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Controlling the growth of constraints in hyperbolic evolution systems

Lee Lindblom,1 Mark A. Scheel,1 Lawrence E. Kidder,2 Harald P. Pfeiffer,1 Deirdre Shoemaker,2 and Saul A. Teukolsky2
1Theoretical Astrophysics 130-33, California Institute of Technology, Pasadena, California 91125, USA

2Center for Radiophysics and Space Research, Cornell University, Ithaca, New York 14853, USA
~Received 4 February 2004; published 28 June 2004!

Motivated by the need to control the exponential growth of constraint violations in numerical solutions of
the Einstein evolution equations, two methods are studied here for controlling this growth in general hyperbolic
evolution systems. The first method adjusts the evolution equations dynamically, by adding multiples of the
constraints, in a way designed to minimize this growth. The second method imposes special constraint pre-
serving boundary conditions on the incoming components of the dynamical fields. The efficacy of these
methods is tested by using them to control the growth of constraints in fully dynamical 3D numerical solutions
of a particular representation of the Maxwell equations that is subject to constraint violations. The constraint
preserving boundary conditions are found to be much more effective than active constraint control in the case
of this Maxwell system.
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I. INTRODUCTION

Perhaps the most critical problem facing the numeri
relativity community today is the exponential growth of co
straints in evolutions of black hole spacetimes. The evolut
equations guarantee that constraints that are satisfied ex
on a spacelike surface will be satisfied throughout the
main of dependence of that surface. However, this re
does not guarantee that small initial violations of the co
straints will remain small, or that constraint violations w
not be injected into the computational domain through tim
like boundaries. Experience has shown that constraint vi
tions tend to grow exponentially in the numerical evoluti
of black hole spacetimes~e.g.,@1–3#!. Theseconstraint vio-
lating instabilitieshave been shown to be numerically co
vergent and thus represent unstable solutions to the pa
differential equations. At present these instabilities are
limiting factor that prevents these numerical simulatio
from running for the needed time with the required accura

A variety of approaches have been explored in a num
of attempts to control the growth of the constraints:

~1! Fully constrained evolution, in which the constrai
equations are re-solved periodically~e.g. at each time step!
have been used with great success in spherically symm
and axisymmetric problems@4–10#. These methods have no
gained widespread use in 3D simulations, however, due
part to the high cost of solving the elliptic constraint equ
tions. Difficult questions also remain unresolved for th
method about the proper boundary conditions to impose
the constraint equations at black hole excision boundar
With the development of more efficient elliptic solvers a
the absence of a better alternative however, fully constrai
methods are starting to be developed and tested in 3D no
well @11–13#.

~2! Auxiliary dynamical fields have been introduced in
the system whose evolution equations are designed to d
the constraints toward zero@14#. This technique has the dis
advantage that it requires the size of the dynamical syste
be significantly expanded. It has not been tested extensiv
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but the first numerical results were not uniformly success
@15,16#.

~3! More sophisticated boundary conditions have been
troduced whose purpose is to control the influx of constra
violation through the timelike boundaries of the compu
tional domain@17–26#. This approach seems very promisin
although the current methods may not be fully compati
with the physical requirement that waves pass through
boundaries without reflection. Further these boundary con
tion methods may not completely solve the constraint vio
ing instability problem in systems like the Einstein evolutio
equations, where constraint violations are driven both
bulk and by boundary terms in the equations. But this te
nique can~as we will demonstrate below! significantly im-
prove the influx of constraint violations through the timelik
boundaries of the computational domain.

~4! Dynamically changing the evolution equation
through the addition of terms proportional to the constrain
has been proposed as a way to minimize constraint grow
This method ~developed by Tiglio and his collaborator
@27,28#! has had some success in controlling the growth
constraints in simple numerical solutions of the Einstein e
lution equations. We find that this technique when used
combination with standard boundary conditions is not eff
tive however in controlling the influx of constraint violation
through the boundaries of the computational domain in fu
dynamical situations.

In this paper we explore in some detail two of these me
ods for controlling the growth of constraint violations in h
perbolic evolution systems. First, we develop a refined v
sion of the dynamical constraint control method being us
by Tiglio and collaborators@27,28#. In particular we intro-
duce a more natural norm on the constraints, which has
property that its evolution can be predicted numerically w
greater accuracy. We expect that dynamical constraint c
trol based on this new constraint norm should be more sta
and robust than the current method. Second, we explore
use of constraint preserving boundary conditions. In t
method~explored previously by Calabrese and collaborat
@19,25#! the constraints are decomposed into characteri
©2004 The American Physical Society25-1
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ingoing and outgoing fields of the constraint evolution eq
tions. Setting the incoming components of the constra
fields to zero provides boundary conditions for some of
incoming parts of the dynamical fields of the principal ev
lution system. We test both of these methods by apply
them to a non-trivial hyperbolic evolution system~a particu-
lar representation of the Maxwell system@29,30#! that is
analogous to, but much simpler than, the Einstein evolu
system. Our tests—using fully dynamical time dependent
lutions on domains with open boundaries—reveal that
constraint preserving boundary conditions are much m
effective than active constraint control for this Maxwell sy
tem. Some features of this system are rather special, and
possible that in more generic systems~like the Einstein equa-
tions! the active constraint control method may be comp
mentary to the constraint preserving boundary condit
method.

We define and review in Sec. II the particular form of t
Maxwell evolution system@29,30# that we use to illustrate
and test the constraint control methods studied here. We r
to this system as the ‘‘fat’’ Maxwell system since it replac
the usual representation of the Maxwell system, which
six independent field components, with a representation h
ing twelve. We also present in Sec. II the decomposition
the dynamical fields used in this fat Maxwell system in
characteristic parts. In Sec. III we develop the equati
needed to perform active constraint control, in particular
the fat Maxwell evolution system. We determine the co
straint evolution equations for this system, and derive
improved norm on the constraint fields. We show how
evolution of this new constraint norm should generically
more accurately determined~and hence should provide bett
constraint control! in numerical solutions. In Sec. IV we de
velop the particular form of constraint preserving bound
conditions studied here. We present the decomposition of
constraint fields into characteristic parts, and show how th
can be used to provide boundary conditions for the princ
evolution system. Finally in Sec. V we use these method
control the growth of constraints in fully dynamical 3D n
merical evolutions of the fat Maxwell evolution system. W
note that both the active constraint control mechanism
the constraint preserving boundary conditions develo
here are applicable to rather general hyperbolic evolu
systems. We focus our discussion on the fat Maxwell sys
in order to make the analysis less abstract, and to provid
simple system on which to perform numerical experimen

II. FAT MAXWELL EVOLUTION SYSTEM

Our primary interest here is to understand how to con
the growth of constraints in hyperbolic evolution system
We will focus our attention on quasi-linear systems of t
form

] tu
a1Aka

b]ku
b5Fa, ~1!

whereua represents the dynamical fields, andAka
b andFa

may depend onua but not its derivatives. We assume that t
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evolution system described in Eq.~1! is also subject to a se
of constraints,cA50, which we assume have the gene
form

cA5KAk
a]ku

a1LA, ~2!

whereKAk
b andLA may depend on the dynamical fieldsua

but not their derivatives. We assume that these constra
are preserved as a consequence of the evolution equation
particular we assume that the constraints satisfy an evolu
equation of the form

] tc
B1AkB

D]kc
D5FB

DcD, ~3!

whereAkB
D may depend on the dynamical fieldsua, while

FB
D may depend onua and its spatial derivatives]ku

a.
When this constraint evolution system is hyperbolic the c
straints will remain satisfied within the domain of depe
dence of the initial surface if they are satisfied initially. W
note that multiples of the constraints of the form given in E
~2! may be added to the principal evolution system Eq.~1!
without changing the physical~constraint satisfying! solu-
tions of the system or the basic structure of Eq.~1!. Systems
with this general form include most of the evolution equ
tions of interest in mathematical physics, including for e
ample the Einstein evolution equations, the Maxwell eq
tions, the incompressible fluid equations, etc.

In order to explore and test some of the ideas for cont
ling the growth of constraints in these hyperbolic evoluti
systems, we adopt a simple example system on which
perform our analysis and to carry out numerical tests.
have chosen to use a form of the vacuum Maxwell evolut
equations~introduced independently by Kidder@29# and
Reula@30#! that fits nicely into this framework, and that ad
mits constraint violations if nothing is done to control them
The dynamical fields in this formulation are a co-vector th
represents the electric fieldEi , and a second rank tensorDi j
that represents the gradient of the spatial parts of the ve
potential ~i.e. Di j 5] iAj , although we impose the relation
ship betweenDi j and the vector potential only implicitly as
constraint on this system!. We refer to this as the fat Maxwel
system, since the usual representation of the Maxwell eq
tions with six dynamical field components is replaced w
this larger representation that has twelve. The evolut
equations for this system are

] tEi5gab]a~Dib2Dbi!, ~4!

] tDi j 52] iEj2] i] jf, ~5!

wheregab is the Euclidean metric with inversegab, and]a is
the covariant derivative compatible with this metric~i.e. just
partial derivatives in Cartesian coordinates!. The scalar po-
tential f is a gauge quantity assumed here to be a gi
function of space and time. This system has the same gen
form as Eq.~1! with ua5$Ei ,Di j %. In order to represent the
vacuum~i.e. charge and current free! Maxwell system these
equations are also subject to the constraints,C5Ci jk50,
where

C[gab]aEb , ~6!

Ci jk[ 1
2 ~] iD jk2] jDik!. ~7!
5-2
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These constraints have the same general form as thos
scribed in Eq.~2! with cA5$C,Ci jk%. The second of these
constraints is the integrability condition that guarantees
Di j is the gradient of a vector potential. As mentioned abo
we are free to add multiples of the constraints to the evo
tion system:

] tEi5gab]a~Dib2Dbi!1g1gabCiab , ~8!

] tDi j 52] iEj2] i] jf1g2gi j C, ~9!

whereg1 and g2 are constants. The addition of these co
straint terms leaves the physical~constraint preserving! solu-
tions to the system unchanged, and also leaves the sy
with the same basic structure as Eq.~1!.

For hyperbolic evolution systems, such as those in
~1!, it is often quite useful to decompose the dynamical fie
ua into characteristic fields. These characteristic fields
defined with respect to a spatial direction at each point, r
resented here by the unit normal co-vector fieldnk . Given a
direction fieldnk we define the eigenvectorseâ

a of the char-
acteristic matrixAka

b :

eâ
ankA

ka
b5v (â)e

â
b , ~10!

wherev (â) denotes the eigenvalue~also called the character
istic speed!. The indexâ labels the various eigenvectors an
eigenvalues, and there is no summation overâ in Eq. ~10!.
Since we are interested in hyperbolic evolution systems,
space of eigenvectors will have the same dimension as
space of dynamical fields, and the matrixeâ

b will be invert-
ible. Given these characteristic eigenvectors it is often us
to re-express the dynamical fields in terms of this eigenv
tor basis. Thus we define the characteristic fieldsuâ ~or the
characteristic projection of the dynamical fields! as

uâ5eâ
bub. ~11!

It is straightforward to show that the evolution of the cha
acteristic fields is determined by

] tu
â1v (â)n

k]ku
â52eâ

aPn
kA

ka
b]nub1eâ

aFa

1~] te
â

a1v (â)n
k]ke

â
a!ua, ~12!

where the projection operator orthogonal toni is defined by
Pi j 5gi j 2ninj , and spatial indices are raised and lower
with gi j andgi j respectively.

The characteristic fields for the fat Maxwell evolutio
system are a collection of fields of the formuâ

5$Z1,Zi
2 ,Zi j

3 ,Ui
16 ,U26%, where

Z152g2nmnnDmn2~g221!PmnDmn , ~13!

Zi
25Pm

in
nDmn , ~14!

Zi j
3 5~Pm

i P
n

j2
1
2 Pi j P

mn!Dmn , ~15!
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Ui
165Pm

iEm6nmPn
iDmn6

1
2 ~g122!Pm

in
nDmn ,

~16!

U2656nmEm2 1
2

Ag1g2

g2
PmnDmn . ~17!

The characteristic fieldsZ1, Zi
2 and Zi j

3 have characteristic
speed 0; the fieldsUi

16 have speeds61, and the fieldsU26

have speeds6Ag1g2. All the characteristic speeds are rea
and the characteristic fields are linearly independent~and de-
pend continuously on the unit vectornk) wheneverg1g2
.0. Consequently the fat Maxwell system is strongly hyp
bolic wheng1g2.0. We also find that the fat Maxwell evo
lution system is symmetric hyperbolic when the paramet
g1 andg2 satisfy the more restrictive conditions, 0,g1,4
and 1

3 ,g2.
We note that the characteristic eigenvectorseâ

a for the fat
Maxwell system depend only on the spatial metricgi j and
the normal vectorni . It follows that the last term on the righ
side of Eq.~12! does not depend on any derivatives ofua at
all. Thus the right side of Eq.~12! depends only on the trans
verse~to ni) derivatives ofua:

] tu
â1v (â)n

k]ku
â5Gâ~ub,Pk

n]ku
b!. ~18!

This important feature of the characteristic evolution eq
tions is satisfied by many systems of interest to us, includ
the Einstein evolution system.

It is also useful to have the inverse transformationua

5ea
âuâ, whereea

â is the inverse ofeâ
a . For the fat Max-

well system this inverse transformation has the form:

Ei5
1
2 ~Ui

111Ui
12!1 1

2 ni~U212U22!, ~19!

Di j 5
1
2 ninjFZ1

g2
2

g221

Ag1g2

~U211U22!G
2 1

2 Pi j

g2

Ag1g2

~U211U22!1Zi
2nj

1 1
2 ni@U j

112U j
122~g122!Zj

2#1Zi j
3 . ~20!

The characteristic decomposition of the dynamical fields
essential for fixing boundary conditions. We will return to
more complete discussion of boundary conditions in Sec.

III. ACTIVE CONSTRAINT CONTROL

Unless the constraint evolution system Eq.~3! is hyper-
bolic, it will not guarantee that the constraints remain sa
fied ~within the domain of dependence of an initial surfac!
even if they are satisfied initially. Thus the constraint evo
tion system must be hyperbolic in any self-consistent a
physically reasonable system of constrained evolution eq
tions. We assume that any system considered here has
perbolic constraint evolution system. We also assume tha
constraint evolution system satisfies the somewhat stron
condition of symmetric hyperbolicity: In particular we a
5-3
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LINDBLOM et al. PHYSICAL REVIEW D 69, 124025 ~2004!
sume that there exists a symmetric, positive-definite ten
SAB on the space of constraint fields which symmetrizes
characteristic matrices of the constraint system,

SACAkC
B[Ak

AB5Ak
BA , ~21!

for all k. When such a symmetrizer exists, we can defin
natural norm on the constraints: The constraint energyE and
its associated currentE k are defined by

E5SABcAcB, ~22!

E k5Ak
ABcAcB. ~23!

This constraint energy can be used to define a norm^E& on
the constraints,

^E&5E Ed3x, ~24!

since^E&50 if and only if all the constraints are satisfied
each point. It is straightforward to determine the time evo
tion of E using the constraint evolution equations for a
symmetric hyperbolic constraint evolution system:

] tE1]kE k5E ABcAcB. ~25!

The quantitiesE k and EAB may depend on the dynamica
fieldsua and their spatial derivatives]ku

a ~but not on higher
spatial derivatives ofua).

In an evolution system Eq.~1! that includes parametersga
multiplying constraint terms, such as the system defined
Eqs. ~8! and ~9!, the associated constraint evolution syste
Eq. ~3! and the constraint energy system Eq.~25! will also
include terms that depend linearly on these parameters.
grating Eq.~25! over the spatial slice for such a system, w
get an expression for the time evolution of the constra
norm which has the general form

] t^E&5Q1gaRa, ~26!

whereQ andRa are integrals of quantities that depend on t
dynamical fields and their first spatial derivatives. The ba
idea of active constraint control then is to adjust the para
etersga that appear in Eq.~26! to control the evolution of the
constraint norm̂E&. For example the growth of^E& might be
prevented by making the right side of Eq.~26! non-positive
at the beginning of each time step in the numerical evoluti
This control mechanism is a special case of the constr
control method developed by Tiglio and his collaborato
@27,28#. It differs from Tiglio’s particular implementation
@27,28# in that the quantitiesQ andRa in our expression do
not depend on second derivatives of the dynamical fie
Since these higher derivatives are more difficult to evalu
accurately in a numerical simulation, we expect that our c
straint control mechanism will be more stable and robus

The constraints associated with the vacuum fat Maxw
system introduced in Sec. II satisfy the following evolutio
system as a consequence of Eqs.~8! and ~9!,

] tC5g1gi j gab] iCjab , ~27!
12402
or
e

a

-

y

te-

t

ic
-

.
nt
s

s.
te
-

ll

] tCi jk5 1
2 g2~gjk] iC2gik] jC!. ~28!

This system has the same general form as Eq.~3! with cA

5$C,Ci jk%. In order to define a constraint energy, we ne
this constraint evolution system to be symmetric hyperbo
The most general symmetrizer for this system~that can be
constructed from the spatial metricgab) is given by

dS2[SABdcAdcB

5x1gi j gabdCi j dCab

1x2giagjbdC̃i j dC̃ab

1x3giagjbdC[ i j ]dC[ab]

12x3

g2

g1
dC 2, ~29!

where

dCi j 5gicecabdCab j , ~30!

dC̃i j 5
1
2 ~d i

ad j
b1d j

ad i
b2 2

3 gi j g
ab!dCab ,

~31!

ande i jk is the totally antisymmetric tensor volume eleme
The parametersxa must be positivexa.0, andg1g2 must
also be positiveg1g2.0 to ensure thatSAB is positive defi-
nite. We note that these conditions put no additional limits
the allowed ranges of the parameters: every strongly hy
bolic representation of the principal evolution system ha
symmetric hyperbolic constraint evolution system.

We now evaluate the various quantities that determine
evolution of the constraint energy, Eq.~25!, for the fat Max-
well system. We find

E k524g2x3Cgi j gkaCai j , ~32!

EAB50. ~33!

Thus the expression for the time derivative of the constra
energy becomes

] tE54g2x3]k~Cgi j gkaCai j !. ~34!

The right side of Eq.~34! is a divergence, so the integral o
this equation over a spatial surface results in an expres
that involves only boundary integrals:

] t^E&54g2x3 R Cgi j nkC ki jd
2x, ~35!

wherenk is the outward directed unit normal to the boun
ary. Active constraint control for this system consists then
adjusting the sign of the parameterg2 to force the constraint
norm ^E& to decrease with time whenever it gets unacce
ably large.

We note that the fat Maxwell system is rather degener
since the right side of Eq.~35! contains only a surface inte
gral. Thus constraint violation in the fat Maxwell syste
arises only from the influx of constraint violations throug
5-4
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the timelike boundaries of the computational domain. T
property makes this system rather simpler than the Eins
evolution equations where constraint violation can be gen
ated from bulk terms in the equations as well. The simplic
of the fat Maxwell system allows us to study how best
control the influx of constraint violations across boundar
in some detail, but it does not allow us to evaluate h
effective these methods are for controlling violations th
arise from bulk terms in the equations.

IV. CONSTRAINT PRESERVING BOUNDARY
CONDITIONS

A standard boundary condition used for hyperbolic s
tems is the maximally dissipative condition, which we defi
here to be the condition that sets the incoming compon
of the dynamical fields to zero.~More generally the term
maximally dissipative has been used to describe a la
class of boundary conditions that guarantee that a cer
energy flux at the boundaries is strictly outgoing, e.g.
@18#.! To impose such a condition, we first decompose
dynamical fields into characteristic parts, as was done in
~11!, and then set to zero at the boundary all those cha
teristic fields whose characteristic speeds are negative.
Pâ

b̂ denote the projection operator that annihilates all
non-incoming characteristic fields: that is, let

Pâ
b̂ub̂5H uâ for v (â),0,

0 for v (â)>0.
~36!

For a maximally dissipative boundary condition, we s
Pâ

b̂ub̂50 at the boundaries. We often use a variation on t
boundary condition, in which we set to zero the time deriv
tives of the incoming components of the characteristic fie

Pâ
b̂] tu

b̂50. ~37!

For the case of the fat Maxwell system discussed in Sec
these ‘‘freezing’’ boundary conditions reduce to

] tUi
125] tU

2250, ~38!

where the incoming characteristic fieldsUi
12 and U22 are

defined in Eqs.~16! and~17!. As we shall see in Sec. V, thi
‘‘freezing’’ boundary condition does a poor job of preventin
the influx of constraint violations through the boundaries

Calabreseet al. @19# have proposed an alternative meth
for constructing boundary conditions that prevent the infl
of constraint violations. Their method involves decompos
the constraint fieldscA into characteristic parts:

cÂ[eÂ
BcB, ~39!

where eÂ
A represents the eigenvectors of the characteri

matrix of the constraint evolution system,

eÂ
BnkA

kB
C5v (Â)e

Â
C , ~40!
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andv (Â) represents the corresponding eigenvalue~or charac-
teristic speed!. The idea is to impose what amount to max
mally dissipative boundary conditions on the constraint e
lution equations: that is, we set

P Â
B̂cB̂50, ~41!

where P Â
B̂ is the projection operator that annihilates t

non-incoming characteristic constraint fields. This conditi
must now be converted into a boundary condition on
dynamical fields of the principal evolution systemua. This is
done through the equation that defines the constraints
terms of ua and its derivatives, Eq.~2!. In particular we
solve Eq.~41! for the normal derivatives of the incomin
characteristic fields, in terms of the outgoing characteris
fields and tangential derivatives of the incoming fields. Wh
this is possible, Eq.~41! becomes a Neumann-like bounda
condition on ~some of! the incoming characteristic fields
This boundary condition has the following general form:

nk]ku
â5H â@ub̂,~db̂

ĝ2Pb̂
ĝ!]ku

ĝ,Pb̂
ĝPk

n]ku
ĝ#. ~42!

We illustrate this procedure below more explicitly~and per-
haps more clearly! for the specific case of the fat Maxwe
system.

The characteristic fields for the fat Maxwell constrai
system are the collection of fields of the formcÂ

5$Zi
4 ,Zi j

5 ,U36%, where

Zi
45C[ ik]n

k, ~43!

Zi j
5 5C( i j ) , ~44!

U3652
Ag1g2

g1
C6nkgi j Cki j .

~45!

The fieldsZi
4 andZi j

5 have characteristic speed 0, while th
fields U36 have speeds6Ag1g2. The only incoming char-
acteristic field isU32. So the constraint preserving bounda
condition setsU3250 on the boundaries of the comput
tional domain. Using the definition ofU32 above, we see
that this boundary condition is equivalent to the condition

nkgi j Cki j52
Ag1g2

g1
C ~46!

on the boundaries. For a solution that satisfies the constr
preserving boundary condition, Eq.~46!, the evolution of the
constraint energy norm Eq.~35! becomes

] t^E&524x3Ag1g2

g2

g1
R C 2d2x<0. ~47!

Thus the constraint preserving boundary condition ensu
that the constraint norm does not grow. Quite generally c
straint preserving boundary conditions of this type will e
sure that surface flux terms do not contribute to the growth
the constraint energy.
5-5
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LINDBLOM et al. PHYSICAL REVIEW D 69, 124025 ~2004!
In order to convert the constraint preserving bound
condition into an explicit condition on the dynamical field
we must express the incoming constraint fieldU32 in terms
of the characteristic fieldsuâ. Using Eqs.~13!–~17! and~45!
we obtain

U325
Ag1g2

g1
@nk]kU

222 1
2 Pi j ] i~U j

111U j
12!#

1 1
4 Pi j ] i@U j

112U j
122~g122!Zj

2#. ~48!

SettingU3250 we obtain an expression for the normal d
rivative of U22:

nk]kU
225 1

2 Pi j ] i~U j
111U j

12!2 1
4

g1

Ag1g2

Pi j

3] i@U j
112U j

122~g122!Zj
2#. ~49!

This has the form of a Neumann-like boundary condition
U22, and has the same form as the general expression
~42!.

The version of our code used to perform the numeri
tests described in Sec. V imposes boundary conditions on
time derivatives of the incoming characteristic fields. W
therefore convert the Neumann-like boundary condition
U22 in Eq. ~49! into a condition on its time derivative usin
the characteristic field evolution equation, Eq.~12!. We sim-
ply replace the normal derivativenk]kU

22 that appears in
Eq. ~12! with the expression from Eq.~49!. Simplifying the
results gives the following equation for the time derivative
U22 at the boundary:

] tU
225 1

2

Ag1g2

g1
Pi j ~] iEj1] i] jf!12Pi j nk] iD [ jk] .

~50!

This condition together with the freezing boundary con
tions ] tUi

12 on the remaining incoming characteristic fiel
constitute our version of constraint preserving boundary c
ditions on the fat Maxwell system.

V. NUMERICAL RESULTS

In this section we present numerical experiments tha
lustrate the effectiveness of the various constraint con
strategies discussed in this paper. All of these tests use th
Maxwell evolution system, with a variety of topologies fo
the computational domain and with a variety of initial da
for the dynamical fields. In Sec. V A we illustrate what ha
pens when the equations are solved without any constr
control. These tests show that significant constraint vio
tions ~and in some cases constraint violating instabilitie!
occur in dynamical solutions of the fat Maxwell system
computational domains with open boundaries. In Sec. V
we study the use of the active constraint control mechan
described in Sec. III. Our tests show that this method is
numerically convergent, and is not very effective in contr
ling the growth of constraints in this system. And finally
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Sec. V C we describe the results of using the constraint p
serving boundary conditions described in Sec. IV. T
method is shown to be numerically convergent and qu
effective in controlling the growth of constraints in the sym
metric hyperbolic subset of the fat Maxwell system.

All numerical computations presented here are perform
using a pseudospectral collocation method. Our numer
methods are essentially the same as those we have appli
the evolution problem in full general relativity@1–3,31# and
in studies of scalar fields in Kerr spacetime@32#. Given a
system of partial differential equations

] tu
a~x,t !5F a@u~x,t !,] iu~x,t !#, ~51!

whereua is a vector of dynamical fields, the solutionua(x,t)
is expressed as a time-dependent linear combination oN
spatial basis functionsfk(x):

uN
a~x,t !5 (

k50

N21

ũk
a~ t !fk~x!. ~52!

Spatial derivatives are evaluated analytically using
known derivatives of the basis functions:

] iuN
a~x,t !5 (

k50

N21

ũk
a~ t !] ifk~x!. ~53!

The coefficientsũk
a(t) are chosen so that Eq.~51! is satisfied

exactly atNc collocation pointsxi selected from the spatia
domain. The values of the coefficients are obtained by
inverse transform

ũk
a~ t !5 (

i 50

Nc21

uN
a~xi ,t !fk~xi !wi , ~54!

wherewi are weights specific to the choice of basis functio
and collocation points. It is straightforward to transform b
tween the spectral coefficientsũk

a(t) and the function values
at the collocation pointsuN

a(xi ,t) using Eqs.~52! and ~54!.
The partial differential equations, Eq.~51!, are now rewritten
using Eqs.~52!–~54! as a set ofordinary differential equa-
tions for the function values at the collocation points,

] tuN
a~xi ,t !5G i

a@uN~xj ,t !#, ~55!

whereG i
a depends onuN

a(xj ,t) for all j. This system of or-
dinary differential equations, Eq.~55!, is integrated in time
using a fourth-order Runge-Kutta method. Boundary con
tions are incorporated into the right-hand side of Eq.~55!
using the technique of Bjo”rhus @33#. The time step is typi-
cally chosen to be half the distance between the closest
location points, which ensures that the Courant condition
satisfied.

In order to provide a quantitative measure of converge
and the amount of constraint violation of our numerical s
lutions, we have defined several norms on the constraintcA

and the dynamical fieldsua. We have already defined th
constraint energŷE& in Eq. ~24!, which provides a norm on
5-6
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the constraint fields. In computinĝE& for these numerica
studies we fixx15x25x351. We also define norms on th
dynamical fields themselves:

uuuuuL2
2 [E ~EiE

i1Di j D
i j !d3x, ~56!

uuuuuL`
2 [max~EiE

i1Di j D
i j !. ~57!

We compute the volume integrals in these norms, e.g. in
~24! or ~56!, exactly using the appropriate form of Gaussi
quadrature, and the maximum in Eq.~57! is taken over the
appropriate set of collocation points at a particular instan
time. These norms are most useful for comparing soluti
evaluated with different numerical resolutions. Thus we
fine

uuduuuL2
2 [E ~dEidEi1dDi j dDi j !d3x, ~58!

uuduuuL`
2 [max~dEidEi1dDi j dDi j !, ~59!

wheredua5$dEi ,dDi j % is the difference betweenua at a
given resolution andua at the best~highest! resolution we
computed. Differences between quantities at different re
lutions are computed by evaluating and then subtracting
spectral series for each resolution at the points on the fi
grid. In order to provide meaningful scales for these norm
quantities we typically plot dimensionless ratios of expr
sions such asuuduuuL2

2 /uuubestuuL2
2 and uuduuuL`

2 /uuubestuuL`
2 . In

the case of the constraint energy we typically p
^E&/uu]uuu2, where

uu]uuu2[E ~]kEi]
kEi1]kDi j ]

kDi j !d3x ~60!

is a norm on the gradients of the fields. We are intereste
seeing how these ratios behave as the resolution of the
merical solution is increased: Order unity values of the
ratios, uuduuu2/uuubestuu2 or ^E&/uu]uuu2, indicate a complete
lack of numerical convergence or solutions that are do
nated by constraint violations, respectively. Values of th
ratios of order 10234 correspond to double precision roundo
error.

A. No constraint control

In this section we illustrate the results of finding nume
cal solutions to the fat Maxwell evolution system Eqs.~8!,
~9! using no constraint control at all. We examine three se
rate cases: First we look at evolutions on a computatio
domain with topologyT3, a 3-torus. The differential equa
tions governing the fat Maxwell system allow no constra
growth on domains without boundaries. So this first test is
verify that our code accurately reproduces ‘‘exact’’ constra
conservation in this case. Next we examine the evolution
a representation of the static Coulomb solution on a com
tational domain with topologyS23R, a spherical shell. Fi-
nally we study a highly dynamical solution on a compu
12402
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tional domain with topologyS23R using freezing boundary
conditions and no constraint control.

The evolution of the constraint energy norm^E& for the
fat Maxwell system is driven entirely by a boundary term
Eq. ~35!. Thus we expect the constraints to be satisfied
actly for evolutions on a computational domain witho
boundary. To confirm that our numerical code correctly mo
els this, we solve Eqs.~8!, ~9! on a computational domain
with topology T3, i.e. within a 3-torus. In particular we
choose coordinatesx, y, and z in the interval@0,2p#, and
impose periodic boundary conditions. The basis functio
used in our pseudospectral method are sines and cosines
use initial data for this test in which the electric field is set
zero,Ei50, and each component of the vector potential
set to be a cylindrical Gaussian pulse:

Ax5Ay5Az5e2[( y2cy)21(z2cz)
2]/w2

, ~61!

where the width of the pulse is set tow50.5, and the cente
is placed in the middle of the computational domain,cy
5cz53.14. The shape of this pulse is selected so that
value of the Gaussian falls below double precision round
10217, at the periodicity ‘‘boundaries’’ of the domain,y50
and y52p, etc. This ensures that these data are smooth
T3 to roundoff accuracy. The initial data forDi j are set to the
numerically determined values of] iAj . We use the gauge
choicef50 throughout this evolution. Because these init
data are effectively two dimensional, we can place as few
two collocation points in thex direction for computational
efficiency.

Figure 1 shows a convergence plot for this case that
run with evolution parameter valuesg151/g2520.1, and
resolutionsNy5Nz510,20,30,40, and 50 collocation point
We see from Fig. 1 that the differences converge to zero
the resolution is increased. Figure 2 illustrates the amoun
constraint violation in these runs. These curves, which
crease approximately linearly with time, have magnitud
that are roughly proportional to the number of numeric
operations performed multiplied by double precision roun
off error. Thus, the finer resolutions have larger errors th

FIG. 1. Convergence test for fat Maxwell onT3. Shown are
norms of differences between solutions at different resolutions:
solid curves use theL2 norms while the dotted curves use theL`

norms.
5-7
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the coarser ones, since the finer resolutions require a la
number of time steps and a larger number of numerical
erations at each step. As expected from Eq.~35!, we see that
the constraints are satisfied essentially exactly when the
main has no boundaries. We have also computed evolut
for these initial data onT3 using other values of the evolu
tion parameters. In particular we have computed evoluti
with g151/g250.1, and also evolutions that switch ba
and forth between these positive and negative values at
time step. In all of these cases, we find the evolutions to
convergent with roundoff level constraint violation.

Next we turn our attention to solving the evolution equ
tions on a computational domain with topologyS23R, i.e.
within a spherical shell. For our basis functions we choo
Chebyshev polynomials for the radial coordinate and sph
cal harmonics for the angular coordinates. Although our
sis functions are written in (r ,u,w) coordinates, our funda
mental variables are the Cartesian components ofEi and
Di j . To eliminate high-frequency numerical instabilities th
sometimes develop during our simulations inS23R, we ap-
ply a filter to the right-hand sides of Eqs.~55! before and
after incorporating boundary conditions via the Bjo”rhus al-
gorithm. The filter consists of simply setting high-frequen
spherical harmonic coefficients to zero: If,max is the largest
index used in the basis functionsY,m at a particular resolu-
tion, then the largest, retained in the right-hand side of th
Ei equations after filtering is 2,max/321, and the largest,
retained in the right-hand sides of theDi j equations is
2,max/3. This filter is a variation on the standard 2/3 ru
used to remove the inevitable effects of aliasing whene
functions are multiplied using spectral methods@34#.

For the first of these tests we choose initial data that c
respond to a static point charge that is located in the hol
the center of the computational domain. Thus we cho
initial data withEi52] if5r 22] i r andDi j 50, appropriate
for a unit point charge at rest at the origin. We then so
Eqs.~8!, ~9! with g151/g250.1 on a computational domai
with topologyS23R, defined by 1.9<r<11.9. ~This is the
same computational domain that we typically use to evo
single black hole spacetimes.! At both the inner and oute

FIG. 2. Constraint violation for fat Maxwell onT3. Shown is the
constraint energŷE& divided by the norm of the derivatives of th
fundamental variables.
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spherical boundaries we set the time derivatives of the
coming characteristic fields to zero, i.e. we impose freez
boundary conditions, Eq.~38!. The scalar potentialf is held
constant in time. We find that these numerical evolutions
stable and convergent and the constraints are preserve
shown in Figs. 3 and 4. These computations were perform
with radial resolutionsNr511,21,31,41,51,61, and 73 collo
cation points, and a fixed angular resolution with spheri
harmonic index,max55 ~or equivalently,Nu56 and Nw

512 angular collocation points!. For ,max59 the results are
indistinguishable on the scale of Figs. 3 and 4 except at
highest radial resolutions, indicating that the radial and te
poral truncation errors dominate, as expected for a solu
with little angular structure. This is a case~as we shall see! in
which a time-independent solution is not always the best
problem to investigate the constraint-preserving propertie
a system of evolution equations.

Finally, we examine a highly dynamical solution of the f
Maxwell system on the computational domainS23R, de-
fined by 1.9<r<11.9. For this solution we choose initia
data withEi50 and

FIG. 3. Convergence test for fat Maxwell onS23R with static
point charge initial data. Shown are norms of differences betw
solutions at different resolutions: solid curves useL2 norms and
dotted curves useL` norms.

FIG. 4. Constraint violation for fat Maxwell onS23R with
static point charge initial data. Shown is the constraint energy^E&
divided by the norm of the derivatives of the fundamental variab
5-8
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CONTROLLING THE GROWTH OF CONSTRAINTS IN . . . PHYSICAL REVIEW D69, 124025 ~2004!
Ax5Ay5Az5e2(r 2r 0)2/w2
, ~62!

wherer 056.5 andw51.0. The initial values ofDi j are set
to the numerically determined values of] iAj . These initial
data correspond to a pulse of radiation centered atr 5r 0.
This pulse is neither spherically symmetric nor even axia
symmetric, because the Cartesian components of the ve
potential are set to spherically symmetric functions in E
~62!; however, only a small number of spherical harmon
are sufficient to represent the full solution. The scalar pot
tial is set tof50 for these solutions, and we impose free
ing boundary conditions, Eq.~38!, on the incoming charac
teristic fields.

Figure 5 shows a convergence plot for this case, us
evolution parametersg151/g250.1 and ,max55, which
confirms that the numerical solution is convergent. F
,max59 the results are indistinguishable on the scale of
figure. Figure 6 shows that significant constraint violatio
do exist in these solutions with seven different radial reso

FIG. 5. Convergence test for a dynamical solution of fat Ma
well on S23R using freezing boundary conditions and positive v
ues of ga . Shown are norms of differences between solutions
different resolutions: solid curves useL2 norms and dotted curve
useL` norms.

FIG. 6. Constraint violation for a dynamical solution of fat Ma
well on S23R using freezing boundary conditions and positive v
ues ofga . Shown is the constraint energy^E& divided by the norm
of the derivatives of the fundamental variables.
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tions: the data from the three highest resolutions coincide
the scale of this diagram. Thus the constraints are viola
but the constraint energy is still convergent in these so
tions. This indicates that the constraint violation is a prope
of the true solution of the continuum equations with freezi
boundary conditions, rather than an effect caused by a de
tive numerical method. The constraint violation appears to
generated as the initially constraint-satisfying waves inter
with the boundaries, starting at aboutt'4.

We have also computed evolutions for these dynam
initial data using negative values of the evolution parame
g151/g2520.1; the results are depicted in Figs. 7 and
Since the productg1g2 is unchanged from the previous run
the characteristic speeds of the system remain the same.
the definition of the constraint energyE ~which depends on
the ratiog1 /g2) also remains unchanged; so this allows us
meaningfully compareE for the two cases. Forga,0 the
fundamental evolution system, Eqs.~8!, ~9!, is strongly but
no longer symmetric hyperbolic as in thega.0 case. Fig-
ures 7 and 8 show that these evolutions with negative va

-

t

FIG. 7. Convergence test for fat Maxwell onS23R using freez-
ing boundary conditions and negative values ofga . Shown are
norms of differences between solutions at different resolutio
solid curves useL2 norms and dotted curves useL` norms.

FIG. 8. Constraint violation for fat Maxwell onS23R using
freezing boundary conditions and negative values ofga . Shown is
the ratio of the constraint energy to the norm of the derivatives
the dynamical fields.
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LINDBLOM et al. PHYSICAL REVIEW D 69, 124025 ~2004!
of ga appear to be convergent, and have fractional constr
violations that are comparable with those in the positivega
case. However, as illustrated in Fig. 9, the evolutions in
negativega case have constraint violating instabilities.

We note that we also find anumerical instabilityfor the
ga,0 case, and apparently for all cases in which the fun
mental evolution system is strongly but not symmetric h
perbolic. This numerical instability appears to be associa
with the angular discretization. It grows exponentially
time, and becomes worse at higher angular resolutions. H
ever, for the angular resolutions we use, and for choice
ga near the symmetric hyperbolic range, such as the c
shown here,g151/g2520.1, the numerical instability is
negligible compared to the constraint-violating instabil
shown in Fig. 9. Only by going to higher angular resoluti
can one see any nonconvergent growth at all on the t
scales we consider here. For,max59 the instability is visible
only at late times (t'200) for the highest radial resolution
in the quantitiesuuduuuL2

2 and uuduuuL`
2 , and is not visible in

plots of ^E&. To construct a quantity that is sensitive to th
instability, we repeated the runs shown in Figs. 5–9 at an
lar resolutions,max55, 7, 9, and 11 and computed the norm
of differences of the fundamental fields at adjacent ang
resolutions. These norms are plotted in Fig. 10.

We see no indication of this numerical instability for va
ues ofga in which the fundamental evolution system is sym
metric hyperbolic~for example, the solid curves in Fig. 1
are convergent!. For choices ofga very far from the sym-
metric hyperbolic range~such asg151/g2510), the insta-
bility grows much more rapidly and dominates the resu
Although it is possible that the numerical instability can
cured by modifying our angular filtering algorithm, for th
purpose of this paper we simply consider only values ofga
and angular resolutions for which the time scale of this
stability is longer than that of other effects we wish to stu

B. Active constraint control

In this section we investigate the use of the active c
straint control methods described in Sec. III. For the case

FIG. 9. Constraint violation for fat Maxwell onS23R. Solid
curves are forga.0 while dotted curves are forga,0 evolution
parameters. Seven different resolutions are depicted for each si
ga , but only the lowest resolution curves are distinct at the sca
shown.
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the fat Maxwell system this active control consists of switc
ing the sign of the evolution parametersg1 andg2 to ensure
that the constraint energŷE& does not increase. In the pre
vious section we presented two sets of numerical evoluti
without constraint control differing only by the signs ofg1
and g2. The characteristic speeds and the definition of
energy^E& were the same for these evolutions. Both evo
tions were convergent on the time scale considered hert
<100), and the fractional constraint violation was conv
gent and similar in these cases on the same time scale
now investigate the possibility of switching between the
two cases during a single evolution as a means of redu
the constraint violations. The strategy is to monitor the qu
tity on the right side of Eq.~35!, and to change the signs o
g1 and g2 whenever necessary to keep the right side ne
tive. This should ensure that the constraint energy norm^E&
is always decreasing, so the constraints should remain s
fied. Note that this method should work only as long as o
numerical solution satisfies the equation governing the e
lution of the constraint energy, Eq.~35!. Figure 11 illustrates
for the casega.0 that this equation does remain satisfied
truncation error level for the runs discussed in Sec. V A;
plot for ga,0 is similar. Consequently we expected go
results from this active control method.

Figure 12 shows the constraint violation for a case
which thega are allowed to change sign at every time step
order to control the constraints. The signs are changed on
the right side of Eq.~35! becomes positive, and the curre
value of^E& exceeds the value it had after the first time ste
The latter condition is intended to prevent sign changes
attempt to reduce the constraint violation to less than
truncation error. Since this constraint control method d
pends on Eq.~35! being satisfied, control should be possib
only to truncation error level at best. Figure 12 shows t
the maximum value of the constraint is smaller than for

of
s

FIG. 10. Angular convergence test for a dynamical solution
fat Maxwell, showing numerical instability forga,0. Shown is a
norm similar touuduuuL2 defined in Eq.~58! except that the differ-
ences are taken between quantities at two different angular res
tions and fixedNr573. Dotted curves show results forg151/g2

520.1, and are labeled by the two angular resolutions that
subtracted. Solid curves show that the same quantities for the
of g151/g2510.1 are convergent.
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CONTROLLING THE GROWTH OF CONSTRAINTS IN . . . PHYSICAL REVIEW D69, 124025 ~2004!
uncontrolled case~plotted as a dotted line in Fig. 12!. How-
ever, the improvement is only an order of magnitude at b
even for the highest resolution run. Even more disturbing
the lack of convergence of the constraint norm. The fun
mental fields do not converge very rapidly~if at all! either, as
can be seen from Fig. 13. This lack of effective constra
control is confirmed in Fig. 14, which shows that Eq.~35! is
not satisfied very well for this case. It appears that the ac
constraint control mechanism severely degrades the con
gence of our numerical simulations in such a way that
~35! no longer holds to the needed or expected accur
Consequently the active constraint control method is abl
reduce the constraint violations only by a small amount o
the uncontrolled case.

One effect that can destroy convergence in these tes
the fact that the control mechanism is applied independe
for each resolution~as pointed out by Tiglio@27#!. Therefore,
at a given value oft, the evolution equations used for on
resolution can be different~because of the signs ofg1 and
g2) from the equations used for another resolution at t

FIG. 11. Violation of the constraint energy evolution equatio
Eq. ~35!, for fat Maxwell onS23R with freezing boundary condi-
tions andga.0. Plotted is the difference between^E& and the time
integral of the right side of Eq.~35! for each resolution.

FIG. 12. Constraint violation~solid curves! for fat Maxwell on
S23R with active constraint control at every time step. Dott
curve is the comparable uncontrolled case.
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time. This effect should have significant consequences o
on quantities computed using different resolutions, such
the differences plotted in Fig. 13. But quantities compu
using a single resolution, such as^E&, should not be affected
When these latter quantities are compared for different re
lutions on the same plot, as in Figs. 12 and 14, the graph
not look like the ‘‘classic’’ convergence test in which a
curves have the same shape. But the curves should~if every-
thing else in the method is convergent! decrease at roughly
the correct rate. Because we lose a great deal of accura
Figs. 12 and 14 compared to their uncontrolled counterpa
Figs. 6 and 11, we believe that the fact that the con
mechanism is applied independently for each resolution
not the primary cause of the problem. In order to elimina
this effect on convergence, we repeated our simulations,
this time switched the sign ofga only once at the timet
54 for each resolution, regardless of the sign of the rig
side of Eq.~35! or the magnitude of̂E&. In this case, exactly

, FIG. 13. Convergence test for fat Maxwell onS23R, for active
constraint control at every time step. Shown are norms of dif
ences between solutions at different resolutions: solid curves usL2

norms and dotted curves useL` norms.

FIG. 14. Violation of the constraint energy evolution equatio
Eq. ~35!, for fat Maxwell onS23R with active constraint control a
each time step. Plotted is the difference between^E& and the time
integral of the right side of Eq.~35! for each resolution.
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LINDBLOM et al. PHYSICAL REVIEW D 69, 124025 ~2004!
the same evolution equations are being solved at each r
lution. As shown in Fig. 15, the convergence rate is seve
reduced even in this case when the signs ofga are switched
at t54. Furthermore as shown in Fig. 16, Eq.~35! is vio-
lated after the signs are switched.

We now believe that this nonconvergence is caused b
lack of smoothness of the fields that is introduced by
discontinuous change in the evolution equations: Supp
the signs ofga are switched at a timet0, and suppose that a
time just before this switch (t5t02e) some outgoing char
acteristic fields at the boundary are nonzero. When the s
of ga are switched, some of the outgoing and zero-sp
characteristic fields will be converted to incoming charact
istic fields, and vice versa, as can be seen from Eqs.~13!–
~17!. @For example, switching the signs of thega in Eq. ~17!
while keeping Ei and Di j fixed yields Uafter

26 52Ubefore
27 .#

Therefore, at a time just after this switch (t5t01e) the so-

FIG. 15. Convergence test for fat Maxwell onS23R, with the
signs ofga switched att54 for all resolutions. Shown are norms o
differences between solutions at different resolutions: solid cur
useL2 norms and dotted curves useL` norms. Compare to runs
with fixed ga in Fig. 7.

FIG. 16. Violation of constraint energy evolution equation, E
~35!, for cases withga switched att54 for all resolutions. Plotted
is the difference between̂E& and the time integral of the right sid
of Eq. ~35! for each resolution. Inset shows detail at early tim
showing that Eq.~35! is satisfied until the switch att54.
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lution will contain some non-vanishing incoming characte
istic fields near the boundary. However, our freezing bou
ary condition requires the incoming characteristic fields to
constant in time at the boundary. Since the incoming cha
teristic fields propagate inward, at times after the switcht
.t01e) a kink will appear in the profile of these incomin
fields. This type of boundary-condition-induced kink is illu
trated in Fig. 17. The sketch on the left in Fig. 17 illustrat
an incoming characteristic field at time just after the swit
(t01e), and the sketch on the right shows the kink in th
field that develops from the boundary condition. The ex
tence of such a kink in the evolution fields greatly reduc
the convergence rate of our spectral evolution method. A
even for finite-difference methods such a kink is likely
reduce the convergence as well, since a kink in the fun
mental quantities translates into a discontinuity in the c
straints. Unless great care is taken to ensure that discon
ous solutions are treated properly~a standard problem in
computational fluid dynamics but quite foreign to vacuu
numerical relativity because the gravitational field is not e
pected to have physical shocks!, Eq. ~35! is likely to be vio-
lated and the constraint preserving mechanism will fail. W
have made several attempts to replace the freezing boun
condition with a condition that smoothly adjusts the value
the incoming fields at the boundary. Unfortunately none
these attempts have been very successful.

C. Constraint-preserving boundary conditions

Finally, we have performed a series of tests on the c
straint preserving boundary conditions described in Sec.
Figures 18 and 19 show evolutions of our dynamical init
data onS23R ~analogous to that used in Figs. 7 and 8! with
the boundary condition onU22 now set according to the
constraint preserving condition Eq.~50!. Thega are negative
for the plots in Figs. 18 and 19. The constraints are satisfi
and the simulation appears to be convergent~except for a
late-time angular numerical instability, not visible on th
plots, that appears identical to the numerical instability d
cussed at the end of Sec. V A!. We have also performed thes
evolutions using positive values ofga , and the simulations
appear to be convergent, completely stable, and const
preserving in this case. Figure 20 compares the unnormal
constraint energy for these evolutions with those run w

s

.

,

FIG. 17. Left curve represents a characteristic field at one
stant of time, and right curve the evolution of this field at a la
time. Freezing boundary conditions produce the non-smooth
continuous solid curve extension, while standard maximally dis
pative boundary conditions produce the discontinuous dashed c
extension.
5-12
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freezing boundary conditions. Thus adopting constraint p
serving boundary conditions clearly does improve the c
straint preserving properties of these evolutions much m
than the active constraint control method.

But this is not the entire story. Figure 21 shows the no
of the fundamental dynamical fieldsuuuuu2 for evolutions us-
ing constraint preserving boundary conditions withg1
520.1 ~solid curves! andg150.1 ~dotted curves!. This plot
shows that while the positiveg1 evolutions are stable, thos
with negativeg1 are not. A more extensive sampling of th
parameter space reveals that evolutions preformed withg1
51/g25$0.1,1.0,2.5,2.9% ~for which the principal evolution
system is symmetric hyperbolic! appear to all be convergen
constraint preserving, and stable. Conversely, we find
evolutions performed withg151/g25$21.0,20.1,3.5,4.1%
~for which the principal evolution system is strongly but n
symmetric hyperbolic! are all constraint preserving but un
stable. These evolutions are numerically convergent for
resolutions and time scales we have tested~except for a

FIG. 18. Convergence test for fat Maxwell onS23R, using
constraint-preserving boundary conditions andga,0. Shown are
norms of differences between solutions at different resolutio
solid curves useL2 norms and dotted curves useL` norms.

FIG. 19. Constraint violation for fat Maxwell onS23R using
constraint-preserving boundary conditions andga,0. Shown is the
constraint energŷE& divided by the norm of the derivatives of th
fundamental variables.
12402
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re

at

e

slowly-growing angular numerical instability, not visible o
Fig. 21, that appears at late times or for high angular res
tions!. Therefore, the type of growth seen in Fig. 21 appe
to represent a solution of the partial differential equatio
Since these solutions do satisfy the constraints, the driv
force for these instabilities must be an excess of incom
radiation that is reflected back into the computational dom
by the boundary condition. We refer to this type of instabil
as a boundary condition driven instability. Thus the con-
straint preserving boundary conditions are a great impro
ment over the other methods studied here, but they do
completely eliminate all the instabilities in these strong
hyperbolic cases. Further study will be needed to determ
whether these boundary conditions can be improved.

s:

FIG. 20. Constraint violation for fat Maxwell onS23R for ga

,0. Solid curves use constraint-preserving boundary conditi
while dotted curves~same as the dotted curves in Fig. 9! use freez-
ing boundary conditions. Seven different resolutions are depic
for each type of boundary condition, but only the lowest resolut
curves are distinct at the scales shown.

FIG. 21. Norm of the fundamental variables for fat Maxwell o
S23R with ga,0 ~solid! and ga.0 ~dotted!, using constraint-
preserving boundary conditions. Even though the constraints
satisfied forga,0, the fundamental quantities increase expon
tially, but in a convergent manner. Seven different resolutions
depicted for each case, but only the lowest resolution curves
distinct at the scales shown.
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VI. DISCUSSION

This paper explores the effectiveness of two methods
controlling the growth of constraints in hyperbolic evolutio
systems. Using an expanded version of the Maxwell evo
tion system—which we call the fat Maxwell system—w
showed that significant constraint violations and in so
cases even constraint violating instabilities occur when
evolutions are performed using ‘‘standard’’ numerical me
ods and boundary conditions. We show that the active c
straint control method~which has been studied by Tiglio an
his collaborators@27,28#! is not very effective in controlling
the growth of constraints in the fat Maxwell system wh
spectral numerical methods are used. This lack of effect
ness appears to be caused by the non-smooth nature o
control mechanism for this system. We also show that c
straint preserving boundary conditions are very effective
suppressing the constraint violations in this system. Unfo
nately these constraint preserving boundary conditions
not eliminate the instabilities for the strongly~but not sym-
metric! hyperbolic evolution systems. In these cases th
boundary conditions merely converted a constraint violat
instability into a boundary condition driven instability. Ge
eralizing these methods to more complicated systems like
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Einstein evolution equations should be straightforward. F
more general systems the analogue of the constraint en
evolution equation, Eq.~50!, will contain both boundary
terms like the fat Maxwell system and also volume terms,
that constraint violations can be generated both at bounda
and in the bulk. We expect that constraint preserving bou
ary conditions alone will not be sufficient to control the co
straint violating instabilities that occur in these more gene
systems. Instead we expect that some combination of m
ods will be needed. The disappointing results obtained h
with the active constraint control mechanism suggest t
significant improvements will be needed to make th
method useful for helping to control the growth of co
straints in the Einstein system for evolutions based on sp
tral methods.
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