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Perfect fluid models in noncomoving observational spherical coordinates

Mustapha Ishak*
Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

~Received 29 October 2003; published 28 June 2004!

We use null spherical~observational! coordinates to describe a class of inhomogeneous cosmological mod-
els. The proposed cosmological construction is based on the observer past null cone. A known difficulty in
using inhomogeneous models is that the null geodesic equation is not integrable in general. Our choice of null
coordinates solves the radial ingoing null geodesic by construction. Furthermore, we use an approach where the
velocity field is uniquely calculated from the metric rather than put in by hand. Conveniently, this allows us to
explore models in a noncomoving frame of reference. In this frame, we find that the velocity field has shear,
acceleration, and expansion rate in general. We show that a comoving frame is not compatible with expanding
perfect fluid models in the coordinates proposed and dust models are simply not possible. We describe the
models in a noncomoving frame. We use the dust models in a noncomoving frame to outline a fitting proce-
dure.
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I. INTRODUCTION

The study of inhomogeneous cosmological models i
well motivated and justified endeavor~see@1,2# for reviews!.
These models provide more freedom in discussing very e
or very late evolution of the irregularities in the Univers
Their study also complements perturbation approaches.
worth mentioning that there are a few hundreds of inhom
geneous cosmological models that reproduce a metric of
Friedmann-Lemaitre-Robertson-Walker~FLRW! class of so-
lutions when their arbitrary constants or functions take c
tain limiting values@1#. They become then, in that limit
compatible with the almost homogeneous and almost iso
pic observed Universe. This shows the richness of these s
ies.

A difficulty that is encountered in these models is that
null geodesic equation is not integrable in general. In t
paper, we explore the alternative of using null~observa-
tional! spherical coordinates in which the radial null geod
sic equation of interest is solved by construction. Howev
when considering null coordinates and a given metric for
spacetime some subtleties arise regarding the frame of r
ence used. In order to explore this point we will use in t
paper the approach described by Ishak and Lake@4# where
the velocity field is calculated from the metric and not put
by hand. Conveniently, this approach allows one to expl
noncomoving frames of reference, an important point for t
paper.

Surprisingly, little work has been done in noncomovi
coordinates@3,6–11# despite some interesting features p
ticular to them. Notably, there are models that are separ
only in a noncomoving coordinate system@10#. Moreover,
exact solutions to Einstein’s equations in a noncomov
frame usually have a rich kinematics with shear, accele
tion, and expansion. Such solutions are relatively rare in
comoving frame@3#; see also a recent discussion in@11#.
Another point discussed in@10# is that comoving coordinate
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do not cover all the spacetime manifold for a specifi
energy-momentum tensor. Finally, it is worth mentioni
that it is often difficult to do the mathematical transformati
of a given solution from noncomoving coordinates to c
moving ones, and even when the passage is made, there
guarantee that the solution will continue to have a simple
explicit form.

In the present paper, we use the spherical null Bondi m
ric @25# to present models where a noncomoving frame
proven necessary. We explicitly demonstrate how a com
ing frame leads to severe limitations.

Furthermore, we use the dust models in the noncomov
frame to outline a fitting procedure where observational d
can be used to integrate explicitly for the metric function
Using observational coordinates is particularly useful wh
one wants to compare directly an inhomogeneous mode
observational data. Such an interesting program had b
nicely developed in Refs.@12–17# where the authors used
general metric that can be written as a FLRW metric p
exact perturbations. The spherically symmetric dust soluti
were considered in Ref.@14#. The authors also developed an
used a fluid-ray tetrad formalism@13# in order to derive a
fitting procedure where observations can be used to s
Einstein’s field equations. After some necessary revisi
@18,19#, this program has been relaunched recently@19,20#.

We consider here in our work the spherically symmet
case but using the Bondi metric@25# in a noncomoving
frame. Also, we do not use the fluid-ray tetrad formalis
@13# but the inverse approach to Einstein’s equations de
oped in@4#.

In the following section, we set the notation and rec
some useful results. In Sec. III, we discuss observatio
coordinates and explain the cosmological construct
around our world-line. We also discuss the physical mean
of the functions that appear in the metric used here. We p
vide in Sec. IV perfect fluid models in a noncomoving fram
In Sec. V, we show how dust models are not possible i
comoving frame. We describe dust models in a noncomov
frame and outline a fitting procedure in Sec. VI and summ
rize in Sec. VII.
©2004 The American Physical Society27-1
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FIG. 1. Observational coordi-
nates $v,r ,u,f%. Our past null
cone is defined byv5vo . C is the
observer world-line; C8 is the
world-line of another celestial ob
ject. The trajectory defined byv,
u, andf constant is a radial null
geodesic,ua is the fluid velocity
field vector, andka is the null tan-
gent vector. The null rays are trav
eling in the opposite direction to
ka as drawn on the figure. The co
ordinater increases along the tra
jectory CC8 down the light cone.
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II. NOTATION AND PRELIMINARIES

We set here the notation and summarize results to be
in this paper. In Ref.@4#, warped product spacetimes of cla
B1 @21,22# were considered. These can be written in the fo

dsM
2 5dsS1

2 ~x1,x2!1C~xa!dsS2

2 ~x3,x4! ~1!

where C(xa)5r (x1,x2)2w(x3,x4)2, sig(S1)50, and
sig(S2)52e (e561). Although very special, these spac
include many of interest, for example,all spherical, plane,
and hyperbolic spacetimes. ForS1, we write

dsS1

2 5a~dx1!212bdx1dx21c~dx2!2, ~2!

with a, b, andc functions of (x1,x2) only. Consider a con-
gruence of unit timelike vectors~velocity field! ua

5(u1,u2,0,0) with an associated unit normal fieldna ~in the
tangent space ofS1) satisfying naua50,nana51 @23#. It
was shown in@4# that ua is uniquely determined from the
zero flux condition

Ga
buanb50, ~3!

whereGa
b is the Einstein tensor of the spacetime. The e

plicit forms for u1 and u2 were written out for canonica
representations ofS1, including the null~Bondi! type of co-
ordinates that we use in the present paper. WithG[Ga

a ,
G1[Ga

buaub , andG2[Ga
bnanb , it was shown in@4# that

the condition

G1G153G2 ~4!

is a necessary condition for a perfect fluid source, and tha
some cases this condition is also sufficient. For example
@5#, Eq. ~4! was used to derive an algorithm which genera
all regular static spherically symmetric perfect fluid solutio
of Einstein’s equations. In this paper, we are interested
perfect fluid sources so it is important to recapitulate
following results from@4#. Consider a fluid with anisotropic
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pressure and shear viscosity but zero energy flux~noncon-
ducting!. The energy-momentum reads

Tb
a5ruaub1p1nanb1p2db

a1p2~uaub2nanb!22hsb
a ,
~5!

wherer is the energy density andsb
a is the shear associate

with ua; h is the phenomenological shear viscosity;p1 and
p2 are the pressures respectively parallel and perpendic
to na. Whenp15p2 and the shear term vanishes the fluid
called perfect. It was shown in@4# that in the case where

D[sa
bnanbÞ0, ~6!

we have

r5
G1

2p
, ~7!

p15
G2

8p
12hD, ~8!

p25
G1G12G2

16p
2hD ~9!

andh is a freely specified function. The procedure to impo
a perfect fluid source in this degenerate case is to impose
condition ~4! and also necessarily seth[0. For other
choices ofh, the fluid is viscous.

III. THE METRIC AND OBSERVATIONAL COORDINATES

We consider in the present paper the null coordinate s
tem $xa%5$v,r ,u,f%. These are called observational~or
cosmological! coordinates as we can construct them arou
our galaxy world-lineC as indicated in Fig. 1. The trajector
defined byv, u, andf constant is a radial null geodesic an
each hypersurface of constantv is a past light cone of event
on C. We choosev5vo and r 50 to represent the verte
‘‘here and now.’’ The coordinater is then set by construction
7-2
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to be the area distance as explained further, and is relate
the luminosity distancedL by r 5dL /(11z)2 ~see, e.g.,
@24#!. Finally, u and f are the spherical coordinates on t
celestial sphere. The geometry of the models is represe
by the general spherical Bondi metric in advanced coo
nates@25#

ds252cdrdv2c2S 12
2m

r Ddv21r 2@du21sin~u!2df2#,

~10!

wherec[c(r ,v).0, m[m(r ,v), andr .2m. The radial (u
andf constant! ingoing null geodesic equationv5const is
solved by construction~see Appendix A!. The components o
the mixed Einstein tensorGb

a for Eq. ~2! are given in Appen-
dix B, and the structure of the Weyl tensor is discussed
Appendix C. Regularity of the metric and the Weyl inva
ants requires thatm(r ,v) and c(r ,v) are C3 at r 50 @e.g.,
see Eq.~C2!#. It follows that

S 12
2m~r ,v !

r D U
r 50

51. ~11!

Also, we can use the freedom in the null coordinatev to
normalize it by settingc(0,v)51. As we will write further in
this paper@see Eq.~52!#, this means that we require thatv
measures the proper timet along our galaxy world-lineC.

Whereas the meaning of the metric functionm(r ,v) is
very well known, we are not aware of any previous literatu
where an interpretation forc(r ,v) was given. The function
m(r ,v) represents the effective gravitational~geometrical!
mass~e.g.,@27–31#! and is given by

m[
guu

3/2

2
Ruf

uf, ~12!

where Ruf
uf is the mixed angular component of the Ri

mann curvature tensor. For the physical meaning of the fu
tion c(r ,v), it turns out to be useful to study the kinemati
of null rays. These usually include the optical shear, vortic
and rate of expansion, respectively, defined by@32#

soptical
2 [

1

2
k(a;b)k

a;b2
1

4
~k;a

a !2, ~13!
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voptical
2 [

1

2
k[a;b]k

a;b, ~14!

uoptical[
1

2
k;a

a ~15!

where

ka5@1,0,0,0# ~16!

is the null four-vector tangent to the congruence of null ge
desics. The physical meaning of the optical scalars can
understood in the following way@32,33#. If an opaque object
is displaced an infinitesimal distancedr from a screen~per-
pendicularly to the beam of light!, it will cast on the screen a
shadow that is expanded byuopticaldr, rotated by
vopticaldr, and sheared byusopticaludr. As expected from
the spherical symmetry of the geometry, the nonvanish
optical scalar for the null congruenceka is the optical rate of
expansion, from which we find

rc~r ,v !5
1

uoptical
. ~17!

We identify from Eq.~17! that rc(r ,v) is a measure of the
reciprocal of the expansion of null rays.

IV. MODELS IN A NONCOMOVING FRAME

A. The velocity field

We consider an observer moving with a fluid for whic
the streamlines are given by the general radial timelike v
tor ua5@uv(r ,v),ur(r ,v),0,0#. We assume that such a ve
locity field exists for which the energy-momentum tens
takes the perfect fluid form

Tb
a5~r1p!uaub1pdb

a , ~18!

wherer and p are respectively the energy-density and is
tropic pressure associated withua. The velocity field is sim-
ply determined from the zero flux condition~3! and is given
by
u1[uv5
1

c~r ,v !

4A 1

@122m~r ,v !/r #214m•~r ,v !/rc8~r ,v !
~19!

u2[ur5
1
2

@122m~r ,v !/r #2A$@122m~r ,v !/r #214m•~r ,v !/rc8~r ,v !%

A4 @122m~r ,v !/r #214m•~r ,v !/rc8~r ,v !
~20!
7-3
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where the prime indicates]/]r and the bold dot]/]v. The
associated unit normal vector fieldna (naua50 andnana

51) is given by

na5c~r ,v !@ur ,2uv,0,0#. ~21!

Interestingly, the velocity field has shearsb
a5” 0, accelera-

tion u̇a5” 0, and expansion rate scalaru5” 0 in general.

B. The perfect fluid condition

It follows from the metric~10! that D, as defined in Eq.
~6!, is not zero and that for a perfect fluid source we m
impose the condition~4! and seth[0. With m[m(r ,v) and
c[c(r ,v), the condition~4! reads

L2c2Ac8N50, ~22!

where

L[c3~2m82m9r !1c2@3c8~m2rm8!1c9r ~r 22m!#

1cr2c8 •2c8r 2c• ~23!

and

N[c8~r 22m!214rm•. ~24!

The metric~10! along with the metric constraint~22! repre-
sent a perfect fluid model with

r5
G1

8p
5

2~cm!82c8r 1Ac8N
8pcr2

~25!

and

p~5p15p2!5
22~cm!81c8r 1Ac8N

8pcr2
. ~26!

V. MODELS IN A COMOVING FRAME

In this section, we specialize to models in a comovi
frame of reference. We show how this frame fails in t
realization of the cosmological construction proposed.

A. Perfect fluid models

With the metric function

gvv52c2~r ,v !S 12
2m~r ,v !

r D,0, ~27!

the requirement of comoving coordinates reads

ur50 ⇔ Gv
r 52

]m~r ,v !/]v

r 2
50. ~28!

Hence, the necessary and sufficient condition for a comov
frame is

m~r ,v !5m~r !. ~29!
12402
t

g

It follows from Eqs.~19! and ~29! that

uv5
1

c~r ,v !A@122m~r !/r #
, ~30!

nr5
21

A@122m~r !/r #
, ~31!

andnv50. With this velocity field the shear tensor vanishe
therefore, the necessary and sufficient condition for a per
fluid model is Eq.~4!, which can be written as

2c2c8r 15c2c8m12c3m81c2c9r 222c2c9mr23c2c8m8r

2c3m9r 2c8c•r 21c8 •cr250. ~32!

For a perfect fluid source in this frame the pressurep is a
function of bothr andv while the energy density is a func
tion only of r,

r5
G1

8p
5

m8~r !

4pr 2
~33!

and

p5
c8~r ,v !@r 12m~r !#1c~r ,v !m8~r !

4pr 2c~r ,v !
. ~34!

The four-accelerationu̇a has the nonvanishing component

u̇v5
rc8~r ,v !@r 22m~r !#1c@m~r !2m8~r !r #

rc2~r ,v !@r 22m~r !#
~35!

and

u̇r5
rc8~r ,v !@r 22m~r !#1c@m~r !2m8~r !r #

r 2c~r ,v !
. ~36!

A caveat in this frame~comoving! is that the expansion sca
lar vanishes and the model is not suitable for describing
expanding Universe.

B. The zero-pressure case

The present matter dominated~as opposed to radiation
dominated! Universe is well approximated by a zero
pressure model, commonly referred to as ‘‘dust.’’ In this ca
~comoving! D50 and the zero-pressure conditions follo
from Eqs.~8! and ~9! as

G250 ~37!

and

G1G150. ~38!

With Eq. ~29!, Eqs.~37! and ~38! read
7-4
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c8

c
2

m8

r 22m
50 ~39!

and

c2c8r 1c2c8m1c2c9r 222c2c9rm23c2c8rm82c3m9r

2c8c•r 21c8•cr250. ~40!

Integrating Eq.~39! gives

c~r ,v !5 f ~v !expS E m8~r !

r 22m~r !
dr D , ~41!

which when put into Eq.~40! gives

f ~v !3expH3E @m8~r !/r 22m~r !#drJ m8~r !m~r !

r 2@r 22m~r !#
50.

~42!

With f (v).0 @from c(r ,v).0] the zero-pressure model re
duces to the following two cases:

~i! m(r )50 and the spacetime reduces to the Minkow
flat spacetime (Rabgd50), or

~ii ! m8(r )50 (m is constant! and the spacetime reduce
to the Schwarzschild vacuum in Eddington-Finkelstein co
dinates (Rab50, Rabgd5” 0).

Therefore, a dust model is not possible in a comov
frame using the observational coordinates and the Bo
metric ~10!. We turn in the following section to a noncomov
ing frame for dust models.

VI. DUST MODELS IN A NONCOMOVING FRAME

A. The velocity field

We are interested in building dust models using spher
observational coordinates and a noncomoving frame. I
113 decomposition of the spacetime, these models are g
by the general Lemaıˆtre-Tolman-Bondi solution@34,1#. In
this noncomoving caseDÞ0 in general, so we must seth
[0 and impose the zero-pressure conditions~37! and ~38!
which can be written as

m•5cm8Fcm8

c8r
2S 12

2m

r D G ~43!

and Eq.~38! can be written as

c8 •5cF1

r
~3c8m81cm9!2

c8

r S 11
m

r D2c9S 12
2m

r D G
1

c8c•

c
. ~44!

The metric~10! with constraints~43! and ~44! represents a
class of inhomogeneous dust models in spherical obse
tional coordinates. Using Eq.~7!, the energy density is given
by
12402
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4pr~r ,v !5
2m8~r ,v !

r 2
2

c8~r ,v !

rc~r ,v ! S 12
2m~r ,v !

r D .

~45!

This result can also be obtained from the effective grav
tional mass equation~12!. The velocity field follows from
Eqs.~19! and ~20!:

uv5
1

c~r ,v !

1

A@122m~r ,v !/r #12m•~r ,v !/m8c
~46!

or equivalently by using Eq.~43!

uv5
1

c~r ,v !

1

A2m8~r ,v !c~r ,v !/rc8~r ,v !2@122m~r ,v !/r #
~47!

and

ur5
m•~r ,v !

m8~r ,v !
uv. ~48!

We verified that the acceleration four-vector fieldu̇a van-
ishes as the dust fluid is moving geodesically. Interestin
the velocity field remains with nonvanishing shear and
pansion rate.

B. The conformally flat case

It is a well known result that a cosmological model th
satisfies the Einstein equations with a perfect fluid sourc
barotropic equation of state, i.e.,p5p(r) ~including p
50), which is conformally flat (Cabgd50) and has nonzero
expansion is a Lemaıˆtre-Friedmann-Robertson-Walker mod
~LFRW! @1,3,35#. For dust models in the noncomovin
frame, the conditionCabgd50 ~see Appendix C! reduces to

c8

c S 12
2m

r D2
2m8

r
1

3m

r 2
50. ~49!

Therefore, the metric~10! along with the constraints~43!,
~44!, and ~49! represents the homogeneous and isotro
~LFRW! limit of the models. We are interested here in mo
general inhomogeneous models.

C. Basic observable quantities

1. The redshift

The light emitted with a wavelengthle from a point on
the light cone is observed at the vertex ‘‘here and now’’~see
Fig. 1! with a wavelengthlo . The redshift is then given by
~see, e.g.,@36,24#!

11z5
~kaua!emitter

~kbub!observer

5
dtobserver

dtemitter
5

lo

le
, ~50!
7-5
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whereua is the normalized timelike velocity vector field an
ka is the null vector as given previously by Eq.~16!. It
follows that

kaua5uv~r ,vo!, ~51!

where uv(r ,vo) is given by Eq.~19!. It follows from the
regularity condition~11! and the timelike normalization con
e

ng
a

y

be
rte

ts
n

r t

12402
dition uaua521 evaluated atr 50 ~observer! that

~kaua!uobserver5uv~0,vo!5
1

c~0,vo!
51, ~52!

where in the last step we used the freedom in the null co
dinatev to setc(0,v)50. Finally,

11z5
uv~r ,vo!emitter

uv~r ,vo!observer

5uv~r ,vo!emitter. ~53!

For the dust case, Eq.~53! gives
11z5
1

c~r ,vo!

1

A2m8~r ,vo!c~r ,vo!/rc8~r ,vo!2~122m~r ,vo!/r !
~54!

or equivalently, by using the constraint~43!,

11z5
1

c~r ,vo!

1

Am8~r ,vo!c~r ,vo!/rc8~r ,vo!1m•~r ,vo!/m8~r ,vo!c~r ,vo!
, ~55!
s.

nte-
a

ine

-

for
where we have setr[r emitter in Eqs.~54! and ~55!.

2. The observer area distance

The coordinater in the model is set by construction to b
the observer area distance@24,36# which is defined bydA
5r 2dV wheredA is the cross-sectional area of an emitti
object, anddV is the solid angle subtended by that object
the observer. The area distancer is related to the luminosity
distancedL by r 5d

L
/(11z)2 @24#. The luminosity distance

can be determined by comparing the observed luminosit
an object to its known intrinsic luminosity: 4pdL

25L/F
whereF is the observed~measured! flux of light received and
L is the object’s intrinsic luminosity.

3. Galaxy number counts

Another observable of interest is the source num
counts as a function of the redshift. An observer at the ve
‘‘here and now’’ will count on the light cone a numberdN of
sources between redshiftsz andz1dz in a solid angledV. It
follows that

dN

dz
5 f cn~vo ,r !r 2dV

dr

dz
, ~56!

wheren(vo ,r ) is the number density of sources andf c is a
fractional number indicating the efficiency of the coun
~completeness! @14#. This number corrects for errors i
source selection and detection; see, e.g.,@14,37#. For sim-
plicity, we can assume that the necessary adjustments fo
dark matter can be incorporated viaf c . The energy-density
follows

r~vo ,r !5n~vo ,r !M , ~57!
t

of

r
x

he

whereM is the average rest mass for the counted source

D. A fitting procedure algorithm

As discussed earlier, the approach used allows us to i
grate the models explicitly, given observational data. As
first step, we rearrange the model equations. We comb
Eqs.~45! evaluated atv5vo with Eq. ~54! and usec(0,vo)
51 to obtain

c8~r ,vo!

c3~r ,vo!
54p~11z!2~r ,vo!r~r ,vo!, ~58!

which integrates to

c~r ,vo!5
1

A128pE ~11z!2~r ,vo!rr~r ,vo!dr

.

~59!

Integrating Eq.~45! for m(r ,vo) gives

m~r ,vo!5
1

2c~r ,vo!
S E @c8~r ,vo!

14prr~r ,vo!c~r ,vo!#rdr D , ~60!

where we also usedm(0,vo)50. Now, the observations pro
vided as polynomial functionsr(z) and r (z) fitted to the
data can be used to integrate explicitly form(r ,v) and
c(r ,v). The steps for the fitting algorithm are as follows.

Express cosmological data as polynomial functions
two quantities.~i! The energy-densityr(r ,vo) from galaxy
7-6
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PERFECT FLUID MODELS IN NONCOMOVING . . . PHYSICAL REVIEW D69, 124027 ~2004!
number counts. Many projects are accumulating very la
amounts of data. See, for example,@38# for the Sloan Digital
Sky Survey.~ii ! The observer area distancer (z,vo) from
‘‘standard candles’’ projects in which it is possible to me
sure the redshift and the distance independently. The a
mulating data from the supernovae cosmology projects
very promising. See, for example,@39# for the High-Z SN
Search project,@40# for the Supernova Cosmology Projec
and @41# for the Supernova Acceleration Probe project.

Invert the functionr (z,vo) to obtainz(r ,vo).
This can in turn be used to write the energy-density po

nomial function asr„z(r ,vo),vo….
Now, with z(r ,vo) andr(r ,vo) expressed as functions o

r ~and notz), integrate Eq.~59! over r to obtainc(r ,vo) on
the light cone.

With c(r ,vo) determined, integrate Eq.~60! over r to ob-
tain m(r ,vo) on the light cone.

Finally, with c(r ,vo) and m(r ,vo) determined, use Eqs
~43! and ~44! to integrate overv.

The level of difficulty of this last step can be monitore
using the analytical forms used forr(z) and r (z) and it
remains a tractable problem, while integrating the null g
desic equation in the standard 113 form of the LTB models
is not tractable~see, e.g.,@18#!, and one has to have recour
to numerical integrations@42#. Moreover, the fitting proce-
dure has the interesting feature of incorporating the obse
tions in the process of integrating explicitly for the metr
functions.

It is worth mentioning that in principle the information o
our light cone cannot determine its future evolution unique
We need to make the reasonable assumption that there
be no future events in the cosmic evolution that will inva
date the entire data obtained from our light cone~see, e.g.,
@43#!. Furthermore, one must keep in mind the usual limi
tion of the underlying models used here as they are sph
cally symmetric around our world-line and more general
homogeneous models should be considered in future stu
of fitting procedures.

VII. SUMMARY

We expressed inhomogeneous cosmological model
null spherical noncomoving coordinates using the Bo
spherical metric. A known difficulty in using inhomogeneo
models is that the null geodesic equation is not integrabl
general. Our choice of null coordinates solves the radial n
geodesic by construction. We identified the general mean
of the metric functionc(r ,v) to be the reciprocal of the
optical expansion. We used an approach where the velo
field is uniquely calculated from the metric rather than put
by hand. Conveniently, this allowed us to explore models
a noncomoving frame of reference. In this frame, we fi
that the velocity field has shear, acceleration, and expan
rate in general. In this set of coordinates, we showed th
comoving frame is not compatible with expanding perfe
fluid models and dust models are simply not possible in
frame. We then described perfect fluid and dust models
noncomoving frame. The framework developed allows o
to outline a fitting procedure where observational data can
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used directly to integrate explicitly for the models.
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APPENDIX A: NULL GEODESIC EQUATION

The paths of light rays are described by null geode
trajectories under the eikonal assumption@26#. The geodesic
trajectories are determined by solving the null geode
equation

ka;bkb50, ~A1!

whereka is a null vector (kaka50) tangent to the null geo
desics,ka5dxa/dl wherel is an affine parameter. For th
Bondi metric ~10!, the four equations~A1! are all satisfied
for v5const.

APPENDIX B: EXPRESSIONS FOR Gb
a COMPONENTS

The expressions for the components of the mixed Eins
tensor are as follows:

Gr
r5

2c8

cr S 12
2m

r D2
2m8

r 2
, ~B1!

Gr
v5

2c8~r ,v !

c2r
, ~B2!

Gv
r 5

2m•

r 2
, ~B3!

Gv
v52

2m8

r 2
, ~B4!

Gu
u5Gf

f5
c8

cr S 123m81
m

r
2

c•r

c2 D 1
c9

c S 12
2m

r D2
m9

r

1
c•8

c2
, ~B5!

where the bold dot indicates]/]v and the prime]/]r , c
[c(r ,v), andm[m(r ,v). We note that these componen
are related by

Gr
r2Gv

v5Gr
vc~r ,v !S 12

2m~r ,v !

r D . ~B6!
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APPENDIX C: THE WEYL TENSOR AND THE
CONDITION FOR CONFORMAL FLATNESS

The structure of the Weyl tensorCabgd50 is usually ex-
plored to derive the conformally flat case of a cosmologi
solution ~i.e., Cabgd50). This can reveal the limits of the
model’s parameters for which it reduces to a Lemaıˆtre-
Friedmann-Robertson-Walker model. The nonvanish
components of the mixed Weyl tensor for the metric~10! are
related and given by

Crv
rv5Cuf

uf52Cru
ru52Crf

rf

52Cvu
vu52Cvf

vf5W~r ,v !,
~C1!
d

.P

s

um

um

um

.R

d

12402
l

g

where

W~r ,v ![
1

c3r 3 Fc3r S m9r 24m81
6m

r D2c2c9r 3S 12
2m

r D
1c2c8r 2S 113m82

5m

r D1c•c8r 32c•8cr3G .
~C2!

The condition for conformal flatness of the models is the
fore W(r ,v)50.
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