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Towards a formalism for mapping the spacetimes of massive compact objects:
Bumpy black holes and their orbits
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Astronomical observations have established that extremely compact, massive objects are common in the
Universe. It is generally accepted that these objects are, in all likelihood, black holes. As observational
technology has improved, it has become possible to test this hypothesis in ever greater detail. In particular, it
is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidate~using
x-ray timing or future gravitational-wave measurements! and to test whether they have the characteristics of
black hole orbits in general relativity. Past work has shown that, in principle, such measurements can be used
to map the spacetime of a massive compact object, testing in particular whether the object’s multipolar
structure satisfies the rather strict constraints imposed by the black hole hypothesis. Performing such a test in
practice requires that we be able to compare against objects with the ‘‘wrong’’ multipole structure. In this
paper, we present tools for constructing the spacetimes ofbumpy black holes: objects that arealmostblack
holes, but that have some multipoles with the wrong value. In this first analysis, we focus on objects with no
angular momentum. Generalization to bumpy Kerr black holes should be straightforward, albeit labor inten-
sive. Our construction has two particularly desirable properties. First, the spacetimes which we present are
good deep into the strong field of the object—we do not use a ‘‘larger ’’ expansion~except to make contact
with weak field intuition!. Second, our spacetimes reduce to the exact black hole spacetimes of general
relativity in a natural way, by dialing the ‘‘bumpiness’’ of the black hole to zero. We propose that bumpy black
holes can be used as the foundation for a null experiment: if black hole candidates are indeed the black holes
of general relativity, their bumpiness should be zero. By comparing the properties of orbits in a bumpy
spacetime with those measured from an astrophysical source, observations should be able to test this hypoth-
esis, stringently testing whether they are in fact the black holes of general relativity.

DOI: 10.1103/PhysRevD.69.124022 PACS number~s!: 04.25.Nx, 04.30.Db, 04.70.Bw
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I. INTRODUCTION

A. Motivation

Observations have now established that the cores
nearly all nearby galaxies contain a massive, compact, d
object @1,2#. These objects range in mass from seve
105M ( to several 109M ( . Extremely compact stellar mas
objects (;10M ( or so! exist and have been studied in th
galactic field~see, e.g., Ref.@3# for a review!. Evidence sug-
gests the existence of objects with intermediate mas
102M (2104M ( , filling the gap between the supermassi
and stellar mass objects~see, e.g., Ref.@4# for a review!. The
most generally accepted explanation is that these com
bodies are massive black holes.

Although this is the most generally accepted explanat
for these objects, it is not the only explanation. In so
cases, the massive dark objects seen in galaxy cores ca
explained quite well as dense clusters of stars or stellar r
nants. Such models are rapidly becoming disfavored in m
cases as our ability to study the central regions of gala
improves—many of these putative clusters would have to
so compact that they would not be gravitationally stable.
using ‘‘exotic’’ matter, it becomes possible to build objec
that are massive, compact, but stable. For example, by tu
the mass and self interaction of a massive scalar field@5,6#,
one can build an object that is consistent with much of
observational evidence available today. Indeed, the fields
describe some of these black hole alternatives are simila
some dark matter candidates, leading to the suggestion
0556-2821/2004/69~12!/124022~16!/$22.50 69 1240
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massive compact objects could be dark matter condens
rather than black holes.

Other recently proposed black hole alternatives are m
vated by a desire to avoid the information paradox—the l
of information through the black hole’s event horizon. Su
models find ways of eliminating the event horizon altogeth
for instance by replacing the event horizon with a hard s
face surrounding a ball of negative energy density~the
‘‘gravastar’’ model! @7#, or by postulating that spacetime i
self undergoes a phase transition in the presence of
strong gravitational fields@8#. If such objects exist in nature
they should have a deep, strong field structure very differ
from that of black holes@9#.

Astronomical measurements are now becoming able
probe into the very strong field of compact objects: opti
and infrared observations track stellar orbits at the core of
Milky Way, probing the spacetime of the presumed bla
hole at Sgr A*@11,12#; x-ray observations of quasi-periodi
oscillations from black hole candidates carry informati
about gas in the hole’s deep strong field@13#; and future
gravitational-wave observations may be able to track the
quence of orbits followed by a compact body that slow
spirals into a massive black hole~an ‘‘extreme mass ratio
binary,’’ in which the compact body is far less massive th
the black hole! @14,15#. The question of whether these ob
jects are truly the black holes of general relativity or a
described by some alternative model reduces to the ques
of how one may use measurements of orbital propertie
map the spacetime structure~i.e., the gravitational field! of
©2004 The American Physical Society22-1
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N. A. COLLINS AND S. A. HUGHES PHYSICAL REVIEW D69, 124022 ~2004!
these objects@16#. One thus needs to be able to relate t
properties of the measured orbits to the structure of the c
tral gravitating objects. A powerful way of doing this is by
multipole expansion of the compact object’s spacetime.

B. Multipoles of massive compact objects

In Newtonian theory, the gravitational field of a body
simply described by expanding the potential in spherical h
monics. The potentialF must satisfy

¹2F54pGr ~interior!,

50 ~exterior!. ~1.1!

In the exterior, the potential may be expanded as

F52G(
lm

M lmYlm

r l 11
. ~1.2!

By matching to an expansion of the interior solution a
enforcing Eq.~1.1!, we see that the coefficientsMlm are
mass multipole moments: numbers that describe the angul
distribution of matter inside the star. For simplicity, let
focus for a moment on axially symmetric objects, so th
only m50 matters. Then, for example,M005M , the total
mass of the object. By an appropriate choice of the cente
our coordinate system, we put the momentM1050. The first
interesting moment isM20, the quadrupole moment of th
object. This moment has the formQML2, whereL is the
object’s ‘‘size’’ ~e.g., its mean radius!, and the dimensionles
number Q describes the quadrupolar deformation. High
moments can likewise be interpreted asl-polar moments of
the mass distribution. Because these moments directly d
mine the gravitational potential outside of the gravitating o
ject, one can measure properties of its mass distribution
measuring the ‘‘shape’’ of the gravitational potential. Doin
so by studying the properties of satellite orbits is the scie
of geodesy.

Somewhat remarkably, such a description describes
exterior spacetimes of bodies in general relativity as w
For any gravitating body that is stationary, axisymmetric, a
reflection symmetric across the equator—encompas
black holes plus a wide variety of perturbations—the exte
spacetime is fully specified by a pair of multipole mome
families: the mass multipole momentMl , plus thecurrent
multipole momentSl @17,18#. ~Since we have restricted ou
selves to axisymmetry, we only considerm50. We hence-
forth drop this subscript.! The current momentSl does not
appear in Newtonian theory; it reflects the fact that mass
energy flows gravitate in general relativity. For example,
momentS1 is the magnitude of the spin angular momentu
of the body.

If the gravitating body is a Kerr black hole, then the va
ues of the mass and current moments are strongly restric
in units in whichG51, c51 ~which we use throughout thi
paper!, we must have@18#

Ml1 iSl5M ~ ia ! l . ~1.3!
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This equation tells us thatM05M , the total mass of the Ker
black hole, andS15aM, the magnitude of the black hole’
spin angular momentum in these units—precisely what
already expect. More interestingly,all higher moments are
completely determined by these two values. The exte
spacetime of a Kerr black hole is completely determined
its two lowest multipole moments—its mass and spin.

This is nothing more than a restatement of the ‘‘no ha
theorem@19–22#. By analogy with geodesy, this sugges
that one can test the no hair theorem by measuring or
near black holes. Using a spacetime that does not necess
assume the Kerr form of the moments, one could then de
mine Ml and Sl . If that object is in fact a black hole a
described by general relativity, the only free moments
those forl 50 and l 51. Once they have been determine
all higher moments are constrained via Eq.~1.3!. Such ‘‘ge-
odesy for black holes’’~which has been given the name
‘‘bothrodesy’’ and ‘‘holiodesy’’ @23#! would provide a strin-
gent test of the black hole nature of massive compact obj
in the universe.

The first detailed analysis of how one might be able
falsify the black hole nature of a massive compact object w
by Fintan Ryan@24#. Ryan showed how to build the spac
time of an object with arbitrary multipole structure, and th
analyzed the orbits of small bodies in that spacetim
~‘‘Small’’ means that these bodies do not themselves sign
cantly distort the spacetime, and so can be treated as fol
ing approximately geodesic trajectories.! His analysis dem-
onstrated that the accumulated orbital phase was sensitiv
these multipoles. Orbital phase~or some surrogate of this
phase! is directly observed by, for example, x-ray timin
~today! and gravitational-wave detectors~future!. One could
thus imagine using measurements of accumulated orb
phase to test the black hole nature of a massive com
object. Focusing on gravitational-wave measurements w
the planned space-based laser interferometer LISA@25#,
Ryan showed that enough multipoles should be measur
to easily falsify the black hole hypothesis. In many cas
enough multipoles would be measurable~up to l;5 or 6! to
stringently constrain the object’s black hole nature@26#.

Unfortunately, the multipole expansion used by Ryan do
not work very well in the deep strong fields of massive bla
holes, where one expects orbital phases to most stringe
test the black hole hypothesis.~In considering applications to
both x-ray timing and extreme mass ratio bina
gravitational-wave sources, it should be noted that the m
interesting radiation is generated at very small radii. X-r
emission from a disk comes from gas very close to the
nermost stable orbit; extreme mass ratio binaries spen
order one year spiraling through the hole’s very strong fi
before reaching the innermost orbits and plunging throu
the horizon.! Multipole moments essentially label differen
powers of a 1/r expansion. In the strong field of a black ho
~small r ), such an expansion is not going to be very use
@27#. The in-utility of this expansion is reflected by the e
tremely large number of terms that must be kept to desc
a spacetime with arbitrary multipole moments at small rad
~cf. Ref. @24#, Sec. III!.
2-2
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C. Bumpy black holes

We advocate a different approach. The reason for in
ducing a multipolar expansion is to describe a candid
spacetime differing from that of a black hole. If one acce
as a starting point the idea that the black hole hypoth
probablydescribes the massive compact objects in quest
then one just needs a spacetime to compare against tha
fersslightly from that of a black hole. Our goal is then to s
up a null experiment: we find a trial spacetime that exhib
slight deviations from the spacetime of a black hole. If t
black holes of nature are the black holes of general relativ
we will measure the deviation to be zero.

Past work on candidate objects to test the black hole
pothesis has focused primarily on boson and soliton s
@6,26#. Though of great intrinsic interest, there is no natu
way for a boson star spacetime to smoothly limit to t
spacetime of a black hole. If the massive compact objects
observe in the universe are in fact black holes, then t
based on the boson star model will not provide useful c
straints on orbit observations. As a ‘‘straw man’’ for th
black hole hypothesis, boson stars may unfortunately con
too much straw.

We advocate instead the use ofbumpy black holes: objects
that have a multipolar structure that is very nearly, but
quite, that of a black hole. As the name suggests, these
black holes with small bumps on them. If the universe’s o
served massive compact objects are in fact black holes,
we will find that the amplitude of these bumps is zero~within
measurement uncertainty!. A bumpy black hole should be
trial spacetime that behaves well deep into the strong fi
and that exhibits acontrollabledeviation from the Kerr so-
lution. In particular, these trial spacetimes should reduce
normal black holes when the deviation is set to zero—bum
black holes become normal black holes when the bumps
removed. This reduction to normal black holes is a cruc
element of using bumpy black holes as a basis for a
experiment.

A key piece of our guiding philosophy is that the notio
of multipoles is most useful in the weak field of an obje
One should not be too attached to multipole moments if
goal is an analysis that applies to strong gravitational fie
Of course, by taking the weak field~large r ) limit of the
spacetimes we construct, bumpy black holes are very
fully described using multipoles. Indeed, the goal of our d
tailed calculations will be to assemble a perturbation tha
purely quadrupolar when examined in the weak field. O
construction, however, works very well deep in the stro
field, which is crucial for applying these notions to observ
tions.

An important question to ask at this point ishow one can
build a stationary spacetime corresponding to a bumpy b
hole. A key portion of the proof of the no hair theorem de
onstrates that any deformation to a black hole will tend
radiate very quickly, removing the bump and pushing
back to the Kerr black hole solution@21,22#. Some mecha-
nism must exist to maintain the bump. This is likely to r
quire unphysical matter; the example which we describe
fact requires naked singularities. One might object tha
bumpy black hole spacetime is thus, by construction,
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physical. Our viewpoint is that the physicality of thes
spacetimes isirrelevant. Our goal in this analysis isnot to
build a spacetime which might conceivably exist in natu
Instead, we wish to build a black hole straw man with ju
the right amount of straw to probe the nature of mass
compact objects.

D. Overview of this paper

The goal of this paper is to present the bumpy black h
concept, to show how bumpy black hole spacetimes are g
erated, and to demonstrate that the magnitude of the bu
is encoded in the accumulated phase of the hole’s orbits.
focus upon axisymmetric distortions of black holes—even
axisymmetry, an incorrect moment is enough to falsify t
black hole hypothesis for a massive compact object.

We have argued that the language of multipoles is
useful for describing an object’s strong field orbits. To su
stantiate this argument, we review the multipole descript
of spacetimes and their orbits in Sec. II, summarizing the
results of Ryan@24#. Ryan’s formulas and the detailed de
scription of the spacetime in the multipole language sh
that, as we try to characterize the massive object’s str
field, the description becomes extremely complicated.
though it is possible in principle to use this description
develop tools for mapping spacetimes, it does not appea
be the best approach in practice.

We then begin our detailed presentation of bumpy bla
holes. In Sec. III, we show how to build a bumpy black ho
spacetime. The spacetime of a stationary, axisymmetric
ject is fully described by the Weyl metric@28#,

ds252e2cdt21e2g22c~dr21dz2!1e22cr2df2.
~1.4!

Our strategy is to pick an exact solutionc5c0(r,z), g
5g0(r,z) for which the line element~1.4! describes a black
hole. For this first analysis, we specialize our background
Schwarzschild black holes; generalization to Kerr bla
holes should be straightforward in principle~though it may
be somewhat involved algebraically!. We then use this exac
solution as a background against which to introduce a p
turbation, puttingc5c01c1 and requiringc1 /c0!1; a
similar perturbation is defined forg. The perturbations are
constrained by the requirement that they satisfy the vacu
Einstein equations, expanded to first order.

This formulation of the metric is particularly useful be
cause the functionc reduces to the Newtonian gravitation
potential of the source in the weak field. We therefore cho
our perturbationc1 in such a manner that the weak-fie
perturbation can be thought of as changing the source’s m
tipoles as measured in the weak field. We then solve the
linearized Einstein equations in order to specify the pert
bation throughout the exterior spacetime of the bumpy bl
hole.

Before specifying our perturbations, we first examine t
properties of orbits in the bumpy hole’s equatorial~reflection
symmetry! plane ~Sec. IV!. Many useful quantities can b
computed in terms of the perturbationsc1 and g1—the or-
bit’s energyE, angular momentumL, and the location of the
2-3
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last stable orbit~a separatrix in orbital phase space dividi
dynamically stable and unstable orbits!. We also write down
an equation describing the differential advance of the orb
periapsis. The periapsis shift arises from a mismatch betw
the radial and azimuthal orbital frequencies; as such, it
be a sensitive probe of the spacetime. Deviations of this s
from the canonical Schwarzschild value encode the bl
hole’s bumpiness.

We choose particular perturbations in Secs. V and VI
very simple and useful one is that of a point mass near
black hole. We build a bumpy black hole in Sec. V by pla
ing a pair of point masses with massm/2 each near the hole’
‘‘north’’ and ‘‘south’’ poles. The same system was used
Suen, Price, and Redmount~SPR! @29# to set up an analysis
of a black hole with a deformed event horizon. Our analy
is similar to that of SPR, though we do not focus on t
region of spacetime near the horizon. We build a second t
of bumpy black hole in Sec. VI by placing a ring of massm
about the hole’s equator.

As the analysis of Secs. V and VI shows, both the po
point mass and the equatorial ring do indeed change the
ric’s quadrupole moment. We demonstrate this by calcula
weak-field periapsis precession in these spacetimes
showing that the shift contains a term which is exactly w
we expect for weak-field quadrupolar distortions~computed
in Appendix A!. Unfortunately, these perturbations al
change the metric’smonopolemoment~i.e., its mass!. Fortu-
nately, we can build a purely quadrupolar distortion by co
bining negativemass polar points with a positive mass equ
torial ring, or vice versa.~Bearing in mind that our goal is to
build trial spacetimes for testing the black hole hypothe
the unphysicality of a negative perturbing mass is not a c
cern.! In Sec. VII A, we show that the weak-field periaps
precession with this combined mass distribution is ident
to that of a Schwarzschild black hole plus a quadrupo
deformation. The points1 ring perturbation to a Schwarz
schild black hole thus perfectly matches our requirements
a bumpy black hole. We investigate the strong-field chara
of this spacetime in Sec. VII B, showing in particular that t
hole’s bumpiness is usefully encoded in the strong-field
riapsis precession.

Concluding discussion is given in Sec. VIII. In particula
we outline further work that should be done to connect
bumpy black hole concept to future astrophysical obser
tions. Chief among the tasks needed is a generalizatio
Kerr black hole backgrounds; some steps in this direction
outlined in Appendix B.

II. METRICS AND MULTIPOLE MOMENTS:
AN OVERVIEW

As stated in the Introduction, one can build a spaceti
by specifying a set of mass and current multipole mome
(Ml ,Sl). In actuality, one builds a spacetime from a set
coefficientsajk which determine orbital characteristics; th
multipole moments can then be extracted from these co
cients. In this section we briefly describe the details of t
analysis, and discuss why we believe this is not the m
effective way to map black hole spacetimes in practi
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Much of our presentation is essentially a synopsis of Fin
Ryan’s calculation; see Ref.@24# for detailed discussion.

To begin, we must pick a spacetime sufficiently genera
encompass the stationary, axisymmetric sources we wis
describe. Ryan begins with the line element

ds252F~dt2vdf!21
1

F
@e2g~dr21dz2!1r2df2#.

~2.1!

The functionsF, g, andv depend onr and uzu. The radial
coordinater labels displacement from the source’s symme
axis; z labels displacement above or below the sourc
‘‘equatorial’’ plane. By construction, the spacetime is statio
ary and axisymmetric (F, g, andv do not depend ont or
f), and is reflection symmetric about the equatorial pla
~dependence onuzu).

For an axial and reflection symmetric spacetime, the m
ric functionsF, g, andv can be generated from theErnst

potentialE. This function and a related complex functionj̃
are defined via

E5F1 iC5
Ar21z22 j̃

Ar21z21 j̃
, ~2.2!

where the functionC is related tov by

v~r,z!52E
r

`S r8

F2

]C

]z D dr8. ~2.3!

The quantity in parentheses under the integral is evaluate
constantz. The functiong can be determined onceF andv
are known: the vacuum Einstein equations tell us

]g

]r
5

1

4

r

F2 F S ]F

]r D 2

2S ]F

]z D 2G2
1

4

F2

r F S ]v

]r D 2

2S ]v

]z D 2G ,
~2.4!

]g

]z
5

1

2

r

F2

]F

]r

]F

]z
2

1

2

F2

r

]v

]r

]v

]z
. ~2.5!

Then, g can be found at any point in spacetime with
appropriate line integral. See Ref.@30#, pp. 165–167 for fur-
ther discussion. For our purposes, the main thing to not
that knowledge ofE—or equivalentlyj̃—specifies theentire
spacetime metric.

The functionj̃ can be expanded as

j̃5 (
j ,k50

`

ajk

r j zk

~r21z2! j 1k
. ~2.6!

The indexj is strictly even. Ifk is even,ajk is real; if k is
odd,ajk is imaginary. From these coefficients, it is relative
straightforward to extract the spacetime’s multipole mome
(Ml ,Sl) using an algorithm developed by Fodor, Hoens
laers, and Perje´s ~FHP! @31#. By a recursive procedure tha
involves repeatedly differentiatingj̃ and gathering terms
2-4
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TOWARDS A FORMALISM FOR MAPPING THE . . . PHYSICAL REVIEW D 69, 124022 ~2004!
FHP show thatajk can be written in terms of the mass an
current moments@see Ref.@24#, Eqs. ~35!–~41!#. For ex-
ample, one can show that

a0l5Ml1 iSl1LOM, ~2.7!

al05~21! l /2
~ l 21!!!

l !!
Ml1LOM, ~2.8!

al 21,15 i ~21!( l 21)/2
l !!

~ l 21!!!
Sl1LOM. ~2.9!

‘‘LOM’’ is an abbreviation for ‘‘lower order moments:’’ a
complicated~but known! sum of various combinations ofM j
andSk with j , l andk, l .

Ryan @24# uses the coefficientsajk and their relationship
to (Ml ,Sl) as the basis for his spacetime mapping proced
Since the spacetime is fully determined byajk , it follows
that its orbits are likewise determined. An orbit in the spa
time ~2.1! is governed by three orbital frequencies:Vf , re-
lated to the time to cover 2p radians of azimuth;Vr , char-
acterizing oscillations in ther coordinate; andVz , for
oscillations in thez coordinate. Ryan shows~via a power law
expansion using orbital speed as an expansion param!
how these frequencies depend onajk . Measurement of
(Vf ,Vr ,Vz) ~or accumulated phases associated with th
frequencies! can therefore be used to measureajk . Ryan then
inserts the measured values ofajk into the FHP algorithm,
determining the multipole moments of the spacetime. Us
this procedure, Ryan showed that future gravitational-w
measurements with LISA should be able to determ
enough moments to strongly constrain the black hole na
of massive compact objects@26#.

Though sufficient to prove the principle, we believe th
this procedure is not useful in practice for mapping t
spacetimes of objects believed to be black holes. Referrin
Eq. ~2.6!, we see that the coefficientsajk are essentially la-
bels for an expansion in inverse distance. For strong fi
orbits (r,z;a few3M ), a large number of these coefficien
must be kept in order to model the spacetime with suffici
accuracy. One might hope that the coefficientsajk become
small for largej and k, making it possible to truncate th
expansion ofj̃. This is not the case: because of the coupl
to lower order moments@cf. Eqs.~2.7!–~2.9!#, these coeffi-
cients generically remain large even if the body has onl
small number of non-zero multipole moments.

In this language, the description of the spacetime a
hence of its orbits becomes extremely complicated in
strong field. This makes testing whether a spacetime is c
to that of a black hole very difficult. Naively, one migh
imagine requiring that a spacetime have the multipole m
ment structure

Ml1 iSl5M ~ ia ! l1dMl1 idSl , ~2.10!

and then developing a formalism similar to that describ
here to place observational limits on the deviatio
(dMl ,dSl). ~Indeed, this how we originally conceived o
this analysis.! One quickly discovers that the algebraic com
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plexity associated with this approach is immense. Though
doubt possible in principle, a multipolar prescription like E
~2.10! does not easily translate into apractical scheme for
constraining the properties of massive compact objects.

The lesson appears to be that multipoles, though conc
tually clean and offering a beautiful description of weak-fie
gravity, simply are not the best tools in the strong field. T
should not be surprising in a nonlinear theory like gene
relativity: since multipoles are basically labels in an inver
distance expansion~as we have repeatedly emphasized!, a
description that is clean in the weak field can easily turn i
a mess when the nonlinearities are important.

III. BUILDING THE SPACETIME OF A BUMPY
BLACK HOLE

Keeping in mind that the goal is just to build some ca
didate spacetime to be used as a straw man in testing
black hole hypothesis, we advocate a different approach.
goal is to develop a family of spacetimes corresponding
stationary perturbed black holes: bumpy black holes. Th
spacetimes include black holes as a subset—we simply
the magnitude of the perturbation to zero. We construct th
spacetimes in a manner that makes an exploration of
strong-field properties simple.

We will focus on axisymmetric spacetimes, in keepi
with our goal of analyzing axisymmetric deformations
Kerr black holes. For this first analysis, we will further sp
cialize to deformations of Schwarzschild black holes. S
tionary, axisymmetric deformations of Schwarzschild bla
holes were in fact studied by SPR@29# with the goal of
characterizing distortions to the event horizon.~Their analy-
sis was a part of the ‘‘Membrane Paradigm’’; see Ref.@32#.!
Their calculation makes an ideal starting point for our ana
sis; the following discussion closely follows Ref.@29#, Sec.
III A.

As mentioned in the Introduction, the spacetimes we c
sider are described by the Weyl metric@28#:

ds252e2cdt21e2g22c~dr21dz2!1e22cr2df2.
~3.1!

The vacuum Einstein equations for this line element red
to

]2c

]r2
1

1

r

]c

]r
1

]2c

]z2
50, ~3.2!

]g

]r
5rF S ]c

]r D 2

2S ]c

]z D 2G , ~3.3!

]g

]z
52r

]c

]r

]c

]z
. ~3.4!

Equations~3.3! and~3.4! are identical to Eqs.~2.4! and~2.5!
with v50 andF5e2c. Note that Eq.~3.2! implies c is a
2-5
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harmonic function in a fictitious Euclidean space with cyli
drical coordinatesr, z, andf @29,30#.

Following SPR@29#, we observe that the functionc is the
Newtonian potential far from a source. A reasonable way
perturb c is by adding potential terms that correspond
particular mass distributions perturbing the backgrou
black hole; distributions that change the weak-field multip
structure of the hole are particularly interesting.@Note the
linearity of Eq. ~3.2!—exact solutions for c can be con-
structed by superposition.# We only require that the massm
of the perturbations be small compared to the massM of the
black hole, allowing us to expandc andg to first order.

Notice that, with our form of the perturbation, we expa
in powers ofm/M , rather than 1/r ~wherer is some measure
of distance from the source!. The approximation we intro-
duce should thus be well-behaved for anyr, including into
the strong field. Notice also that, because Eqs.~3.2!–~3.4!
come from thevacuumEinstein equations, our metric wil
only hold where there is no matter. To perturb the ba
ground black hole, we will add matter in the form of poi
particles and one-dimensional rings. The metric will the
fore not apply at the points containing that matter; it will
fact be singular at those locations. As long as we only exa
ine regions of spacetime external to these perturbing sour
this singular behavior does not pose any difficulty.

For describing black holes, it is convenient to use prol
spheroidal coordinatesu andv:

r5M sinhu sinv, ~3.5!

z5M coshu cosv. ~3.6!

The coordinatevP@0,p# is a polar angle;uP@0,̀ ) is effec-
tively a radial coordinate. These coordinates cover the en
exteriorSchwarzschild spacetime: the coordinateu50 maps
to the event horizon,r 52M @cf. Eq. ~3.15! below#. In the
Weyl coordinates (r,z), this corresponds to a cylindrical ro
at r50 running fromz52M to z5M .

The line element~3.1! becomes

ds252e2cdt21M2e2g22c~sinh2u1sin2v !~du21dv2!

1M2e22csinh2u sin2v df2. ~3.7!

We now putc5c01c1 , g5g01g1. We take the perturba
tions (c1 ,g1) to be small compared to (c0 ,g0):

c1;
m

M
c0 , ~3.8!

and likewise forg. The Einstein equations constrainingg,
Eqs.~3.3! and ~3.4!, become

]g1

]u
52r2cotvS ]c0

]r

]c1

]z
1

]c0

]z

]c1

]r D
12rz tanvS ]c0

]r

]c1

]r
2

]c0

]z

]c1

]z D , ~3.9!
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]g1

]v
52r2cotvS ]c0

]r

]c1

]r
2

]c0

]z

]c1

]z D
12rz tanvS ]c0

]r

]c1

]z
1

]c0

]z

]c1

]r D . ~3.10!

We have only kept terms to leading order in the perturbati
It turns out that these two equations willoverdeterminethe
solution ~cf. @30#, p. 167 for discussion!. For our purposes
this means that we need integrate only one of them to de
mine g1 ~up to a constant of integration!. We will use Eq.
~3.10!; the solution we find also satisfies Eq.~3.9!, as is
easily verified by direct substitution.

At this point, we specialize our background to th
Schwarzschild metric: we put@29#

c05 ln tanhu/2, ~3.11!

g052
1

2
lnS 11

sin2v

sinh2u
D . ~3.12!

Using Eqs.~3.11! and ~3.12! and changing all instances o
r,z to u,v as appropriate, Eq.~3.10! becomes

]g1

]v
5

2@ tanv~]c1 /]v !2tanhu~]c1 /]u!#

sinhu~cothu tanv1tanhu cotv !
. ~3.13!

For completeness, the equation for]g1 /]u becomes

]g1

]u
5

2@cotv~]c1 /]u!1tanhu~]c1 /]v !#

sinhu~cothu tanv1tanhu cotv !
; ~3.14!

as already discussed, we will only focus on Eq.~3.13!.
To solve for g1, we will first imposea particularc1,

taking advantage of the fact thatc1 can be thought of as a
perturbation to the distant, Newtonian gravitational field
the black hole. We then integrate]g1 /]v with respect tov to
find g1(u,v), being careful to choose an appropriate integ
tion constant by demanding that the perturbation vanish
from the black hole. Theg1(u,v) we find then automatically
satisfies Eq.~3.9! or ~3.14!.

In preparation for these calculations, it is useful to put t
metric into Schwarzschild-like form. Plugging Eqs.~3.11!
and ~3.12! into Eq. ~3.7!, and making the coordinate trans
formation @29#

r 52M cosh2u/2, u5v ~3.15!

yields

ds252e2c1S 12
2M

r Ddt21e2g122c1S 12
2M

r D 21

dr2

1r 2e2g122c1du21r 2sin2ue22c1df2. ~3.16!

Note that the transformation~3.15! implies
2-6
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r5r sinuA12
2M

r
, ~3.17!

z5~r 2M !cosu. ~3.18!

These relations can be particularly helpful when describ
the perturbations in Schwarzschild coordinates.

Although the line element~3.16! is technically exact, in
the following analysis we will only work to first order in th
perturbation. We thus should really expande2c1.112c1,
and likewise forg1. For compactness of notation, we lea
these perturbations in the exponentials, with the caveat
they must be expanded to first order in all calculations.

Before examining some interesting perturbations, it
useful to carefully study orbits in this general perturb
spacetime. Several results can be found in terms ofc1 and
g1, which facilitates later analysis. In the next section,
will examine the properties of equatorial orbits in this metr
and calculate the rate of periapse precession.

IV. EQUATORIAL ORBITS OF BUMPY BLACK HOLES

In this section, we study, as much as is possible, pro
ties of bumpy black hole orbits that do not require specify
the perturbation. It is easy to find the geodesics in the eq
torial plane (u5p/2); for this first analysis, we will focus on
this simple case. It is not, in fact, difficult to generalize t
equations of motion to orbits beyond the equatorial plane
solve these equations, however, appears challenging:
equations forr andu do not appear to separate in general~as
they do, for example, in the Kerr case!. We discuss this issue
further in Sec. VIII.

As discussed in the Introduction, our goal is to understa
how black hole bumpiness is imprinted upon measura
quantities—in particular, accumulated phases related to
monics of the orbital frequencies. A simple~and historically
important! effect is the shift of an orbit’s periapsis. This sh
is related to the mismatch between ther andf frequencies.
In the weak-field limit, it describes perihelion precessio
well-known from studies of planetary orbits in our own so
system. In this section, we will derive a differential formu
for the periapsis shift.

We begin by writing down a Lagrangian for orbiting bo
ies in this spacetime: putL5gabẋ

aẋb ~where overdot de-
notesd/dt, with t proper time along an orbit!. Note that
L521. Since our focus here is equatorial orbits, we furth
put u5p/2 and u̇50. ~Thanks to the reflection symmetry
we are guaranteed that an equatorial trajectory remains e
torial.! The result is

L52e2c1S 12
2M

r D ṫ21e2g122c1S 12
2M

r D 21

ṙ 2

1e22c1r 2ḟ2. ~4.1!

Varying L with respect tot yields

d

dt Fe2c1S 12
2M

r D ṫ G50, ~4.2!
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leading us to identify the orbital energy per unit rest massm

E5e2c1S 12
2M

r D ṫ ~4.3!

as a constant of motion. By varying with respect tof, we
likewise identify the orbital angular momentum orthogon
to the equatorial plane per unitm:

L5e22c1r 2ḟ. ~4.4!

An equation for the radial motion follows fromL521:

ṙ 25e22g1FE22e2c1S 12
2M

r D S 11
e2c1L2

r 2 D G . ~4.5!

It is easy to see that this reduces to the usual Schwarzsc
equation of motion forc15g150 @compare, e.g., Ref.@10#,
Eq. ~25.16a!#. For the calculations we will perform momen
tarily, it is useful to multiply this byr 3, defining

R~r !5r 3ṙ 25e22g1@~E22e2c1!r 3

12e2c1Mr 22e4c1L2r 12e4c1L2M #.

~4.6!

Using R(r ), it is straightforward to remap the constantsE
andL to parameters that directly characterize the orbit. It
helpful to reparametrizer,

r 5
p

11« cosx
. ~4.7!

As x oscillates from 0 top to 2p, the orbiting body moves
from periapsis,r p5p/(11«), to apoapsis,r a5p/(12«),
and back. In Newtonian gravity, this reparametrization fac
tates identifying the orbits as closed ellipses;p is the orbit’s
semi-latus rectum and« its eccentricity. This intuition re-
mains very useful in general relativity, though the ellipses
not close—the time forx to go from 0 to 2p is greater than
the time for the orbit to move through 2p radians of azimuth
f.

The periapse and apoapse radii are the orbit’s turn
points. By definition, this means thatṙ and henceR(r ) equal
zero at these points. This makes it possible to findE andL as
functions ofp and«: simultaneously solvingR(r p)50 and
R(r a)50 yields
2-7
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E~p,«!5e[c1(r p)1c1(r a)]A @~11«!2e2c1(r p)2~12«!2e2c1(r a)#@p224Mp14M2~12«2!#

p$e4c(r p)~11«!2@p22M ~11«!#2e4c(r a)~12«!2@p22M ~12«!#%
, ~4.8!

L~p,«!5pA e2c(r p)@p22M ~11«!#2e2c(r a)@p22M ~12«!#

e4c(r p)~11«!2@p22M ~11«!#2e4c(r a)~12«!2@p22M ~12«!#
. ~4.9!

For orbits that are circular («50), r p5r a , so the conditionsR(r p)50, R(r a)50 do not provide separate information. In th
case, we require]R/]r 50; this condition guarantees thatṙ remains zero. SolvingR50, ]R/]r 50 yields

E~p,«50!5ec1(p)AS 12
2M

p D F p22M2p~p22M !]c1 /]r

p23M22p~p22M !]c1 /]r G , ~4.10!

L~p,«50!5pe2c1(p)A M1p~p22M !]c1 /]r

p23M22p~p22M !]c1 /]r
. ~4.11!
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When the perturbationc1 is set to zero, these expressio
correctly reduce to formulas characterizingE and L for
Schwarzschild black holes:

E~p,«!5Ap224Mp14M2~12«2!

p@p2M ~31«2!#
~4.12!

5
122M /p

A123M /p
~«50!; ~4.13!

L~p,«!5pA M

p2M ~31«2!
~4.14!

5pA M

p23M
~«50!. ~4.15!

The functionR(r ) also determines the parameters of t
last stable orbit: solving the equation

]R

]r
50 ~4.16!

with E5E(p,«), L5L(p,«) determines a separatrixp(«)
such that, at fixed eccentricity«, orbits with p,p(«) are
dynamically unstable.~For circular orbits, we must solve
]2R/]r 250.! The result is rather messy, so we do n
present it explicitly. When the perturbation is turned off, t
separatrix is simply given byp5(612«)M .

We are now ready to derive a general formula for bum
black hole periapsis precession. First, note that, via Eq.~4.7!,
the rate at which the orbital radius changes with respect tx
is

dr

dx
5

p« sinx

~11« cosx!2
5

r 2« sinx

p
. ~4.17!

Combining Eqs.~4.4!, ~4.5!, and~4.17!, we find
12402
t

y

df

dx
5

df

dt

dt

dr

dr

dx
5e2c1[ r (x)]eg1[ r (x)]L~p,«!« sinxp21

3FE~p,«!22e2c1[ r (x)]F12
2M

r ~x!G
3F11

e2c1[ r (x)]L~p,«!2

r ~x!2 G G21/2

.

~4.18!

This equation expresses, in differential form, the amount
azimuth that accumulates per unitx. Integratingdf/dx over
0<x<2p gives the total accumulated azimuth in one fu
orbit. In Newtonian gravity, this number is 2p radians—
Newtonian orbits are closed ellipses. The periapsis pre
sion is the amount of ‘‘extra’’ azimuth that accumulates
one orbit:

Df5E
0

2p

dx
df

dx
22p. ~4.19!

Having derived about as many orbital properties as we ca
general, much of the rest of this paper will be devoted
integrating this equation with particular choices of the p
turbing functionsc1 andg1. We turn now to a calculation o
these perturbations and an exploration of their effects.

V. METRIC PERTURBATIONS I: POINT MASSES
AT THE POLES

In this and the following section, we calculate the firs
order metric perturbation in two special cases: a pair of po
masses at the poles~this section!, and a ring of mass abou
the equator~following section!. These two perturbations ar
particularly interesting because they produce a quadrup
distortion of the spacetime.

Point masses at the poles were analyzed by SPR in
@29#. Their particular focus was on the perturbation at or n
the hole’s event horizon; we generalize their result to find
perturbation throughout the exterior spacetime.
2-8
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We begin by choosing, in Weyl coordinates (t,r,z,f), the
c perturbation

c1
NP52

m/2

Ar21~z2b!2
. ~5.1!

As described previously, this choice has a simple interpr
tion: adding a point mass to the system changes the New
ian potential at infinity—c—by that of a point mass. Equa
tion ~5.1! describes a point with mass~as measured a
infinity! m/2 atz5b, near the ‘‘north’’ pole. The correspond
ing c1 for a perturbing mass near the ‘‘south’’ pole is

c1
SP52

m/2

Ar21~z1b!2
. ~5.2!

The completec perturbation is given by adding the contr
butions from the north and south poles.

Our choice forc1 has a curious property: it correspon
to a nonspherical naked singularity atr50, z56b ~the
Curzon solution@33#!. One might object that a spacetim
which includes such a singularity cannot be physical, si
naked singularities are presumed, by cosmic censorship
to exist in nature. Therefore, perhaps we should exclude s
spacetimes from consideration.

As we have repeatedly emphasized, given the goals of
analysis, the physicality of our trial spacetime is irreleva
We seek a family of spacetimes that we can compare w
those found in nature. In particular, we need a family
spacetimes that deviate controllably and only slightly fro
black holes. For the purposes of uncovering whether a sp
time is a black hole or not, it makes no difference wheth
the deviations come from physics we expect or not.
merely want to set limits on the extent of any deviations t
might exist.

Having specifiedc1, we turn to the computation ofg1.
Focus first on the perturbation at the north pole. Switching
the prolate, spheroidal coordinatesu andv, we rewrite

c1
NP52

m/2

@M2sinh2u sin2v1~b2M coshu cosv !2#1/2
.

~5.3!

Insert this into Eq.~3.13!:

]g1
NP

]v
5

mM ~b2M coshu cosv !sinv

@M2sinh2u sin2v1~b2M coshu cosv !2#3/2
,

5
m

M

~ b̂2coshu cosv !sinv

@sinh2u sin2v1~ b̂2coshu cosv !2#3/2
.

~5.4!

We have definedb̂5b/M .
We now integrate this with respect tov to computeg1

NP.
Several manipulations help. First, simplify the denominat
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sinh2u sin2v1~ b̂2coshu cosv !2

5sinh2u1b̂222b̂ coshu cosv1cos2v

5~cosv2b̂ coshu!21b̂22b̂2cosh2u1sinh2u

5~cosv2b̂ coshu!21~12b̂2!sinh2u. ~5.5!

Next, putx5cosv, sodx52sinvdv:

g1
NP5

m

ME ~2b̂1x coshu!dx

@~x2b̂ coshu!21~12b̂2!sinh2u#3/2
.

~5.6!

Let y5x2b̂ coshu; dy5dx ~for these purposesu is fixed!:

g1
NP5

m

ME ~ b̂ sinh2u1y coshu!dy

@y21~12b̂2!sinh2u#3/2

5
m

M F E y coshu dy

@y21~12b̂2!sinh2u#3/2

1E b̂ sinh2udy

@y21~12b̂2!sinh2u#3/2G . ~5.7!

The first of these integrals is

E y coshudy

@y21~12b̂2!sinh2u#3/2

52
coshu

@y21~12b̂2!sinh2u#1/2

52
coshu

@sinh2u sin2v1~ b̂2coshu cosv !#1/2
.

~5.8!

The second yields

E b̂ sinh2udy

@y21~12b̂2!sinh2u#3/2

5
yb̂ sinh2u

@~12b̂2!sinh2u#@y21~12b̂2!sinh2u#1/2

5
b̂

12b̂2

cosv2b̂ coshu

@sinh2u sin2v1~ b̂2coshu cosv !2#1/2
.

~5.9!

Restoring factors ofM, the complete integral is
2-9
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g1
NP

5
mM ~b cosv2M coshu!

~M22b2!@M2sinh2u sin2v1~b2M coshu cosv !2#1/2
.

~5.10!

In these integrals, we have neglected integration const
that must now be determined. We do so by requiring thatgNP

go to zero at large radius, i.e. asu→`. Our current form of
the solution has

g1
NP~u→`!52

mM

M22b2
. ~5.11!

This is the value that must be subtracted to guarantee
g1

NP is well behaved at large radius. We thus finally obtai

g1
NP5S mM

M22b2D
3

b cosv2M coshu

@M2sinh2u sin2v1~b2M coshu cosv !2#1/2

1
mM

M22b2
. ~5.12!

To account for the south pole perturbation, we just add
perturbation withb→2b. @Note that we donot add the
south perturbation with an overall minus sign, as is done
Ref. @29#. That sign choice only holds foru!1; see Ref.
@29#, discussion following Eq.~3.14!. Note that this has no
impact on our ability to study strong field orbits—the regi
u!1 corresponds to a region just barely outside the ev
horizon, well inside of the last stable orbit.# By direct sub-
stitution, one can verify that this solution forg1 satisfies Eq.
~3.9! as well.

The perturbed metric is now fully specified. For our pu
poses, it is very convenient to use Eq.~3.15! to convert to
Schwarzschild coordinates. Doing so and defining the fu
tion

D~r ,u,b!5~r 222Mr 1b21M2cos2u22br cosu

12bM cosu!1/2, ~5.13!

the complete perturbationsc1 andg1 are

c152
m

2D~r ,u,b!
2

m

2D~r ,u,2b!
, ~5.14!

g15
mM

M22b2 F S M1b cosu2r

D~r ,u,b! D
1S M2b cosu2r

D~r ,u,2b! D G1
2mM

M22b2
. ~5.15!
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These expressions hold for allr .2M . Note the Schwarz-
schild coordinate locations of the point masses arer 5b
1M , u50,p. We must chooseb.M in order for the per-
turbing masses to be in the hole’s exterior.

Combining Eqs.~4.8!, ~4.9!, ~4.18!, ~4.19!, ~5.14!, and
~5.15!, we can now calculate the periapse precession
equatorial orbits and the two-point-mass perturbation. N
merical results for the general, strong-field case will be d
cussed in Sec. VII B; here, we show the weak-field res
(p@M , p@b). This weak-field phase shift breaks natura
into 3 pieces:

Dfpoints5DfSchw~M1m!1Dfanom~m!1Dfprol~m,b!,

~5.16!

where

DfSchw~M1m!5
6p~M1m!

p
1

3p~M212Mm!

2p2
~181«2!,

~5.17!

Dfanom~m!52
pmM

p2
~112«2!, ~5.18!

Dfprol~m,b!52
3pmb2

Mp2
. ~5.19!

These three pieces each have a simple physical explana
The first,DfSchw is just the periapsis precession expected
a particle orbiting a Schwarzschild black hole with total ma
M1m ~to leading order inm, and to second order in 1/p).
The second,Dfanom, is an ‘‘anomalous’’ contribution to the
precession arising from the fact that our perturbation is n
spherical and has non-zero total mass. As we show later,
term can be eliminated by appropriately designing the p
turbing mass distribution.

The third piece,Dfprol , is the leading order contribution
to the precession that arises from a prolate, quadrupolar
tortion to the black hole. This term agrees exactly with
Newtonian calculation of periapse precession in the prese
of a prolate quadrupolar distortion~cf. Appendix A!.

VI. METRIC PERTURBATIONS II:
AN EQUATORIAL RING

We next examine perturbations due to a circular, equa
rial ring of massm about a black hole. Our procedure
essentially the same as that used in the two-point-mass
ample, though the form of the perturbing potential makes
calculation a bit more complicated. We choose f
c1 the potential of a ring with radiusr5b and total mass a
infinity m:

c1
ring52

m

2pE0

2p dj

@r21z21b222br cosj#1/2
. ~6.1!
2-10
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This potential can be re-expressed using the complete ell
integral of the 1st kind; it turns out to be more convenient
leave it as written here.

Inserting this into Eq.~3.13! and integrating yields

g1
ring5E

0

2p

djFC~j!2
f ~u,v,j!

g~u,v,j!h~u,v,j!G , ~6.2!

where

f ~u,v,j!5m coshu~b21M2cosh2u

2Mb sinhu sinv cosj!, ~6.3!

g~u,v,j!5p@~M21b2cos2j!cosh2u1b2sin2j#,

~6.4!

h~u,v,j!5~M2sinh2u sin2v1M2cosh2u cos2v1b2

22Mb sinhu sinv cosj!1/2. ~6.5!

The integration ‘‘constant’’C(j) is chosen, as in the two
point-mass case, to makeg1 vanish at large distances. It ha
the value

C~j!5
mM

p~M21b2cos2j!
. ~6.6!

To evaluate the periapsis precession, it is useful to have t
results in Schwarzschild coordinates. Using Eq.~3.15!, f, g,
andh become

f ~r ,u,j!5
m

M
~r 2M !@b21~r 2M !2

2bAr 222Mr sinu cosj#, ~6.7!

g~r ,u,j!5pF S 11
b2

M2
cos2j D ~r 2M !21b2sin2jG ,

~6.8!

h~r ,u,j!5@~r 222Mr !sin2u1~r 2M !2cos2u1b2

22bAr 222Mr sinu cosj#1/2. ~6.9!

The ring’s radius in Schwarzschild coordinates isr 5M
1AM21b2; any choiceb.0 will produce a ring in the
hole’s exterior.

Since the integration overj commutes with other opera
tions ~notably expanding for largep) it is straightforward to
combine Eqs.~4.8!, ~4.9!, ~4.18!, ~4.19!, ~6.1!, and ~6.2! to
compute the periapsis precession in this spacetime. We d
numerically in Sec. VII B; for now, we evaluate the wea
field precession (p@M , p@b):

Df ring5DfSchw~M1m!1Dfanom~m!1Dfobl~m,b!.

~6.10!
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The termsDfSchw(M1m) and Dfanom(m) are defined in
Eqs.~5.17! and ~5.18!; they are identical to the correspond
ing terms for the point mass perturbations. The term

Dfobl~m,b!51
3pmb2

2Mp2
~6.11!

gives the contribution to the precession due to anoblate
quadrupolar distortion to the black hole. As in the prola
case, this term agrees exactly with a Newtonian calcula
of periapse precession presented in Appendix A.

VII. METRIC PERTURBATIONS III: PURE QUADRUPOLE
PERTURBATION

A. Weak-field analysis

Each of our perturbations changed not only the quad
pole (l 52) structure of the spacetime, but the spacetim
total mass (l 50) as well. To construct a perturbation that
purely quadrupolar~at least in the weak field!, we take ad-
vantage of the linearity of the perturbed Einstein equation
superpose a ring of mass6m with a pair of points of mass
7m/2 each. A negative mass perturbation may seem st
ingly unphysical, but as discussed in Sec. III, our goal is
to build perturbations that are likely to exist in nature.~Given
the naked singularity interpretation, it is arguable that a ne
tive mass perturbation is no less physical than one of posi
mass.!

From now on, we will focus on this zero-mass perturb
tion. The weak field result periapse precession for this cas

Dfboth5DfSchw~M !1Dfquad~m,b!, ~7.1!

where the quadrupole contribution is

Dfquad~m,b!56
9pmb2

2Mp2
. ~7.2!

Notice that the ‘‘anomalous’’ contribution to the precessi
does not appear in this case. Making the perturbation h
zero mass apparently suffices to eliminate that term. W
remains is a periapsis precession term corresponding
purely quadrupolardeformation of the spacetime. We hav
succeeded in constructing a spacetime that isalmostthat of a
black hole, that is good deep into the strong field, but has
multipole moment—M2—with the ‘‘wrong’’ value.

B. Strong-field analysis

Having demonstrated that our calculations match up i
sensible way with Newtonian and relativistic calculations
periapse precession, we now show numerical calculations
the strong fields of bumpy black holes. In all of our figur
and discussion, our focus is on the precession inducedrela-
tive to periapsis precession for a normal black hole. To h
calibrate the effect that the bumpiness has, we show in Fi
the periapsis precessiondf ~the amount of azimuthf accu-
mulated in one orbit, minus 2p) in the strong field of a
2-11
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Schwarzschild black hole. Notice thatdf becomes quite
large in the strong field, corresponding to almost 2 ex
revolutions around the hole.

Figures 2 and 3 show the shiftDf associated with two
different choices of bumpiness. In both plots, we have
m/M50.01; since the Einstein equations and the equati
of motion all scale linearly withm, Df is likewise linear in

FIG. 1. Periapsis precession in the strong field of a Schw
schild black hole: the ‘‘extra’’ azimuth accumulated over a sing
orbit with parameters (p,«). The solid curve is for eccentricity«
50.7; the dashed one is for«50.1. As we go to the weak field,df
approaches zero—orbits approach closed ellipses. The degre
precession is large in the strong field: the limiting value;12 radi-
ans corresponds to almost 2 extra revolutions around the symm
axis.

FIG. 2. Periapsis precession in the strong field of a bumpy bl
hole: the ‘‘extra’’ azimuth accumulated due to the hole’s bumpin
as a function of (p,«). We have putm/M50.01 andb52.5M . By
the linearity of all relevant equations in mass, the degree of pre
sion scales proportional tom. The solid curve is for«50.7; the
dashed one is for«50.1. The dotted curve shows the weak-fie
prediction. Both strong-field results asymptotically approach
weak-field prediction for largep.
12402
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m. Thus, it is a simple matter to rescale to other masses.
examine strong-field precession for«50.7 and«50.1 in
these plots; we also compare these results to the weak-
prediction~7.2!.

Several features are evident. First, in both cases,
strong-field results asymptotically approach the weak-fi
formula for largep—an important sanity check. Interes
ingly, asb is increased from 1.5M to 2.5M , the weak-field
formula changes from overestimating the periapsis shift
underestimating it. This behavior may be due to deviations
our potential from that of a perfect quadrupole. Second
most orbits, the eccentricity has very little impact on th
shift, at least for the values we examine. This is not surp
ing; the bare Schwarzschild periapsis precession~Fig. 1! is
likewise fairly insensitive to the eccentricity. Finally, eve
into the strong field, the periapsis shift scales approxima
with b2 ~the weak-field prediction!. We can thus regard
mb2/M3 as a measurable, dimensionless ‘‘bumpiness par
eter’’ for the black hole.

Most interesting is the robustness with which the quad
polar bump is manifested in the periapsis result: the effec
quite pronounced in the strong field. Indeed, the weak-fi
prediction~7.2! underestimates the degree of precession
to the hole’s bumpiness by a factor;3 over much of the
strong field (;10 as we approach the last stable orbits!. Over
much of the strong field, the effect is large enough that,
observing over multiple orbital cycles, we should be able
set very interesting limits on the bumpiness of black h
candidates. For example, atp;20M , the periapsis shift per
orbit is roughly

Df.1023S mb2/M3

0.02 D . ~7.3!

z-

of

try

k
s

s-

e

FIG. 3. Periapsis precession in the strong field of a bumpy bl
hole: the ‘‘extra’’ azimuth accumulated due to the hole’s bumpin
as a function of (p,«). This plot is identical to Fig. 2 except that w
have putb51.5M .
2-12
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A bumpinessmb2/M3.0.02 should thus be easily measu
able after tracking roughly 1000 orbits~corresponding to
when the bump shifts the accumulated phase by abo
radian!. Conversely, tracking the phase forN orbital cycles at
this value of p should make it possible to constrain th
bumpiness to be

mb2

M3
&

20

N
. ~7.4!

Better limits can be obtained for orbits at smallerp.
Obviously, more detailed work is needed to carefully e

amine how well black hole bumpiness can be measured
variety of scenarios~akin to Ryan’s analysis of multipole
measurability by LISA, Ref.@26#!. But, these results sugge
that measurements which coherently follow orbital phase
such as gravitational-wave measurements and x-ray timin
should be able to placestringentconstraints on the bumpi
ness of black hole candidates. Bumpy black holes sho
thus be very useful tools in designing a formalism to map
strong field structure of black hole candidates in nature.

VIII. CONCLUSION

In this paper, we have laid the foundations for a null e
periment to test whether a massive compact object is a b
hole. The bumpy black hole spacetimes we construct di
only slightly from normal black hole spacetimes; and, t
difference is controlled by a simple adjustable paramete
the hole’s ‘‘bumpiness.’’ It should be possible to compare
properties of black hole candidates in nature with th
bumpy black hole spacetimes. If these objects are in fact
black holes of general relativity, measurements will sh
that the natural spacetimes have a bumpiness of zero.

Quite a bit more work is needed in order to make t
bumpy black hole concept useful in practice for astrophy
cal measurements:

Foremost is the need to generalize this analysis to bum
Kerr black holes—zero angular momentum is a highly un
alistic idealization. In Appendix B, we show how, by choo
ing c, g, and using an appropriate coordinate transform
tion, the Weyl metric~3.1! encompasses Kerr black holes~in
Boyer-Lindquist coordinates!. There should then be no se
vere difficulty perturbing this metric to build bumpy Ke
black holes, though the details are likely to be complicat

Probably next in importance is generalizing the orb
which we analyze to include inclination with respect
the hole’s equatorial plane. Besides the astrophys
motivation—we do not often expect orbits to be confined
a special plane—the inclusion of an extra degree of orb
freedom offers opportunity. Motions out of the plane a
characterized by oscillations with a frequencyVu which is
generically different from the frequenciesVf and V r dis-
cussed in this paper. These oscillations thus offer an a
tional ‘‘handle’’ by which deviations from the black hol
spacetime can be characterized.

As already mentioned in Sec. IV, the equations of mot
for inclined orbits of bumpy black holes do not appear
separate~as they do for normal Kerr black holes!. However,
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the fact that, by definition, bumpy black hole spacetimes
nearly the spacetimes of black holes suggests that the e
tions of motion mustnearly separate. In other words, th
degree to which theu motion couples to ther andf motion
must be small—no doubt controlled by a coupling factor th
is of orderm/M . It may be possible to take advantage of th
smallness to usefully describe inclined and eccentric bum
black hole orbits.

We have focused on perturbing mass distributions t
produce, in the weak field, a purely quadrupolar spacet
distortion. We chose to focus on this case because an in
rect quadrupole moment is sufficient to falsify the black ho
hypothesis. There is no reason why we could not go bey
this: by using rings out of the hole’s equatorial plane, o
could imagine building essentially any multipolar distrib
tion whatsoever. Indeed, the fact that the equation for
metric functionc in Weyl coordinates@Eq. ~3.2!# is simply
¹2c50 tells us that it is simple in principle to specify pe
turbations whose weak-field multipolar structure is co
pletely arbitrary: the perturbation

c15(
BlYl0

~r21z2!( l 11)/2
~8.1!

will work perfectly. The parameterBl is a generalizedl-polar
‘‘bumpiness.’’ With this ansatz to define our deviations, w
can build bumpy black holes with almost arbitrarily shap
bumps. This will make it possible to strongly constrain t
properties of black holes in nature.

As this paper was being completed, an analysis appe
on the gr-qc archive by Ashtekar et al.@35# of the multipole
moments of isolated horizons@36#. Although we have not
investigated this in any depth, it may be beneficial to purs
a connection between the bumpiness of a black hole and
multipole moments expressed in the language of Ref.@35#.

Finally, it will be necessary to understand what impact t
local environment may have on the bumpiness of a bl
hole candidate. Astrophysical black holes will be distorte
even if only slightly, by matter in their vicinity—for ex-
ample, accreting material, orbiting bodies, and the gala
potential in which they are embedded. The real universe
not clean and asymptotically flat! In thinking about actu
applications of this formalism, it will be important to unde
stand what level of ‘‘bumpiness’’ can be expected.

With these generalizations in hand, it should be poss
to begin examining detailed mechanisms by which orb
frequencies can be imprinted on astrophysical observab
For example, one can imagine analyzing accretion disk m
els to see how a spacetime’s bumpiness is imprinted
quasi-periodic oscillations in a source’s x-ray spectru
@13,37,38#. Another example is in gravitational-wave sc
ence. For these ideas to be useful for testing the natur
black hole candidates, we will need to model t
gravitational-wave emission and inspiral of small comp
bodies captured by bumpy black holes. This problem m
not be much more difficult than the corresponding probl
for normal Kerr black holes—because the wave amplitud
itself perturbatively small, the inspiral and wave generat
2-13
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should decouple~at least to first order! from the spacetime’s
bumps. We hope to address at least some of these issu
future work.
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APPENDIX A: PERIAPSE PRECESSION
IN NEWTONIAN THEORY

An elliptical orbit precesses even in Newtonian gravity
the orbit is about a body with a quadrupole moment. He
we calculate this precession, presenting results in a form
ful for making contact with this paper’s relativistic results

A body with a mass and a quadrupole moment has a N
tonian gravitational potential

F52
M

r
2

3

2

I abn
anb

r 3
. ~A1!

For further discussion, see Thorne’s voluminous treatise
multipole moments in general relativity@34#. The tensorIab
is the symmetric, trace-free quadrupole moment of the gr
tating source:

Iab5E d3rrS xaxb2
1

3
dabr

2D . ~A2!

The vectorna is a direction cosine. For notational simplicit
we putI abn

anb[Q.
A body in an equatorial orbit around this object obeys

simple equation of motion:

S dr

dt D
2

5E2F2
L2

2r 2

[
Rnewt~r !

r 3
, ~A3!

whereL is the component of orbital angular momentum p
pendicular to the equatorial plane. We are interested in
centric orbits, so we reparametrize in the usual way:

r 5
p

11« cosx
, ~A4!

which is equivalent to

u5v~11e cosx! ~A5!

with u51/r , v51/p. The turning points of an eccentric orb
are at apoapsis,ua5v(12«), and periapsis,up5v(11«).
Solving the equation of motion at both turning points
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Rnewt(ua)50, Rnewt(up)50—yields a solution for the en
ergy E and angular momentumL as functions ofv and«:

E5
1

2
~«221!Mv1

3

4
~«221!2Qv3, ~A6!

L25
M

v
1

3

2
~31«2!Qv. ~A7!

An orbit corresponds to moving through the rangex50 to
x52p. We want to find the amount of azimuthal anglef
that accumulates over that orbit; that number~minus 2p) is
the accumulated periapsis precession. First, use the a
results forE andL in the radial equation of motion:

S dr

dt D
2

5
1

2
«2v sin2x@2M13~«223!Qv226«Qv2cosx#.

~A8!

Next, usingr 51/@v(11« cosx)# we have

dr

dt
5r 2«v sinx

dx

dt
. ~A9!

We obtain

S dx

dt D
2

5
2M13~«223!Qv226«Qv2 cosx

2vr 4
. ~A10!

We leave ther 4 in the denominator to cancel another fact
that will appear shortly.

To connect this to the azimuthal anglef, we use the fact
thatL5r 2df/dt. Combining this with Eq.~A10!, we obtain
an equation for the differential periapsis advance:

S df

dx D 2

5S df

dt D
2S dx

dt D
22

5S L

r 2D 2F 2vr 4

2M13~«223!Qv226«Qv2 cosx
G

5
2M13~31«2!Qv2

2M13~«223!Qv226«Qv2cosx
. ~A11!

We now take the square root. We assume thatQv2

[Q/p2!M and expand inv. This amounts to a weak field
expansion. We find, to leading order inQv2/M ,

df

dx
511

3Qv2~31« cosx!

2M
. ~A12!

Integrating over an orbit yields

Df5E
0

2p

dx
df

dx
22p5

9pQv2

M
. ~A13!

We now computeQ for the cases examined in the tex
two point masses on the symmetry axis, and an equato
2-14
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ring. The direction cosines are easy to calculate; we are o
interested in orbits on the equatorial plane, sonz50. By
axisymmetry, all directions in the equatorial plane a
equivalent, so we choosenx51, ny50. Then,Q5Ixx .

For a point massm/2 at the north pole,

I ab
NP5

mb2

6
diag~21,21,2!; ~A14!

for a point mass at the south pole, we find the same re
The pair of point masses thus hasQ52mb2/3. Using thisQ
in Eq. ~A13! we find

Dfpoints52
3pmb2

p2M
. ~A15!

Repeating this exercise for the ring, we find

I ab
ring5

mb2

6
diag~1,1,22!, ~A16!

so Q5mb2/6, and

Df ring51
3pmb2

2p2M
. ~A17!

Notice that Dfpoints522Df ring. This follows from the
spherical harmonics that describe the ring@Y20(p/2)# and
the point masses@Y20(0)522Y20(p/2)#.

APPENDIX B: THE KERR METRIC
FROM THE WEYL METRIC

In this appendix, we lay out the coordinate transform
tions and the choices ofc andg needed to go from the Wey
metric to the Kerr metric in Boyer-Lindquist coordinate
Although only the uncharged version is astrophysically r
evant, we show the results for general chargeQ. This calcu-
lation shares much with the Newman-Janis algorit
@39–41#.

We begin with the Weyl metric in prolate spheroidal c
ordinates, Eq.~3.7!. We then choose

M coshu5r 2M1 iAa21Q2. ~B1!

Note thatu must be complex; the black hole parametersM,
a, andQ, as well as the radial coordinater are of course real
As we discuss further below, this implies a severe constr
on the valuesu may take in the complex plane.

It follows that

dr5M sinhudu,

M2cosh2u[M2ucoshuu2

5~r 2M !21a21Q2,

M2sinh2u5r 222Mr 1a21Q2. ~B2!

We also choosev5u. For notational convenience, define
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D5r 222Mr 1a21Q2,

S5r 21a2cos2u. ~B3!

Substituting into the metric~3.7!, we find

ds252e2cdt21e2g22cS D1M2sin2u

D Ddr2

1e2g22c~D1M2sin2u!du21e22cD sin2udf2.

~B4!

Next, choose

e2c5
D

S
,

e2g5
D

D1M2sin2u
, ~B5!

and put

dt5dt82a sin2udf8,

df5
~r 21a2!

S
df82

a

S
dt8. ~B6!

Dropping the primes ont andf, we see that the Weyl metric
reduces to the Kerr-Newman metric in Boyer-Lindquist c
ordinates:

ds252
D

S
~dt2a sin2udf!21

sin2u

S
@~r 21a2!df2adt#2

1
S

D
dr21Sdu2. ~B7!

Compare, for example Ref.@10#, Eq. ~33.2! and Ref.@30#,
Eq. ~12.3.1!.

In prolate spheroidal coordinates, the functionsc and g
are given by

e2c5
M2cosh2u

r 2~u!1a2cos2v
, ~B8!

e2g5
M2cosh2u

M2cosh2u1M2sin2v
, ~B9!

where

r ~u!5M ~coshu21!2 iAa21Q2. ~B10!
2-15
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The requirement thatr (u) be real implies a severe constrai
between the real and imaginary parts ofu: we must have
Im(M coshu)51iAa21Q2. Writing u5ur1 iui , we find

M sin~ui !sinh~ur !51Aa21Q2. ~B11!
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In other words,u cannot take just any value in the comple
plane, but must be confined to the trajectory defined by
~B11!.

Using these results, it should straightforward to genera
our calculations to describe bumpy Kerr black holes.
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