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Starting from the recent classification of quotients of Freund-Rubin backgrounds in string theory of the type
AdS, ;X S by one-parameter subgroups of isometries, we investigate the physical interpretation of the asso-
ciated quotients by discrete cyclic subgroups. We establish which quotients have well-behaved causal struc-
tures, and of those containing closed timelike curves, which have interpretations as black holes. We explain the
relation to previous investigations of quotients of asymptotically flat spacetimes and plane waves, of black
holes in AdS spacetimes, and of @-type universes.
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I. INTRODUCTION AND MOTIVATION In this paper, we will study discrete cyclic quotients of
anti—de Sitter(AdS) backgrounds in gravity and in string
Taking quotients of smootlisupejgravity backgrounds theory. Because of its high degree of symmetry, the story for
has long been a fundamental tool in string theory, both in thenti—de Sitter space is particularly interesting, and there is
context of Kaluza-Klein reduction, in which one quotients by already a rich literature on physically interesting locally
the action of a continuous group, and in the orbifold contextanti—de Sitter spacetimes, with much of the discussion hav-
in which the group is discrete. Riemannian singular quotientsng focused on the Bamos-Teitelboim-ZaneliBTZ) black
(orbifolds) provide exact string theory backgrounds which hole solutions[36,37 and their generalizationf38—4Q.
allow us to understand how string theory resolves certaitHowever, some examples of smooth quotients are also
types of timelike singularities. These techniques are also reknown [41—-43.2 Given the considerable interest of AdS
evant in the Kaluza-Klein context: an early nontrivial ex- backgrounds in string theory, the time seems ripe for a more
ample is the embedding of the Melvin univefdd in string  systematic investigation of these questions.
theory[2,3]. This work naturally suggests studying Lorentz- In a recent pair of papef$4,55 we classified quotients
ian orbifolds, in the hope of reaching a similar understandingf AdS by one-parameter subgroups of isometries. The em-
of certain types of spacelike singularities, in particular thosephasis in[54] being on AdS backgrounds in string theory, it
related to the big bang. Although some progress has beemas necessary to classify quotients of geometries of the form
achieved4-19], the fate(and physicsof these singularities  AdS; ;X S* by one-parameter subgroups of isometries. As
remains a very important area of research in string theorysuch backgrounds are maximally supersymmetric, it was also
Out of this effort we now have a complete list of smooth natural to study the question of how much supersymmetry
quotients of Minkowski spacetime. This classification waswas preserved by the quotient and §#] there is a detailed
given in [20], recovering previous results on fluxbrahes analysis of this question and the related issue of the existence
[21-25 and uncovering the existence of an interesting non-of a spin structure on the quotient.
static smooth quotient—the nullbrane—which can be under- Our purpose in the present paper is to study the geometry
stood as a desingularization of the parabolic orbif88], of the discrete cyclic quotients associated with such one-
the supersymmetric toy model for a big-crunch—big-bangparameter subgroups, paying close attention to their causal
transition singularity, by the introduction of a new scale structure, and to develop a formalism to discuss the geom-
(modulug that smooths the singularity. etry and physical interpretation of all smooth quotients.
Many of the quotients classified [54,55 contain closed
timelike curves and, while there may be some interest in
*Email address: j.m.figueroa@ed.ac.uk studying such quotients, we shall nevertheless concentrate
TEmail address: O.F.Madden@durham.ac.uk our attention on those quotients for which there is a well-
*Email address: S.F.Ross@durham.ac.uk
SEmail address: jsimon@bokchoy.hep.upenn.edu
'Related work on the physics of fluxbranes can be found 2Some other work concerning orbifolds of AdS can be found in
in [26-34. [44-53.
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founded expectation that they will provide good backgroundsncarnations of our backgrounds.
for string propagation. We will therefore focus on and dis- In studying quotients with a black hole interpretation, we
cuss in detail two kinds of quotients that can be given aconfirm and elucidate the conclusion [#8], that for p>2
simple physical interpretation: smooth quotients with a well-the only locally AdS,; black hole solution is the higher-
behaved causal structure, and those which can be givendimensional generalization of the nonrotating BTZ black
black hole interpretation followinf86,37). At the end of this  hole, discussed previously [139,40. We explain the origin
work, we shall briefly comment on the relation betweenOf this restriction in general. We discuss the relation to other
some of our spacetimes having closed causal curves arigcent work and comment on the proper interpretation of
Godel-type universes recently discussed in the literaturénother solution presented i0].
[56—59. The connection arises because certain quotients We begin in Sec. Il by reviewing the classification of
commute with the Penrose limfi60—63. Thus, one can quotients, setting up the notation that will be used in the
identify which discrete quotients of A¢S;x S back- ~remainder of the paper, discussing Killing vectors on the
grounds give rise to compactifigup waves having closed sphere, and determining the conditions under which a dis-
timelike curves after taking the Penrose limit, the latter beingerete cyclic quotient of Ad8 S will admit a spin structure.
T dual to Galel-type universes. Section Il explains the relation between the classification of
We find that there are two types of quotients with well- Killing vectors in AdS and the existence of closed timelike
behaved causal structures. First, there are quotients where 8Hrves in the resulting discrete quotients. In Sec. IV we dis-
action on the AdS alone is well behaved. These are generalguss causally well-behaved quotients, and Sec. V demon-
zations of the two cases studied previously. strates that the only black hole solution is the generalization
(i) Self-dual orbifolds of Ad$ [41,43 and their higher- of the nonrotating BTZ black hole. We finish with a small

dimensional generalizations, having no analogue in asympjigre_ssion on Penrose Iimits.of discrete quotients,.and the
totically flat configurations. relation between Gael-type universes and some quotients of

(i) The AdS ana|ogue of the flat nullbrane ConstructionAdS having closed timelike curves. Some technical details
[42], consisting of a double null rotation action on SQu)2,  are relegated to the Appendixes.
p=4. This is the near horizon geometry of a stack of D3-
branes in the nullbrane vacuum fpr=4 and a stack of M5-
branes in the same vacuum for=6.

We give a comprehensive discussion of the structure of In this section we will briefly review the geometrical
these quotients, extending previous results. For the doublsetup and the results $64,55 in an attempt to make the
null rotation, we construct a new symmetry-adapted coordipresent paper self-contained.
nate system, and find interesting relations to compactified
plane waves. We comment on related issues in the nullbranes
in Appendix B.

Secondly, there are quotients where the norm of the AdS Thedramatis personaef this paper are quotients of AdS
isometry is non-negative, but not always positive, so the pur@ackgrounds, either of anti—de Sitter space AdSitself in
AdS action would have singularities or closed null curves.the context of pure gravity, or of Freund-Rubin backgrounds
These can be removed by a suitable action on the transversé the form Ad$,, ;X S in supergravity and string theory.
sphere if the latter is odd dimensional. This second type is As usual in physics, throughout this paper Ad$ (p
qualitatively new. These nontrivial actions on AdS can be=2) will denote thesimply connecte@nti—de Sitter space.
divided into three categories. In other words, Adg,; (with radius of curvature) is the

(i) Discrete quotients by rotations in AdS, the higher-universal cover of the quadric traced by the equation
dimensional analogues of the AgiSonical defects.

(i) Discrete quotients by a null rotation, whose descrip- .
tion in the Poincareatch corresponds to a spacelike trans- —(xh)2=(x?) 2+ ;3 (X)?=-R?
lation (in pure AdS, these would give rise to the massless
BTZ black hole[37]) and whose sphere deformations are the
near horizon limit of brane configurations in fluxbrane vacuan the pseudo-Euclidean spac&®” with coordinates
classified in[64,65. (x*,x%,... xP"2). The isometry group of the quadric is

(iii ) Discrete quotients defined by an everywhere null vecO(2p), which acts linearly ork?? and preserves the quad-
tor field in AdS, (p=3), whose description in the Poincare fic. This is analogous to the case of the sphetédbradius
patch corresponds to a “translation” along a lightlike direc- of curvatureR), which can be identified with the corre-
tion. Once more, when deformed by a nontrivial action on asponding quadric in the Euclidean spai&! and whose
transverse sphere, this corresponds to the near horizon cougroup of isometries is @(+ 1) acting linearly inR%** and
terpart of the corresponding quotients classifiefiG#,65. preserving the quadric. However, whereas the splfereg

It is important to stress that any of the string theory back->1) is simply connected, the quadf®.1) is not. Indeed, its
grounds discussed in this paper are related to many othefgsndamental group i if p>2 andZ®Z if p=2. This
throughU duality and by Kaluza-Klein reductions from or means that, although the isometry group of the qua@:it
liftings to M theory. We shall not pursue this possibility in is O(2p), that of AdS , ; is a nontrivial central extension by
this paper, even though it is natural to wonder about the dual or Z& 7.

II. CONVENTIONS AND BACKGROUND MATERIAL

A. Anti —de Sitter isometries

p+2
(2.1
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In string theory, Freund-Rubin backgrounds of the form
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TABLE |. The elementary blocks as two-forms.

AdS, . ;X S* are not fully specified by the geometry alone,

but require in addition specifying fluxes, which in these  Block

Two-form

backgrounds coincide with the volume forms of the relevant BO2)(¢)
factors. In other words, both factors come with orientation. B1LY(g)
This means that the symmetries of a Freund-Rubin back—B(z,o)( )
ground are the orientation-preserving isometries of the un- 512 ¢
derlying geometries. For 9Sthis is the Lie group SQf

21
+1), whereas for Ad$, ; it is the infinite cover of SO(3) B(Z’z)
obtained by centrally extending this group by the fundamen- B(tz 2
tal group of the quadric, as explained[B¥, Sec. 5.1.2 We B ’2)(5)

P34

Beis

¢€p

€137~ €34

€12 €3

Tepte+ey ey

T et ei3+ B34t BE1sT €29

T et et e~ eyt e( et ey)

- e
will denote this group by SO(R). Annoyingly, it cannot be Bizz("o) _
embedded in a matrix group; that is, it does not admit any %2:3;('3"") P(* €1z €30) T B(C1aT €29)
finite-dimensional faithful linear representations. Crucially, B(z’ N 912_6241913_63”915:645
however, SO() has two features in common with its quo- BX (e G5~ Cast G Cut ¢ iot Erat )
tient SO(2p). First of all, they share the same Lie algebra
so(2,p) and furthermore, since conjugation by central ele-ggcjare collinear elements as equivalent.
ments is trivial, the adjoint action of SO, on so(2,p) Therefore to classify conjugacy classes of one-parameter
factors through SO(R). Similarly, the action of the spin subgroups of isometries of Ags, for p=2 it is equivalent
cover Spin(2) of SO(2p) on the spinor representations to classify equivalence classes of elemefitsso(2,p) under
factors through Spin(B). These happy facts allow a com- 1 »
plete analysis of one-parameter subgroups and also the de- X ~t9Xg " whereteR” and geSQ2p). (2.2)
termination of the supersymmetry preserved by a quotient.

Such a classification was established 54,55 and we re-
view it now.

Every Beso(2,p) defines a skew-symmetric endomor-
phism of R>P, which we also denote bB. Associated with
each such endomorphism there is an orthogonal decomposi-
tion

B. One-parameter subgroups of isometries of Ads;

By definition, a one-parameter subgrolipf a Lie group
G is the image under the exponential map of a one
dimensional subspace of its Lie algelgraln other wordsI’
consists of group elements of the form eX)( wheret e R
andX e g. The topology ofl" is eitherR or St, depending on
whether or not expX) is the identity element i for some
nonzerot. If 27T>0 is the smallest such then the expo-
nential map defines a diffeomorphism of the cirBR#TZ
with T, otherwise it defines a diffeomorphism Bfwith T".

Every one-parameter subgrolii_G gives rise to an in-
finite family (indexed by the subgroup itsglbf discrete cy-
clic subgroupd’, generated by an elemente I'. If y has
infinite order, thenl’ , =7, whereas if the order i8I, then
I’ ,=7y. All infinite cyclic subgroups ofG in the image of
the exponential majre obtained in this way. In the cases
whenI'=S!, we will restrict our attention to elements of
finite order. Quotienting a manifol¥ on which G acts by
the action ofl", consists in identifying points d¥l which are
related by the action ofy. Since y=exp{X) for some X
e g and somef >0, quotienting byl", consists in identify-
ing points inM that are related by flowing along the integral
curve of the Killing vectoréy corresponding tX for a time
€.

As explained, for example, if20], if I' andI"’ are con-
jugate subgroups of isometries of a spaethen their quo-
tientsM/T" andM/I"’ are isometric, the isometry being in-
duced from the isometry d¥1 which conjugated” into I'’.
Therefore, to classify such quotiertt$/I", it is enough to .| .
classify subgroups up to conjugation. For one-parameter sufi 9iven by
groups this corresponds to classifying adjoint orbits in the
Lie algebrag. Furthermore, by reparametrizing the subgroup
if needed, one can further projectivize the Lie algebra and

Rz’p:\Tl@ e @\Tk

into nondecomposable nondegenerate subspaces stabilized
by B; that is, for each, B(V;)CYV;, the inner product re-
stricts nondegenerately to eath, and the restrictiom3; of

B to V; does not decompose further into nondegenerate
blocks. Conversely, out of suelementary blocks Bone can
build the original endomorphisiB. In this way, the original
problem is essentially mapped into the classification of nor-
mal forms of skew-symmetric endomorphismsif" with
m=<2 andn<p up to conjugation by isometries. The latter
are listed in Table I, where we found it convenient to identify
the endomorphism with the corresponding bilinear form, and
to write these in terms of the usual basis=¢/\g for
A?R?P consisting of wedge products of the elements of the
ordered framed), wheree;,e, denote the two timelike di-
rections, the remaining ones being spacelike. The superscript
(m,n) on the elementary blocks specifies the subspté

that they act on. The Killing vector ift?? associated with

the two-form

1 .
X=5 % Bg; € A2R*P=50(2,p)

1 o -
gxzi IE] BII(XiO”j_XJ(?i):iEJ XIBi](Qj .
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It is clearly tangent to the quadric and it lifts to a Killing TABLE II. The elementary blocks and their norms.
vector field on Ad$g,; which we also denotéy .

Let us briefly discuss the interpretation of each of these Block Norm
elementary blocks to help the reader get used to our notation.g02) ;) P2(32+x2)
We shall denote boost parameters ®yand rotation param- B(L(B) BARZ+|x, |2 x3)
eters bye. There are three inequivalent two-dimensional g(1.2) (X +%,)?
elementary blocks: a spacelike rotati@®?(¢), a boost  pgoy) — G2(R2+[x,?)
BAD(B), and a timelike rotatioB?%(¢). In three dimen- gy — (%, x3)2 .
sions, normal forms either reduce to the previous ones org22 0
preserve null directions. Since we work in a nhon-Lorentzian B@,Z)(B) B2RZ+ |, [2) +4B(xy+Xa) (Xa: Xo)
signature, we must distilnzguish among two different null ro- g2 — Q2(R2+||x, D) + 20((Xq+ X4) 2+ (X3 £ X,)?)
tations: a null rotatior8!*? involving two spacelike direc- g2 5 ) (82— ) (R+ X, |2) — 4 Bo(XyXs+ XoXa)
tions and a null rotatioB?%) involving two timelike direc- g3 (Xa—X0) 2= 4 (X X3)X
tions. There are four types of nontrivial2fzt))ur—dimensional B24( o) _;Z(Rlz_,’_”XLHZZ)+(§(1§X3)2+(X4:X2)2
elementary blocks: a linear combinati®?? of timelike — 4¢[ (X4 T X2) X5+ (X1~ X3) X6

and spacelike null rotations, a deformatiBff"?(B) of the
latter by the addition of a linear combination of boosts, a

different deformationB®>?(¢) involving the addition of a we could employ to narrow our choice of quotients. For ex-

timelike rotation and a spacelike rotation, and finally a linearample, we could focus on supersymmetric quotients, every-
combinationB{>?(, ¢) of two actions involving a timelike ~Where spacelike and nonsingular quotients, etc. Our primary
and spacelike rotation with parameter(up to sign$ on one criterion will be that a quotient should have a well-behaved

side and a linear combination of boosts on the other sidecausal structure: our subsequent discussion will focus on
There is only one five-dimensional elementary bl&%?, those discrete quotients that either are free of closed timelike
which can be interpreted as the linear combination of a timecurves, or in which the closed timelike curves are “expunge-

like null rotation and two spacelike null rotations sharing theable,” in the sense that a spacetime free of closed timelike
time direction and one of the spacelike directions. The las€urves can be obtained by quotienting only part of AdS, and
elementary blockB?%(¢) appears in six dimensions, and it that the boundary so introduced lies behind a horizon. In the
consists of a double spacelike null rotation acting on orlatter case, the resulting causally well-behaved singular
thogonal subspaces, deformed by a simultaneous rotation fPacetime is interpreted as an analogue of a black hole, fol-

the plane formed by the two timelike directions and two!oWwing [36,37. _ _ _ _
orthogonal spacelike planes. The causal properties of the quotient are determined pri-

Let us remark the appearance of pairs of elementarﬁnar”y by the norm of the Killing vector field generating it. It

blocks B(im,n), with or without parameter, in the classifica- Is therefore important to study the norm of the Killing vec-

tion in Table I. It can be checked that one element of the paifors associated with the two-forms listed in Table I. These are

is always mapped into the other by an orientation-reversin ven in T_aple Il, where Fhe following notation is\p Se‘;'-pWe
transformation. Therefore, no classification based on th&/ft€ explicitly the coordinates; of the subspacelC k

isometry group O(2) can distinguish between these ob- on which the elementary blocks act nontrivially and wxte

jects. Analogously, orientation-reversing transformations acf! the coordinates of the perpendicular subspéce The
norm is defined on the quadri2.1), but can be pulled back

nontrivially on the parametersgB(¢) in those elementary . . ) )
blocks which do not come in pairs, allowing us to restrictf0 functions on AdS which are invariant under the deck

transformations generated by the fundamental group of the

their range. In this section, we shall follow the SQ{2¢las- dri
sification (unless otherwise statgcut in the rest of the pa- duadric. . b .
per, when discussing the geometrical interpretation of the W& can see from Table Il that some Killing vectors are

different discrete quotients, we shall omit these distinctionstimelike in some regions of AdS, leading to closed timelike

This is because the metric in AgS, is invariant under curves in the associated discrete quotients. Indeed, we see
orientation-reversing transformations; therefore the at for B*%(¢), BY(B), BV, BEA(8), BEA(B.¢),
. . ’ ge_ometgg‘(z 3) Rr(24) (2,2) . ‘e
itself will not change among the members of the pair. TheB' =, BX"(¢), andBZ"“(¢<0), the norm is not bounded
distinction will arise in the signs of the fluxes that stabilize below. ForB??(¢>0), the norm can be negative, but is
the classical configurations: the members of a pair will havébounded from below; whereas f@&°2(¢) and B*? and
opposite sign fluxes. This fact can certainly have conseB(f'z), the norm is always non-negative.
guences concerning the supersymmetry preserved by the The Killing vector¢ which generates the quotient will be
members of the pair. the sum of such elementary blocks and its norm on AdS will
The small number of elementary blocks notwithstanding,nfluence the causal structure of the quotient. We therefore
the taxonomy of inequivalent discrete quotients increasesonsider the possible endomorphisms in the signatuig) (2,
quickly with dimension due to the possibility of combining that can be constructed from elementary blocks acting in
the action of different blocks acting in orthogonal subspacesrthogonal subspaces. In Tables Ill, 1V, and V we classify
of R?P. Lack of spacetime prevents us from discussing allthem in terms of the norms of the associated Killing vectors
possible quotients in detail. There are several criteria whichin AdS. It should be stressed that even though we used the

124026-4



QUOTIENTS OF Adg, ;X S% CAUSALLY ... PHYSICAL REVIEW D 69, 124026 (2004

TABLE Ill. Killing vectors with everywhere non-negative norm. TABLE V. Killing vectors with norm unbounded below.
Endomorphism Endomorphism
@;B2(¢)) BY(By) @ BUD(B,) @B (¢;) unless| By =|B5|>0
BUY(By) @ BUY(Bo) @B (¢y) if | Bef=[B2|>0 B:2e BAY(B) @B ¢;)
B12g,;B(02(¢)) B2O(¢)®,B%(¢;) unlessp is even and ¢j|=|¢| for all i
B 2o BH2e B2 ¢;) B@VeBO)(¢;)
B?a,B()(¢;) BZ2(B) @B (¢))

BZ(¢)®,B(?(¢;) unless|¢i|=¢>0 for all i
BE2(B,¢) @B ¢;)

notation adapted to an SOf3, classification, we have not  B?3Je,B02(¢))

constrained the range of the different parameters appearing B?%(¢)®;B®?(¢,)

in these endomorphisms. For a complete discussion concern
ing these constraints, we refer the readef34).

The quotients generated by the Killing vectors in Table V  The conjugacy theorem for Cartan subalgebrasogf
clearly contain closed timelike curves corresponding to thet 1) allows us to bring any Killing vectoés on S to the
very orbits of the Killing vector in regions where it is time- form
like. Furthermore, even when we consider quotients of
AdS; . ;X S by adding a nontrivial action on the sphere, the ’
resulting Killing vector will still be timelike somewhere, so fs:; OiRzi-12, (2.9
the quotients will still have closed timelike curves. Therefore
the only way in which these quotients will enter into our _
discussion is in asking whether any of them lead to “blackWherer [+ 1)/

2|, R;; stands for a rotation in thi¢ plane,
. . ) . ) and theg; are real parameters specifying the rotation angles.
hole” spacetimes. We shall discuss this issue in Sec. V. This still leaves the freedom to conjugate by the Weyl group,

The quotients generated b_y th_e Killing Vectors in Taple IV\vhich we can fix by arranging the parameters in such a way
also clearly contain closed timelike curves. This time, how-

ever, the Killing vector can be made everywhere spacelike
by adding a suitable action on an odd-dimensional sphere. 0,=0,=---=0,].
However, we will show in the next section that this is not 1=re '

sufficient to ensure the absence of closed timelike curvesz,; odqd-dimensional spheres, Killing vectors with k0
Th(_arefore the 9“0“_‘”“5 of A,g$1xsq associated with the are everywhere nonvanishing, whereas in even-dimensional
Killing vectors in this table will not lead to causally regular spheres every vector field, Killing or not, has a zero.

quotients either. In summary, the only quotients we will con- = ¢ i pe convenient in what follows to construct a coor-
sider in Sec. IV, where we discuss causally nonsingular quogiate system for Sadapted to a given Killing vectogs:

tients, are those in Table III. that is, one in whichés=4,,. Let us describe in detail the
case of even-dimensional spheres. First, rewrite(E®) as

C. Infinitesimal isometries of spheres

r
Here we set up the notation to describe the Killing vectors > |z + (X1 1)2=R2, (2.5
on spheres. For this purpose, we find it convenient to identify i=1

the g-sphere of radiu®k with the quadric traced by

in which we introducer complex coordinates for the two-
P planes where the action ¢2.4) may be nontrivial. A natural
i:El Xi=R (23 way to solve Eq(2.5) is by

q+1l

Xor+1=RC0S#,
in R9*1, This has the virtue that the isometry group of the
quadric, O@+1), acts linearly in the ambient Euclidean ;
space. As we did for Ads3 ;, we shall restrict this group to —Rsingp e ¢ here 2_q 26
the subgroup S@(+ 1) which preserves the orientation. % Nopi W ;1 P 29

TABLE IV. Killing vectors allowing negative norm but bounded It is clear that in coordinate§t, p; , ¢;}
below.

.
Endomorphism és= 21 69y,

B2O(p)® B¢, if pis even and¢;|=¢>0 for all i
B2(p)@;B(¢,) if |@i|=]¢|=0 for alli whence by a linear transformation in the spéggl we can
rewrite {s asd,,. Indeed, assumé, #0, and consider

124026-5
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b= 91—1901, we fare much better. Indeed, for this geometry the criterion
for the existence of a spin structure MvVIT" translates into a

~ 1 ] simple calculation in a Clifford algebra.

ei=¢i—0i6; @1, 1=2,...7T. (2.7) For simplicity we will consider discrete cyclic groups

generated by an elementin the image of the exponential

map expg— G between the Lie algebra and Lie group of

(orientation-preservingisometries ofM; that is,

By construction ¢s becomesy,, .
The case of odd-dimensional spheres follows formally
from the above by setting= 7/2 in the above expressions.
y=exp{X)
D. Spin structures and supersymmetry )
A supergravity background must admit a spin structure ©F S0meX e g and somef >0. Thenl" acts on theunique
pin bundle on AdS, ; X S if and only if ' embeds isomor-

since the fermionic fields, although set to zero in a classic%I . : / :
background, and the supersymmetry parameters are sectio E'Ca”y in - Spin(2p) xz,Spin@+1)cCE(2p+q+1).

of (possibly twistedl spinor bundles. This is not necessarily SiNcel” is generated byy, this is a simple criterion: does
the case in string or M theory as the phenomenon of “superthere exist

symmetry without supersymmetry” illustrat66—68§. This ~ ) ,

has recently been discussed @9] and in the present context y€Spin2,p)x,,Spinq+1)CCt(2p+q+1)

of quotients in[54]. We will add nothing to this discussion o )

here. Indeed, as i54], we will adopt a conservative point of Which lifts y and which has the same order?

view and require the underlying spacetime of a supergravity The elementy has two possible liftst y. If y has infinite
background to be spin and will consider only supersymmeorder, so thal’=Z, then so does, and thus it also gener-

tries that are realized geometrically as Killing spinors. ates a groufi'=7 which therefore coverE isomorphically.
A natural question in this context is then the following. Therefore. ifl'=7, the quotient

Let (M,qg,...) be asupergravity background withM,g) a

Lorentzian spin manifold anfl a discrete(cyclic) group of (AdS, X S)/T

orientation-preserving isometries acting freely and properly

discontinuously orM (so that the quotien¥1/T" is smooth.  is spin.

When will M/T" be spin? Furthermore, ifM,g,...) is a Now suppose thay has finite ordeN. Then all we know

supersymmetric background, how much supersymmetry is that (+7)N covers the identity, whence

any at al) will the quotient preserve? These questions were

answered if54] for the case oI a one-parameter group: in (=y)N==1,

principle for an arbitrary background, and explicitly for

Freund-Rubin backgrounds of the form AdS X A, and the question is whether there exists a choice of lift such
If I" is a one-parameter group of isometriggence auto- that (i})N:ﬂ_

matically orientation preservingacting freely on a spin Clearly, if N is odd, then either"i)’\‘=}1 or (_',;/)N:L

manifold M with smooth quotienM/I", thenM/I" is spin if  \yhence ifC=7y, N odd, the quotient is spin.

and only if the action of" on the bundiePs(M) of oriented The only possible obstruction arises whidris even. In

orthonormal frames lifts to an action on 'the'spm bundlethis case the choice of lift is immaterial, and eithéf=1 or
Pspi(M) in such a way that the natural surjection

YN=—1, and one needs to do a calculation to settle this
0:Pgpid M) —Psd M) issue.
This obstruction arises only §=exp(X) for €>0 and
is " equivariant. In this case, the spin bunélg,{M/I") on
the quotient is given by X=g@ieyt -+ o€ a2t 01Rp+ - - +O0sRos1

Pspid M/T) :=Pgpi{ M)/T. where r:[(p—l)/ZJ_ and s=[(q+ 1)/2]. Let y=exp{X).
Theny has ordem if and only if
Indeed, equivariance guarantees that this bundle covers
27Tni 2’7ij
Psg(M/T):=Pgo(M)/T toi=—— and €0;=—g—.

twice and agrees fiberwise with the spin cover of the speciayheren, ,m; are integers with
orthogonal group.

The same is true fof a discrete group acting freely and gednyg,...,n,,mqy,... mg)=1.
properly discontinuously on a spin manifditl For a general
spin manifoldM, it is not easy to determine when the action This last condition ensures that the ordenois preciselyN
of I on Pso(M) lifts equivariantly to the spin bundle; how- and not a smaller divisor. Leg; andI'; be the gamma ma-
ever, as explained if64], for backgrounds of the form trices for &(2,p) and @ (q+1), respectively, embedded in

M=AdS,, ;X S Cl(2p+q+1)=Ct(2p)®CE(q+1),
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where® denotes th&,-graded tensor product. Then the two

lifts of y in
Spir(2,p)><ZZSpir(q+ 1)cCl(2p+q+1)

are given by=7, where

~ Coq Loy Co
v= ]cosT+ YaSin—=] - chosT
+ 72r+1,2r+25|n7r) ( leos—-
€0, b5 L0
+F123|n7 110057+Fzs—1,255m7 ,
whence
~ N¢ N¢ N¢
yN=|1cos 2('Dl+y34sin Zgol)u-(lcos 2<Pr
+Yar+12428IN—— || lcos—;
. N¢€o, N€ 6 - N€og
+1I'458in 5| }lcosTﬁLFZs_l,gssm 5

Using now thatN¢ ¢;=27n; andN¢ 6;=27m;, this evalu-
ates to

;/NZ(—l)”l*'”*nr*ml*“'*ms]]_

Therefore we conclude that whéh=7y, N even, the quo-
tient is spin if and only if

r S
2 ni+2 m; iseven.
i=1 =1

Ill. CAUSAL PROPERTIES OF AdS ,;; QUOTIENTS
AND THEIR DEFORMATIONS

In Sec.
parameter subgroups of isometries of Ad& We divided

B we reviewed the classification of one-

PHYSICAL REVIEW D 69, 124026 (2004

In this section, we will explain in detail the connection
between this classification and the appearance of closed
timelike curves in quotients involving these Killing vectors.

If we were just considering quotients of AdS, of course,
the connection would be immediate. Indeed, the quotient
consists in identifying points which are obtained by flowing
along the integral curves @faqs for some time€>0. Let
éads be timelike in a nonempty regioD CAdS,; and let
xeD. Since the norm of,ys is constant along its integral
curves, the integral curve passing througls timelike and
hence lies irD. Therefore the poiny- x is also inD and the
segment of the integral curve frorto y-x becomes, in the
quotient, a closed timelike curve. A similar argument shows
that the quotient has closed null curves in the region of
AdS/T" whereépags is null.

The situation for quotients of Ag$ ;xS is similar. In-
deed, the same argument as for quotients of AdS shows that
if £=&agst &g 1S not everywhere spacelike, then any associ-
ated discrete cyclic quotient will have closed causal curves.

How about if ¢ is everywhere spacelike? The property of
being spacelike everywhere is a necessary condition for the
absence of closed causal curves, but it is certainly not suffi-
cient (see[70] for another example where it fails to be suf-
ficient and a statement of a sufficient condition, §ntl] for
a discussion on this topic and its relationUWoduality). In-
deed, we will show presently that even whers everywhere
spacelike, iféags is timelike in some regiorD CAdS;, 4,
then any discrete cyclic quotient associated with &aqs
+ &5 will have closed timelike curves in the regio (

X SN/T of the quotient. The key point in the argument is to
exploit the fact that the sphere has a bounded diameter in
order to construct a timelike curve between two points iden-
tified by the action ofl” which, as in[70], is different from

the integral curve of.

Let us first illustrate this construction with a simple ex-
ample, which is depicted in Fig. 1. L&= (R/27Z) XR de-
note a Lorentzian cylinder coordinatized by, ) and flat
metric d¢?—d72. Let £&=d,+ad, be a spacelike Killing
vector, so that®< 1. The integral curve of through a point
(69,79) Is the curve

t—(0g+t, 7o+ at).

these into three different subsets according to whether the

norm of the associated Killing vector field is non-negativelLet us define an action &f on C, generated by the operation
(Table lIl); the norm can take negative values, but isof flowing along the integral curves @f for a time¢>0:
bounded belowTable 1V); or the norm can take arbitrarily
negative valuegTable V). As explained above, this distinc-
tion is important in the context of Freund-Rubin back-
grounds of the form Ads ;X S, since the spherical com- Consider the two points;7) and (6+N¢, 7+ aN¢), which

ponent of the Killing vector can in some cases render itsyre identified in the quotier/Z. The geodesic joining this
norm positive everywhere. Indeed, odd-dimensional spheresoint to (¢, 7) is the straight line

admit Killing vectors whose norm is pinched away from
zero, whence the total Killing vector

= + 3.1
= EnastLs 33 where[ - - -] denotes the residue modular2 The norm of
may be spacelike even §4s is not. This can happen only if the velocity of this curve is therefore
the norm ofé,gys is bounded below, since the norm &f is
bounded above by compactness 8f S

(6,7)—=(0+¢€,7+af).

t>([0+tNC], 7+ aNE),

[N€]?— N2a20?°<4m?—N?a?(?,
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FIG. 1. Closed timelike curve in a discrete
quotient of the Lorentzian cylinder. The dotted
lines represent the “light cones” ax and at
yN-x. Notice that, although the orbit of is
spacelike, the straight line betwermnd yN- x is
timelike.

which is clearly negative foN large enough. This curve is
therefore a closed timelike curve in the quoti€ifZ.

Now let us go back to the general case. hetexp({X)
for someX e g and€¢>0, and leté= & 45t €5 be the Killing
vector corresponding t&, with £545 timelike in some non-
empty regionD CAdS, . ;. Let xe DX S Since the norms
of each component,ys and &g are separately conserved
along the integral curves df, these belong t® X $°, and
hence so doeg- x. For those Killing vectors with AdS com-
ponent in Table 1V, the associated discrete cyclic grolips
have infinite order, so we can consider poxend yN- x for
N arbitrarily large, which will give rise to the same point in
the quotient. We will construct a curve

C:[ONC]—AdS, ;X S

between c(0)=x=(Xags,Xs) and  c(N€)=N.x
=((YN-X) ags» (¥N-x) o) which will be timelike for N suffi-

T

By the Bonnet-Myers theoreltsee, e.g.[72, Sec. 9.3 if N
is complete, then it has bounded diameter.

This leaves the cases in Table Ill, where the AdS Killing
vector is nowhere timelike. It is clear that the above argu-
ment for closed timelike curves fails in this case. One should
note that this still does not directly imply the absence of
closed timelike curves; however, we will see in the next sec-
tion that there are in fact no closed timelike curves in any of
these cases.

We should also note that in the cases where the Killing
vector is null somewhere, namelypB°?(¢;), B*?
®B©(¢,), and B??®,B(%?(¢;), we can use a similar
argument to see thabmequotients of Ad§, ;X S still pro-
duce closed causal curves. The point is that if we chdose
such that expXg) e SO(Q+ 1) has ordemN, thenx and x’
=yN.x can be null separated, a§=xg, and the separation
in the AdS factor is null if|é4qd|=0 atx. Physically, this
corresponds to deforming by a rotation with rational angles

ciently large and hence becomes a closed timelike curve ign &,

the quotient.

The curvec is uniquely specified by its two components:
Cads ON AdS,;; andcg on S'. We will take cpgs to be the
integral curve ofépys, andcg to be a minimum-length geo-
desic betweemg and (yN-x)s. Let L denote the diameter of

Clearly, however, deformations for whichg does not
have finite order do exist, and will not lead to closed causal
curves by any of our arguments above. Hence, we should
discuss all the cases listed in Table IIl in the next section, as
they can all give rise to causally nonsingular quotients.

the sphere; that is, the supremum of the geodesic distances

between any two points. Then the arclength aloggatisfies
NC . .
fo ledidt=Ne|ed <L,

where the equality is becau$eg| is constant alongs and
the inequality is becausg; is length minimizing. Therefore,

2

lel?=llcaqsl®+ el <l £nadl *+ NS

which is negative irD x S for N large enough.

IV. CAUSALLY NONSINGULAR QUOTIENTS

In this section, we shall discuss in detail the geometry of
the discrete quotients that are free of closed causal curves.
These are based on the two-forms listed in Table Ill, conve-
niently deformed when necessary by some nontrivial action
on an odd sphere leaving no invariant directions, so that the
full Killing vector field (3.1) is spacelike everywhere.

Before initiating such a task, we would like to comment
on the general philosophy that we shall apply in each of the
particular geometries to be discussed. Just by inspection of
Table 11, we know that, given any two-form in that list, we
can study the geometry of the corresponding discrete quo-

Let us remark that this argument applies to any Freundtient in different dimensional AdS spacetimes, starting with

Rubin background of the form Ad$SN, or more generally

the minimal fi,m) signature in the embedding spagé ™

M X N, with M Lorentzian admitting such isometries, at leastthat allows the action of the corresponding decomposable
when N is complete. Indeed, the supergravity equations oblock. In addition to that, we can also study further deforma-

motion forceN to be Einstein with positive scalar curvature.

tions on the sphere sector of the discrete quotient. It is there-
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fore natural to start our analysis in the lowest-dimensionabpart from thelk X S"~* submanifold where cog=0, which

AdS, ;XS spacetime allowing our causally nonsingularis conformally rescaled to become the boundary of the

quotients, and afterward, extend such an analysis to highexds, , ; factor in Eq.(4.3).

dimensions. If there is a globally adapted coordinate system for the
This latter extension is entirely straightforward. Indeed,action of £,45 0n AdS,. ;, we can use the above foliation to

given some adapted coordinate system describing the actigfbnstruct an adapted coordinate system for the action on

of £ags in AdS; . 4, it is very simple to construct an adapted AdS, . ;. If we deform the action bB(®?(¢;) blocks, these

coordinate system describing the action of the same Killingyill act as rotations of the "1 factor in the above folia-
vector field in Ad$; with p>n. This is just obtained by tjon.

considering the standard AglS, foliation of AdS;,.; given When we consider the deformation of our AdS quotient
in terms of the embedding coordinates’by by some nontrivial action on the transverse sphere, we have
, N two approaches to the construction of an overall adapted co-
x'=coshyx', i=1,...n+2, ordinate such that the total Killing vectd=d, for some
. coordinatee. In most of the cases we considathere is a
xM=sinhxx™, m=1,...p—n, (4. globally well-defined adapted coordinate on Ad$ such

N that £a4gs= 9, .- As noted in Sec. Il C, there is always a glo-
wherey is noncompact an¢ix'} satisfy the quadric defining bally adapted coordinate system for the Killing vectors in the
relation giving rise to Adg, 1, whereas{%m} parametrize an sphere, in whichés acts by a simple “translation,” i.e.és
SP~"~1 sphere of unit radius. Fgge=n+1, the range ok is  =4J,. Consequently, the full generator of the discrete quo-
given by —w<y<+, whereas fop—n=2, it is simply  tientis
given by xy=0. The metric description of AdS, in the
AdS, . ; foliation defined in Eq(4.1) is §=04tydy. (4.6)

By a linear transformationp= ¢, ' = y— yp, we are able
to write §=4d,,. This coordinate system is very convenient
for studying the causal structure and asymptotic structure of

ing description of the asymptotic boundary. If we assyme Mostly employ. _
—n=2, taking the limity— and conformally rescaling by Unfortunately, there are examples where there is no such

a factor ofe~2X, we can describe the asymptotic boundary inglobally adapted coordinate system on AdS. The example of

Yads, ;= (coshx)?gags, , , * (dx)*+(sinhx)*ger-n-1.
4.2

terms of an AdS. ;X "~ metric? this type we shall be concerned with is the quotient by a
Killing vector with a singleB®? block. In this case, we
9s=Jads,,,+ Gsp-n-1. 4.3 need to use a different technique, exploiting the existence of
"

adapted coordinates on the sphere. The full Killing vector
To see the relation of this coordinate system to the usudfeld (3.1 can always be written as

Einstein static universe description of the conformal bound- _o s @7
ary, let us write the AdS, ; metric in global coordinates, §=dyt Enas- :

We can therefore writ& as a dressed version of its “trans-

=— 2+dp?+si -1, : ; .
Onas,,,= ~Cosipdt’+dp?+sinfpge-1. (44 lation” component according to

Then defining cog=1/coshp, we can rewrite Eq(4.3) as E= U%U*l where U=exp — éngs). (4.9

) 0, Consequently, if the original coordinate system were given

(—dt?+d6+sirf g1+ COS Oggp-n-1). by {#,2'}, whereZ' stand for all the remaining coordinates
(4.5) describing the manifold AdS X S, it is natural to change

coordinates to an adapted coordinate system defined by

ga:cos’-e

This shows that the metric in E(4.3) is indeed conformal to
the Einstein static universe metric 8rx 1, where we are
writing the @71 as an 8 "1 fibered over an 'S The co-
ordinates of Eq(4.3) cover all of the Einstein static universe

y=Uz, (4.9

which indeed satisfies the propergy=0, so that{y'} are

good coordinates for the space of orbits. Equivalengly,

=d, in the coordinateg4.9). Thus, we obtain an adapted
3In the following, we shall set the radius of curvatuReo 1. coordinate system on the ful quotien’F for any Ad_S Killing
“For p—n=1, we would have- < y<, and, conformally re- vector. .For. the case at hand, We S.p|lt the~c09rd|n$n'e}s

scaling by a factor 0é~2¥| as we take the limity|—=, we would ~ @ppearing in the above discussion i@} ={¢; ,x}, where

get a description of the boundary in terms of two AdStches,

each covering one of the hemispheres of tRe!Sin the usual

Einstein static univers®x SP~! description of the boundary of  °The only exceptions are where the AdS Killing vector has fixed

AdS;; ;. points.
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{x} stand for the embedding coordinates of Adgin R2P.  s0(2,2) which commutes with this 0ng; =e;,— ;. It has
norm||&;||?= — (x;+X,4)2. The most convenient coordinate

system for studying this quotient is Poincareordinates.
The form of the Killing vectors in Poincareoordinates is

¢ s>2= Bx (4.10 reviewed in Appendix A. It is easy to see from those expres-
Ad ’ sions that in the case &2 we can orient the coordinates

where B is a (p+2)x(p+2) constant matrix. Thus, SO thatéags=dxandé,=a;, where the Adgmetric in Poin-
J(0 ) —e ¥ 5%, 5o that carecoordinates is

Sinceégs is a Lorentz transformation iR2®, its action orx
can be defined by

d)?ze‘”B(d)7+B§d¢). (4.1) gAd33=£2(—dt2+d22+dX2). (4.15
z

One can now compute the metric in adapted coordinates
{lp,"{pi j}_ This can be written as We see that the effect of the quotient is simply to make the
coordinatex periodic. The Killing vectoréqs becomes null
g=|&dlA(dy+ Bl)2+§+gAdSp+l+ 2dy- Engst || €agd|?dy®,  on the Poincardiorizonz=c where this coordinate system
(4.12  breaks down. In terms of the embedding coordinates, this is
the surfacex;+xXx,=0, where {pgs=X3(d1—d4). We note
where the first two terms are just describing the metric bn Sthat this symmetry has a null line of fixed pointsxat+ x,
in the adapted coordinate systdm,¢;} introduced in Sec. =xX3=0 (parametrized byx;—x4). Away from the fixed
Il C, and &,4s Stands for the one-form associated with thePCINts, the identification alongys will generate closed null
Killing vector .4, that is, curves in the_ Pomca}rbonzon. The_se can b_e eliminated by
deforming this quotient by a suitable action on an odd-
Yo g i_ . R.Nidy dimensional sphere. Since we do not have a good global
€aas= i Eagsdy' = 7 (B-y)'dy’. “.13 coordinate system on this quotient, the best way to describe
After these general considerations, we shall now proceethe causally regular deformed quotient will be to use the

to discuss the different geometries that appear in these di§oordinates adapted to the action on the transverse sphere, as

crete quotients of AdS ;X 1. described at the end of the last subsection. We will not give
the details of the application of this general technique for this
A. Non-everywhere-spacelikeg ags par_tlcula.r case; we just remark that for this case, the matrix

defined in Eq(4.10 is

Let us first discuss the three cases in whighs is not

always spacelike. The first of these is where the two-form is 0O 0 -1 0
®;B(*?(¢;), corresponding to the quotient of AglS, by O 0 0 0
some combination of rotations in orthogonal two-plafiés B= (4.16
in the embedding space. These quotients produce special -1 0 0 1
cases of the conical defects, which were discussed exten- 0 0 -1 0

sively in, for examplg73]. An interesting discussion of the

properties of the supersymmetric orbifolds in string theory isFollowing the supersymmetry analysis [iB4], it is easy to

also given in[74,75. We will not discuss this case further conclude that for a suitable choice of sphere deformation, the

here, except to note that it is for these quotients where thebove quotient preserves=3 of the vacuum supersymme-

existence of a spin structure is not guaranteed. The conditiony, that is, it has four supercharges.

for the existence of a spin structure was stated at the end of For the case where we introduce a deformation on a trans-

Sec. II D. verse S, we can interpret the quotient as the near horizon
To consider the other two cases in Table Il which are notgeometry of a D1-D5 system that has been quotiented by the

always spacelikeB*?a B(®?(¢,) and B??®;B®?(¢;),  action generated by

we follow our general strategy, and start by describing the

action ofB*? or B?? in AdS;. The action of a more gen- §= ¢+ 01R12+ O05Ray,

eral Killing vector of this form on Adg, , can then be built . . N

up by considering the AdSaction deformed by the rotations in which x stands for the common qlrecuon shared by the

B(©2(4.) on the 873 in the AdSx S°~3 foliation of Eq. D1—D5’ system, and;; stand for rotations transverse to the

(4.2). We will then add in the deformation on a transverseD1-D2's: In the language developed[i64,63, this asymp-

sphere $to obtain an everywhere spacelike quotient. fuotically fla_t s_pacetim_e would correspond to a D1-D5 system
For the quotient of Ad$ by B2, the relevant Killing in a generic intersection of flux seven-brane vacuum. When-

ever ;= =* 6,, it would be interpreted as a D1-D5 system in

the flux five-brane vacuum, which also has four super-
Endgs= €13~ €34. (4.14 charges. Note that the standard supersymmetry enhancement

due to the near horizon limit is lost in this quotient, as the
This Killing vector is spacelike almost everywhere, generatord,, which does not break any supersymmetry in
[|€aas]|2= (X1 +X4)?. There is a single other Killing vector in the asymptotically flat spacetime construction, becomes a

vector is
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null rotation generator from the AdS perspective, whichcyssion and structure fdf, 5. There are three other Killing

breaks one-half of the supersymmetry. vectors inso(2,2) commuting withé.ys,
We would also like to understand the boundary of this

quotient. In the Poincareoordinateg4.15), the global AdS e te et e
boundary is written in terms of an infinite series of flat space G=@uteis et e fTeu G (4.21)
patches, '

g,= —d2+dx2. 4.17) These satisfy

The action of the Killing vector on the AdS boundary com- L& €)= 2€iék, (422
pactifies the spatial coordinatgit might therefore seem that

the quotient will have an infinite sequence of boundariesso they define asl(2,R) symmetry which commutes with
However, the Killing vector only has isolated fixed points on éags- ThissI(2,R) structure appears because when we write
the boundary, at the points where the line of fixed pointsso(2,2)=s[(2,R)®sl(2,R), the B(f'z) Killing vector lies en-
X1+ X,=X3=0 meets the boundary. In Poincareordinates, tirely in one of thes((2,R) factors. A similar structure will
these correspond to the points at past and future timelikeeappear for the same reason in our discussion of the self-
infinity and at spacelike infinity. The different boundary dual orbifold in Sec. IV B; it was first identified in that con-
patches are therefore connected. We can extend the Poincaet in [41].

coordinates to cover more of the boundary by defining We would like to adopt a coordinate system adapted to
this symmetry. Since thé&, do not commute, we can adapt
v=t—x, tanT=t. (4.18  our coordinates to only one of them. We note thég]?
_ =|&;|?=1, | &,||?=—1. Since our interest is in causal struc-
The boundary metric then becomes ture, it seems natural to adapt the coordinates to the timelike

vector &,. We therefore want to construct a coordinate sys-
tem (t,v,p) on AdS; such thatéxys=4d, and &=d,. This

= — 2
gs COSZT( 2dvd T+ coSTdv?), (4.19 requires
and the Killing vector we quotient along &gys=4d, . Since a(x*—x1) x4+ x1) s s
we have only a conformal structure on the boundary, we can praY - 2 =x9),

ignore the overall factor in this metric. In the resulting met-
ric, we see that the direction we quotient along is spacelike A3 x2) A3+ x2)

except whenT=(n+ 1/2)m, where it becomes null. These =0, =2(x*—xb),
points correspond to one-half of future and past null infinity v v

in the original Poincareoordinates. This coordinate system

covers the whole of the conformal boundary with the excep-  g(x*~x) . a(x*+xY)
tion of a null line corresponding to one-half of past and sz —X5, T:X +X%,
future null infinity in each Poincarpatch. We could con-
struct a similar coordinate system by defining t +x—it

3_2 3442
would then cover that half but not the one whérex re- IX"—x )z—(x“—xl) IX+x )=—(X4+x1)
mains finite. We can think of the field theory dual to the ot ' at '
quotient along a null rotation as living on the cylindrical (4.23

space described in E¢E.19, which has closed null curves at
T=(n+1/2)7.® Since the deformation by an action on a A combination which is thus independent ofv is (x*
transverse sphere does not alter the action on the boundary,tx!)2+ (x>—x?)2. We will choose thep coordinate so that
cannot remove these closed lightlike curves in the duathis combination ise?’. A suitable coordinate system satis-
theory. fying these criteria and the condition x5— x5+ X3+ x3

A more interesting example of a not everywhere spacelike= — 1 defining the Ad§ embedding is
quotient isB®?) | where the Killing vector we quotient along

is x*—xt=ersint,
Engs= T (€1~ €0) + (13— €34), (4.20 .
x*+xt=—e Psint—2ve’cost,
respectively. Both are null everywheré,,d|?=0. From

now on, we shall focus o#,,s; there is an analogous dis- x3—x%=efcost,
312 _ A ;
There are some obvious similarities between this construction X°+x“=—e ‘cost+2vesint. (4.24
and the Milne coordinate system on the orbifold of flat space by a
boost. The inverse coordinate transformation is given by
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e’ =(x*—x1)2+ (x3—x?)?, coordinates. We can orient the coordinates so ags= J;
+d, in the metric(4.15. The additional symmetry,—d,
x4—xt that is manifest in these coordinates can be written in terms
tant=——, of the sI(2,R) Killing vectors (4.21) as the combinatior,
x3—x

— &;. Although the Poincareoordinates are not a global

coordinate system for the quotient, they allow us to relate
these quotients and quotients of branes in asymptotically flat
+[(x*+xH+e 2P (x*—x1 13} (4.25  spacetimes: thB'>? quotients can be understood as the near

) o o horizon geometries of a D1-D5 system quotiented by the
Since these give finite values b, p for all points in AdS, discrete action generated by

this coordinate system covers the whole spacetime. In terms
of these coordinates, the metric is

v=e"2P{[(x3+x?) +e 2 (x3—x?)]?

fzi(?t‘F (9X+ 91R12+ 02R34. (43@

gAdssz_dt2+dp2_262dedt. (42@

The physical interpretation of these quotients is unclear.
In this coordinate system, the other two Killing vectors are They can be supersymmetric, and they are free from closed
. 72 causal curves. It might be possible to give them some inter-

§1=sin2td,+cosA(d—e d,), pretation using a limiting procedure in which one finally

. _ identifies bulk points along a “null translation,” by infinitel

£3= —COS A, +sin 2A(d—e ¥3,). (4.27) boosting a spaf)celike tran%lation. In this case, tr):ere is S'Eilll a
supersymmetry enhancement since the asymptotically flat

We see that making identifications along the Killing vector i
uotient has four supercharges.

d, will produce closed null curves. To eliminate these closed , . .
null curves, we should introduce a deformation by a rotation _TO discuss the conformal boundary O.f t.h's quotient, we
on the transverse sphere. To simplify the discussion, we shaW'” usea techmq_ue that will be used again in Sec_.r!V C, and
work it out explicitly for a transverseShaving in mind the relatg the spacetime to a plane wave. If wersee™", the
standard way of embedding Ag$ type IIB string theory, metric (4.29 becomes

as the near horizon geometry of the D1-D5 system, giving

rise to AdSxS*x T4, As discussed in Sec. Il C, there are 1

several inequivalent quotients that one can take of\@e 9= —{—2dvdt—r2dt*+dr?+r?[d¢°+(d¢’ + ydv)?
will focus on a particular quotient which preserves super-

symmetry, namely, the quotient whefg= d,, when we write +de?+2 cos 9(dy’ + ydv)-del}. (4.30)

the S metric as

ge=d@?+dy?+de?+2 cos H¥dy-de. (4.28  The conformally related metric in curly brackets is a sym-
metric six-dimensional plane wave, written in a polar coor-
Thus, we consider the quotient along a total Killing vectordinate system deformed so thaf is a mixture of the null
é=Epgst vés=d,+ yd, . Since we have a globally adapted translation symmetry of the plane wave and a rotation in the
coordinate systert4.26) on the AdS part of the quotient, itis four transverse spacelike coordinates.
convenient to construct the global coordinate system on the The conformal mapping between an AdSS® space and
full AdS3x S® quotient by definingy’ =¢—yv. The six- a plane wave is implicit in previous work76], which

dimensional metric is then showed that such plane waves can be conformally mapped

) ) ) 5 , ) 5 onto the Einstein static universe. That is, since both spaces
g=—dt°+dp°—2e”*dvdt+do°+(dy’ + ydv)“+de are conformally flat, we would expect them to be confor-
+2 cos (dy’ + ydv) - de. 4.29 mally related. It is interesting to note the relative simplicity

of the relation: Ad$x S® corresponds to the plane wave with

The quotient is now along=d, . We can see that this is an the axisr =0 excluded, rescaled by a factor of 1/ .
everywhere spacelike directiofi¢]2=»2. This is a neces- More |mpprtant for our present purpose is that the Killing
sary but not a sufficient condition for the absence of close&ctor we wish to quotient along, , annihilates the confor-
causal curves, but it is easy to check explicitly that there ar&al factor(as doesé,=4;), so we can use this conformal
no closed causal curves in the bulk of the quotient manifoldnap to study the boundary of the quotient spacetime, and not
in this case. As shown ifi54], the corresponding type 1B iust to study global Adgx S°. Note that, unlike the double
configuration preserves= % of the vacuum supersymmetry, null rotat|or_1 in Se_c. IV C, the other Killing symmetnegsi

that is, it has four supercharges. It is interesting to point ougNdé> of this quotient do not also commute with the confor-
that if we had considered the action on the three-spherBa@l rescaling. They will hence appear as conformal isome-
(4.28 generated by¢s=4,, the corresponding quotiert  ries in the boundary theory.

= s+ vés would have preserved= : of the full type 11B The conformal boundary of the quotie(#.31) lies atr

supersymmetry. =0, and has the metri@p to conformal transformatiohs
It is interesting to note that, like the null rotation, the

B(f'z) Killing vector also has a simple action in Poincare g,= —2dvdt. (4.32
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Sincev is periodically identified in the quotient, there is a symmetries of such a higher-dimensional quotient will be the
compact null direction through every point in the boundary.ones discussed before times $3(2), corresponding to the
As in the null rotation case, these closed null curves in theotational symmetry transverse to the subspace wtgse
conformal boundary cannot be removed by a sphere defolcts. Notice that in this case, the metric on the boundary is
mation. This fact can explicitly be checked in £4.29. Itis  conformally equivalent to a plane wave metric,

interesting to note that we get the same metric on the con-

formal boundary here as on either of the two boundaries in g,=—2dvdt—r2dt®+dr?+r?gg-s. (4.3

the self-dual orbifold discussed in the next subsection.

If we regard Eq(429) S|mp|y as a Coordinate System on In h|gher dimensions, there exists the pOSS|b|l|ty to deform
AdS,x S*, we can relate this description of the conformalthe quotient by rotations, i.eB(%?(¢;). Let us focus on
boundary to the usual two-dimensioriak S* Einstein static ~AdSs, for algebraic simplicity. The metric for AdSn the
universe boundary of global AgS S®. In global coordi- AdS; foliation adapted to the action s is given by
nates, the Killing vector field is given by gAdsS=cosﬁx(—dt2+dp2—2e2”dvdt)+d)(2+sin|"?xd02.

E=[1+cog 17— ¢)](d.—d,), (4.33 (4.37

where we are using the global coordinates introduced in ApThe deformation consists in acting on the angular direction
pendix A, and further writingts=cose, X,=sine, so that through the generataf= ¢dy- Thus, it is convenient to in-
the metric on the boundary reads troduce the coordinat®’ =6— v, so thatéyst+£é=7,.
The metric on the deformed quotient is

=—dr?+de?. (4.39
90 Oads, /r=Ccostx(—dt?+dp®—2e*’dvdt) + dx?
We see that the quotient is along a null direction, and has a
single null line of fixed points at— ¢ =7 (mod 27). While

the coordinate systenfd.29 covers all of global Adg where, once again,~v + 2. As expected, the periodic co-

x S, it does not cover all of its conformal boundary, as these rdinater becomes evervwhere spacelike excent at the fixed
symmetry-adapted coordinates break down on the fixed yw b P

. ) point of the deformed action. This is just a consequence of
points oféxgs. The coordinates of Eq4.29 cover all ofthe 4 et ot the norm of the deformed Killing vector is

boundary apart from this null line. They are related to theﬂﬂdﬁ £]2= 02 (x5)2+ (x5)2] = p2sintPy, which certainly

global description above in the same way that a symmetric>Ad . . .
plane wave is related to the Einstein static universe in higher\-’anIShes at the origin of the 56-plane, where the fixed point

) . ) . : ; f & lies.
dimensional casei¥6] (in two dimensions, there is no non- °' & ' . .
trivial plane wave. Thus we see that Eq4.32 provides a This particular deformationg+ 0) breaks all the super-

natural description of the asymptotic boundary of the quo_sym:netr¥ art;d It ﬁarf] be |“te|rpr§ted.as.dthetrlw:s)agrbhonzon ge-
tient, corresponding to excluding these fixed points in disOMetry ot a bunch of paraliel and coinciden -branes quo-
cussing the quotient tiented by the action of a null translation plus a rotation. It is

While it is clear that the deformed quotief®.29) is free certainly possible to turn on supersymmetric deformations in

of closed causal curves, we can show that this quotient doetggher-dlmer)smnal AdS spacetimes. In particular, It s pos-
not preserve the stable causality of the original AdS® sible to consider families of two-parameter deformations cor-

; (0,2) (0,2) ;

space. If we write Eq(4.29 in the form appropriate for responding toB™"(¢1) ®B T ¢z) In AdS;. Whenever

Kaluza-Klein reduction along ©1=* ¢,, the quotient will preserve supersymmetry. The
' corresponding asymptotically flat interpretation would be in

+sinFPx(dé’ + @dv)?, (4.39

g=—(1+ v~ 2e*)d 2+ dp?+ d 6%+ sirf26d o2 terms of parallel and coincident M5-branes quotiented by the
action of a null translation plus a certain rotationfifr. The
+2y~te?rdt(dy’ +cos 20d¢) supersymmetric deformation would correspond to the action

havi 2) hol :
T (ydo+dy' +cos Wde— y-le2edr)2, (435 VNG ansu(2) holonomy

we see that the lower-dimensional metric obtained by B. Self-dual orbifolds and their deformations
Kaluza-Klein reduction along will have closed null curves, The fifth two-form appearing in Table NIBMY(B,)
since the compact circle parametrized ¥y is null. This  @B®Y(B,)®B(®?(¢;) with | 81]=|B,|, can be interpreted
implies that there can be no time functienon AdS;xS*  as the deformation of the self-dual orbifolds of AgSirst
such thatC,7=0, for if there was, the Kaluza-Klein reduced introduced in[41], and recently discussed j#3]. The norm
metric would be stably causal, which is inconsistent with theof ¢, is spacelike everywhere. Therefore, one can study
appearance of closed null curves in the latter. Thus, the dighese geometries with or without any further nontrivial ac-
crete quotient cannot satisfy the condition[@0], and does tion on transverse spheres.
not preserve stable causality. As already indicated above, the minimal dimension where
Following the discussion around E@t.2), it is straight-  this discrete quotient exists is far=2, i.e., AdS. The ad-
forward to describe the quotient generatedéys in higher-  dition of any rotation parametep; would increase this di-
dimensional Adg,; spaces. By construction, the global mension by 2. Since the elementary nondecomposable block
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acting on Ad$ is a linear combination of boosts ikf*?, this As first proved inf41] for AdS;, corroborated i43], and
discrete quotient does not have an analogue in an asympto@xtended to any higher-dimensional AdS spacetimgs#],
cally flat spacetime, in the sense that there is no quotierfhe supersymmetry preserved by these self-dual orbifolds is
whose near horizon limit gives rise to these self-dual orbi-one-half of the original one.

folds. The metric in adapted coordinatés40 looks like
The anti—de Sitter action, including the deformation pa- S, _
rameters{¢,}, integrates to the followind action onR2®: gsq= —dt*+ B%d¢? + dZ*— 24 sinh 2zdtdp. (4.41)
%1 1 3 Thus, it describes a nonstatic but stationary spacetime. One
2 x“coshBt=xsinh /3t interesting feature that has not previously been noted is that
X x2coshgBt+ = x*sinh Bt t is a global time function, sinc&,tV#t=—1/cosk2z so
x3 x3coshgt + xsinh Bt the S(_elf-dual orb_ifold_s are stably cgusal a_nd hence C!O not
x4 4 2 , Vi, contain closed timelike curves. This metric can be inter-
Jivs x“coshptxx“sinht preted as an Sfibration over AdS, as the following rewrit-
X X2 5cospit— x2 *Bsin it ing indicates:
2i+6 ’ .
X 2i+6 2i+54;
X TPcosgit+x7 Usingit Jsq= — costf2zd+dZ2+ (Bdé—sinh 2zd1)2.
(4.39 (4.42

where we sei3;= g and 8,=* . Notice that the above This quotient was recently analyzed in detail[#8], where
action is manifestly free of fixed points for any value of the its isometries, geodesics, asymptotic structure, and hologra-
boost and rotation parametdig, ¢;}. phy in this background were extensively studied.

In the following, we shall review the main features of the  An important point to note from that analysis is the struc-
self-dual orbifolds of Ad§, extending the discussion to un- ture of the conformal boundaries. It was showr[43] that
cover their embeddings in higher-dimensional anti—de Sittethe quotient has two disconnected conformal boundaries. If
spacetimes and their deformations both by rotations inwe consider the coordinate transformation
anti—de Sitter and nontrivial actions on transverse spheres,
afterward. _ ( T ’77)

sinhz=tand, 60e|——+,%5],
2'2
1. Pure AdS

Let us start our discussion by focusing on AdSo that the metric(4.41) becomes
there are n®(%?)(¢;) blocks. In this case, as first described .
in [41], the quotient preserves dhxsl(2,R) subalgebra of _ 424 P2 42 2 .
the original so(2,2)=sl(2R)®sl(2,R) isometry algebra. A Gsa= CO§0[00§0( dt™+ f7d¢7) +d6"~ 4 sin fdtdg ],
suitable system of global coordinates adapted to the quotient (4.43
and the timelike vector isl(2,R) is [41]

from which we learn that the metric on both conformal

x*=coshz coshB ¢ cost—sinhz sinh B¢ sint, boundaries, located #— + /2, is given by
x2= coshz coshB ¢ sint+ sinhz sinhB¢ cost, g,= *dtds. (4.44
. . . Thus, there are closed lightlike curves on the conformal
x%= — coshz sinhB ¢ cost + sinhz coshB ¢ sint, boundary. The appearance of two disconnected boundaries
can be further understood by noting that in the adapted co-
X4:i(coshzsinh3¢ Sint_sinhzcoshﬁ(ﬁ Cost). Ordinates(4.4© the Original Ad% conformal boundary is

(4.40 covered by four connected patches locateg¢-at+o and
¢— +oo. After the discrete identification, two of these

The sign ambiguity in the last line of E¢4.40 corresponds  patches no longer belong to our space, leaving as a conse-
to the two distinct caseg,= =+ 3, in the SO(23) classifi-  quence the existence of two boundariesz-at+ that are
cation reviewed in Sec. Il B. This illustrates explicitly that disconnected. These boundaries are causally connected
these two cases are related by an orientation-reversing syrinrough the bulk, as was shown [A43] by analyzing the
metry of AdS;, namely, the reflectior,— —X,. It isimpor-  geodesics in this space.
tant to stress that, at this point, the coordindte,z} are Unlike the previous cases, this quotient has no natural
just some particular global description for A4\l of them  interpretation as arising from a quotient of an asymptotically
are defined in the range »<t,¢,z<+<. It is only when flat spacetime. This is related to the fact that the quotient
we identify points in Adg along some discrete step gener- does not take a simple form in Poincareordinates. How-
ated byéaqs= d that our discrete quotients will differ from ever, Stromingef77] showed that these self-dual orbifolds
AdS; globally, by making the adapted coordinatea com-  emerge as the local description of a very near horizon geom-
pact variable with period 2 in some normalization, i.e¢ etry when focusing on the vicinity of the horizon of an ex-
~¢+2m. tremal BTZ black hole.

124026-14



QUOTIENTS OF Adg, ;X S% CAUSALLY ... PHYSICAL REVIEW D 69, 124026 (2004

Thus, even though thi; qu_o'gient does not emerge directly Enas= Iyt 09y, (4.46)
from the D1-D5 perspective, it is nevertheless possible to set
up an asymptotically flat spacetime which reproduces thén the adapted coordinates defined by Egsl) and(4.40.
self-dual orbifolds in two step$43]. This is achieved by It is now just a matter of applying a linear transformation
adding some momentum along the common direction shareith the{¢, 6} plane, which will generate an extra fibration, to
by the D1's and D5’s, and taking the standard near horizomewrite the metric in a globally defined coordinate system
limit, keeping the momentum density fixed. One then fo-adapted to the deformed Killing vector fiefglys. This met-
cuses on the vicinity of the horizon resulting from the previ-ric is given by
ous limit. This procedure generalizes the constructiofv 8} 5 )
to the D1-D5 system, and it provides an independent way of g=costxgsq+dx®+sintx(do+ edp)>.  (4.47)
understanding the dls_crete light-cone quantizaiDh.CQ) By construction, this deformation will break all the space-
holography proposed if43]. :

. i . . time supersymmetry.

Following our general discussion presented at the begin- . .

: LS . . The techniques for AdSare exactly the same, but there is
ning of Sec. IV, it is straightforward to extend the analysis to_ . h f ibilit . h 3rirs
higher-dimensional AdS.; spaces, forp=3. Indeed, we a richer structure of possibilities since we have artréns-

LA ’ L. ' verse to the Ad$ action, which allows us to turn on two
can use the_ foliation in Ec(.4:1) and replace théx;} appear-  inequivalent parametetisp , ;!
ing there with theR=1 version of Eq.(4.40. The resulting
metric is ©1R127 ¢oR34,

gsde:(COShX)ngd+(d)()2+(5inh)()zgs°*3, whereR;; stands for a rotation generator in ttieplane be-
(4.45 longing to R* where the three-sphere is embedded as a
quadric. Let us describe this three-sphere in terms of stan-

whereggq is the metric given in4.41. dard complex coordinates
This allows us to see that in these higher-dimensional
cases the boundary of the quotient will be connected. The z,=x'+ix?=cosfe! (V¢
point is that the boundary of the quotient in higher dimen-
sions is given in these coordinates Ry-=, as discussed z,=x3+ix3=singe' (V=¥ (4.48

earlier. Thus, the boundary of the higher-dimensional quo-
tients naturally contains a copy of the bulk of the Adfsio- A supersymmetric quotier{4] is given by the choicep;
tient. Since the Ad$quotient is connected, this implies that = — ¢,=6;. The metric describing the global quotient is
the boundary of the quotient is connected in higher dimengiven by

sions. It also shows us that, unlike the AdSse, in higher
dimensions there is a natural nondegenerate metric on the 9Ads;/
boundary of the quotient.

=C0stx geqt dx2+sintPx[d 6%+ (do+ 6, ¢)?

+dy?+2 cos B(de+ 6,d)-de]. (4.49
; 0,2
2. Deformation by B°2 Adding a transverse four-sphere and a constant flux on it, the
Even though we could discuss the turning on of the deabove configuration is supersymmetric. It actually preserves
formation parameterg; in the general case, we shall just y=1 of the supersymmetries preserved by the original
briefly mention their main features in the string theory em-vacuum. Thus, it has 16 supercharges. It is worth mentioning
beddings described above. This means that we shall concethat the deformation described Iy, = — ¢, does not break
trate on Adg and AdS, since these deformations are not any further supersymmetry. It is a further action that we can
available for AdS. consider in our spacetime for free, supersymmetrywise. Con-
This program is particularly simple to carry on already intrary to what intuition may suggest, as explained in more
the foliation defined by Eq(4.1). As previously mentioned, detail in[54], the deformationp, = ¢, breaks all the super-
B(®(¢,) blocks correspond to rotations it? planes in the  symmetry.
embedding space, and in the coordinates of (Bd®), these
motions can be globally described as a single “translation” 3. Sphere deformations

along one of the angular variables of the"$ factor. The Let us start our discussion on sphere deformations of self-
definition of the adapted coordinate system in whichy o orbifolds on the embedding of AgSS® in type IIB

®;B(*?)(¢;) takes the form of a single “translation” is pre- supergravity. The most general action that we can write
cisely parallel to the discussion for the transver$gi8en in down on $ is given in terms of two real parameters
Sec. Il C.

As an example, consider AgSIn this case, we can turn £s= 0,R1o+ 0,Rs,. (4.50
on only one parametes; = ¢. It is clear that rotations ifR?
correspond to motions along thé 8ansverse to the AdS Because of the freedom that we have to quotient by the ac-
foliation of AdS; in Eqg. (4.2), for p—n=2. If we param- tion of the Weyl group, we can always choose to work on the
etrize this circle by, the Killing vector fieldé,gg generat-  fundamental region defined by =|6,|.
ing the full action of the deformed discrete quotient is given Among all these quotients, only a subset preserve super-
by symmetry. In particular, if we consider the action generated
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by e;5* €4 0n AdS;, the only supersymmetric deformations — g=cost xgsq+ dx?+ sintfxd 62+ d 62+ sir?6,d 65

are given byf;=* 6,, the signs being correlated. Interest- o )

ingly, such deformations still preserve the same amount of ~ +C0S 6alde1+2(dy+d@) ]+ sin’ 6, (dy+d¢p)

supersymmetry as the self-dual orbifolds themselves. Thus, +dg2+2 cos B,(dy+de) - ¢]. (4.55

these supersymmetric deformations are for free, as pointed

out in[54], where the reader can also find the explanation foAs can be checked from the review of the resultq5d]

this phenomenon. presented at the beginning of this subsection, this particular
The discussion proceeds in an analogous way for highelexamp]e preserves=5 of the vacuum supersymmetry.

dimensional AdS spacetimes. If we consider the 11-Thus, it has four supercharges. o S

dimensional configuration A¢g S, their deformations are Of course, there is no conceptual difficulty in dealing with

characterized by four real numbers deformations that contain both two forn®s;B(®?(¢,) on
AdS and nontrivial sphere actions. The supersymmetric quo-
£= 01R o+ 0,R34+ 03Rs+ 04R7g. (4.5 tients can also be found irb4].
Due to the Weyl group action, we can restrict ourselves to C. Double null rotation and its deformations

the region defined by, =6,=0;=|6,|. As discussed in The third two-form appearing in Table 11B(?¢B*2)
[54], there are several loci in this parameter space where;B(°?)(¢,), can be interpreted as a deformation, with de-
supersymmetry is allowed. #,= 0, and ;= — 6, the quo-  formation parameter§ep;}, of the double null rotation dis-

tient preserves = 7. Whenever one of the relations crete quotient considered {42]. Indeed, it consists of the
simultaneous action of two spacelike null rotations in trans-
6,— 0,+ 63+ 0,=0, verseR1? subspaces, and a set of rotations with parameters
¢; in different transvers&? planes. Since the norm @hys
0+ 60,— 63+ 6,=0, is positive everywhere, even fagr,=0 V i, there is no need
to deform the previous action by a nontrivial one on a trans-
0,—0,—6;—6,=0 verse sphere to get an everywhere spacelike Killing vector
field £ in Eq. (3.2).
is satisfied, the supersymmetry will be= 3. Finally, there is The minimal dimension where such an object exists is for
enhancement wheneveb,=6,=60;=—0,, giving rise p=4, i.e., AdS, in which case there are nB(®?(¢))
to v=23. blocks. The pure double null rotation discrete quotient has a

The discussion for AdS< S° is fairly simple. The action very natural interpretation in the PoinCapatch: it consists
on the five-sphere is given in terms of three real parametersf the combined action of a null rotation plus a spacelike
translation. Consequently, it has a very straightforward origin
£s= 01R1oF 05R34+ 03Rs. (452  in terms of the geometry of a bunch of parallel D3-branes:
the pure double null rotation discrete quotient in AdSthe
The deformation preserves=; for 6;=0, and 63=0. It  near horizon geometry corresponding to a bunch of parallel
preservesy=g if 61+ 6,+ 63=0, with uncorrelated signs. D3-branes whose worldvolume is the nullbrane, i:37,

See[54] for more details. _ four-dimensional Minkowski spacetime modded out by the
The only supersymmetric deformation for AdSS* out  simultaneous discrete action of a null rotationfth? and a
of the two-parameter family spacelike translation alon§, which was first introduced in
[20].
5= 01R1o+ 05R3y (4.53 The full anti—de Sitter action, including the deformation

o . 1 parameters, integrates to the followiigaction onR?P:
is given by 6,=0,, also preserving= 7.

As an explicit example of a supersymmetric deformation 1
of the self-dual orbifold, we shall present one particular ex- X —tx3+ Etz(Xl—X“)
ample of the above discussion, one embedded insAdS

X X
X S°. More precisely, we shall focus ofy =2, ,=6;=1. 5 2 x5+ EIZ(XZ—XG)
A simple description of this quotient can be obtained by X 2
parametrizing the five-sphere in terms of the coordinates x3 x3+t(xd—x1)
. 4
—v1,iiy2_ i(e1+2¢) X
Z;=X"+ix“=cosf,e"'*1 , 1
! ! B[l X Etz(xl—x“) L Vi
— 31 ivA— oi i(4+ o)
Z,=X°+I1X"=sIin#,cosb,e ,
2 1 2 XG X5+t(X6_X2)
U5 iub . i(4— @) X2i+5
Z3=X>+ix’=sin#,Sin 6, . 4.5 1
: T (459 (246 XO— X+ S (= XE)
One can check thags=d,. This is an example in which sits oiib s
both £,45 and &g are described in terms of adapted coordi- X“ T 7CoSeit =X Tsing;t
nates. Thus, by a simple linear transformation, we can easily x2 " 6cosgp;t+x2 " Ssing;t
write the fully adapted ten-dimensional metric as (4.56
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which is manifestly free of fixed points for any value of the ax3 x>
rotation parameters. o —=0,
v dv
1. Pure AdS (9(X4—X1) . (9(X4+X1) .

Let us first consider the pure double null rotation in AdS o (XX, e = (%X,
This was analyzed ifid2]. We will extend this analysis by
discussing the isometries preserved by the quotient, con- j(x%—x2) A(XE—x?)
structing suitable adapted coordinate systems, and examining ————= —(x*=xb), — T (x*+x1),
the action on the boundary of AdS. In the process, we will
uncover interesting relations to compactified plane waves. a3 x5

The Killing vector that we quotient along is — X2, = —x5. (4.60

€aas™ €13 CauT €5 . (4.59 There are two quantities independent{tfv, ¢}: (x*—x')?
Its norm is||aggl|2= (X, +x4) 2+ (X4 x)2. This is clearly  +(x®=x?)% andx®. (x°—x?) —x°- (x*~x*). We will choose
positive semidefinite, and the quadrie(x;+x,)(x;—X,)  coordinategp,} so that
— (Xp+ Xg) (X2— Xg) + X5+ x2=—1 defining the AdS embed- (X x)2 (X6— x2)2 = €2
ding constrains the coordinates so that it is positive definite. '
There are four linearly independent commuting isometries in x3. (x6—x2)—x5. (x4—x1) =ery; (4.61)
s50(2,4):
we must take— o <p<ow and —o << to obtain coordi-
€17 €137 34~ €5 Ese, nates that cover the whole spacetime. A coordinate system

satisfying all these conditions is
§x= €5t 3~ e35t €ys,

x4—xl=ersint,
€3= €1~ €y €61 €y,

x4+ xt=—eP(2¢py+2v)cost— (e P+ (*+ ¢?)eP)sint,

£4= €35~ €1 €y. (4.58
6 2_
These Killing vectors have the nontrivial commutation rela- X — X" = €°Cost,
tions
X8+ x2=eP(2p+ 2v)sint— (e P+ (> + ¢p?)e”)cost,
[£1,62]= —2&3, [£&1,64]72&, [&2,64]=—2&;.
(4.59 x3=eP(y cost+ ¢ sint),
They therefore form a Heisenberg algebra on whijglacts x5=eP(— rsint+ ¢ cost). (4.62

as an outer automorphism. The symmetry algebra of the quo-
tient is hence(h(1) X R)@R. The norms of the Killing vec- The AdS metric in these coordinates is
tors arel| &y/|°=||&,|[*=|£aadl 1% ||£5117=0, ||£4l]?=—1.

We want to construct adapted coordinates to describe thisgan,= — dt?+ dp?+€*’(dy?+ dp?— 2dtdv — 4ydtde),
quotient; it is convenient for studying causality to adapt them (4.63
to épags, €3, @andé,. Let us therefore seek to choose coordi-

nates (U,b,p,7) SO that és=d,, f4=—d;, and éags and the other two Killing vectors are

=d,. This requires 1= — 00 A(04—243,)+ SN2,
4_y1 4., 1
a(xad)x )=O, ﬁ(X&;X ) =—-2x8, £=siN2t(d4—2¢d,)+cos Ad,,. (4.69

Even though we will not give the explicit details, it is easy to

I(x®—x?) 0 A(x®+x?) check by working out the inverse coordinate transformation

ap I -2, that this coordinate system covers the whole of AdS. Before

any identification, the range of all adapted coordinates is

ax3 . Ix® 5 , noncompact. The double nul! rotation quotient is simply de-
ﬁzx —X", ﬁzx —+X7, scribed by making the coordinate compact.

We would also like to understand the conformal boundary
of this quotient. First, we should note that, even though the

4 1 4 1
Ix=X ): I+ X =—2(x5—x?) quotient is free of fixed points in the bulk, its boundary has a
du ’ v ' continuous line of them. The action generated BY?
6 o 6 s o B2 integrates to the real line, so the only possible fixed
X=X )—O IX°+X) 2(x—x1) points are the ones for whichys vanishes. These points are
w w ’ given by
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x*r—xl=x8—xl=x3=x°=0. tion as conformally embedded in(4.66 with ¢
compactified.

Now, the spacé4.66) is simply a symmetric plane wave.
This can be made obvious by making the further coordinate
transformatiof

The above does not belong to AgSince the points do not
satisfy the quadric equatidi2.1). This is indeed true for the
bulk of AdS (finite noncompact spacelike direction in global
AdS), but there is a continuous curve of fixed points on an _

g . . . ! . V=v+ o,
infinite cylinder of axis, global timer, and a maximal circle

base. To see this, consider the standard global description of

AdS;, U=t,
x!=coshy cosr, X= yrcost+ ¢ sint,
x2=coshy sinr, Y= — i sint+ ¢ cost, (4.67)

under which the metric becomes

x'=sinhyx', i=3,...,6, _
g=—2dUdV—(X2+Y?+Z72)dU?+dX?+dY?+dZ>

4.6
where {x'} parametrize a three-sphere of unit radius. It is (469
easy to see that any solution to the fixed point conditions This provides an interesting alternative description of the
requiresy— <o, from which we already learn that such points double null rotation, of interest independent of the question
belong to the boundary of A@S It is also clear thax®  Of the conformal boundary. As in Sec. IV A, this relation
—%5=0. Thus, such fixed points belong to a maximal Circlebetvveen the symmetric plane wave and AdS is anticipated by

in the x*-x® plane. If the angular variable describing such aprevious work, since they are bOth. conforr'nally. flat spaces
maximal circle is¢ (0<@<27), the continuous line of and hence conformally embedded in the Einstein static uni-

. P : verse. We see also that AdS covers half of the plane wave at
fixed points is determined by Z>0, as we would expect, since it covers half the Einstein
static universe. What is remarkable is that the isometry we
7=¢ (mod 2m). want to quotient along commutes with the conformal rescal-
ing, as noted above. In fact, not only does it do so; all the
Thus, the action of the quotient is well defined on theunbroken symmetries of the double null rotation also do so,
global boundary of AdSii.e., the Einstein static universe Since they do not involve, . Thus, they are all symmetries
with a single null line deleted. However, we know that the Of the conformally related plane wave metit.68. If we
Einstein static universe with a null line deleted is conformalintroduce the usual basis for the Killing vectors of the plane
to a symmetric plane wavg76]. This suggests that the Wave,
boundary of(4.63 should be described in terms of a plane

wave. e, = —cosU dxi+X'sinUdy,
Inspired by this and the analysis of tB&? case in Sec.
IV A, let us now make a coordinate transformatidés-e™* Eox = —sinUdyi— XicosUdy,
in EQ. (4.63. The metric then becomes i
1 geV: v,
Janr==5 (—2dtdv — Z?dt?+dZ*+ dy?+ dp*— 4ydtdg),
z e, = —du, (4.69

(4.65

) we can identify the isometries of the double null rotation
where 0<Z<= covers the whole of AdsS By rescaling the  quotient as

metric by a factor ofZ?, we can conformally map global
AdS; into the space with metric

"Note that this conformal embedding does not provide a true com-
52 —2dtdy — Z2dt2+ d 72+ d¢2+ dd)z— 4ydtde, pactification of the _spacetime, since E4.66 is itself not_compact. '
(4.66 As.noted above, thls r.epresen.ts thg nece.ssar)./ exclusion of the fixed
points of the quotient in the Einstein static universe.

8t is worth noting that there is a simple relation between these
with the conformal boundary lying aZ=0. Since éa4s  and the embedding coordinates for AdS“*—x'=(sinU)/Z, x*
=4, annihilates the conformal factor, this embedding com-+x'= —[V cosU+(X?+Y?+Z?sinU)/Z, x®—x?=(cosU)/Z, x°
mutes with the quotient; we can regard the double null rota-+x?>=[V sinU—(X?+Y?+7?)cosU)Z, x3=X/Z, x°=Y/Z.
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Ends= — ge’l‘ - §e2, V rVhoe — 477 (4.74
g [(1+2Z%+4y2) %+ 160] '
1=~ ge’l* + geza
o= — fo — Eor Thus, 7 is a good time function on AdS. Singg,  7=0, its
R existence shows that the double null rotation quotient of AdS
f=& preserves the property of stable causality by the general ar-
37 Sey

gument of{ 70].
B As recently discussed if64],° the supersymmetry pre-
4= e, Emyy 470 served by this double null rotation quotient in AdSand

. actually in any higher-dimensional AdS spacetime embedded
Thus, the double null rotation is conformally related to a;, 4 supergravity theory, is=%. That is, this configuration

compactification of the plane wave of the type considered iny,q 16 supercharges. It is interesting to comment on the re-

[79]. . lation with the single null rotation quotient. In that case, we
To return to the question of the conformal boundary of théa e that the standard enhancement of supersymmetry

doublg null rotation, we see.that it is given by the surface at,yan taking the near horizon geometry was lost after the
Z=0 in Eq.(4.69, with metric identification. This may suggest that the same phenomenon

__ 2 2 is taking place in the double null rotation, since the action

9 2dtdo +dy~+dg"—4ydtds. (.79 generated by the latter is the combination of two commuting

This is itself a compactified plane wave, as can be seen bjull rotations. However, the general solution to the eigen-
the application of the coordinate transformati@n6?). One  value problem

might be puzzled by this result, as one would have expected

to find the nullbrane as the conformal boundary of the double Ne=N;-N,e=0,

null rotation. We demonstrate in Appendix B that the
nullbrane is in fact related to E¢4.71) by a further confor-

mal transformation. Thus, Eq4.7 and the nullbrane de- whereN stands for the full double null rotation generator in

scribe the same conformal structure on the boundary. Thg‘e spinorial representation, "."Nd' 1=1.2, stan_d for mlpo-
description in terms of the compactified plane wa#d’1) is tent operators, is not given in terms of the intersection of
preferable to the nullbrane for two reasons: First thekernels of the nilpotent operators associated with each of the
nullbrane covers only a part of the bound@itycorresponas null rgtgtions, WhiCh would give rise to=, but there exist

to the region— m/2<t<m/2 in Eq. (4.71], so the former nontrivial solutiong54] that enhance supersymmetry to one-
description is more global. Second, the further conformaff@il- Thus, in this case, the double null rotation quotient

transformation to the nullbrane does not commute with thepreszryes the satmtg alrlnoHntt of slupersymTetry an the clcl)rTe—
symmetryé, of the double null rotation. If we work with Eq. sponding asymptotically Tlat analogué n terms ol parafle

. - _and coincident D3-branes in the nullbrane vacuum.
(4.77), all the unbroken symmetries of the bulk spacetlmef Deformation by 892 | order to turn on any deforma-

after we perform the quotient are realized as symmetries ot N ¢ der hiaher-di onal AdS
the boundaryrather than conformal isometrie§ his should lon p?rameler, Wf[a. n:us _tqonS|ter I tlg er _|g1ensc|%na

be a helpful simplification in studying the holographic rela- spacetimes. in particular, it IS natural to consi er Adsince
tion for this spacetime. this is very naturally obtained in M theory from the near

The connection to plane waves also makes it easy to iderp—Orlzon limit of M5-branes. If we denqte by Fhe deforma'
tify a time function for the double null rotation. Writing the tion parameter, the deformed seven-dimensional quotient can
double null rotation metriq4.65 in the form suitable for € Written as
Kaluza-Klein reduction alongp,
Oads, ;7 =COSH xGqn,+ dx*+sintPx(de; + ad¢)?,

1
9= 1~ 2dvdt—(Z2+ 4yP) a2+ Ay + (dop— 20a0)?), @.79

(4.72  wheregy,, stands for Eq(4.63.

Since we turned on only a single deformation parameter
&, the corresponding seven-dimensional quotient, when em-
bedded in string theory, will break supersymmetry. It is cer-

tainly possible to construct supersymmetric versions of the
9Gtter by deforming the orbifold action with a nontrivial ac-

we see that the lower-dimensional spacetime would again b
a plane waveup to conformal factor Hence, applying the
results of[ 70], where time functions were found for general
plane waves, we can deduce that a suitable time function f
the nullbrane is

tion on S
1 4y
T=t+ ztan | ————|. 4.73
2 1+ 7%+ 4y° %In [42], it was claimed that the amount of supersymmetry pre-
served by the double null rotation quotient was-1/4, but as
It is easy to check that shown in[54], the latter is actually enhanced te=1/2.
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2. Sphere deformations is naked—that is, visible from infinity—or concealed by an

Let us start our discussion on sphere deformations of th€Vent horizon. If it is behind an event horizon, we view the
double null rotation quotient by focusing on AgSS’. The quotient geometry as a black hole, generalizing the BTZ so-
family of deformations is described by E@.52, that is, by ~ ution [36,37. _ _ ,
three real parameters. As discussed5d], the only super- In this section, we will study which quotients can lead to

symmetric loci in the fundamental region defined by the acPlack holes of this type. Unlike in the previous section,
tion of the Weyl group is, in addition to the origin, given where deformation on the sphere introduced qualitatively
either by 6,=6, and 6;=0, preservingr=2, or by 6,  Ne€W possibilities, we find that the quotients with a black hole

—0,+ 0,=0, preserving=1. interpretation are the BTZ quotients in AglSind the higher-
The discdssion for AdS<S* is analogous. In this case dimensional generalization of the nonrotating BTZ quotients,
there exists a two-parameter family of deformations, giverfOUPIed with some action on the sphere. _
by Eq. (4.53. The only supersymmetric loci in the funda- First, we need to establish yvhat region .of the spacetime
mental region defined by the action of the Weyl group is"W& rémove. InN38], where quotients acting just on the AdS
either the origin, corresponding to the double null rotationfactor were considered, it was argued that we should remove
quotient itself, or the lingd; = 6,, which preserves=1. the region where_the KI!|II’]g vec_t(jAdS fails to be spacelike.
As an explicit example of a sphere deformation of theClearly, the quotient will contain closed timelike curves in
double null rotation quotient, we shall focus on a supersym{his region. However, it is not in general true that all closed
metric deformation on AdS< S°. We will focus on the same timelike curves will pass inside this region. In particular, for
sphere action considered in Sec. IV B 3. As before, we apply2S€S withB(*2( ;) components, this does not remove all
the general formalism developed in E@.8 for the full e closed timelike curves. _ _
Killing vector é=éxgst &s. If we introduce adapted coordi-  Closed timelike curves in the region whefgys is space-

nates so that=4, by defining ¢’ = y— v, the full ten- like can be constructed by an argument very similar to that
dimensional metridé: on the quotient space \'/vill be used in Sec. lll. As discussed at the beginning of Sec. IV, for

any of our quotients, we can construct a natural coordinate
0=0gnr+d62+sirP0,;d65+co 0, [de; +2(dy’ + ydep) ]2 system (4.1) on the AdS part, in which we decompose
_ , AdS,, ; in terms of an Ad§,, and a 8~ "~ ! factors, where
+sirfgy[ (dy’ + yd ) the Killing vector generating the quotient &gs=&ags, , |

+d@?+2 cos By(dy' + ydd) - o], (4.76 + &, with Ends, acting only on the AdS,; part of the
metric (4.2) and containing the nontrivial block or blocks,
wheregg,, denotes the metric on the quotient of Adfiven  while the & is a combination of rotationfthe B(®2)( ;)
in Eq. (4.63. blockg| acting on the unit sphere’S"~1. Now consider an
We could consider quotients involving both two-forms orbit where¢ays is spacelike, butags  is timelike. As in
®iB%?(¢)) acting on AdS and sphere deformations. Thege. I, we can construct a closed curve which follows the

techniques required to deal with them are exactly the same agpit of Ends on the AdS,, factor and a length-
n+1

those used above. The reader can find an analysis of their. . . . . pan—1 . .
supersymmetry ifi54]. minimizing geodesic on thePS"™* factor. There are identi-

fied points that are separated by an arbitrarily large timelike
distance in the AdS$.; factor; since the separation on
V- BLACK HOLES AS QUOTIENTS S~ "! is bounded, this closed curve will be timelike for

In the previous section, we discussed causally regulagufficiently large separation on the AdS factor. Obvi-
quotients, which arise in some cases where the Killing vectoPUsly, a similar argument applies when we consider the de-
defining the AdS orbifold is nowhere timelike. One might formation on the transverse sphere; there will be closed time-
think that these are the cases of primary interest, since arlijk€ curves wherever the norm of the nontrivial blocks taken
other quotient will have at least a region of closed timelikeOn their own is timelike.

curves. However, as is well known, certain causally ill-  Thus, it would seem that a natural region to excise is the
behaved quotients can be given an interpretation as an ankgion wheref,gs is timelike. That is, the region to excise
logue of black hole$36,37. is determined by the norm of the nontrivial blocks, omitting

The idea is that one can excise regions where closed timedl the rotationgboth B(®?(¢,) and the rotations on trans-
like curves will arise from the original spacetime, and con-verse spherdsNote, however, that this is still not sufficient
sider the quotient just of the remaining portion of Ad$. to eliminate the closed timelike curves in all cases. That is,
The resulting geometry will be causally regular by construc-the resulting quotient is not guaranteed to be causally regu-
tion, but will clearly not be geodesically complete, having alar. However, this is the only possibility we will consider
“singularity” corresponding to the boundary of the excised here. It represents the natural generalization of the construc-
region. This singularity is not a curvature singularity in thetion of black hole solutions df36,37] to higher dimensions.
classical geometry, but extending the spacetime beyond Ve will focus on seeing what black analogues can be con-
would introduce causal pathologies; it is therefore expectedtructed by removing this portion of the quotient. We will see
on the basis of the chronology protection conjecture thathat the resulting spacetime in the black hole examples are in
guantum corrections will lead to a true singularity at thisfact free of closed causal curves.
location. The interesting question is whether this singularity The singularity surface we consider is then where
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and the quotient introduces the periodic identificatiahs

the rest of this section is to establish in which cases thig” ¢+ 2mM,¢~¢+2mym, meZ. If we introduce a coordi-

singularity surface is naked, and in which cases it is con
cealed by an event horizon. Siné;;gdsn+l is a Killing field,

VgAdSM(“ énas,, 15 =2 §Ad§1+1(V§AdSn+1§AdSn+l) =0,
(5.1

SO &ads,, , is always tangent to surfaces defined by
||§Ad5n+1||2=const. Hence, the “singularity” defined by

”§Ad3n+1”2:0 has a null tangent, and must be a timelike or
null surface. We think of such a quotient as an analogue of

black hole if there is a nontrivial event horizan (7*) in
the quotient. Since the singularity surface is timelike or null,

this can only happen if the singularity surface divides the

future null infinity 7" of the AdS,; spacetime into discon-

nected regions. The behavior of the Killing vector on the
asymptotic boundary of the AdS spacetime is therefore e
sential in determining if a given case is a black hole or not

A. AdS; black holes

For the AdS case, the addition of a deformation on the
sphere does not significantly modify the analysi$3¥]: the
only quotients which lead to black holes are the ones whos
AdS Killing vector field is associated with the two-forms
BB @BI(B,), for | By|#[B,l, andBE2(B) for B

%

natey=¢—y¢, then§=d, and the metric in fully adapted
coordinates is

r2dr?

(r2=r2)(r2—r2)

(r2=r)(r?-r2)
2

2

r

2
r_r
—dt| +y2d¢?
.

+r2<d¢—

a +2yd(dy+ cos 29dy) + d #2+ d 2+ dy?

+2 cos d xd. (5.9

Note that the deformation on the sphere does not affect the
leadingr? part of the metric at large distances, so the struc-
ture of the asymptotic boundary of the black hole is not
hanged. From the point of view of Kaluza-Klein reduction
over the sphere, this geometry is described as the rotating
BTZ black hole with a flalSU(2), CSO(4) gauge connec-
tion Afb: v turned on, in analogy with previous discussions
of conical defect$73]. Since the gauge field has zero stress-
energy, it does not modify the three-dimensional metric. Its
presence does however modify the supersymmetry condi-
tions[73]. Unlike in the conical defect case, we cannot make
nonsupersymmetric black hole solutions supersymmetric by

#0, corresponding to nonextremal and extremal black holegdding a deformation on the sphere, as we cannot balance the

respectively. These AdS Killing vectors correspond to type |
and type 1} in the notation 0f37].1° When embedding these
black holes in string theory, it is certainly natural to embed
them in type 1IB, in terms of Adgx S*x T4, coming from

the near horizon of the D1-D5 system. Thus, the most gen-

eral Killing vector field giving rise to black holes is given by
§=&ptzt 01R12t 02Ray,

where we are using the notation introduced in Sec. Il C.
The metric on these solutions is easily constructed. Fo

(5.2

hyperbolic black hole holonomy by a holonomy $U(2).

B. Higher-dimensional black holes

Let us now investigate what happens in higher dimen-
sions. For the excision we are studying, the singularity is
determined by the nontrivial part of the AdS acti@mdsnﬂ,

and the presence of horizons is determined by considering
the intersection of this singularity surface with the AdS
boundary. We therefore focus on the AdS part of the story,
and only add in the sphere at the end.

simplicity, we shall focus again on the deformation for which  We want to know if there is an event horizon in the quo-
0,=60,=. Let us adopt BTZ coordinates on the AdS spacetient. Since the location of the singularity is determined by
o) thatgAdSszad,, and adapted coordinates on the sphere, S@ads, , ,» it is natural to study this using the decomposition

that és=d,,. Then the metric is (4.1). This considerably simplifies the task of studying the
higher-dimensional cases, by relating it to the lower-
dimensional classification. It would require considerable
work to determine directly from the form of the Killing vec-
tors whether or not event horizons exist. By relating this
question to the existence of horizons in lower dimensions,
we can avoid most of this work and also gain some valuable
insight into the differences between the Ad8ase and
higher dimensions.

For a Killing vector that does not contairB?® block, a
B2%(¢) block, two B*? blocks, or aB™? and aB*?Y
block, we can adapt the coordinate system of @cR) with
quotienting byB™*?, do not have a generalization to include rota- n=2; t_hft is, we can decompose AdS in terms of Ad3
tion on the sphere, as the associated AdS Killing vectors are no"Zlnd $* factors. The Killing vector then decomposes as
where timelike, so these give causally regular quotients once a norbAds= éads, T &r » Whereéags, acts only on the Adgpart of
trivial £gs is included, as described in the previous section. the metric(4.2) and contains the nontrivial block or blocks,

r2dr?

(r2=ri)(r?=r2)

(r2—r2)(r2—r?)

r

dt?+

2

r
+d6?+dy?+dy?

+r? d¢p—

9 dt
+2 cos 29dydy, (5.3

ONote that theM = J=0 black hole solutions df37], obtained by
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while the &, is a combination of rotationfthe B(>2(¢;) This leaves only the cases where we quotient by a Killing
blocks] acting on the unit sphere’S®. Furthermoreéags, is  vector with a singleB!** factor, which would correspond to
precisely the Killing vector associated with the same type of nonrotating black hole in AdS We will see shortly that
quotient in the analysis df37]. this case does have a nontrivial event horizon for AdS

We would like to exploit this decomposition to simplify P=2. This is thus the only case involving Ag8locks with
the problem of finding horizons. We will show that there is aan event horizon in higher dimensiofts.
simple condition on the action in AgSvhich will imply that It remains to consider the Killing vectors containing
the singularity is naked in AdS ;. The existence of a non- blocks B3 and B®¥(¢), and the cases containing two
trivial event horizon in the quotient spacetime implies thatB*? blocks or aB*? block and aB™*" block. However,
there are points in the singularity SUFfd@Ad%Hz:O which  these do not lead to any more examples with horizons. For

1'2 . . . TH -
cannot be connected to the same asymptotic region in boti0 B2 blocks, this is ozbsylous, as the Killing vector is
the past and the future. Conversely, if a point in AdS withhowhere timelike. For the®? block, we can observe that it
||€ads,||?=0 lies on some timelike curve which lies entirely WS shown in[38] (where this case is called type) that
in the region wherd|£xs||2=0 in the bulk and starts and there is no horizon in this case in AgSthis can easily be

€9 AdS;l1 = _ extended to show that there is no horizon in higher dimen-
ends in some connectfd component of the region qf thgions by the arguments used above. F&®2 block and a
boundary wherg|éaqs ||*>0, this point on the singularity (1.1 pjock, we can similarly appeal to the analysis[88].
will be naked in the quotient. Thus, the existence of such a For the B>¥(¢) blocks, we analyze the situation in

curve implies the nakedness of the singularity. AdS;, and appeal to the argument set forth above to extend

~ Now, in the coordinateét.2), we can consider the restric- the conclusion to general dimensions. In Adghe Killing
tion to the AdS factor at some fixed point on the sphere yector is

factor that¢, acts on, and ask if there is such a curve which

in addition stays in this submanifold. This will supply a suf- Epds= €15~ €357 €5 g6t @(F €T 34+ 656).  (5.6)
ficient condition for nakedness of the singularity which can o )

be expressed in AdSerms. We therefore want to look for a The norm of this Killing vector is

timelike curve in Adg which connects points in the same > 2 —
connected component of the region of the boundary where [ €nasll*= = ¢*+ 4l Xe(Xa—X1) ~Xs(XaFX)]

||§Ad53||2>0 through the region WherthdSsHZzO in the +(Xa— X1) 2+ (X4 F Xo)2, (5.7)
bulk, and passing through a point|pags,||°=0. But this is aa _ _

the same thing as the condition for a naked singularity invAerre_ X1, .I 't’)xfi} ared_theR ' embeddlngs coordinates.
AdS;: cases that do not lead to black holes in Adf® not apting a global coordinate system on Ad

lead to black holes in higher dimensions either. Horizons can

; ) ) . ) X1=coshp cost, Xx,=coshp sint,
arise only in the cases where there is a horizon in the;AdS ! p 2 ’

quotient. ) _ )
Consider now the cases which give black holes in £dS x3=sinhp cosf cos¢, x,4=sinhp cosd'sing,

that is, the BAY(B,)eBMY(B,) for |Bi#|B,|, and _ _ _ o

B(22(B) for B#0. Consider first the rotating black holes. xs=sinhp sinécosy, xs=sinhpsingsinyg, (5.8

We will see that there will be no horizons in the higher-
dimensional cases. In the quotient of AgdSve obtained a
solution with an inner horizon and a timelike singularity, so P
any point on the singularity surface was connected to th(i AdS

the norm becomes

= — @2+ 4¢ sinhp sin [ — coshp sin( y+ t)

boundary to both the past and future, but it was connected to +sinhp cosé sin(— ¢)]+ costtp+ sinttp cog o
different components of the boundary, so this did not imply .
the absence of a horizon. In higher dimensions, however, we —2 coshp sinhp cosf cog ¢+ 1).

can describe the asymptotic boundary in terms of ansAdS

X P~3 metric, Thus, we see that the global time dependence of the norm is

simply a simultaneous rotation in the two angtgs/ on the
9s=Oads,+ Jo-3. (5.5 S® in AdSs. Thus, the region of the boundary where the
norm of the Killing vector is spacelike is clearly connected,
and this case does not give rise to a black hole in any dimen-
Since the portion of the bulk of AdSwhere¢ags, is space- 10N , _ _ _
like is connected, the portion of the boundary of Ad$ Thus, _the only quotient with a blqc_k hole mtc(alrpl))retatmn
where & is's écelike will be connected, and hence thefor p>2 is the quotient by an AdS Killing vectd™ ()
Ads, 1S Spacel : o ®,B®(¢;). The resulting quotient is the higher-
curves that link a point on the singularity to the boundary
have their end points in a single connected component of the———
region of the boundary WhedégAng||2>o' Thus, they im- 11yye are again excluding the case -2, corresponding to an

ply that the singularity is naked in the higher-dimensionalM =0 black hole, on the grounds that once we include rotation on
quotients, as noted for the cage=3 in [38]. the sphere, this will become a causally regular quotient.
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dimensional generalization of the nonrotating BTZ blackconstructed adapted to the decomposition of the Killing vec-

hole. Special cases of this solution fpe=3,4 have been tor in terms of lower-dimensional quotients are useful, they

discussed before if88—40.1% As above, the natural coordi- are not the best coordinate system for every purpose.

nate system on these quotients in general is the one given by Another interesting coordinate system on this quotient is

the decompositior4.1). If we adopt adapted coordinates for the “de Sitter” coordinates of40], which were used in

the BY(B) action on the Ad$factor, this is [80,81], where this locally Adg.; black hole arises as the
asymptotic behavior of the bubble of nothing solution. In

) ) dr? 5o that context, it is convenient to adopt a coordinate system in
g=costfx| —(r’~1)dt*+ 2 1" dé which the metric is

+dy?+sintfxdQ,_s, (5.9 4R
=(1+R*)dp*+
g=( )dé TR

where we have reabsorbed the length scaleassociated
with the black hole by rescaling coordinates, so the period of
the angular coordinatep depends onr, . The quotient +R2[—d72+cosﬁr(d792+sin2~6dﬂp_3)].
makes identifications i with some twist on the 5 3 de-

termined by thep; . We note that although these are defor- (5.12
mations of the higher-dimensional BTZ quotient by rota-

tions, they do not look like rotating black holes in the usualThese coordinates are adapted to the same $O(1)
sensed is still hypersurface orthogonal, and there is a singlex SO(1,1) symmetry as in E45.10. The coordinate trans-

horizon. _ _ formation relating Eq(5.12 to Eq.(5.10) is
The special case where we consider a simple boost, so

¢; =0, was considered in detail {838—40. In this case the

guotient preserves, in addition to the symmetry associated 5 ) o~ tanhr
with & an SO(I1p—1) symmetry in the orthogonal sub- ~ pP°=1+R% cosf=coshrsing, tanht= cosh
space. Various coordinate systems were defined on the quo- (5.13

tient which are adapted to make some or all of this symmetry

manifest in[39,40. We would like to briefly connect to that

work by showing how our preferred coordinate system abov&hese “de Sitter” coordinates have the advantage that they
which makes the Adgstructure manifest is connected to one cover the whole exterior region of the black hole. They dem-

of those coordinate systems. onstrate that the black hole is not a static solution in higher
In [40], “spherical” coordinates were defined, in which dimensions; there is no Killing vector which is timelike ev-
the metric takes the form erywhere outside the black hole event horizon.
) _ ) ) As in the three-dimensional case, when we consider the
9= (p?= D[ —sinfdt*+d 6+ cos'9d2, 3] quotient of Ad$, ;X< S% we can write the AdS and sphere
do? factors in adapted coordinates separately, so dagi=4,,
p +p2d 2. (5.10 andés=4,. Fully adapted coordinates are then obtained by
(p*—1) setting = y— y¢, which introducesO(1) cross terms be-

, , tween AdS and sphere coordinates. Again, from the Kaluza-
These coordinates are one example of coordinates adaptedyifuin reduced point of view, what we are doing is introduc-

the SO(1p—1)xSO(1.1) symmetry of this spacetimg. They ing a flat SO@+ 1) gauge connectioAj): v on the black
are related to Eq5.9) by the coordinate transformation hole solution above, without modifying the metric.

. One other issue deserves a comment on the subject of
sinhy p=r coshy (5.17  black holes: irf40], it was claimed that a rotating black hole
Jp2—1' ' ' solution could be constructed by taking a quotient of AdS
We want to point out that this is not the same as the defor-
It is interesting to note that this shows that the SO(1,1) manimation byB(®?)(¢,) discussed above; in fact, this quotient is
fest in Eq.(5.10 is precisely the time translation of the BTZ not a black hole. The solution ¢#0] was given by consid-
black hole. Note that the spherical coordinates of GqLO ering AdS; in the coordinates
cover more of the spacetime than the BTZ coordinates of Eq.
(5.9. This illustrates that, while the coordinates we have

cosf=

g=sinttp[ — cofod t?+ d 6%+ sinfad y/?]

2 ~2
2Note that in[38] it was claimed that this does not lead to a black +dp?+costfpd¢?, (5.149
hole for ¢; #0. This is becausE38] took the singularity surface to

be||£aq|2=0, which does not eliminate all closed timelike curves ) ) o - ) ~
in this case. We take the singularity surface tollﬁﬁi\dngZ:O. and making identifications along=¢ at fixed t=(r .t

cutting out more of the global AdS spacetime; this gives a causally—l’_z))/(r%r —r?). This gives a “black hole” metric of the
regular spacetime which can be interpreted as a black hole. form
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(r2— ri) (r2—r2) them, but allowing a black hole interpretation. We would like
5 dt? to finish our work with some short discussion regarding the

r relation of a subset of quotients of AdS X ST having
2 closed timelike curves and not falling in the black hole cat-
d¢>— (r oy )dt) ] egory andcompactifiedplane waves and Glel-type uni-

g=cosd| —

verses, both having closed timelike curves. The relation be-
tween closed timelike curves in quotients of Ad$x S
24,2 2_ .2 £ ;
redr (re=r%) 24 it ) and compactified plane waves was already briefly com-
! (r2—r2).(r2—r?) " (r? —rz)(de e mented on ir{70]
* - oo That such a relation should exist is very intuitive, given

2 (r2—r2) the existing relation between Penrose limits of Adgx S
T sirfod¢?, (5.15 and plane wavel$1-63, and theT-duality relation between
(ri—r2) the latter and Gael-type universe$58,59,71.> One pos-

_ sible motivation to make this connection more precise could
wherer?=r? costfp—r?sini?p. Since the coordinatésand  be the fact that AdS/conformal field theoi§2] could shed
@ in Eq. (5.14) both parametrize SO(1,1) symmetr[eghile ~ some light on the issue of physics in the presence of closed
X parametrizes an SO(2) symmelirye can easily see that timelike curves.
this quotient corresponds to the rotating BTZ black hole type In general, the operation consisting on taking the Penrose
of quotient: that is, to a quotient by a Killing vector formed limit of a given configurationM does not commute with the
from BEY(B)@eBEY(B,), with B,8,#0. This can be operation of considering a discrete quotient. . Even
seen explicitly by noting that, defining the new coordinatesthough we do not have a general statement, it turns out that

X.r by for Abelian discrete quotients whose generator belongs to the
maximal compact subgroup of AdS, that is, for two-forms
(r2—r2) BZ9(p)@;BI(¢;), the following diagram commutes:
sinffy= ———— = ) Sireé,
r2—r? )
’ (AdS,xs7)I iy, N
2 2
_ re—r<
r2—r2= , (5.16)
COSHX Penrose limit Penrose limit

we can rewrite Eq(5.15 as .

B o (plane wave)/I 14wy, Godel type.

(r?=r2).(r?—r?) ) (6.1)
= dt

g=cosify| —

Let us make the connection more explicit. Even though
. 2 we could develop the discussion in general, we shall focus
(r2— ri)dt) on AdS;x S® for algebraic simplicity. Consider the quotient
generated by

- r_
+re| d¢+ =

ryr

r2dr?

NGEGNCEEY TPAGABAOERO 0, (62

+dy2+sinFPydy?, 3

where{,p,¢} are global coordinates in Adand{4, ¢, x}
(5.17 are global coordinates in*Swhereass is any nonvanishing

showing that the quotient space has a rotating BTZ bIacIEeaI number and.. are defined as
hole factor and a circle factor, as expected for this type of
guotient. Now, we have argued above that the presence of a
rotating BTZ black hole factor implies that the region of the
boundary of Adg where the Killing vector we are quotient-
ing along is spacelike is connected. Thus, this quotient canfhe norm of such Killing vector field is given by
not lead to an event horizon. The apparent presence of an
event horizon in the coordinate$.15 is attributable to

those coordinates not covering the whole of infinity. [l &4l12=

1
*+ .
4B2R2

A= 6.3

1
1 2Rz{cosﬁp(s,BZRZ— 1)+cogH(8B°R?+1)}.

VI. ON PENROSE LIMITS OF DISCRETE QUOTIENTS 6.4

In Sec. lll, we determined the subset of quotients of ————

AdS, . X ST spacetimes having closed timelike curves. In *The interplay between Penrose limits and quotients of AdS was
the main body of this work, we focused on the quotientsalso considered if50], although their physical motivation was not
which are free of closed causal curves, or on those havingglated to closed timelike curves.
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Thus, ||£€./|>>0 whenever ?R?>>0 V p,6. Even if this Thus, indeed, it is possible to understand the physics of
property is satisfied, we know the corresponding discreté&sodel-type universes as describing the physics of certain
quotient will have closed timelike curves, as proved in Secsectors of the dual field theory associated with the discrete
[l. quotient of the original Ad$x S, following [83]. However,

It is convenient for our purposes to make the change ofve also see that the dual field theory is living in a space with

variables closed timelike curves. One easy way to realize this fact is to
note that the action of the Killing vector fielfl acts in the
T=BA_UtX, o= <,Ao+ﬁu, same way at any value of the noncompact spacelike coordi-
natep in AdS;, in particular at its conformal boundary. Ac-
g=BA, U-X", x=x+juU, (6.5) tually, the argument applies to any AdS spacetime. We

thus learn that if Adg, /" is the geometry of the bulk,
in which &.=4,. The global metric describing the above vv_hereI‘ stands for the discrete group associatt_ed with the
quotient of Ad$X S° consists in rewriting the metric in the diSCrete quotient generated 33(’2’0)(@@iP(O’Z)(‘Pi);'tS con-
new adapted coordinate system and makingpmpact. The ~formal boundary is given byRx S~ 1)/T", wherel" stands

result is for the restriction ofl" on the boundary. The conformal
boundary quotient would possibly include a nontrivial action
g=—R%(cosFp—co£6)(dx )2+ R2(dp?+ sintfpd p? on the fieAIds coming from th&k symmetry group. Thus,
~ ~ ~ wheneverl” acts nontrivially on the real timelik& axis, the
+d 62+ sinf6dx?) + 2 BR?2d u[ sir’#d y + sintfpd ¢ boundary theory will be defined in a base space having
—(A_cosRp+A, coa)dx-]+ & %2, 6.6 closed timelike curves, and as such, it will be nonglobally

hyperbolic. Therefore, any holographic description for these
scenarios involves an understanding of field theory in non-

The fuILI1 type 1IB conﬂguraﬂon_certamly includes a trans- globally hyperbolic spaces, which we are generically miss-
verseT* and some fluxes. It will not be necessary for our:

) - = ing.
purposes to write these explicitly, but we shall keep in mind
that we are working with a vacuum in which no Neveu-
Schwarz—Neveu-SchwartiS-NS three-form field strength

is turned on.

We shall first show that the Penrose limit of E§.6) is This work is part of a project conceived while two of the
indeed a quotient of a plane wave. The procedure is by nowuthors (J.F. and J.$.were participating in the program
standard. Thus, we shall just state that one needs to rescal@athematical Aspects of String Theory” which took place
x~=R"?p, take the limitR— oo while focusing on the light-  at the Erwin Schidinger Institute in Vienna, and it is again
like geodesic sitting ap=6=0. Thus, we also need the our pleasure to thank them for support and for providing
rescalingsp=r/R and 6=y/R. Following this prescription, such a stimulating environment in which to do research.
and having in mind that is compact, we can afterward J.M.F.’s participation in this program was made possible in
apply aT-dual transformation giving rise to a @el-type  part by a travel grant from the UK PPARC. J.M.F. would like
spacetime, in particular, to one dual versiorgef following  to acknowledge the support and hospitality of the following
the conventions introduced [%9]. Of course, the dual con- institutions visited during the time that it took to complete
figuration will have a nonvanishing NS-NS two-form poten- and write up this work: the IHS, the Weizmann Institute, and
tial, by construction, due to the crossed terms in the metriCERN. In particular, he would like to thank Micha Berkooz
(6.6). for the invitation to visit the Weizmann Institute. J.M.F. is

We would be interested in determining the spacetime thagupported by The European Human Potential Program, Re-
we get after applying the upper horizontal transformation insearch Training Network HPRN-CT-2000-00101, and his re-
the diagram above. This corresponds to applyifigduality  search is partially supported by the UK EPSRC Grant No.
transformation along the orbits éf,. TheT-dual metric that GR/R62694/01. J.S. would like to acknowledge the hospital-
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APPENDIX A: GLOBAL VS POINCARE PATCH IN AdS

PHYSICAL REVIEW D 69, 124026 (2004

€1t €upto=— nwy"y”&yﬁ— 2yﬂy”ayy+ ZzyﬂﬁZ , A2)

€ip+2= _y#é’yﬂ_z‘?z- (AS5)

In this appendix, we will review the global coordinate and A convenient global coordinate system on Ad$is de-

Poincarepatch descriptions of AdS 1. We wish to remind

the reader of the expressions for the Killing vector fields
generating the isometries in these two coordinate systems.

For the Poincargatch, this will be useful for understanding

the relation between certain global AdS quotients and the

fined in terms of the embedding coordinates by

X1=coshy sinr,

X,=coshy cosr,

near horizon limit of the corresponding discrete quotients of

brane geometries in supergravity. For global coordinates, this

will be useful for understanding the action of the Killing
vectors on the Einstein static universe boundary of AdS.

Considering first the Poincareoordinates, let us define
{y*,z} u=2,...p+1 in terms of the flat embedding coor-
dinates inR?® introduced in Eq(2.1) by

1
Xt = Ey"“, n=2,...p+1,
K= 2224 (14 7,,y"")]
2z wy ’

1
XPTE= 122~ (1= muy™y")]. (A1)
In these coordinates, the AglS, metric is
1 2
g=§(mvdy"dy”+dz ) (A2)

The explicit symmetries in this form of the metric are the

Poincaresymmetries acting on the slices of constaritising
the identities

axt
ay”

ﬂXp+2

ay” -

1

1
oM 1_yp+2_—
26,,, Xt—xP*e=

= nyﬂxl‘«,

we see that these are related to the usué2,p) basis by
Pu=dyu——(€1,~€upi2),

Luv=Yudyr—Y,0yu—8y,. (A3)
Therefore, timelike translations in the Poincgatch corre-
spond to a null rotation with two timelike directions in global
AdS, which is mapped to the two-for®®Y. On the other
hand, spacelike translations in the Poingaaéch correspond

Xm=sinhyX,, M=3,...p+2, (A6)

where theX,, are embedding coordinates for arP~$,

> .Xx4=1. The metric in this coordinate system is

g=—costfxd7*+dy?+sintfxdQ,_;. (A7)
The explicit symmetries of this form of the metric are the
time translation

€= (97. s (A8)

and theso(p) symmetries of the sphere,

3,... (A9)

€mn=Xmdx ~Xndx , M,N pt+2.

The other Killing vectors are
€1m= COST tanhyXyd,+ Sin Xy,

+5in 7 Cothx( Smn—XmXn) J5 ,

&m= — Sin 7 tanhyXpnd,+ COSTXnd,

+€0S7 COth ) ( Smn—XmXn) 5, (A10)

wherem,n=3,... p+2.

APPENDIX B: SYMMETRY-ADAPTED COORDINATES
FOR NULLBRANES

As a by-product of our investigations of the quotients of
anti—de Sitter space in this paper—most particularly, the
studies of the double null rotations in Sec. IV C—we were
led to realize that there is a rich structure of symmetries in
the nullbrane quotients of flat space which has not been fully
exploited in previous work on these solutions.

The nullbrane is a quotient of flat!® by a combination
of a null rotation and a translatidr20],

E=d4— eyt = s+ (X1 =x3) 3, +x2(9,+ d3), (BL)

to a standard null rotation with two spacelike directions, or
equivalently toB(*?. Finally, Lorentz transformations in the where x* is the timelike coordinate andx,,x3,x,} are
Poincarepatch are mapped to Lorentz transformations inspacelike ones. The norm of this Killing vector fig]?

R2P.

The other symmetries ino(2,p) are realized as confor-
mal symmetries acting on the slices of constartbgether
with a suitabled, component:

=(x,—X3)2+1, so it is spacelike everywhere. This quotient
was shown to be free of closed causal curve2. There
are three Killing vectors in theo(1,3)X R* Poincarealgebra
on R*2 which commute with thist,
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512_194_912+823, X1+X3:2¢lﬂ+u(¢2+ ¢2)+2U,
§2=dx— (et ey, x=x*=u,
532314'&3. (BZ) X2:¢+u¢'
x*=p—ui. (B6)

These have normé,||*=|&,*=||¢|* and ||é5]>=0. The
only nontrivial commutation relation {sf;,£>]= —2&3. The  The flat metric is now

coordinates defined on the nullbrand 20] do not make any

of these additional symmetries manifest. We will now con- g=—2dudv +(1+u?)(dy?+d¢p?) —4ydedu. (B7)
struct an adapted coordinate system which makeg{tsnd

&3 symmetries manifest: that is, we waéitd;, £,=d,;,  The determinant of the metric is detg=(1+u?)?, so this

and &;=4, . This requires is now a global coordinate system.

The price we pay is that the symmetéy is no longer
oxt  ox8 Xy ox* manifest; on the other hand, this form treats the two Killing
—=—=x? —=x-x} —==1, vectorsé, and &, more symmetrically. In these coordinates,
b I d¢ d¢ §=4dy4, £3=4d,, while the other two Killing vectors are
axt oax® L ax xt 1—u? 2u 1—u?

—_— = —=X s —_:1, —=X"—X , 51:_ 2(9¢+ 2(9(//+21p—2(90,
Y P Y 1+u 1+u 1+u

axt  ox3 2u 1-u? 2u

v v ! B3 ST T 1+u?

. o ——— . The inverse coordinate transformation is
Sincex!—x3 is independent ofp,,v, we will choose to

define coordinates so that—x3=u. A suitable coordinate u=x1—x3,
system is
x*+ (xt—x3)x?

X1 x3= 2+ u( b2+ Y?) + 20, L R
[1+(x'=x3)?]

Xl—XSZU,
B X2_(X1_X3)X4
X2= Y+ ud, [1+(xt=x3)?]
Jp— (x'=x3)
x*=p+uy. (B4) 2v=(x1+x3)—m[(XZ)ZJr(X“)Z]
In these coordinates, the flat metric is
L - — 55 X (3]
g=—2dudv + (1+u?)(dy?+d¢p?) +4udpdy. (BS) [1+ (X" =x°)7]
X [x?— (xt—x3)x*]. (B9)

The nullbrane is constructed by compactifying theoordi-

nate. The determinant of the metric-isdetg=(1—u?)?, so The advertised relation to the plane wave can be seen if

this coordinate system breaks downuat +1, where the We now setu=tanU. Then
expressions fox? and x* lose their linear independence. .
Thus, althoqgh these are sy_mmetry-adapted coo_rdlnates, they g= [—2dUdy +dy?+dé?—aydpdU].
do not provide global coordinates for the spacetime. co2U

It is interesting to note that in these coordinates the solu- (B10)
tion resembles a plane wave written in Rosen coordinates.
For the uncompactified solution, this is not unexpected; flaThe metric in square brackets is a conformally flat plane
space is a trivial plane wave. The interesting observation isvave. Furthermore, the symmetés=4, that we quotient
that the compactification ap preserves this structure. By a along annihilates the conformal factor, so we can think of the
slight change in the coordinate system, we can make a momaullbrane as conformally related to a compactified plane
direct relation to a nontrivial plane wave, and at the sameavave. The plane wave nature of this solution can be instantly
time obtain global coordinates. Instead of EB4), we set recognized after the further coordinate transformation
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V=v+yg, £e.=—cosUdxi+X'sinUdy,
X= cosU+ ¢ sinU, Eei*=—sinUaxi—XicosU8V,
Y=—sinU+ ¢ cosU, (B11) Eoy = v

which brings the metric to the form §EU= —dy. (B16)

Thus, the quotient of the plane wave that is conformally
[—2dUdV—(X?+Y?)dU?+dX?+dY?]. related to the nullbrane is of the type considerefi7@]. The
(812 additional symmetnge that would be present in the plane

wave is broken by the conformal factor. As we saw in Sec.
This form makes little of the symmetry explicit. The Killing 'V C. this is precisely the additional symmetry that appears

B 1
g cogU

vector we are quotienting along is in the double null rotation. . . .
As in Sec. IV C, in addition to exposing this relation to
£=sinUdy+cosUdy+ (X cosU—Y sinU)dy, the plane waves, the global coordinat&il0) allow us to

(B13) easily find a global time function for the nullbrane, hence
_ _ demonstrating that it is a stably causal solution. We first re-
and the other symmetries of the quotient are write the nullbrane metric in a form suitable for Kaluza-

. . Klein reduction alongp,
&,=sinUdyx—cosUdy+ (X cosU+Y sinU)dy, %

&,=cosUdy+sinUdy+ (—XsinU+Y cosU)dy, g= 20 [—2dUdv—44?dU?+dy?+ (dp—2¢pdU)?].
co

£3=dy. (B14) (B17)

Note that not only doeg annihilate the conformal factor; so we See that Kalgza-KI_em reduction will give a plane wave
do the other isometries. Thus, all the isometries of th etric in one dimension lowefup to_confor_mal fact(?r
nullbrane are related to isometries of the conformally relate ence, applying t_he results §70], a suitable time function
compactified plane wave. We can recognize them as or the nullorane is

_ 1 4
£=—ber— £, r=U+Stan | ——]. (B19)
2 1+ 4472
§17 ~Eer T e, It is easy to check that
_— J— % 2
§2=— &~ &ers T 4 cogU _ 4(1+u?) |
[(1+4y?)2+160%]  [(1+44%)°+160%]
§3= e, (B15) (B19)

Thus, 7 is a good time function on flat space, and since
where we write the isometries of the plane wave in the usual,7=0, the nullbrane is stably causal by the general argu-
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