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Perfect fluid models in noncomoving observational spherical coordinates
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We use null sphericalobservationalcoordinates to describe a class of inhomogeneous cosmological mod-
els. The proposed cosmological construction is based on the observer past null cone. A known difficulty in
using inhomogeneous models is that the null geodesic equation is not integrable in general. Our choice of null
coordinates solves the radial ingoing null geodesic by construction. Furthermore, we use an approach where the
velocity field is uniquely calculated from the metric rather than put in by hand. Conveniently, this allows us to
explore models in a noncomoving frame of reference. In this frame, we find that the velocity field has shear,
acceleration, and expansion rate in general. We show that a comoving frame is not compatible with expanding
perfect fluid models in the coordinates proposed and dust models are simply not possible. We describe the
models in a noncomoving frame. We use the dust models in a noncomoving frame to outline a fitting proce-
dure.
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[. INTRODUCTION do not cover all the spacetime manifold for a specified
energy-momentum tensor. Finally, it is worth mentioning
The study of inhomogeneous cosmological models is dhat it is often difficult to do the mathematical transformation
well motivated and justified endeav(zee[1,2] for reviews. of a given solution from noncomoving coordinates to co-
These models provide more freedom in discussing very earlynoving ones, and even when the passage is made, there is no
or very late evolution of the irregularities in the Universe. guarantee that the solution will continue to have a simple or
Their study also complements perturbation approaches. It isxplicit form.
worth mentioning that there are a few hundreds of inhomo- In the present paper, we use the spherical null Bondi met-
geneous cosmological models that reproduce a metric of théc [25] to present models where a noncomoving frame is
Friedmann-Lemaitre-Robertson-WalkéiLRW) class of so- proven necessary. We explicitly demonstrate how a comov-
lutions when their arbitrary constants or functions take cering frame leads to severe limitations.
tain limiting values[1]. They become then, in that limit, Furthermore, we use the dust models in the noncomoving
compatible with the almost homogeneous and almost isotroframe to outline a fitting procedure where observational data
pic observed Universe. This shows the richness of these studan be used to integrate explicitly for the metric functions.
ies. Using observational coordinates is particularly useful when
A difficulty that is encountered in these models is that theone wants to compare directly an inhomogeneous model to
null geodesic equation is not integrable in general. In thisobservational data. Such an interesting program had been
paper, we explore the alternative of using nibserva- nicely developed in Ref§12—-17 where the authors used a
tional) spherical coordinates in which the radial null geode-general metric that can be written as a FLRW metric plus
sic equation of interest is solved by construction. Howevergxact perturbations. The spherically symmetric dust solutions
when considering null coordinates and a given metric for thevere considered in Reff14]. The authors also developed and
spacetime some subtleties arise regarding the frame of refesed a fluid-ray tetrad formalisii3] in order to derive a
ence used. In order to explore this point we will use in thisfitting procedure where observations can be used to solve
paper the approach described by Ishak and Ldfevhere Einstein's field equations. After some necessary revisions
the velocity field is calculated from the metric and not put in[18,19], this program has been relaunched recefit§;,20.
by hand. Conveniently, this approach allows one to explore We consider here in our work the spherically symmetric
noncomoving frames of reference, an important point for thiscase but using the Bondi metri@5] in a noncomoving
paper. frame. Also, we do not use the fluid-ray tetrad formalism
Surprisingly, little work has been done in noncomoving[13] but the inverse approach to Einstein’s equations devel-
coordinateq3,6—11 despite some interesting features par-oped in[4].
ticular to them. Notably, there are models that are separable In the following section, we set the notation and recall
only in a noncomoving coordinate systg0]. Moreover, some useful results. In Sec. lll, we discuss observational
exact solutions to Einstein’s equations in a noncomovingoordinates and explain the cosmological construction
frame usually have a rich kinematics with shear, acceleraaround our world-line. We also discuss the physical meaning
tion, and expansion. Such solutions are relatively rare in thef the functions that appear in the metric used here. We pro-
comoving frame[3]; see also a recent discussion[itil].  vide in Sec. IV perfect fluid models in a noncomoving frame.
Another point discussed [10] is that comoving coordinates In Sec. V, we show how dust models are not possible in a
comoving frame. We describe dust models in a nhoncomoving
frame and outline a fitting procedure in Sec. VI and summa-
*Electronic address: mishak@princeton.edu rize in Sec. VII.
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=--- the observer's woarld-line {g.g. our galaxy)

the event here and now: V=vVo and r=0 ---= 4

FIG. 1. Observational coordi-
{ nates {v,r,6,¢}. Our past null
C cone is defined by=v,. Cis the
=-- world-line of a distant object (e.0. an observer world-line;C’ is the
other galaxy or cluster of galaxies world-line of another celestial ob-
ject. The trajectory defined by,

0, and ¢ constant is a radial null
an observed avent with geodesicu® is the fluid velocity
coordinates {Vo,r1 thetal phit} field vector, anck? is the null tan-

gent vector. The null rays are trav-

eling in the opposite direction to

k* as drawn on the figure. The co-

ordinater increases along the tra-

jectory CC’ down the light cone.

aline onthe light-cone
with {¥o, r, thetaz, phi2 }

Il. NOTATION AND PRELIMINARIES pressure and shear viscosity but zero energy fhoncon-

We set here the notation and summarize results to be usedéwtm@' The energy-momentum reads

in this paper. In Refl4], warped product spacetimes of class Ta— @y .+ p.nn,+ p,6%+ p,(UUz— NN ) — 2 o
B, [21,22 were considered. These can be written in the form B PUTUET PN Ngt P20 T p2(UTU b 778

d32M=d5§1(Xl,X2)+ C(x“)dséz(x“,x“) (1) wherep is the energy density and; is the shear associated
with u¢; » is the phenomenological shear viscosiby; and
where C(x*)=r(x},x?)2w(x3,x%?,  sig1)=0, and p, are the pressures respectively parallel and perpendicular
Sig(X,) =2¢€ (e=*1). Although very special, these spacesto n®. Whenp,=p, and the shear term vanishes the fluid is
include many of interest, for examplell spherical, plane, called perfect. It was shown i#] that in the case where
and hyperbolic spacetimes. FBr, we write

A=oPnnf+0, (6)
dsz =a(dxh)2+2bdx'dx?+c(dx?)?, 2
1 we have
with a, b, andc functions of &*,x%) only. Consider a con- Gl
gruence of unit timelike vectors(velocity field u“ p==, 7
=(u!,u?,0,0) with an associated unit normal fieid (in the 2m
tangent space ok ;) satisfyingn, u®=0,n,n*=1 [23]. It G2
was shown in(4] that u® is uniquely determined from the pl=— +27A, )
zero flux condition 87
GPung=0, 3) G+G1-G2
P2=——&- 7A €)

where G# is the Einstein tensor of the spacetime. The ex-
plicit forms for u! and u? were written out for canonical andz is a freely specified function. The procedure to impose
representations & ;, including the null(Bondi) type of co-  a perfect fluid source in this degenerate case is to impose the
ordinates that we use in the present paper. V@#G%,  condition (4) and also necessarily sey=0. For other
G1=G%u"uz, andG2=GAn"n, it was shown inf4] that ~ choices ofy, the fluid is viscous.
the condition
Il. THE METRIC AND OBSERVATIONAL COORDINATES

G+G1=3G2 (4)

We consider in the present paper the null coordinate sys-
is a necessary condition for a perfect fluid source, and that item {x®}={v,r,6,¢}. These are called observation@r
some cases this condition is also sufficient. For example, igosmological coordinates as we can construct them around
[5], Eq.(4) was used to derive an algorithm which generatesour galaxy world-lineC as indicated in Fig. 1. The trajectory
all regular static spherically symmetric perfect fluid solutionsdefined byv, 6, and¢ constant is a radial null geodesic and
of Einstein’s equations. In this paper, we are interested ireach hypersurface of constants a past light cone of events
perfect fluid sources so it is important to recapitulate theon C. We choosev=v, andr=0 to represent the vertex
following results from[4]. Consider a fluid with anisotropic “here and now.” The coordinateis then set by construction
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to be the area distance as explained further, and is related to ) 1 _

the luminosity distanced, by r=d,/(1+2)? (see, e.g., wopticaIEEk[a;ﬁ]ka’B! (14

[24]). Finally, # and ¢ are the spherical coordinates on the

celestial sphere. The geometry of the models is represented 1

by the general spherical Bondi metric in advanced coordi- 0= —K* (15)
optical 2 a

nates[25]

2m
d32=2cdrdv—cz<1—7 where

dv?+r?[d6?+sin( 9)2d ¢?],
(10)
k,=[1,0,0,0 (16)
wherec=c(r,v)>0, m=m(r,v), andr>2m. The radial ¢
and ¢ constant ingoing null geodesic equation=const is s the null four-vector tangent to the congruence of null geo-
solved by constructiofsee Appendix A The components of desics. The physical meaning of the optical scalars can be
the mixed Einstein tens@ ; for Eq. (2) are given in Appen-  understood in the following wa}32,33. If an opaque object
dix B, and the structure of the Weyl tensor is discussed inis displaced an infinitesimal distande from a screer(per-
Appendix C. Regularity of the metric and the Weyl invari- pendicularly to the beam of lightit will cast on the screen a
ants requires tham(r,v) andc(r,v) areC® atr=0 [e.g., shadow that is expanded bYopiicadr, rotated by
see Eq(C2)]. It follows that wopticadr, and sheared byo,picaldr. As expected from
the spherical symmetry of the geometry, the nonvanishing
optical scalar for the null congruenkg is the optical rate of

(1_ M) =1 (11)  expansion, from which we find
r r=0
Also, we can use the freedom in the null coordinateo rc(r,v)= ! . (17)
normalize it by setting(0v) = 1. As we will write further in Ooptical
this papersee Eq.(52)], this means that we require that ) i )
measures the proper timealong our galaxy world-line. We identify from Eq.(17) thatrc(r,v) is a measure of the

Whereas the meaning of the metric function(r,v) is  '€ciProcal of the expansion of null rays.
very well known, we are not aware of any previous literature
where an interpretation for(r,v) was given. The function IV. MODELS IN A NONCOMOVING FRAME
m(r,v) represents the effective gravitation@eometrical A The velocity field
mass(e.g.,[27-31]) and is given by ' y

We consider an observer moving with a fluid for which

32 the streamlines are given by the general radial timelike vec-
mE%R(9 06 (12) tor u*=[u®(r,v),u'(r,v),0,0]. We assume that such a ve-
2 % locity field exists for which the energy-momentum tensor

. . ~ takes the perfect fluid form
where R(,d,“"/’ is the mixed angular component of the Rie-

mann curvature tensor. For the physical meaning of the func-
tion c(r,v), it turns out to be useful to study the kinematics Tz=(p+p)utugtpdy, (18
of null rays. These usually include the optical shear, vorticity,
and rate of expansion, respectively, defined 8] wherep andp are respectively the energy-density and iso-
1 1 tropic pressure associated wiiH. The velocity field is sim-
ngticalz Ek(a;ﬁ)ka,ﬁ_ Z(k?aa)z’ (13) EI;/ determined from the zero flux conditi@B) and is given

4
R \/ ! (19
c(r,v) [1—2m(r,v)/r]?+4m"(r,v)/rc’(r,v)

. L[1=2m(r,v)/r]=V{[1-2m(r,v)/r]*+4m’(r,v)/rc’(r,v)}

2_
-1z A 11—2m(r,v)/r2+4m'(r,v)/rc'(r,v)

u (20
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where the prime indicate&/' dr and the bold dov/dv. The
associated unit normal vector fiefld* (n,u“=0 andn,n®
=1) is given by

n,=c(r,v)[u’,—u’,0,0]. (21

Interestingly, the velocity field has sheaf;# 0, accelera-

tion u®#0, and expansion rate scalé# 0 in general.

B. The perfect fluid condition

It follows from the metric(10) thatA, as defined in Eq.
(6), is not zero and that for a perfect fluid source we mus

impose the conditiofd) and sety=0. Withm=m(r,v) and
c=c(r,v), the condition(4) reads

L—c?Jc'N=0, (22
where
L=c32m’—m"r)+c¥ 3¢’ (m—rm’)+c"r(r—2m)]
+cr¥c’ " —c'rc (23)
and
N=c'(r—2m)?+4rm'. (24)

The metric(10) along with the metric constrairiR2) repre-
sent a perfect fluid model with

Gl 2(cm)’—c'r+yc'N
=B

(25
8mcr?

and

—2(cm)/+c'r+\c'N
P(=Pp1=p2)= > . (20
8mcr

V. MODELS IN A COMOVING FRAME

PHYSICAL REVIEW D 69, 124027 (2004

It follows from Egs.(19) and(29) that

1
u’ (30)

T eroI=2mnir]’

-1
n=——— (31

J1-2m(r)/r]’

andn,=0. With this velocity field the shear tensor vanishes;
therefore, the necessary and sufficient condition for a perfect

fluid model is Eq.(4), which can be written as

—c%c'r+5c%c’'m+2¢3m’ +c2c"r?—2c%c"mr—3c%c’'m'r
—c®m’r—c’c’r?+c’ "cr?=0. (32
For a perfect fluid source in this frame the presspris a

function of bothr andv while the energy density is a func-
tion only of r,

Gl m'(r)
e (33
and
:c’(r,v)[r+2m(r)]+c(r,v)m’(r). (34

A7r2e(r,v)
The four-acceleration® has the nonvanishing components

.oorc/(roo)r=2m(r)]+c[m(r)—m’(r)r]
u’=

re2(r,v)[r—2m(r)] (39

and

l.Jr_rc’(r,v)[r—2m(r)]+c[m(r)—m’(r)r]

rec(r,v)

(36)

In this section, we specialize to models in a comoving
frame of reference. We show how this frame fails in thea caveat in this framécomoving is that the expansion sca-

realization of the cosmological construction proposed.

A. Perfect fluid models

With the metric function
5 2m(r,v)
9pp=—C (rvv) 1_7 <0, (27)

the requirement of comoving coordinates reads

om(r,v)ldv B

u'=0 & G/ =2 5

0. (29)
r

lar vanishes and the model is not suitable for describing an
expanding Universe.

B. The zero-pressure case

The present matter dominatdds opposed to radiation
dominated! Universe is well approximated by a zero-
pressure model, commonly referred to as “dust.” In this case
(comoving A=0 and the zero-pressure conditions follow
from Eqgs.(8) and(9) as

G2=0 (37)

and

Hence, the necessary and sufficient condition for a comoving

frame is

m(r,v)=m(r). (29

G+G1=0. (38

With Eq. (29), Egs.(37) and (38) read

124027-4
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c' m’ 2m’(r,v) c'(r,v) 2m(r,v)

39 = — _

(39 dmp(r,v) 2 ro(r.0) ; .
and (45)
This result can also be obtained from the effective gravita-

2A7 21 21,2 21 21 ’ 3
cc'r+cc’'m+cc’re—2cc"rm—3cc’'rm’ —c m’r . . g
tional mass equatiofil2). The velocity field follows from

—c'c’r?+c’*cr’=0. (40)  Egs.(19) and(20):
Integrating Eq.(39) gives 1 1
u= (46)
m’(r) c(r,v) J[1—-2m(r,v)/r]+2m'(r,v)/m’c
c(r,v)=f(v)ex;<fmd ) (41)

or equivalently by using Eq43)
which when put into Eq(40) gives

1 1
u'=
f(u)3exp[3f [m’(r)/r—2m(r)]dr]m’(r)m(r) c(r,v) \2m'(r,v)c(r,v)/re’ (r,v)—[1—2m(r,v)/r]
=0. (4
r2[r—2m(r)]
(42 and
With f(v)>0 [from c(r,v)>0] the zero-pressure model re- .
. _ m'(r,v)
duces to the following two cases: uf = uv. (48)
(i) m(r)=0 and the spacetime reduces to the Minkowski m'(r,v)

flat spacetimeR,z,5=0), or
(i) m’(r)=0 (m is constantand the spacetime reduces we verified that the acceleration four-vector fiald van-
to the Schwarzschild vacuum in Eddington-Finkelstein coorishes as the dust fluid is moving geodesically. Interestingly,

dinates R,5=0, R,z3,5#0). the velocity field remains with nonvanishing shear and ex-
Therefore, a dust model is not possible in a comovingyansion rate.

frame using the observational coordinates and the Bondi
metric (10). We turn in the following section to a noncomov-

ing frame for dust models. B. The conformally flat case

It is a well known result that a cosmological model that

VI. DUST MODELS IN A NONCOMOVING ERAME satisfies the Einstein equations with a perfect fluid source, a
o barotropic equation of state, i.ep=p(p) (including p
A. The velocity field =0), which is conformally flatC,z,s=0) and has nonzero

We are interested in building dust models using sphericagXpansion is a Lemae-Friedmann-Robertson-Walker model
observational coordinates and a noncomoving frame. In &-FRW) [1,3,39. For dust models in the noncomoving
1+3 decomposition of the spacetime, these models are givelfi@me, the conditiorC,z,5=0 (see Appendix Creduces to
by the general Lemae-Tolman-Bondi solutior{34,1]. In , ,
this noncomoving casA #0 in general, so we must set C_( _ 2_m> _ 2£+ 3_m:0 (49)
=0 and impose the zero-pressure conditi¢d® and (38) c r r r2 ’
which can be written as

Therefore, the metri¢10) along with the constraint$43),

(43) (44), and (49) represents the homogeneous and isotropic
(LFRW) limit of the models. We are interested here in more
general inhomogeneous models.

!

cm’ ( Zm)
- 1__
c'r r

m'=cm

and Eq.(38) can be written as
C. Basic observable quantities

1 c’ m 2m
¢'"=c/~(3c'm'+em’)— —| 1+ | —c"[ 1-—— 1. The redshift
L The light emitted with a wavelength, from a point on
+ 2_ (44) the light cone is observed at the vertex “here and ngs€e
c Fig. 1) with a wavelength\,. The redshift is then given by

. . , (see, e.9.[36,24))
The metric(10) with constraints(43) and (44) represents a

class of inhomogeneous dust models in spherical observa- (K, U%) it drgp A
¢4 emitter obsewer o

tional coordinates. Using Eq7), the energy density is given 14 7= _ Mo 0
” (kﬁuﬁ)obsewer d7emitter ANe
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whereu® is the normalized timelike velocity vector field and dition u“u,=—1 evaluated at =0 (observey that
k, is the null vector as given previously by E(L6). It

follows that (KU |opsener=U"(000) = 1, (52

c(0p,) -

where in the last step we used the freedom in the null coor-
K, u*=u’(r,v,), (51) dinatev to setc(0,v)=0. Finally,

u’(r,v i
1+Z:M:Uv(ravo)emitter' (53)

v
where u’(r,v,) is given by Eq.(19). It follows from the U(TVo)opseuer
regularity condition(11) and the timelike normalization con- For the dust case, E¢53) gives

1
1+z= (54)
c(r,vo) 2m'(r,ve)c(r,vo)/re’ (r,ve) — (1—2m(r,v,)/r)
or equivalently, by using the constraif#3),
1
1+z= , (55
c(r,vy) M’ (r,vo)c(r,vo)/re’ (r,ve)+m (r,ve)/m' (r,ve)c(r,v,)
|
where we have set=riter in EQs. (54) and (55). whereM is the average rest mass for the counted sources.
2. The observer area distance D. A fitting procedure algorithm

The coordinate in the model is set by construction to be s discussed earlier, the approach used allows us to inte-
the observer area distanf24,3§ which is defined bydA  grate the models explicitly, given observational data. As a
=r°dQ wheredA s the cross-sectional area of an emitting first step, we rearrange the model equations. We combine

object, andd(} is the solid angle subtended by that object atgqgs. (45) evaluated at =v, with Eq. (54) and usec(0p,)
the observer. The area distances related to the luminosity =1 to obtain

distanced, by r =dL/(1+z)2 [24]. The luminosity distance
can be determined by comparing the observed luminosity of c'(r,v,)

_ 2
an object to its known intrinsic luminosity: #d?=L/F (0 )_4”(1+Z) (rvo)p(r,vo), (58)
whereF is the observeémeasuregflux of light received and e
L is the object’s intrinsic luminosity. which integrates to
3. Galaxy number counts 1
Another observable of interest is the source number c(rvo)=

counts as a function of the redshift. An observer at the vertex \/1— 87-rJ (1+2)%(r,u)rp(r,ve)dr
“here and now” will count on the light cone a numbeéh of

sources between redshifteindz+dzin a solid angled(}. It (59
follows that Integrating Eq.(45) for m(r,v,) gives

dN 5 dr 1

Ezfcn(vo,r)r de—z, (56) m(r,vo)=m f[c’(r,vo)
wheren(v,,r) is the number density of sources afidis a
fractional number indicating the efficiency of the counts FAmrp(r,vo)C(r,vo)lrdr |, (60)

(completenegs[14]. This number corrects for errors in
source selection and detection; see, d.44,37. For sim- Where we also use(0v,)=0. Now, the observations pro-
plicity, we can assume that the necessary adjustments for théded as polynomial functiong(z) andr(z) fitted to the
dark matter can be incorporated Vig. The energy-density data can be used to integrate explicitly fox(r,v) and
follows c(r,v). The steps for the fitting algorithm are as follows.
Express cosmological data as polynomial functions for
p(ve,r)=n(vy,rNM, (57)  two quantities.(i) The energy-density(r,v,) from galaxy
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number counts. Many projects are accumulating very largeised directly to integrate explicitly for the models.
amounts of data. See, for examl@g] for the Sloan Digital
Sky Survey.(ii) The observer area distancéz,v,) from ACKNOWLEDGMENTS
“standard candles” projects in which it is possible to mea-
sure the redshift and the distance independently. The accu- The author thanks Kayll Lake and Roberto Sussman for
mulating data from the supernovae cosmology projects araseful discussions. This work was supported by the Natural
very promising. See, for examplg39] for the HighZ SN Sciences and Engineering Research Council of Canada
Search project{40] for the Supernova Cosmology Project, (NSERQ. Portions of this work were made possible by use
and[41] for the Supernova Acceleration Probe project. of GRTENSORII[44].

Invert the functionr (z,v,) to obtainz(r,v,).

This can in turn be used to write the energy-density poly-
nomial function as(z(r,v,),v,).

Now, with z(r,v,) andp(r,v,) expressed as functions of ~ The paths of light rays are described by null geodesic
r (and notz), integrate Eq(59) overr to obtainc(r,v,) on  trajectories under the eikonal assumptj@6]. The geodesic
the light cone. trajectories are determined by solving the null geodesic

With c(r,v,) determined, integrate E¢60) overr to ob-  equation
tainm(r,v,) on the light cone.

Finally, with c(r,v,) andm(r,v,) determined, use Egs. ka;ﬁkﬁ=0, (A1)
(43) and (44) to integrate oveo.

The level of difficulty of this last step can be monitored \yherek« is a null vector k?k,,=0) tangent to the null geo-
using the analytical forms used fr(z) andr(z) and it desics k*=dx*/d\ where\ is an affine parameter. For the

remains a tractable problem, while integrating the null geoggngi metric (10), the four equationgAl) are all satisfied
desic equation in the standare-3 form of the LTB models {5 , = const.

is not tractabldsee, e.g.[18]), and one has to have recourse
to numerical integration§42]. Moreover, the fitting proce- "
dure has the interesting feature of incorporating the observa- APPENDIX B: EXPRESSIONS FOR Gj; COMPONENTS

tions in the process of integrating explicitly for the metric ¢ expressions for the components of the mixed Einstein

functions. o o _ _ tensor are as follows:
It is worth mentioning that in principle the information on

our light cone cannot determine its future evolution uniquely.

APPENDIX A: NULL GEODESIC EQUATION

We need to make the reasonable assumption that there will Gr:2_CI< 1— 2_m) _ Z_W (B1)
be no future events in the cosmic evolution that will invali- " ocr r r2’
date the entire data obtained from our light cdeee, e.g.,
[43]). Furthermore, one must keep in mind the usual limita- ,
tion of the underlying models used here as they are spheri- GU:ZC (r,v) (B2)
cally symmetric around our world-line and more general in- r cr
homogeneous models should be considered in future studies
of fitting procedures.
2m’
GL:—Z, (B3)
VIl. SUMMARY r
We expressed inhomogeneous cosmological models in om’
null spherical noncomoving coordinates using the Bondi Gl=— " (B4)
spherical metric. A known difficulty in using inhomogeneous Y r2
models is that the null geodesic equation is not integrable in
general. Our choice of null coordinates solves the radial null , o't o oml m
geodesic by construction. We identified the general meaning GZ=G$:—< 1-3m'+ — — — | + _( _ _) _
of the metric functionc(r,v) to be the reciprocal of the c? ¢ r r

optical expansion. We used an approach where the velocity

field is uniquely calculated from the metric rather than put in

by hand. Conveniently, this allowed us to explore models in ?
a noncomoving frame of reference. In this frame, we find
that the velocity field has shear, acceleration, and expansion - .
rate in general. In this set of coordinates, we showed that ghere the b0|d_dOt indicated/sv and the primeg/or, ¢
comoving frame is not compatible with expanding perfect_ c(":0), andm=m(r.v). We note that these components
fluid models and dust models are simply not possible in thid® related by

frame. We then described perfect fluid and dust models in a

noncomoving frame. The framework developed allows one G'— GY=Glc(r U)( 1 2m(r,v)) (B6)

to outline a fitting procedure where observational data can be roTe T r '

(B5)
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APPENDIX C: THE WEYL TENSOR AND THE
CONDITION FOR CONFORMAL FLATNESS

The structure of the Weyl tens@,,z,,=0 is usually ex-

plored to derive the conformally flat case of a cosmological
solution (i.e., C,4,5=0). This can reveal the limits of the

model's parameters for which it reduces to a Léneal
Friedmann-Robertson-Walker model.
components of the mixed Weyl tensor for the met(i6) are
related and given by

Cr,''= C0¢0¢: zcrer(}: zcr<;{>r¢

=2C,,"=2C, 4 ?=W(r ),
(CY

The nonvanishing

PHYSICAL REVIEW D 69, 124027 (2004

where
1 3 6m > 3 2m
W(ryv)=——=|cri m"r—4m'+ —|—c°c"r’| 1— —
c’rs r r
5m
+c?c'r? 1+3m’—T +c'c'r®—c’crd|.

(C2

The condition for conformal flatness of the models is there-

fore W(r,v)=0.
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