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Time travel paradoxes, path integrals, and the many worlds interpretation of quantum mechanics

Allen Everett
Department of Physics and Astronomy and Institute of Cosmology, Tufts University, Medford, Massachusetts 02155, USA

~Received 13 September 2002; published 25 June 2004!

We consider two approaches to evading paradoxes in quantum mechanics with closed timelike curves. In a
model similar to Politzer’s, assuming pure states and using path integrals, we show that the problems of
paradoxes and of unitarity violation are related; preserving unitarity avoids paradoxes by modifying the time
evolution so that improbable events become certain. Deutsch has argued, using the density matrix, that para-
doxes do not occur in the ‘‘many worlds interpretation.’’ We find that in this approach account must be taken
of the resolution time of the device that detects objects emerging from a wormhole or other time machine.
When this is done one finds that this approach is viable only if macroscopic objects traversing a wormhole
interact with it so strongly that they are broken into microscopic fragments.
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I. INTRODUCTION

There has recently been a good deal of interest in poss
spacetimes containing closed timelike curves~CTC’s! arising
either from the presence of traversable wormholes@1# or
from the warping of spacetime in such a way as to all
superluminal travel@2#, with the possibility of CTC’s as a
consequence@3–5#. A variety of theoretical consideration
~e.g., Refs.@6–8#!, either general or addressed to spec
models, have been advanced which suggest that the fo
tion of CTC’s is not possible. However, while some of the
considerations are very persuasive, none appear conclu
@9#.

In addition to the problems discussed in the referen
already cited, CTC’s lead to the well-known problems w
paradoxes arising from the apparent possibility of incon
tent causal loops. This phenomenon is illustrated by
‘‘grandfather paradox’’ occurring frequently, in variou
guises, in science fiction, in which one travels back in ti
and murders one’s own grandfather, thus preventing o
self from being born and traveling back in time in the fir
place.

Satisfactory physical theories must avoid giving rise
such self-contradictory predictions. One approach to ach
ing this is to impose consistency constraints on the allowa
initial conditions on spacelike surfaces prior to the format
of the CTC’s, thus abandoning the principle that initial co
ditions on such surfaces can be chosen at will. For exam
in the case of the grandfather paradox we might insist
the initial conditions just before the prospective murder
clude the presence of a strategically placed banana pee
which the prospective murderer slips as he pulls the trig
thus spoiling his aim. One might refer to this approach as
‘‘banana peel mechanism;’’ it leads to a theory free of logi
contradictions, but requires occurrences that would seema
priori , to be highly improbable. This violates strong intuitiv
feelings. These feelings may simply reflect our lack of ex
rience with phenomena involving CTC’s. Nevertheless
need to invoke constraints on the choice of initial conditio
would be quite disturbing for many physicists and contrib
to an expectation that CTC’s are forbidden.

The first suggestion in the literature that it might be po
0556-2821/2004/69~12!/124023~14!/$22.50 69 1240
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sible to avoid such paradoxes was due to Echever
Klinkhammer, and Thorne@10# ~henceforth EKT!. For sim-
plicity, these authors formulate the problem in terms of b
liard balls, thereby avoiding questions of free will. They co
sider a situation in which, att52«, where«.0 but may be
taken arbitrarily small, there is a billiard ball~henceforth
generally denoted by BB!, which we take to be at the spatia
origin; its trajectory is such that att5T its leading edge
reaches the pointr01Dr and enters a wormhole which con
nects the spacetime point (r01Dr , t1T) to (r0 ,t). ~A pro-
cedure for creating such a wormhole is discussed in R
@10#. We takeDr , the spatial distance between the wormho
mouths, to be small compared withr 0 , and will in general
ignore it; however,Dr cannot vanish if the wormhole per
sists over a time intervalT0.T, as one needs to introduc
some separation between the two wormhole mouths if t
overlap int. In general we will assumeT0!T. We take the
internal length of the wormhole to be small compared tor 0 ,
and will often work in the approximation in which the tw
mouths of the wormhole are simply identified with one a
other.! Upon emerging from the wormhole mouth att50, the
BB may interact with its ‘‘younger self’’ which has not ye
entered the wormhole.~‘‘Younger’’ here means younger in
terms of the ball’s ‘‘personal’’ time, i.e., the proper timet
measured on a clock attached to the ball.! An inconsistent
causal loop, analogous to the ‘‘grandfather paradox,’’ c
then occur as the result of a BB trajectory such that,
emerging from the wormhole, the ball undergoes a head
collision with its younger self, deflecting the latter so that
does not enter the wormhole in the first place. However,
EKT point out, in the presence of CTC’s the trajectory is n
unique, and there are also solutions, with the same in
conditions, which give rise to consistent causal loops; e.g
glancing collision may occur which deflects the bal
younger self so that its trajectory through the wormhole
sults in the required glancing collision. EKT then sugge
adopting a consistency principle according to which on
self-consistent solutions are to be considered physical.
EKT consistency principle places constraints on the allo
able initial conditions within the region containing CTC’
but does not constrain the initial conditions that may be i
posed outside that region. This idea seems physically att
©2004 The American Physical Society23-1
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ALLEN EVERETT PHYSICAL REVIEW D 69, 124023 ~2004!
tive, and the discussion in Ref.@10# had much to do with
stimulating interest in time travel as a subject possibly
serving of serious study.

It is, however, far from clear that the consistency princip
always allows one to avoid paradoxes. Because of the va
of types of collision, ranging from glancing to head o
which can occur between two spheres, EKT were able to
self-consistent solutions, in fact an infinite number of the
for a wide variety of initial conditions. However, it is diffi
cult to see how this can be true in general. For exam
suppose we place at the early time (t50) mouth of the
wormhole a device to detect the BB if it emerges.~One
might, e.g., have a spherical grid of current carrying wi
enclosing the wormhole mouth att50 thin enough to be
broken by the BB with its given speed and spaced clos
enough that a BB cannot emerge from the wormhole with
breaking at least one of the wires.! Suppose further that we
connect the detector in such a way that, if a BB is detec
a signal is sent at light speed activating a mechanically
erated shutter, which deflects the incident ball at some l
point on its path so that it does not enter the late-time wo
hole mouth. One can include a requirement that the sign
sent only if a BB emerges from the wormhole before t
incident ball reaches the shutter. This eliminates the poss
ity of a second, consistent, solution, in which the shut
starts to close just as the ball passes through it, resulting
self-consistent time delay in which the ball emerges from
wormhole and causes the shuter to close just as the inci
ball reaches it. This arrangement is a modification of som
what similar ones discussed by Novikov@11# in which con-
sistent solutions exist. In the case discussed here, howev
is difficult to see how there can be any self-consistent,
hence physically acceptable, solution. Thus we seem to
back to the grandfather paradox in the form of a BB wh
enters the wormhole if and only if it does not enter t
wormhole.

We will illustrate these ideas below, making use of
quantum mechanical model due to Politzer@12# ~henceforth
HDP! which is simple enough to be calculable but has ma
of the physical features of the BB-wormhole system just d
cussed. In this model, systems are treated as being in a
quantum state, as in standard quantum mechanics, even
spacetime region containing CTC’s, and the path integral
malism is used; the treatment in HDP is limited to calcul
ing amplitudes for the case of initial and final states at tim
respectively, before and after the era containing CTC’s. T
HamiltonianH can be chosen so that there are self-consis
solutions; in accordance with the EKT principle, these so
tions can be taken to be the only ones which are physic
relevant. We also find, at least in the HDP model, that wh
unique consistent solutions exist, their time evolution is g
erned by a unitary operator, so that the probability interp
tation of quantum mechanics can be preserved. Henc
consistent solutions exist, one has a quantum mechan
theory which, in the presence of CTC’s, differs from sta
dard quantum mechanics only in the imposition of the E
criterion for physically relevant solutions, and in the fact th
the uniqueness problem remains if there is more than
self-consistent solution.
12402
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However, it is also possible, as we will see below,
choose a Hamiltonian in the region of CTC’s in the HD
model for which no self-consistent solutions exist, in contr
with the examples in Refs.@10# and@11#. One can attempt to
restore consistency by projecting out only that part of
path integral expression for the wave function att.T which
comes from paths satisfying the consistency condition. Ho
ever, as seen in HDP, this results, because of the consist
requirement, in a time evolution of the wave function whi
is controlled by a nonunitary operatorXÞexp(2iHt). One
may preserve the probability interpretation of the final st
wave function by renormalizing the operatorX by a factor
which depends on the initial state and which thus introdu
nonlinearity into the time evolution. Unexpectedly, this h
consequences for the time evolution of the system fort,0,
i.e., for timesbeforeCTC’s occur, as first observed by Hart
@13#; a more intuitive argument based on the requirement
a consistent probability interpretation is given in HDP. A
alternative procedure for renormalizingX by matrix multipli-
cation, proposed by Anderson@14#, avoids violations of cau-
sality att,0, though perhaps at the cost of discarding ess
tial physics. Both procedures, in effect, lead to the ‘‘bana
peel’’ mechanism, since one finds that the presence of po
tial paradoxes insures the occurrence ofa priori improbable
events either before or during the era of CTC’s.

Hence, in the general case, the HDP approach avoids
problems associated with inconsistent causal loops only if
the presence of CTC’s, fundamental axioms of quantum m
chanics are abandoned. In particular, the time evolution
erator which transforms the wave function att1 into that att2
is no longer unitary and is not given byU(t1 ,t2)
5exp(2iHt), with t5t12t2 . Moreover, the preservation o
a consistent probability interpretation requires the introd
tion of ratherad hocprocedures, possibly involving viola
tions of causality in the era before CTC’s are formed.

It would thus be interesting to find a model-independe
approach in which the existence of CTC’s does not lead
inconsistent causal loops; the existence of such a the
would remove one of the theoretical~or perhaps psychologi
cal! objections to CTC’s. Hopefully this would avoid th
nonunitary time evolution operators, and the consequent
ficulties with conservation of probability, which arise in HD
when inconsistent causal loops are present.

Science fiction writers often avoid causal paradoxes
stories involving time travel by invoking the idea of ‘‘alter
nate universes.’’ At first sight this idea seems devoid of a
physical foundation. However, the many-worlds interpre
tion ~MWI ! of quantum mechanics due to Hugh Everett,
@15# does introduce ideas which have some resemblanc
the alternate universes of science fiction; it also provides
interpretation of quantum mechanics which seems difficul
impossible to distinguish experimentally from the more co
ventional one, and which some might argue is intellectua
more satisfying.

It thus seems natural to ask whether the MWI might p
vide a way out of the problems of logical consistency rais
by CTC’s. Deutsch@16# ~hereafter referred to as DD! has
discussed this question. He argues that inconsistent ca
loops do not occur in the MWI because, loosely speaki
3-2
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TIME TRAVEL PARADOXES, PATH INTEGRALS, AND . . . PHYSICAL REVIEW D69, 124023 ~2004!
the pairs of seemingly inconsistent events~e.g., one’s birth
and one’s murdering one’s grandfather! occur in different
‘‘universes’’ and hence are not logically contradictory.
Deutsch’s approach the MWI becomes more than a m
interpretation of quantum mechanics; in the presence
CTC’s it has experimental consequences.

The approach in DD actually involves assumptions t
go beyond simply adopting the MWI. The cost of preservi
unitarity, or more precisely, conservation of probability,
that, in the presence of CTC’s, a system must in genera
described by a density matrix, not a wave function. As
will discuss, in the absence of self-consistent solutions, p
states necessarily evolve into mixed states in the region
taining CTC’s if the violations of unitarity in the HDP ap
proach are to be avoided. Thus, in the same situation
which unitarity fails in the model in HDP, the approach
DD requires one to formulate the theory in terms of the d
sity matrix. The time evolution equation of the density m
trix in DD is given, as usual, by

%~ t2!5U21~ t2 ,t1!%~ t1!U~ t2 ,t1!, ~1!

where ~in units with \51) U(t)5exp(2iHt) and H is the
Hamiltonian; this ensures the preservation of the probab
tic interpretation of%. Moreover, Eq.~1! is taken to be valid
at all values oft so that the theory determines% during the
era in which CTC’s exist, as well as before and after. Ho
ever, the concepts of ‘‘mixed state’’ and ‘‘density matrix’’ i
DD are different than in conventional quantum mechan
where mixed state refers to an ensemble of identically p
pared systems whose statistical properties are given by
density matrix. In DD the term mixed state refers to a sin
system not in a definite quantum state and described not
wave function but a density matrix. The diagonal elements
% in, say, theR representation, whereR is an observable
give the probabilities of observing the possible outcomes
measurement ofR on that single system, and% will not, in
general, satisfy the condition%25% characteristic of a pure
state.

Working only with density matrices and mixed states
the type just discussed goes beyond, at least in princ
simply adopting the MWI as presented in Ref.@14# which
deals with systems in pure states described by wave fu
tions. In the MWI, suppose we begin with an object who
initial wave functionc5c1u1(Rj )1c2u2(Rj ) whereRj are
the eigenvalues of an observableR describing the object, and
the ui are eigenstates ofR with eigenvaluesR1 andR2 . Let
the value ofR be measured by a macroscopic measur
apparatus which is left in a state with wave functionf i(qk)
when the measurement yields the resultRi , where thef i are
eigenstates of an observableQ with eigenvaluesqk giving
the internal state of the measuring apparatus. Accordin
the MWI, the system of object plus apparatus will be d
scribed after the measurement by a wave functionf (Rj ,qk),
where

f ~Rj ,qk!5c18f1~qk!u1~Rj !1c28f2~qk!u2~Rj ! ~2!

anduci8u5uci u. Hence the object-apparatus system remain
a pure state. However, because of the complexity of the
12402
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ternal structure of the measuring apparatus, the eigen-va
qi are highly degenerate. Hence the two terms on the r
side of Eq.~2! actually represent effectively infinite sums o
terms with varying phases. Thus, once the measuremen
teraction is over, the two terms on the right side of Eq.~2!
become decoherent and matrix elements of operators
tween states with differentf i effectively vanish. This is the
reason the ‘‘worlds’’ in whichQ has different well-defined
values are unaware of one another so that the MWI, at le
in the absence of CTC’s, is without observable con
quences.

From the foregoing discussion we see that the approac
DD to resolving the paradoxes associated with time tra
involves modifying fundamental principles of quantum m
chanics; it certainly goes beyond simply adopting the MW
We will refer to this approach from now on as the ‘‘mixe
state MWI’’ ~MSMWI! to distinguish it from the original
many worlds interpretation of Ref.@14#. However, despite
the differences in principle, in practice, when dealing w
macroscopic systems, the mixed states which occur in D
sch’s approach are very similar to the nearly decoher
states which occur in the MWI following a measurement,
one might feel that the departure from standard quan
mechanics is relatively minor, and perhaps plausible.

However, as we argue below, once an observation
been made as to whether a BB has or has not emerged
the wormhole the states corresponding to these two poss
ties become decoupled, just as in the case of the diffe
‘‘worlds’’ of the MWI when no CTC’s are present. As a
result, in situations where, classically, there would be an
consistent causal loop, while the front part of an object tr
eling backward in time emerges from the wormhole in
different ‘‘world’’; another part emerges in the same wor
which contains its younger self, contrary to the proposa
DD. As a result, in the case of macroscopic objects, wh
proper account is taken of the finite time required for t
object to emerge from the wormhole and be detected,
finds that no self-consistent solutions in which the obj
passes intact through the wormhole exist in the MSMW
The object is sliced into two, or more generally into man
pieces in passing through the wormhole, with differe
pieces winding up in different worlds, i.e., in states of t
system labeled by different readings of a macroscopic m
suring device. Thus, in the MSMWI, wormholes~or other
time machines! which can be traversed intact by macroscop
objects cannot exist. If the MSMWI is correct, such obje
must necessarily undergo violent interactions with the ti
machine which cause the object to disintegrate.

The organization of the remainder of the paper is as
lows. In Sec. II we discuss the quantum-mechanical form
lation of the consistency condition in the presence of CT
in terms of its implications for the time evolution operator
the wave function. In Sec. III, we consider the model in HD
in cases where the operatorU does, and does not, give rise
the existence of consistent solutions, and observe the con
tion in the model between the existence and uniquenes
consistent solutions and unitarity. In Sec. IV we review
detail the density matrix approach in DD, and its connect
to the MWI, and discuss the relation between the absenc
3-3
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ALLEN EVERETT PHYSICAL REVIEW D 69, 124023 ~2004!
consistent solutions and the transformation of an initial p
quantum state into a mixed state in the region contain
CTC’s. In Sec. V we examine, following DD, how th
MSMWI might resolve the analog of the ‘‘grandfather par
dox’’ in the case of a microscopic object, such as an elect
traveling backward in time. In Sec. VI we analyze in det
the difficulties which arise when one attempts to extend
MSMWI to macroscopic objects. We conclude briefly in Se
VII.

II. CONSISTENCY CONDITION FOR WAVE FUNCTIONS

Here we assume that the rules of quantum mechanics
unchanged in the presence of CTC’s except for the imp
tion of a consistency requirement, whose formulation
wish to examine. Suppose that att52«, where« is infini-
tesimal, we have an incident BB at the origin whose traj
tory is such that its leading edge reaches the wormholet
5T. We take the BB’s proper timet to be the position of the
hand of a clock attached to the ball, which we can treat a
dynamical observable. In contrast,t, the evolution paramete
for wave functions, may be thought of as the common re
ing of a network of synchronized clocks remaining at r
relative to one another. We suppress the~many! other inter-
nal variables in addition tot associated with the interna
structure of the BB. Fort,T, t5t; however, neglecting the
travel time through the wormhole,t5t1T for t.T, i.e., for
the ball which emerges from the wormhole. Although a cl
sical object, we assume the BB is, in quantum mechan
described at the fundamental level by a wave funct
c1(r ,t,t) whose dependence on the dynamical variabler
andt at t52e is peaked about their classical values (r 50
andt52e) with negligible spread; by continuity this shou
also be true ofc1(r ,t,1e). However, there may now b
what appears to be a second ball emerging from the wo
hole. Since we expect the wave function of the ball near
origin to be determined by continuity, we take the most g
eral form of the wave function for the system to be

c~r ,t,r 8,t8,n8,t5e!5c1~r ,t,e!c2~r 8,t8,n8,e!, ~3!

where the variablen8 is an occupation number with tw
possible values, 1 and 0, denoting, respectively, the pres
or absence of a BB emerging from the wormhole.@Thus,
e.g., if the incident ball always goes through the wormh
c2(n850)50. Excluding the possibilityn8.1 corresponds
to the assumption that the incident BB, if it emerges from
wormhole mouth att50, is directed in such a way that
does not reenter the wormhole mouth att5T.] For n851, r 8
and t8 are position variables for the emerging BB and t
hand of its clock, so thatc2(n851, t5e) is peaked around
the valuesr 85r0 and t85T1t01e, wheret0 is the transit
time of the BB through the wormhole; sincee is arbitrarily
small, and the internal length of the wormhole is taken to
such thatt0!T, t8'T. Note that the product form of the
wave function, Eq.~3!, which we obtained by continuity in
time from the initial condition att52e, also follows from
12402
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the reasonable assumption that the two balls~actually the
younger and older versions of the same ball! will not yet
have interacted att51e.

While traversing the wormhole, we take the subsystem
the vicinity of ro to be isolated. For this subsystem,t, though
it may be regarded as a dynamical observable by out
observers, plays the role of the time evolution parameter.
BB evolves through the wormhole in the direction of increa
ing t or decreasingt with the evolution governed by a
HamiltonianH8, the Hamiltonian of the isolated subsystem
~Instead of a billiard ball, one can picture this in terms of
isolated spaceship inside a superluminal Alcubierre w
bubble @5#. Passengers on the ship would see their wo
governed by a quantum mechanics in which the reading
clocks on the spaceship would play the role of the time e
lution parameter even though the hands of the clocks ap
to run backwards to outside observers in some Lore
frames.!

From the foregoing, we conclude that the wave functi
at t5T can be obtained from that att5e by an operator of
the form

U~T!5u~T! ^ exp@ iH 8to! ~4!

where u(T) is an operator which acts onc1(r ,t,e,) and
leavesc2(r 8,t8,n8,e) invariant since its evolution is gov
erned solely by exp(iH8t0). The sign of the exponent is due t
the fact thatt decreases in going from thet50 to thet5T
mouth of the wormhole. In the approximation that the wor
hole mouths are identified so thatto50,

U~T!5u~T! ^ I ~48!

and the wave function of the system att5T has the form

c~r ,t,n,r 8,t8,n8,T!5c1~r ,n,T!c2~r 8,t8,n8,e!, ~5!

where, att5T, we include an occupation number variablen
for the part of the system separated from the wormhole.~At
t50, n51 from the initial conditions.! The direct product
structure of Eq.~4! or Eq. (48) and the product form of Eq
~5! are consequences of the fact thatH8 depends only on the
coordinates of the subsystem traversing the wormhole. T
H8 cannot generate any correlations att5T between the
BB’s with coordinatesr and r 8. If t0Þ0, a factor of
exp(2iEn8t0) must be included on the right of Eq.~5!, where
E050 and E15EBB , the energy associated with the pre
ence of a BB; in general, this factor, even if present, does
affect the subsequent discussion.

Note, from Eqs.~3! and ~5!, that the wave function itself
is not continuous across the wormhole; only the factorc2 is
continuous as a consequence of Eq. (48). If one begins with
a system in a pure state~and thus describable by a wav
function!, then since it is being evolved by a unitary opera
the overall system remains in a pure state. The wave func
at t5e has the product structure of Eq.~3! so that each
subsystem is separately in a pure state. The continuity ac
the wormhole, expressed by Eq.~4!, then guarantees tha
structure is preserved in Eq.~5! even though the subsystem
outside the wormhole interact with one another betwe
3-4
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TIME TRAVEL PARADOXES, PATH INTEGRALS, AND . . . PHYSICAL REVIEW D69, 124023 ~2004!
t50 and t5T; the subsystem at the wormhole mouth th
remains separately in a pure state. Thus ifc1(T) and/or
c2(T) are superpositions of states with different occupat
numbers, the values ofn andn8 must be uncorrelated.

III. CTC’s AND THE QUANTUM MECHANICS
OF PURE STATES

We begin this section by summarizing Politzer’s mod
referred to above. The model drastically truncates space
to a space with two fixed points with coordinatesz5z1 and
z5z2 . For z5z1 , 2`,t,`. However, atz5z2 there is a
time machine in the form of a wormhole connectingt50
and t5T; we neglect the transit time through the wormho
t0 , so that the wormhole simply identifies the spaceti
points (z2,0) and (z2 ,T). A particle atz5z2 , t,0 is taken
to enter the wormhole att50 and emerge att5T to move
on into the future, while a particle atz2 in the range 0,t
,T enters thet5T mouth of the wormhole and emerges
t50, following a worldline which is an endless CTC at co
stant z5z2 . The physical system is taken to be a sing
fermion field. Hence the occupation numbersn and n8 are
restricted to 0 or 1. This models the situation discussed
Sec. II, wheren51 is an initial condition att50, andn8
<1 as a result of the assumed trajectory of a BB emerg
from the wormhole. The states of the system lie in a Hilb
space a basis for which is provided by the four states↑1↑2 ,
↑1↓2 , ↑2↓1 , and ↓1↓2 , where ↑1↑2 , e.g., corresponds to
occupation number 1 for the fermion states at bothz1 and
z22. Henceforth we will omit the subscripts 1 and 2, unle
needed for clarity, and simply adopt the convention that
first and second arrows in a pair denote, respectively,
occupation numbers atz1 andz2 . The field is taken to have
effectively infinite mass so that kinetic energy terms in t
energy can be ignored. The notation↑ and↓ for the occupied
and unoccupied states, respectively, is motivated by the
that the model is mathematically equivalent to the prese
of spin-12 particles, each with possible spin states up a
down, atz1 andz2 . We will always deal with the case wher
the state atz2 is unoccupied except for 0,t,T. During this
interval the system is governed by a HamiltonianH whose
general form is that of an arbitrary 434 Hermitian matrix
whose matrix elements are constants, since the particle p
tions are taken to be given by the occupation numbers
there is no kinetic energy. The assumed freedom to cho
the Hamiltonian governing the time evolution in the interv
0,t,T is a natural representation in the model of the
sumed freedom to impose arbitrary initial conditions at
50 before CTC’s exist.

Let C(t) be the state vector of the system, which, in t
absence of CTC’s, would obey the equation

C~ t !5exp~2 iHt !C~1e!. ~6!

Note that an arbitrary 434 unitary matrixU(T) can be writ-
ten as exp(2iHT) where the Hermitian operatorH is a gen-
erator of the groupU(4); hence the freedom to chooseH
arbitrarily translates into the freedom to choose an arbitr
U(T).
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We will take the model in HDP to give a calculable qua
tative guide to the behavior of our system of the billiard b
that travels back in time and interacts with itself. We letz1 be
the position of the incident BB att52e andz2 the position
of the wormhole. As in the HDP model, the state of t
system att51e lies in the same Hilbert space as befor
where now, e.g., the stateC(1e)5↑↑ corresponds to the
state with both an incident BB atz1 and a ball atz2 which
emerged from the wormhole. The behavior of the BB syst
is, of course, more complicated than that of the model. T
actual trajectory of the balls is not one of constantz; the
incident ball may move fromz1 to enter the wormhole atz2 ,
while a ball emerging from the wormhole att50 might be
directed along a trajectory reachingz5zfinal at t5T, where,
for simplicity, we could takezfinal5z1 . Moreover during the
interval 0,t,T the two BB’s may interact with each othe
in complicated ways. For example: they may collide; or th
may hit switches which cause shutters to be closed, diver
or stopping one or both of the initial balls. However, th
state of the system att5T2e ~or at least that part of it in
which we are interested!, can again be described in terms
the same Hilbert space, where now↑↑ is the state in which
balls are present at bothz2 , on the verge of entering thet
5T mouth of the wormhole, and atzfinal . Hence, for a pre-
scribed zfinal , which we will take to bez1 , the range of
possible time evolutions of the billiard ball system is giv
by the range of possible 434 unitary matricesU(t), as in
HDP. Since the HDP model also enforces consistency
tween the two mouths of the wormhole, it contains much
the essential physics of the BB-wormhole system. Henc
seems reasonable to hope that HDP provides a correct q
tative description of the behavior of the latter system.

We are interested in the case where the initial statet
52e is ↑↓; i.e., we have an initial particle atz1 but not at
z2 . ~We will always impose the initial condition atz5z2 that
no BB is present, i.e. thatn850, at t52e.) We assume,
from continuity, that the occupation number atz1 at t51e
remains equal to 1, so that the two possible states of
system at that time are↑↑ and ↑↓. Politzer in HDP obtains
the amplitude for finding occupation numberi ( i 50 or 1!, at
z1 at t5T1e, given occupation number 1 att52e, by
using the Feynman path integral to sum over paths, subje
the consistency condition that the occupation number az
5z2 be the same att50 andt5T since these two points ar
identified. The result, as given in HDP, is that the amplitu
is given byXi1 , where

Xi j 5(
k

^ ikuU~T!u jk&, ~7!

whereuik& denotes a state with occupation numbersn5 i and
n85k at z1 andz2 , respectively. Note thatXi j involves a the
trace of the 232 matrix Uik; jn in the occupation numbe
space atz2 ; it does not therefore depend on the choice of
set of two orthonormal basis states in that space.

We defineuX( j )u25( i 50
1 uXi j u2, j 50, 1. It is pointed out

in HDP that the overall normalization ofX may be multi-
3-5
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plied by a state independent factor that can be absorbe
the functional measure. However, unitarity requires

uX~1!u25uX~0!u2. ~8!

We consider below several different cases, differing in
form of U in Eq. ~7!. We will always assume, on physica
grounds, thatU is such that

U~T!↓↓5↓↓, ~9!

i.e., we assume that if no particle is present either atz1 or z2
at t51e, none will be present att5T2e.

Case 1

First take the example in which the incident BB is on
trajectory to carry it into the wormhole mouth att5T, and a
ball emerging from the wormhole mouth att50 is directed
onto a trajectory taking it toz5z1 at t5T. Then

U~T!↑↑5↑↑ ~10!

and

U~T!↑↓5↓↑. ~11!

Hence the matrix elements^ ikuUu1k& appearing on the righ
side of Eq.~7! are nonvanishing only fori 5k51. For the
U(t) in Eqs. ~10! and ~11!, the states↑↑ and ↑↓ at t51e
thus give, respectively, completely consistent and comple
inconsistent solutions. For the completely inconsistent so
tion, ↑↓, the wave functions atz5z2 , at t50, andt5T are
orthogonal and have no overlap; the incident BB enters
wormhole att5T, but no BB emerges att50. For the con-
sistent solution,↑↑, the wave function att5T2e has the
product form given in Eq.~5!, as demanded by continuity.

It follows from Eq. ~7! that, forU given by Eqs.~10! and
~11!, X0150 becausê 0kuU(T)u1k&50. Hence Eqs.~7!,
~10!, and~11! give

uX~1!u25uX11u251. ~12!

Equations~9!–~11!, coupled with unitarity, imply that

U~T!↓↑5↑↓ ~13!

so that one sees, from Eqs.~9! and~12!, that there is also one
consistent and one inconsistent solution for the case
there is no incident BB att52e. As a result the calculation
of uX(0)u2 exactly parallels that foruX(1)u2 and we find

uX~0!u25uX00u251. ~14!

From Eqs.~8! and~14! it follows that unitarity is satisfied in
this case in which there is a single self-consistent solu
both when there is, and is not, a BB incident atz5z1 at t
52e,

In case 1 the approach in HDP is equivalent to the im
sition of the EKT consistency principle; Eq.~7! has the effect
of picking out the self-consistent states↑↑ or ↓↓ at t51e, as
the only states which contribute to the path integral; this is
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accordance with the consistency principle, according
which only such states are physical. The contribution of
states↑↓ or ↓↑, which do not satisfy the consistency cond
tion and would be regarded as unphysical by EKT, is s
pressed by Eq.~7!.

One can see in a simple way the connection in the H
approach between the preservation of unitarity and the e
tence of a consistent solution. In case 1, Eq.~7! for theXi j is
equivalent to the statement that the operatorX can be written
as X5Ue(T)U(T)Ue(0). Here Ue(0)5U(e,2e) is a uni-
tary operator which takes the initial states↑↓ and ↓↓ at
t52e into the consistent states↑↑ and ↓↓, respectively at
t5e. Note that, for 0,t,T, we need consider only the tw
dimensional subspace, spanned by the consistent state
the full four-dimensional Hilbert space, since the two tota
inconsistent states make no contribution to the operatorX as
given by Eq.~7!. Similarly, Ue(T)5U(T2e,T1e) takes↑↑
and↓↓ into the final states↑↓ and↓↓, respectively, att5T
1e; the relationUe(T)↑↑5↑↓ reflects the disappearance
the BB atz2 into the wormhole att5T. U(T) is the unitary
time evolution operator frome to T2e for the consistent
states, given by Eqs.~9! and~10!. The appearance of the fu
operatorU(T) in X is a consequence of consistency; sin
U(T) leaves the wave function of a consistent state
changed atz5z2 , limiting the right side of Eq.~7! to terms
diagonal ink imposes no restriction.X is thus unitary since it
is the product of three unitary operators. While our argum
is specific to the highly simplified HDP approach, it seem
likely that the conclusion that the unitaruty condition, E
~8!, holds will be valid in general when a unique consiste
solution exists in both the situation when there is, and wh
there is not, an incident BB.

Case 2

Contrast case 1 with that in which we modify the opera
U by replacing Eq.~10! by U(T)↑↑5a↑↑1b↑↓, with uau2
1ubu251; Eq.~11! remains unchanged. We can think of th
U as simulating the situation where there is a probabilityubu2
that, upon emerging from thet50 mouth of the wormhole,
the BB hits a switch and transmits an electromagnetic sig
closing a shutter and preventing the incident BB from ent
ing the wormhole atz5z2 andt5T. Equation~7! now yields
the result thatuX(1)u25uau2. From unitarity, Eq.~13! is
replaced byU(T)↓↑5a↑↓2b↑↑, which yieldsuX(0)u251
1ubu2. Hence, unlessb50, which is the self-consistent cas
1, Eq. ~8! does not hold andX is not unitary. Note that, for
U(T) obeying Eq.~11!, if bÞ0 there is no linear combina
tion of ↑↑ and ↑↓ on which the action ofU(t) is given by
that of an operator with the direct product structure of E
~4!. The violation of unitarity is thus directly connected
the lack of a completely self-consistent solution within t
region containing CTC’s, combined with the consistency
quirement that only matrix elements diagonal ink appear on
the right side of Eq.~7!.

The billiard ball version of the grandfather paradox co
responds to the caseubu2512uau251, in which Eq.~10! is
replaced by

U~T!↑↑5↑↓ ~108!
3-6
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and we shall primarily concern ourselves with this case
which the BB emerges from the wormhole if and only if
does not enter it. We describe this case as maximally inc
sistent, since the overlap betweenU(T)C(0) and C~0! at
z5z2 vanishes; this also maximizes the violation of unitari
since it givesuC(T1e)u250. Note that this provides an ex
plicit, albeit highly simplified, example of a model in whic
no self-consistent solution exists, in contrast to the situati
discussed in Refs.@10# and @11#.

We can interpretubu2 as giving the probability that the
apparatus producing the interaction between the older
younger versions of the BB is functioning correctly. A sm
nonzero value ofuau2 could arise, e.g., from a nonzero pro
ability that the transmitter which is to send the message c
ing the shutter and diverting the incident ball from its orig
nal trajectory fails to send the message when the transm
is activated by a ball emerging from the wormhole att50.
Only in the case of this, or similar, events, whosea priori
probability one would expect in general to be very small, c
the incident ball reach thet5T mouth of the wormhole,
thereby allowing the solution in whichC(1e)5↑↑ to be
self-consistent.

One can seek to preserve the probability interpretation
the wave function by renormalizing the final stateC f at t
.T by changing the prescription fromC f5XC(2e) to
C f5NXC(2e), whereN5@C†(2e)X†XC(2e)#21/2; the
normalizing constantN thus depends on the initial state s
that the time evolution is nonlinear. As discussed in HD
this implies that if the initial state is a superposition of t
states↑1 and↓1 , the existence of the era of CTC’s att.0
affects the time evolution of the system fort,0 in such a
way that the probability of havingn51 at t50 is propor-
tional to uau2 and thus vanishes in the maximally inconsiste
limit a→0. Thus in the presence of a time machine we c
not impose initial conditions att50 so as to have the BB
arriving atz5z1 and a properly functioning transmitter lea
ing to Eq. (108) and the resulting potential grandfather pa
dox.

Anderson @14# suggests the alternative renormalizati
procedure of replacing the evolution operatorX by the uni-
tary operatorUX5(X†X)21/2X which is independent of the
initial state. The two procedures have the same effect w
n51 at t50; in that case either procedure results in mu
plying the final state vector att.T by 1/a. However, if one
begins with a superposition of states withn51 andn50 the
effects of the two renormalization procedures differ. In t
Anderson procedure the time evolution fort,0 is unaffected
by the presence of the time machine in the future. Howe
in our simple model the evolution operatorUX within the
region of CTC’s, 0,t,T is simply the identity operator
Thus all dependence on the physical parametera is elimi-
nated by this procedure, and the actual evolution is the s
for an arbitrary value ofa as for the caseuau51, in which
case the transmitter is certain to fail and no inconsiste
arises. This procedure seems to lack a compelling phys
motivation, and to discard much of the essential physics
sociated with the CTC’s. Both of the renormalization proc
dures have the effect of rendering, essentially by fiat,a priori
unlikely events certain. If one renormalizes the final sta
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this happens att,0, before the era of CTC’s. In the proce
dure of Ref.@14#, it occurs during that era.

Both the renormalization prescriptions becomes undefi
when a50, i.e. when the grandfather paradox is comple
This is, however, presumably an unphysical limit; one e
pects that, in any actual case, there will always be so
nonzero probability, however small, for events to occ
which would allow the paradox to be evaded, so this obj
tion is not conclusive. If there are consistent classical so
tions, these will dominate the path integral and only the
cupation numbers need to be treated quantum mechanic
When this is true, one can expect that the path integral in
HDP model provides a reasonable description of the ac
behavior of the system. In the limita�0 where there are no
consistent classical solutions to dominate the actual path
tegral, it will presumably be given by an integral over ma
paths, and the argument that it is well represented by the
integral evaluated in HDP ceases to be persuasive; the m
degrees of freedom of the BB-detector system not taken
account in HDP presumably become important. Howeve
seems very plausible that the qualitative conclusion of
HDP model, namely, that the path integral for the case w
there is an incident BB att50 is very small, will remain
valid in this limit. One expects this to be true precisely b
cause of the absence of consistent classical solutions, w
would normally make the dominant contribution to the pa
integral for a macroscopic system. Since on physical grou
one does expect that consistent solution~s! will exist when
n50 initially and there is no incident BB, i.e., for th
vacuum-to-vacuum process, we expect that the conclu
that uX(0)u2.uX(1)u2, and that hence, from Eq.~8!, unitarity
is violated when paradoxes occur, will remain true in the f
theory. The simple HDP model clearly cannot be expected
give any detailed information about what actually occurs
the a→0 limit; that is, it will give no information about the
relative probability of variousa priori improbable events.
But one does expect that the conclusion that seemingly
probable events of some kind must occur if unitarity is to
preserved will remain valid.

One thus has, in the quantum mechanics of pure sta
two rather unappealing alternatives when there are no c
sistent classical solutions. First, one can accept a nonun
time evolution operator and the consequent loss of the p
ability interpretation of quantum mechanics. Alternative
one can adopt one of the renormalization procedures, m
ing seemingly unlikely events become certain either bef
or during the era of CTC’s. This leads to what we ha
previously referred to as the banana peel mechanism; w
highly counterintuitive, it at least allows the theory to b
interpreted.

Case 3

As a final example, we examine briefly the case in wh
there are two self-consistent solutions. TakeU(T) to be such
thatU(T)↑↓5↑↓ andU(T)↑↑5↓↑. The unitarity ofU plus
the physical requirement thatU(T)↓↓5↓↓ then requires that
U(T)↓↑5↑↑. The states↑↑ and↑↓ at t51e now each give
a self-consistent solution, and it is straightforward to sh
3-7
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from Eqs. ~7! and ~8! that unitarity is obeyed. However,
nontrivial linear combination of the states↑↑ and ↑↓ at t
5e does not result in a final state atT2e with the product
structure of Eq.~5!. Instead the state of the system att5T
2e is of the correlated formc1↑↓1c2↓↑ which, from the
discussion in Sec. II, cannot represent a self-consistent
state. The procedure in HDP, in which the two consist
states↑↑ and↑↓ are included with equal weight in the pa
integral, thus implies that the system is in a mixed state
the region containing CTC’s. However, the two solutio
lead to orthogonal final states att.T, and hence do no
interfere with one another, so their undetermined relat
phase is irrelevant in Eq.~7!.

Thus, in this example, Eq.~7! provides a unique and we
behaved solution fort.T, but within the region 0,t,T
which contains CTC’s one has a mixed state with two diff
ent self-consistent solutions which are present with eq
probability. These two solutions are physically quite diffe
ent. This can be seen most clearly for the initial condition
which there is no BB present atz1 for t,0. Then for one of
the two consistent solutions the system is in the state↓↓
throughout the interval 0,t,T; this is precisely the solution
one would naively expect. However, there is also a consis
solution in which the system goes from the state↓↑ to ↑↑ in
this interval. Here this second solution might be dismiss
on grounds of conservation of energy~i.e., of the BB num-
ber!, but one does not expect this to be true in more reali
models. Intuitively, the first of these solutions seems m
likely to be physically relevant. Similar considerations app
to the case wheren51 at t52e. Given the physical differ-
ences between the consistent solutions, one might hope
if CTC’s are possible, a complete theory would settle
uniqueness question, perhaps on the basis of entropy co
erations@12,16,17#, and would select only one of the po
sible consistent solutions in the interval 0,t,T. Then if
one included only the physical solution in the path integr
case 3 would become mathematically identical to case 1;
system would be in a pure state for allt, with a unique wave
function obeying unitarity and having the required continu
across the wormhole.

The form ofU(t) for case 3 which we have been discus
ing appears somewhat unphysical in that involves noncon
vation of the BB number. This can be avoided, while hav
two consistent solutions, only ifU(T) is diagonal.~This is an
artifact of the simplicity of our model in whichU is 434
matrix, and there are only two possible states of the sys
for t.T.) The case in whichU is diagonal has an interestin
property, in that it can lead to the violation of unitarity eve
though consistent classical solutions exist. This occurs
cause either in the casen51 or n50 at t,0, there are now
two consistent solutions which contribute to the same fi
state and, from Eq.~7!, they will interfere with one another
If one choosesU(t) such that the relative phase between
two possible states att5T2e is different for the casesn
50 andn51, the unitarity condition, Eq.~8!, will be vio-
lated. ~The unitarity violation in the example discussed
HDP in fact occurs for this reason, rather than because of
nonexistence of classical solutions.! Once again, in our ex-
ample this phenomenon appears as an artifact of the ov
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simplified model. In general, one would expect the sta
with n50 and 1 att5T2e to lead to different final states a
t.T so they would not give rise to quantum interferenc
The interference occurs in the HDP model since there is o
a single state containing~and a single state not containing! a
BB at t.T. In contrast, the type of unitarity violation foun
in case 1 would appear to be generic in such situations, s
it occurs because the magnitudes of the individual terms
the right side of Eq.~7! become small compared to 1, an
does not depend on quantum interference.

IV. CONSISTENCY, THE DENSITY MATRIX,
AND THE MIXED STATE MWI

As discussed in the Introduction, the approach in DD
quires, in general, describing systems in the presence
CTC’s in terms of their density matrix% rather than a wave
function. We begin this section by reviewing briefly som
simple ideas concerning the density matrix in the pres
context. Next we show the connection that follows, in De
sch’s approach, between the existence of potential gran
ther paradoxes and the necessity for adopting a density
trix description in regions containing CTC’s. We then revie
the argument given in DD that, in quantum mechanics w
the MWI, CTC’s do not lead to logical contradictions.

In the present case, in which there are four possible st
of the system at a given time which can be labeled by p
of indicesij , wherei , j 50,1 give the occupation numbers
z5z1 , z2 , the density matrix% is a 434 matrix whose
matrix elements can be labeled% i j ;mk . The diagonal ele-
ments% i j ; i j give the probability that the system is in the sta
with occupation numbersi and j; thus tr%51. For a pure
state, described by a wave function,% satisfies the condition
%25%. The matrix elements%̂2 jk of the effective density
matrix %̂2 for the system atz5z2 are

%̂2 jk5% i j ; ik , ~15!

where the repeated indexi is summed over. The fact that th
full system is in a pure state does not imply that the den
matrices %̂ i for the two subsystems satisfy the pure sta
condition. However, when the overall state vector has
structure of a direct product, as in Eq.~16! below, the full
density matrix% also has a direct product structure%5%̂1

^ %̂2 ; the pure state condition on% then implies that the
separate systems atz5z1 andz2 are also pure states.

Let us return to our example of the BB which trave
backward in time and interacts with its younger self. Su
pose we have a pure state att51e. Since the occupation
number atz5z1 is 1 from the initial conditions, the mos
general form of the state vector at is

C~1e!5C1~1e! ^ C2~1e!5↑ ^ ~c1↑1c2↓ ! ~16!

with uc1u21uc2u251. The most general state of the system
one in which the system atz2 , emerging from the wormhole
is in the pure stateC25(c1↑1c2↓) with a definite phase
relation between the occupied and unoccupied compon
of the state vector. Continuity across the wormhole th
means that the state vector att5T must have the form
3-8
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TIME TRAVEL PARADOXES, PATH INTEGRALS, AND . . . PHYSICAL REVIEW D69, 124023 ~2004!
C~T!5U~T!C~1e!5C1~T! ^ C2~1e!

5~d↑1d2↓ ! ^ C2~1e!. ~168!

In particular, there must be no correlation between the oc
pation numbers atz1 and z2 . Thus for a givenU(T), the
consistency constraint can be satisfied only if it is possible
choose the constantsc1 and c2 so thatC(T) has the form
given in Eq. (168). In case 1 of Sec. III, in whichU(T) is
given by Eqs.~10! and ~11!, Eq. (168) is obeyed, withd2
50, if we take the self-consistent solution withc250. Of
course we already know this is a self-consistent pure s
solution, since we found that the time evolution operatoX
given by Eq.~7!, which has the consistency constraint bu
in, is unitary.

Now consider case 2 in whichU(T) is given by Eqs.
(108) and ~11!. There is then no consistent solution and t
operatorX exhibits maximal violation of unitary. Suppose w
choosec15c251/&, with both taken to be real for simplic
ity; then, att51e, we have the product state,

C~1e!5↑1~↑21↓2!/&, ~17!

in which the subsystems atz1 andz2 , and thus the full sys-
tem, are all in pure states.

From Eqs.~17!, (108), and~11! one obtains

C~T!5~↑1↓21↓1↑2!/&. ~18!

This is not of the form of Eq. (168) because of the correla
tion between the states atz1 andz2 . Equation~18! describes
a situation in which the subsystem atz5z2 , considered in
isolation, is in a mixed state, with no definite phase relat
between the occupied and unoccupied states atz5z2 since
the coefficients of↑2 and ↓2 depend on the coordinates o
the system atz5z1 . ~Recall that the symbol↑1 is really
shorthand in our case for the full wave function of a B
including the dependence on the internal coordinates.! We
can also see that thez2 subsystem in Eq.~18! is not in a pure
state by constructing the density matrix% for the complete
system and using Eq.~15! to obtain

%̂2~T!5I 2/2, ~19!

where %̂2(T) is the density matrix for the subsystem atz
5z2 at t5T andI 2 is the 232 identity matrix. Equation~19!
describes a mixed state with equal probabilities of1

2 for find-
ing a BB entering, or not entering, the wormhole att5T.
Since the subsystem atz5z2 is in a mixed state att5T, this
subsystem, and therefore, from Eq.~17!, the system as a
whole, must be in a mixed state att50 if there is to be
continuity across the wormhole. Thus, in the presence
potential inconsistent causal loops, there are only two po
bilities: the first is that the continuity condition across t
wormhole may not be exactly satisfied, and when we pro
out the~possibly nonexistent! part of the wave function sat
isfying the consistency condition the operatorX becomes
nonunitary, as in case 2 in Sec. III; the second possibility
that pure states are transformed into mixed states in the
gion containing CTC’s.
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It is demonstrated in DD that for anyU(T) one can al-
ways choose values ofc1 andc2 in Eq. ~16! that yield a%
which, when evolved according to Eq.~1!, satisfies a modi-
fied consistency requirement of the form

%̂2~T!5%̂2~0!. ~20!

Consistency in this sense is possible because one is wor
with % instead of a wave function. The consistency conditi
on % is satisfied if the correlation is such that the probabil
for a BB to enter the wormhole att5T is the same as for one
to emerge att50. In the MSMWI picture, a measurement o
whether or not a BB emerges from the wormhole att50
causes a branching into two MWI ‘‘worlds,’’ both of which
remain components of the state of the system att.0, and in
one of which a BB enters the wormhole mouth att5T. The
consistency condition on%, but not onc, will then be satis-
fied if the probabilities of a BB entering the wormhole att
5T, and of its emerging att50, are equal even if a BB
traveling backwards in time does not emerge in the sa
world which it left. For example, while the wave functions
Eqs. ~17! and ~18! do not satisfy the continuity condition
across the wormhole, they each yield a density matrix%̂2
given by Eq.~19! so that Eq.~20! is satisfied.

V. MSMWI AND TIME TRAVEL PARADOXES INVOLVING
MICROSCOPIC OBJECTS

Before considering the case of a macroscopic object s
as a billiard ball or space ship, we examine how the MSM
works in a situation where, instead of a macroscopic obj
we have a single electron. This is closely analogous to
situation considered in DD. In the spirit of the MWI w
include as part of our system a measuring device, e.g.
array of Cerenkov counters surrounding the wormh
mouth, which can presumably be designed to detect w
arbitrarily high certainty whether or not an electron emerg
from the wormhole. We again consider the grandfather pa
dox situation withU given by Eqs. (108) and ~11!. If an
electron is detected, we can imagine the measuring de
causes the incident electron atz1 to be deflected, e.g., by
temporarily turning on an electric field nearz1 , so that it
never reaches the wormhole.

Let the state of the device be designated byq, which will
become one of our dynamical variables along with the oc
pation numbersn andn8 at z1 andz2 . The matrix elements
of the full density matrix% appearing in Eq.~15! will now be
labeled by two sets of three indices, plust. Since we are
dealing with mixed states with undefined relative phases,
density matrices are diagonal and we can specify the n
trivial density matrix elements at timet uniquely by a single
set of three indices, writing the matrix elements
%(q,n,n8,t). ~The matrix elements of the effective densi
matrix %̂ for the system atz2 will still be labeled only by the
valuesn8, however;q and n are both degrees of freedom
associated with the remainder of the system and are b
summed over in finding%̂.) The HamiltonianH and thusU
in Eq. ~1! will now include Hm , the interaction between th
electron and the measuring device. Initially, att,0, we take
3-9
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q5qA , while q5qB after the detection of an electron by th
device. Thus, if an electron emerges from the wormhole
t50, then att5d.e, q becomes equal toqB ; d is a property
of the detection system, and will be finite~though we assume
d!T), both because the counters will have a finite respo
time and because they will be located at a finite dista
from the position of the electron att50, the earliest time a
which it could be observed as it emerges from the wormh

According to the picture in DD, fort.0 the system will
be in a mixture of two states, each with probability1

2. We
will label these statesA and B according to the values,qA

andqB , respectively, ofq at t5T2e. Sinceq5qA in state
A, in that state no electron was detected att5d, and it then
follows from Eqs. (108) and ~11! that, in stateA, n851 at
t5T2e and the incident electron enters the wormho
mouth att5T. Similarly, in stateB, with q5qB at T2e, no
electron enters the wormhole att5T.

Thus, att5e,d, one will have a system withn51 and
q5qA in a mixed state with equal probabilities for findin
n850 andn851. At t5d, q becomes equalqB in the state
with n851; that is, the electron that was in stateA at t5T
2e emerges from the wormhole att50 and is detected in
stateB at t5d.

For t.d an observer, as in the conventional MWI, has
equal chance of being in the worlds withq5qA or qB . In
stateB, with q5qB , the observer sees the electron initia
at z1 deflected so that it never reaches the wormhole, w
the electron leaving the wormhole arrives atz1 at t5T, in
accordance with Eq. (108), so thatn850 at t5T, and the
observer will conclude thatn8(0)Þn8(T). A similar analysis
holds for observers in the world in whichq5qA for t.d.
The time evolution during the period 0,t,T will appear
perfectly sensible to observers in both worlds. They will
surprised to see thatn8(T)Þn8(0), but this does not consti-
tute an actual logical contradiction, sincen8(0) andn8(T)
are physically different observables for outside observers
that the theory does not give contradictory predictions for
value of the same observable as seen by the same obse

A hypothetical observer riding on the electron will als
see nothing unusual. The electron apparently evolves
mally, in terms of the local time variablet and Hamiltonian
H8 discussed in Sec. II, in passing through the wormhole
observer moving with the electron would seen8(t5T)
5n8(t5T1t0)51, wheret0 is the transit time through the
wormhole, and will see outside clocks readingt50 as he
emerges. However, the world in which he now finds hims
will be different than he saw whent5t50 and the electron
was atz5z1 , since now he will seeq5qB , and find himself
in a world with two electrons.

Thus the communication between different MWI worl
postulated in Deutsch’s approach actually occurs, if the c
tinuity condition is given by Eq.~20!, as a result of the
interactionHm with the measuring apparatus. The electr
enters the wormhole in theq5qA world and appears att
50, also in a state withq5qA . However, att5d, when the
measurement process results in branching into two sepa
worlds with different values ofq, q becomes equal toqB in
the state containing the electron atz2 . The electron, which is
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in stateA at t5T, is able to appear in stateB at a later value
of its own time t by traveling back in time through the
wormhole to a timet,d before the measurement, and th
resulting branching into statesA andB, has occurred.

More formally, we can understand this as follows. Let
consider the time translation operatorU(t2 ,t1)[U21 for the
caset25d1e8, t15T, with e8 arbitrarily small andd!T.
We can write U215U(d1e8,0)U(0,T)5U(d)U(2T);
U(2T) is the analog of the corresponding operator in E
~4!, but does not have a direct product structure becaus
the correlations between observables att5T. At t5T the
system will be, with equal probability, in states withq
5qA , n851 and q5qB , n850, so the nonzero diagona
density matrix elements%(q,n,n8,t) for t5T will be

%„qA ,n~T!A,1,T…5
1

2
5%̂2~1,T! ~21a!

and

%„qB ,n~T!B,0,T…5
1

2
5%̂2~0,T!, ~21b!

wheren(T)A , e.g., is the value of the occupation numbern
at t5T andq5qA . The final equality in Eqs.~21! is a con-
sequence of the fact that only the matrix elements of% ap-
pearing in Eqs.~21! are nonzero.

The operatorU(2T) transforms%(T) into %~0!. By Eq.
~20!, this must leave%̂2 invariant, while att50 the only
nonzero elements of% are for n51 andq5qA . Thus att
5e,d the nonzero elements of% are

%~qA,1,n8,e!5%̂2~n8,e!5
1

2
, n850,1. ~22!

Comparing Eqs.~21! and~22!, we see that Eq.~20! is indeed
satisfied.

Since d!T, the factorU(d) in U21 differs from unity
only because of the interactionHm with the measuremen
device. Thus, acting on statesuq,n,n8&, U(d)uqA,1,1&
5uqB,1,1&, while U(d) leavesuqA,1,0& unaffected. Thus

U21uqA ,n~T!A,1&5uqB,1,1& ~23a!

and

U21uqB ,n~T!B,0&5uqA,1,0&. ~23b!

From Eq.~1!, there will be a similar transformation of th
diagonal density matrix elements%(q,n,n8,t) so that, for
n851, we have from Eqs.~21a!, ~22!, and~23a!

%„qA ,n~T!A,1,T…5%~qA,1,1,0!5%~qB,1,1,d!5
1

2
~24a!

and, similarly, forn850
3-10
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%„qB ,n~T!B,0,T…5%~qA,1,0,0!5%~qA,1,0,d!5
1

2
~24b!

and one sees that the electron, which entered the worm
at t5T in stateA, is found att5d in stateB. The continuity
condition ~20! on the subdensity matrix 2 is satisfied, sin
the probabilities for findingn850 and of findingn851 are
both equal to one-half at each end of the wormhole.

Thus the MSMWI, with an object described by a dens
matrix satisfying Eq.~20!, leads, as asserted in DD, to
quantum theory of a microscopic object passing throug
time machine which avoids the grandfather paradox. T
occurs, as in the parallel universes of science fiction, beca
the object emerges from the time machine and ‘‘murders’’
younger self in a different world, i.e., an orthogonal quant
state, when it travels back in time.

VI. MSMWI FOR MACROSCOPIC OBJECTS

As we now show, however, problems arise if one app
the MSMWI in the case of macroscopic objects, such
billiard balls, passing through the wormhole. We first spec
the meaning we will attach to macroscopic in this conte
Let the object in question have linear dimensiond in its
direction of motion and be moving with speedv, so that it
requires a time intervalDt5d/v to emerge from the worm
hole. That is, for 0,t,Dt, the front portion of the BB exists
on a timelike surfacet5t1 while the back portion exists on
the timelike surfacet5t11T. We will call the object mac-
roscopic ifDt.d, whered is the time at which the detecto
recognizes that the object has emerged, and in consequ
sends a signal preventing the object from entering the wo
hole att5T; as in Sec. V,d depends on the resolution tim
of the detector and its distance from the position of the le
ing edge of the object as it emerges att50. Since a fraction
f 5d/Dt of the object must emerge from the wormhole b
fore the detector is triggered, for a macroscopic objecf
,1 and a fraction 12 f .0 of the object will not yet have
emerged from the wormhole att5d.

The above definition of ‘‘macroscopic’’ has the proble
of depending ond, and thus on the particular detection d
vice being used. One can introduce a more fundamental d
nition to avoid this by takingDt.dmin , wheredmin'1/m,
with m the mass of the object andc51, is the smallest pos
sible resolution time for any detector. Then on the fundam
tal level we would take an object to be macroscopic ifd
.1/m or md.1.

The HDP model must be extended somewhat to acc
modate macroscopic objects, but the generalizations do
change the physics in an essential way. Clearly the wormh
mouth must have a finite radius. Also, the wormhole m
persist for a timeT0.Dt in order for the object to traverse i
One must then generalize the wormhole to identify timet
and t1T for 0,t,T0 . whereDt,T0,T; the upper limit
on T0 avoids the necessity of introducing a spatial separa
between ends of the wormhole which overlap in time,
discussed earlier. Equation~20! must be correspondingly
generalized to
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%̂2~ t1T!5%̂2~ t !. ~208!

We will place one additional restriction on the wormho
persistence timeTo . Let Ts be the time at which the inciden
BB reaches the shutter whose closure prevents it from en
ing the wormhole. We will strengthen the restriction onTo
by requiringTo,Ts . We thus eliminate the possible consi
tent solution mentioned in the Introduction, in which the B
squeezes past the shutter just as it closes, being slowed d
in the process so that it reaches the wormhole att5T1Ts ,
and reemerges att5Ts to trigger the shutter just as it
younger self reaches it. According to the EKT consisten
principle, this would become the physically observed p
cess, thus evading the paradox. However, this consisten
lution does not exist if the early-time mouth of the wormho
closes before the BB reaches the shutter, thus eliminating
possibility of a BB emerging from the wormhole att5Ts
and triggering the shutter just as the incident BB reaches

Let us consider first, for simplicity, the casef 5 1
2 . 1e8;

i.e., we assume that, on the average, just over half of the
emerges from the wormhole before the detector is trigge
By analogy with our discussion in the previous section, at
5T2e, in stateA, with q5qA , the incident BB will be
about to enter the wormhole, since in that state the dete
was not triggered att5d, while in stateB there will be no
BB entering the wormhole. Then att,d one will have a
mixture of two states, both withq5qA , in one of which the
front portion of a BB will have emerged from the wormhol
this latter state will be stateB, with q5qB for t.d, since in
this state the detection device will be triggered. The den
matrix ar t5e,d will be given by Eq.~22!, wheren851
denotes the presence of the front edge of the BB atz2.

For t.d, q is a constant of the motion sinceHm , the
interaction Hamiltonian with the detection device, has
matrix elements between the states withq5qA2 and q
5qB , after the irreversible measurement has been co
pleted. This is the exact analog of the independence of
ferent worlds from one another in the conventional MW
without CTC’s.

This decoupling of statesA andB has far reaching conse
quences for the predicted behavior of a macroscopic ob
passing through a wormhole. As with the electron, the fr
half of the BB, which is in stateA at t5T, appears in stateB
at t5d andt5T1d. This can occur because the front ha
travels back in time to the range of times 0,t,d at which
time q5qA in both statesA andB. However, the rear half of
the BB reaches the wormhole mouth att5t1[T1Dt/25T
1d, and hence it begins to emerge from the wormhole at
5d, after the measurement has occurred. Fort.d the evo-
lution operator U218 (t,t1)5U(t,d,)U(d,T1d), plays the
analogous role for the back half of the BB thatU21 played
for the electron in Sec. V;U218 does not connect statesA and
B, since, fort.d, qBÞqA and these states are decohere
For t.d Eq. ~23a! must be replaced by

U218 ~ t !uqA ,n~T!A,1&5uqA,1,1& ~25!

and hence from Eq.~1!, the analog of Eq.~24a! for the non-
3-11
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ALLEN EVERETT PHYSICAL REVIEW D 69, 124023 ~2004!
zero matrix elements of the density matrix forn851 at times
t andT1t at opposite ends of the wormhole, whent.d, is

%„qA ,n~T!A,1,T1t…5r~qA,1,1,t !5
1

2
, t.d ~26!

with analogous changes occurring in Eqs.~23b! and ~24b!.
Hence there is vanishing probability of finding the back h
of the BB atz5z2 in the world with q5qB , and the back
half of the BB,unlike the front half, will necessarily emerge
from the wormhole in stateA with q5qA .

The MSMWI thus predicts that the two halves of the B
will emerge from the wormhole in different MSMWI worlds
An external observer will, with probability one half, se
nothing emerge from the wormhole during the interval
,t,d, so that the detection device is not triggered, and w
end up in stateA with q5qA . This observer will then see th
rear half of the BB emerge betweent5d and t52d and go
off to reachz5z1 in accordance with Eq. (108). Since the
detector was not triggered, the ‘‘younger’’ BB initially atz1
at t50 will not be deflected and will enter the wormho
between t5T and t5T12d. The front half of the BB,
which entered the wormhole atT,t,T1d, will seem to
this observer to have disappeared, since it emerged in
other world; this is similar to the microscopic case. The r
half of the BB will match the rear half which emerged earl
at t5d, so that observations at the two wormhole mouths
t and t1T will indicate continuity across the wormhole fo
t.d, once the discontinuous measurement process, has
completed.

There will also be probability one-half of observing th
front half of a BB emerging from the wormhole betweent
50 and t5d, triggering the detection device, puttingq
5qB , and causing the deflection of the young BB, whi
therefore never reaches the wormhole. In thisqB world,
nothing enters the wormhole mouth att.T and the front half
of the BB will seem to appear for no apparent reason; thi
again similar to the electron case. However, fort.d, in state
B nothing enters the wormhole att1T or emerges att, so
that, as in stateA, external observers will see continuity b
tween the two mouths of the wormhole fort.d, after the
two worlds have decoupled.

This surprising result is possible because the contin
condition, Eq. (208), which is the basic assumption in DD
only constrains the elements of the effective density ma
%̂2 . The density matrix elements of the macroscopic B
must now be labeled by separate occupation numbersnf8 and
nb8 for the front and back segment of the BB. The continu
of %̂2 ensures that the total probability of findingnf851, i.e.,
of detecting the front segment atz2 , is one-half at each
mouth of the wormhole. However, the matrix elements of%̂2

for a given value ofnf8 involve the sum overq of the matrix
elements of the full density matrix% for that value ofnf8 ,
and thus the relation between the values ofnf8 and the value
of q need not be preserved in going through the wormho
The same holds true fornb8 . In fact, as we have seen, wher
classically, there is a grandfather paradox, the relation
tweenq andn8 develops a discontinuity. Att5T, just before
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the BB enters the wormhole, the set of observab
(q,nf8 ,nb8) have, with equal probability, the sets of valu
(qA,1,1) and (qB,0,0). However, for the emerging BB att
.d, the relation betweenq and nf8 and betweenq and nb8
differs from that for t,d because of the discontinuou
change in the value ofq resulting from the measurement, an
the possible sets of values become (qA,0,1) or (qB,1,0).
There are equal probabilities at each end of the wormhol
finding each possible value, 0 or 1, for bothnf8 and nb8 , as
required by Eq. (208). However, the correlation between th
values ofnf8 andnb8 for a given value ofq is different at the
two ends of the wormhole. Att5T an observer in an MWI
world with a definite value ofq sees nonzero values of th
density matrix elements for the same values ofnf8 and nb8 ;
i.e., he sees either the whole object or nothing entering
wormhole. At the other end such an observer sees non
probabilities for different values ofnf8 and nb8 and thus ob-
serves only the front or back half of the object. For an
ementary particle this problem does not arise since the c
cept of different parts of such an object is meaningless;
such an object, the discontinuity due to the measuremen
simply that associated with the emergence of the obj
which occurs suddenly rather than over time as in the m
roscopic case.

We can generalize the above discussion to other value
the fractionf. Suppose, e.g., thatf 5 1

3 1e8, meaning the de-
tection device can detect the emergence of one-third of a
andd5Dt/3. Let us also assume that the detector, after be
triggered, readsqB1 or qB2 , respectively, depending o
whether it was triggered att5d by observing the first third
of an emerging BB, or att52d by the middle third. In both
of these worlds, since the detector was triggered, the incid
BB will not enter the wormhole att5T. Sinceq is a constant
in these worlds fort.d or t.2d, respectively, they will not
be coupled to the third world fort.2d, and in neither of
them will the last third of the BB be observed. In this thi
world, the detector will not be triggered so thatq remains
equal toqA . It will couple only to itself fort.2d, and hence
in the qA world one will observe the rear third of the BB
emerging from the wormhole betweent52d and t53d.

There will thus be three MSMWI worlds. The solutio
satisfying the consistency condition (208) on the density ma-
trix is that each of these occurs with probability1

3. There is
then a one-third probability of havingq5qA and a BB en-
tering the wormhole att1T. This leads to probability13 for
each segment to emerge in its respective world, so that
(208) is, indeed, satisfied.

More generally, letf 51/N, whereN is arbitrary, thus in-
cluding the case of a detector of arbitrarily high sensitivi
One would then haveN MSMWI worlds, in each of which a
fraction 1/N of the BB would be seen to emerge during
time interval (i 21)Dt/N,t, iDt/N, i dN. As N becomes
arbitrarily large and the detector becomes very sensitive,
probability of observing the BB actually reaching the worm
hole att5T without being deflected thus vanishes as 1/N; in
this limit one will observe, essentially with certainty, a m
croscopic fragment of the BB, which might be indistinguis
able from random background, emerging from the wormh
3-12
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TIME TRAVEL PARADOXES, PATH INTEGRALS, AND . . . PHYSICAL REVIEW D69, 124023 ~2004!
at some time betweent50 andt5Dt, triggering the detec-
tor, and preventing the incident ball from entering the wor
hole; thus in the limit of largeN the probability of seeing the
incident BB enter the wormhole becomes vanishingly sm
but the number of fragments into which it is split becom
very large, so that the probability of some fragment emerg
in any one of the essentially infinite number of worlds
unity.

The fact that fractions of the BB emerge from the wor
hole in states with different values ofq means that, if the
MSMWI is correct, the HamiltonianH8 controlling the evo-
lution of the BB in its proper timet through the wormhole
cannot be anything like that of a free BB; it must inclu
violent interactions with the matter and/or gravitational fie
of the wormhole which lead to the disintegration of the B
The effect of these interactions is presumably independen
the sensitivity of the device used to detect the emerging
Thus it would appear that the MSMWI implies that a ma
roscopic object traversing a wormhole~or other time ma-
chine! must necessarily be broken up into microscopic c
stituents, presumably elementary particles, which will app
pointlike to the most sensitive detectors possible. T
would, e.g., be true in a theory is which stable wormhole c
exist only if their radii are of the order of the Planck lengt
Such a wormhole would not be ‘‘traversable’’ in the sense
Ref. @1#. Hence the MSMWI does not provide a quantu
theory which is free of paradoxes and which describ
wormholes, or similar objects involving CTC’s, which a
traversable by macroscopic objects.

VII. CONCLUSIONS

We have considered two general approaches to resol
the problem of apparent paradoxes in theories with CTC
The first, illustrated by the simplified model presented
HDP, attempts to preserve the quantum-mechanical notio
pure states and imposes an appropriate continuity condi
Eq. ~7!, across a wormhole or other time machine on
wave function. When the time evolution operator is such t
there is a single self-consistent solution, Eq.~7! is equivalent
to the EKT consistency principle, and leads to a the
which is both consistent and unitary. If there are multip
consistent solutions, all of which are physical, problems a
because the solution is not uniquely specified by requir
consistency. Hopefully these would be absent in a more c
plete theory, which solves the uniqueness problem by p
viding a procedure for selecting only one of the consist
solutions as physical.

However, it is possible to choose the Hamiltonian, in t
HDP model, so that no self-consistent solution exists, t
simulating the existence of initial conditions att50 leading
to the formation of inconsistent causal loops as in the gra
father paradox. It seems likely that this is also true in m
realistic models. Then the attempt to enforce consistency
means of the continuity constraint in Eq.~7! leads to a vio-
lation of unitarity in the operatorX connecting the state vec
tors before and after the region of CTC’s. The probabil
interpretation of quantum mechanics can be preserved
by renormalizing the final state or the operatorX. The renor-
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malization has the effect of forcing the probability of som
events, e.g., the failure of a piece of apparatus, which wo
normally be very small, to become equal to 1; depending
the renormalization procedure, the events in question m
occur prior to the construction of the time machine, i.e., pr
to the formation of a Cauchy horizon. Thus postulating t
renormalization procedure required to conserve probab
amounts to postulating the banana peel mechanism, i.e.
certain occurrence of some member of a set ofa priori im-
probable events which conspire to prevent paradoxes f
occurring. The renormalization process fails if the norm
the final state is strictly zero, i.e., ifX is singular, meaning
there is no sequence of events, however improbablea priori,
by which the paradox can be evaded.

The alternative approach in DD involves attempting
implement the idea of parallel universes from science fict
so that apparently contradictory events occur in differ
worlds; if successful, this would preserve the freedom
impose initial conditions arbitrarily. This approach involve
two fundamental assumptions:~i! In the presence of CTC’s
the MWI as given in Ref.@13# is correct, and not simply an
interpretation of quantum mechanics which one is free
adopt or not according to taste.~ii ! In the presence of CTC’s
individual systems may not be in pure states but in mix
states characterized by a density matrix but not a wave fu
tion. This differs from Ref.@13#, in which physical systems
with the measuring apparatus included, are taken to be
pure states; we therefore refer to this as the MSMWI, wh
MS stands for ‘‘mixed state.’’ Assumption~ii ! has two cor-
ollaries. First, the concept of the density matrix is extend
to apply to single systems, in contrast to its usual applicat
to ensembles of systems that have been identically prepa
Secondly, the correct formulation of the continuity conditio
in the presence of a wormhole is not, in general, as a co
tion on a wave function in the form of Eq.~7!, but rather as
the condition (208) on the density matrix.

For the potentially paradoxical case in which the tim
evolution operator appears to be such that an object eme
from the wormhole att50 if and only if it does not enter the
wormhole att5T, the mechanism suggested in DD for r
solving the paradox can be successful if the object is mic
scopic. The different worlds of the MSMWI correspond
states in which a macroscopic detector, which reco
whether the object emerged from the wormhole, has differ
readings, and are thus effectively decoupled. A microsco
object is able to appear intact att50 in a different world
from that in which it entered the wormhole because
emerges from the wormhole att50 before the measuremen
leading to the branching of the worlds, has occurred.

If the object is macroscopic, however, it emerges from
wormhole over a finite period of time. If this is greater tha
the resolving time of the detector, the measurement, and
branching into two or more decoherent states, will occur
fore the object has emerged completely from the wormho
The MSMWI worlds then become decoupled, as in the c
ventional MWI, and the subsequent segment or segment
the macroscopic object cannot emerge in the same wo
i.e., in the quantum state with the same reading of the m
roscopic detector, as the leading segment. The object is
3-13



th
g
es

ro
ct
a
o

de
e
a
je

y o
o

in
b
th
he
ble

er

la-
ory
ble

as
nly

rs to
re
h a

ered

in-
nd

ALLEN EVERETT PHYSICAL REVIEW D 69, 124023 ~2004!
split into a number of pieces in its passage through
wormhole. A given observer, who sees a particular readin
the macroscopic detection device, will see only one of th
pieces.

The mechanism for eluding the grandfather paradox, p
posed in DD, thus appears to imply that macroscopic obje
when traversing a wormhole, undergo interactions which
sufficiently violent as to break up the object. The number
pieces into which the object is observed to be broken
pends on the sensitivity of the detector, but becomes v
large if the detector is sensitive enough to detect very sm
fragments. One expects the interaction between the ob
and the wormhole should be independent of the sensitivit
the device used to detect the emerging object. Hence
concludes that assumptions~i! and ~ii !, together with their
corollaries, can be valid only if macroscopic objects pass
through a time machine interact with it so strongly as to
disintegrated into fragments which appear pointlike to
most sensitive possible detectors. One obvious class of t
ries in which this would be true is the class in which sta
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wormhole can exist only if their dimensions are of the ord
of the Planck length.

The approach in DD therefore does not provide an exp
nation of how paradoxical results can be evaded in a the
with traversable wormholes, or other kinds of traversa
CTC’s where ‘‘traversable’’ is used in the sense of Ref.@1# as
meaning traversable intact by macroscopic objects such
billiard balls, space ships, or human beings. Hence the o
satisfactory candidate for a theory of such objects appea
be one in which the necessity of renormalizing the futu
scattering matrix constrains physics in the present in suc
way that conditions whosea priori probability seems very
small, e.g., the presence of a banana peel, are in fact rend
certain.
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