior is covered with 146 points for model A and 20
points for model B which, we recall, is less compact. T
hydrodynamics grid is covered with 1400 zones, a resolu
chosen to ensure convergence. The external wave dom
extends up tor;1500 km and is covered by roughly 2200
zones. On the other hand, in the case of black holes
hydrodynamics domain starts very close to the horizon so
to include as much as possible the peak of the potential
rier as well as its falloff towardr * 52`. The sensitivity of
our numerical results to the location of the inner boundary
the hydrodynamics domain is discussed in Sec. IV below

Before turning to describe the numerical schemes imp
mented in the code, it is worth commenting that in a realis
scenario the mass of the compact object would grow in t
as the accretion process proceeds. Such a possibility, h
ever, has not been considered in the present simulati
Technically, this would require recomputing at each evo
tion time step the equilibrium structure of the star with
massM1dM (t) ~or, analogously, increasing the black ho
mass!. In our simulations we simply assume thatdM!M ,
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neglecting the effect of a dynamically growing mass.

A. Evolution of the external fluid

The hydrodynamics part of our code is the same as
used in the simulations reported in Ref.@10#. In this code in
order to evolve dynamically the infalling fluid shells, th
general relativistic hydrodynamics equations are solved
ing a Godunov-type scheme~see e.g.@35# for details!. In
axisymmetry (]w50), the vectorU of evolved quantities
appearing in Eq.~7! is updated from time leveltn to tn11

according to a conservative algorithm

Ui , j
n115Ui , j

n 2
Dt

Dr
@ F̂i 11/2,j

r 2F̂i 21/2,j
r #

2
Dt

Dq
@ F̂i 11/2,j

q 2F̂i 21/2,j
q #1DtSi , j , ~28!

whereDt5tn112tn, andDr andDq indicate the radial and
angular grid spacing, respectively. In practice, a conser
tive, second-order, two-step Runge-Kutta algorithm is e
ployed instead of Eq.~28!. In the above equationi andj label
the radial and angular zones, respectively. The numer
fluxes ~e.g. F̂i 11/2,j

r ) are calculated at every cell interfac
using an approximate~linearized! Riemann solver built upon
the characteristic information of the Jacobian matrices of
system. The reader is addressed to@35# for further details.

The matter model we choose for the accreting shells
be either dust or perfect fluid. In the former case, asp50,
the Riemann solver must be specialized accordingly to av
divergences. For shells accreting onto black holes we emp
dust, not only to allow for a direct comparison with the r
sults of @10#, but also because of numerical difficulties e
countered when using a perfect fluid in regions very close
the event horizon. In Schwarzschild coordinates some me
components blow up at the horizon, which affects the evo
tion of hydrodynamical quantities. In particular, the coord
nate flow velocity becomes ultra-relativistic and reaches
speed of light at the horizon, making the Lorentz factor
finite. If the inner boundary needs to be placed very close
the horizon to capture the falloff of the Zerilli potential~we
have checked thatr * 5250M is a reasonable value; se
below!, the metric and hydrodynamical quantities, desp
being regular, present steep radial gradients, which make
numerical evolution difficult. In our current code and wi
the maximum grid resolutions affordable, we have found
vere limitations in the perfect fluid accretion case to mo
the innermost boundary past values of aboutr * ;23M
which, as we show below for the case of dust shells, are
yet close enough to the horizon to capture the gravitatio
wave emission unambiguously. We note that this numer
drawback can be entirely removed by usinghorizon-adapted
coordinate systems such as ingoing Eddington-Finkels
coordinates employed in simulations of perfect fluid acc
tion onto black holes in Ref.@39#. Such a procedure for per
fect fluid accretion may be attempted in future work.

However, for the case of neutron stars we do not enco
ter numerical difficulties in evolving perfect fluid shells
Therefore, in those simulations we do not consider quad
8-7
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polar dust shells, but only perfect fluid shells. This is a
further motivated from the reflecting boundary conditions
impose at the surface of the star~see next paragraph!, which
may naturally lead to the appearance of shock waves w
could not be treated in the case of dust.

The boundary conditions to impose upon the hydro
namics variables completely depend on the case under s
In the black hole case, we adopt ingoing radial bound
conditions at the innermost grid point of the hydrodynam
domain, chosen as close as possible to the event horizon
for the neutron star, the boundary conditions to impose to
infalling fluid shell as it arrives at the stellar surface shou
take into account the interaction between the shell and
star. As a result of the complexity in modeling this pheno
enon within our perturbative approach, we impose reflect
boundary conditions at the inner edge of the hydrodynam
domain~i.e. the surface of the star!, so that the star is seen b
the external fluid as ahard sphere. This choice includes th
most relevant effect; that is, the pressure gradient stops
infalling matter and avoids the violation of energy conser
tion that outgoing boundary conditions would introduce~as
happens in the black hole case when the inner bounda
not close enough to the event horizon!. Correspondingly, at
the outermost radial boundary we impose stationary va
of the so-called Michel solution at those grid points@40# at
all times. We note that the stationary Michel solution is us
in the entire hydrodynamics grid in order to provide a d
namically unimportant, spherically symmetric accretingat-
mospheresurrounding the fluid shell. In the angular dire
tion, axial symmetry fixes the appropriate bounda
conditions at the axis (q50 andp).

B. Integration of the perturbation equations

1. Black hole case

We can solve the Zerilli-Moncrief equation using either
standard three-level leapfrog method, at second-order in
space and time, or a second-order Lax-Wendroff sche
Both methods have proved robust and stable enough for
time evolutions. In particular, they allow computation
long-term features in the GW signal, namely the distinct
power-law tails following the black hole ringdown. How
ever, when the leapfrog method is used, we find some h
frequency numerical noise of small amplitude at the very e
of the tail. This numerical noise is not present when using
Lax-Wendroff scheme. Therefore, all results reported be
for black hole spacetimes are obtained using this la
method. We note, however, that the second-order leap
produces noise-free results in the neutron star case. The
ticular form of such a scheme is discussed in the follow
section.

In order to apply the Lax-Wendroff method, the Zerill
Moncrief equation is written as a first order hyperbolic sy
tem as follows:

] tU1] r* F5S, ~29!

with
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U5S Z

wD , F5S Z

2wD , S5S w

V,Z1SzD , ~30!

where we have introduced the variablew5Z,t1Z,r . The
time update algorithm is given by

Uj
n115Uj

n2
Dt

2Dr *
@Fj 11

n 2Fj 21
n #

1
Dt2

2Dr
*
2 @Fj 11

n 22Fj
n1Fj 21

n #A1DtSj
n , ~31!

where the matrixA reads

A5S 1 0

0 21D . ~32!

To ensure stability of the code, the time stepDt must satisfy
the usual Courant-Fredrichs-Levy~CFL! condition, i.e.Dt
5lCFLDr * , with lCFL,1.

The same radial resolution is used for the two doma
~hydrodynamics and perturbations! present in the computa
tional grid, namelyDr * ;0.04M . The angular domain of the
hydrodynamics grid extends from 0 top and it is covered
with 20 zones. As mentioned before, the hydrodynamics
main is within the wave domain, which is much larger.
extends fromr * 5250M to r * 530M and is covered with
about 2000 zones. The peak of the Zerilli potential is loca
at r;3.1M (r * ;1.9M ). Since the potential decays expo
nentially towards the horizon,r * 5250M is a sufficiently
small value to minimize the effects of the truncation on t
GW signal~see below!. On the other hand, in the positiver *
direction it is not necessary to extend the hydrodynam
grid much beyond the position of the center of the sh
because the shell is always collapsing towards the bl
hole. Correspondingly, the grid for the perturbation equatio
extends fromr * ;2876M to r * ;1250M . Standard Som-
merfeld outgoing-wave conditions are imposed at the ex
nal boundary and ingoing-wave conditions at the black h
horizon. Obtaining an optimal resolution in the simulatio
requires us to use 23104 points from r * 50 towards the
horizon and some 33104 zones in the opposite direction
Such a large number of zones, however, does not imply
numerical limitation in the code as solving the Zerill
Moncrief equation is a one-dimensional problem.

2. Neutron star case

The numerical algorithm used for solving the stellar p
turbation equations does not use the gauge-invariant m
perturbation variablex, but insteadS5x/r ~the equations
are rewritten accordingly!. The reason for this modification
is thatx grows proportionally tor for r→`, while the am-
plitude ofS remains finite. This is an important property th
helps to avoid unphysical instabilities of a numerical natu
The evolution equations for the independent variablesS and
H are discretized on a uniformly spaced grid and solved
ing the three-level leapfrog method. The remaining ellip
equation fork is also discretized in space and then written
8-8
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a tridiagonal linear system, which is solved at each time s
inverting the corresponding matrix by a standardLU decom-
position.

In order to avoid numerical problems at the origin, the l
interface of the first grid zone is chosen to coincide with
center of the star,r 50, while the surface of the star,r 5R, is
located at a cell center. The first point of the grid,j 51, is
then located atr 5Dr /2, whereDr is the radial grid spacing
Correspondingly, the surface, which is labeled by theJ cell,
is located atR5Dr /21(J21)Dr . As mentioned before,S is
evolved both inside and outside the star, whileH is only
evolved inside the star according to Eq.~10! and at the sur-
face with Eq.~12!. The same grid spacing is chosen insi
and outside the star.

The radial derivatives ofS, k, and H are discretized to
second order,

@A,rr # j
n5~Aj 11

n 22Aj
n1Aj 21

n !/Dr 2, ~33!

@A,r # j
n5~Aj 11

n 2Aj 21
n !/2Dr ~34!

~with A[S, k or H), but at j 5J we use backward second
order differencing forH ,r as

@H ,r #J
n5~HJ2224HJ2113HJ!/2Dr . ~35!

Similarly, the second time derivatives ofS ~and H) are ap-
proximated as

@S,tt# j
n5~Sj

n1122Sj
n1Sj

n21!/Dt2. ~36!

As for the black hole case, we impose standard Somm
feld outgoing-wave boundary conditions at the outermost
dial zone. Partial reflection from the external boundary
still present, but it can be minimized~or causally disconnec
its influence! by placing the outermost point sufficiently fa
At the origin of the radial coordinater 50, all fields are
regular and vanish@26#. For ,52, as the origin is chosen t
lie at the interface of the first cell, there is no need for reg
larizing the fields, as had to be done in@16,17#.

In order to have an internal consistency test, we h
studied the evolution of a generic enthalpy profile in t
source-free case, computing the Zerilli-Moncrief function
two different ways. In the first option, it is computed alg
braically at every temporal slice fromk andx by Eq.~18!, all
over the external domain; in the second possibility, it
matched tok andx using Eq.~18! just at the stellar surface
and then it is evolved independently in the exterior region
solving Eq. ~19!. Both solutions agree very well, and on
minor differences are observed during transient states.

IV. RESULTS

A. Black hole simulations

As mentioned in the Introduction, time-dependent n
merical simulations of the accretion of dust shells falli
isotropically onto a Schwarzschild black hole were presen
in @10#. The aim of those simulations was to characterize a
estimate the gravitational radiation emitted in accret
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events of finite-size objects and to compare the outcome w
the point-particle case amenable to semi-analytic invest
tions.

The time-domain simulations discussed in@10# were
based on the Newman-Penrose formalism, from which
master wave equation for black hole perturbations was
rived by Teukolsky@11#. As mentioned above, in the case
a Schwarzschild black hole, the Teukolsky equation redu
to the BP equation. Here, we start by reexamining the G
emission of a Schwarzschild black hole as a result of
radial accretion of a quadrupolar dust shell. In this wo
however, we use the inhomogeneous Zerilli-Moncrief eq
tion for two different reasons: first, because it provides
direct comparison with the neutron star case and, at the s
time, allows for cross-checking our results with those
@10#; second, the main motivation in reexamining this pro
lem was the fact that the Zerilli-Moncrief equation allows f
long and stable time evolutions. This property permits
investigation of long time features in the GW spectrum.

We consider an external matter distribution of total ma
m, much smaller than that of the black hole, namelym
50.01M . As in @10#, the shell density distribution is param
etrized according to

r5r01rmaxe
2k(r 2r 0)2

sin2q, ~37!

wherer 0 is the initial position of the center of the shell an
k controls its width. The background densityr0 is chosen to
be very small (;10222 km22) to simulate the vacuum out
side the black hole. The angular structure of the matter d
sity is assumed to have a quadrupolar profile, being given
sin2q. The value ofrmax is obtained from the condition tha
the volume integral of Eq.~37! equalsm. Papadopoulos and
Font @10# analyzed the dependence of the black hole QN
excitation on the various parameters of the shell, namely
width, initial location, and its initial velocity field. Here, we
begin by studying the excitation of the black hole QNM
varying the compactness of the shell, i.e. its widthk and the
position where it is at rest. We restrict ourselves first to sh
which are falling from a fixed locationr 0515M and are
initially at rest. The distant observer is located atr obs
5125M from the origin of coordinates (r * ;133.5M ).

The response of the black hole as a result of the accre
process when shells of different widthsk are considered is
shown in the top panel of Fig. 1, in which we plot the tim
evolution of the Zerilli function. Note that in this figure w
use retarded~observer! time u5t2r * . The bottom panel
shows the absolute values of the waveforms, but in logar
mic scale and separating the different models for clarity. T
values ofk are chosen in order to cover the range in whi
qualitative differences among the signals are observed.
process can be divided into three phases:~i! motion of the
shell before the bulk reaches the peak of the Zerilli potent
from u/2M;210 up tou/2M;50, where the emission is
purely due to the variation of the quadrupolar moment of
shell; ~ii ! shortly afteru/2M;50, when the bulk of the shel
approaches the peak of the potential,Z experiments a rapid
variation due to the interaction with the potential barri
resulting in a burst-like short signal. For more compa
8-9
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shells, higher amplitudes of the Zerilli function are obtaine
~iii ! The last part of the signal, fromu/2M*55260 onward,
is characterized by highly damped oscillations at early tim
~the fundamental QNM ringing of the black hole!, followed
by the power-law radiative tail at the end. In the right pan
of Fig. 1 it is visible how the onset of the fundamental QN
ringing occurs only whenk>0.3; i.e., wider~less compact!
shells do not succeed in exciting the fundamental mode
the central black hole, but rather the signals show a la
wavelength oscillation. This feature is in excellent agreem
with the results reported by@10# using the BP equation. Ifk
is too small, the impinging GWs cannot be fully transmitt
beyond the potential barrier to cause the ringing of the f
damental QNM. Thus, the large wavelength oscillation
determined by the gravitational pulse driven by the sh
which is almost completely reflected back by the poten
barrier. It is worth mentioning that, also in this case, t
black hole spacetime reacts to the external perturbation

FIG. 1. Gravitational waves emitted by a Schwarzschild bla
hole excited by infalling quadrupolar shells of given compactnesk
@see Eq.~37!#. The bottom panels show the logarithm of the G
signals shown in the top panel in order to highlight the onset of
fundamental QNM ringing. The shells are falling fromr 0515M
and the observer is located atr obs5125M from the origin of coor-
dinates.
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we found that the other QNMs, characterized by frequenc
lower than the fundamental one@41#, can be slightly excited
during the process. However, as a result of their high dam
ing times, the energy that can be released through GW
negligible with respect to that generated by the variation
the quadrupolar moment of the shell during the inf
~roughly three orders of magnitude lower fork50.1). We
note that the interaction of the shell with the black hole p
tential, even for small values ofk, is confirmed by the pres
ence of the distinctive late-time decay.

It is known that the generation of the fundamental QN
ringing is associated with the peak of the potential@42#. The
bulk of the shell crosses the peak at timet/2M;50, which is
at retarded timeu/2M;49. As argued before, the maximum
GW amplitude and the following QNM ringing are reache
somewhere around this point. The end of the accretion p
cess occurs at timet/2M;79.5, when the center of the bul
r 0 reaches the innermost boundary of the hydrodynam
numerical domain. This time corresponds to a retarded t
u/2M;104.5.

The energy spectra for some selected values ofk are
shown in Fig. 2. For all values ofk, the spectrum displays a
complex structure, with several distinctive peaks that
more or less evenly spaced. The spacing between
maxima is roughly given by 0.1~in units of 2Mv). The
presence of these peaks is interpreted as an effect of
interference between the gravitational waves emitted by
shell during its motion and the radiation emitted at earl
times, which has already been backscattered by the poten
These interference fringes are not new. In fact, similar p
terns were found by Lousto and Price@43# when studying the
signal emitted by a point particle falling radially onto
Schwarzschild black hole from a finite distancer 0. However,
some differences between their case and ours must
stressed. In Ref.@43#, the initial data had some GW conten
and the authors argued that the evenly spaced bumps fo

k

e

FIG. 2. Energy distribution for some selected values ofk of the
waveforms shown in Fig. 1. The power spectrum has a comp
shape characterized by various distinctive peaks resulting from
interference between emitted and backscattered GWs~see text for
details!.
8-10
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in the energy spectra~whose amplitude and spacing d
pended onr 0) were mainly due to the interference betwe
the initial data pulse and the GWs emitted by the infalli
point particle during its motion. In Appendix B, we confirm
this result using a time domain code, by comparing the G
energy spectra generated by a falling point particle with a
without the initial GW content. In the latter case, we find th
the amplitude of the interference bumps is reduced. For
case of an imploding shell, despite the initial data effect
ing eliminated by construction, we find well-defined interfe
ence fringes in the energy spectra. The extended size o
matter distribution results in the existence of interferen
patterns even when the GW initial content is minimized.

As for the case of point particles@43#, we notice that the
part of the waveforms which strongly contributes to the
features in the spectrum is that extending up to the sec
zero of the signal (u/2M;42), just before the burst. Thi
portion of the waveform carries the imprint of the radiati
emitted during the accretion process, before the bulk of
shell crosses the peak of the Zerilli potential. This is co
firmed by the results shown in the spectra of Fig. 3, obtai
considering only that part of the signal from the third zero
Z onwards. This helps eliminate as much as possible the
contribution related to the motion of the shell and to dig o
the actual QNM ringing signal. The spectrum of this la
time signal closely corresponds to that of a Schwarzsc
black hole radiating via the fundamental mode (2Mv
'0.7473), whose frequency is marked by the verti
dashed line in the figure. The width of the peak is consist
with the damping time of the fundamental mode~see@41#!,
confirming that, if the black hole is successfully excited, t
energy is radiated mostly in the fundamental mode.

In Fig. 4, we show the superposition of the QNM rin
downs for some selected values ofk. As expected, the powe
law of the late time tail does not depend on the shell widthk,

FIG. 3. Excitation of the,52 fundamental QNM as a function
of k. The spectrum is computed selecting only the part of the sig
corresponding to the ringing. The dashed vertical line indicates
fundamental QNM frequency (2Mv'0.7473) of a Schwarzschild
black hole@41#. Note that fork50.1 the spectrum is barely visibl
at the bottom of the plot.
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being all nicely overlapped. This important feature was n
accessible to the simulations reported in@10#, due to the
appearance of numerical instabilities when solving the
equation for sufficiently long evolution times. The late tim
behavior of gravitational perturbations was first studied
detail by Price@45# using analytic techniques. The most r
cent and exhaustive discussion of this topic can be foun
@46#. The gravitational multipole perturbations with,>2 are
expected to fall off at larget as

Z;S t

2M D 2(2,13)

, ~38!

al
e

FIG. 4. Black hole QNM ringdown and tails for various she
widthsk. The top panel shows that the GW burst resulting from
bulk of the shell crossing the peak of the Zerilli potential occurs
retarded timeu/2M;49.5 ~first vertical dashed line!. The late-time
power-law tails are all perfectly superposed for the various val
of k considered. Atu/2M;104.5 ~second vertical dashed line!,
when the shell leaves the hydrodynamical numerical domain, a
ond ringing appears. This ringing is a numerical artifact~see text for
details!. The bottom panel depicts on a log-log plot the late tim
behavior of the longest simulation for a shell withk510. A fit to
the solid line givesZ;(t/2M )7.07, in excellent agreement with the
analytic late-time fall off derived by Price@45#, Eq. ~38!.
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i.e. as;t27 in our case (,52,m50). The best fit to the tails
shown in the left panel of Fig. 4, which correspond to sim
lations that extend up to;3.67 ms of evolution (u/2M
;209), givesZ;(t/2M )27.56. The somewhat large differ
ence with the expected analytic value given by Eq.~38! is
due to the fact that the signal has not reached yet the
time state. In order to prove this, we perform a much lon
run ~up to u/2M;609) employing a larger grid of 73104

zones, which corresponds to roughly twice the number
zones used in the previous simulations. For this run, we
k510, keeping the same values for the remaining para
eters. The bottom panel of Fig. 4 shows the results of
long run. The best fit to the late time signal is nowZ
;(t/2M )27.07, in close agreement with the expected valu
In order to further improve the numerical results it simp
suffices to perform even longer simulations employing lar
grids.

Some more comments are relevant about Fig. 4. Fok
51, 10, and 100 the signals present a strange feature, w
second ringing starting atu/2M;104.5~indicated by a thick
vertical dashed line in the top plot!. We have checked tha
this second ringing starts at the time when the center of
shell leaves the numerical domain through the innerm
boundary. The appearance of this ringing seems to be a
merical artifact, as a small discontinuity in the fields is intr
duced when the center of the shell leaves the grid. The b
hole reacts to this by emitting GWs in the form of the seco
ringing, until the late time tail is reached. This unphysic
ringing could be avoided by extending the numerical dom
as much as possible towardsr * 52` ~i.e. towards the even
horizon!. In practice, since the accretion processes we
interested in happen outside the horizon, where the pea
the Zerilli potential stands, it suffices to choose the inn
most boundary of the hydrodynamics domain such that
exponential falloff of the potential is properly captured. T
observation that most of the energy is released at low
quencies shows that the choice of the radial extent of
hydrodynamics domain with respect to the width of the Z
illi potential is of paramount importance to obtain the corre
GW signals and the corresponding energy spectra. This
fect is more important in the case of an extended sh
whose size changes with time due to the presence of
forces which tend to disrupt it before being swallowed by
black hole. It is the complex interaction with all the structu
of the potential which determines the GW emission.

In order to study how the radial extent of the hydrod
namical domain affects the waveforms and energy emiss
we focus on an accreting shell of fixed widthk510 and vary
the radial location of the innermost boundaryr min* . The re-
sults of these simulations are shown in Fig. 5. We start w
r min* 523M and gradually pushr min* towards the event hori
zon, choosing the values210M , 220M , 240M , and
250M . Although the low-frequency part of the spect
(2Mv,0.4) is almost unaffected by the location of the i
ner boundary, high-frequency components become evid
when r min* is larger than220M . The energy spectra fo
r min* 5240M andr min* 5250M are in practice identical. This
means that such a radial extent suffices to capture all
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relevant GW physics of the accretion process. However,
ing a less conservative value for the radial location of
inner boundary, e.g.r min* 523M , results in an artificial spec
trum which is roughly peaked again around the frequency
the fundamental mode. This was observed in@10# and attrib-
uted to QNM ringing. However, it is of completely numeric
nature, with the same origin as the second ringing discus
in Fig. 4: when the shell crosses the inner boundary a
leaves the grid, matter is artificially removed from the sy
tem, which violates energy conservation and produces
excitation of the black hole normal modes. If this happens
a relatively large radius such asr * 523M , the effect is
amplified. Moving the inner boundary closer to the eve
horizon shifts the second QNM ringing to later times, wh
the signal is much weaker, and highly reduces the unphys
high-frequency part of the power spectrum. Therefore,
energy spectrum of the GW emission that one could exp
in a realistic astrophysical scenario, during anisotropic acc
tion of matter onto a Schwarzschild black hole, is most like
to be a collection of interference fringes covering a wi
range of low frequencies than a single peak at the freque
of the fundamental mode of the black hole.

Next, we analyze the dependence of the energy spectr
the initial location of the shell. This is shown in Fig. 6 whe
we compare the spectra for three different initial locatio
r 057.5M ,15M , and 30M . The number of interference
fringes rapidly increases with distancer 0. Furthermore, the
correlation between the separation of the fringes and the
tial position of the shell is evident: the larger the distance,
smaller the separation between consecutive maxima. In o
to explain these modulations in the spectrum, we can foll
the reasoning of Lousto and Price@43#. Given a GW signal
Z0(t,r * ), its Fourier transformZ̃0(v,r * ) is defined accord-

FIG. 5. Dependence of the GW energy spectra on the ra
location of the innermost boundaryr min* of the hydrodynamics nu-
merical domain. The spectra plotted correspond tok510 quadru-
polar shells falling fromr 0515M , the GWs being extracted a
r obs5125M . The unphysical high-frequency components disapp
as r min* becomes smaller than about220M . The spectra converge
for values ofr min* as small as250M ~solid line!.
8-12
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ing to Eq.~23!. For larger * , where the observer is locate
the waveform represents only outgoing radiation, i.e.Z0
[Z0(t2r * ), which gives

Z̃0~v,r !5E
2`

`

e2 ivtZ0~ t2r * !dt5e2 ivr* A~v!, ~39!

where

A~v!5E
2`

`

e2 ivuZ0~u!du. ~40!

Let us now consider another GW signalZ1 whose time delay
with Z0 is Tshift . This signal isZ1[Z(r * ,t2Tshift), so that
its Fourier transform reads

Z̃1~v,r * !5E
2`

`

e2 ivtZ~ t2Tshift ,r * !dt

5e2 ivTshifte2 ivr* A~v!.

Thus, the Fourier transform of the signal given by the sup
position ofZ0 andZ1 is given by

Z̃~v,r * !5Z̃0~v,r * !1Z̃1~v,r * !

5e2 ivr* A~v!~11e2 ivTshift!. ~41!

Then, when computing the spectrum we have

v2uZ̃~v,r * !u254v2uA~v!u2cos2S 1

2
vTshiftD . ~42!

Therefore, the modulation in the frequency spectrum is
lated to the characteristic timeTshift which accounts for the
delay between consecutive GW signals,dv52p/Tshift .
From the measure of the peak spacingdv, we can thus infer

FIG. 6. Dependence of the energy spectra on the initial loca
of the shell (k510), r 057.5M ~thick solid line!, r 0515M ~dashed
line!, and r 0530M ~thin solid line!. The number of interference
fringes rapidly increases with the initial location of the shell.
12402
r-

-

the corresponding time shift. In the case of a radially infa
ing point particle, Lousto and Price@43# argued that this time
shift roughly coincides with the infalling time. They use th
empirical criterion as a rule of thumb to predict the variati
of the spectra asr 0 is increased. We have found a simila
correlation for our extended dust shells.

To close this section, we compute the total energy emit
in gravitational waves for shells accreting from the three i
tial locations considered previously,r 057.5M , 15M , and
30M . The energy emitted is computed by integrating in fr
quency the energy spectra of Fig. 6, where the integrals
calculated using a standard trapezoidal rule. As we do in
point-particle case~see Appendix B!, it is convenient to use
as a reference quantity the ratio 2M /m2E20. Table II lists the
values of the energy for the three positionsr 0 considered. We
note that the third value~for r 0530M ) may be slightly un-
derestimated due to some inaccuracies in the resolutio
the power spectrum. It is worth stressing that, irrespective
the locationr 0 of the shell, the values reported in Table II a
smaller by roughly two orders of magnitude than those
tained in the point-particle limit@38,43# @Lousto and Price
@43# give (2M /m2)E2051.6431022 for r 0530M and 1.43
31022 for r 0510M ]. The reduction we find in the tota
energy emitted in gravitational waves is a consequence of
finite size of the shells considered in the present work.

We note that in the numerical simulations reported in@10#
the estimation of the energy yielded considerably larger v
ues than the ones reported here, asymptoting towards a
of the point-particle limit@9# as the compactness of the she
was increased. We argue that such a high value is over
mated, because it was affected by errors induced by the
cation of the innermost boundary of the hydrodynamics g
(r * 523M ), as we have shown in Fig. 5. An indirect val
dation of the current estimation of energy emission com
from an inspection of the findings of Shapiro and Wasserm
@5#. These authors compute the total energy radiated in gr
tational waves~while here we restrict to the,52 multipole!
from non-spherical dust clouds falling into a black hole fro
infinity. For any of the models considered, they find that t
energy released in GWs is always smaller by at least
orders of magnitude with respect to the point-particle lim
with thinner clouds more efficient than wider ones.

B. Neutron star simulations

We turn now to consider the case of quadrupolar perf
fluid shells accreting onto neutron stars. Two neutron s
models are considered, models A and B, whose charact
tics ~mass and radius! have been described in Sec. II

n

TABLE II. Total energy emitted in gravitational waves for shel
accreting onto a Schwarzschild black hole from different distan
r 0.

r 0 /M (2M /m2)E20

7.5 1.0931024

15 9.4931025

30 7.2031025
8-13
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FIG. 7. Time evolution of the metric variablesk andx and of the enthalpy perturbationH for the two neutron star models considere
The left panels correspond to model A and the right panels to model B. The burst of gravitational radiation and the subsequent m
fluid oscillations are clearly identified for both stellar models. The infalling perfect fluid shell has an initial compactnessk51 and is located
at a distancer 0520 km. Note that, contrary to the previous figures, the time is now given in ms.
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above. Initially, the quadrupolar shell is surrounded by
background fluid~an ‘‘atmosphere’’! satisfying the stationary
and spherically symmetric Michel solution@40#. The initial
rest mass density profile is given by Eq.~37!, wherer0 is
now the profile consistent with the Michel solution. As in th
black hole case, the mass of the shell ism50.01M , which
corresponds to a maximum density ofrmax;3.5
31026 km22 when we fix its width tok51. The~inhomo-
geneous! density profile of the atmospherer0 is roughly
three orders of magnitude lower thanrmax. The shell obeys a
polytropic (p5Krg) EOS withK50.01 km2/3 andg54/3.
The initial internal energy profile is obtained fromr and p
through the first law of thermodynamics ase5p/@(g
21)r#. The shell is initially at rest atr 0520 km, and the
GW signal is extracted atr obs5250 km.

We first present an overview of a typical evolution f
both models, in order to have an immediate insight on
dependence of the gravitational wave signal on the comp
ness of the star. As a result of the reflecting boundary co
tions imposed at the surface of the star and the existenc
12402
a

e
ct-
i-
of

an extended atmosphere, the accretion process is now
lowed by the formation of shock waves which propagate
the stellar surface. As in the case of the black hole, the
pact of the shell perturbs the star and triggers its quasinor
modes of pulsation.

Figure 7 displays the time evolution of the metric fun
tionsx andk, as well as the enthalpy perturbationH, for both
models. Model A~B! is presented in the left~right! panels. In
this figure we show the all the variables and the logarith
of the absolute values of the metric functions, in order
highlight the oscillating modes of the two stars. Correspo
ingly, Fig. 8 exhibits the time evolution of the Zerilli
Moncrief function for both models, in linear and logarithm
scales, computed at every time step according to Eq.~18!. In
the behavior ofZ, as well as in the time evolution ofx andk
shown in Fig. 7, the three phases discussed in the prece
section for the black hole case are also visible: first,
infalling phase, when the bulk of the shell is evolving outsi
the star, gradually approaching it, which is characterized b
steady increase of the amplitude of the signal. This phas
8-14
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ACCRETION-DRIVEN GRAVITATIONAL RADIATION . . . PHYSICAL REVIEW D 69, 124028 ~2004!
very short as the shell is initially located very close to t
stellar surface. Second, a burst-like peak appears in the
signal, which, as found in relativistic simulations of gravit
tional core collapse@47#, coincides with the moment whe
the shell reaches the surface, creating a shock wave w
propagates off the surface. Finally, there is the ringdo
phase, characterized by a GW signal which is not exa
monochromatic as a result of the complex interaction
tween the gravitational field of the star and the layers of fl
captured on top of the stellar surface in the process of
adjusting themselves to a new stationary solution. The d
tion of the ringdown phase is now much longer than for
Schwarzschild black hole case discussed previously, as
damping time of the fundamental mode of the fluid is co
siderably larger. We note that despite the waveforms
tained in our simulations showing a remarkable resembla
with those obtained in core collapse simulations@47#, there
are also important differences in the post-bounce phase

FIG. 8. Time evolution of the Zerilli-Moncrief function for the
two stellar models considered. In close qualitative agreement
the results from gravitational core collapse simulations@47#, the
burst in the Zerilli-Moncrief function is associated with the mome
of the bounce of the accreting shell at the stellar surface and oc
at a retarded time of about 1 ms.
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namics, as the ringdown of the neutron star lasts for m
longer times. In our idealized setup, with a perfect flu
these pulsations are not quickly damped by the existence
dense envelope surrounding the star, as happens in the
collapse situation.

The bulk of the accreting matter~the center of the shell!
reaches the stellar surface attA;0.2 ms for model A and
tB;0.14 ms for model B. Atr obs, where the observer is
located, the GW signals generated by these events are
layed in time by

Dt5F r obs2R12M logS r obs22M

R22M D G . ~43!

Therefore, the signal generated by the matter bouncing b
at the stellar surface reaches the observer at timestA

obs5tA

1DtA'1.06 ms andtB
obs5tB1DtB'0.97 ms. These value

are consistent with the results of Fig. 7, where the wavefo
of k andx are found to show bursts of large amplitude fo
lowed by highly damped oscillations sometime around th
values. This observation is particularly confirmed in t
logarithmic plots of the GW signals. After the short-live
ringing phase lasting for a fraction of half a millisecond aft
the burst, only the fundamental oscillation mode of the sta
visible in all variables plotted in Figs. 7 and 8.

The qualitative behavior found in the GW emission is t
same for both models. Only quantitative differences app
in the amplitudes at the maximum, which are systematica
larger by roughly a factor of 2 for the more compact mod
~A!. This difference in amplitude becomes more apparen
the energy spectra of the Zerilli-Moncrief function shown
Fig. 9. The solid lines in this figure are obtained by Four
transforming the complete signal, i.e. also including the c
tributions from the shell infall phase which precedes t
burst. Correspondingly, the dashed lines are obtained f
truncated waveforms, in which we only take into account
contribution from the beginning of the burst (;0.9 ms) on-
ward. We notice that, despite the short evolution times of
simulations, thef-mode frequency is very well identified in
the spectra, the relative difference with respect to the val
listed in Table I being roughly of 1%. The value of th
f-mode frequency is indicated with a circle in Fig. 9. Furthe
more, it is worth stressing that we obtain the same qualita
spectra as for the black hole case—a complex pattern w
interference fringes with the addition, in the neutron s
case, of a high peak standing at the frequency of thef mode.
As we discussed in the preceding section for a Schwarzsc
black hole, the comparison between the spectra obta
from the total and the truncated Zerilli signal shows that
interference fringes are produced by the interaction of
infalling fluid and the star.

There are other small differences between the two ste
models. The more compact model~A! is more efficient at
high frequencies than model B. This is directly correlat
with the large amplitudes attained by the peaks of the Zer
Moncrief function in the time domain~cf. Fig. 8!. The broad-
band spectrum of model A presents one broad peak wi
maximum at about 7 kHz, which is however too low to b
identified with the firstw mode~see Table I!. As mentioned

th
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NAGAR, DÍAZ, PONS, AND FONT PHYSICAL REVIEW D69, 124028 ~2004!
before, its origin should be related to the motion of the flu
shell and its interference with the gravitational field of t
star or, in other words, on the reflection of the GW pu
associated with the shell distribution with the ‘‘externa
Zerilli potential. Thus, this broad feature depends on det
of the accretion dynamics rather than on the intrinsic ch
acteristics of the star.

We note that in both spectra there appears a small am
tude peak at frequencies lower than that of thef mode for
each model. This second peak is associated with oscillat
of that part of the external fluid that has been gravitationa
captured by the central neutron star as a result of accre
In order to illustrate this affirmation, we plot in Fig. 10 th

FIG. 9. Energy spectra corresponding to the time evolution
the Zerilli-Moncrief function depicted in Fig. 8. Model A~B! is
shown on the top~bottom! panel. The solid lines show the spect
for the entire signal while the dashed lines are obtained remo
that part of the waveform which corresponds to the infall phase
the shell. The spectra of the entire signal show characteristic in
ference fringes, qualitatively similar to those found in the bla
hole case, with a large amplitude peak standing at the frequenc
the f mode. The value of the frequency of thef mode from Table I
is indicated by a circle. The spectra of the truncated signals show
evidence of the interference patterns.
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energy spectra corresponding to two fluid shells which o
differ on the mass (m50.01M and 0.001M ), falling onto
stellar model B from the same distance,r 0520 km. Thef
mode is also properly excited for the less massive shell. F
thermore, the interference fringes in the high frequency p
of the spectra coincide to high precision for the two she
considered, after normalizing to the corresponding sh
masses. However, the structure of the low frequency pea
the only feature of the spectra which is influenced by
mass of the shell. We argue that the existence of this
physical low frequency peak is an artifact produced by
boundary conditions. Notice, one more time, that we mo
the surface of the star as a hard surface, with reflec
boundary conditions. In a realistic scenario, the accreted m
ter would not simply bounce at the stellar surface, bu
would rather interact with the neutron star envelope, res
ing in heating and suffering nuclear reactions, until it is r
absorbed by the star.

As we did for the black hole case, let us now close t
section by computing the total energy emitted in gravi
tional waves for the two stellar models considered. For do
so we integrate in frequency the spectra appearing in Fig
The result of the integration yields

EA
20.3.0231028M (c2, ~44!

EB
20.8.3631029M (c2. ~45!

Model A is hence slightly more efficient than model B co
cerning GW emission. We note in passing that these va
are as small as those found in core collapse simulations@47#,
although such a comparison only makes sense in qualita
terms. Finally, the mass of the shell radiated in gravitatio
waves is

f

g
f
r-

of

no

FIG. 10. Energy spectra for two fluid shells differing on th
initial mass m and infalling from a distance ofr 0520 km onto
stellar model B. The solid line corresponds tom50.01M and the
dashed line tom50.001M . The f-mode excitation and the high
frequency part of the spectra coincide to high precision for the
shells considered. Only the low frequency peak is affected by
different mass of the shell.
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EA
20.2.1531026m, ~46!

EB
20.5.9731027m. ~47!

V. CONCLUSIONS

In this paper we have presented a detailed analysis of
gravitational radiation induced by the anisotropic accret
of quadrupolar~dust or perfect fluid! shells onto non-rotating
black holes and neutron stars. The numerical framework
our simulations is based upon ahybrid procedure in which
the linearized equations describing metric and fluid pertur
tions are coupled to a fully nonlinear hydrodynamics co
that calculates the motion of the accreting matter. Th
equations are integrated numerically in axisymmetry us
advanced computational techniques. The numerical sche
developed have proved to be stable and highly accurate.
garding the perturbation equations, the two main techn
changes with respect to previous works reported in the
erature are the use of the Zerilli-Moncrief function and t
in-built conservation of the Hamiltonian constraint. The h
drodynamics equations are solved using high-resolu
shock-capturing schemes based upon approximate Riem
solvers. We have shown that a perturbative approach ca
used as a very effective tool to understand the basic gra
tional physics operating in interesting astrophysical sit
tions, extending the information which can be gained fro
the study of point-like particles infalling onto black holes
orbiting around them. In this context, our hybrid approa
can be extremely useful to understand the gravitational
diation from astrophysical systems, complementing
whole machinery of full numerical relativity.

The simple fluid configurations analyzed in this paper
certain, however, that the effects of the extended structur
the accreting matter are indeed highly relevant for grav
tional wave emission. In the black hole case, most of
energy is released at frequencies lower than that of the
damental QNM of the black hole, the spectrum consisting
a complex pattern, mostly produced during the accretion p
cess rather than in the ringdown phase. Therefore, the
emission that could be expected from a realistic astroph
cal scenario in which accretion operates~e.g. after gravita-
tional collapse of a massive star! is more likely to be a sort of
interference fringe, covering low frequencies, than a sin
monochromatic peak at the frequency of the fundame
mode of the black hole. This result, which went unnoticed
earlier hydrodynamical simulations by@10#, was already ob-
served by Lousto and Price@43# in the case of a point-like
particle falling onto a black hole~see Appendix B!, a situa-
tion amenable to semi-analytic investigation. However,
have shown that the appearance of interference fringe
very much amplified when the accreting fluid is an extend
shell of finite size which, in turn, reduces the amount
energy which is released in gravitational waves to some
orders of magnitude below the point-particle value. It is
teresting to notice that ground-based interferometric de
tors attain the maximum sensitivity at frequencies consid
ably lower than the QNMs of stellar mass black holes. F
this reason they are usually not considered as opti
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sources for detection. However, to the light of our finding
the process of accretion appears to be quite more effectiv
frequencies about a factor of 2–3 lower than that of the bl
hole fundamental mode, and therefore the chances of de
ing gravitational wave signals from such scenarios may
larger than expected. It must be stressed that the interfer
pattern does not happen only because of the GW conten
the initial data, but it is a distinctive feature due to the e
tended size of the object, resulting from the interaction
tween the infalling matter and the backscattered waves.

In the neutron star case the qualitative results are sim
but a considerable part of the energy is emitted at the
quency of the fundamental mode. We have shown that tf
mode of the star is the only one excited at significant lev
and that the high frequency spectrum is quite sensitive to
spatial distribution of the accreting matter, making the co
tribution of the spacetimew modes of the star difficult to be
identified. The waveforms obtained show a remarkable
semblance with those obtained in core collapse simulati
@47#, despite the fact that we are considering a very differ
scenario. The main difference is that in our case the ri
down of the neutron star lasts for much longer times:
pulsations are not quickly damped by the existence o
dense envelope surrounding the star, as happens in the
collapse situation.

The results reported in this paper can partly be conside
as a necessary assessment of our numerical approach i
ticipation of the study of more interesting astrophysical s
narios, namely the excitation of QNMs from perfect flu
thick accretion tori orbiting around compact objects~see e.g.
@48,49# and references therein!, which will be presented else
where@32#.
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APPENDIX A: GENERAL SOURCE TERM
FOR THE ZERILLI-MONCRIEF EQUATION

In this appendix we derive the source term given in E
~21! for a general stress-energy tensor. We use the norm
ization of the Zerilli-Moncrief functionf given in Ref.@27#,
although the function we evolve in the numerical simulatio
is rescaled asZ52f/l. The inhomogeneous equation wri
ten using the frame derivatives notation of@27# reads

2f̈1f91nf82Vff5Sf , ~A1!
8-17
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whereVf is the potential andSf the source term. As show
by Moncrief @31#, f can be written in terms ofk andx as

f5A~r !x1B~r !k1C~r !k8, ~A2!

where

A5
2r 2e22b

~l22!r 16M
, ~A3!

B5
r ~rl12M !

~l22!r 16M
, ~A4!

C52rAeb. ~A5!

The derivation of the source termSf follows from knowl-
edge of the source terms in the evolution equations forx and
k that can be written in vacuum@27#. Using Eq.~A2! in Eq.
~A1! we get

2f̈1f91nf85A~2ẍ1x9!2Bk̈1@B12C81nC#k9

1C@2~k8! ¨ 1k-#1L~k,x,k8,x8!,

~A6!

whereL is a linear operator acting onk, x, k8 andx8, whose
explicit form is not relevant for the computation of th
source. In fact, in Ref.@27# it is shown that all terms which
are linear in the fieldsx and k and their first-order spatia
frame derivatives merge together to build the Zerilli pote
tial. The frame derivatives do not commute@26#,

~ k̇!82~k8! ˙ 52n ḟ , ~A7!

so that

~k8! ¨ 5~ k̈!812n k̈, ~A8!

ṅ50 being on a static background. Equation~A6! becomes
then

2f̈1f91nf85A~2ẍ1x9!1B~2 k̈1k9!

1~nC12C8!k922nCk̈1C~2 k̈1k9!8

1L~k,x,k8,x8!. ~A9!

Next, we can write the evolution equations fork andx in
a Schwarzschild spacetime and the Hamiltonian constrain

2ẍ1x95L$k,x,x8%1Tx , ~A10!

2 k̈1k95L$x,k%2~2W1n!k81Tk , ~A11!

k95L$x,k,x8,k8%1TH , ~A12!

with Tx , Tk andTH being the sources induced by the mat
distribution. From these equations one obtains

~2 k̈1k9!85L$k,x,k8,x8%2~2W1n!TH1Tk8 , ~A13!
12402
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so that the source of the Zerilli equation is found to be

Sf5ATx1~B12nC!Tk1@2C822~W1n!C#TH1CTk8 .
~A14!

In polar radial coordinates the sources are, explicitly,

TH528pSH , ~A15!

Tx5216pe2aSx , ~A16!

Tk58pH 2e22aT00
,m1e22bT11

,m14
e22b

r
T1

,m

22
e22b

r
~T2

,m! ,r2S l12

r 2
2

6e22b

r 2 D T2
,mJ ,

~A17!

whereSH andSx have been defined in Sec. II C. When Eq
~A15!–~A17! and the definitions of the coefficients~A3!–
~A5! are replaced in Eq.~A14!, we getSf5lSz/2, with Sz
given by Eq.~21!.

The projections of the source stress-energy tensor onto
basis of the spherical harmonics is accomplished as follo
From the orthogonality properties of the harmonics,

E dVY,m* Y,8m85d,,8dmm8 , ~A18!

E dVY,m,a* Y,8m8,bgab5ld,,8dmm8 , ~A19!

E dVZab* ,8m8Z,m
ab 5

l~l22!

2
d,,8dmm8 . ~A20!

we obtain the coefficients of the expansion oftmn ,

TAB
,m5E dVtmnY,m* , A,B,m,n50,1, ~A21!

T0
,m5

1

lE dVF t02Y,m,q* 2
im

sin2q
t03Y,m* G , ~A22!

T1
,m5

1

lE dVF t12Y,m,q* 2
im

sin2q
t13Y,m* G , ~A23!

T3
,m5

1

2r 2E dVF t221
1

sin2q
t33GY,m* , ~A24!

and
8-18
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T2
,m5

2

l~l22!
E dV

t22

2
W,m* 1

2t23

sinq
X,m*

1
t33

sin2q
F2m2Y,m* 1

l

2
sin2qY,m* 1

1

2
sin 2qY,m,q* G ,

~A25!

where, following Regge and Wheeler@36#, we have defined
the functions

X,m* 52im@cotqY,m* 2Y,m,q* #, ~A26!

W,m* 52Y,m,qq* 1lY,m* . ~A27!

In the general case wheretmn describes a complex sourc
corresponding to a general distribution of matter evolv
dynamically, these integrals have to be evaluated num
cally. The analytic computation can be done only in so

FIG. 11. Gravitational waveforms and energy spectra for a p
particle falling radially onto a Schwarzschild black hole from d
ferent distances. The top panels show the waveforms and the
tom panel the corresponding spectral energy distributions. Exce
agreement is found with the results of Lousto and Price@43#. See
text for further details.
12402
ri-
e

simple cases, such as the particular case when the sourc
test-mass body moving along a geodesic of Schwarzsc
spacetime@18#.

APPENDIX B: POINT-LIKE PARTICLES RADIALLY
FALLING ONTO BLACK HOLES

In this appendix we reexamine the simplified scenario o
point particle radially falling onto a Schwarzschild blac
hole. This is done with two purposes: first, to test our pert
bative numerical code with previous works and, second
analyze the similarities and differences with the case of
cretion of extended fluid shells onto black holes. The em
sion generated by infalling particles has been extensiv
studied in the past. The seminal calculation of the GW em
sion when a test particle falls from infinity@9# was later
extended to non-radial trajectories by Detweiler and Szed
its @50#. In both cases the analysis was done in the freque
domain. A frequency component treatment based on Lap
transforms was also employed by Lousto and Price@43# in
the study of the emission from particles falling from fini
distances. On the other hand, a treatment of the same p
lem in the time domain has just recently been approached
Martel and Poisson@38#.

In order to test our numerical code we should be able
reproduce those results reported in Refs.@38,43# within the
current time-domain approach. A way to deal with ad-like
source and with a discontinuous Zerilli-Moncrief function
the location of the particle was developed by Lousto a
Price@44# and later successfully applied in Ref.@38# follow-
ing a time domain approach. However, we found it conv
nient and accurate enough for our purposes to represent td
function in the particle source terms by a narrow Gauss
written as

t

ot-
nt

FIG. 12. Effects of the gravitational wave content of the init
data on the energy spectra of a point-like particle falling radia
onto a black hole fromR0515M . By eliminating the initial contri-
bution of GWs the amplitude of the bumps is strongly reduc
Qualitatively, however, the effect is always present.
8-19
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d~r 2R0!'
1

sA2p
e2(r 2R0)2/2s2

, ~B1!

with s!1. For a given resolution, we fixs52Dr * , so that
the smallerDr * , the better the approximation of thed func-
tion is. The Zerilli-Moncrief equation is solved on an even
spaced grid using a standard three-level leapfrog scheme
consider particles initially at rest falling from a finite dis
tanceR0 to compare with the results of Ref.@43#. Since the
particle is falling along thez axis, the system is axisymmetri
and the only non-vanishing contribution for any, is the m
50 one. The source terms are specified accordingly and
consider explicitly just,52.

As a test of our numerical method, we consider the p
ticle falling from R0510M , 15M , and 20M , with the same
initial setup of Ref.@43# ~i.e. including some initial GW con-
tent! and compute the evolution of the Zerilli-Moncrief func
tion and its corresponding energy spectrum. Figure 11 sh
the results of these simulations. The top panels show
temporal evolution ofZ normalized to the particle mass
while the bottom panel exhibits the corresponding ene
spectra. The waveforms show good agreement in amplit
and shape with those of Ref.@43#. The energy spectra fo
R0510M , 15M, and 20M must be compared with Figs. 6~b!,
4~b!, and 4~c! of Ref. @43#, respectively. The spectra sho
s

.

J

ev

c.

tz,
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the same localized bumps due to the interference between
initial GW pulse and the GWs emitted by the particle duri
its motion. We notice quite good agreement forR0510M
and R0515M , while some small differences are found fo
R0520M .

Next, we analyze the contribution of the initial data on t
power spectra. We have studied how the spectrum chan
when the initial GW contribution is eliminated from the ev
lution. This is accomplished in the same way we used for
extended shells; that is, the particle is frozen at its locat
until the initial pulse has gone from the numerical doma
after which the evolution starts. Figure 12 compares the
ergy spectra emitted by a particle falling fromR0515M with
~dashed line! and without~solid line! the initial GW contri-
bution. The signal is extracted atr 5500M in the two cases.
As suggested in a more general scenario in Ref.@38#, our
results confirm that in the test particle case the bumps in
spectrum are mainly due to the spurious contribution of
radiation in the initial data. In fact, when removing the initi
GW content, the amplitude of the bumps is reduced. So
modulation is, nevertheless, still present and the spect
does not fully correspond to that of a pure QNM ringdow
signal. Martel and Poisson@38# argued that this is to be in
terpreted as an interference effect as well, but between
waves emitted by the particle during its motion and tho
previously emitted and backscattered by the potential.
los,

A.

i,
@1# S. Chandrasekhar,The Mathematical Theory of Black Hole
~Oxford University Press, New York, 1983!.

@2# K.D. Kokkotas and B.G. Schmidt, Living Rev. Relativ.2, 2
~1999!.

@3# M. Sasaki and T. Nakamura, Phys. Lett.87A, 85 ~1981!.
@4# M.P. Haugan, S.L. Shapiro, and I. Wasserman, Astrophys

257, 283 ~1982!.
@5# S.L. Shapiro and I. Wasserman, Astrophys. J.260, 838~1982!.
@6# K. Oohara and T. Nakamura, Phys. Lett.98A, 407 ~1983!.
@7# K. Oohara and T. Nakamura, Prog. Theor. Phys.70, 757

~1983!.
@8# L.I. Petrich, S.L. Shapiro, and I. Wasserman, Astrophys.

Suppl. Ser.58, 297 ~1985!.
@9# M. Davis, R. Ruffini, W.H. Press, and R.H. Price, Phys. R

Lett. 27, 1466~1971!.
@10# P. Papadopoulos and J.A. Font, Phys. Rev. D59, 044014

~1999!.
@11# S.A. Teukolsky, Phys. Rev. Lett.29, 1114~1972!.
@12# J.M. Bardeen and W.H. Press, J. Math. Phys.14, 7 ~1973!.
@13# K.D. Kokkotas and B.F. Schutz, Mon. Not. R. Astron. So

255, 119 ~1992!.
@14# N. Andersson and K.D. Kokkotas, Phys. Rev. Lett.77, 4134

~1996!.
@15# V. Ferrari and K.D. Kokkotas, Phys. Rev. D62, 107504

~2000!.
@16# G. Allen, N. Andersson, K.D. Kokkotas, and B.F. Schu

Phys. Rev. D58, 124012~1998!.
@17# J. Ruoff, Phys. Rev. D63, 064018~2001!.
@18# J. Ruoff, P. Laguna, and J. Pullin, Phys. Rev. D63, 064019

~2001!.
J.

.,

.

@19# N. Andersson, K.D. Kokkotas, P. Laguna, P. Papadopou
and M.S. Sipior, Phys. Rev. D60, 124004~1999!.

@20# G.D. Allen, N. Andersson, K.D. Kokkotas, P. Laguna, J.
Pullin, and J. Ruoff, Phys. Rev. D60, 104021~1999!.

@21# E. Seidel and T. Moore, Phys. Rev. D35, 2287 ~1987!; E.
Seidel, E.S. Myra, and T. Moore,ibid. 38, 2349 ~1988!; E.
Seidel,ibid. 44, 950 ~1991!.

@22# E. Seidel, Phys. Rev. D42, 1884~1990!.
@23# U.H. Gerlach and U.K. Sengupta, Phys. Rev. D19, 2268

~1979!; 22, 1300~1980!.
@24# T. Harada, H. Iguchi, and M. Shibata, Phys. Rev. D68, 024002

~2003!.
@25# J.M. Martı́n-Garcı´a and C. Gundlach, Phys. Rev. D59, 064031

~1999!.
@26# C. Gundlach and J.M. Martı´n-Garcı´a, Phys. Rev. D61, 084024

~2000!.
@27# J.M. Martı́n-Garcı´a and C. Gundlach, Phys. Rev. D64, 024012

~2001!.
@28# F. Siebel, J.A. Font, and P. Papadopoulos, Phys. Rev. D65,

024021~2002!.
@29# P. Papadopoulos and J.A. Font, Phys. Rev. D63, 044016

~2001!.
@30# F.J. Zerilli, Phys. Rev. D2, 2141~1970!.
@31# V. Moncrief, Ann. Phys.~N.Y.! 88, 323 ~1974!.
@32# A. Nagaret al. ~in preparation!.
@33# L. Lindblom and S.L. Detweiler, Astrophys. J., Suppl. Ser.53,

73 ~1983!; S.L. Detweiler and L. Lindblom, Astrophys. J.292,
12 ~1985!.

@34# J.A. Pons, E. Berti, L. Gualtieri, G. Miniutti, and V. Ferrar
Phys. Rev. D65, 104021~2002!.
8-20



o

J

ys.

n.

ACCRETION-DRIVEN GRAVITATIONAL RADIATION . . . PHYSICAL REVIEW D 69, 124028 ~2004!
@35# F. Banyuls, J.A. Font, J.M. Iba´ñez, J.M. Martı´, and J.A.
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