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Quotients of AdSp¿1ÃSq: Causally well-behaved spaces and black holes
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Starting from the recent classification of quotients of Freund-Rubin backgrounds in string theory of the type
AdSp113Sq by one-parameter subgroups of isometries, we investigate the physical interpretation of the asso-
ciated quotients by discrete cyclic subgroups. We establish which quotients have well-behaved causal struc-
tures, and of those containing closed timelike curves, which have interpretations as black holes. We explain the
relation to previous investigations of quotients of asymptotically flat spacetimes and plane waves, of black
holes in AdS spacetimes, and of Go¨del-type universes.
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I. INTRODUCTION AND MOTIVATION

Taking quotients of smooth~super!gravity backgrounds
has long been a fundamental tool in string theory, both in
context of Kaluza-Klein reduction, in which one quotients
the action of a continuous group, and in the orbifold conte
in which the group is discrete. Riemannian singular quotie
~orbifolds! provide exact string theory backgrounds whi
allow us to understand how string theory resolves cer
types of timelike singularities. These techniques are also
evant in the Kaluza-Klein context: an early nontrivial e
ample is the embedding of the Melvin universe@1# in string
theory@2,3#. This work naturally suggests studying Lorent
ian orbifolds, in the hope of reaching a similar understand
of certain types of spacelike singularities, in particular tho
related to the big bang. Although some progress has b
achieved@4–19#, the fate~and physics! of these singularities
remains a very important area of research in string the
Out of this effort we now have a complete list of smoo
quotients of Minkowski spacetime. This classification w
given in @20#, recovering previous results on fluxbrane1

@21–25# and uncovering the existence of an interesting n
static smooth quotient—the nullbrane—which can be und
stood as a desingularization of the parabolic orbifold@35#,
the supersymmetric toy model for a big-crunch–big-ba
transition singularity, by the introduction of a new sca
~modulus! that smooths the singularity.

*Email address: j.m.figueroa@ed.ac.uk
†Email address: O.F.Madden@durham.ac.uk
‡Email address: S.F.Ross@durham.ac.uk
§Email address: jsimon@bokchoy.hep.upenn.edu
1Related work on the physics of fluxbranes can be fou

in @26–34#.
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In this paper, we will study discrete cyclic quotients
anti–de Sitter~AdS! backgrounds in gravity and in strin
theory. Because of its high degree of symmetry, the story
anti–de Sitter space is particularly interesting, and there
already a rich literature on physically interesting loca
anti–de Sitter spacetimes, with much of the discussion h
ing focused on the Ban˜ados-Teitelboim-Zanelli~BTZ! black
hole solutions@36,37# and their generalizations@38–40#.
However, some examples of smooth quotients are a
known @41–43#.2 Given the considerable interest of Ad
backgrounds in string theory, the time seems ripe for a m
systematic investigation of these questions.

In a recent pair of papers@54,55# we classified quotients
of AdS by one-parameter subgroups of isometries. The
phasis in@54# being on AdS backgrounds in string theory,
was necessary to classify quotients of geometries of the f
AdSp113Sq by one-parameter subgroups of isometries.
such backgrounds are maximally supersymmetric, it was a
natural to study the question of how much supersymme
was preserved by the quotient and in@54# there is a detailed
analysis of this question and the related issue of the existe
of a spin structure on the quotient.

Our purpose in the present paper is to study the geom
of the discrete cyclic quotients associated with such o
parameter subgroups, paying close attention to their ca
structure, and to develop a formalism to discuss the ge
etry and physical interpretation of all smooth quotients.

Many of the quotients classified in@54,55# contain closed
timelike curves and, while there may be some interest
studying such quotients, we shall nevertheless concen
our attention on those quotients for which there is a we

d 2Some other work concerning orbifolds of AdS can be found
@44–53#.
©2004 The American Physical Society26-1
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FIGUEROA-O’FARRILL et al. PHYSICAL REVIEW D 69, 124026 ~2004!
founded expectation that they will provide good backgroun
for string propagation. We will therefore focus on and d
cuss in detail two kinds of quotients that can be given
simple physical interpretation: smooth quotients with a we
behaved causal structure, and those which can be giv
black hole interpretation following@36,37#. At the end of this
work, we shall briefly comment on the relation betwe
some of our spacetimes having closed causal curves
Gödel-type universes recently discussed in the literat
@56–59#. The connection arises because certain quotie
commute with the Penrose limit@60–63#. Thus, one can
identify which discrete quotients of AdSp113Sq back-
grounds give rise to compactifiedpp waves having closed
timelike curves after taking the Penrose limit, the latter be
T dual to Gödel-type universes.

We find that there are two types of quotients with we
behaved causal structures. First, there are quotients whe
action on the AdS alone is well behaved. These are gene
zations of the two cases studied previously.

~i! Self-dual orbifolds of AdS3 @41,43# and their higher-
dimensional generalizations, having no analogue in asy
totically flat configurations.

~ii ! The AdS analogue of the flat nullbrane constructi
@42#, consisting of a double null rotation action on SO(2,p),
p>4. This is the near horizon geometry of a stack of D
branes in the nullbrane vacuum forp54 and a stack of M5-
branes in the same vacuum forp56.

We give a comprehensive discussion of the structure
these quotients, extending previous results. For the do
null rotation, we construct a new symmetry-adapted coo
nate system, and find interesting relations to compacti
plane waves. We comment on related issues in the nullbra
in Appendix B.

Secondly, there are quotients where the norm of the A
isometry is non-negative, but not always positive, so the p
AdS action would have singularities or closed null curv
These can be removed by a suitable action on the transv
sphere if the latter is odd dimensional. This second type
qualitatively new. These nontrivial actions on AdS can
divided into three categories.

~i! Discrete quotients by rotations in AdS, the highe
dimensional analogues of the AdS3 conical defects.

~ii ! Discrete quotients by a null rotation, whose descr
tion in the Poincare´ patch corresponds to a spacelike tran
lation ~in pure AdS3, these would give rise to the massle
BTZ black hole@37#! and whose sphere deformations are
near horizon limit of brane configurations in fluxbrane vac
classified in@64,65#.

~iii ! Discrete quotients defined by an everywhere null v
tor field in AdSp (p>3), whose description in the Poinca´
patch corresponds to a ‘‘translation’’ along a lightlike dire
tion. Once more, when deformed by a nontrivial action o
transverse sphere, this corresponds to the near horizon c
terpart of the corresponding quotients classified in@64,65#.

It is important to stress that any of the string theory ba
grounds discussed in this paper are related to many ot
throughU duality and by Kaluza-Klein reductions from o
liftings to M theory. We shall not pursue this possibility
this paper, even though it is natural to wonder about the d
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incarnations of our backgrounds.
In studying quotients with a black hole interpretation, w

confirm and elucidate the conclusion of@38#, that for p.2
the only locally AdSp11 black hole solution is the higher
dimensional generalization of the nonrotating BTZ bla
hole, discussed previously in@39,40#. We explain the origin
of this restriction in general. We discuss the relation to ot
recent work and comment on the proper interpretation
another solution presented in@40#.

We begin in Sec. II by reviewing the classification
quotients, setting up the notation that will be used in t
remainder of the paper, discussing Killing vectors on t
sphere, and determining the conditions under which a
crete cyclic quotient of AdS3S will admit a spin structure.
Section III explains the relation between the classification
Killing vectors in AdS and the existence of closed timeli
curves in the resulting discrete quotients. In Sec. IV we d
cuss causally well-behaved quotients, and Sec. V dem
strates that the only black hole solution is the generaliza
of the nonrotating BTZ black hole. We finish with a sma
digression on Penrose limits of discrete quotients, and
relation between Go¨del-type universes and some quotients
AdS having closed timelike curves. Some technical det
are relegated to the Appendixes.

II. CONVENTIONS AND BACKGROUND MATERIAL

In this section we will briefly review the geometrica
setup and the results of@54,55# in an attempt to make the
present paper self-contained.

A. Anti –de Sitter isometries

Thedramatis personaeof this paper are quotients of AdS
backgrounds, either of anti–de Sitter space AdSp11 itself in
the context of pure gravity, or of Freund-Rubin backgroun
of the form AdSp113Sq in supergravity and string theory.

As usual in physics, throughout this paper AdSp11 (p
>2) will denote thesimply connectedanti–de Sitter space
In other words, AdSp11 ~with radius of curvatureR) is the
universal cover of the quadric traced by the equation

2~x1!22~x2!21 (
i 53

p12

~xi !252R2 ~2.1!

in the pseudo-Euclidean spaceR2,p with coordinates
(x1,x2, . . . ,xp12). The isometry group of the quadric i
O(2,p), which acts linearly onR2,p and preserves the quad
ric. This is analogous to the case of the sphere Sq ~of radius
of curvatureR), which can be identified with the corre
sponding quadric in the Euclidean spaceRq11 and whose
group of isometries is O(q11) acting linearly inRq11 and
preserving the quadric. However, whereas the sphere~for q
.1) is simply connected, the quadric~2.1! is not. Indeed, its
fundamental group isZ if p.2 and Z% Z if p52. This
means that, although the isometry group of the quadric~2.1!
is O(2,p), that of AdSp11 is a nontrivial central extension b
Z or Z% Z.
6-2
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QUOTIENTS OF AdSp113Sq: CAUSALLY . . . PHYSICAL REVIEW D 69, 124026 ~2004!
In string theory, Freund-Rubin backgrounds of the fo
AdSp113Sq are not fully specified by the geometry alon
but require in addition specifying fluxes, which in the
backgrounds coincide with the volume forms of the relev
factors. In other words, both factors come with orientatio
This means that the symmetries of a Freund-Rubin ba
ground are the orientation-preserving isometries of the
derlying geometries. For Sq this is the Lie group SO(q
11), whereas for AdSp11 it is the infinite cover of SO(2,p)
obtained by centrally extending this group by the fundam
tal group of the quadric, as explained in@54, Sec. 5.1.2#. We
will denote this group by SO(2,p)˜ . Annoyingly, it cannot be
embedded in a matrix group; that is, it does not admit a
finite-dimensional faithful linear representations. Crucia
however, SO(2,p)˜ has two features in common with its quo
tient SO(2,p). First of all, they share the same Lie algeb
so(2,p) and furthermore, since conjugation by central e
ments is trivial, the adjoint action of SO(2,p)˜ on so(2,p)
factors through SO(2,p). Similarly, the action of the spin
cover Spin(2,p)˜ of SO(2,p)˜ on the spinor representation
factors through Spin(2,p). These happy facts allow a com
plete analysis of one-parameter subgroups and also the
termination of the supersymmetry preserved by a quotie

B. One-parameter subgroups of isometries of AdSp¿1

By definition, a one-parameter subgroupG of a Lie group
G is the image under the exponential map of a o
dimensional subspace of its Lie algebrag. In other words,G
consists of group elements of the form exp(tX), wheretPR
andXPg. The topology ofG is eitherR or S1, depending on
whether or not exp(tX) is the identity element inG for some
nonzerot. If 2pT.0 is the smallest sucht, then the expo-
nential map defines a diffeomorphism of the circleR/2pTZ
with G, otherwise it defines a diffeomorphism ofR with G.

Every one-parameter subgroupG,G gives rise to an in-
finite family ~indexed by the subgroup itself! of discrete cy-
clic subgroupsGg generated by an elementgPG. If g has
infinite order, thenGg>Z, whereas if the order isN, then
Gg>ZN . All infinite cyclic subgroups ofG in the image of
the exponential mapare obtained in this way. In the case
whenG>S1, we will restrict our attention to elementsg of
finite order. Quotienting a manifoldM on which G acts by
the action ofGg consists in identifying points ofM which are
related by the action ofg. Sinceg5exp(,X) for someX
Pg and some,.0, quotienting byGg consists in identify-
ing points inM that are related by flowing along the integr
curve of the Killing vectorjX corresponding toX for a time
,.

As explained, for example, in@20#, if G andG8 are con-
jugate subgroups of isometries of a spaceM, then their quo-
tients M /G and M /G8 are isometric, the isometry being in
duced from the isometry ofM which conjugatesG into G8.
Therefore, to classify such quotientsM /G, it is enough to
classify subgroups up to conjugation. For one-parameter
groups this corresponds to classifying adjoint orbits in
Lie algebrag. Furthermore, by reparametrizing the subgro
if needed, one can further projectivize the Lie algebra a
12402
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declare collinear elements as equivalent.
Therefore to classify conjugacy classes of one-param

subgroups of isometries of AdSp11 for p>2 it is equivalent
to classify equivalence classes of elementsXPso(2,p) under

X;tgXg21 where tPR3 and gPSO~2,p!. ~2.2!

Such a classification was established in@54,55# and we re-
view it now.

Every BPso(2,p) defines a skew-symmetric endomo
phism ofR2,p, which we also denote byB. Associated with
each such endomorphism there is an orthogonal decomp
tion

R2,p5V1% . . . % Vk

into nondecomposable nondegenerate subspaces stab
by B; that is, for eachi, B(Vi),Vi , the inner product re-
stricts nondegenerately to eachVi , and the restrictionBi of
B to Vi does not decompose further into nondegener
blocks. Conversely, out of suchelementary blocks Bi one can
build the original endomorphismB. In this way, the original
problem is essentially mapped into the classification of n
mal forms of skew-symmetric endomorphisms ofRm,n with
m<2 andn<p up to conjugation by isometries. The latte
are listed in Table I, where we found it convenient to ident
the endomorphism with the corresponding bilinear form, a
to write these in terms of the usual basisei j 5ei`ej for
L2R2,p consisting of wedge products of the elements of
ordered frame (ei), wheree1 ,e2 denote the two timelike di-
rections, the remaining ones being spacelike. The supers
(m,n) on the elementary blocks specifies the subspaceRm,n

that they act on. The Killing vector inR2,p associated with
the two-form

X5
1

2 (
i , j

Bi j ei j PL2R2,p>so~2,p!

is given by

jX5
1

2 (
i , j

Bi j ~xi] j2xj] i !5(
i , j

xiBi
j] j .

TABLE I. The elementary blocks as two-forms.

Block Two-form

B(0,2)(w) we34

B(1,1)(b) be13

B(2,0)(w) we12

B(1,2) e132e34

B(2,1) e122e23

B6
(2,2) 6e121e137e242e34

B6
(2,2)(b) 6e121e137e242e341b(e147e23)

B6
(2,2)(w) 6e121e137e242e341w(6e121e34)

B6
(2,2)(b,w) w(6e122e34)1b(e147e23)

B(2,3) e122e241e132e341e152e45

B6
(2,4)(w) e152e356e262e461w(7e121e341e56)
6-3
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It is clearly tangent to the quadric and it lifts to a Killin
vector field on AdSp11 which we also denotejX .

Let us briefly discuss the interpretation of each of the
elementary blocks to help the reader get used to our nota
We shall denote boost parameters byb and rotation param-
eters byw. There are three inequivalent two-dimension
elementary blocks: a spacelike rotationB(0,2)(w), a boost
B(1,1)(b), and a timelike rotationB(2,0)(w). In three dimen-
sions, normal forms either reduce to the previous ones
preserve null directions. Since we work in a non-Lorentz
signature, we must distinguish among two different null
tations: a null rotationB(1,2) involving two spacelike direc-
tions and a null rotationB(2,1) involving two timelike direc-
tions. There are four types of nontrivial four-dimension
elementary blocks: a linear combinationB6

(2,2) of timelike
and spacelike null rotations, a deformationB6

(2,2)(b) of the
latter by the addition of a linear combination of boosts
different deformationB6

(2,2)(w) involving the addition of a
timelike rotation and a spacelike rotation, and finally a line
combinationB6

(2,2)(b,w) of two actions involving a timelike
and spacelike rotation with parameterw ~up to signs! on one
side and a linear combination of boosts on the other s
There is only one five-dimensional elementary blockB(2,3),
which can be interpreted as the linear combination of a tim
like null rotation and two spacelike null rotations sharing t
time direction and one of the spacelike directions. The
elementary blockB6

(2,4)(w) appears in six dimensions, and
consists of a double spacelike null rotation acting on
thogonal subspaces, deformed by a simultaneous rotatio
the plane formed by the two timelike directions and tw
orthogonal spacelike planes.

Let us remark the appearance of pairs of elemen
blocks B6

(m,n) , with or without parameter, in the classifica
tion in Table I. It can be checked that one element of the p
is always mapped into the other by an orientation-revers
transformation. Therefore, no classification based on
isometry group O(2,p) can distinguish between these o
jects. Analogously, orientation-reversing transformations
nontrivially on the parameters (b,w) in those elementary
blocks which do not come in pairs, allowing us to restr
their range. In this section, we shall follow the SO(2,p) clas-
sification ~unless otherwise stated!, but in the rest of the pa
per, when discussing the geometrical interpretation of
different discrete quotients, we shall omit these distinctio
This is because the metric in AdSp11 is invariant under
orientation-reversing transformations; therefore the geom
itself will not change among the members of the pair. T
distinction will arise in the signs of the fluxes that stabili
the classical configurations: the members of a pair will ha
opposite sign fluxes. This fact can certainly have con
quences concerning the supersymmetry preserved by
members of the pair.

The small number of elementary blocks notwithstandi
the taxonomy of inequivalent discrete quotients increa
quickly with dimension due to the possibility of combinin
the action of different blocks acting in orthogonal subspa
of R2,p. Lack of spacetime prevents us from discussing
possible quotients in detail. There are several criteria wh
12402
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we could employ to narrow our choice of quotients. For e
ample, we could focus on supersymmetric quotients, eve
where spacelike and nonsingular quotients, etc. Our prim
criterion will be that a quotient should have a well-behav
causal structure: our subsequent discussion will focus
those discrete quotients that either are free of closed time
curves, or in which the closed timelike curves are ‘‘expung
able,’’ in the sense that a spacetime free of closed time
curves can be obtained by quotienting only part of AdS, a
that the boundary so introduced lies behind a horizon. In
latter case, the resulting causally well-behaved singu
spacetime is interpreted as an analogue of a black hole,
lowing @36,37#.

The causal properties of the quotient are determined
marily by the norm of the Killing vector field generating it.
is therefore important to study the norm of the Killing ve
tors associated with the two-forms listed in Table I. These
given in Table II, where the following notation is used. W
write explicitly the coordinatesxi of the subspaceW,R2,p

on which the elementary blocks act nontrivially and writex'

for the coordinates of the perpendicular subspaceW'. The
norm is defined on the quadric~2.1!, but can be pulled back
to functions on AdS which are invariant under the de
transformations generated by the fundamental group of
quadric.

We can see from Table II that some Killing vectors a
timelike in some regions of AdS, leading to closed timeli
curves in the associated discrete quotients. Indeed, we
that for B(2,0)(w), B(1,1)(b), B(2,1), B6

(2,2)(b), B6
(2,2)(b,w),

B(2,3), B6
(2,4)(w), andB6

(2,2)(w,0), the norm is not bounded
below. ForB6

(2,2)(w.0), the norm can be negative, but
bounded from below; whereas forB(0,2)(w) and B(1,2) and
B6

(2,2) , the norm is always non-negative.
The Killing vectorj which generates the quotient will b

the sum of such elementary blocks and its norm on AdS w
influence the causal structure of the quotient. We theref
consider the possible endomorphisms in the signature (2p)
that can be constructed from elementary blocks acting
orthogonal subspaces. In Tables III, IV, and V we class
them in terms of the norms of the associated Killing vect
in AdS. It should be stressed that even though we used

TABLE II. The elementary blocks and their norms.

Block Norm

B(0,2)(w) w2(x3
21x4

2)
B(1,1)(b) b2(R21ix'i22x2

2)
B(1,2) (x11x4)2

B(2,0)(w) 2w2(R21ix'i2)
B(2,1) 2(x11x3)2

B6
(2,2) 0

B6
(2,2)(b) b2(R21ix'i2)14b(x11x4)(x36x2)

B6
(2,2)(w) 2w2(R21ix'i2)12w((x11x4)21(x36x2)2)

B6
(2,2)(b,w) (b22w2)(R21ix'i2)24bw(x1x36x2x4)

B(2,3) (x42x1)224(x21x3)x5

B6
(2,4)(w) 2w2(R21ix'i2)1(x12x3)21(x47x2)2

24w@(x47x2)x51(x12x3)x6#
6-4
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notation adapted to an SO(2,p) classification, we have no
constrained the range of the different parameters appea
in these endomorphisms. For a complete discussion conc
ing these constraints, we refer the reader to@54#.

The quotients generated by the Killing vectors in Table
clearly contain closed timelike curves corresponding to
very orbits of the Killing vector in regions where it is time
like. Furthermore, even when we consider quotients
AdSp113Sq by adding a nontrivial action on the sphere, t
resulting Killing vector will still be timelike somewhere, s
the quotients will still have closed timelike curves. Therefo
the only way in which these quotients will enter into o
discussion is in asking whether any of them lead to ‘‘bla
hole’’ spacetimes. We shall discuss this issue in Sec. V.

The quotients generated by the Killing vectors in Table
also clearly contain closed timelike curves. This time, ho
ever, the Killing vector can be made everywhere space
by adding a suitable action on an odd-dimensional sph
However, we will show in the next section that this is n
sufficient to ensure the absence of closed timelike curv
Therefore the quotients of AdSp113Sq associated with the
Killing vectors in this table will not lead to causally regula
quotients either. In summary, the only quotients we will co
sider in Sec. IV, where we discuss causally nonsingular q
tients, are those in Table III.

C. Infinitesimal isometries of spheres

Here we set up the notation to describe the Killing vect
on spheres. For this purpose, we find it convenient to iden
the q-sphere of radiusR with the quadric traced by

(
i 51

q11

xi
25R2 ~2.3!

in Rq11. This has the virtue that the isometry group of t
quadric, O(q11), acts linearly in the ambient Euclidea
space. As we did for AdSp11, we shall restrict this group to
the subgroup SO(q11) which preserves the orientation.

TABLE III. Killing vectors with everywhere non-negative norm

Endomorphism

% iB
(0,2)(w i)

B(1,1)(b1) % B(1,1)(b2) % iB
(0,2)(w i) if ub1u5ub2u.0

B(1,2)
% iB

(0,2)(w i)
B(1,2)

% B(1,2)
% iB

(0,2)(w i)
B6

(2,2)
% iB

(0,2)(w i)

TABLE IV. Killing vectors allowing negative norm but bounde
below.

Endomorphism

B(2,0)(w) % iB
(0,2)(w i) if p is even anduw i u>w.0 for all i

B6
(2,2)(w) % iB

(0,2)(w i) if uw i u>uwu>0 for all i
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The conjugacy theorem for Cartan subalgebras ofso(q
11) allows us to bring any Killing vectorjS on Sq to the
form

jS5(
i 51

r

u iR2i 21,2i , ~2.4!

wherer 5 b(q11)/2c, Ri j stands for a rotation in theij plane,
and theu i are real parameters specifying the rotation ang
This still leaves the freedom to conjugate by the Weyl gro
which we can fix by arranging the parameters in such a w
that

u1>u2>•••>uu r u.

For odd-dimensional spheres, Killing vectors with allu iÞ0
are everywhere nonvanishing, whereas in even-dimensi
spheres every vector field, Killing or not, has a zero.

It will be convenient in what follows to construct a coo
dinate system for Sq adapted to a given Killing vectorjS ;
that is, one in whichjS5]c . Let us describe in detail the
case of even-dimensional spheres. First, rewrite Eq.~2.3! as

(
i 51

r

uzi u21~x2r 11!25R2, ~2.5!

in which we introducer complex coordinates for the two
planes where the action of~2.4! may be nontrivial. A natural
way to solve Eq.~2.5! is by

x2r 115R cosu,

zi5R sinur ie
iw i where (

i 51

r

r i
251. ~2.6!

It is clear that in coordinates$u,r i ,w i%

jS5(
i 51

r

u i]w i
,

whence by a linear transformation in the space$w i% we can
rewrite jS as]c . Indeed, assumeu1Þ0, and consider

TABLE V. Killing vectors with norm unbounded below.

Endomorphism

B(1,1)(b1) % B(1,1)(b2) % iB
(0,2)(w i) unlessub1u5ub2u.0

B(1,2)
% B(1,1)(b) % iB

(0,2)(w i)
B(2,0)(w) % iB

(0,2)(w i) unlessp is even anduw i u>uwu for all i
B(2,1)

% iB
(0,2)(w i)

B6
(2,2)(b) % iB

(0,2)(w i)
B6

(2,2)(w) % iB
(0,2)(w i) unlessuw i u>w.0 for all i

B6
(2,2)(b,w) % iB

(0,2)(w i)
B(2,3)

% iB
(0,2)(w i)

B6
(2,4)(w) % iB

(0,2)(w i)
6-5
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c5u1
21w1 ,

w̃ i5w i2u iu1
21w1 , i 52, . . . ,r . ~2.7!

By construction,jS becomes]c .
The case of odd-dimensional spheres follows forma

from the above by settingu5p/2 in the above expressions

D. Spin structures and supersymmetry

A supergravity background must admit a spin structu
since the fermionic fields, although set to zero in a class
background, and the supersymmetry parameters are sec
of ~possibly twisted! spinor bundles. This is not necessar
the case in string or M theory as the phenomenon of ‘‘sup
symmetry without supersymmetry’’ illustrates@66–68#. This
has recently been discussed in@69# and in the present contex
of quotients in@54#. We will add nothing to this discussio
here. Indeed, as in@54#, we will adopt a conservative point o
view and require the underlying spacetime of a supergra
background to be spin and will consider only supersymm
tries that are realized geometrically as Killing spinors.

A natural question in this context is then the followin
Let (M ,g, . . . ) be asupergravity background with (M ,g) a
Lorentzian spin manifold andG a discrete~cyclic! group of
orientation-preserving isometries acting freely and prope
discontinuously onM ~so that the quotientM /G is smooth!.
When will M /G be spin? Furthermore, if (M ,g, . . . ) is a
supersymmetric background, how much supersymmetry~if
any at all! will the quotient preserve? These questions w
answered in@54# for the case ofG a one-parameter group: i
principle for an arbitrary background, and explicitly fo
Freund-Rubin backgrounds of the form AdSp113Sq.

If G is a one-parameter group of isometries~hence auto-
matically orientation preserving! acting freely on a spin
manifold M with smooth quotientM /G, thenM /G is spin if
and only if the action ofG on the bundlePSO(M ) of oriented
orthonormal frames lifts to an action on the spin bun
PSpin(M ) in such a way that the natural surjection

u:PSpin~M !→PSO~M !

is G equivariant. In this case, the spin bundlePSpin(M /G) on
the quotient is given by

PSpin~M /G!ªPSpin~M !/G.

Indeed, equivariance guarantees that this bundle covers

PSO~M /G!ªPSO~M !/G

twice and agrees fiberwise with the spin cover of the spe
orthogonal group.

The same is true forG a discrete group acting freely an
properly discontinuously on a spin manifoldM. For a general
spin manifoldM, it is not easy to determine when the actio
of G on PSO(M ) lifts equivariantly to the spin bundle; how
ever, as explained in@54#, for backgrounds of the form

M5AdSp113Sq
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we fare much better. Indeed, for this geometry the criter
for the existence of a spin structure inM /G translates into a
simple calculation in a Clifford algebra.

For simplicity we will consider discrete cyclic group
generated by an elementg in the image of the exponentia
map exp:g→G between the Lie algebra and Lie group
~orientation-preserving! isometries ofM; that is,

g5exp~,X!

for someXPg and some,.0. ThenG acts on the~unique!
spin bundle on AdSp113Sq if and only if G embeds isomor-
phically in Spin(2,p)3Z2

Spin(q11),C,(2,p1q11).

SinceG is generated byg, this is a simple criterion: does
there exist

g̃PSpin~2,p!3Z2
Spin~q11!,C,~2,p1q11!

which lifts g and which has the same order?
The elementg has two possible lifts6g̃. If g has infinite

order, so thatG>Z, then so doesg̃, and thus it also gener
ates a groupG̃>Z which therefore coversG isomorphically.
Therefore, ifG>Z, the quotient

~AdSp113Sq!/G

is spin.
Now suppose thatg has finite orderN. Then all we know

is that (6g̃)N covers the identity, whence

~6g̃ !N561,

and the question is whether there exists a choice of lift s
that (6g̃)N51.

Clearly, if N is odd, then either (g̃)N51 or (2g̃)N51,
whence ifG>ZN , N odd, the quotient is spin.

The only possible obstruction arises whenN is even. In
this case the choice of lift is immaterial, and eitherg̃N51 or
g̃N521, and one needs to do a calculation to settle t
issue.

This obstruction arises only ifg5exp(,X) for ,.0 and

X5w1e341•••1w re2r 11,2r 121u1R121•••1usR2s21,2s ,

where r 5 b(p21)/2c and s5 b(q11)/2c. Let g5exp(,X).
Theng has orderN if and only if

,w i5
2pni

N
and ,u j5

2pmj

N
,

whereni ,mj are integers with

gcd~n1 , . . . ,nr ,m1 , . . . ,ms!51.

This last condition ensures that the order ofg is preciselyN
and not a smaller divisor. Letg i andG i be the gamma ma
trices for C,(2,p) and C,(q11), respectively, embedded i

C,~2,p1q11!>C,~2,p! ^̂ C,~q11!,
6-6
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where^̂ denotes theZ2-graded tensor product. Then the tw
lifts of g in

Spin~2,p!3Z2
Spin~q11!,C,~2,p1q11!

are given by6g̃, where

g̃5S 1 cos
,w1

2
1g34sin

,w1

2 D •••S 1 cos
,w r

2

1g2r 11,2r 12sin
,w r

2 D S 1 cos
,u1

2

1G12sin
,u1

2 D •••S 1 cos
,us

2
1G2s21,2ssin

,us

2 D ,

whence

g̃N5S 1 cos
N,w1

2
1g34sin

N,w1

2 D •••S 1 cos
N,w r

2

1g2r 11,2r 12sin
N,w r

2 D S 1 cos
N,u1

2

1G12sin
N,u1

2 D •••S 1 cos
N,us

2
1G2s21,2ssin

N,us

2 D .

Using now thatN,w i52pni andN,u j52pmj , this evalu-
ates to

g̃N5~21!n11•••1nr1m11•••1ms1.

Therefore we conclude that whenG>ZN , N even, the quo-
tient is spin if and only if

(
i 51

r

ni1(
j 51

s

mj is even.

III. CAUSAL PROPERTIES OF AdS p¿1 QUOTIENTS
AND THEIR DEFORMATIONS

In Sec. II B we reviewed the classification of on
parameter subgroups of isometries of AdSp11. We divided
these into three different subsets according to whether
norm of the associated Killing vector field is non-negati
~Table III!; the norm can take negative values, but
bounded below~Table IV!; or the norm can take arbitrarily
negative values~Table V!. As explained above, this distinc
tion is important in the context of Freund-Rubin bac
grounds of the form AdSp113Sq, since the spherical com
ponent of the Killing vector can in some cases render
norm positive everywhere. Indeed, odd-dimensional sph
admit Killing vectors whose norm is pinched away fro
zero, whence the total Killing vector

j5jAdS1jS ~3.1!

may be spacelike even ifjAdS is not. This can happen only i
the norm ofjAdS is bounded below, since the norm ofjS is
bounded above by compactness of Sq.
12402
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In this section, we will explain in detail the connectio
between this classification and the appearance of clo
timelike curves in quotients involving these Killing vector

If we were just considering quotients of AdS, of cours
the connection would be immediate. Indeed, the quoti
consists in identifying points which are obtained by flowin
along the integral curves ofjAdS for some time,.0. Let
jAdS be timelike in a nonempty regionD,AdSp11 and let
xPD. Since the norm ofjAdS is constant along its integra
curves, the integral curve passing throughx is timelike and
hence lies inD. Therefore the pointg•x is also inD and the
segment of the integral curve fromx to g•x becomes, in the
quotient, a closed timelike curve. A similar argument sho
that the quotient has closed null curves in the region
AdS/G wherejAdS is null.

The situation for quotients of AdSp113Sq is similar. In-
deed, the same argument as for quotients of AdS shows
if j5jAdS1jS is not everywhere spacelike, then any asso
ated discrete cyclic quotient will have closed causal curv

How about ifj is everywhere spacelike? The property
being spacelike everywhere is a necessary condition for
absence of closed causal curves, but it is certainly not su
cient ~see@70# for another example where it fails to be su
ficient and a statement of a sufficient condition, and@71# for
a discussion on this topic and its relation toU duality!. In-
deed, we will show presently that even whenj is everywhere
spacelike, ifjAdS is timelike in some regionD,AdSp11,
then any discrete cyclic quotient associated withj5jAdS
1jS will have closed timelike curves in the region (D
3Sq)/G of the quotient. The key point in the argument is
exploit the fact that the sphere has a bounded diamete
order to construct a timelike curve between two points id
tified by the action ofG which, as in@70#, is different from
the integral curve ofj.

Let us first illustrate this construction with a simple e
ample, which is depicted in Fig. 1. LetC5(R/2pZ)3R de-
note a Lorentzian cylinder coordinatized by (u,t) and flat
metric du22dt2. Let j5]u1a]t be a spacelike Killing
vector, so thata2,1. The integral curve ofj through a point
(u0 ,t0) is the curve

t°~u01t,t01at !.

Let us define an action ofZ on C, generated by the operatio
of flowing along the integral curves ofj for a time,.0:

~u,t!°~u1,,t1a, !.

Consider the two points (u,t) and (u1N,,t1aN,), which
are identified in the quotientC/Z. The geodesic joining this
point to (u,t) is the straight line

t°~@u1tN,#,t1aN, !,

where @•••# denotes the residue modulo 2p. The norm of
the velocity of this curve is therefore

@N,#22N2a2,2<4p22N2a2,2,
6-7
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FIG. 1. Closed timelike curve in a discret
quotient of the Lorentzian cylinder. The dotte
lines represent the ‘‘light cones’’ atx and at
gN

•x. Notice that, although the orbit ofj is
spacelike, the straight line betweenx andgN

•x is
timelike.
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which is clearly negative forN large enough. This curve i
therefore a closed timelike curve in the quotientC/Z.

Now let us go back to the general case. Letg5exp(,X)
for someXPg and,.0, and letj5jAdS1jS be the Killing
vector corresponding toX, with jAdS timelike in some non-
empty regionD,AdSp11. Let xPD3Sq. Since the norms
of each componentjAdS and jS are separately conserve
along the integral curves ofj, these belong toD3Sq, and
hence so doesg•x. For those Killing vectors with AdS com
ponent in Table IV, the associated discrete cyclic groupG
have infinite order, so we can consider pointsx andgN

•x for
N arbitrarily large, which will give rise to the same point
the quotient. We will construct a curve

c:@0,N,#→AdSp113Sq

between c(0)5x5(xAdS,xS) and c(N,)5gN
•x

5„(gN
•x)AdS,(gN

•x)S… which will be timelike for N suffi-
ciently large and hence becomes a closed timelike curv
the quotient.

The curvec is uniquely specified by its two component
cAdS on AdSp11 andcS on Sq. We will take cAdS to be the
integral curve ofjAdS, andcS to be a minimum-length geo
desic betweenxS and (gN

•x)S. Let L denote the diameter o
the sphere; that is, the supremum of the geodesic dista
between any two points. Then the arclength alongcS satisfies

E
0

N,

i ċSidt5N,i ċSi<L,

where the equality is becausei ċSi is constant alongcS and
the inequality is becausecS is length minimizing. Therefore

ici̇25i ċAdSi21i ċSi2<ijAdSi21
L2

N2,2
,

which is negative inD3Sq for N large enough.
Let us remark that this argument applies to any Freu

Rubin background of the form AdS3N, or more generally
M3N, with M Lorentzian admitting such isometries, at lea
when N is complete. Indeed, the supergravity equations
motion forceN to be Einstein with positive scalar curvatur
12402
in

es
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t
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By the Bonnet-Myers theorem~see, e.g.,@72, Sec. 9.3#, if N
is complete, then it has bounded diameter.

This leaves the cases in Table III, where the AdS Killin
vector is nowhere timelike. It is clear that the above arg
ment for closed timelike curves fails in this case. One sho
note that this still does not directly imply the absence
closed timelike curves; however, we will see in the next s
tion that there are in fact no closed timelike curves in any
these cases.

We should also note that in the cases where the Kill
vector is null somewhere, namely,% iB

(0,2)(w i), B(1,2)

% iB
(0,2)(w i), and B6

(2,2)
% iB

(0,2)(w i), we can use a similar
argument to see thatsomequotients of AdSp113Sq still pro-
duce closed causal curves. The point is that if we choos,
such that exp(,XS)PSO(q11) has orderN, then x and x8
5gN

•x can be null separated, asxS85xS, and the separation
in the AdS factor is null ifijAdSi50 at x. Physically, this
corresponds to deforming by a rotation with rational ang
on Sq.

Clearly, however, deformations for whichgS does not
have finite order do exist, and will not lead to closed cau
curves by any of our arguments above. Hence, we sho
discuss all the cases listed in Table III in the next section
they can all give rise to causally nonsingular quotients.

IV. CAUSALLY NONSINGULAR QUOTIENTS

In this section, we shall discuss in detail the geometry
the discrete quotients that are free of closed causal cur
These are based on the two-forms listed in Table III, con
niently deformed when necessary by some nontrivial act
on an odd sphere leaving no invariant directions, so that
full Killing vector field ~3.1! is spacelike everywhere.

Before initiating such a task, we would like to comme
on the general philosophy that we shall apply in each of
particular geometries to be discussed. Just by inspectio
Table III, we know that, given any two-form in that list, w
can study the geometry of the corresponding discrete q
tient in different dimensional AdS spacetimes, starting w
the minimal (n,m) signature in the embedding spaceR(n,m)

that allows the action of the corresponding decomposa
block. In addition to that, we can also study further deform
tions on the sphere sector of the discrete quotient. It is th
6-8
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fore natural to start our analysis in the lowest-dimensio
AdSp113Sq spacetime allowing our causally nonsingul
quotients, and afterward, extend such an analysis to hig
dimensions.

This latter extension is entirely straightforward. Indee
given some adapted coordinate system describing the a
of jAdS in AdSn11, it is very simple to construct an adapte
coordinate system describing the action of the same Kill
vector field in AdSp11 with p.n. This is just obtained by
considering the standard AdSn11 foliation of AdSp11 given
in terms of the embedding coordinates by3

xi5coshx x̂i , i 51, . . . ,n12,

xm5sinhx x̂m, m51, . . . ,p2n, ~4.1!

wherex is noncompact and$x̂i% satisfy the quadric defining
relation giving rise to AdSp11, whereas$x̂m% parametrize an
Sp2n21 sphere of unit radius. Forp5n11, the range ofx is
given by 2`,x,1`, whereas forp2n>2, it is simply
given by x>0. The metric description of AdSp11 in the
AdSn11 foliation defined in Eq.~4.1! is

gAdSp11
5~coshx!2gAdSn11

1~dx!21~sinhx!2gSp2n21.
~4.2!

The foliation given by Eq.~4.2! also gives us an interes
ing description of the asymptotic boundary. If we assumep
2n>2, taking the limitx→` and conformally rescaling by
a factor ofe22x, we can describe the asymptotic boundary
terms of an AdSn113Sp2n21 metric,4

g]5gAdSn11
1gSp2n21. ~4.3!

To see the relation of this coordinate system to the us
Einstein static universe description of the conformal bou
ary, let us write the AdSn11 metric in global coordinates,

gAdSn11
52cosh2rdt21dr21sinh2rgSn21. ~4.4!

Then defining cosu51/coshr, we can rewrite Eq.~4.3! as

g]5
1

cos2u
~2dt21du21sin2ugSn211cos2ugSp2n21!.

~4.5!

This shows that the metric in Eq.~4.3! is indeed conformal to
the Einstein static universe metric onR3Sp21, where we are
writing the Sp21 as an Sp2n21 fibered over an Sn. The co-
ordinates of Eq.~4.3! cover all of the Einstein static univers

3In the following, we shall set the radius of curvatureR to 1.
4For p2n51, we would have2`,x,`, and, conformally re-

scaling by a factor ofe22uxu as we take the limituxu→`, we would
get a description of the boundary in terms of two AdSp patches,
each covering one of the hemispheres of the Sp21 in the usual
Einstein static universeR3Sp21 description of the boundary o
AdSp11.
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apart from theR3Sn21 submanifold where cosu50, which
is conformally rescaled to become the boundary of
AdSn11 factor in Eq.~4.3!.

If there is a globally adapted coordinate system for
action ofjAdS on AdSn11, we can use the above foliation t
construct an adapted coordinate system for the action
AdSp11. If we deform the action byB(0,2)(w i) blocks, these
will act as rotations of the Sp2n21 factor in the above folia-
tion.

When we consider the deformation of our AdS quotie
by some nontrivial action on the transverse sphere, we h
two approaches to the construction of an overall adapted
ordinate such that the total Killing vectorj5]w for some
coordinatew. In most of the cases we consider,5 there is a
globally well-defined adapted coordinate on AdSp11 such
that jAdS5]f . As noted in Sec. II C, there is always a glo
bally adapted coordinate system for the Killing vectors in t
sphere, in whichjS acts by a simple ‘‘translation,’’ i.e.,jS
5]c . Consequently, the full generator of the discrete qu
tient is

j5]f1g]c . ~4.6!

By a linear transformation,w5f,c85c2gf, we are able
to write j5]w . This coordinate system is very convenie
for studying the causal structure and asymptotic structure
the resulting quotient, so this is the technique we sh
mostly employ.

Unfortunately, there are examples where there is no s
globally adapted coordinate system on AdS. The exampl
this type we shall be concerned with is the quotient by
Killing vector with a singleB(1,2) block. In this case, we
need to use a different technique, exploiting the existenc
adapted coordinates on the sphere. The full Killing vec
field ~3.1! can always be written as

j5]c1jAdS. ~4.7!

We can therefore writej as a dressed version of its ‘‘trans
lation’’ component according to

j5U]cU21 where U5exp~2cjAdS!. ~4.8!

Consequently, if the original coordinate system were giv
by $c,zl%, wherezl stand for all the remaining coordinate
describing the manifold AdSp113Sq, it is natural to change
coordinates to an adapted coordinate system defined by

y5Uz, ~4.9!

which indeed satisfies the propertyjy50, so that$yl% are
good coordinates for the space of orbits. Equivalentlyj
5]c in the coordinates~4.9!. Thus, we obtain an adapte
coordinate system on the full quotient for any AdS Killin
vector. For the case at hand, we split the coordinates$zl%
appearing in the above discussion into$zl%5$w̃ i ,xW%, where

5The only exceptions are where the AdS Killing vector has fix
points.
6-9
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FIGUEROA-O’FARRILL et al. PHYSICAL REVIEW D 69, 124026 ~2004!
$xW% stand for the embedding coordinates of AdSp11 in R2,p.

SincejAdS is a Lorentz transformation inR2,p, its action onxW
can be defined by

jAdSxW5BxW , ~4.10!

where B is a (p12)3(p12) constant matrix. Thus
yW (c,xW )5e2c BxW , so that

dxW5ec B~dyW1ByWdc!. ~4.11!

One can now compute the metric in adapted coordina

$c,w̃ i ,yW %. This can be written as

g5ijSi2~dc1B1!21g̃1gAdSp11
12dc• ĵAdS1ijAdSi2dc2,

~4.12!

where the first two terms are just describing the metric onq

in the adapted coordinate system$c,w̃ i% introduced in Sec.
II C, and ĵAdS stands for the one-form associated with t
Killing vector jAdS, that is,

ĵAdS5h i j jAdS
j dyi5h i j ~B•y! jdyi . ~4.13!

After these general considerations, we shall now proc
to discuss the different geometries that appear in these
crete quotients of AdSp113Sq.

A. Non-everywhere-spacelikejAdS

Let us first discuss the three cases in whichjAdS is not
always spacelike. The first of these is where the two-form
% iB

(0,2)(w i), corresponding to the quotient of AdSp11 by
some combination of rotations in orthogonal two-planesR2

in the embedding space. These quotients produce sp
cases of the conical defects, which were discussed ex
sively in, for example@73#. An interesting discussion of th
properties of the supersymmetric orbifolds in string theory
also given in@74,75#. We will not discuss this case furthe
here, except to note that it is for these quotients where
existence of a spin structure is not guaranteed. The cond
for the existence of a spin structure was stated at the en
Sec. II D.

To consider the other two cases in Table III which are
always spacelike,B(1,2)

% iB
(0,2)(w i) and B6

(2,2)
% iB

(0,2)(w i),
we follow our general strategy, and start by describing
action ofB(1,2) or B6

(2,2) in AdS3. The action of a more gen
eral Killing vector of this form on AdSp11 can then be built
up by considering the AdS3 action deformed by the rotation
B(0,2)(w i) on the Sp23 in the AdS33Sp23 foliation of Eq.
~4.2!. We will then add in the deformation on a transver
sphere Sq to obtain an everywhere spacelike quotient.

For the quotient of AdS3 by B(1,2), the relevant Killing
vector is

jAdS5e132e34. ~4.14!

This Killing vector is spacelike almost everywher
uujAdSuu25(x11x4)2. There is a single other Killing vector in
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so(2,2) which commutes with this one,j15e122e24. It has
norm uuj1uu252(x11x4)2. The most convenient coordinat
system for studying this quotient is Poincare´ coordinates.
The form of the Killing vectors in Poincare´ coordinates is
reviewed in Appendix A. It is easy to see from those expr
sions that in the case ofB(1,2) we can orient the coordinate
so thatjAdS5]x andj15] t , where the AdS3 metric in Poin-
carécoordinates is

gAdS3
5

1

z2
~2dt21dz21dx2!. ~4.15!

We see that the effect of the quotient is simply to make
coordinatex periodic. The Killing vectorjAdS becomes null
on the Poincare´ horizonz5` where this coordinate system
breaks down. In terms of the embedding coordinates, thi
the surfacex11x450, wherejAdS5x3(]12]4). We note
that this symmetry has a null line of fixed points atx11x4
5x350 ~parametrized byx12x4). Away from the fixed
points, the identification alongjAdS will generate closed null
curves in the Poincare´ horizon. These can be eliminated b
deforming this quotient by a suitable action on an od
dimensional sphere. Since we do not have a good glo
coordinate system on this quotient, the best way to desc
the causally regular deformed quotient will be to use
coordinates adapted to the action on the transverse sphe
described at the end of the last subsection. We will not g
the details of the application of this general technique for t
particular case; we just remark that for this case, the matrB
defined in Eq.~4.10! is

B5S 0 0 21 0

0 0 0 0

21 0 0 1

0 0 21 0

D . ~4.16!

Following the supersymmetry analysis in@54#, it is easy to
conclude that for a suitable choice of sphere deformation,
above quotient preservesn5 1

4 of the vacuum supersymme
try, that is, it has four supercharges.

For the case where we introduce a deformation on a tra
verse S3, we can interpret the quotient as the near horiz
geometry of a D1-D5 system that has been quotiented by
action generated by

j5]x1u1R121u2R34,

in which x stands for the common direction shared by t
D1-D5 system, andRi j stand for rotations transverse to th
D1-D5’s. In the language developed in@64,65#, this asymp-
totically flat spacetime would correspond to a D1-D5 syst
in a generic intersection of flux seven-brane vacuum. Wh
everu156u2, it would be interpreted as a D1-D5 system
the flux five-brane vacuum, which also has four sup
charges. Note that the standard supersymmetry enhance
due to the near horizon limit is lost in this quotient, as t
generator]x , which does not break any supersymmetry
the asymptotically flat spacetime construction, become
6-10
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null rotation generator from the AdS perspective, whi
breaks one-half of the supersymmetry.

We would also like to understand the boundary of t
quotient. In the Poincare´ coordinates~4.15!, the global AdS
boundary is written in terms of an infinite series of flat spa
patches,

g]52dt21dx2. ~4.17!

The action of the Killing vector on the AdS boundary com
pactifies the spatial coordinatex; it might therefore seem tha
the quotient will have an infinite sequence of boundari
However, the Killing vector only has isolated fixed points
the boundary, at the points where the line of fixed poi
x11x45x350 meets the boundary. In Poincare´ coordinates,
these correspond to the points at past and future time
infinity and at spacelike infinity. The different bounda
patches are therefore connected. We can extend the Poin´
coordinates to cover more of the boundary by defining

v5t2x, tanT5t. ~4.18!

The boundary metric then becomes

g]5
1

cos2T
~22dvdT1cos2Tdv2!, ~4.19!

and the Killing vector we quotient along isjAdS5]v . Since
we have only a conformal structure on the boundary, we
ignore the overall factor in this metric. In the resulting me
ric, we see that the direction we quotient along is space
except whenT5(n11/2)p, where it becomes null. Thes
points correspond to one-half of future and past null infin
in the original Poincare´ coordinates. This coordinate syste
covers the whole of the conformal boundary with the exc
tion of a null line corresponding to one-half of past a
future null infinity in each Poincare´ patch. We could con-
struct a similar coordinate system by definingu5t1x—it
would then cover that half but not the one wheret2x re-
mains finite. We can think of the field theory dual to th
quotient along a null rotation as living on the cylindric
space described in Eq.~4.19!, which has closed null curves a
T5(n11/2)p.6 Since the deformation by an action on
transverse sphere does not alter the action on the bounda
cannot remove these closed lightlike curves in the d
theory.

A more interesting example of a not everywhere space
quotient isB6

(2,2) , where the Killing vector we quotient alon
is

jAdS
6 56~e122e24!1~e132e34!, ~4.20!

respectively. Both are null everywhere,ijAdS
6 i250. From

now on, we shall focus onjAdS
1 ; there is an analogous dis

6There are some obvious similarities between this construc
and the Milne coordinate system on the orbifold of flat space b
boost.
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2 . There are three other Killing

vectors inso(2,2) commuting withjAdS
1 ,

j15e241e13, j25e121e34, j35e142e23.
~4.21!

These satisfy

@j i ,j j #52e i jkjk , ~4.22!

so they define ansl(2,R) symmetry which commutes with
jAdS

1 . This sl(2,R) structure appears because when we w
so(2,2)5sl(2,R) % sl(2,R), the B6

(2,2) Killing vector lies en-
tirely in one of thesl(2,R) factors. A similar structure will
reappear for the same reason in our discussion of the
dual orbifold in Sec. IV B; it was first identified in that con
text in @41#.

We would like to adopt a coordinate system adapted
this symmetry. Since thej i do not commute, we can adap
our coordinates to only one of them. We note thatij1i2

5ij3i251, ij2i2521. Since our interest is in causal stru
ture, it seems natural to adapt the coordinates to the time
vector j2. We therefore want to construct a coordinate s
tem (t,v,r) on AdS3 such thatjAdS

1 5]v and j25] t . This
requires

]~x42x1!

]v
50,

]~x41x1!

]v
522~x32x2!,

]~x32x2!

]v
50,

]~x31x2!

]v
52~x42x1!,

]~x42x1!

]t
5x32x2,

]~x41x1!

]t
5x31x2,

]~x32x2!

]t
52~x42x1!,

]~x31x2!

]t
52~x41x1!.

~4.23!

A combination which is thus independent oft,v is (x4

2x1)21(x32x2)2. We will choose ther coordinate so that
this combination ise2r. A suitable coordinate system sati
fying these criteria and the condition2x1

22x2
21x3

21x4
2

521 defining the AdS3 embedding is

x42x15ersint,

x41x152e2rsint22vercost,

x32x25ercost,

x31x252e2rcost12versint. ~4.24!

The inverse coordinate transformation is given by

n
a

6-11
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e2r5~x42x1!21~x32x2!2,

tant5
x42x1

x32x2
,

v5e22r$@~x31x2!1e22r~x32x2!#2

1@~x41x1!1e22r~x42x1!#2%. ~4.25!

Since these give finite values oft,v,r for all points in AdS3,
this coordinate system covers the whole spacetime. In te
of these coordinates, the metric is

gAdS3
52dt21dr222e2rdvdt. ~4.26!

In this coordinate system, the other two Killing vectors a

j15sin 2t]r1cos 2t~] t2e22r]v!,

j352cos 2t]r1sin 2t~] t2e22r]v!. ~4.27!

We see that making identifications along the Killing vec
]v will produce closed null curves. To eliminate these clos
null curves, we should introduce a deformation by a rotat
on the transverse sphere. To simplify the discussion, we s
work it out explicitly for a transverse S3, having in mind the
standard way of embedding AdS3 in type IIB string theory,
as the near horizon geometry of the D1-D5 system, giv
rise to AdS33S33T4. As discussed in Sec. II C, there a
several inequivalent quotients that one can take of S3. We
will focus on a particular quotient which preserves sup
symmetry, namely, the quotient wherejS5]c when we write
the S3 metric as

gS35du21dc21dw212 cos 2udc•dw. ~4.28!

Thus, we consider the quotient along a total Killing vec
j5jAdS1gjS5]v1g]c . Since we have a globally adapte
coordinate system~4.26! on the AdS part of the quotient, it i
convenient to construct the global coordinate system on
full AdS33S3 quotient by definingc85c2gv. The six-
dimensional metric is then

g52dt21dr222e2rdvdt1du21~dc81gdv !21dw2

12 cos 2u~dc81gdv !•dw. ~4.29!

The quotient is now alongj5]v . We can see that this is a
everywhere spacelike direction;iji25g2. This is a neces-
sary but not a sufficient condition for the absence of clo
causal curves, but it is easy to check explicitly that there
no closed causal curves in the bulk of the quotient manif
in this case. As shown in@54#, the corresponding type IIB
configuration preservesn5 1

8 of the vacuum supersymmetry
that is, it has four supercharges. It is interesting to point
that if we had considered the action on the three-sph
~4.28! generated byjS5]w , the corresponding quotientj
5jAdS1gjS would have preservedn5 1

4 of the full type IIB
supersymmetry.

It is interesting to note that, like the null rotation, th
B6

(2,2) Killing vector also has a simple action in Poinca´
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coordinates. We can orient the coordinates so thatjAdS5] t
1]x in the metric~4.15!. The additional symmetry] t2]x
that is manifest in these coordinates can be written in te
of the sl(2,R) Killing vectors ~4.21! as the combinationj2
2j1. Although the Poincare´ coordinates are not a globa
coordinate system for the quotient, they allow us to rel
these quotients and quotients of branes in asymptotically
spacetimes: theB6

(2,2) quotients can be understood as the n
horizon geometries of a D1-D5 system quotiented by
discrete action generated by

j56] t1]x1u1R121u2R34. ~4.30!

The physical interpretation of these quotients is uncle
They can be supersymmetric, and they are free from clo
causal curves. It might be possible to give them some in
pretation using a limiting procedure in which one final
identifies bulk points along a ‘‘null translation,’’ by infinitely
boosting a spacelike translation. In this case, there is st
supersymmetry enhancement since the asymptotically
quotient has four supercharges.

To discuss the conformal boundary of this quotient,
will use a technique that will be used again in Sec. IV C, a
relate the spacetime to a plane wave. If we setr 5e2r, the
metric ~4.29! becomes

g5
1

r 2
$22dvdt2r 2dt21dr21r 2@du21~dc81gdv !2

1dw212 cos 2u~dc81gdv !•dw#%. ~4.31!

The conformally related metric in curly brackets is a sy
metric six-dimensional plane wave, written in a polar co
dinate system deformed so that]v is a mixture of the null
translation symmetry of the plane wave and a rotation in
four transverse spacelike coordinates.

The conformal mapping between an AdS33S3 space and
a plane wave is implicit in previous work@76#, which
showed that such plane waves can be conformally map
onto the Einstein static universe. That is, since both spa
are conformally flat, we would expect them to be confo
mally related. It is interesting to note the relative simplici
of the relation: AdS33S3 corresponds to the plane wave wi
the axisr 50 excluded, rescaled by a factor of 1/r 2.

More important for our present purpose is that the Killin
vector we wish to quotient along,]v , annihilates the confor-
mal factor ~as doesj25] t), so we can use this conforma
map to study the boundary of the quotient spacetime, and
just to study global AdS33S3. Note that, unlike the double
null rotation in Sec. IV C, the other Killing symmetriesj1
andj2 of this quotient do not also commute with the confo
mal rescaling. They will hence appear as conformal isom
tries in the boundary theory.

The conformal boundary of the quotient~4.31! lies at r
50, and has the metric~up to conformal transformations!

g]522dvdt. ~4.32!
6-12
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Sincev is periodically identified in the quotient, there is
compact null direction through every point in the bounda
As in the null rotation case, these closed null curves in
conformal boundary cannot be removed by a sphere de
mation. This fact can explicitly be checked in Eq.~4.29!. It is
interesting to note that we get the same metric on the c
formal boundary here as on either of the two boundaries
the self-dual orbifold discussed in the next subsection.

If we regard Eq.~4.29! simply as a coordinate system o
AdS33S3, we can relate this description of the conform
boundary to the usual two-dimensionalR3S1 Einstein static
universe boundary of global AdS33S3. In global coordi-
nates, the Killing vector field is given by

j5@11cos~t2w!#~]t2]w!, ~4.33!

where we are using the global coordinates introduced in
pendix A, and further writingx̂35cosw, x̂45sinw, so that
the metric on the boundary reads

g]52dt21dw2. ~4.34!

We see that the quotient is along a null direction, and ha
single null line of fixed points att2w5p ~mod 2p). While
the coordinate system~4.29! covers all of global AdS3
3S3, it does not cover all of its conformal boundary, as the
symmetry-adapted coordinates break down on the fi
points ofjAdS. The coordinates of Eq.~4.29! cover all of the
boundary apart from this null line. They are related to t
global description above in the same way that a symme
plane wave is related to the Einstein static universe in high
dimensional cases@76# ~in two dimensions, there is no non
trivial plane wave!. Thus we see that Eq.~4.32! provides a
natural description of the asymptotic boundary of the q
tient, corresponding to excluding these fixed points in d
cussing the quotient.

While it is clear that the deformed quotient~4.29! is free
of closed causal curves, we can show that this quotient d
not preserve the stable causality of the original AdS33S3

space. If we write Eq.~4.29! in the form appropriate for
Kaluza-Klein reduction alongv,

g52~11g22e4r!dt21dr21du21sin22udw2

12g21e2rdt~dc81cos 2udw!

1~gdv1dc81cos 2udw2g21e2rdt!2, ~4.35!

we see that the lower-dimensional metric obtained
Kaluza-Klein reduction alongv will have closed null curves
since the compact circle parametrized byc8 is null. This
implies that there can be no time functiont on AdS33S3

such thatLjt50, for if there was, the Kaluza-Klein reduce
metric would be stably causal, which is inconsistent with
appearance of closed null curves in the latter. Thus, the
crete quotient cannot satisfy the condition of@70#, and does
not preserve stable causality.

Following the discussion around Eq.~4.2!, it is straight-
forward to describe the quotient generated byjAdS

1 in higher-
dimensional AdSp11 spaces. By construction, the glob
12402
.
e
r-

n-
in

l

-

a

e
d

e
ic
r-

-
-

es

y

e
s-

symmetries of such a higher-dimensional quotient will be
ones discussed before times SO(p22), corresponding to the
rotational symmetry transverse to the subspace wherejAdS

1

acts. Notice that in this case, the metric on the boundar
conformally equivalent to a plane wave metric,

g]522dvdt2r 2dt21dr21r 2gSp23. ~4.36!

In higher dimensions, there exists the possibility to defo
the quotient by rotations, i.e.,% iB

(0,2)(w i). Let us focus on
AdS5, for algebraic simplicity. The metric for AdS5 in the
AdS3 foliation adapted to the action ofjAdS

1 is given by

gAdS5
5cosh2x~2dt21dr222e2rdvdt!1dx21sinh2xdu2.

~4.37!

The deformation consists in acting on the angular directiou
through the generatorj5w]u . Thus, it is convenient to in-
troduce the coordinateu85u2wv, so that jAdS

1 1j5]v .
The metric on the deformed quotient is

gAdS5 /G5cosh2x~2dt21dr222e2rdvdt!1dx2

1sinh2x~du81wdv !2, ~4.38!

where, once again,v;v12p. As expected, the periodic co
ordinatev becomes everywhere spacelike except at the fi
point of the deformed action. This is just a consequence
the fact that the norm of the deformed Killing vector
ijAdS

1 1ji25w2@(x5)21(x6)2#5w2sinh2x, which certainly
vanishes at the origin of the 56-plane, where the fixed po
of j lies.

This particular deformation (wÞ0) breaks all the super
symmetry and it can be interpreted as the near horizon
ometry of a bunch of parallel and coincident D3-branes q
tiented by the action of a null translation plus a rotation. It
certainly possible to turn on supersymmetric deformations
higher-dimensional AdS spacetimes. In particular, it is p
sible to consider families of two-parameter deformations c
responding toB(0,2)(w1) % B(0,2)(w2) in AdS7. Whenever
w156w2, the quotient will preserve supersymmetry. T
corresponding asymptotically flat interpretation would be
terms of parallel and coincident M5-branes quotiented by
action of a null translation plus a certain rotation inR4. The
supersymmetric deformation would correspond to the ac
having ansu(2) holonomy.

B. Self-dual orbifolds and their deformations

The fifth two-form appearing in Table III,B(1,1)(b1)
% B(1,1)(b2) % iB

(0,2)(w i) with ub1u5ub2u, can be interpreted
as the deformation of the self-dual orbifolds of AdS3, first
introduced in@41#, and recently discussed in@43#. The norm
of jAdS is spacelike everywhere. Therefore, one can stu
these geometries with or without any further nontrivial a
tion on transverse spheres.

As already indicated above, the minimal dimension wh
this discrete quotient exists is forp52, i.e., AdS3. The ad-
dition of any rotation parameterw i would increase this di-
mension by 2. Since the elementary nondecomposable b
6-13
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acting on AdS3 is a linear combination of boosts inR2,2, this
discrete quotient does not have an analogue in an asymp
cally flat spacetime, in the sense that there is no quot
whose near horizon limit gives rise to these self-dual or
folds.

The anti–de Sitter action, including the deformation p
rameters$w1%, integrates to the followingR action onR2,p:

S x1

x2

x3

x4

x2i 15

x2i 16

D °S x1coshbt6x3sinhbt

x2coshbt16x4sinhbt

x3coshbt6x1sinhbt

x4coshbt6x2sinhbt

x2i 15cosw i t2x2i 16sinw i t

x2i 16cosw i t1x2i 15sinw i t

D , ; i ,

~4.39!

where we setb15b and b256b. Notice that the above
action is manifestly free of fixed points for any value of t
boost and rotation parameters$b,w i%.

In the following, we shall review the main features of th
self-dual orbifolds of AdS3, extending the discussion to un
cover their embeddings in higher-dimensional anti–de Si
spacetimes and their deformations both by rotations
anti–de Sitter and nontrivial actions on transverse sphe
afterward.

1. Pure AdS

Let us start our discussion by focusing on AdS3, so that
there are noB(0,2)(w i) blocks. In this case, as first describe
in @41#, the quotient preserves anR3sl(2,R) subalgebra of
the original so(2,2)5sl(2,R) % sl(2,R) isometry algebra. A
suitable system of global coordinates adapted to the quo
and the timelike vector insl(2,R) is @41#

x15coshz coshbf cost2sinhz sinhbf sint,

x25coshz coshbf sint1sinhz sinhbf cost,

x352coshz sinhbf cost1sinhz coshbf sint,

x456~coshz sinhbf sint2sinhz coshbf cost !.
~4.40!

The sign ambiguity in the last line of Eq.~4.40! corresponds
to the two distinct casesb256b1 in the SO(2,n) classifi-
cation reviewed in Sec. II B. This illustrates explicitly th
these two cases are related by an orientation-reversing s
metry of AdS3, namely, the reflectionx4→2x4. It is impor-
tant to stress that, at this point, the coordinates$t,f,z% are
just some particular global description for AdS3. All of them
are defined in the range2`,t,f,z,1`. It is only when
we identify points in AdS3 along some discrete step gene
ated byjAdS5]f that our discrete quotients will differ from
AdS3 globally, by making the adapted coordinatef a com-
pact variable with period 2p in some normalization, i.e.,f
;f12p.
12402
ti-
nt
i-

-

r
n
s,

nt

m-

As first proved in@41# for AdS3, corroborated in@43#, and
extended to any higher-dimensional AdS spacetime in@54#,
the supersymmetry preserved by these self-dual orbifold
one-half of the original one.

The metric in adapted coordinates~4.40! looks like

gsd52dt21b2df21dz222b sinh 2zdtdf. ~4.41!

Thus, it describes a nonstatic but stationary spacetime.
interesting feature that has not previously been noted is
t is a global time function, since¹mt¹mt521/cosh22z, so
the self-dual orbifolds are stably causal and hence do
contain closed timelike curves. This metric can be int
preted as an S1 fibration over AdS2, as the following rewrit-
ing indicates:

gsd52cosh22zdt21dz21~bdf2sinh 2zdt!2.
~4.42!

This quotient was recently analyzed in detail in@43#, where
its isometries, geodesics, asymptotic structure, and holo
phy in this background were extensively studied.

An important point to note from that analysis is the stru
ture of the conformal boundaries. It was shown in@43# that
the quotient has two disconnected conformal boundaries
we consider the coordinate transformation

sinhz5tanu, uPS 2
p

2
,
p

2 D ,

the metric~4.41! becomes

gsd5
1

cos2u
@cos2u~2dt21b2df2!1du224b sinudtdf#,

~4.43!

from which we learn that the metric on both conform
boundaries, located atu→6p/2, is given by

g]56dtdf. ~4.44!

Thus, there are closed lightlike curves on the conform
boundary. The appearance of two disconnected bounda
can be further understood by noting that in the adapted
ordinates~4.40! the original AdS3 conformal boundary is
covered by four connected patches located atz→6` and
f→6`. After the discrete identification, two of thes
patches no longer belong to our space, leaving as a co
quence the existence of two boundaries atz→6` that are
disconnected. These boundaries are causally conne
through the bulk, as was shown in@43# by analyzing the
geodesics in this space.

Unlike the previous cases, this quotient has no natu
interpretation as arising from a quotient of an asymptotica
flat spacetime. This is related to the fact that the quoti
does not take a simple form in Poincare´ coordinates. How-
ever, Strominger@77# showed that these self-dual orbifold
emerge as the local description of a very near horizon ge
etry when focusing on the vicinity of the horizon of an e
tremal BTZ black hole.
6-14
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Thus, even though this quotient does not emerge dire
from the D1-D5 perspective, it is nevertheless possible to
up an asymptotically flat spacetime which reproduces
self-dual orbifolds in two steps@43#. This is achieved by
adding some momentum along the common direction sha
by the D1’s and D5’s, and taking the standard near hori
limit, keeping the momentum density fixed. One then
cuses on the vicinity of the horizon resulting from the pre
ous limit. This procedure generalizes the construction in@78#
to the D1-D5 system, and it provides an independent wa
understanding the discrete light-cone quantization~DLCQ!
holography proposed in@43#.

Following our general discussion presented at the be
ning of Sec. IV, it is straightforward to extend the analysis
higher-dimensional AdSp11 spaces, forp>3. Indeed, we
can use the foliation in Eq.~4.1! and replace the$x̂i% appear-
ing there with theR51 version of Eq.~4.40!. The resulting
metric is

gsdp11
5~coshx!2gsd1~dx!21~sinhx!2gSp23,

~4.45!

wheregsd is the metric given in~4.41!.
This allows us to see that in these higher-dimensio

cases the boundary of the quotient will be connected.
point is that the boundary of the quotient in higher dime
sions is given in these coordinates byx→`, as discussed
earlier. Thus, the boundary of the higher-dimensional q
tients naturally contains a copy of the bulk of the AdS3 quo-
tient. Since the AdS3 quotient is connected, this implies th
the boundary of the quotient is connected in higher dim
sions. It also shows us that, unlike the AdS3 case, in higher
dimensions there is a natural nondegenerate metric on
boundary of the quotient.

2. Deformation by B„0,2…

Even though we could discuss the turning on of the
formation parametersw i in the general case, we shall ju
briefly mention their main features in the string theory e
beddings described above. This means that we shall con
trate on AdS5 and AdS7, since these deformations are n
available for AdS4.

This program is particularly simple to carry on already
the foliation defined by Eq.~4.1!. As previously mentioned
B(0,2)(w i) blocks correspond to rotations inR2 planes in the
embedding space, and in the coordinates of Eq.~4.2!, these
motions can be globally described as a single ‘‘translatio
along one of the angular variables of the Sn21 factor. The
definition of the adapted coordinate system in wh
% iB

(0,2)(w i) takes the form of a single ‘‘translation’’ is pre
cisely parallel to the discussion for the transverse Sq given in
Sec. II C.

As an example, consider AdS5. In this case, we can turn
on only one parameterw15w. It is clear that rotations inR2

correspond to motions along the S1 transverse to the AdS3
foliation of AdS5 in Eq. ~4.2!, for p2n52. If we param-
etrize this circle byu, the Killing vector fieldjAdS generat-
ing the full action of the deformed discrete quotient is giv
by
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jAdS5]f1w]u , ~4.46!

in the adapted coordinates defined by Eqs.~4.1! and ~4.40!.
It is now just a matter of applying a linear transformatio

in the $f,u% plane, which will generate an extra fibration,
rewrite the metric in a globally defined coordinate syste
adapted to the deformed Killing vector fieldjAdS. This met-
ric is given by

g5cosh2xgsd1dx21sinh2x~du1wdf!2. ~4.47!

By construction, this deformation will break all the spac
time supersymmetry.

The techniques for AdS7 are exactly the same, but there
a richer structure of possibilities since we have an S3 trans-
verse to the AdS3 action, which allows us to turn on two
inequivalent parameters$w1 ,w2%

w1R121w2R34,

whereRi j stands for a rotation generator in theij plane be-
longing to R4, where the three-sphere is embedded a
quadric. Let us describe this three-sphere in terms of s
dard complex coordinates

z15x11 ix25cosuei (c1w),

z25x31 ix35sinuei (c2w). ~4.48!

A supersymmetric quotient@54# is given by the choicew1
52w25u1. The metric describing the global quotient
given by

gAdS7 /G5cosh2x gsd1dx21sinh2x@du21~dw1u1f!2

1dc212 cos 2u~dw1u1d!•dc#. ~4.49!

Adding a transverse four-sphere and a constant flux on it,
above configuration is supersymmetric. It actually preser
n5 1

2 of the supersymmetries preserved by the origi
vacuum. Thus, it has 16 supercharges. It is worth mention
that the deformation described byw152w2 does not break
any further supersymmetry. It is a further action that we c
consider in our spacetime for free, supersymmetrywise. C
trary to what intuition may suggest, as explained in mo
detail in @54#, the deformationw15w2 breaks all the super
symmetry.

3. Sphere deformations

Let us start our discussion on sphere deformations of s
dual orbifolds on the embedding of AdS33S3 in type IIB
supergravity. The most general action that we can w
down on S3 is given in terms of two real parameters

jS5u1R121u2R34. ~4.50!

Because of the freedom that we have to quotient by the
tion of the Weyl group, we can always choose to work on
fundamental region defined byu1>uu2u.

Among all these quotients, only a subset preserve su
symmetry. In particular, if we consider the action genera
6-15
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by e136e24 on AdS3, the only supersymmetric deformation
are given byu156u2, the signs being correlated. Interes
ingly, such deformations still preserve the same amoun
supersymmetry as the self-dual orbifolds themselves. T
these supersymmetric deformations are for free, as poi
out in @54#, where the reader can also find the explanation
this phenomenon.

The discussion proceeds in an analogous way for hig
dimensional AdS spacetimes. If we consider the
dimensional configuration AdS43S7, their deformations are
characterized by four real numbers

jS5u1R121u2R341u3R561u4R78. ~4.51!

Due to the Weyl group action, we can restrict ourselves
the region defined byu1>u2>u3>uu4u. As discussed in
@54#, there are several loci in this parameter space wh
supersymmetry is allowed. Ifu15u2 andu352u4 the quo-
tient preservesn5 1

4 . Whenever one of the relations

u12u21u31u450,

u11u22u31u450,

u12u22u32u450

is satisfied, the supersymmetry will ben5 1
8 . Finally, there is

enhancement wheneveru15u25u352u4, giving rise
to n5 3

8 .
The discussion for AdS53S5 is fairly simple. The action

on the five-sphere is given in terms of three real parame

jS5u1R121u2R341u3R56. ~4.52!

The deformation preservesn5 1
4 for u15u2 and u350. It

preservesn5 1
8 if u16u26u350, with uncorrelated signs

See@54# for more details.
The only supersymmetric deformation for AdS73S4 out

of the two-parameter family

jS5u1R121u2R34 ~4.53!

is given byu15u2, also preservingn5 1
4 .

As an explicit example of a supersymmetric deformat
of the self-dual orbifold, we shall present one particular e
ample of the above discussion, one embedded in A5
3S5. More precisely, we shall focus onu152, u25u351.
A simple description of this quotient can be obtained
parametrizing the five-sphere in terms of the coordinates

z15x11 ix25cosu1ei (w112c),

z25x31 ix45sinu1cosu2ei (c1w),

z35x51 ix65sinu1sinu2ei (c2w). ~4.54!

One can check thatjS5]c . This is an example in which
both jAdS and jS are described in terms of adapted coor
nates. Thus, by a simple linear transformation, we can ea
write the fully adapted ten-dimensional metric as
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g5cosh2xgsd1dx21sinh2xdu21du1
21sin2u1du2

2

1cos2u1@dw112~dc1df!#21sin2u1@~dc1df!2

1dw212 cos 2u2~dc1df!•w#. ~4.55!

As can be checked from the review of the results in@54#
presented at the beginning of this subsection, this partic
example preservesn5 1

8 of the vacuum supersymmetry
Thus, it has four supercharges.

Of course, there is no conceptual difficulty in dealing wi
deformations that contain both two forms% iB

(0,2)(w i) on
AdS and nontrivial sphere actions. The supersymmetric q
tients can also be found in@54#.

C. Double null rotation and its deformations

The third two-form appearing in Table III,B(1,2)
% B(1,2)

% iB
(0,2)(w i), can be interpreted as a deformation, with d

formation parameters$w i%, of the double null rotation dis-
crete quotient considered in@42#. Indeed, it consists of the
simultaneous action of two spacelike null rotations in tra
verseR1,2 subspaces, and a set of rotations with parame
w i in different transverseR2 planes. Since the norm ofjAdS
is positive everywhere, even forw i50 ; i, there is no need
to deform the previous action by a nontrivial one on a tra
verse sphere to get an everywhere spacelike Killing vec
field j in Eq. ~3.1!.

The minimal dimension where such an object exists is
p54, i.e., AdS5, in which case there are noB(0,2)(w i)
blocks. The pure double null rotation discrete quotient ha
very natural interpretation in the Poincare´ patch: it consists
of the combined action of a null rotation plus a spacel
translation. Consequently, it has a very straightforward ori
in terms of the geometry of a bunch of parallel D3-bran
the pure double null rotation discrete quotient in AdS5 is the
near horizon geometry corresponding to a bunch of para
D3-branes whose worldvolume is the nullbrane, i.e.,R1,3/Z,
four-dimensional Minkowski spacetime modded out by t
simultaneous discrete action of a null rotation inR1,2 and a
spacelike translation alongR, which was first introduced in
@20#.

The full anti–de Sitter action, including the deformatio
parameters, integrates to the followingR action onR2,p:

1
x1

x2

x3

x4

x5

x6

x2i 15

x2i 16

2 °

¨

x12tx31
1

2
t2~x12x4!

x22tx51
1

2
t2~x22x6!

x31t~x42x1!

x42tx31
1

2
t2~x12x4!

x51t~x62x2!

x62tx51
1

2
t2~x22x6!

x2i 15cosw i t2x2i 16sinw i t

x2i 16cosw i t1x2i 15sinw i t

©
, ; i

~4.56!
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which is manifestly free of fixed points for any value of th
rotation parameters.

1. Pure AdS

Let us first consider the pure double null rotation in AdS5.
This was analyzed in@42#. We will extend this analysis by
discussing the isometries preserved by the quotient, c
structing suitable adapted coordinate systems, and exam
the action on the boundary of AdS. In the process, we w
uncover interesting relations to compactified plane wave

The Killing vector that we quotient along is

jAdS5e132e341e252e56. ~4.57!

Its norm isuujAdSuu25(x11x4)21(x21x6)2. This is clearly
positive semidefinite, and the quadric2(x11x4)(x12x4)
2(x21x6)(x22x6)1x3

21x5
2521 defining the AdS embed

ding constrains the coordinates so that it is positive defin
There are four linearly independent commuting isometrie
so(2,4):

j15e132e342e251e56,

j25e151e232e361e45,

j35e122e241e161e46,

j45e352e121e46. ~4.58!

These Killing vectors have the nontrivial commutation re
tions

@j1 ,j2#522j3 , @j1 ,j4#52j2 , @j2 ,j4#522j1 .
~4.59!

They therefore form a Heisenberg algebra on whichj4 acts
as an outer automorphism. The symmetry algebra of the q
tient is hence„h(1)’R…% R. The norms of the Killing vec-
tors areuuj1uu25uuj2uu25uujAdSuu2, uuj3uu250, uuj4uu2521.

We want to construct adapted coordinates to describe
quotient; it is convenient for studying causality to adapt th
to jAdS, j3, andj4. Let us therefore seek to choose coor
nates (t,u,f,r,g) so that j35]v , j452] t , and jAdS
5]f . This requires

]~x42x1!

]f
50,

]~x41x1!

]f
522x3,

]~x62x2!

]f
50,

]~x61x2!

]f
522x5,

]x3

]f
5x42x1,

]x5

]f
5x621x2,

]~x42x1!

]v
50,

]~x41x1!

]v
522~x62x2!,

]~x62x2!

]v
50,

]~x61x2!

]v
522~x42x1!,
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]x3

]v
50,

]x5

]v
50,

]~x42x1!

]t
5~x62x2!,

]~x41x1!

]t
5~x61x2!,

]~x62x2!

]t
52~x42x1!,

]~x62x2!

]t
52~x41x1!,

]x3

]t
5x5,

]x5

]t
52x3. ~4.60!

There are two quantities independent of$t,v,f%: (x42x1)2

1(x62x2)2 andx3
•(x62x2)2x5

•(x42x1). We will choose
coordinates$r,c% so that

~x42x1!21~x62x2!25e2r,

x3
•~x62x2!2x5

•~x42x1!5erc; ~4.61!

we must take2`,r,` and2`,c,` to obtain coordi-
nates that cover the whole spacetime. A coordinate sys
satisfying all these conditions is

x42x15ersint,

x41x152er~2fc12v !cost2~e2r1~c21f2!er!sint,

x62x25ercost,

x61x25er~2fc12v !sint2~e2r1~c21f2!er!cost,

x35er~c cost1f sint !,

x55er~2c sint1f cost !. ~4.62!

The AdS5 metric in these coordinates is

gdnr52dt21dr21e2r~dc21df222dtdv24cdtdf!,
~4.63!

and the other two Killing vectors are

j152cos 2t~]f22c]v!1sin 2t]c ,

j25sin 2t~]f22c]v!1cos 2t]c . ~4.64!

Even though we will not give the explicit details, it is easy
check by working out the inverse coordinate transformat
that this coordinate system covers the whole of AdS. Bef
any identification, the range of all adapted coordinates
noncompact. The double null rotation quotient is simply d
scribed by making the coordinatef compact.

We would also like to understand the conformal bound
of this quotient. First, we should note that, even though
quotient is free of fixed points in the bulk, its boundary ha
continuous line of them. The action generated byB(1,2)

% B(1,2) integrates to the real line, so the only possible fix
points are the ones for whichjAdS vanishes. These points ar
given by
6-17
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x42x15x62x15x35x550.

The above does not belong to AdS5, since the points do no
satisfy the quadric equation~2.1!. This is indeed true for the
bulk of AdS ~finite noncompact spacelike direction in glob
AdS!, but there is a continuous curve of fixed points on
infinite cylinder of axis, global timet, and a maximal circle
base. To see this, consider the standard global descriptio
AdS5,

x15coshx cost,

x25coshx sint,

xi5sinhx x̂i , i 53, . . . ,6,

where $x̂i% parametrize a three-sphere of unit radius. It
easy to see that any solution to the fixed point conditio
requiresx→`, from which we already learn that such poin
belong to the boundary of AdS5. It is also clear thatx̂3

5 x̂550. Thus, such fixed points belong to a maximal circ
in the x4-x6 plane. If the angular variable describing such
maximal circle isw (0<w,2p), the continuous line of
fixed points is determined by

t5w ~mod 2p!.

Thus, the action of the quotient is well defined on t
global boundary of AdS~i.e., the Einstein static universe!
with a single null line deleted. However, we know that t
Einstein static universe with a null line deleted is conform
to a symmetric plane wave@76#. This suggests that th
boundary of~4.63! should be described in terms of a pla
wave.

Inspired by this and the analysis of theB6
(2,2) case in Sec.

IV A, let us now make a coordinate transformationZ5e2r

in Eq. ~4.63!. The metric then becomes

gdnr5
1

Z2
~22dtdv2Z2dt21dZ21dc21df224cdtdf!,

~4.65!

where 0,Z,` covers the whole of AdS5. By rescaling the
metric by a factor ofZ2, we can conformally map globa
AdS5 into the space with metric

ḡ522dtdv2Z2dt21dZ21dc21df224cdtdf,
~4.66!

with the conformal boundary lying atZ50. Since jAdS
5]f annihilates the conformal factor, this embedding co
mutes with the quotient; we can regard the double null ro
12402
n
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tion as conformally embedded in~4.66! with f
compactified.7

Now, the space~4.66! is simply a symmetric plane wave
This can be made obvious by making the further coordin
transformation8

V5v1cf,

U5t,

X5c cost1f sint,

Y52c sint1f cost, ~4.67!

under which the metric becomes

ḡ522dUdV2~X21Y21Z2!dU21dX21dY21dZ2.
~4.68!

This provides an interesting alternative description of
double null rotation, of interest independent of the quest
of the conformal boundary. As in Sec. IV A, this relatio
between the symmetric plane wave and AdS is anticipated
previous work, since they are both conformally flat spac
and hence conformally embedded in the Einstein static u
verse. We see also that AdS covers half of the plane wav
Z.0, as we would expect, since it covers half the Einst
static universe. What is remarkable is that the isometry
want to quotient along commutes with the conformal resc
ing, as noted above. In fact, not only does it do so; all
unbroken symmetries of the double null rotation also do
since they do not involve]r . Thus, they are all symmetrie
of the conformally related plane wave metric~4.68!. If we
introduce the usual basis for the Killing vectors of the pla
wave,

jei
52cosU]Xi1XisinU]V ,

je
i*
52sinU]Xi2XicosU]V ,

jeV
5]V ,

jeU
52]U , ~4.69!

we can identify the isometries of the double null rotati
quotient as

7Note that this conformal embedding does not provide a true c
pactification of the spacetime, since Eq.~4.66! is itself not compact.
As noted above, this represents the necessary exclusion of the
points of the quotient in the Einstein static universe.

8It is worth noting that there is a simple relation between the
and the embedding coordinates for AdS5 : x42x15(sinU)/Z, x4

1x152@V cosU1(X21Y21Z2)sinU#/Z, x62x25(cosU)/Z, x6

1x25@V sinU2(X21Y21Z2)cosU#/Z, x35X/Z, x55Y/Z.
6-18
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jAdS52je
1*
2je2

,

j152je
1*
1je2

,

j252je1
2je

2*
,

j35jeV
,

j45jeU
2jM12

. ~4.70!

Thus, the double null rotation is conformally related to
compactification of the plane wave of the type considered
@79#.

To return to the question of the conformal boundary of
double null rotation, we see that it is given by the surface
Z50 in Eq. ~4.66!, with metric

g]522dtdv1dc21df224cdtdf. ~4.71!

This is itself a compactified plane wave, as can be seen
the application of the coordinate transformation~4.67!. One
might be puzzled by this result, as one would have expec
to find the nullbrane as the conformal boundary of the dou
null rotation. We demonstrate in Appendix B that th
nullbrane is in fact related to Eq.~4.71! by a further confor-
mal transformation. Thus, Eq.~4.71! and the nullbrane de
scribe the same conformal structure on the boundary.
description in terms of the compactified plane wave~4.71! is
preferable to the nullbrane for two reasons: First,
nullbrane covers only a part of the boundary@it corresponds
to the region2p/2,t,p/2 in Eq. ~4.71!#, so the former
description is more global. Second, the further conform
transformation to the nullbrane does not commute with
symmetryj4 of the double null rotation. If we work with Eq
~4.71!, all the unbroken symmetries of the bulk spacetim
after we perform the quotient are realized as symmetrie
the boundary~rather than conformal isometries!. This should
be a helpful simplification in studying the holographic re
tion for this spacetime.

The connection to plane waves also makes it easy to id
tify a time function for the double null rotation. Writing th
double null rotation metric~4.65! in the form suitable for
Kaluza-Klein reduction alongf,

g5
1

Z2
@22dvdt2~Z214c2!dt21dc21~df22cdt!2#,

~4.72!

we see that the lower-dimensional spacetime would agai
a plane wave~up to conformal factor!. Hence, applying the
results of@70#, where time functions were found for gener
plane waves, we can deduce that a suitable time function
the nullbrane is

t5t1
1

2
tan21S 4v

11Z214c2D . ~4.73!

It is easy to check that
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4Z2

@~11Z214c2!2116v2#
. ~4.74!

Thus,t is a good time function on AdS. SinceLjAdS
t50, its

existence shows that the double null rotation quotient of A
preserves the property of stable causality by the genera
gument of@70#.

As recently discussed in@54#,9 the supersymmetry pre
served by this double null rotation quotient in AdS5, and
actually in any higher-dimensional AdS spacetime embed
in a supergravity theory, isn5 1

2 . That is, this configuration
has 16 supercharges. It is interesting to comment on the
lation with the single null rotation quotient. In that case, w
argued that the standard enhancement of supersymm
when taking the near horizon geometry was lost after
identification. This may suggest that the same phenome
is taking place in the double null rotation, since the acti
generated by the latter is the combination of two commut
null rotations. However, the general solution to the eige
value problem

N«5N1•N2«50,

whereN stands for the full double null rotation generator
the spinorial representation, andNi , i 51,2, stand for nilpo-
tent operators, is not given in terms of the intersection
kernels of the nilpotent operators associated with each of
null rotations, which would give rise ton5 1

4 , but there exist
nontrivial solutions@54# that enhance supersymmetry to on
half. Thus, in this case, the double null rotation quotie
preserves the same amount of supersymmetry as the c
sponding asymptotically flat analogue in terms of para
and coincident D3-branes in the nullbrane vacuum.

Deformation by B(0,2). In order to turn on any deforma
tion parameter, we must consider higher-dimensional A
spacetimes. In particular, it is natural to consider AdS7, since
this is very naturally obtained in M theory from the ne
horizon limit of M5-branes. If we denote bya the deforma-
tion parameter, the deformed seven-dimensional quotient
be written as

gAdS7 /G5cosh2xgdnr1dx21sinh2x~dw11adf!2,
~4.75!

wheregdnr stands for Eq.~4.63!.
Since we turned on only a single deformation parame

a, the corresponding seven-dimensional quotient, when
bedded in string theory, will break supersymmetry. It is c
tainly possible to construct supersymmetric versions of
latter by deforming the orbifold action with a nontrivial ac
tion on S4.

9In @42#, it was claimed that the amount of supersymmetry p
served by the double null rotation quotient wasn51/4, but as
shown in@54#, the latter is actually enhanced ton51/2.
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2. Sphere deformations

Let us start our discussion on sphere deformations of
double null rotation quotient by focusing on AdS53S5. The
family of deformations is described by Eq.~4.52!, that is, by
three real parameters. As discussed in@54#, the only super-
symmetric loci in the fundamental region defined by the
tion of the Weyl group is, in addition to the origin, give
either by u15u2 and u350, preservingn5 1

4 , or by u1
2u26u350, preservingn5 1

8 .
The discussion for AdS73S4 is analogous. In this case

there exists a two-parameter family of deformations, giv
by Eq. ~4.53!. The only supersymmetric loci in the funda
mental region defined by the action of the Weyl group
either the origin, corresponding to the double null rotati
quotient itself, or the lineu15u2, which preservesn5 1

4 .
As an explicit example of a sphere deformation of t

double null rotation quotient, we shall focus on a supersy
metric deformation on AdS53S5. We will focus on the same
sphere action considered in Sec. IV B 3. As before, we ap
the general formalism developed in Eq.~4.8! for the full
Killing vector j5jAdS1jS. If we introduce adapted coordi
nates so thatj5]f by defining c85c2gf, the full ten-
dimensional metric on the quotient space will be

g5gdnr1du1
21sin2u1du2

21cos2u1@dw112~dc81gdf!#2

1sin2u1@~dc81gdf!2

1dw212 cos 2u2~dc81gdf!•w#, ~4.76!

wheregdnr denotes the metric on the quotient of AdS5 given
in Eq. ~4.63!.

We could consider quotients involving both two-form
% iB

(0,2)(w i) acting on AdS and sphere deformations. T
techniques required to deal with them are exactly the sam
those used above. The reader can find an analysis of
supersymmetry in@54#.

V. BLACK HOLES AS QUOTIENTS

In the previous section, we discussed causally reg
quotients, which arise in some cases where the Killing vec
defining the AdS orbifold is nowhere timelike. One mig
think that these are the cases of primary interest, since
other quotient will have at least a region of closed timel
curves. However, as is well known, certain causally
behaved quotients can be given an interpretation as an
logue of black holes@36,37#.

The idea is that one can excise regions where closed t
like curves will arise from the original spacetime, and co
sider the quotient just of the remaining portion of AdSp11.
The resulting geometry will be causally regular by constr
tion, but will clearly not be geodesically complete, having
‘‘singularity’’ corresponding to the boundary of the excise
region. This singularity is not a curvature singularity in t
classical geometry, but extending the spacetime beyon
would introduce causal pathologies; it is therefore expec
on the basis of the chronology protection conjecture t
quantum corrections will lead to a true singularity at th
location. The interesting question is whether this singula
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is naked—that is, visible from infinity—or concealed by a
event horizon. If it is behind an event horizon, we view t
quotient geometry as a black hole, generalizing the BTZ
lution @36,37#.

In this section, we will study which quotients can lead
black holes of this type. Unlike in the previous sectio
where deformation on the sphere introduced qualitativ
new possibilities, we find that the quotients with a black ho
interpretation are the BTZ quotients in AdS3, and the higher-
dimensional generalization of the nonrotating BTZ quotien
coupled with some action on the sphere.

First, we need to establish what region of the spacet
we remove. In@38#, where quotients acting just on the Ad
factor were considered, it was argued that we should rem
the region where the Killing vectorjAdS fails to be spacelike.
Clearly, the quotient will contain closed timelike curves
this region. However, it is not in general true that all clos
timelike curves will pass inside this region. In particular, f
cases withB(0,2)(w i) components, this does not remove a
the closed timelike curves.

Closed timelike curves in the region wherejAdS is space-
like can be constructed by an argument very similar to t
used in Sec. III. As discussed at the beginning of Sec. IV,
any of our quotients, we can construct a natural coordin
system ~4.1! on the AdS part, in which we decompos
AdSp11 in terms of an AdSn11 and a Sp2n21 factors, where
the Killing vector generating the quotient isjAdS5jAdSn11

1j r , with jAdSn11
acting only on the AdSn11 part of the

metric ~4.2! and containing the nontrivial block or blocks
while the j r is a combination of rotations@the B(0,2)(w i)
blocks# acting on the unit sphere Sp2n21. Now consider an
orbit wherejAdS is spacelike, butjAdSn11

is timelike. As in
Sec. III, we can construct a closed curve which follows t
orbit of jAdSn11

on the AdSn11 factor and a length-

minimizing geodesic on the Sp2n21 factor. There are identi-
fied points that are separated by an arbitrarily large time
distance in the AdSn11 factor; since the separation o
Sp2n21 is bounded, this closed curve will be timelike fo
sufficiently large separation on the AdSn11 factor. Obvi-
ously, a similar argument applies when we consider the
formation on the transverse sphere; there will be closed ti
like curves wherever the norm of the nontrivial blocks tak
on their own is timelike.

Thus, it would seem that a natural region to excise is
region wherejAdSn11

is timelike. That is, the region to excis
is determined by the norm of the nontrivial blocks, omittin
all the rotations@both B(0,2)(w i) and the rotations on trans
verse spheres#. Note, however, that this is still not sufficien
to eliminate the closed timelike curves in all cases. That
the resulting quotient is not guaranteed to be causally re
lar. However, this is the only possibility we will conside
here. It represents the natural generalization of the const
tion of black hole solutions of@36,37# to higher dimensions.
We will focus on seeing what black analogues can be c
structed by removing this portion of the quotient. We will s
that the resulting spacetime in the black hole examples ar
fact free of closed causal curves.

The singularity surface we consider is then whe
6-20
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jAdSn11
•jAdSn11

50 in AdSp113Sq. Our main concern for
the rest of this section is to establish in which cases
singularity surface is naked, and in which cases it is c
cealed by an event horizon. SincejAdSn11

is a Killing field,

¹jAdSn11
~ ijAdSn11

i2!52i jAdSn11
~¹jAdSn11

jAdSn11
!50,

~5.1!

so jAdSn11
is always tangent to surfaces defined

ijAdSn11
i25const. Hence, the ‘‘singularity’’ defined b

ijAdSn11
i250 has a null tangent, and must be a timelike

null surface. We think of such a quotient as an analogue
black hole if there is a nontrivial event horizonJ̇2(J 1) in
the quotient. Since the singularity surface is timelike or n
this can only happen if the singularity surface divides
future null infinity J 1 of the AdSp11 spacetime into discon
nected regions. The behavior of the Killing vector on t
asymptotic boundary of the AdS spacetime is therefore
sential in determining if a given case is a black hole or n

A. AdS3 black holes

For the AdS3 case, the addition of a deformation on th
sphere does not significantly modify the analysis of@37#: the
only quotients which lead to black holes are the ones wh
AdS Killing vector field is associated with the two-form
B(1,1)(b1) % B(1,1)(b2), for ub1uÞub2u, and B(2,2)(b) for b
Þ0, corresponding to nonextremal and extremal black ho
respectively. These AdS Killing vectors correspond to typeb
and type IIa in the notation of@37#.10 When embedding thes
black holes in string theory, it is certainly natural to emb
them in type IIB, in terms of AdS33S33T4, coming from
the near horizon of the D1-D5 system. Thus, the most g
eral Killing vector field giving rise to black holes is given b

j5jBTZ1u1R121u2R34, ~5.2!

where we are using the notation introduced in Sec. II C.
The metric on these solutions is easily constructed.

simplicity, we shall focus again on the deformation for whi
u15u25g. Let us adopt BTZ coordinates on the AdS spa
so thatjAdS3

5]f , and adapted coordinates on the sphere

that jS5]c . Then the metric is

g52
~r 22r 1

2 !~r 22r 2
2 !

r 2
dt21

r 2dr2

~r 22r 1
2 !~r 22r 2

2 !

1r 2S df2
r 2r 1

r 2
dtD 2

1du21dx21dc2

12 cos 2udxdc, ~5.3!

10Note that theM5J50 black hole solutions of@37#, obtained by
quotienting byB(1,2), do not have a generalization to include rot
tion on the sphere, as the associated AdS Killing vectors are
where timelike, so these give causally regular quotients once a
trivial jS3 is included, as described in the previous section.
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and the quotient introduces the periodic identificationsf
;f12pm,c;c12pgm, mPZ. If we introduce a coordi-
natec̃5c2gf, thenj5]f and the metric in fully adapted
coordinates is

g52
~r 22r 1

2 !~r 22r 2
2 !

r 2
dt21

r 2dr2

~r 22r 1
2 !~r 22r 2

2 !

1r 2S df2
r 2r 1

r 2
dtD 2

1g2df2

12gdf~dc̃1cos 2udx!1du21dx21dc̃2

12 cos 2udxdc̃. ~5.4!

Note that the deformation on the sphere does not affect
leadingr 2 part of the metric at large distances, so the str
ture of the asymptotic boundary of the black hole is n
changed. From the point of view of Kaluza-Klein reductio
over the sphere, this geometry is described as the rota
BTZ black hole with a flatSU(2)L,SO(4) gauge connec-
tion Af

3 5g turned on, in analogy with previous discussio
of conical defects@73#. Since the gauge field has zero stres
energy, it does not modify the three-dimensional metric.
presence does however modify the supersymmetry co
tions @73#. Unlike in the conical defect case, we cannot ma
nonsupersymmetric black hole solutions supersymmetric
adding a deformation on the sphere, as we cannot balanc
hyperbolic black hole holonomy by a holonomy inSU(2).

B. Higher-dimensional black holes

Let us now investigate what happens in higher dime
sions. For the excision we are studying, the singularity
determined by the nontrivial part of the AdS action,jAdSn11

,
and the presence of horizons is determined by conside
the intersection of this singularity surface with the Ad
boundary. We therefore focus on the AdS part of the sto
and only add in the sphere at the end.

We want to know if there is an event horizon in the qu
tient. Since the location of the singularity is determined
jAdSn11

, it is natural to study this using the decompositio
~4.1!. This considerably simplifies the task of studying t
higher-dimensional cases, by relating it to the low
dimensional classification. It would require considerab
work to determine directly from the form of the Killing vec
tors whether or not event horizons exist. By relating th
question to the existence of horizons in lower dimensio
we can avoid most of this work and also gain some valua
insight into the differences between the AdS3 case and
higher dimensions.

For a Killing vector that does not contain aB(2,3) block, a
B6

(2,4)(w) block, two B(1,2) blocks, or aB(1,2) and aB(1,1)

block, we can adapt the coordinate system of Eq.~4.2! with
n52; that is, we can decompose AdSp11 in terms of AdS3
and Sp23 factors. The Killing vector then decomposes
jAdS5jAdS3

1j r , wherejAdS3
acts only on the AdS3 part of

the metric~4.2! and contains the nontrivial block or blocks

o-
n-
6-21
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while the j r is a combination of rotations@the B(0,2)(w i)
blocks# acting on the unit sphere Sp23. Furthermore,jAdS3

is
precisely the Killing vector associated with the same type
quotient in the analysis of@37#.

We would like to exploit this decomposition to simplif
the problem of finding horizons. We will show that there is
simple condition on the action in AdS3 which will imply that
the singularity is naked in AdSp11. The existence of a non
trivial event horizon in the quotient spacetime implies th
there are points in the singularity surfaceuujAdS3

uu250 which
cannot be connected to the same asymptotic region in
the past and the future. Conversely, if a point in AdS w
uujAdS3

uu250 lies on some timelike curve which lies entire

in the region whereuujAdS3
uu2>0 in the bulk and starts an

ends in some connected component of the region of
boundary whereuujAdS3

uu2.0, this point on the singularity
will be naked in the quotient. Thus, the existence of suc
curve implies the nakedness of the singularity.

Now, in the coordinates~4.2!, we can consider the restric
tion to the AdS3 factor at some fixed point on the sphe
factor thatj r acts on, and ask if there is such a curve wh
in addition stays in this submanifold. This will supply a su
ficient condition for nakedness of the singularity which c
be expressed in AdS3 terms. We therefore want to look for
timelike curve in AdS3 which connects points in the sam
connected component of the region of the boundary wh
uujAdS3

uu2.0 through the region whereuujAdS3
uu2>0 in the

bulk, and passing through a point atuujAdS3
uu250. But this is

the same thing as the condition for a naked singularity
AdS3: cases that do not lead to black holes in AdS3 do not
lead to black holes in higher dimensions either. Horizons
arise only in the cases where there is a horizon in the A3
quotient.

Consider now the cases which give black holes in Ad3;
that is, the B(1,1)(b1) % B(1,1)(b2) for ub1uÞub2u, and
B(2,2)(b) for bÞ0. Consider first the rotating black hole
We will see that there will be no horizons in the highe
dimensional cases. In the quotient of AdS3, we obtained a
solution with an inner horizon and a timelike singularity,
any point on the singularity surface was connected to
boundary to both the past and future, but it was connecte
different components of the boundary, so this did not im
the absence of a horizon. In higher dimensions, however
can describe the asymptotic boundary in terms of an A3
3Sp23 metric,

g]5gAdS3
1gSp23. ~5.5!

Since the portion of the bulk of AdS3 wherejAdS3
is space-

like is connected, the portion of the boundary of AdSp11
where jAdS3

is spacelike will be connected, and hence t
curves that link a point on the singularity to the bounda
have their end points in a single connected component of
region of the boundary whereuujAdS3

uu2.0. Thus, they im-
ply that the singularity is naked in the higher-dimension
quotients, as noted for the casep53 in @38#.
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This leaves only the cases where we quotient by a Kill
vector with a singleB(1,1) factor, which would correspond to
a nonrotating black hole in AdS3. We will see shortly that
this case does have a nontrivial event horizon for AdSp11 ,
p>2. This is thus the only case involving AdS3 blocks with
an event horizon in higher dimensions.11

It remains to consider the Killing vectors containin
blocks B(2,3) and B6

(2,4)(w), and the cases containing tw
B(1,2) blocks or aB(1,2) block and aB(1,1) block. However,
these do not lead to any more examples with horizons.
two B(1,2) blocks, this is obvious, as the Killing vector i
nowhere timelike. For theB(2,3) block, we can observe that i
was shown in@38# ~where this case is called type V! that
there is no horizon in this case in AdS4; this can easily be
extended to show that there is no horizon in higher dim
sions by the arguments used above. For aB(1,2) block and a
B(1,1) block, we can similarly appeal to the analysis of@38#.

For the B6
(2,4)(w) blocks, we analyze the situation i

AdS5, and appeal to the argument set forth above to ext
the conclusion to general dimensions. In AdS5, the Killing
vector is

jAdS5e152e356e262e461w~7e121e341e56!. ~5.6!

The norm of this Killing vector is

ijAdSi252w214w@x6~x32x1!2x5~x47x2!#

1~x32x1!21~x47x2!2, ~5.7!

where $x1 , . . . ,x6% are the R2,4 embedding coordinates
Adapting a global coordinate system on AdS5,

x15coshr cost, x25coshr sint,

x35sinhr cosu cosf, x45sinhr cosu sinf,

x55sinhr sinu cosc, x65sinhr sinu sinc, ~5.8!

the norm becomes

ijAdSi252w214w sinhr sinu@2coshr sin~c6t !

1sinhr cosu sin~c2f!#1cosh2r1sinh2r cos2u

22 coshr sinhr cosu cos~f6t !.

Thus, we see that the global time dependence of the nor
simply a simultaneous rotation in the two anglesf,c on the
S3 in AdS5. Thus, the region of the boundary where t
norm of the Killing vector is spacelike is clearly connecte
and this case does not give rise to a black hole in any dim
sion.

Thus, the only quotient with a black hole interpretatio
for p.2 is the quotient by an AdS Killing vectorB(1,1)(b)
% iB

(0,2)(w i). The resulting quotient is the highe

11We are again excluding the case ofB(1,2), corresponding to an
M50 black hole, on the grounds that once we include rotation
the sphere, this will become a causally regular quotient.
6-22



ck

-
n
r

o

r
ta
a

gl

,

te
-
qu
tr

t
ov
ne

h

ed
y

n
Z

E
ve

ec-
ey

t is

e
In

in

-

hey
m-
her
v-

the
e

by

za-
c-

t of
e

for-
is

ck

es

al
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dimensional generalization of the nonrotating BTZ bla
hole. Special cases of this solution forp53,4 have been
discussed before in@38–40#.12 As above, the natural coordi
nate system on these quotients in general is the one give
the decomposition~4.1!. If we adopt adapted coordinates fo
the B(1,1)(b) action on the AdS3 factor, this is

g5cosh2xS 2~r 221!dt21
dr2

r 221
1r 2df2D

1dx21sinh2xdVp23 , ~5.9!

where we have reabsorbed the length scaler 1 associated
with the black hole by rescaling coordinates, so the period
the angular coordinatef depends onr 1 . The quotient
makes identifications inf with some twist on the Sp23 de-
termined by thew i . We note that although these are defo
mations of the higher-dimensional BTZ quotient by ro
tions, they do not look like rotating black holes in the usu
sense:] t is still hypersurface orthogonal, and there is a sin
horizon.

The special case where we consider a simple boost
w i50, was considered in detail in@38–40#. In this case the
quotient preserves, in addition to the symmetry associa
with j, an SO(1,p21) symmetry in the orthogonal sub
space. Various coordinate systems were defined on the
tient which are adapted to make some or all of this symme
manifest in@39,40#. We would like to briefly connect to tha
work by showing how our preferred coordinate system ab
which makes the AdS3 structure manifest is connected to o
of those coordinate systems.

In @40#, ‘‘spherical’’ coordinates were defined, in whic
the metric takes the form

g5~r221!@2sin2udt21du21cos2udVp23#

1
dr2

~r221!
1r2df2. ~5.10!

These coordinates are one example of coordinates adapt
the SO(1,p21)3SO(1,1) symmetry of this spacetime. The
are related to Eq.~5.9! by the coordinate transformation

cosu5
sinhx

Ar221
, r5r coshx. ~5.11!

It is interesting to note that this shows that the SO(1,1) ma
fest in Eq.~5.10! is precisely the time translation of the BT
black hole. Note that the spherical coordinates of Eq.~5.10!
cover more of the spacetime than the BTZ coordinates of
~5.9!. This illustrates that, while the coordinates we ha

12Note that in@38# it was claimed that this does not lead to a bla
hole for w iÞ0. This is because@38# took the singularity surface to
be uujAdSuu250, which does not eliminate all closed timelike curv
in this case. We take the singularity surface to beuujAdS3

uu250,
cutting out more of the global AdS spacetime; this gives a caus
regular spacetime which can be interpreted as a black hole.
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constructed adapted to the decomposition of the Killing v
tor in terms of lower-dimensional quotients are useful, th
are not the best coordinate system for every purpose.

Another interesting coordinate system on this quotien
the ‘‘de Sitter’’ coordinates of@40#, which were used in
@80,81#, where this locally AdSp11 black hole arises as th
asymptotic behavior of the bubble of nothing solution.
that context, it is convenient to adopt a coordinate system
which the metric is

g5~11R2!df21
dR2

11R2

1R2@2dt21cosh2t~dũ21sin2ũdVp23!#.

~5.12!

These coordinates are adapted to the same SO(1,p21)
3SO(1,1) symmetry as in Eq.~5.10!. The coordinate trans
formation relating Eq.~5.12! to Eq. ~5.10! is

r2511R2, cosu5cosht sinũ, tanht5
tanht

cosũ
.

~5.13!

These ‘‘de Sitter’’ coordinates have the advantage that t
cover the whole exterior region of the black hole. They de
onstrate that the black hole is not a static solution in hig
dimensions; there is no Killing vector which is timelike e
erywhere outside the black hole event horizon.

As in the three-dimensional case, when we consider
quotient of AdSp113Sq, we can write the AdS and spher
factors in adapted coordinates separately, so thatjAdS5]f ,
andjS5]c . Fully adapted coordinates are then obtained
setting c̃5c2gf, which introducesO(1) cross terms be-
tween AdS and sphere coordinates. Again, from the Kalu
Klein reduced point of view, what we are doing is introdu
ing a flat SO(q11) gauge connectionAf

a 5g on the black
hole solution above, without modifying the metric.

One other issue deserves a comment on the subjec
black holes: in@40#, it was claimed that a rotating black hol
solution could be constructed by taking a quotient of AdS5.
We want to point out that this is not the same as the de
mation byB(0,2)(w i) discussed above; in fact, this quotient
not a black hole. The solution of@40# was given by consid-
ering AdS5 in the coordinates

g5sinh2r@2cos2ud t̃21du21sin2udc2#

1dr21cosh2rdf̃2, ~5.14!

and making identifications alongf5f̃ at fixed t5(r 1 t̃

2r 2f̃)/(r 1
2 2r 2

2 ). This gives a ‘‘black hole’’ metric of the
form

ly
6-23
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g5cos2uF2
~r 22r 1

2 !•~r 22r 2
2 !

r 2
dt2

1r 2S df2
r 2

r 1•r 2
~r 22r 1

2 !dtD 2G
1

r 2dr2

~r 22r 1
2 !•~r 22r 2

2 !
1

~r 22r 1
2 !

~r 1
2 2r 2

2 !
~du21sin2udc2!

1
r 1

2 ~r 22r 2
2 !

~r 1
2 2r 2

2 !
sin2udf2, ~5.15!

wherer 25r 1
2 cosh2r2r2

2 sinh2r. Since the coordinatest̃ and

f̃ in Eq. ~5.14! both parametrize SO(1,1) symmetries@while
x parametrizes an SO(2) symmetry#, we can easily see tha
this quotient corresponds to the rotating BTZ black hole ty
of quotient: that is, to a quotient by a Killing vector forme
from B(1,1)(b1) % B(1,1)(b2), with b1b2Þ0. This can be
seen explicitly by noting that, defining the new coordina
x, r̄ by

sinh2x5
~r 22r 1

2 !

~r 1
2 2r 2

2 !
sin2u,

r̄ 22r 2
2 5

r 22r 2
2

cosh2x
, ~5.16!

we can rewrite Eq.~5.15! as

g5cosh2xF2
~ r̄ 22r 1

2 !•~ r̄ 22r 2
2 !

r̄ 2
dt2

1 r̄ 2S df1
r 2

r 1 r̄ 2
~ r̄ 22r 1

2 !dtD 2

1
r̄ 2dr̄2

~ r̄ 22r 1
2 !•~ r̄ 22r 2

2 !
G1dx21sinh2xdc2,

~5.17!

showing that the quotient space has a rotating BTZ bl
hole factor and a circle factor, as expected for this type
quotient. Now, we have argued above that the presence
rotating BTZ black hole factor implies that the region of t
boundary of AdS5 where the Killing vector we are quotien
ing along is spacelike is connected. Thus, this quotient c
not lead to an event horizon. The apparent presence o
event horizon in the coordinates~5.15! is attributable to
those coordinates not covering the whole of infinity.

VI. ON PENROSE LIMITS OF DISCRETE QUOTIENTS

In Sec. III, we determined the subset of quotients
AdSp113Sq spacetimes having closed timelike curves.
the main body of this work, we focused on the quotie
which are free of closed causal curves, or on those hav
12402
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them, but allowing a black hole interpretation. We would li
to finish our work with some short discussion regarding
relation of a subset of quotients of AdSp113Sq having
closed timelike curves and not falling in the black hole c
egory andcompactifiedplane waves and Go¨del-type uni-
verses, both having closed timelike curves. The relation
tween closed timelike curves in quotients of AdSp113Sq

and compactified plane waves was already briefly co
mented on in@70#.

That such a relation should exist is very intuitive, give
the existing relation between Penrose limits of AdSp113Sq

and plane waves@61–63#, and theT-duality relation between
the latter and Go¨del-type universes@58,59,71#.13 One pos-
sible motivation to make this connection more precise co
be the fact that AdS/conformal field theory@82# could shed
some light on the issue of physics in the presence of clo
timelike curves.

In general, the operation consisting on taking the Penr
limit of a given configurationM does not commute with the
operation of considering a discrete quotient inM. Even
though we do not have a general statement, it turns out
for Abelian discrete quotients whose generator belongs to
maximal compact subgroup of AdS, that is, for two-form
B(2,0)(w) % iB

(0,2)(w i), the following diagram commutes:

~6.1!

Let us make the connection more explicit. Even thou
we could develop the discussion in general, we shall fo
on AdS33S3 for algebraic simplicity. Consider the quotien
generated by

jc5bA2]t1bA1]c1b~]w1]x!, ~6.2!

where$t,r,w% are global coordinates in AdS3 and $u,c,x%
are global coordinates in S3, whereasb is any nonvanishing
real number andA6 are defined as

A65S 16
1

4b2R2D . ~6.3!

The norm of such Killing vector field is given by

ijci25
1

16b2R2
$cosh2r~8b2R221!1cos2u~8b2R211!%.

~6.4!

13The interplay between Penrose limits and quotients of AdS w
also considered in@50#, although their physical motivation was no
related to closed timelike curves.
6-24
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Thus, ijci2.0 whenever 8b2R2.0 ; r,u. Even if this
property is satisfied, we know the corresponding discr
quotient will have closed timelike curves, as proved in S
III.

It is convenient for our purposes to make the change
variables

t5bA2u1x2, w5ŵ1bu,

c5bA1u2x2, x5x̂1bu, ~6.5!

in which jc5]u . The global metric describing the abov
quotient of AdS33S3 consists in rewriting the metric in th
new adapted coordinate system and makingu compact. The
result is

g52R2~cosh2r2cos2u!~dx2!21R2~dr21sinh2rdŵ2

1du21sin2udx̂2!12bR2du@sin2udx̂1sinh2rdŵ

2~A2cosh2r1A1cos2u!dx2#1ijci2du2. ~6.6!

The full type IIB configuration certainly includes a tran
verseT4 and some fluxes. It will not be necessary for o
purposes to write these explicitly, but we shall keep in m
that we are working with a vacuum in which no Neve
Schwarz–Neveu-Schwarz~NS-NS! three-form field strength
is turned on.

We shall first show that the Penrose limit of Eq.~6.6! is
indeed a quotient of a plane wave. The procedure is by n
standard. Thus, we shall just state that one needs to re
x25R22v, take the limitR→` while focusing on the light-
like geodesic sitting atr5u50. Thus, we also need th
rescalingsr5r /R andu5y/R. Following this prescription,
and having in mind thatu is compact, we can afterwar
apply a T-dual transformation giving rise to a Go¨del-type
spacetime, in particular, to one dual version ofG5, following
the conventions introduced in@59#. Of course, the dual con
figuration will have a nonvanishing NS-NS two-form pote
tial, by construction, due to the crossed terms in the me
~6.6!.

We would be interested in determining the spacetime
we get after applying the upper horizontal transformation
the diagram above. This corresponds to applying aT-duality
transformation along the orbits of]u . TheT-dual metric that
we get in this way is given by

g852R2~cosh2r2cos2u!~dx2!21R2~dr21sinh2rdŵ2

1du21sin2udx̂2!2
b2R4

ijci2
@sin2udx̂1sinh2rdŵ

2~A1cos2u1A2cosh2r!dx2#21ijci22du2. ~6.7!

It is a straightforward exercise to check that the Penrose l
of the above metric gives rise toG5. The corresponding
fluxes can also be matched. Note thatijci2→1 in the Pen-
rose limit, which matches the construction given, for
stance, in@58#.
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Thus, indeed, it is possible to understand the physics
Gödel-type universes as describing the physics of cer
sectors of the dual field theory associated with the disc
quotient of the original AdS33S3, following @83#. However,
we also see that the dual field theory is living in a space w
closed timelike curves. One easy way to realize this fact is
note that the action of the Killing vector fieldjc acts in the
same way at any value of the noncompact spacelike coo
nater in AdS3, in particular at its conformal boundary. Ac
tually, the argument applies to any AdSp11 spacetime. We
thus learn that if AdSp11 /G is the geometry of the bulk
where G stands for the discrete group associated with
discrete quotient generated byB(2,0)(w) % iB

(0,2)(w i), its con-
formal boundary is given by (R3Sp21)/Ĝ, whereĜ stands
for the restriction ofG on the boundary. The conforma
boundary quotient would possibly include a nontrivial acti
on the fields coming from theR symmetry group. Thus
wheneverĜ acts nontrivially on the real timelikeR axis, the
boundary theory will be defined in a base space hav
closed timelike curves, and as such, it will be nongloba
hyperbolic. Therefore, any holographic description for the
scenarios involves an understanding of field theory in n
globally hyperbolic spaces, which we are generically mi
ing.
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APPENDIX A: GLOBAL VS POINCARE´ PATCH IN AdS

In this appendix, we will review the global coordinate a
Poincare´ patch descriptions of AdSp11. We wish to remind
the reader of the expressions for the Killing vector fie
generating the isometries in these two coordinate syste
For the Poincare´ patch, this will be useful for understandin
the relation between certain global AdS quotients and
near horizon limit of the corresponding discrete quotients
brane geometries in supergravity. For global coordinates,
will be useful for understanding the action of the Killin
vectors on the Einstein static universe boundary of AdS.

Considering first the Poincare´ coordinates, let us defin
$ym,z% m52, . . . ,p11 in terms of the flat embedding coo
dinates inR2,p introduced in Eq.~2.1! by

xm5
1

z
ym, m52, . . . ,p11,

x15
1

2z
@z21~11hmnymyn!#,

xp125
1

2z
@z22~12hmnymyn!#. ~A1!

In these coordinates, the AdSp11 metric is

g5
1

z2
~hmndymdyn1dz2!. ~A2!

The explicit symmetries in this form of the metric are t
Poincare´ symmetries acting on the slices of constantz. Using
the identities

]xm

]yn
5

1

z
dn

m ,
]xp12

]yn
5

]x1

]yn
5hnmxm, x12xp125

1

z
,

we see that these are related to the usualso(2,p) basis by

Pm5]ym→2~e1m2emp12!,

Lmn5ym]yn2yn]ym→emn . ~A3!

Therefore, timelike translations in the Poincare´ patch corre-
spond to a null rotation with two timelike directions in glob
AdS, which is mapped to the two-formB(2,1). On the other
hand, spacelike translations in the Poincare´ patch correspond
to a standard null rotation with two spacelike directions,
equivalently toB(1,2). Finally, Lorentz transformations in th
Poincare´ patch are mapped to Lorentz transformations
R2,p.

The other symmetries inso(2,p) are realized as confor
mal symmetries acting on the slices of constantz together
with a suitable]z component:
12402
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e1m1emp1252hsnysyn]ym12ymyn]yn12zym]z ,
~A4!

e1p1252ym]ym2z]z . ~A5!

A convenient global coordinate system on AdSp11 is de-
fined in terms of the embedding coordinates by

x15coshx sint,

x25coshx cost,

xm5sinhx x̂m , m53, . . . ,p12, ~A6!

where the x̂m are embedding coordinates for an Sp21,
(mx̂m

2 51. The metric in this coordinate system is

g52cosh2xdt21dx21sinh2xdVp21 . ~A7!

The explicit symmetries of this form of the metric are th
time translation

e125]t , ~A8!

and theso(p) symmetries of the sphere,

emn5 x̂m] x̂n
2 x̂n] x̂m

, m,n53, . . . ,p12. ~A9!

The other Killing vectors are

e1m5cost tanhx x̂m]t1sint x̂m]x

1sint cothx~dmn2 x̂mx̂n!] x̂n
,

e2m52sint tanhx x̂m]t1cost x̂m]x

1cost cothx~dmn2 x̂mx̂n!] x̂n
, ~A10!

wherem,n53, . . . ,p12.

APPENDIX B: SYMMETRY-ADAPTED COORDINATES
FOR NULLBRANES

As a by-product of our investigations of the quotients
anti–de Sitter space in this paper—most particularly,
studies of the double null rotations in Sec. IV C—we we
led to realize that there is a rich structure of symmetries
the nullbrane quotients of flat space which has not been f
exploited in previous work on these solutions.

The nullbrane is a quotient of flatR1,3 by a combination
of a null rotation and a translation@20#,

j5]42e121e235]41~x12x3!]21x2~]11]3!, ~B1!

where x1 is the timelike coordinate and$x2 ,x3 ,x4% are
spacelike ones. The norm of this Killing vector isiji2

5(x12x3)211, so it is spacelike everywhere. This quotie
was shown to be free of closed causal curves in@20#. There
are three Killing vectors in theso(1,3)›R4 Poincare´ algebra
on R1,3 which commute with thisj,
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j152]42e121e23,

j25]22~e141e34!,

j35]11]3 . ~B2!

These have normsij1i25ij2i25iji2 and ij3i250. The
only nontrivial commutation relation is@j1 ,j2#522j3. The
coordinates defined on the nullbrane in@20# do not make any
of these additional symmetries manifest. We will now co
struct an adapted coordinate system which makes thej2 and
j3 symmetries manifest: that is, we wantj5]f̄ , j25]c̄ ,
andj35] v̄ . This requires

]x1

]f̄
5

]x3

]f̄
5x2,

]x2

]f̄
5x12x3,

]x4

]f̄
51,

]x1

]c̄
5

]x3

]c̄
5x2,

]x2

]c̄
51,

]x4

]c̄
5x12x3,

]x1

] v̄
5

]x3

] v̄
51. ~B3!

Since x12x3 is independent off̄,c̄,v̄, we will choose to
define coordinates so thatx12x35ū. A suitable coordinate
system is

x11x352f̄c̄1ū~f̄21c̄2!12v̄,

x12x35ū,

x25c̄1ūf̄,

x45f̄1ūc̄. ~B4!

In these coordinates, the flat metric is

g522dūdv̄1~11ū2!~dc̄21df̄2!14ūdf̄dc̄. ~B5!

The nullbrane is constructed by compactifying thef̄ coordi-
nate. The determinant of the metric is2detg5(12ū2)2, so
this coordinate system breaks down atū561, where the
expressions forx2 and x4 lose their linear independence
Thus, although these are symmetry-adapted coordinates,
do not provide global coordinates for the spacetime.

It is interesting to note that in these coordinates the so
tion resembles a plane wave written in Rosen coordina
For the uncompactified solution, this is not unexpected;
space is a trivial plane wave. The interesting observatio
that the compactification off preserves this structure. By
slight change in the coordinate system, we can make a m
direct relation to a nontrivial plane wave, and at the sa
time obtain global coordinates. Instead of Eq.~B4!, we set
12402
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x11x352fc1u~f21c2!12v,

x12x35u,

x25c1uf,

x45f2uc. ~B6!

The flat metric is now

g522dudv1~11u2!~dc21df2!24cdfdu. ~B7!

The determinant of the metric is2detg5(11u2)2, so this
is now a global coordinate system.

The price we pay is that the symmetryj2 is no longer
manifest; on the other hand, this form treats the two Killi
vectorsj1 andj2 more symmetrically. In these coordinate
j5]f , j35]v , while the other two Killing vectors are

j152
12u2

11u2
]f1

2u

11u2
]c12c

12u2

11u2
]v ,

j25
2u

11u2
]f1

12u2

11u2
]c22c

2u

11u2
]v . ~B8!

The inverse coordinate transformation is

u5x12x3,

f5
x41~x12x3!x2

@11~x12x3!2#
,

c5
x22~x12x3!x4

@11~x12x3!2#
,

2v5~x11x3!2
~x12x3!

11~x12x3!2
@~x2!21~x4!2#

2
2

@11~x12x3!2#2
@x41~x12x3!x2#

3@x22~x12x3!x4#. ~B9!

The advertised relation to the plane wave can be see
we now setu5tanU. Then

g5
1

cos2U
@22dUdv1dc21df224cdfdU#.

~B10!

The metric in square brackets is a conformally flat pla
wave. Furthermore, the symmetryj5]f that we quotient
along annihilates the conformal factor, so we can think of
nullbrane as conformally related to a compactified pla
wave. The plane wave nature of this solution can be insta
recognized after the further coordinate transformation
6-27
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V5v1cf,

X5c cosU1f sinU,

Y52c sinU1f cosU, ~B11!

which brings the metric to the form

g5
1

cos2U
@22dUdV2~X21Y2!dU21dX21dY2#.

~B12!

This form makes little of the symmetry explicit. The Killin
vector we are quotienting along is

j5sinU]X1cosU]Y1~X cosU2Y sinU !]V ,
~B13!

and the other symmetries of the quotient are

j15sinU]X2cosU]Y1~X cosU1Y sinU !]V ,

j25cosU]X1sinU]Y1~2X sinU1Y cosU !]V ,

j35]V . ~B14!

Note that not only doesj annihilate the conformal factor; s
do the other isometries. Thus, all the isometries of
nullbrane are related to isometries of the conformally rela
compactified plane wave. We can recognize them as

j52je
1*
2je2

,

j152je
1*
1je2

,

j252je1
2je

2*
,

j35jeV
, ~B15!

where we write the isometries of the plane wave in the us
basis:
ys

N

A

12402
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jei
52cosU]Xi1XisinU]V ,

je
i*
52sinU]Xi2XicosU]V ,

jeV
5]V ,

jeU
52]U . ~B16!

Thus, the quotient of the plane wave that is conforma
related to the nullbrane is of the type considered in@79#. The
additional symmetryjeU

that would be present in the plan
wave is broken by the conformal factor. As we saw in S
IV C, this is precisely the additional symmetry that appe
in the double null rotation.

As in Sec. IV C, in addition to exposing this relation
the plane waves, the global coordinates~B10! allow us to
easily find a global time function for the nullbrane, hen
demonstrating that it is a stably causal solution. We first
write the nullbrane metric in a form suitable for Kaluz
Klein reduction alongf,

g5
1

cos2U
@22dUdv24c2dU21dc21~df22cdU!2#.

~B17!

We see that Kaluza-Klein reduction will give a plane wa
metric in one dimension lower~up to conformal factor!.
Hence, applying the results of@70#, a suitable time function
for the nullbrane is

t5U1
1

2
tan21S 4v

114c2D . ~B18!

It is easy to check that

¹mt¹mt52
4 cos2U

@~114c2!2116v2#
52

4~11u2!

@~114c2!2116v2#
.

~B19!

Thus, t is a good time function on flat space, and sin
Ljt50, the nullbrane is stably causal by the general ar
ment of @70#.
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