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Time travel paradoxes, path integrals, and the many worlds interpretation of quantum mechanics
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We consider two approaches to evading paradoxes in quantum mechanics with closed timelike curves. In a
model similar to Politzer’s, assuming pure states and using path integrals, we show that the problems of
paradoxes and of unitarity violation are related; preserving unitarity avoids paradoxes by modifying the time
evolution so that improbable events become certain. Deutsch has argued, using the density matrix, that para-
doxes do not occur in the “many worlds interpretation.” We find that in this approach account must be taken
of the resolution time of the device that detects objects emerging from a wormhole or other time machine.
When this is done one finds that this approach is viable only if macroscopic objects traversing a wormhole
interact with it so strongly that they are broken into microscopic fragments.
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[. INTRODUCTION sible to avoid such paradoxes was due to Echeverria,
Klinkhammer, and Thorngl0] (henceforth EKJ. For sim-
There has recently been a good deal of interest in possiblglicity, these authors formulate the problem in terms of bil-
spacetimes containing closed timelike cur¢@3C’s) arising  liard balls, thereby avoiding questions of free will. They con-
either from the presence of traversable wormhdlesor  sider a situation in which, dt= — &, wheree>0 but may be
from the warping of spacetime in such a way as to allowtaken arbitrarily small, there is a billiard balhenceforth
superluminal trave[2], with the possibility of CTC’s as a generally denoted by BBwhich we take to be at the spatial
consequenc3—5|. A variety of theoretical considerations Origin; its trajectory is such that at=T its leading edge
(e.g., Refs[6—-8]), either general or addressed to specificreaches the point,+Ar and enters a wormhole which con-
models, have been advanced which suggest that the formaects the spacetime pointy Ar, t+T) to (rq,t). (A pro-
tion of CTC'’s is not possible. However, while some of thesecedure for creating such a wormhole is discussed in Ref.
considerations are very persuasive, none appear conclusif&0]. We takeAr, the spatial distance between the wormhole
[9]. mouths, to be small compared witly, and will in general
In addition to the problems discussed in the referencetgnore it; howeverAr cannot vanish if the wormhole per-
already cited, CTC's lead to the well-known problems with sists over a time interval ,>T, as one needs to introduce
paradoxes arising from the apparent possibility of inconsissome separation between the two wormhole mouths if they
tent causal loops. This phenomenon is illustrated by theverlap int. In general we will assum&,<T. We take the
“grandfather paradox” occurring frequently, in various internal length of the wormhole to be small compareddp
guises, in science fiction, in which one travels back in timeand will often work in the approximation in which the two
and murders one’s own grandfather, thus preventing one’mouths of the wormhole are simply identified with one an-
self from being born and traveling back in time in the first other) Upon emerging from the wormhole mouthtat0, the
place. BB may interact with its “younger self” which has not yet
Satisfactory physical theories must avoid giving rise toentered the wormhold:Younger” here means younger in
such self-contradictory predictions. One approach to achiekerms of the ball's “personal” time, i.e., the proper time
ing this is to impose consistency constraints on the allowableneasured on a clock attached to the bain inconsistent
initial conditions on spacelike surfaces prior to the formationcausal loop, analogous to the “grandfather paradox,” can
of the CTC's, thus abandoning the principle that initial con-then occur as the result of a BB trajectory such that, on
ditions on such surfaces can be chosen at will. For exampleemerging from the wormhole, the ball undergoes a head on
in the case of the grandfather paradox we might insist thatollision with its younger self, deflecting the latter so that it
the initial conditions just before the prospective murder in-does not enter the wormhole in the first place. However, as
clude the presence of a strategically placed banana peel &KT point out, in the presence of CTC's the trajectory is not
which the prospective murderer slips as he pulls the triggemnique, and there are also solutions, with the same initial
thus spoiling his aim. One might refer to this approach as theonditions, which give rise to consistent causal loops; e.g., a
“banana peel mechanism;” it leads to a theory free of logicalglancing collision may occur which deflects the ball's
contradictions, but requires occurrences that would seem, younger self so that its trajectory through the wormhole re-
priori, to be highly improbable. This violates strong intuitive sults in the required glancing collision. EKT then suggest
feelings. These feelings may simply reflect our lack of expe-adopting a consistency principle according to which only
rience with phenomena involving CTC’s. Nevertheless, aself-consistent solutions are to be considered physical. The
need to invoke constraints on the choice of initial conditionsEKT consistency principle places constraints on the allow-
would be quite disturbing for many physicists and contributeable initial conditions within the region containing CTC’s,
to an expectation that CTC’s are forbidden. but does not constrain the initial conditions that may be im-
The first suggestion in the literature that it might be pos-posed outside that region. This idea seems physically attrac-
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tive, and the discussion in Ref10] had much to do with However, it is also possible, as we will see below, to
stimulating interest in time travel as a subject possibly dechoose a Hamiltonian in the region of CTC’s in the HDP
serving of serious study. model for which no self-consistent solutions exist, in contrast

It is, however, far from clear that the consistency principlewith the examples in Ref$10] and[11]. One can attempt to
always allows one to avoid paradoxes. Because of the variefyestore consistency by projecting out only that part of the
of types of collision, ranging from glancing to head on, path integral expression for the wave functiornt:afT which
which can occur between two spheres, EKT were able to findomes from paths satisfying the consistency condition. How-
self-consistent solutions, in fact an infinite number of them gever, as seen in HDP, this results, because of the consistency
for a wide variety of initial conditions. However, it is diffi- requirement, in a time evolution of the wave function which
cult to see how this can be true in general. For exampleis controlled by a nonunitary operatd+exp(—iHt). One
suppose we place at the early time=Q) mouth of the may preserve the probability interpretation of the final state
wormhole a device to detect the BB if it emergé@ne  wave function by renormalizing the operatérby a factor
might, e.g., have a spherical grid of current carrying wireswhich depends on the initial state and which thus introduces
enclosing the wormhole mouth &0 thin enough to be nonlinearity into the time evolution. Unexpectedly, this has
broken by the BB with its given speed and spaced closelgonsequences for the time evolution of the systemt {00,
enough that a BB cannot emerge from the wormhole without.e., for timesbeforeCTC's occur, as first observed by Hartle
breaking at least one of the wirgSuppose further that we [13]; a more intuitive argument based on the requirement for
connect the detector in such a way that, if a BB is detecteda consistent probability interpretation is given in HDP. An
a signal is sent at light speed activating a mechanically opalternative procedure for renormaliziXgoy matrix multipli-
erated shutter, which deflects the incident ball at some latetation, proposed by Anders¢h4], avoids violations of cau-
point on its path so that it does not enter the late-time wormsality att<<0, though perhaps at the cost of discarding essen-
hole mouth. One can include a requirement that the signal ital physics. Both procedures, in effect, lead to the “banana
sent only if a BB emerges from the wormhole before thepeel” mechanism, since one finds that the presence of poten-
incident ball reaches the shutter. This eliminates the possibitial paradoxes insures the occurrenceagdriori improbable
ity of a second, consistent, solution, in which the shutterevents either before or during the era of CTC's.
starts to close just as the ball passes through it, resulting in a Hence, in the general case, the HDP approach avoids the
self-consistent time delay in which the ball emerges from theproblems associated with inconsistent causal loops only if, in
wormhole and causes the shuter to close just as the incidetite presence of CTC's, fundamental axioms of quantum me-
ball reaches it. This arrangement is a modification of someehanics are abandoned. In particular, the time evolution op-
what similar ones discussed by Novikpid] in which con-  erator which transforms the wave functiort ainto that att,
sistent solutions exist. In the case discussed here, however,$# no longer unitary and is not given byJ(t;,t,)
is difficult to see how there can be any self-consistent, and=exp(—iHt), with t=t;—t,. Moreover, the preservation of
hence physically acceptable, solution. Thus we seem to ba consistent probability interpretation requires the introduc-
back to the grandfather paradox in the form of a BB whichtion of ratherad hocprocedures, possibly involving viola-
enters the wormhole if and only if it does not enter thetions of causality in the era before CTC's are formed.
wormhole. It would thus be interesting to find a model-independent

We will illustrate these ideas below, making use of aapproach in which the existence of CTC’s does not lead to
quantum mechanical model due to Politz&2] (henceforth inconsistent causal loops; the existence of such a theory
HDP) which is simple enough to be calculable but has manywould remove one of the theoretic@r perhaps psychologi-
of the physical features of the BB-wormhole system just discal) objections to CTC’s. Hopefully this would avoid the
cussed. In this model, systems are treated as being in a punenunitary time evolution operators, and the consequent dif-
guantum state, as in standard quantum mechanics, even irfiaulties with conservation of probability, which arise in HDP
spacetime region containing CTC’s, and the path integral forwhen inconsistent causal loops are present.
malism is used; the treatment in HDP is limited to calculat- Science fiction writers often avoid causal paradoxes in
ing amplitudes for the case of initial and final states at timesstories involving time travel by invoking the idea of “alter-
respectively, before and after the era containing CTC’s. Theate universes.” At first sight this idea seems devoid of any
HamiltonianH can be chosen so that there are self-consisternthysical foundation. However, the many-worlds interpreta-
solutions; in accordance with the EKT principle, these solution (MWI) of quantum mechanics due to Hugh Everett, IlI
tions can be taken to be the only ones which are physically15] does introduce ideas which have some resemblance to
relevant. We also find, at least in the HDP model, that wherthe alternate universes of science fiction; it also provides an
unique consistent solutions exist, their time evolution is gov4nterpretation of quantum mechanics which seems difficult or
erned by a unitary operator, so that the probability interpreimpossible to distinguish experimentally from the more con-
tation of quantum mechanics can be preserved. Hence, fentional one, and which some might argue is intellectually
consistent solutions exist, one has a quantum mechanicaiore satisfying.
theory which, in the presence of CTC's, differs from stan- It thus seems natural to ask whether the MWI might pro-
dard quantum mechanics only in the imposition of the EKTvide a way out of the problems of logical consistency raised
criterion for physically relevant solutions, and in the fact thatby CTC’s. DeutscH16] (hereafter referred to as DOhas
the uniqueness problem remains if there is more than ondiscussed this question. He argues that inconsistent causal
self-consistent solution. loops do not occur in the MWI because, loosely speaking,
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the pairs of seemingly inconsistent evefgsg., one’s birth  ternal structure of the measuring apparatus, the eigen-values
and one’s murdering one’s grandfatherccur in different ¢; are highly degenerate. Hence the two terms on the right
“universes” and hence are not logically contradictory. In side of Eq.(2) actually represent effectively infinite sums of
Deutsch's approach the MWI becomes more than a mergsrms with varying phases. Thus, once the measurement in-
interpretation of quantum mechanics; in the presence oferaction is over, the two terms on the right side of E2).
CTC's it has experimental consequences. _ become decoherent and matrix elements of operators be-
The approach in DD actually involves assumptions thagyeen states with differenp; effectively vanish. This is the
go beyond simply adopting the MWI. The cost of preservingyaason the “worlds” in whichQ has different well-defined
unitarity, or more precisely, conservation of probability, iS,51yes are unaware of one another so that the MWI, at least
that, in the presence of CTC's, a system must in general b, e absence of CTC's, is without observable conse-
described by a density matrix, not a wave function. As Wegances.
will discuss, in the absence of self-consistent solutions, pure g the foregoing discussion we see that the approach in
states necessarily evolve into mixed states in the region corip {q resolving the paradoxes associated with time travel
taining CTC's if the violations of unitarity in the HDP ap- iyqlves modifying fundamental principles of quantum me-
proach are to be avoided. Thus, in the same situations ippanics; it certainly goes beyond simply adopting the MWI.
which unitarity fails in the model in HDP, the approach in \we will refer to this approach from now on as the “mixed
DD requires one to formulate the theory in terms of the dengiaie MWI7 (MSMWI) to distinguish it from the original
si_ty _matrix_. Th_e time evolution equation of the density Ma-many worlds interpretation of Refl14]. However, despite
trix in DD is given, as usual, by the differences in principle, in practice, when dealing with
_-1 macroscopic systems, the mixed states which occur in Deut-
0(t)=U" (L2, t)e(t)U(tz ), D sehs appFr)oaCK are very similar to the nearly decoherent
where (in units with #=1) U(t)=exp(-iHt) andH is the  states which occur in the MWI following a measurement, so

Hamiltonian; this ensures the preservation of the probabilisone might feel that the departure from standard quantum
tic interpretation ofo. Moreover, Eq(1) is taken to be valid mechanics is relatively minor, and perhaps plausible.
at all values oft so that the theory determingsduring the However, as we argue below, once an observation has
era in which CTC’s exist, as well as before and after. How-Peen made as to whether a BB has or has not emerged from
ever, the concepts of “mixed state” and “density matrix” in the wormhole the states corresponding to these two possibili-
DD are different than in conventional quantum mechanicsties become decoupled, just as in the case of the different
where mixed state refers to an ensemble of identically pre-worlds” of the MWI when no CTC's are present. As a
pared systems whose statistical properties are given by tH&sult, in situations where, classically, there would be an in-
density matrix. In DD the term mixed state refers to a singleconsistent causal loop, while the front part of an object trav-
system not in a definite quantum state and described not by&ling backward in time emerges from the wormhole in a
wave function but a density matrix. The diagonal elements oflifferent “world”; another part emerges in the same world
o in, say, theR representation, wherR is an observable, which contains its younger self, contrary to the proposal in
give the probabilities of observing the possible outcomes of &D- As a result, in the case of macroscopic objects, when
measurement oR on that single system, ang will not, in ~ Proper account is taken of the finite time required for the
general, satisfy the conditiop?= o characteristic of a pure ©object to emerge from the wormhole and be detected, one
state. finds that no self-consistent solutions in which the object
Working only with density matrices and mixed states ofPasses intact through the wormhole exist in the MSMWI.
the type just discussed goes beyond, at least in principlelhe object is sliced into two, or more generally into many,
simply adopting the MWI as presented in REf4] which pieces in passing _thrc_)ugh the worm_hole_, with different
deals with systems in pure states described by wave fundli€ces winding up in different worlds, i.e., in states of the
tions. In the MWI, suppose we begin with an object whoseSystem labeled by different readings of a macroscopic mea-
initial wave functiony=cyuy(R;)+C,uy(R;) whereR; are  SUring device. Thus, in the MSMWI, wormholéer other
the eigenvalues of an observaBlelescribing the object, and time machineswhich can be traversed intact by macroscopic
the u; are eigenstates @& with eigenvalueRR; andR,. Let  Objects cannot exist. If the MSMWI is correct, such objects
the value ofR be measured by a macroscopic measurind“USt _necessarlly undergo V|c_JIent mt_er_acnons with the time
apparatus which is left in a state with wave functigf{q,) ~ Machine which cause the object to disintegrate.
when the measurement yields the re&ylf where theg; are The organization Qf the remainder of the paper is as fol-
eigenstates of an observat@®with eigenvaluesy, giving Iov_vs. In Sec. Il we discuss thglqugntum—mechanlcal formu-
the internal state of the measuring apparatus. According tition of the consistency condition in the presence of CTC's
the MWI, the system of object plus apparatus will be de-IN terms of its implications for the time evolution operator of

scribed after the measurement by a wave functig®, ,qy), f[he wave function. In Sec. Ill, we consider the mor_jel ir_l HDP
where in cases where the operatdrdoes, and does not, give rise to

the existence of consistent solutions, and observe the connec-
f(R;,0i) =C1h1(AUL(R) +Chba(qUx(R))  (2)  tion in the model between the existence and uniqueness of
consistent solutions and unitarity. In Sec. IV we review in
and|c/|=|c;|. Hence the object-apparatus system remains imletail the density matrix approach in DD, and its connection
a pure state. However, because of the complexity of the into the MWI, and discuss the relation between the absence of
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consistent solutions and the transformation of an initial purghe reasonable assumption that the two bédistually the
guantum state into a mixed state in the region containinggounger and older versions of the same ballll not yet
CTC's. In Sec. V we examine, following DD, how the have interacted at= + e.
MSMWI might resolve the analog of the “grandfather para-  While traversing the wormhole, we take the subsystem in
dox” in the case of a microscopic object, such as an electrorthe vicinity ofr, to be isolated. For this subsystemthough
traveling backward in time. In Sec. VI we analyze in detailit may be regarded as a dynamical observable by outside
the difficulties which arise when one attempts to extend thebservers, plays the role of the time evolution parameter. The
MSMWI to macroscopic objects. We conclude briefly in Sec.BB evolves through the wormhole in the direction of increas-
VII. ing 7 or decreasingt with the evolution governed by a
HamiltonianH', the Hamiltonian of the isolated subsystem.
(Instead of a billiard ball, one can picture this in terms of an
ll. CONSISTENCY CONDITION FOR WAVE FUNCTIONS isolated spaceship inside a superluminal Alcubierre warp

Here we assume that the rules of quantum mechanics aPeUbble[s]' Passengers on the ship .WOUI(_j see their yvorld
unchanged in the presence of CTC’s except for the imposigoverned by a quantum mechanics in which the reading of

tion of a consistency requirement, whose formulation Weﬂggﬁs %?atrr:%fe pragfj:'&xouﬁﬁ;aﬁ,?g;gftﬁé tgiéLn;Zevg;r
wish to examine. Suppose thattat — e, wheree is infini- P 9 P

tesimal, we have an incident BB at the origin whose trajec—t0 run backwards to outside observers in some Lorentz

: . . frames
tory is such that its leading edge reaches the \_/\{ormhote at Fror)n the foregoing, we conclude that the wave function
=T. We take the BB'S proper timeto be Fhe position of the att=T can be obtained from that &t e by an operator of
hand of a clock attached to the ball, which we can treat as &

: : e form

dynamical observable. In contrastthe evolution parameter
for wave functions, may be thought of as the common read- U(T)=u(T)®@exdiH t,) (4)
ing of a network of synchronized clocks remaining at rest
relative to one another. We suppress theny) other inter-  where u(T) is an operator which acts ot (r,7,€,) and
nal variables in addition tar associated with the internal |eavesy,(r’,7',n’,€) invariant since its evolution is gov-
structure of the BB. For<T, 7=t; however, neglecting the erned solely by exiiifi't;). The sign of the exponent is due to
travel time through the wormhole=t+T for 7>T, i.e., for  the fact thatr decreases in going from the=0 to thet=T

the ball which emerges from the wormhole. Although a clas-mouth of the wormhole. In the approximation that the worm-
sical object, we assume the BB is, in quantum mechanicsiole mouths are identified so thigt=0,

described at the fundamental level by a wave function

1(r,7,t) whose dependence on the dynamical variables UMm=uT)xl (4"
and 7 att=— € is peaked about their classical values=Q

andr= — €) with negligible spread; by continuity this should and the wave function of the systemtatT has the form

also be true ofyy(r,7,+€). However, there may now be L, L,

what appears to be a second ball emerging from the worm- (5, 7n.r', 7,0 T) =g (r,n,T)go(r’, 7,0 €), (9
hole. Since we expect the wave function of the ball near the

origin to be determined by continuity, we take the most gen-Where’ at=T, we include an occupation number variable

; for the part of the system separated from the wormh@\e.
eral form of the wave function for the system to be t=0, n=1 from the initial conditiong. The direct product

structure of Eq(4) or Eq. (4) and the product form of Eq.
p(r, 7m0, 7 0 t=e)=yy(r,7,€)o(r', 7' ,n"€), (3) (5 are consequences of the fact thHt depends only on the

coordinates of the subsystem traversing the wormhole. Thus

H’ cannot generate any correlationstatT between the
where the variablen’ is an occupation number with two BB’s with coordinatesr and r’. If t,#0, a factor of
possible values, 1 and 0, denoting, respectively, the presenexp(—iE, t;) must be included on the right of E¢p), where
or absence of a BB emerging from the wormhdiéhus, E,=0 andE,;=Egg, the energy associated with the pres-
e.g., if the incident ball always goes through the wormholeence of a BB; in general, this factor, even if present, does not
¥(n"=0)=0. Excluding the possibilith’>1 corresponds affect the subsequent discussion.
to the assumption that the incident BB, if it emerges from the  Note, from Eqs(3) and(5), that the wave function itself
wormhole mouth at=0, is directed in such a way that it is not continuous across the wormhole; only the fagtgis
does not reenter the wormhole mouthtatT.] Forn’=1,r’ continuous as a consequence of Ed.)(4f one begins with
and 7’ are position variables for the emerging BB and thea system in a pure stat@nd thus describable by a wave
hand of its clock, so tha#,(n’=1,t=¢) is peaked around function), then since it is being evolved by a unitary operator
the values’=rqy and 7' =T+1ty+ €, wheretg is the transit  the overall system remains in a pure state. The wave function
time of the BB through the wormhole; sineeis arbitrarily = at t=¢€ has the product structure of E¢B) so that each
small, and the internal length of the wormhole is taken to besubsystem is separately in a pure state. The continuity across
such thatto<<T, 7'~T. Note that the product form of the the wormhole, expressed by E@), then guarantees that
wave function, Eq(3), which we obtained by continuity in structure is preserved in E¢p) even though the subsystems
time from the initial condition at= — ¢, also follows from outside the wormhole interact with one another between
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t=0 andt=T; the subsystem at the wormhole mouth thus We will take the model in HDP to give a calculable quali-
remains separately in a pure state. Thusyi{T) and/or tative guide to the behavior of our system of the billiard ball
»(T) are superpositions of states with different occupatiorthat travels back in time and interacts with itself. Wezgbe

numbers, the values af andn’ must be uncorrelated. the position of the incident BB dt= — € andz, the position
of the wormhole. As in the HDP model, the state of the
lIl. CTC's AND THE QUANTUM MECHANICS SyStem att=+ € lies in the same Hilbert space as before,
OF PURE STATES where now, e.g., the stat¥(+e€)=11 corresponds to the

state with both an incident BB a; and a ball atz, which

We begin this section by summarizing Politzer's modelemerged from the wormhole. The behavior of the BB system
referred to above. The model drastically truncates spacetimig, of course, more complicated than that of the model. The
to a space with two fixed points with coordinatesz; and  actual trajectory of the balls is not one of constanthe
z=27,. Forz=z;, —<t<c. However, az=z, there is a incident ball may move frora, to enter the wormhole a,
time machine in the form of a wormhole connectittgO  while a ball emerging from the wormhole &t 0 might be
andt=T, we neglect the transit time through the wormhole directed along a trajectory reachiag z;,, att=T, where,
tp, so that the wormhole simply identifies the spacetimefor simplicity, we could takez;,,=z;. Moreover during the
points ,,0) and ¢,,T). A particle atz=z,, t<0 is taken interval 0<t<T the two BB’s may interact with each other
to enter the wormhole &at=0 and emerge dt=T to move in complicated ways. For example: they may collide; or they
on into the future, while a particle a, in the range &t  may hit switches which cause shutters to be closed, diverting
<T enters the=T mouth of the wormhole and emerges at or stopping one or both of the initial balls. However, the
t=0, following a worldline which is an endless CTC at con- state of the system at=T— € (or at least that part of it in
stantz=z,. The physical system is taken to be a singlewhich we are interesteédcan again be described in terms of
fermion field. Hence the occupation numberandn’ are  the same Hilbert space, where ndw is the state in which
restricted to 0 or 1. This models the situation discussed ifballs are present at bothy, on the verge of entering thie
Sec. Il, wheren=1 is an initial condition at=0, andn’ =T mouth of the wormhole, and a},,. Hence, for a pre-
=<1 as a result of the assumed trajectory of a BB emergingcribed z;,,, Which we will take to bez;, the range of
from the wormhole. The states of the system lie in a Hilbertpossible time evolutions of the billiard ball system is given
space a basis for which is provided by the four statgs, by the range of possible>44 unitary matricedJ(t), as in
T1l2, T2l1, and [1|,, whereT;T,, e.g., corresponds to HDP. Since the HDP model also enforces consistency be-
occupation number 1 for the fermion states at botrand  tween the two mouths of the wormhole, it contains much of
Z,-. Henceforth we will omit the subscripts 1 and 2, unlessthe essential physics of the BB-wormhole system. Hence it
needed for clarity, and simply adopt the convention that theseems reasonable to hope that HDP provides a correct quali-
first and second arrows in a pair denote, respectively, théative description of the behavior of the latter system.
occupation numbers a andz,. The field is taken to have We are interested in the case where the initial state at
effectively infinite mass so that kinetic energy terms in the=—¢ is 1], i.e., we have an initial particle a; but not at
energy can be ignored. The notatipand | for the occupied z,. (We will always impose the initial condition at=z, that
and unoccupied states, respectively, is motivated by the facto BB is present, i.e. that’=0, att=—¢€.) We assume,
that the model is mathematically equivalent to the presencfom continuity, that the occupation numberztatt=+ €
of spin+ particles, each with possible spin states up andemains equal to 1, so that the two possible states of the
down, atz, andz,. We will always deal with the case where system at that time ar¢] and 1|. Politzer in HDP obtains
the state at, is unoccupied except for<0t<T. During this  the amplitude for finding occupation numbeii =0 or 1), at
interval the system is governed by a Hamiltonldrwhose z, at t=T+e¢, given occupation number 1 at=—e, by
general form is that of an arbitrary>d4 Hermitian matrix  using the Feynman path integral to sum over paths, subject to
whose matrix elements are constants, since the particle poshe consistency condition that the occupation numbez at
tions are taken to be given by the occupation numbers ané z, be the same at=0 andt=T since these two points are
there is no kinetic energy. The assumed freedom to chooséentified. The result, as given in HDP, is that the amplitude
the Hamiltonian governing the time evolution in the intervalis given byX;,;, where
0<t<T is a natural representation in the model of the as-
sumed freedom to impose arbitrary initial conditionstat

=0 before CTC’s exist. B . .
Let ¥ (t) be the state vector of the system, which, in the X _Ek: (ik|uMIik), 0
absence of CTC's, would obey the equation
W(t)=exp —iH)W(+eé). (6)  wherel|iky denotes a state with occupation numbessi and

n’=k atz; andz,, respectively. Note thaX;; involves a the
Note that an arbitrary 4 4 unitary matrixU(T) can be writ-  trace of the 22 matrix U;,.;, in the occupation number
ten as exp{iHT) where the Hermitian operatét is a gen-  space ar,; it does not therefore depend on the choice of the
erator of the grougJ(4); hence the freedom to choost  set of two orthonormal basis states in that space.
arbitrarily translates into the freedom to choose an arbitrary We define|X(j)|2=Ei1:0|Xij|2, j=0, 1. It is pointed out
u(T). in HDP that the overall normalization of may be multi-
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plied by a state independent factor that can be absorbed #mccordance with the consistency principle, according to

the functional measure. However, unitarity requires which only such states are physical. The contribution of the
5 5 states]| or |7, which do not satisfy the consistency condi-
IX(1)[*=]X(0)]. (8 tion and would be regarded as unphysical by EKT, is sup-

essed by Eq7).
One can see in a simple way the connection in the HDP
approach between the preservation of unitarity and the exis-
tence of a consistent solution. In case 1, &y for the X;; is
Umll=1] 9) equivalent to the statement that the operdtaan be written
' asX=U(T)U(T)U(0). HereU (0)=U(e,—¢) is a uni-
i.e., we assume that if no particle is present eithemair z,  tary operator which takes the initial stat¢$ and || at
att=+e¢, none will be present dt=T— . t=—e€ into the consistent state)s’ and ||, respectively at
t=e. Note that, for <t<T, we need consider only the two
dimensional subspace, spanned by the consistent states, of
) ] ) o ] the full four-dimensional Hilbert space, since the two totally
First take the example in which the incident BB is on ajnconsistent states make no contribution to the opecétas
trajectory to carry it into the wormhole mouthtat T, and a given by Eq.(7). Similarly, U (T)=U(T—¢,T+¢) takes]|
ball emerging from t_he \{vormhole mouth &t 0 is directed gpg || into the final states | and ||, respectively, at=T
onto a trajectory taking it ta=z; att=T. Then + €; the relationU (T)11=1 reflects the disappearance of
_ the BB atz, into the wormhole at=T. U(T) is the unitary
ummr=11 (10 time evolution operator frome to T— e for the consistent
states, given by Eq$9) and(10). The appearance of the full
operatorU(T) in X is a consequence of consistency; since
umrl=17. (11)  U(T) leaves the wave function of a consistent state un-
changed az=1z,, limiting the right side of Eq(7) to terms
Hence the matrix elemen{sk|U|1k) appearing on the right diagonal ink imposes no restrictiorX is thus unitary since it
side of Eq.(7) are nonvanishing only for=k=1. For the is the product of three unitary operators. While our argument
U(t) in Egs.(10) and (11), the states|] and 7] att=+¢ is specific to the highly simplified HDP approach, it seems
thus give, respectively, completely consistent and completeljikely that the conclusion that the unitaruty condition, Eq.
inconsistent solutions. For the completely inconsistent solu¢g), holds will be valid in general when a unique consistent
tion, T/, the wave functions at=z,, att=0, andt=T are  solution exists in both the situation when there is, and when
orthogonal and have no overlap; the incident BB enters theéhere is not, an incident BB.
wormhole att=T, but no BB emerges dt=0. For the con-
sistent solution,]1, the wave function at=T— ¢ has the Case 2
product form given in Eq(5), as demanded by continuity. Contrast case 1 with that in which we modify the operator
It follows from Eq.(7) that, forU given by Egs(10) and by replacing Eq(10) by U(T)1T=al1+b7 ]|, with |a|?
(1D, Xo;=0 because(0k|U(T)|1k)=0. Hence Eqgs.(7), +|b|?=1; Eq.(11) remains unchanged. We can think of this
(10), and(11) give U as simulating the situation where there is a probabjibit§
IX(1)]2=|Xy2=1 (12) that, upon emerging from thie=0 mouth of the wormhole,

1 ' the BB hits a switch and transmits an electromagnetic signal
closing a shutter and preventing the incident BB from enter-
ing the wormhole at=z, andt=T. Equation(7) now yields

Umirt=1l (13)  the result thatX(1)|?=|al?>. From unitarity, Eq.(13) is
replaced byU(T)|T=af|—Db7T, which yields|X(0)|?=1
so that one sees, from Ed9) and(12), that there is also one +|b|2. Hence, unlesb=0, which is the self-consistent case
consistent and one inconsistent solution for the case thdt, Eq.(8) does not hold an is not unitary. Note that, for
there is no incident BB dt= — €. As a result the calculation U(T) obeying Eq.(11), if b#0 there is no linear combina-

r

We consider below several different cases, differing in thep

form of U in Eq. (7). We will always assume, on physical
grounds, that) is such that

Case 1

and

Equations(9)—(11), coupled with unitarity, imply that

of |X(0)|? exactly parallels that fofX(1)|?> and we find tion of 17 and 7| on which the action ofJ(t) is given by
5 5 that of an operator with the direct product structure of Eq.
[X(0)[?=[Xool“=1. (14 (4). The violation of unitarity is thus directly connected to

. o _ .. . the lack of a completely self-consistent solution within the
From Eqs.(8) and(14) it follows that unitarity is satisfied in region containing CTC’s, combined with the consistency re-
this case in which there is a single self-consistent S°|Uti°rhuirement that only matrix elements diagonakiappear on
both when there is, and is not, a BB incidentzatz; att ¢ right side of Eq(7).
-6 ) ) ) ) The billiard ball version of the grandfather paradox cor-
In case 1 the approach in HDP is equivalent to the IMPOtesponds to the casb|?=1—|al2=1, in which Eq.(10) is
sition of the EKT consistency principle; Ef) has the effect replaced by ’

of picking out the self-consistent statesor | | att=+ ¢, as
the only states which contribute to the path integral; this is in umir=1l (10)

124023-6



TIME TRAVEL PARADOXES, PATH INTEGRALS, AND . .. PHYSICAL REVIEW D69, 124023 (2004

and we shall primarily concern ourselves with this case, irthis happens at<0, before the era of CTC’s. In the proce-
which the BB emerges from the wormhole if and only if it dure of Ref.[14], it occurs during that era.
does not enter it. We describe this case as maximally incon- Both the renormalization prescriptions becomes undefined
sistent, since the overlap betwet(T)¥(0) and¥(0) at whena=0, i.e. when the grandfather paradox is complete.
Zz=12, vanishes; this also maximizes the violation of unitarity, This is, however, presumably an unphysical limit; one ex-
since it giveg W (T+ €)|?>=0. Note that this provides an ex- pects that, in any actual case, there will always be some
plicit, albeit highly simplified, example of a model in which nonzero probability, however small, for events to occur
no self-consistent solution exists, in contrast to the situationgvhich would allow the paradox to be evaded, so this objec-
discussed in Ref$10] and[11]. tion is not conclusive. If there are consistent classical solu-
We can interpre{b|? as giving the probability that the tions, these will dominate the path integral and only the oc-
apparatus producing the interaction between the older ancupation numbers need to be treated quantum mechanically.
younger versions of the BB is functioning correctly. A small When this is true, one can expect that the path integral in the
nonzero value ofa|? could arise, e.g., from a nonzero prob- HDP model provides a reasonable description of the actual
ability that the transmitter which is to send the message closhehavior of the system. In the limgt— 0 where there are no
ing the shutter and diverting the incident ball from its origi- consistent classical solutions to dominate the actual path in-
nal trajectory fails to send the message when the transmittéegral, it will presumably be given by an integral over many
is activated by a ball emerging from the wormholetat0.  paths, and the argument that it is well represented by the path
Only in the case of this, or similar, events, whaseriori integral evaluated in HDP ceases to be persuasive; the many
probability one would expect in general to be very small, cardegrees of freedom of the BB-detector system not taken into
the incident ball reach thé=T mouth of the wormhole, accountin HDP presumably become important. However, it
thereby allowing the solution in whic'(+¢€)=77 to be seems very plausible that the qualitative conclusion of the
self-consistent. HDP model, namely, that the path integral for the case when
One can seek to preserve the probability interpretation ofhere is an incident BB at=0 is very small, will remain
the wave function by renormalizing the final stabg att  valid in this limit. One expects this to be true precisely be-
>T by changing the prescription fron¥;=XW¥(—¢€) to  cause of the absence of consistent classical solutions, which
P =NX¥(—¢€), whereN=[PT(—e)X'X¥(—¢€)] Y% the  would normally make the dominant contribution to the path
normalizing constanN thus depends on the initial state so integral for a macroscopic system. Since on physical grounds
that the time evolution is nonlinear. As discussed in HDPone does expect that consistent solutimwill exist when
this implies that if the initial state is a superposition of then=0 initially and there is no incident BB, i.e., for the
states], and |, the existence of the era of CTC's &t 0 vacuum-to-vacuum process, we expect that the conclusion
affects the time evolution of the system for0 in such a  that|X(0)|?>|X(1)|?, and that hence, from E¢B), unitarity
way that the probability of having=1 att=0 is propor- is violated when paradoxes occur, will remain true in the full
tional to|a|? and thus vanishes in the maximally inconsistenttheory. The simple HDP model clearly cannot be expected to
limit a—0. Thus in the presence of a time machine we cangive any detailed information about what actually occurs in
not impose initial conditions at=0 so as to have the BB thea—0 limit; that is, it will give no information about the
arriving atz=z, and a properly functioning transmitter lead- relative probability of variousa priori improbable events.
ing to Eq. (10) and the resulting potential grandfather para-But one does expect that the conclusion that seemingly im-

dox. probable events of some kind must occur if unitarity is to be
Anderson[14] suggests the alternative renormalizationpreserved will remain valid. .
procedure of replacing the evolution operaXoby the uni- One thus has, in the quantum mechanics of pure states,

tary operatotUy=(X"X) ~¥2X which is independent of the two rather unappealing alternatives when there are no con-
initial state. The two procedures have the same effect whefistent classical solutions. First, one can accept a nonunitary
n=1 att=0; in that case either procedure results in multi-time evolution operator and the consequent loss of the prob-
plying the final state vector at>T by 1/a. However, if one ability interpretation of quantum mechanics. Alternatively,
begins with a superposition of states witk- 1 andn=0 the ~ One can adopt one of the renormalization procedures, mean-
effects of the two renormalization procedures differ. In theing Seemingly unlikely events become certain either before
Anderson procedure the time evolution fer0 is unaffected  OF during the era of CTC’s. This leads to what we have
by the presence of the time machine in the future. HoweveRreviously referred to as the banana peel mechanism; while
in our simple model the evolution operatbk, within the _h|ghly counterintuitive, it at least allows the theory to be
region of CTC’s, 0<t<T is simply the identity operator. interpreted.
Thus all dependence on the physical paramatés elimi-

nated by this procedure, and the actual evolution is the same

for an arbitrary value of as for the cas¢al=1, in which

case the transmitter is certain to fail and no inconsistency As a final example, we examine briefly the case in which
arises. This procedure seems to lack a compelling physicdhere are two self-consistent solutions. T&keT) to be such
motivation, and to discard much of the essential physics aghatU(T)T|=1] andU(T)T7=]7. The unitarity ofU plus
sociated with the CTC’s. Both of the renormalization proce-the physical requirement thet(T) | | = | | then requires that
dures have the effect of rendering, essentially by &ariori U(T)|T=1T. The state§] and 1| att=+ e now each give
unlikely events certain. If one renormalizes the final statea self-consistent solution, and it is straightforward to show

Case 3
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from Egs.(7) and (8) that unitarity is obeyed. However, a simplified model. In general, one would expect the states
nontrivial linear combination of the statg§ and 1| att withn=0 and 1 at=T— € to lead to different final states at
= ¢ does not result in a final state &t ¢ with the product t>T so they would not give rise to quantum interference.
structure of Eq(5). Instead the state of the systemtatT  The interference occurs in the HDP model since there is only
— e is of the correlated fornt, 7| +c,| T which, from the a single state containin@nd a single state not containire
discussion in Sec. Il, cannot represent a self-consistent pui@B att>T. In contrast, the type of unitarity violation found
state. The procedure in HDP, in which the two consistenin case 1 would appear to be generic in such situations, since
states]] and 1] are included with equal weight in the path it occurs because the magnitudes of the individual terms on
integral, thus implies that the system is in a mixed state irthe right side of Eq(7) become small compared to 1, and
the region containing CTC’s. However, the two solutionsdoes not depend on quantum interference.
lead to orthogonal final states &t-T, and hence do not
interfere with one another, so their undetermined relative IV. CONSISTENCY, THE DENSITY MATRIX,
phase is irrelevant in Eq7). AND THE MIXED STATE MWI

Thus, in this example, Eq7) provides a unique and well
behaved solution fot>T, but within the region &t<T
which contains CTC’s one has a mixed state with two diffe
ent self-consistent solutions which are present with equ
probability. These two solutions are physically quite differ-
ent. This can be seen most clearly for the initial condition in
which there is no BB present at for t<<0. Then for one of
the two consistent solutions the system is in the stdte
throughout the interval €t <T; this is precisely the solution
one would naively expect. However, there is also a consiste
solution in which the system goes from the stateto 77 in
this interval. Here this second solution might be dismisse
on grounds of conservation of energye., of the BB num-

As discussed in the Introduction, the approach in DD re-

r_quires, in general, describing systems in the presence of
TC'’s in terms of their density matrig rather than a wave

unction. We begin this section by reviewing briefly some
simple ideas concerning the density matrix in the present
context. Next we show the connection that follows, in Deut-
sch’s approach, between the existence of potential grandfa-
ther paradoxes and the necessity for adopting a density ma-
r{.Lix description in regions containing CTC’s. We then review
the argument given in DD that, in quantum mechanics with
dhe MWI, CTC’s do not lead to logical contradictions.

In the present case, in which there are four possible states

ber, but one does not expect this to be true in more realisti(?'c _the_ system at a given time which can be_ labeled by pairs
models. Intuitively, the first of these solutions seems moré)f indicesij, wherel,leo,l give t_he occupation numbers at
likely to be physically relevant. Similar considerations apply2 =21+ 22, the density matrixe is a 4x4 matrix whose

to the case whera=1 att=—e. Given the physical differ- Matrix elements can be labeleti;,,,x. The diagonal ele-

ences between the consistent solutions, one might hope th&F€NtSCij;ij give the probability that the system is in the state

if CTC's are possible, a complete theory would settle the/Vith occupation numbers and j; thus te=1. For a pure

uniqueness question, perhaps on the basis of entropy consigiate: described by a wave functignsatisfies the condition
erations[12,16,17, and would select only one of the pos- €°=¢. The matrix element®;, of the effective density
sible consistent solutions in the intervak@®<T. Then if ~ matrix ¢, for the system ar=z, are

one included only the physical solution in the path integral, -

case 3 would become mathematically identical to case 1; the Q2jk = Cij;ik» (15

system would be in a pure state for allvith a unique wave \here the repeated indéts summed over. The fact that the
function obeying unitarity and having the required continuity ¢, system is in a pure state does not imply that the density

across the wormhole. matrices 0; for the two subsystems satisfy the pure state

. The form ofU(t) for case 3 Wh'c.h we h_ave been OIISCUSS'condition. However, when the overall state vector has the
ing appears somewhat unphysical in that involves NONCONSeL; .\ +ire of a direct product, as in E@.6) below, the full

vation of the BB number. This can be avoided, while havingd nsitv matrixe also h direct product struct A
two consistent solutions, only @ (T) is diagonal(This is an ensity matrixe also has g ; ect pro uc. S .uc uoe= 0,
®0,; the pure state condition op then implies that the

artifact of the simplicity of our model in whicly is 4x4
matrix, and there are only two possible states of the systerRtParate systems atz, andz, are also pure states.
Let us return to our example of the BB which travels

for t>T.) The case in whiclv is diagonal has an interesting L . o
property, in that it can lead to the violation of unitarity even Packward in time and interacts with its younger self. Sup-

though consistent classical solutions exist. This occurs bg?0S€ We have a pure statetat +e. Since the occupation
cause either in the case=1 orn=0 att<0, there are now number atz=z; is 1 from the mma] conditions, the most
two consistent solutions which contribute to the same finaP€neral form of the state vector at is

state and, from Eq(7), they will mterfgre with one another. V(+e) =V (+e)@W,(+e)=1®(cy1+Col) (16)

If one choosedJ(t) such that the relative phase between the

two possible states d@t=T— € is different for the cases with [¢1|%+|c,|?=1. The most general state of the system is
=0 andn=1, the unitarity condition, Eq(8), will be vio-  one in which the system a}, emerging from the wormhole,
lated. (The unitarity violation in the example discussed inis in the pure statel,=(c;]+c,]) with a definite phase
HDP in fact occurs for this reason, rather than because of theslation between the occupied and unoccupied components
nonexistence of classical solution©nce again, in our ex- of the state vector. Continuity across the wormhole then
ample this phenomenon appears as an artifact of the overiyjeans that the state vectortat T must have the form

2=
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It is demonstrated in DD that for any(T) one can al-
ways choose values a@f; andc, in Eq. (16) that yield ap
which, when evolved according to E(), satisfies a modi-

. . fied consistency requirement of the form
In particular, there must be no correlation between the occu-

pation numbers az; andz,. Thus for a givenU(T), the 0,(T)=0,(0)
consistency constraint can be satisfied only if it is possible to 2 25

choose the constants andc, so thatW(T) has the form  consistency in this sense is possible because one is working
given in Eq. (16). In case 1 of Sec. Ill, in whictU(T) is  ith p instead of a wave function. The consistency condition
given by Egs.(10) and (11), Eq. (18) is obeyed, withd, o o s satisfied if the correlation is such that the probability
=0, if we take the self-consistent solution wit3=0. Of  for a BB to enter the wormhole &t T is the same as for one
course we already know this is a self-consistent pure staig, emerge at=0. In the MSMWI picture, a measurement of
solution, since we found that the time evolution opera&or \yhether or not a BB emerges from the wormholet at0
given by Eq.(7), which has the consistency constraint built c5ses a branching into two MWI “worlds,” both of which

in, is unitary. remain components of the state of the systered, and in

'\,IOW consider case 2 in whictl(T) is given by EGS.  gne of which a BB enters the wormhole moutht &T. The
(10') and(11). There is then no consistent solution and theconsistency condition og, but not ong, will then be satis-

operatorX exhibits maximal violation of unitary. Suppose We fieq if the probabilities of a BB entering the wormholetat

V(T)=U(MP(+e)=V(T)@V,(+e)

=(dT+dy])®@W,(+e). (16')

(20

choosec; =c,=1W?2, with both taken to be real for simplic-

ity; then, att= + €, we have the product state,
V(+e)=Ta(T2t+12/V2, 17

in which the subsystems a{ andz,, and thus the full sys-

tem, are all in pure states.
From Egs.(17), (10'), and(11) one obtains

W(T)=(Tel2t+172)/V2.

This is not of the form of Eq. (1§ because of the correla-
tion between the states at andz,. Equation(18) describes
a situation in which the subsystem &t z,, considered in

(18)

=T, and of its emerging at=0, are equal even if a BB
traveling backwards in time does not emerge in the same
world which it left. For example, while the wave functions in
Egs. (17) and (18) do not satisfy the continuity condition
across the wormhole, they each yield a density magrjx
given by Eq.(19) so that Eq(20) is satisfied.

V. MSMWI AND TIME TRAVEL PARADOXES INVOLVING
MICROSCOPIC OBJECTS

Before considering the case of a macroscopic object such
as a billiard ball or space ship, we examine how the MSMWI
works in a situation where, instead of a macroscopic object,

isolation, is in a mixed state, with no definite phase relatiolVe have a single electron. This is closely analogous to the

between the occupied and unoccupied statezs=at, since

situation considered in DD. In the spirit of the MWI we

the coefficients off, and |, depend on the coordinates of include as part of our system a measuring device, e.g., an

the system az=z;. (Recall that the symbof, is really

array of Cerenkov counters surrounding the wormhole

shorthand in our case for the full wave function of a BB, mouth, which can presumably be designed to detect with

including the dependence on the internal coordinpfd®&
can also see that th® subsystem in Eq18) is not in a pure
state by constructing the density matgxfor the complete
system and using E@15) to obtain
02(T)=1,/2, (19
where 0,(T) is the density matrix for the subsystem at
=z, att=T andl, is the 2x 2 identity matrix. Equatiori19)
describes a mixed state with equal probabilitieg &r find-
ing a BB entering, or not entering, the wormholetatT.
Since the subsystem atz, is in a mixed state at=T, this
subsystem, and therefore, from Ed.7), the system as a
whole, must be in a mixed state &0 if there is to be

arbitrarily high certainty whether or not an electron emerges
from the wormhole. We again consider the grandfather para-
dox situation withU given by Egs. (10 and (11). If an
electron is detected, we can imagine the measuring device
causes the incident electron at to be deflected, e.g., by
temporarily turning on an electric field neay, so that it
never reaches the wormhole.

Let the state of the device be designatedgbyhich will
become one of our dynamical variables along with the occu-
pation numbers andn’ at z; andz,. The matrix elements
of the full density matrixo appearing in Eq(15) will now be
labeled by two sets of three indices, plusSince we are
dealing with mixed states with undefined relative phases, the
density matrices are diagonal and we can specify the non-

continuity across the wormhole. Thus, in the presence offivial density matrix elements at timteuniquely by a single
potential inconsistent causal loops, there are only two possg€t of three indices, writing the matrix elements as
bilities: the first is that the continuity condition across the@(d,n,n’,t). (The matrix elements of the effective density
wormhole may not be exactly satisfied, and when we projectatrix ¢ for the system at, will still be labeled only by the

out the(possibly nonexistehtpart of the wave function sat- valuesn’, however;q and n are both degrees of freedom
isfying the consistency condition the operaférbecomes associated with the remainder of the system and are both
nonunitary, as in case 2 in Sec. lll; the second possibility isummed over in finding@.) The HamiltonianH and thusU

that pure states are transformed into mixed states in the réa Eq. (1) will now includeH,,, the interaction between the
gion containing CTC's. electron and the measuring device. Initiallytat0, we take
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g=qa, While =gz after the detection of an electron by the in stateA att=T, is able to appear in staiat a later value
device. Thus, if an electron emerges from the wormhole aof its own time = by traveling back in time through the
t=0, then at= 6> ¢, g becomes equal tqg ; §is a property wormhole to a timet<¢$ before the measurement, and the
of the detection system, and will be finitgnough we assume resulting branching into statésandB, has occurred.
5<T), both because the counters will have a finite response More formally, we can understand this as follows. Let us
time and because they will be located at a finite distanc€&onsider the time translation operatd(t,,t;)=U,, for the
from the position of the electron &0, the earliest time at Caset,=46+¢€’, t;=T, with €’ arbitrarily small and5<T.
which it could be observed as it emerges from the wormhole/Ve = €an write Uz, =U(5+¢€",00U(0,T) =U(5)U(-T);
According to the picture in DD, fot>0 the system will U(=T) is the analog of the corresponding operator in Eq.
be in a mixture of two states, each with probabilityWe (4), but doe_s not have a direct product structure because of
will label these state# and B according to the valuesj, the correlations between observablestafl. At t=T the

andqg, respectively, o att=T—e. Sinceq=q, in state system will be, with equal probability, in states witi

A, in that state no electron was detected=a®, and it then cTe?1As itynm;tlrifg(lje?n_egfg' (3 n_r?’, Sofot:]?:n_? rxiﬁrgemagonal
follows from Egs. (10) and(11) that, in stateA, n'=1 at T

t=T—¢€ and the incident electron enters the wormhole 1

mouth att=T. Similarly, in stateB, with q=qg at T—¢, no 0(ga,n(T)a,1T)= 5= 0,(1,T) (213
electron enters the wormhole &t T.

Thus, att= €< 8, one will have a system with=1 and
g=q, in a mixed state with equal probabilities for finding &
n'=0 andn’=1. At t=§, q becomes equajg in the state 1
with n’=1; that is, the electron that was m_stdﬁeatt—T_ 0(9s,N(T)g,0T)= = =0,(0.T), (21b)
— e emerges from the wormhole &0 and is detected in 2
stateB att= 4.

Fort> & an observer, as in the conventional MWI, has anwheren(T) 5, €.g., is the value of the occupation number
equal chance of being in the worlds with=g, or gg. In  att=T andq=q,. The final equality in Egs(21) is a con-
stateB, with q=qg, the observer sees the electron initially sequence of the fact that only the matrix elementg @ip-
at z, deflected so that it never reaches the wormhole, whilgearing in Eqs(21) are nonzero.
the electron leaving the wormhole arriveszatatt=T, in The operatotJ (—T) transformsg(T) into ¢(0). By Eq.
accordance with Eqg. (1), so thatn’=0 att=T, and the (20), this must leavep, invariant, while att=0 the only
observer will conclude that’ (0)#n’(T). Asimilar analysis nonzero elements o are forn=1 andq=q,. Thus att
holds for observers in the world in whidp=q, for t> 6. = e< 6 the nonzero elements @f are
The time evolution during the period<0t<<T will appear
perfectly sensible to observers in both worlds. They will be . 1
surprised to see that' (T)#n’(0), butthis does not consti- e(galn’,e)=ga(n’,e)=5, n'=01. (22
tute an actual logical contradiction, sinog(0) andn’(T)
are physically different observables for outside observers S&omparing Eqs(21) and(22), we see that Eq20) is indeed
that the theory does not give contradictory predictions for thesatisfied. ’
value of the same observable as seen by the same observer.smce 5<T, the factorU(s) in Uy, differs from unity

A hypothetical observer riding on the electron will also '
see nothing unusual. The electron apparently evolves NOHavice. Thus, acting on states),n,n’), U(8)|qa1,1)

mally, in terms of the local time variableand Hamiltonian -
o > X . =|qg,1,1), whil I 1 ff . Th
H' discussed in Sec. Il, in passing through the wormhole; an |9e,1.,1), while U(5) leaves|ds,1,0) unaffected. Thus

observer moving with the electron would seé(7=T) _

=n'(r=T+ty) =1, wheret, is the transit time through the U210a.n(T)a, D) =|0s,1,2) (239

wormhole, and will see outside clocks readittg0 as he d

emerges. However, the world in which he now finds himsel"

will be different than he saw wher=t=0 and the electron

was atz=z,;, since now he will seg=qg, and find himself

in a world with two electrons. . - .
Thus the communication between different MWI worlds F_rom Eq.(1), there W|I_I be a similar transformation of the

postulated in Deutsch’s approach actually occurs, if the con‘-j',""gon‘"lI density matrix elemeng(q,n,n’,t) so that, for

tinuity condition is given by Eq(20), as a result of the N =1, we have from Eqs219, (22), and (233

interactionH ,, with the measuring apparatus. The electron 1

enters the wormhole in thg=q, world and appears &t _ _ _

=0, also in a state witlj=q, . However, at= 8, when the 0(@a:n(MalN=0(41,1.0=0(qs1.10)=7

measurement process results in branching into two separate (243

worlds with different values o, g becomes equal tgg in

the state containing the electronzat The electron, which is and, similarly, forn’ =0

nd

only because of the interactiad,, with the measurement

U5405,n(T)g,00=|0a,1,0). (23b)
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1 ~ — ~ ’

0(A3.N(T)e,01)=0(4x 10,0 =0(dx 1,05 = 5 Coltr = el 20
(24b) We will place one additional restriction on the wormhole
) ersistence timé, . Let T be the time at which the incident
and one sees that the electron, which entered the wormhojgg yeaches the shutter whose closure prevents it from enter-
att=T in stateA, is found att=§ in stateB. The continuity  jhq the wormhole. We will strengthen the restriction By
condition (20) on the subdensity matrix 2 is satisfied, sincepy requiringT,<T,. We thus eliminate the possible consis-
the probabilities for finding1’=0 and of findingn’=1 are  tent solution mentioned in the Introduction, in which the BB
both equal to one-half at each end of the wormhole.  gqueezes past the shutter just as it closes, being slowed down

Thus the MSMWI, with an object described by a densityj, the process so that it reaches the wormhole=aT + T,

matrix satisfying Eq.(20), leads, as asserted in DD, t0 @ 50 reemerges at=T, to trigger the shutter just as its
quantum theory of a microscopic object passing through §oynger self reaches it. According to the EKT consistency
time machine which avoids the grandfather paradox. Thigyiinciple, this would become the physically observed pro-
occurs, as in the parallel universes of science fiction, becau?f'ess, thus evading the paradox. However, this consistent so-
the object emerges from the time machine and “murders” it sion does not exist if the early-time mouth of the wormhole
younger self in a different world, i.e., an orthogonal quantumg|oses before the BB reaches the shutter, thus eliminating the

state, when it travels back in time. possibility of a BB emerging from the wormhole &t T,
and triggering the shutter just as the incident BB reaches it.
VI. MSMWI FOR MACROSCOPIC OBJECTS Let us consider first, for simplicity, the cage=3. +¢€';

L . _i.e., we assume that, on the average, just over half of the BB
As we now show, however, problems arise if one applies o
emerges from the wormhole before the detector is triggered.

the MSMWI in the case of macroscopic objects, such a%y analogy with our discussion in the previous sectiont, at
billiard balls, passing through the wormhole. We first speC|fy:T_€, in stateA, with q=q,, the incident BB will be

the meaning we will attach to macroscopic in this ConteXt'about to enter the wormhole, since in that state the detector

Let the object in question have linear dimensidrin its was not triggered at= 8, while in stateB there will be no
direction of motion and be moving with speed so that it BB entering the wormhole. Then a8 one will have a

requires a time intervaht=d/v to emerge from the worm- mixture of two states, both with =g, in one of which the

hole. That is, for G{t<<At, the front portion of the BB exists . . .
on a timelike surfacé=t, while the back portion exists on front portion of a BB will have emerged from the wormhole;
L b this latter state will be statB, with q=qg for t> 6, since in

the timelike surfaceé=t,;+T. We will call the object mac- . . . . X .
roscopic ifAt> 6, whered is the time at which the detector this state tie detecyon de\_/|ce will be triggered. Th(la_densny
matrix art=e<4 will be given by Eq.(22), wheren’=1

recognizes that the object has emerged, and in consequence
sends a signal preventing the object from entering the wormger;%tff;ge grfssznii:;t;:? g??;:drggti% fnthsti%ngdeat the

. H H H 1 m:
hole att=T; as in Sec. .\/’5 depends on the r_gsolutlon time interaction Hamiltonian with the detection device, has no
of the detector and its distance from the position of the Iead;n atrix elements between the states wilhr and
ing edge of the object as it emerges at0. Since a fraction da- q

f=6/At of the object must emerge from the wormhole be-_ I8 afte_r fche irreversible measurement has been com-
S . ; pleted. This is the exact analog of the independence of dif-
fore the detector is triggered, for a macroscopic object

<1 and a fraction % f>0 of the object will not yet have ferent worlds from one another in the conventional MWI

emerged from the wormhole &t & without CTC's.
The above definition of “macrc;scopic” has the problem This decoupling of_states andB_ has far reaching conse-
of depending o, and thus on the particular detection de_quences for the predicted behavior of a macroscopic object

. . ; assing through a wormhole. As with the electron, the front
vice being used. One can introduce a more fundamental defj- 9 9

nition to avoid this by takingAt> 6y, where dyip~1/m, alf of the BB, which is in stat& att=T, appears in stat®

with m the mass of the obiect amck 1. is the smallest pos- att=6 and r=T+ §. This can occur because the front half
. O J ! P travels back in time to the range of times<®< § at which
sible resolution time for any detector. Then on the fundamen:.

tal level we would take an object to be macroscopid if time q=dq, in both states\ andB. However, the rear half of
~1/m or md>1 ) P the BB reaches the wormhole mouthtatt,;=T+At/2=T

The HDP model must be extended somewhat to accomjL 9, and hence it begins to emerge from the wormhole at
= ¢, after the measurement has occurred. £op the evo-

modate macroscopic objects, but the generalizations do not . ,

change the physics in anJ essential wayQCIearIy the wormholg!tion operator Uay(t,t) =U(t,6,)U(6,T+3), plays the
mouth must have a finite radius. Also, the wormhole musgnalogous role for the ba(fk half of the BB tHa, played
persist for a timé o> At in order for the object to traverse it. [OF the electron in Sec. U3, does not connect statésand
One must then generalize the wormhole to identify times B: Since, fort>4, gg#qa and these states are decoherent.
andt+T for 0<t<T,. whereAt<T,<T; the upper limit Fort>4 Eq. (238 must be replaced by

on T, avoids the necessity of introducing a spatial separation

between ends of the wormhole which overlap in time, as Uzi(1)[da,n(T)a, 1) =[qa,1,2) (25
discussed earlier. Equatiof20) must be correspondingly
generalized to and hence from Eq1), the analog of Eq(248 for the non-
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zero matrix elements of the density matrix for=1 attimes the BB enters the wormhole, the set of observables
tandT+t at opposite ends of the wormhole, when s, is  (q,n{,n/) have, with equal probability, the sets of values
1 (ga,1,1) and §g,0,0). However, for the emerging BB &t
_ _= > §, the relation between andn{ and betweerg and n;
@A n(MaLT+O=p(An110=5, t>5 (26 differs from that fort<s becatjse of the discontinubous
change in the value @f resulting from the measurement, and
the possible sets of values becong,,0,1) or @g,1,0).
There are equal probabilities at each end of the wormhole of

with analogous changes occurring in E¢&3b) and (24b).
Hence there is vanishing probability of finding the back half
of the BB atz=z, in the world withq=qg, and the back _ . : )
half of the BB,unlike the front half will necessarily emerge f|nd|r_19 each possible value, 0 or 1, for bqh andny, as
from the wormhole in staté with q=g . required b)// Eq. (2,0. However, the corrglatpn between the
The MSMWI thus predicts that the two halves of the BB Values ofn¢ andny, for a given value ofy is different at the
will emerge from the wormhole in different MSMWI worlds! two ends of the wormhole. At=T an observer in an MWI
An external observer will, with probability one half, see world with a definite value of] sees nonzero values of the
nothing emerge from the wormhole during the interval 0density matrix elements for the same valuespfand ng,;
<t< 8, so that the detection device is not triggered, and willi-e., he sees either the whole object or nothing entering the
end up in staté with q=q, . This observer will then see the Wormhole. At the other end such an observer sees nonzero
rear half of the BB emerge betweeér 8 andt=26 and go  probabilities for different values afiy andny, and thus ob-
off to reachz=z, in accordance with Eq. (1). Since the serves only the front or back half of the object. For an el-
detector was not triggered, the “younger” BB initially at ~ ementary particle this problem does not arise since the con-
at t=0 will not be deflected and will enter the wormhole cept of different parts of such an object is meaningless; for
betweent=T and t=T+24. The front half of the BB, Such an object, the discontinuity due to the measurement is
which entered the wormhole at<t<T+ ¢, will seem to  simply that associated with the emergence of the object,
this observer to have disappeared, since it emerged in thghich occurs suddenly rather than over time as in the mac-
other world; this is similar to the microscopic case. The reaf0SCOpIC case.
half of the BB will match the rear half which emerged earlier ~We can generalize the above discussion to other values of
att=4, so that observations at the two wormhole mouths athe fractionf. Suppose, e.g., thdt=3+ €', meaning the de-
t andt+ T will indicate continuity across the wormhole for tection device can detect the emergence of one-third of a BB,
t> 5, once the discontinuous measurement process, has be@fdd= At/3. Let us also assume that the detector, after being
completed. triggered, readsgg; Or Qgg,, respectively, depending on
There will also be probability one-half of observing the Whether it was triggered dt= 6 by observing the first third
front half of a BB emerging from the wormhole between ©0f an emerging BB, or at=25 by the middle third. In both
=0 andt=34, triggering the detection device, puttingg  Of these worlds, since the detector was triggered, the incident
=qg, and causing the deflection of the young BB, which BB will not enter the wormhole &t=T. Sinceq is a constant
therefore never reaches the wormhole. In this world, in these worlds fot> &§ or t>26, respectively, they will not
nothing enters the wormhole mouthtat T and the front half b€ coupled to the third world for>24, and in neither of
of the BB will seem to appear for no apparent reason; this |§hem will the last third of the BB be observed. In this third
again similar to the electron case. However,tfors, in state  world, the detector will not be triggered so thatremains
B nothing enters the wormhole &t T or emerges at, so  equal toga . It will couple only to itself fort>24, and hence
that, as in staté\, external observers will see continuity be- in the g, world one will observe the rear third of the BB
tween the two mouths of the wormhole for 8, after the —emerging from the wormhole betweer 26 andt=34.
two worlds have decoupled. There will thus be three MSMW!I worlds. The solution
This surprising result is possible because the continuitpatisfying the consistency condition (3@®n the density ma-
condition, Eq. (20), which is the basic assumption in DD, trix is that each of these occurs with probabiliyThere is
only constrains the elements of the effective density matrihen a one-third probability of having=q, and a BB en-
0,. The density matrix elements of the macroscopic BBtering the wormhole at+T. This leads to probability; for
must now be labeled by separate occupation numjeesid eaC,h §egment to emerge in its respective world, so that Eq.
n, for the front and back segment of the BB. The continuity (20') IS indeed, satisfied. , _ ,
A . . More generally, leff =1/N, whereN is arbitrary, thus in-
of ¢, ensures that the total probability of finding=1, i.e., cluding the case of a detector of arbitrarily high sensitivity
of detecting the front segment ap, is one-half at each '

) R One would then havBl MSMWI worlds, in each of which a
mouth of the wormhole. However, the matrix element®of  4tion 1N of the BB would be seen to emerge during a

for a given value ohy involve the sum oveq of the matrix e interval (—1)At/N<t<iAt/N, i<N. As N becomes
elements of the full density matrig for that value ofn;,  arbitrarily large and the detector becomes very sensitive, the
and thus the relation between the valuespfand the value probability of observing the BB actually reaching the worm-
of g need not be preserved in going through the wormholehole att=T without being deflected thus vanishes aX;lih

The same holds true fary . In fact, as we have seen, where, this limit one will observe, essentially with certainty, a mi-
classically, there is a grandfather paradox, the relation becroscopic fragment of the BB, which might be indistinguish-
tweeng andn’ develops a discontinuity. At=T, just before  able from random background, emerging from the wormhole
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at some time between=0 andt=At, triggering the detec- malization has the effect of forcing the probability of some
tor, and preventing the incident ball from entering the worm-events, e.g., the failure of a piece of apparatus, which would
hole; thus in the limit of largd\ the probability of seeing the normally be very small, to become equal to 1; depending on
incident BB enter the wormhole becomes vanishingly smallthe renormalization procedure, the events in question may
but the number of fragments into which it is split becomesoccur prior to the construction of the time machine, i.e., prior
very large, so that the probability of some fragment emergingo the formation of a Cauchy horizon. Thus postulating the
in any one of the essentially infinite number of worlds is yenormalization procedure required to conserve probability
unity. _ amounts to postulating the banana peel mechanism, i.e., the
The fact that fractions of the BB emerge from the worm-certain occurrence of some member of a se @friori im-
hole in states with different values of means that, if the propable events which conspire to prevent paradoxes from
MSMWI is correct, the Hamiltoniafi" controlling the evo-  occurring. The renormalization process fails if the norm of
lution of the BB in its proper timer through the wormhole  the final state is strictly zero, i.e., X is singular, meaning
cannot be anything like that of a free BB; it must include there is no sequence of events, however improbalgéori,
violent interactions with the matter and/or gravitational fieldsby which the paradox can be evaded.
of the wormhole which lead to the disintegration of the BB. ™ The alternative approach in DD involves attempting to
The effect of these interactions is presumably independent gfnplement the idea of parallel universes from science fiction
the sensitivity of the device used to detect the emerging BBsg that apparently contradictory events occur in different
Thus it would appear that the MSMWI implies that a mac-orlds; if successful, this would preserve the freedom to
roscopic object traversing a wormhofer other time ma-  jmpose initial conditions arbitrarily. This approach involves
chine must necessarily be broken up into microscopic contyo fundamental assumption@) In the presence of CTC's,
stituents, presumably elementary particles, which will appeaghe MwI as given in Ref[13] is correct, and not simply an
pointlike to the most sensitive detectors possible. Thisnterpretation of quantum mechanics which one is free to
would, e.g., be true in a theory is which stable wormhole carpdopt or not according to tast@,) In the presence of CTC's,
exist only if their radii are of the order of the Planck length. jndividual systems may not be in pure states but in mixed
Such a wormhole would not be “traversable” in the sense Ofstates characterized by a density matrix but not a wave func-
Ref. [1]. Hence the MSMWI does not provide a quantumtion This differs from Ref[13], in which physical systems,
theory which is free of paradoxes and which describesyith the measuring apparatus included, are taken to be in
wormholes, or similar objects involving CTC's, which are pyre states; we therefore refer to this as the MSMWI, where
traversable by macroscopic objects. MS stands for “mixed state.” Assumptiofii) has two cor-
ollaries. First, the concept of the density matrix is extended
to apply to single systems, in contrast to its usual application
to ensembles of systems that have been identically prepared.
We have considered two general approaches to resolvingecondly, the correct formulation of the continuity condition
the problem of apparent paradoxes in theories with CTC’sin the presence of a wormhole is not, in general, as a condi-
The first, illustrated by the simplified model presented intion on a wave function in the form of Eg7), but rather as
HDP, attempts to preserve the quantum-mechanical notion dhe condition (20) on the density matrix.
pure states and imposes an appropriate continuity condition, For the potentially paradoxical case in which the time
Eq. (7), across a wormhole or other time machine on theevolution operator appears to be such that an object emerges
wave function. When the time evolution operator is such thafrom the wormhole at=0 if and only if it does not enter the
there is a single self-consistent solution, E4).is equivalent wormhole att=T, the mechanism suggested in DD for re-
to the EKT consistency principle, and leads to a theorysolving the paradox can be successful if the object is micro-
which is both consistent and unitary. If there are multiplescopic. The different worlds of the MSMW!I correspond to
consistent solutions, all of which are physical, problems arisstates in which a macroscopic detector, which records
because the solution is not uniquely specified by requiringvhether the object emerged from the wormhole, has different
consistency. Hopefully these would be absent in a more conreadings, and are thus effectively decoupled. A microscopic
plete theory, which solves the uniqueness problem by proebject is able to appear intact &:0 in a different world
viding a procedure for selecting only one of the consistenfrom that in which it entered the wormhole because it
solutions as physical. emerges from the wormhole &t 0 before the measurement
However, it is possible to choose the Hamiltonian, in theleading to the branching of the worlds, has occurred.
HDP model, so that no self-consistent solution exists, thus If the object is macroscopic, however, it emerges from the
simulating the existence of initial conditionstat 0 leading  wormhole over a finite period of time. If this is greater than
to the formation of inconsistent causal loops as in the grandthe resolving time of the detector, the measurement, and the
father paradox. It seems likely that this is also true in morebranching into two or more decoherent states, will occur be-
realistic models. Then the attempt to enforce consistency bfore the object has emerged completely from the wormhole.
means of the continuity constraint in EQ) leads to a vio- The MSMW!I worlds then become decoupled, as in the con-
lation of unitarity in the operataX connecting the state vec- ventional MWI, and the subsequent segment or segments of
tors before and after the region of CTC'’s. The probabilitythe macroscopic object cannot emerge in the same world,
interpretation of quantum mechanics can be preserved onlye., in the quantum state with the same reading of the mac-
by renormalizing the final state or the operaxiThe renor-  roscopic detector, as the leading segment. The object is thus

VII. CONCLUSIONS
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split into a number of pieces in its passage through thevormhole can exist only if their dimensions are of the order

wormhole. A given observer, who sees a particular reading obf the Planck length.

the macroscopic detection device, will see only one of these The approach in DD therefore does not provide an expla-

pieces. nation of how paradoxical results can be evaded in a theory
The mechanism for eluding the grandfather paradox, prowith traversable wormholes, or other kinds of traversable

posed in DD, thus appears to imply that macroscopic object€CTC's where “traversable” is used in the sense of Ré&f.as

when traversing a wormhole, undergo interactions which areneaning traversable intact by macroscopic objects such as

sufficiently violent as to break up the object. The number ofbilliard balls, space ships, or human beings. Hence the only

pieces into which the object is observed to be broken desatisfactory candidate for a theory of such objects appears to

pends on the sensitivity of the detector, but becomes verpe one in which the necessity of renormalizing the future

large if the detector is sensitive enough to detect very smakcattering matrix constrains physics in the present in such a

fragments. One expects the interaction between the objegtay that conditions whosa priori probability seems very

and the wormhole should be independent of the sensitivity oémall, e.g., the presence of a banana peel, are in fact rendered

the device used to detect the emerging object. Hence oreertain.

concludes that assumptioit® and (ii), together with their

corollarles,_can be valld (_)nly if macroscopic objects passing ACKNOWLEDGMENTS
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