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Controlling the growth of constraints in hyperbolic evolution systems
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Motivated by the need to control the exponential growth of constraint violations in numerical solutions of
the Einstein evolution equations, two methods are studied here for controlling this growth in general hyperbolic
evolution systems. The first method adjusts the evolution equations dynamically, by adding multiples of the
constraints, in a way designed to minimize this growth. The second method imposes special constraint pre-
serving boundary conditions on the incoming components of the dynamical fields. The efficacy of these
methods is tested by using them to control the growth of constraints in fully dynamical 3D numerical solutions
of a particular representation of the Maxwell equations that is subject to constraint violations. The constraint
preserving boundary conditions are found to be much more effective than active constraint control in the case
of this Maxwell system.
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[. INTRODUCTION but the first numerical results were not uniformly successful
[15,16.

Perhaps the most critical problem facing the numerical (3) More sophisticated boundary conditions have been in-
relativity community today is the exponential growth of con- troduced whose purpose is to control the influx of constraint
straints in evolutions of black hole spacetimes. The evolutiorviolation through the timelike boundaries of the computa-
equations guarantee that constraints that are satisfied exactlgnal domain17—-26. This approach seems very promising,
on a spacelike surface will be satisfied throughout the doalthough the current methods may not be fully compatible
main of dependence of that surface. However, this resulvith the physical requirement that waves pass through the
does not guarantee that small initial violations of the con-boundaries without reflection. Further these boundary condi-
straints will remain small, or that constraint violations will tion methods may not completely solve the constraint violat-
not be injected into the computational domain through timeing instability problem in systems like the Einstein evolution
like boundaries. Experience has shown that constraint violg€duations, where constraint violations are driven both by
tions tend to grow exponentially in the numerical evolutionPulk and by boundary terms in the equations. But this tech-
of black hole spacetime®.g.,[1—3]). Theseconstraint vio- ~ Niqué can(as we will demonstrate belgusignificantly im--
lating instabilitieshave been shown to be numerically con- prove thg influx of constram't violations .through the timelike
vergent and thus represent unstable solutions to the partigf)u”da”eS of the computational domain.

differential equations. At present these instabilities are th (4) Dynamically changing the evolution equations,
- d ' P . : : ?hrough the addition of terms proportional to the constraints,
limiting factor that prevents these numerical simulations

. . . ) has been proposed as a way to minimize constraint growth.
from running for the needed time with the required accuracyerp i method (developed by Tiglio and his collaborators

A variety of approaches have been explored. Ina numbe[r27,28]) has had some success in controlling the growth of
of attempts to control the growth of the constraints: _constraints in simple numerical solutions of the Einstein evo-

(1) Fully constrained evolution, in which the constraint |ytion equations. We find that this technique when used in
equations are re-solved periodically.g. at each time st¢p  compination with standard boundary conditions is not effec-
have been used with great success in spherically symmetrif/e however in controlling the influx of constraint violations
and axisymmetric problenjg—-10. These methods have not through the boundaries of the computational domain in fully
gained widespread use in 3D simulations, however, due idynamical situations.
part to the high cost of solving the elliptic constraint equa- In this paper we explore in some detail two of these meth-
tions. Difficult questions also remain unresolved for thisods for controlling the growth of constraint violations in hy-
method about the proper boundary conditions to impose operbolic evolution systems. First, we develop a refined ver-
the constraint equations at black hole excision boundariesion of the dynamical constraint control method being used
With the development of more efficient elliptic solvers andby Tiglio and collaborator$27,28. In particular we intro-
the absence of a better alternative however, fully constraineduce a more natural norm on the constraints, which has the
methods are starting to be developed and tested in 3D now @soperty that its evolution can be predicted numerically with
well [11-13. greater accuracy. We expect that dynamical constraint con-

(2) Auxiliary dynamical fields have been introduced into trol based on this new constraint norm should be more stable
the system whose evolution equations are designed to drivend robust than the current method. Second, we explore the
the constraints toward zefd4]. This technique has the dis- use of constraint preserving boundary conditions. In this
advantage that it requires the size of the dynamical system tmethod(explored previously by Calabrese and collaborators
be significantly expanded. It has not been tested extensivel{19,25) the constraints are decomposed into characteristic
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ingoing and outgoing fields of the constraint evolution equa-evolution system described in E@.) is also subject to a set
tions. Setting the incoming components of the constrainbf constraints,c*=0, which we assume have the general
fields to zero provides boundary conditions for some of theform
incoming parts of the dynamical fields of the principal evo-
lution system. We test both of these methods by applying
them to a non-trivial hyperbolic evolution systdm particu- whereKAkﬁ andL” may depend on the dynamical field$§
lar representation of the Maxwell systef9,30) that is  but not their derivatives. We assume that these constraints
analogous to, but much simpler than, the Einstein evolutiorare preserved as a consequence of the evolution equations. In
system. Our tests—using fully dynamical time dependent soparticular we assume that the constraints satisfy an evolution
lutions on domains with open boundaries—reveal that theequation of the form
constraint preserving boundary conditions are much more J.cBLAKB 5 cD_FB_(D 3
effective than active constraint control for this Maxwell sys- t D% b
tem. Some features of this system are rather special, and it {ghere A, may depend on the dynamical field§, while
possible that in more generic systeffie the Einstein equa- FB; may depend oru® and its spatial derivativeg,u®.
tions) the active constraint control method may be comple-When this constraint evolution system is hyperbolic the con-
mentary to the constraint preserving boundary conditiorstraints will remain satisfied within the domain of depen-
method. dence of the initial surface if they are satisfied initially. We
We define and review in Sec. Il the particular form of the note that multiples of the constraints of the form given in Eq.
Maxwell evolution systenj29,30 that we use to illustrate (2) may be added to the principal evolution system Eq.
and test the constraint control methods studied here. We refgithout changing the physicakonstraint satisfying solu-
to this system as the “fat” Maxwell system since it replacestions of the system or the basic structure of Eg. Systems
the usual representation of the Maxwell system, which ha¥'ith this general form include most of the evolution equa-
six independent field components, with a representation hayions of interest in mathematical physics, including for ex-
ing twelve. We also present in Sec. Il the decomposition oRMple the Einstein evolution equations, the Maxwell equa-
the dynamical fields used in this fat Maxwell system intotions, the incompressible fluid equations, etc.
characteristic parts. In Sec. Ill we develop the equations [n order to explore and test some of the ideas for control-
needed to perform active constraint control, in particular orling the growth of constraints in these hyperbolic evolution
the fat Maxwell evolution system. We determine the con-Systems, we adopt a simple example system on which to
straint evolution equations for this system, and derive arPerform our analysis and to carry out numerical tests. We
impro\/ed norm on the constraint fields. We show how thehave chosen to use a form of the vacuum Maxwell evolution
evolution of this new constraint norm should generically beequations (introduced independently by Kiddg29] and
more accurately determingeind hence should provide better Reula[30]) that fits nicely into this framework, and that ad-
constraint controlin numerical solutions. In Sec. IV we de- Mits constraint violations if nothing is done to control them.
Ve|0p the particu|ar form of constraint preserving boundaryThe dynamical fields in this formulation are a co-vector that
conditions studied here. We present the decomposition of theepresents the electric fietgl, and a second rank tensby;
constraint fields into characteristic parts, and show how thestat represents the gradient of the spatial parts of the vector
can be used to provide boundary conditions for the principapotential (i.e. D;;=d;A;, although we impose the relation-
evolution system. Finally in Sec. V we use these methods t&hip betweerD;; and the vector potential only implicitly as a
control the growth of constraints in fully dynamical 3D nu- constraint on this systemVe refer to this as the fat Maxwell
merical evolutions of the fat Maxwell evolution system. We System, since the usual representation of the Maxwell equa-
note that both the active constraint control mechanism anéions with six dynamical field components is replaced with
the constraint preserving boundary conditions developethis larger representation that has twelve. The evolution
here are applicable to rather general hyperbolic evolutiorgquations for this system are

cA=KAK gu+LA, 2

systems. We focus our discussion on the fat Maxwell system 9E: =g (Dy—Dy) (@)
in order to make the analysis less abstract, and to provide a == 9 7alLip ™ Lbi),
simple system on which to perform numerical experiments. aDij=—9Ej— 3,0, ¢, (5)

whereg,, is the Euclidean metric with inversg®, anda, is
II. FAT MAXWELL EVOLUTION SYSTEM the covariant derivative compatible with this metfi. just
Our primary interest here is to understand how to contropart,ial de_rivatives in Carte;ian coordingteshe scalar po-
the growth of constraints in hyperbolic evolution systems.tent""_‘I ¢ is a gauge q.uantlty .assumed here to be a given
We will focus our attention on quasi-linear systems of thelunction of space and time. This system has the same general
form form as Eq.(1) with u*={E;,Dj;}. In order to represent the
vacuum(i.e. charge and current fre&axwell system these

equations are also subject to the constraiats,Ci; =0,

Gu+ AR o U =F e, (1) where
C=g?3,Ey, (6)
whereu“ represents the dynamical fields, aAb"B andF“ 9 dan
may depend on“ but not its derivatives. We assume that the Ciik=3(diDjk—3;Dix). (7)
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These constraints have the same general form as those de- Uili=PmiEmi nN™P"D = 2(y;—2)P™n"D,,,,
scribed in Eq.(2) with ¢*={C,C;;x}. The second of these (16)
constraints is the integrability condition that guarantees that

Dj; is the gradient of a vector potential. As mentioned above - NY1v2
we are free to add multiples of the constraints to the evolu- Ut ==n"E,—3 5 P™™D . 17)
tion system: 2

b ab The characteristic fieldg*, Z? and Z3 have characteristic
IEi=g"0a(Dip = Dpi) + 729 Ciap, ®) speed 0; the fields/!* have speedsl and the fielddJ2*
have speeds v y;7,. All the characteristic speeds are real,
and the characteristic fields are linearly independantl de-
pend continuously on the unit vecto) whenevery;y,
>0. Consequently the fat Maxwell system is strongly hyper-

lic wheny;y,>0. We also find that the fat Maxwell evo-
ution system is symmetric hyperbolic when the parameters
g1 @ and y, satisfy the more restrictive conditionss0y;<4

0{Dij=— 9iE;— 8;9;d+ v,9;;C, 9

where y; and y, are constants. The addition of these con-
straint terms leaves the physi¢abnstraint preservingsolu-
tions to the system unchanged, and also leaves the syst
with the same basic structure as Ef).
For hyperbolic evolution systems, such as those in E

(2), it is often quite useful to decompose the dynamical fleldsand 372

u® into characteristic fields. These characteristic fields are We note that the characteristic eigenvectsts for the fat
deflned with respect to a spatial direction at each point, repMaxwell system depend only on the spatial metj¢ and
resented here by the unit normal co-vector f|elld Given a the normal vecton; . It follows that the last term on the right

direction fieldn, we define the eigenvectoe$ , of the char- leld(?l'ﬁLSE?h(el? ?W(tjes:?dgogdee(?fzr;ddgneir:jysdoirlivfri]vtehiﬁgas
it wAka . . -
acteristic matrixA*“ 9 p y

verse(to n;) derivatives ofu“:
o ka _ = . o “ - “

% aMA™ 5=V ()€, (10 AU+ v (N Fue=G*(uf, PX 9 uP). (18

whereu ;) denotes the eigenvaluelso called the character- s important feature of the characteristic evolution equa-

istic speedl The indexa labels the various eigenvectors and tions is satisfied by many systems of interest to us, including

eigenvalues, and there is no summation aven Eq. (10). the Einstein evolution system.

Since we are interested in hyperbolic evolution systems, the It is also useful to have the inverse transformatigh

space of eigenvectors will have the same dimension as the e*-y®, wheree®;, is the inverse og“,. For the fat Max-

space of dynamical fields, and the maitef, will be invert-  well system this inverse transformation has the form:

ible. Given these characteristic eigenvectors it is often useful

to re-express the dynamical fields in terms of this eigenvec- Ei=3(U{ " +Ui ) +3n(Usr —U?), (19
tor basis. Thus we define the characteristic fieldgor the L
characteristic projection of the dynamical figlds z -1
proj y 9 D”-:%ninj __72 (U2++U27)
G o B Y2 7172
u“=e"zu”. (11

. . . _lp,‘i u2t+y? +22 '

It is straightforward to show that the evolution of the char- 217 \/—( )+ Zin;
Y172

acteristic fields is determined by
) . . . +3n[UT=UT = (7—2)Z71+Z} . (20)
U+ v Hyn*dus= —e* P AR 5 uP + e F*
. . The characteristic decomposition of the dynamical fields is
+(0e Fv oy ae®,)u®, (12)  essential for fixing boundary conditions. We will return to a
more complete discussion of boundary conditions in Sec. IV.
where the projection operator orthogonalrtois defined by
P”:gjj_ninj , and Spatial indices are raised and lowered IIl. ACTIVE CONSTRAINT CONTROL
with g andg;; respectively.

The characteristic fields for the fat Maxwell evolution — Unless the constraint evolution system E8) is hyper-
system are a collection of fields of the fornu® pohc, it WI|| not guarantee that the constraints remain satis-
={Zl Zz 73 U1+ U2+} where fied (vy|th|n the dom.am of' d_ependence of an |n|t|al_ surface

]
even if they are satisfied initially. Thus the constraint evolu-
tion system must be hyperbolic in any self-consistent and

Z'=2y,n""D ;= (y2—1)P™D 1, 13 _ . .

2 mn— (727 1) mn (13 physically reasonable system of constrained evolution equa-
22_pmnp (14) tions. We assume that any system considered here has a hy-
! ! mn» perbolic constraint evolution system. We also assume that the
3 men 1 n constraint evolution system satisfies the somewhat stronger

Zjj= (PP = 2Py PP Dy, (19 condition of symmetric hyperbolicity: In particular we as-
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sume that there exists a symmetric, positive-definite tensor 5tCijk:%Yz(gjkﬂiC—gikﬁjC)- (29
Sag 0N the space of constraint fields which symmetrizes the
characteristic matrices of the constraint system, This system has the same general form as (Bpwith ¢
={C,Cij}. In order to define a constraint energy, we need
SacA*Cg=Akrg=A%g4, (21)  this constraint evolution system to be symmetric hyperbolic.

) ) . The most general symmetrizer for this systéimat can be
for all k. When such a symmetrizer exists, we can define &,nstructed from the spatial metiig,) is given by
natural norm on the constraints: The constraint enérgyd

its associated currert® are defined by dSP=S,gdcidc®
£=Spgc’c?, (22) = X19"g?°dC; dCap
E¥=AK,gcAcB, (23) +x20"2g!°dC;;dCyp
This constraint energy can be used to define a n@)mon +ngiagjde[ij]dC[ab]
the constraints,
+2xa2dc2, 29
(&)= f d3x, (24) N
where
since(&)=0 if and only if all the constraints are satisfied at
& y dCij = 0ic€°°dCyp; , (30)

each point. It is straightforward to determine the time evolu-
tion of £ using the constraint evolution equations for any ~ . b b 2 b
symmetric hyperbolic constraint evolution system: dcj= 5(5?51' + 5?5i —350;0° )dCab(’3l)
HE+ 0 EX=E pgcicB. 25 ik . .

! k AB @9 and €'* is the totally antisymmetric tensor volume element.

The quantities€® and x5 may depend on the dynamical The parametery, must be positivey,>0, andy;y, must
fieldsu® and their spatial derivativegu® (but not on higher @IS0 be positivey, y,>0 to ensure thab,g is positive defi-
spatial derivatives 06i®). nite. We note that these conditions put no additional limits on
In an evolution system Eq1) that includes parametes, the allowed ranges of the parameters: every strongly hyper-
multiplying constraint terms, such as the system defined b{°lic representation of the principal evolution system has a
Egs.(8) and (9), the associated constraint evolution systemSYmmetric hyperbolic constraint evolution system.
Eq. (3) and the constraint energy system E25) will also We now evaluate the various quantities that determine the
include terms that depend linearly on these parameters. Int&volution of the constraint energy, E@S), for the fat Max-

grating Eq.(25) over the spatial slice for such a system, weWell system. We find
get an expression for the time evolution of the constraint k _ ij ykao
norm which has the general form £ 472x3C07 0 Caij (32

9{E)=Q+ vaR?, (26) Ers=0. (33

whereQ andR? are integrals of quantities that depend on thel_ggrsg;hs e?:)c()?rrf;s'on for the time derivative of the constraint
dynamical fields and their first spatial derivatives. The basic
idea of active constraint control then is to adjust the param- HE=4yax30(CYT g%, )). (34)
etersy, that appear in E¢26) to control the evolution of the
constraint nor{£). For example the growth ¢€) mightbe  The right side of Eq(34) is a divergence, so the integral of
prevented by making the right side of E&6) non-positive  this equation over a spatial surface results in an expression
at the beginning of each time step in the numerical evolutionthat involves only boundary integrals:
This control mechanism is a special case of the constraint
control method developed by Tiglio and his collaborators
[27,28. It differs from Tiglio’s particular implementation
[27,29 in that the quantitie® andR? in our expression do
not depend on second derivatives of the dynamical fieldsvheren® is the outward directed unit normal to the bound-
Since these higher derivatives are more difficult to evaluat@ry- Active constraint control for this system consists then of
accurately in a numerical simulation, we expect that our conadjusting the sign of the parametgy to force the constraint
straint control mechanism will be more stable and robust. nNorm (&) to decrease with time whenever it gets unaccept-
The constraints associated with the vacuum fat MaxwelRbly large.
system introduced in Sec. Il satisfy the following evolution ~We note that the fat Maxwell system is rather degenerate,

I(E)Y=472x3 é Cgijnkaijdzx, (35)

system as a consequence of E@.and(9), since the right side of Eq35) contains only a surface inte-
- gral. Thus constraint violation in the fat Maxwell system
hC= ylg”gab&icjab, (27)  arises only from the influx of constraint violations through

124025-4



CONTROLLING THE GROWTH OF CONSTRAINTS IN . .. PHYSICAL REVIEW B9, 124025 (2004

the timelike boundaries of the computational domain. Thisandv 4, represents the corresponding eigenvahrecharac-
property makes this system rather simpler than the Einsteiteristic speefd The idea is to impose what amount to maxi-
evolution equations where constraint violation can be genemally dissipative boundary conditions on the constraint evo-
ated from bulk terms in the equations as well. The simplicitylution equations: that is, we set

of the fat Maxwell system allows us to study how best to L

control the influx of constraint violations across boundaries [123cB=0, (41

in some detail, but it does not allow us to evaluate how

effective these methods are for controlling violations thatwhere HA is the projection operator that annihilates the

arise from bulk terms in the equations. non-incoming characteristic constraint fields. This condition
must now be converted into a boundary condition on the

IV. CONSTRAINT PRESERVING BOUNDARY dynamical fields of the principal evolution systerf. This is
CONDITIONS done through the equation that defines the constraints in

terms of u® and its derivatives, Eq(2). In particular we

A standard boundary condition used for hyperbolic syssolve Eq.(41) for the normal derivatives of the incoming
tems is the maximally dissipative condition, which we definecharacteristic fields, in terms of the outgoing characteristic
here to be the condition that sets the incoming componentields and tangential derivatives of the incoming fields. When
of the dynamical fields to zerdMore generally the term this is possible, Eq41) becomes a Neumann-like boundary
maximally dissipative has been used to describe a largaondition on(some of the incoming characteristic fields.
class of boundary conditions that guarantee that a certailihis boundary condition has the following general form:
energy flux at the boundaries is strictly outgoing, e.g. see A o A o .
[18].) To impose such a condition, we first decompose the nkgu®=He[up, (8%, —117;) g,u”, 1P PX gu?]. (42)
dynamical fields into characteristic parts, as was done in Eq.
(11), and then set to zero at the boundary all those charadVe illustrate this procedure below more explicitgnd per-
teristic fields whose characteristic speeds are negative. Létaps more clearlyfor the specific case of the fat Maxwell

H‘“ denote the projection operator that annihilates all the’YStém.

non incoming characteristic fields: that is, let The characteristic fields for the fat Maxwell constraint
system are the collection of fields of the form*
- o |ue for wy,<0 ={z},z} ,U3*}, where
I1*3uf= A (36) ,

0 for v(a)BO. ZiZC[ik]nk, (43
For a maximally dissipative boundary condition, we set Zisj:C(ij)v (44)
H“@u5=0 at the boundaries. We often use a variation on this
boundary condition, in which we set to zero the time deriva- \/7 Y
. K . C e 3x_ 172 +n K~ij
tives of the incoming components of the characteristic fields: U =——-=n"g"Cy;; .

. . (45

I1%35,uf=0. (37)

The fleldsZ4 and 25 have characteristic speed 0, while the
For the case of the fat Maxwell system discussed in Sec. lffields U3* have speedst Vv1v2. The only incoming char-

these “freezing” boundary conditions reduce to acteristic field isU3~. So the constraint preserving boundary
condition setsU® =0 on the boundaries of the computa-
Ul =4U?" =0, (38)  tional domain. Using the definition dfi®~ above, we see

that this boundary condition is equivalent to the condition

where the incoming characteristic fields~ and U2~ are
defined in Egs(16) and(17). As we shall see in Sec. V, this knijr . NY172
« - e . . n-g Ckij =——< (46)
freezing” boundary condition does a poor job of preventing Y1
the influx of constraint violations through the boundaries. _ _ o _
Calabreset al.[19] have proposed an alternative method ©n the boundaries. For a solution that satisfies the constraint
for constructing boundary conditions that prevent the influxPreserving boundary condition, E@6), the evolution of the
of constraint violations. Their method involves decomposingconstraint energy norm E¢35) becomes
the constraint fields” into characteristic parts:
Y2
A A B I(E)=—4xaVy1Y2 —- % C?d’x=0. (47
chr=eryct, (39 "
Thus the constraint preserving boundary condition ensures
where e? A represents the eigenvectors of the characteristignhat the constraint norm does not grow. Quite generally con-

matrix of the constraint evolution system, straint preserving boundary conditions of this type will en-
. . sure that surface flux terms do not contribute to the growth of
et AFB=v 3y, (40)  the constraint energy.
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In order to convert the constraint preserving boundarySec. V C we describe the results of using the constraint pre-
condition into an explicit condition on the dynamical fields, serving boundary conditions described in Sec. IV. This
we must express the incoming constraint field in terms  method is shown to be numerically convergent and quite

of the characteristic fields®. Using Eqs(13)—(17) and(45)  effective in controlling the growth of constraints in the sym-

we obtain metric hyperbolic subset of the fat Maxwell system.
All numerical computations presented here are performed
R - - using a pseudospectral collocation method. Our numerical
U3 =——"[n*3U? — 1P (9i(UJ-1+ + Ujl )] methods are essentially the same as those we have applied to
" the evolution problem in full general relativifl—3,31 and
+%piigi[uj“_Ujlf_(yl_z)zjz], (48) in studies of scalar fields in Kerr spacetirfé2]. Given a

system of partial differential equations
SettingU®~ =0 we obtain an expression for the normal de-

rivative of U?": AU (X ) =FTu(xt),du(x,t)], (51
whereu is a vector of dynamical fields, the solutiafi(x,t)
naU2"=3P1g(Ui " +U ) —3 1 pij is expressed as a time-dependent linear combinatioN of
VY172 spatial basis functiong,(x):
Xa[Uj"=Ul" = (1 —2)Z7]. (49 N-1
. UGt = 2 UE(E) (). (52
This has the form of a Neumann-like boundary condition on N o K X

U?~, and has the same form as the general expression Eg. . o ) .
(42). patial derivatives are evaluated analytically using the

The version of our code used to perform the numericaknown derivatives of the basis functions:
tests described in Sec. V imposes boundary conditions on the
time derivatives of the incoming characteristic fields. We o _ ~a
therefore convert the Neumann-like boundary condition on GUNX) = kzo Uic (1) 91 bi(X).. (53
U2~ in Eq. (49) into a condition on its time derivative using

the characteristic field evolution equation, Efj2). We sim-  The coefficientdi?(t) are chosen so that E(51) is satisfied

. . k 27 .
ply replace the normal derivative’s, U~ that appears in  gyacily atN, collocation pointsx; selected from the spatial
Eq. (12) with the expression from Ed49). Simplifying the  y4omain. The values of the coefficients are obtained by the
results gives the following equation for the time derivative ofj, erse transform

U2~ at the boundary:

N—-1

Ne—1

N N - U4(t)= ul(x; t X )W | 54

ﬁtU2_=%%P”(r?iEj+(9ir9j¢)+2P”nk¢9iD[jk] ) k( ) IEO N( i )¢k( I) i ( )
1

(50 wherew; are weights specific to the choice of basis functions

This condition together with the freezing boundary condi-and collocation points. It is straightforward to transform be-

tions U}~ on the remaining incoming characteristic fields tween the spectral coefficientg (t) and the function values
constitute our version of constraint preserving boundary conat the collocation pointsig(x;,t) using Egs.(52) and (54).

ditions on the fat Maxwell system. The partial differential equations, E(p1), are now rewritten
using Egs.(52)—(54) as a set obrdinary differential equa-
V. NUMERICAL RESULTS tions for the function values at the collocation points,
In this section we present numerical experiments that il- dun(xi , ) =G Tun(x;, D)1, (55

lustrate the effectiveness of the various constraint control

strategies discussed in this paper. All of these tests use the fahereG;* depends oruy(x;,t) for all j. This system of or-
Maxwell evolution system, with a variety of topologies for dinary differential equations, E¢55), is integrated in time
the computational domain and with a variety of initial datausing a fourth-order Runge-Kutta method. Boundary condi-
for the dynamical fields. In Sec. V A we illustrate what hap-tions are incorporated into the right-hand side of Ezp)
pens when the equations are solved without any constraintsing the technique of Bjbus[33]. The time step is typi-
control. These tests show that significant constraint violacally chosen to be half the distance between the closest col-
tions (and in some cases constraint violating instabilities location points, which ensures that the Courant condition is
occur in dynamical solutions of the fat Maxwell system onsatisfied.

computational domains with open boundaries. In Sec. V B In order to provide a quantitative measure of convergence
we study the use of the active constraint control mechanisrand the amount of constraint violation of our numerical so-
described in Sec. Ill. Our tests show that this method is nolutions, we have defined several norms on the constrafhts
numerically convergent, and is not very effective in control-and the dynamical fields“. We have already defined the
ling the growth of constraints in this system. And finally in constraint energy¢&) in Eq. (24), which provides a norm on
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the constraint fields. In computingE) for these numerical g~ - -
studies we fixy;= x»= x3=1. We also define norms on the R NN =10 o
dynamical fields themselves: ¢ -
10_5 R R e T T ey Y o T L T P ATy s =]
) _ N

||u||Lzzf (E;E'+D;;D1)d3, (56) o
Z107F -

||u||?.=max E;E'+D;;D'). (57) =
B 10° 1

We compute the volume integrals in these norms, e.g. in Eq.
(24) or (56), exactly using the appropriate form of Gaussian N =N =40

2
(=]

guadrature, and the maximum in E&7) is taken over the 1020 e T
appropriate set of collocation points at a particular instant of ! . ! !

time. These norms are most useful for comparing solutions 0 10 20 30 40 50
evaluated with different numerical resolutions. Thus we de- Time

fine FIG. 1. Convergence test for fat Maxwell 6f*. Shown are

norms of differences between solutions at different resolutions: the

||5U||iZEf (SE,; 5E + 5Dij 5D”)d3x, (58) rs}gl:;jn;:urves use the< norms while the dotted curves use th&
. . . 2 . .
2 _ o amij tional domain with topologys~ X R using freezing boundary
|| oullL-=max 5E; 6E'+ oD;; 5D, (59 conditions and no constraint control.

N _ _ " The evolution of the constraint energy noki&) for the
where ou®={JE;,sD;;} is the difference between® at a ¢4t Maxwell system is driven entirely by a boundary term,
given resolution andi* at the besthighes} resolution we Eq. (35). Thus we expect the constraints to be satisfied ex-
computed. Differences between quantities at different resoactly for evolutions on a computational domain without
lutions are computed by evaluating and then subtracting thBoundary. To confirm that our numerical code correctly mod-
spectral series for each resolution at the points on the finesls this, we solve Eqg8), (9) on a computational domain
grid. In order to provide meaningful scales for these normedyith topology T2, i.e. within a 3-torus. In particular we
quantities we typically plot dimensionless ratios of expreschoose coordinates, y, andz in the interval[0,27], and
sions such a$|8ul|s/||Upesl|?> and || 8u]|Z./||upesl|?=- In impose periodic boundary conditions. The basis functions
the case of the constraint energy we typically plotused in our pseudospectral method are sines and cosines. We
(&)]]oul|?, where use initial data for this test in which the electric field is set to

zero,E;=0, and each component of the vector potential is
||'9U||25f (&kEiakEivLakDijakD”)dsx (60) set to be a cylindrical Gaussian pulse:
A=A,=A,= e [(y=cy)?+(z=c)w?, (61)
is a norm on the gradients of the fields. We are interested in . ,
seeing how these ratios behave as the resolution of the nifére the width of the pulse is setwo=0.5, and the center

merical solution is increased: Order unity values of thesé® plfced in the middle of the computational domam,
ratios, || 8ul|2/||upedd| or (£)/||aul|?, indicate a complete =c,=3.14. The shape of this pulse is selected so that the

lack of numerical convergence or solutions that are domiVvalue of the Gaussian falls below double precision roundoff,

o o> e el - L
nated by constraint violations, respectively. Values of thesd¥ -+ at the periodicity “boundaries” of the domaiy,=0

ratios of order 103* correspond to double precision roundoff ar;dy:27-r, etc. This ensures that these data are smooth on
error. T* to roundoff accuracy. The initial data f@;; are set to the

numerically determined values @fA;. We use the gauge
choice =0 throughout this evolution. Because these initial
data are effectively two dimensional, we can place as few as
In this section we illustrate the results of finding numeri-two collocation points in thes direction for computational
cal solutions to the fat Maxwell evolution system ER), efficiency.
(9) using no constraint control at all. We examine three sepa- Figure 1 shows a convergence plot for this case that was
rate cases: First we look at evolutions on a computationalun with evolution parameter valueg =1/y,=—0.1, and
domain with topologyT?, a 3-torus. The differential equa- resolutionsN, =N,=10,20,30,40, and 50 collocation points.
tions governing the fat Maxwell system allow no constraintWe see from Fig. 1 that the differences converge to zero as
growth on domains without boundaries. So this first test is tahe resolution is increased. Figure 2 illustrates the amount of
verify that our code accurately reproduces “exact” constraintconstraint violation in these runs. These curves, which in-
conservation in this case. Next we examine the evolution otrease approximately linearly with time, have magnitudes
a representation of the static Coulomb solution on a computhat are roughly proportional to the number of numerical
tational domain with topology®x R, a spherical shell. Fi- operations performed multiplied by double precision round-
nally we study a highly dynamical solution on a computa-off error. Thus, the finer resolutions have larger errors than

A. No constraint control
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LINDBLOM et al. PHYSICAL REVIEW D 69, 124025 (2004

10>24 T T T T T T T T T | ' ' ' " ' " '

(Eloul

l8ull® / flu, I

-30 I ] I I * * * *
10 0 20 40 60 80 100
0 10 20 30 40 50 e

Time

FIG. 3. Convergence test for fat Maxwell @ X R with static
point charge initial data. Shown are norms of differences between
solutions at different resolutions: solid curves usenorms and
dotted curves usk” norms.
the coarser ones, since the finer resolutions require a larger, . : . L .
number of time steps and a larger number of numerical Op§pherlcal boundaries we set the time derivatives of the in-

. coming characteristic fields to zero, i.e. we impose freezing
erations at each step. As expected from @), we see that boundary conditions, Eq38). The scalar potentiap is held

the.constraints are sa_tisfied essentially exactly when the'd onstant in time. We find that these numerical evolutions are
main has _n(_)_boundarlesé We have also computed evolutiongapie ang convergent and the constraints are preserved, as
for these initial data off* using other values of the evolu- g4y in Figs. 3 and 4. These computations were performed
tion parameters. In particular we ha\_/e computed_evolutlon%th radial resolutions\, = 11,21,31,41,51,61, and 73 collo-
with y,=1/y,=0.1, and also evolutions that switch back c4qp, points, and a fixed angular resolution with spherical
and forth between these positive and negative values at eaghl .\ onic indext... =5 (or equivalently,N,=6 and N

max ) @

time step. In all of these cases, we find the evolutions to be_,, angular collocation pointsFor ¢, =9 the results are
max

FIG. 2. Constraint violation for fat Maxwell of®. Shown is the
constraint energy€) divided by the norm of the derivatives of the
fundamental variables.

cor;\lvertgent ;N'th roun?toff t[eve: conlst.raln:hV|oIatn|3nt: indistinguishable on the scale of Figs. 3 and 4 except at the
_ Nextwe turn our & er|1 l;)n 0 SO V.'?]g ele\écg)/ugm_ equa'highest radial resolutions, indicating that the radial and tem-
tions on a computational domain with topolo@y xR, 1.e. oo truncation errors dominate, as expected for a solution

within a spherical shell. For our basis functions we choosg, it jittle angular structure. This is a cas we shall ségn
Ck}e:yshev.polfynor;lals forl the radlda_ll coordgllar':e anhd Sphgr'\'/vhich a time-independent solution is not always the best test
cal harmonics for the angular coordinates. Although our bagy,pem 1o investigate the constraint-preserving properties of
sis functions are written inr(6,¢) coordinates, our funda- a system of evolution equations

mental variables are the Cartesian components;oand Finally, we examine a highly dynamical solution of the fat
Dj; . To eliminate high-frequency numerical instabilities that 15, vell system on the computational doma#Ax R, de-
sometimes develop during our simulationsShx R, we ap-  fineq by 1.8<r=<11.9. For this solution we choose initial
ply a filter to the right-hand sides of Eq&5) before and data WithE: =0 and

after incorporating boundary conditions via the/Bjos al- '

gorithm. The filter consists of simply setting high-frequency 10° —
spherical harmonic coefficients to zero:lf,,, is the largest /\/ N1
index used in the basis functiois,, at a particular resolu- 104k T |

tion, then the largest retained in the right-hand side of the
E; equations after filtering is 2,,/3—1, and the largest
retained in the right-hand sides of tH®;; equations is

2¢ mad/3. This filter is a variation on the standard 2/3 rule
used to remove the inevitable effects of aliasing whenever
functions are multiplied using spectral methd@4].

For the first of these tests we choose initial data that cor-
respond to a static point charge that is located in the hole in
the center of the computational domain. Thus we choose
initial data withE; = — d;¢p=r ~?g;r andD;; =0, appropriate

Exlloul’

for a unit point charge at rest at the origin. We then solve 0 20 40 60 80 100
Egs.(8), (9) with y;=1/y,=0.1 on a computational domain Time

. 2 . . .
with topology S°xR, defined by 1.&r<11.9. (This is the FIG. 4. Constraint violation for fat Maxwell o$?xR with

same computational domain that we typically use to evolv&atic point charge initial data. Shown is the constraint enégly
single black hole spacetimgst both the inner and outer gjyided by the norm of the derivatives of the fundamental variables.
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Time Time
FIG. 5. Convergence test for a dynamical solution of fat Max-  FIG. 7. Convergence test for fat Maxwell & X R using freez-
well on S2X R using freezing boundary conditions and positive val- ing boundary conditions and negative values,gf. Shown are
ues of y,. Shown are norms of differences between solutions anorms of differences between solutions at different resolutions:
different resolutions: solid curves usé norms and dotted curves solid curves us&? norms and dotted curves uk& norms.

useL” norms.
tions: the data from the three highest resolutions coincide on

the scale of this diagram. Thus the constraints are violated,
but the constraint energy is still convergent in these solu-
wherer,=6.5 andw=1.0. The initial values oD;; are set tions. This indicates that the constraint violation is a property
to the numerically determined values @fA;. These initial  of the true solution of the continuum equations with freezing
data correspond to a pulse of radiation centered=at. boundary conditions, rather than an effect caused by a defec
This pulse is neither spherically symmetric nor even axiallytive numerical method. The constraint violation appears to be
symmetric, because the Cartesian components of the vectgenerated as the initially constraint-satisfying waves interact
potential are set to spherically symmetric functions in Eq.with the boundaries, starting at abdut4.
(62); however, only a small number of spherical harmonics We have also computed evolutions for these dynamical
are sufficient to represent the full solution. The scalar poteninitial data using negative values of the evolution parameters
tial is set to¢p=0 for these solutions, and we impose freez-y;=1/y,=—0.1; the results are depicted in Figs. 7 and 8.
ing boundary conditions, Eq38), on the incoming charac- Since the producy; v, is unchanged from the previous runs,
teristic fields. the characteristic speeds of the system remain the same. And
Figure 5 shows a convergence plot for this case, usinghe definition of the constraint energy(which depends on
evolution parametersy;=1/y,=0.1 and ¢ ,,—=5, which  the ratioy,/v,) also remains unchanged; so this allows us to
confirms that the numerical solution is convergent. Formeaningfully comparef for the two cases. Fo,<0 the
€ max=9 the results are indistinguishable on the scale of théundamental evolution system, Eq$), (9), is strongly but
figure. Figure 6 shows that significant constraint violationsno longer symmetric hyperbolic as in thg>0 case. Fig-
do exist in these solutions with seven different radial resoluures 7 and 8 show that these evolutions with negative values

AX:AyzAZ:e*(r*ro)z’Wz, (62)

0 2z y - T ¥ T L T T T X 0 T T T T
100 1 10 4
L N=11
\’\—\_’\—_—- N=11
| T
N= 2 | N= B
Z 10T . Z 10 2 i
e ﬂ S
41 i 4 e
10 . N=73 10 \— .
\\ \ ‘ \ N =73
fo et ;
1 1 1 1 i N 1 " 1 L 1 " 1 I
0 20 40 60 80 100 0 20 40 60 80 100
Time Time

FIG. 6. Constraint violation for a dynamical solution of fat Max- FIG. 8. Constraint violation for fat Maxwell 082X R using
well on SX R using freezing boundary conditions and positive val- freezing boundary conditions and negative valueyof Shown is
ues ofy,. Shown is the constraint energg) divided by the norm  the ratio of the constraint energy to the norm of the derivatives of
of the derivatives of the fundamental variables. the dynamical fields.
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FIG. 9. Constraint violation for fat Maxwell 08*XR. Solid FIG. 10. Angular convergence test for a dynamical solution of

curves are fory,>0 while dotted curves are foy,<<0 evolution  fat Maxwell, showing numerical instability fop,<0. Shown is a
parameters. Seven different resolutions are depicted for each sign gbrm similar to||su||, > defined in Eq.(58) except that the differ-

Ya, but only the lowest resolution curves are distinct at the scalegnces are taken between quantities at two different angular resolu-
shown. tions and fixedN,=73. Dotted curves show results fog=1/y,

of y, appear to be convergent, and have fractional constraint —0.1, and are labeled by the two angular resolutions that are

. | . . " Subtracted. Solid curves show that the same quantities for the case
violations that are comparable with those in the positige " —7 /"~ 01" o convergent
case. However, as illustrated in Fig. 9, the evolutions in the® 72~ ~/Y2~ "% gent.

negativey, case have constraint violating instabilities. . . . L
We note that we also find aumerical instabilityfor the the fat Maxwell system this active control consists of switch

v,<0 case, and apparently for all cases in which the fundaln9 the sign of the evolution paramete@ andy, to ensure
mental evolution system is strongly but not symmetric hy-that the constraint energy) does not increase. In the pre-
perbolic. This numerical instability appears to be associateyfUS Section we presented two sets of numerical evolutions
with the angular discretization. It grows exponentially in Without constraint control differing only by the signs gf
time, and becomes worse at higher angular resolutions. Hovnd 2. The characteristic speeds and the definition of the
ever, for the angular resolutions we use, and for choices o¢nergy(&) were the same for these evolutions. Both evolu-
va Near the symmetric hyperbolic range, such as the caséons were convergent on the time scale considered fere (
shown here,y;=1/y,=—0.1, the numerical instability is =<2100), and the fractional constraint violation was conver-
negligible compared to the constraint-violating instability gent and similar in these cases on the same time scale. We
shown in Fig. 9. Only by going to higher angular resolutionnow investigate the possibility of switching between these
can one see any nonconvergent growth at all on the timewvo cases during a single evolution as a means of reducing
scales we consider here. Ff,—9 the instability is visible  the constraint violations. The strategy is to monitor the quan-
only at late times t~200) for the highest radial resolutions tity on the right side of Eq(35), and to change the signs of
in the quantitie:i|6u||fz and||5u||fx, and is not visible in  y; and y, whenever necessary to keep the right side nega-
plots of (£). To construct a quantity that is sensitive to this tive. This should ensure that the constraint energy nfm
instability, we repeated the runs shown in Figs. 5-9 at anguis always decreasing, so the constraints should remain satis-
lar resolutions =5, 7, 9, and 11 and computed the normsfied. Note that this method should work only as long as our
of differences of the fundamental fields at adjacent angulanumerical solution satisfies the equation governing the evo-
resolutions. These norms are plotted in Fig. 10. lution of the constraint energy, E(B5). Figure 11 illustrates
We see no indication of this numerical instability for val- for the casey,>0 that this equation does remain satisfied to
ues ofy, in which the fundamental evolution system is sym- tryncation error level for the runs discussed in Sec. V A; the
metric hyperbolic(for example, the solid curves in Fig. 10 plot for y,<0 is similar. Consequently we expected good
are convergent For choices ofy, very far from the sym-  results from this active control method.
metric hyperbolic rangésuch asy; = 1/y,=10), the insta- Figure 12 shows the constraint violation for a case in
bility grows much more rapidly and dominates the resultsyyhjch they, are allowed to change sign at every time step in
Although it is possible that the numerical instability can begrder to control the constraints. The signs are changed only if
cured by modifying our angular filtering algorithm, for the the right side of Eq(35) becomes positive, and the current
purpose of this paper we simply consider only valuesyof  yajye of(£) exceeds the value it had after the first time step.
and angular resolutions for which the time scale of this in-Tne |atter condition is intended to prevent sign changes that
stability is longer than that of other effects we wish to study.attempt to reduce the constraint violation to less than the
truncation error. Since this constraint control method de-
pends on Eq(35) being satisfied, control should be possible
In this section we investigate the use of the active cononly to truncation error level at best. Figure 12 shows that
straint control methods described in Sec. lll. For the case athe maximum value of the constraint is smaller than for the

B. Active constraint control
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FIG. 13. Convergence test for fat Maxwell 8 R, for active
constraint control at every time step. Shown are norms of differ-
ences between solutions at different resolutions: solid curvektise
norms and dotted curves uk& norms.

FIG. 11. Violation of the constraint energy evolution equation,
Eq. (35), for fat Maxwell onS*X R with freezing boundary condi-
tions andy,>0. Plotted is the difference betweéf) and the time
integral of the right side of Eq:35) for each resolution.

uncontrolled caséplotted as a dotted line in Fig. 12How-  time. This effect should have significant consequences only
ever, the improvement is only an order of magnitude at besfon quantities computed using different resolutions, such as
even for the highest resolution run. Even more disturbing ishe differences plotted in Fig. 13. But quantities computed
the lack of convergence of the constraint norm. The fundausing a single resolution, such &, should not be affected.
mental fields do not converge very rapidifat all) either, as  When these latter quantities are compared for different reso-
can be seen from Fig. 13. This lack of effective constrainiutions on the same plot, as in Figs. 12 and 14, the graph will
control is confirmed in Fig. 14, which shows that E85) is  not look like the “classic” convergence test in which all
not satisfied very well for this case. It appears that the activeurves have the same shape. But the curves stididdery-
constraint control mechanism severely degrades the convething else in the method is convergedecrease at roughly
gence of our numerical simulations in such a way that Eqthe correct rate. Because we lose a great deal of accuracy in
(35) no longer holds to the needed or expected accuracyigs. 12 and 14 compared to their uncontrolled counterparts,
Consequently the active constraint control method is able tgigs. 6 and 11, we believe that the fact that the control
reduce the constraint violations only by a small amount ovemechanism is applied independently for each resolution is
the uncontrolled case. not the primary cause of the problem. In order to eliminate
One effect that can destroy convergence in these tests his effect on convergence, we repeated our simulations, but
the fact that the control mechanism is applied independentlyhis time switched the sign of, only once at the time
for each resolutiortas pointed out by Tigli$27]). Therefore, =4 for each resolution, regardless of the sign of the right
at a given value of, the evolution equations used for one sjde of Eq.(35) or the magnitude of€). In this case, exactly
resolution can be differerbecause of the signs of; and
v,) from the equations used for another resolution at that

T ¥ T E T ¥ T
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FIG. 14. Violation of the constraint energy evolution equation,

FIG. 12. Constraint violatiorisolid curve$ for fat Maxwell on Eq. (35), for fat Maxwell onS?X R with active constraint control at
S?XR with active constraint control at every time step. Dotted each time step. Plotted is the difference betwégnand the time
curve is the comparable uncontrolled case. integral of the right side of E(35) for each resolution.
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FIG. 17. Left curve represents a characteristic field at one in-
stant of time, and right curve the evolution of this field at a later
107 r 7 time. Freezing boundary conditions produce the non-smooth but
continuous solid curve extension, while standard maximally dissi-
0 20 40 50 T80 100 pative boundary conditions produce the discontinuous dashed curve

Time extension.

: FIG'f 15, C_;)r;]virg(in_cz :eSt ﬁor fatl I\il_axweghﬁ%xR, with the ‘ lution will contain some non-vanishing incoming character-
S1gns Oly, switched at =4 Tor all Fesoltions. Shown ar,e oS OF istic fields near the boundary. However, our freezing bound-
differences between solutions at different resolutions: solid curves o . . . Lo

2 ary condition requires the incoming characteristic fields to be
useL“ norms and dotted curves u&€ norms. Compare to runs S . : .

L - constant in time at the boundary. Since the incoming charac-
with fixed vy, in Fig. 7. S - . ;

teristic fields propagate inward, at times after the switch (

the same evolution equations are being solved at each res?[OJr €) a kink will appear in the profile of these incoming

lution. As shown in Fig. 15, the convergence rate is severel elds. This type of boundary-condition-induced kink is illus-

reduced even in this case when the signs.pfire switched rated in Fig. 17. The sketch on the left in Fig. 17 illustrates
att=4. Furthermore as shown in Fig. 16, E@5) is vio- an incoming characteristic field at time just after the switch

lated after the signs are switched (tot+€), and the sketch on the right shows the kink in this
We now believe that this nonconvergence is caused by jeld that develops from the boundary condition. The exis-

lack of smoothness of the fields that is introduced by theonce of such a kink in the evolution fields_greatly reduces
discontinuous change in the evolution equations: Suppos@e cc}nvirgfinc(?ﬁrate of our tshpedctral e\éolutll((_)nkmetlhli)dl. At\nd
the signs ofy, are switched at a timey, and suppose thatat Jo %y oo ctel 2 el since a kink in the funda.
time just before this switcht&ty— €) some outgoing char- 9 '

acteristic fields at the boundary are nonzero. When the sign ental quantities translates into a discontinuity in the con-

of v, are switched, some of the outgoing and zero-speea raints. Unless great care is taken to ensure that discontinu-

characteristic fields will be converted to incoming character—"> solutions are treated propetf standard problem in

istic fields, and vice versa, as can be seen from Efd-— compu_tational .ﬂl.Jid dynamics but qu.ite_foreig.n to. vacuum
(17). [For éxample switchi,ng the signs of the in Eq. (17) numerical relativity pecause the gravngthnal field is not ex-
h'I. Keepina E. ' dD. fixed vields UZ: =—U2.I 1 pected to have physical shogk&q. (35) is likely to be vio-

whiie keepingk; and Ly; TIXEC YIEAS Uaer before- lated and the constraint preserving mechanism will fail. We
Therefore, at a time just after this switcti=(to+ €) the so- have made several attempts to replace the freezing boundary
condition with a condition that smoothly adjusts the value of

= the incoming fields at the boundary. Unfortunately none of
these attempts have been very successful.

. C. Constraint-preserving boundary conditions

Finally, we have performed a series of tests on the con-
straint preserving boundary conditions described in Sec. IV.
Figures 18 and 19 show evolutions of our dynamical initial
data onS?x R (analogous to that used in Figs. 7 andagth
the boundary condition otJ?~ now set according to the
constraint preserving condition EGO). The vy, are negative
for the plots in Figs. 18 and 19. The constraints are satisfied,
12 , . . i and the simulation appears to be converg@xcept for a

0 20 40 60 80 100 late-time angular numerical instability, not visible on the

Time plots, that appears identical to the numerical instability dis-

FIG. 16. Violation of constraint energy evolution equation, Eq. cussed at the end of Sec. J.AVe have also performed these
(35), for cases withy, switched at =4 for all resolutions. Plotted ~ €Vvolutions using positive values of,, and the simulations
is the difference betweeff) and the time integral of the right side appear to be convergent, completely stable, and constraint
of Eq. (35) for each resolution. Inset shows detail at early times,preserving in this case. Figure 20 compares the unnormalized
showing that Eq(35) is satisfied until the switch dt=4. constraint energy for these evolutions with those run with

(E)-fagey dt
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FIG. 18. Convergence test for fat Maxwell xR, using FIG. 20. Constraint violation for fat Maxwell 08?x R for v,

constraint-preserving boundary conditions apg<0. Shown are <0. Solid curves use constraint-preserving boundary conditions
norms of differences between solutions at different resolutionsivhile dotted curvegsame as the dotted curves in Fig.u&e freez-
solid curves us&.? norms and dotted curves uk& norms. ing boundary conditions. Seven different resolutions are depicted
for each type of boundary condition, but only the lowest resolution
freezing boundary conditions. Thus adopting constraint precurves are distinct at the scales shown.
serving boundary conditions clearly does improve the con-
straint preserving properties of these evolutions much morgjowly-growing angular numerical instability, not visible on
than the active constraint control method. Fig. 21, that appears at late times or for high angular resolu-
But this is not the entire story. Figure 21 shows the normiong). Therefore, the type of growth seen in Fig. 21 appears
of the fundamental dynamical fieldii||* for evolutions us- o represent a solution of the partial differential equations.
ing constraint preserving boundary conditions with  Since these solutions do satisfy the constraints, the driving
= —0.1(solid curveg and y;=0.1 (dotted curvep This plot  force for these instabilities must be an excess of incoming
shows that while the positive; evolutions are stable, those radiation that is reflected back into the computational domain
with negativey; are not. A more extensive sampling of the by the boundary condition. We refer to this type of instability
parameter space reveals that evolutions preformed with as aboundary condition driven instabilityThus the con-
=1/y,={0.1,1.0,2.5,2. (for which the principal evolution straint preserving boundary conditions are a great improve-
system is symmetric hyperboliappear to all be convergent, ment over the other methods studied here, but they do not
constraint preserving, and stable. Conversely, we find thaompletely eliminate all the instabilities in these strongly
evolutions performed withy,;=1/y,={—-1.0,-0.1,3.5,4.}  hyperbolic cases. Further study will be needed to determine
(for which the principal evolution system is strongly but not whether these boundary conditions can be improved.
symmetric hyperbolicare all constraint preserving but un-
stable. These evolutions are numerically convergent for the 8 —— T T T
resolutions and time scales we have testexicept for a 1

10°

2
[l

Exlloul’

. . h ' FIG. 21. Norm of the fundamental variables for fat Maxwell on
0 20 40 Tiitie 60 80 100 S?XR with y,<0 (solid) and y,>0 (dotted, using constraint-
preserving boundary conditions. Even though the constraints are
FIG. 19. Constraint violation for fat Maxwell 082X R using  satisfied fory,<0, the fundamental quantities increase exponen-
constraint-preserving boundary conditions gna<0. Shown is the tially, but in a convergent manner. Seven different resolutions are
constraint energy€) divided by the norm of the derivatives of the depicted for each case, but only the lowest resolution curves are
fundamental variables. distinct at the scales shown.
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VI. DISCUSSION Einstein evolution equations should be straightforward. For

This paper explores the effectiveness of two methods fof O"€ general systems the analogue of the constraint energy

controlling the growth of constraints in hyperbolic evolution evolutlc_)n equation, Eq(50), will contain both boundary
systems. Using an expanded version of the Maxwell evquJ-[erms like the fa_t ngwell system and also volume terms, S0
tion system—which we call the fat Maxwell system—we that constraint violations can be genera’;ed both at_boundarles
showed that significant constraint violations and in someand N th_e_ bulk. We expect that constraint preserving bound-
ary conditions alone will not be sufficient to control the con-
Straint violating instabilities that occur in these more general

evolutions are performed using “standard” numerical meth- C
ods and boundary conditions. We show that the active conSyStemS' Instead we expect that some combination of meth

. . . o ods will be needed. The disappointing results obtained here
straint control mEthO(ﬁWh'Ch has been stu_dlec_i by T|g||o_and with the active constraint control mechanism suggest that
his collaborator$27,28) is not very effective in controlling

the growth of constraints in the fat Maxwell system Whensigniﬁcant improvements will be needed to make this
9 Y method useful for helping to control the growth of con-

spectral numerical methods are used. This lack of effective;, ~. .. o Einstein system for evolutions based on spec-
ness appears to be caused by the non-smooth nature of t €1 methods

control mechanism for this system. We also show that con-

straint preserving boundary conditions are very effective in ACKNOWLEDGMENTS
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