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Astronomical observations have established that extremely compact, massive objects are common in the
Universe. It is generally accepted that these objects are, in all likelihood, black holes. As observational
technology has improved, it has become possible to test this hypothesis in ever greater detail. In particular, it
is or will be possible to measure the properties of orbits deep in the strong field of a black hole candidagte
x-ray timing or future gravitational-wave measuremgmsd to test whether they have the characteristics of
black hole orbits in general relativity. Past work has shown that, in principle, such measurements can be used
to map the spacetime of a massive compact object, testing in particular whether the object's multipolar
structure satisfies the rather strict constraints imposed by the black hole hypothesis. Performing such a test in
practice requires that we be able to compare against objects with the “wrong” multipole structure. In this
paper, we present tools for constructing the spacetimdsunfpy black holesobjects that aralmostblack
holes, but that have some multipoles with the wrong value. In this first analysis, we focus on objects with no
angular momentum. Generalization to bumpy Kerr black holes should be straightforward, albeit labor inten-
sive. Our construction has two particularly desirable properties. First, the spacetimes which we present are
good deep into the strong field of the object—we do not use a “lafgexpansion (except to make contact
with weak field intuition. Second, our spacetimes reduce to the exact black hole spacetimes of general
relativity in a natural way, by dialing the “bumpiness” of the black hole to zero. We propose that bumpy black
holes can be used as the foundation for a null experiment: if black hole candidates are indeed the black holes
of general relativity, their bumpiness should be zero. By comparing the properties of orbits in a bumpy
spacetime with those measured from an astrophysical source, observations should be able to test this hypoth-
esis, stringently testing whether they are in fact the black holes of general relativity.
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[. INTRODUCTION massive compact objects could be dark matter condensates
A Motivation rather than black holes.

Other recently proposed black hole alternatives are moti-

Observations have now established that the cores ofated by a desire to avoid the information paradox—the loss
nearly all nearby galaxies contain a massive, compact, darsf information through the black hole’s event horizon. Such
object [1,2]. These objects range in mass from severaimodels find ways of eliminating the event horizon altogether,
10°M, to several 18M . Extremely compact stellar mass for instance by replacing the event horizon with a hard sur-
objects (-10M or so exist and have been studied in the face surrounding a ball of negative energy dendiiye
galactic field(see, e.g., Ref3] for a review. Evidence sug- “gravastar” mode) [7], or by postulating that spacetime it-
gests the existence of objects with intermediate masseself undergoes a phase transition in the presence of very
10°M,—10*M,, filling the gap between the supermassivestrong gravitational fieldg3]. If such objects exist in nature,
and stellar mass objectsee, e.g., Ref4] for a review. The  they should have a deep, strong field structure very different
most generally accepted explanation is that these compafiom that of black hole$9].
bodies are massive black holes. Astronomical measurements are now becoming able to

Although this is the most generally accepted explanatiorprobe into the very strong field of compact objects: optical
for these objects, it is not the only explanation. In someand infrared observations track stellar orbits at the core of the
cases, the massive dark objects seen in galaxy cores can kllky Way, probing the spacetime of the presumed black
explained quite well as dense clusters of stars or stellar rentiole at Sgr A*[11,12; x-ray observations of quasi-periodic
nants. Such models are rapidly becoming disfavored in mangscillations from black hole candidates carry information
cases as our ability to study the central regions of galaxieabout gas in the hole’'s deep strong fig¢l3]; and future
improves—many of these putative clusters would have to bgravitational-wave observations may be able to track the se-
so compact that they would not be gravitationally stable. Byquence of orbits followed by a compact body that slowly
using “exotic” matter, it becomes possible to build objects spirals into a massive black holan “extreme mass ratio
that are massive, compact, but stable. For example, by tuninginary,” in which the compact body is far less massive than
the mass and self interaction of a massive scalar fiele]l,  the black hol¢ [14,15. The question of whether these ob-
one can build an object that is consistent with much of thgects are truly the black holes of general relativity or are
observational evidence available today. Indeed, the fields thatescribed by some alternative model reduces to the question
describe some of these black hole alternatives are similar tof how one may use measurements of orbital properties to
some dark matter candidates, leading to the suggestion thatap the spacetime structutiee., the gravitational fieldof

0556-2821/2004/692)/12402216)/$22.50 69 124022-1 ©2004 The American Physical Society



N. A. COLLINS AND S. A. HUGHES PHYSICAL REVIEW D69, 124022 (2004

these object$16]. One thus needs to be able to relate theThis equation tells us thatl ;= M, the total mass of the Kerr
properties of the measured orbits to the structure of the cerbslack hole, ands;=aM, the magnitude of the black hole’s
tral gravitating objects. A powerful way of doing this is by a spin angular momentum in these units—precisely what we
multipole expansion of the compact object’s spacetime.  already expect. More interestinglg/l higher moments are
completely determined by these two values. The exterior
B. Multipoles of massive compact objects spacetime of a Kerr black hole is completely determined by

In Newtonian theory, the gravitational field of a body is ItS o lowest multipole moments—its mass and spin.
simply described by expanding the potential in spherical har- This is nothing more than a restatement of the “no hair

monics. The potentia must satisfy theorem[19-22. By analogy with geodesy, this suggests
that one can test the no hair theorem by measuring orbits
VZh=47Gp (interion), near black holes. Using a spacetime that does not necessarily
assume the Kerr form of the moments, one could then deter-
=0 (exteriop. (1.))  mine M, and S,. If that object is in fact a black hole as
described by general relativity, the only free moments are
In the exterior, the potential may be expanded as those forl=0 andl=1. Once they have been determined,
all higher moments are constrained via Ef.3). Such “ge-
o=—G3 MimYim 17 odesy for black holes(which has been given the names
I — (1.2 “bothrodesy” and “holiodesy”[23]) would provide a strin-

gent test of the black hole nature of massive compact objects

By matching to an expansion of the interior solution andin the universe. . _
enforcing Eq.(1.1), we see that the coefficientd,, are The first detailed analysis of how one might be able to
mass multipole momentsumbers that describe the angular falsify the black hole nature of a massive compact object was
distribution of matter inside the star. For simplicity, let us by Fintan Ryar{24]. Ryan showed how to build the space-
focus for a moment on axially symmetric objects, so thattime of an object with arbitrary multipole structure, and then
only m=0 matters. Then, for exampl®)y,,=M, the total analyzed the orbits of small bodies in that spacetime.
mass of the object. By an appropriate choice of the center of'Small” means that these bodies do not themselves signifi-
our coordinate system, we put the mombhf,=0. The first  cantly distort the spacetime, and so can be treated as follow-
interesting moment i$,y, the quadrupole moment of the ing approximately geodesic trajectorieslis analysis dem-
object. This moment has the for@ML?2, whereL is the onstrated that the accumulated orbital phase was sensitive to
object’s “size” (e.g., its mean radiysand the dimensionless these multipoles. Orbital phager some surrogate of this
number Q describes the quadrupolar deformation. Higherphase is directly observed by, for example, x-ray timing
moments can likewise be interpretedlgsolar moments of (today and gravitational-wave detectoffsiture). One could
the mass distribution. Because these moments directly detethus imagine using measurements of accumulated orbital
mine the gravitational potential outside of the gravitating ob-phase to test the black hole nature of a massive compact
ject, one can measure properties of its mass distribution bgbject. Focusing on gravitational-wave measurements with
measuring the “shape” of the gravitational potential. Doing the planned space-based laser interferometer L[5,
so by studying the properties of satellite orbits is the scienc®yan showed that enough multipoles should be measurable
of geodesy to easily falsify the black hole hypothesis. In many cases,

Somewhat remarkably, such a description describes thenough multipoles would be measuralilg tol ~5 or 6) to
exterior spacetimes of bodies in general relativity as wellstringently constrain the object’s black hole nat[26].
For any gravitating body that is stationary, axisymmetric, and Unfortunately, the multipole expansion used by Ryan does
reflection symmetric across the equator—encompassingot work very well in the deep strong fields of massive black
black holes plus a wide variety of perturbations—the exteriotholes, where one expects orbital phases to most stringently
spacetime is fully specified by a pair of multipole momenttest the black hole hypothesign considering applications to
families: the mass multipole momeM,, plus thecurrent  both x-ray timing and extreme mass ratio binary
multipole momentS, [17,18. (Since we have restricted our- gravitational-wave sources, it should be noted that the most
selves to axisymmetry, we only considai=0. We hence- interesting radiation is generated at very small radii. X-ray
forth drop this subscript.The current momen$, does not emission from a disk comes from gas very close to the in-
appear in Newtonian theory; it reflects the fact that mass andermost stable orbit; extreme mass ratio binaries spend of
energy flows gravitate in general relativity. For example, theorder one year spiraling through the hole’s very strong field
momentS; is the magnitude of the spin angular momentumbefore reaching the innermost orbits and plunging through
of the body. the horizon) Multipole moments essentially label different

If the gravitating body is a Kerr black hole, then the val- powers of a I/ expansion. In the strong field of a black hole
ues of the mass and current moments are strongly restricte¢smallr), such an expansion is not going to be very useful
in units in whichG=1, c=1 (which we use throughout this [27]. The in-utility of this expansion is reflected by the ex-

papej, we must havé18] tremely large number of terms that must be kept to describe
a spacetime with arbitrary multipole moments at small radius
M,+iS;=M(ia)". (1.9 (cf. Ref.[24], Sec. ll)).
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C. Bumpy black holes physical. Our viewpoint is that the physicality of these

We advocate a different approach. The reason for introSPacetimes isrelevant Our goal in this analysis isot to

ducing a multipolar expansion is to describe a candidat®ild @ spacetime which might conceivably exist in nature.
spacetime differing from that of a black hole. If one acceptdnStéad, we wish to build a black hole straw man with just
as a starting point the idea that the black hole hypothesi® right amount of straw to probe the nature of massive
probably describes the massive compact objects in questiorEOMPact objects.

then one just needs a spacetime to compare against that dif-

fersslightly from that of a black hole. Our goal is then to set D. Overview of this paper

up a null experiment: we find a trial spacetime that exhibits The goal of this paper is to present the bumpy black hole
S“ght deviations from the Spacetime of a black hole. If theconcept, to show how bumpy black hole Spacetimes are gen-
black holes of nature are the black holes of general relativityerated, and to demonstrate that the magnitude of the bumps
we will measure the deviation to be zero. is encoded in the accumulated phase of the hole’s orbits. We
Past work on candidate objects to test the black hole hyfocus upon axisymmetric distortions of black holes—even in
pothesis has focused primarily on boson and soliton stargxisymmetry, an incorrect moment is enough to falsify the
[6,26]. Though of great intrinsic interest, there is no naturalpjack hole hypothesis for a massive compact object.
way for a boson star spacetime to smoothly limit to the e have argued that the language of multipoles is not
spacetime of a black hole. If the massive compact objects W@seful for describing an object’s strong field orbits. To sub-
observe in the universe are in fact black holes, then teststantiate this argument, we review the multipole description
based on the boson star model will not provide useful conpf spacetimes and their orbits in Sec. Il, summarizing the key
straints on orbit observations. As a “straw man” for the regylts of Ryan24]. Ryan's formulas and the detailed de-
black hole hypothesis, boson stars may unfortunately contaigcription of the spacetime in the multipole language show
too much straw. . that, as we try to characterize the massive object’s strong
We advocate instead the usetnfmpy black holebjects  field, the description becomes extremely complicated. Al-
that have a multipolar structure that is very nearly, but nothough it is possible in principle to use this description to

quite, that of a black hole. As the name suggests, these agfevelop tools for mapping spacetimes, it does not appear to
black holes with small bumps on them. If the universe’s ob-he the best approach in practice.

served massive compact objects are in fact black holes, then we then begin our detailed presentation of bumpy black

we will find that the amplitude of these bumps is zesdthin  holes. In Sec. IlI, we show how to build a bumpy black hole
measurement uncertaintyA bumpy black hole should be a spacetime. The spacetime of a stationary, axisymmetric ob-

trial spacetime that behaves well deep into the strong fieldect is fully described by the Weyl metr[@8],
and that exhibits @ontrollable deviation from the Kerr so-

lution. In particular, these trial spacetimes should reduce to  ds’=—e??dt?+e??~2/(dp?+dZ?) + e~ 2"p%d .
normal black holes when the deviation is set to zero—bumpy (1.4
black holes become normal black holes when the bumps are
removed. This reduction to normal black holes is a crucialOur strategy is to pick an exact solutiaf= (p,2), ¥
element of using bumpy black holes as a basis for a nulF yo(p,z) for which the line elementl.4) describes a black
experiment. hole. For this first analysis, we specialize our background to
A key piece of our guiding philosophy is that the notion Schwarzschild black holes; generalization to Kerr black
of multipoles is most useful in the weak field of an object. holes should be straightforward in principléaough it may
One should not be too attached to multipole moments if théde somewhat involved algebraicallyVe then use this exact
goal is an analysis that applies to strong gravitational fieldssolution as a background against which to introduce a per-
Of course, by taking the weak fieldarge r) limit of the  turbation, puttingy= i+, and requiring, /4y<1; a
spacetimes we construct, bumpy black holes are very uséimilar perturbation is defined foy. The perturbations are
fully described using multipoles. Indeed, the goal of our de-constrained by the requirement that they satisfy the vacuum
tailed calculations will be to assemble a perturbation that igsinstein equations, expanded to first order.
purely quadrupolar when examined in the weak field. Our This formulation of the metric is particularly useful be-
construction, however, works very well deep in the strongcause the functiony reduces to the Newtonian gravitational
field, which is crucial for applying these notions to observa-potential of the source in the weak field. We therefore choose
tions. our perturbationy; in such a manner that the weak-field
An important question to ask at this pointiewone can  perturbation can be thought of as changing the source’s mul-
build a stationary spacetime corresponding to a bumpy blackpoles as measured in the weak fieliVe then solve the
hole. A key portion of the proof of the no hair theorem dem-linearized Einstein equations in order to specify the pertur-
onstrates that any deformation to a black hole will tend tobation throughout the exterior spacetime of the bumpy black
radiate very quickly, removing the bump and pushing ushole.
back to the Kerr black hole solutidi21,22. Some mecha- Before specifying our perturbations, we first examine the
nism must exist to maintain the bump. This is likely to re- properties of orbits in the bumpy hole’s equatofiaflection
quire unphysical matter; the example which we describe irsymmetry plane (Sec. IV). Many useful quantities can be
fact requires naked singularities. One might object that aomputed in terms of the perturbatiogig and y,—the or-
bumpy black hole spacetime is thus, by construction, unbit’'s energyE, angular momenturh, and the location of the
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last stable orbita separatrix in orbital phase space dividing Much of our presentation is essentially a synopsis of Fintan

dynamically stable and unstable orhitd/e also write down Ryan’s calculation; see Ref24] for detailed discussion.

an equation describing the differential advance of the orbit's To begin, we must pick a spacetime sufficiently general to

periapsis. The periapsis shift arises from a mismatch betweesncompass the stationary, axisymmetric sources we wish to
the radial and azimuthal orbital frequencies; as such, it cadescribe. Ryan begins with the line element

be a sensitive probe of the spacetime. Deviations of this shift L
Lrgg,stgirggir;]oezgél Schwarzschild value encode the black A= — F(dt— wdg)?+ E[eZV(dp2+d22)+p2d¢2].

We choose particular perturbations in Secs. V and VI. A (2.1
very simple and useful one is that of a point mass near the ) )
black hole. We build a bumpy black hole in Sec. V by plac- The functionsF, y, ande depend orp and|z|. The radial
ing a pair of point masses with mag#2 each near the hole’s co_ordlnatep Iabe_ls displacement from the source’s symmetry
“north” and “south” poles. The same system was used by aXiS; Z Iabels displacement al_)ove or below the_ sour_ce’s
Suen, Price, and Redmouf8PR) [29] to set up an analysis “equatonal’j plane. By construction, the spacetime is station-
of a black hole with a deformed event horizon. Our analysis'y and axisymmetricK, y, andw do not depend ot or
is similar to that of SPR, though we do not focus on the®), and is reflection symmetric about the equatorial plane
region of spacetime near the horizon. We build a second typ&lependence of).
of bumpy black hole in Sec. VI by p|acing a ring of mass For an aXial and reﬂection Symmetric Spacetime, the met-
about the hole’s equator. ric functionsF, y, andw can be generated from thHernst

As the analysis of Secs. V and VI shows, both the polapotential . This function and a related complex functign
point mass and the equatorial ring do indeed change the medre defined via
ric's quadrupole moment. We demonstrate this by calculating

weak-field periapsis precession in these spacetimes and EE 4w Vp?+22-¢ 2.2
. . . . . = | = —— =, .
showing that the shift contains a term which is exactly what 2+ 2+ E

we expect for weak-field quadrupolar distortioc®@mputed

in Appendix A). Unfortunately, these perturbations also \ynere the functiont is related tow by

change the metric’'monopolemomenti.e., its masp Fortu-

nately, we can build a purely quadrupolar distortion by com- = p' v

bining negativemass polar points with a positive mass equa- w(p,z)=— f ( ) p' (2.3

torial ring, or vice versa(Bearing in mind that our goal is to

build trial spacetimes for testing the black hole hypothesis

the unphysicality of a negative perturbing mass is not a con

cern) In Sec. VII A, we show that the weak-field periapsis ) : ) :

precession with this combined mass distribution is identicaP"® known: the vacuum Einstein equations tell us

to that of a Schwarzschild black hole plus a quadrupolar

deformation. The points- ring perturbation to a Schwarz- ‘9_7: Eﬁ[(f 2_(f)2 - a_w)z_(&_w)z

schild black hole thus perfectly matches our requirements for dp 4 F2[\ dp Jz 4 pl\dp Iz

a bumpy black hole. We investigate the strong-field character (2.9

of this spacetime in Sec. VII B, showing in particular that the

hole’s bumpiness is usefully encoded in the strong-field pe- 9y 1 p dF oF 1 F? dw dw

riapsis precession. 9z 2 E % 9z 2 ? % 9z° (2.5
Concluding discussion is given in Sec. VIII. In particular,

N\

The quantity in parentheses under the integral is evaluated at
constantz. The functiony can be determined ondeand w

1 F?

outlined in Appendix B. . .
spacetime metric.

The functionZ can be expanded as
Il. METRICS AND MULTIPOLE MOMENTS:
AN OVERVIEW ~ i plZ¥
As stated in the Introduction, one can build a spacetime ¢ j.k=0 ajk(p2+ )itk
by specifying a set of mass and current multipole moments
(M,,S). In actuality, one builds a spacetime from a set of The index| is strictly even. Ifk is even,a is real; ifk is
coefficientsa;, which determine orbital characteristics; the 0dd, a;i is imaginary. From these coefficients, it is relatively
multipole moments can then be extracted from these coeffistraightforward to extract the spacetime’s multipole moments
cients. In this section we briefly describe the details of this(M,S) using an algorithm developed by Fodor, Hoense-
analysis, and discuss why we believe this is not the mod@ers, and Perg(FHP) [31]. By a recursive procedure that
effective way to map black hole spacetimes in practiceinvolves repeatedly differentiating and gathering terms,

(2.6
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FHP show thag;, can be written in terms of the mass and plexity associated with this approach is immense. Though no
current momentgsee Ref.[24], Egs. (35—(41)]. For ex- doubt possible in principle, a multipolar prescription like Eq.

ample, one can show that (2.10 does not easily translate intopactical scheme for
) constraining the properties of massive compact objects.
ag =M, +iS+LOM, (2.7) The lesson appears to be that multipoles, though concep-
(-1 tually clean and offering a beautiful description of weak-field
ap=(—1)"2 | " M, +LOM, 2.9 gravity, simply are not the best tools in the strong field. This

1 should not be surprising in a nonlinear theory like general
relativity: since multipoles are basically labels in an inverse
[ distance expansiofas we have repeatedly emphasizea
msl +LOM. (2.9 description that is clean in the weak field can easily turn into

a mess when the nonlinearities are important.

“LOM” is an abbreviation for “lower order moments:” a
complica_tec(_but known sum of various combinations o4 IIl. BUILDING THE SPACETIME OF A BUMPY
and S, with j<I andk<l. - _ _ _ BLACK HOLE

Ryan[24] uses the coefficienta;, and their relationship
to (M,,S)) as the basis for his spacetime mapping procedure. Keeping in mind that the goal is just to build some can-
Since the spacetime is fully determined &y, it follows didate spacetime to be used as a straw man in testing the
that its orbits are likewise determined. An orbit in the spaceblack hole hypothesis, we advocate a different approach. Our
time (2.1) is governed by three orbital frequenciéd;,, re- ~ goal is to develop a family of spacetimes corresponding to
lated to the time to cover 2 radians of azimuth{),,, char-  Stationary perturbed black holes: bumpy black holes. These
acterizing oscillations in the coordinate; and(),, for ~ spacetimes include black holes as a subset—we simply set
oscillations in thez coordinate. Ryan showsia a power law the magnitude of the perturbation to zero. We construct these
expansion using orbital speed as an expansion parameteipacetimes in a manner that makes an exploration of its
how these frequencies depend ar,. Measurement of Strong-field properties simple. . _ .
(Q4.,9,,9,) (or accumulated phases associated with these We will focus on axisymmetric spacetimes, in keeping
frequenciescan therefore be used to measaje. Ryanthen  With our goal of analyzing axisymmetric deformations of
inserts the measured values ajf, into the FHP algorithm, Kerr black holes. For this first analy3|s,_we will further spe-
determining the muitipoie moments Of the Spacetime_ Usin§.|al|ze to qeformatlpns of SChWarZSCh"d black hO.IeS. Sta-
this procedure, Ryan showed that future gravitational-wavdionary, axisymmetric deformations of Schwarzschild black
measurements with LISA should be able to determindoles were in fact studied by SPR9] with the goal of
enough moments to strongly constrain the black hole naturgharacterizing distortions to the event horiz6fiheir analy-
of massive compact objecfge6]. sis was a part of the “Membrane Paradigm”; see R82].)

Though Sufficient to prove the principie7 we beiieve thatThe" calculation makes an ideal Starting pOint for our analy'
this procedure is not useful in practice for mapping thesis; the f0||OWiI’lg discussion Closely follows Réﬂg], Sec.
spacetimes of objects believed to be black holes. Referring thl A- _ _ _ _
Eq. (2.6), we see that the coefficients, are essentially la- As mentloneq in the Introduction, the spacetimes we con-
bels for an expansion in inverse distance. For strong fiel@ider are described by the Weyl metfi8]:
orbits (p,z~a fewx M), a large number of these coefficients
must be kept in order to model the spacetime with sufficient — ds?= —e??dt®+e??~2¥(dp?+dz?) + e ?"p?d .
accuracy. One might hope that the coefficieafs become (3.1
small for largej and k, making it possible to truncate the
expansion of. This is not the case: because of the couplingThe vacuum Einstein equations for this line element reduce
to lower order momentgcf. Egs.(2.7)—(2.9)], these coeffi- to
cients generically remain large even if the body has only a
small number of non-zero multipole moments.

a_,=i(—1)0" Dk

2 2
A

In this language, the description of the spacetime and =0, (3.2
hence of its orbits becomes extremely complicated in the ap? P Ip  97°
strong field. This makes testing whether a spacetime is close
to that of a black hole very difficult. Naively, one might Jy ap\2 (w2
imagine requiring that a spacetime have the multipole mo- —=pi(—) —(—) , (3.3
ment structure P ap 9z
M, +iS=M(ia)'+ oM, +i 35S, (2.10 Iy o o

and then developing a formalism similar to that described
here to place observational limits on the deviations
(6M,,8S)). (Indeed, this how we originally conceived of Equations3.3) and(3.4) are identical to Eq92.4) and(2.5)
this analysi9. One quickly discovers that the algebraic com-with w=0 andF=e?”. Note that Eq.(3.2) implies ¢ is a
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harmonic function in a fictitious Euclidean space with cylin-
drical coordinatep, z, and ¢ [29,30.
Following SPR29], we observe that the functiafis the

Newtonian potential far from a source. A reasonable way to

perturb ¢ is by adding potential terms that correspond to

PHYSICAL REVIEW D69, 124022 (2004

v, (awo Py I IYy
——=2p%coty| — —— — —— ——
1% dp dp Jz 0z
dipo dP1 I Yy
+ —_— —t——. .
2pztanu ap oz 3z op (3.10

particular mass distributions perturbing the background

black hole; distributions that change the weak-field multipol
structure of the hole are particularly interestifflote the
linearity of Eg. (3.2—exact solutions for¢ can be con-
structed by superpositiohWe only require that the mags
of the perturbations be small compared to the nidgssf the
black hole, allowing us to expand and vy to first order.
Notice that, with our form of the perturbation, we expand
in powers ofu/M, rather than 1/ (wherer is some measure
of distance from the sourteThe approximation we intro-
duce should thus be well-behaved for anyincluding into
the strong field. Notice also that, because E&s2)—(3.4)
come from thevacuumEinstein equations, our metric will

only hold where there is no matter. To perturb the back-

ground black hole, we will add matter in the form of point

particles and one-dimensional rings. The metric will there-

fore not apply at the points containing that matter; it will in

fact be singular at those locations. As long as we only exam
ine regions of spacetime external to these perturbing source

this singular behavior does not pose any difficulty.

For describing black holes, it is convenient to use prolate

spheroidal coordinatas anduv:
p=M sinhu sinv, (3.5
z=M coshu cosv. (3.6

The coordinate €[0,7] is a polar angleu e [0,») is effec-

®We have only kept terms to leading order in the perturbation.

It turns out that these two equations wilVerdeterminghe
solution (cf. [30], p. 167 for discussion For our purposes,
this means that we need integrate only one of them to deter-
mine vy, (up to a constant of integrationWe will use Eq.
(3.10; the solution we find also satisfies E(B.9), as is
easily verified by direct substitution.

At this point, we specialize our background to the
Schwarzschild metric: we pUi29]

Jo=Intanhu/2, (3.11
1I (1+ Sinzv) (312
= — — n . )
7T 2 sinffu

gsing Egs.(3.1) and (3.12 and changing all instances of
p,z to u,v as appropriate, Eq3.10 becomes
dy1  2[tanv(dyy/dv) —tanhu(dy /du) ]
9v  sinhu(cothu tanv + tanhu cotv)

(3.13

For completeness, the equation foy; /Ju becomes

dy1  2[cotv(dy/du)+tanhu(dy,/dv)] 31
‘gu  sinhu(cothu tanv + tanhu coty) (3.149

tively a radial coordinate. These coordinates cover the entire

exterior Schwarzschild spacetime: the coordinate0 maps
to the event horizon; =2M [cf. Eq. (3.15 below]. In the
Weyl coordinates,z), this corresponds to a cylindrical rod
at p=0 running fromz=—M to z=M.

The line element3.1) becomes

ds?=—e?’dt?+ M2e??~2¥(sinrfu+ sirfv ) (du?+ dv?)

+M?2e™?Ysinlfu sirfv d¢2. (3.7

We now puty= o+ i1, y=vyot+ y1. We take the perturba-
tions (#4,v1) to be small compared ta/, yo):

I~ 15 o, (39

and likewise fory. The Einstein equations constraining
Egs.(3.3) and(3.4), become
dp 0Jz Jdz dp )

2p2C0tv(
g 0 g 0

) , (3.9

12402

as already discussed, we will only focus on E8;13).

To solve for y,, we will first imposea particular i,
taking advantage of the fact thgt can be thought of as a
perturbation to the distant, Newtonian gravitational field of
the black hole. We then integrade/, / dv with respect tw to
find y,(u,v), being careful to choose an appropriate integra-
tion constant by demanding that the perturbation vanish far
from the black hole. The/;(u,v) we find then automatically
satisfies Eq(3.9) or (3.14).

In preparation for these calculations, it is useful to put this
metric into Schwarzschild-like form. Plugging Eq8.11)
and (3.12 into Eq. (3.7), and making the coordinate trans-
formation[29]

r=2M costfu/2, 6=v (3.15
yields
-1
ds?=—e?1| 1- M dt®+ eZVlz‘#l(l— ﬂ) dr?
r r
+r2e2717291d 6%+ r?sirf fe~ 2V1d 2. (3.16

Note that the transformatio8.15 implies
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oM leading us to identify the orbital energy per unit rest mass
p=rsing l_T’ (3.17

z=(r—M)cosé. (318) E:ezwl(l—ﬂ)t (43)
r

These relations can be particularly helpful when describing
the perturbations in Schwarzschild coordinates.
Although the line element3.16) is technically exact, in  as a constant of motion. By varying with respectdpo we

the following analysis we will only work to first order in the |ikewise identify the orbital angular momentum orthogonal
perturbation. We thus should really expaet1=1+2y,, to the equatorial plane per unit:

and likewise fory,. For compactness of notation, we leave

these perturbations in the exponentials, with the caveat that

they must be expanded to first order in all calculations. L=e 2124, (4.4)
Before examining some interesting perturbations, it is

useful to carefully study orbits in this general perturbed

spacetime. Several results can be found in termg-oand

v1, Which facilitates later analysis. In the next section, we

will examine the properties of equatorial orbits in this metric,

and calculate the rate of periapse precession.

An equation for the radial motion follows fromd=—1:

r2=e 2n 1+

E2—ez”’l( 1- @) 4.5

r2

ezm_z)

IV. EQUATORIAL ORBITS OF BUMPY BLACK HOLES

In this section, we study, as much as is possible, proper-

ties of bumpy black hole orbits that do not require specifying; js easy to see that this reduces to the usual Schwarzschild
the perturbation. It is easy to find the geodesics in the eq”ae'quation of motion fors, = y,=0 [compare, e.g., Ref10]

torial plane @= =/2); for this first analysis, we will focus on Eq. (25.164]. For the calculations we will perform momen-
this simple case. It is not, in fact, difficult to generalize thetarily it is useful to multiply this byr2, defining

equations of motion to orbits beyond the equatorial plane. To
solve these equations, however, appears challenging: the
equations for and # do not appear to separate in gendee R(r)=r32=e 2N (E2— V1)
they do, for example, in the Kerr cgs&Ve discuss this issue
further in Sec. VIII. +2e?"1Mr2—e*1L?r + 2e*Y1L2M .

As discussed in the Introduction, our goal is to understand
how black hole bumpiness is imprinted upon measurable (4.6
guantities—in particular, accumulated phases related to har-
monics of the orbital frequencies. A simpland historically ) L )
importan effect is the shift of an orbit's periapsis. This shift USiNg R(r), it is straightforward to remap the constaiis
is related to the mismatch between thand ¢ frequencies. andL to parameters t_hat directly characterize the orbit. It is
In the weak-field limit, it describes perihelion precession,N€lPful to reparametrize,
well-known from studies of planetary orbits in our own solar
system. In this section, we will derive a differential formula
for the periapsis shift. = P @7

We begin by writing down a Lagrangian for orbiting bod- 1+e¢ cosy
ies in this spacetime: puf=g,x?x® (where overdot de-
notesd/dr, with = proper time along an orhit Note that ] N
L£=—1. Since our focus here is equatorial orbits, we furtherAS x oscillates from O tor to 27, the orbiting body moves

put 6= /2 and 6=0. (Thanks to the reflection symmetry, from periapsis,r,=p/(1+e¢), t0 apoapsisy,=p/(1-e),

we are guaranteed that an equatorial trajectory remains equg':]d bf”‘Ck' I_n Nevxnoman_grawty, this repgrametnzaﬂon_f:';\C|I|-
torial) The result is tates identifying the orbits as closed ellipspsgs the orbit's

semi-latus rectum and its eccentricity. This intuition re-
. oM\ 1. mains very useful in general relativity, though the ellipses do
t2+ 62712"’1( 1- —) r? not close—the time foy to go from O to 27 is greater than

L=— ez'//l( 1— 2_M
' ' the time for the orbit to move throughm2radians of azimuth

+e 2242, 41 ¢ _ ) . _
The periapse and apoapse radii are the orbit's turning
Varying £ with respect ta yields points. By definition, this means thatand hencdr(r) equal
zero at these points. This makes it possible to ErehdL as
2y 2M .1 functions ofp ande: simultaneously solvindr(r,)=0 and
—|e "1 1- —|t|=0, (4.2 . P
R(r,) =0 yields
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[(1+¢)%e?"1() —(1—¢)2e?"1(d][p2—AMp+4M%(1—¢?)]

E(p,e)= elva(rp) +¢a(ra)l \/

Pl DL+ e/ p-2M(1+e)]-e I 1-e)lp-2M(1-2)]]
_ e [p—2M(1+e)]—e*I[p—2M(1-¢)]
L(p,S)—p \/e4¢(rp)(1+8)2[p_ZM(1+8)]_e4¢(ra)(1_S)Q[p_ZM(l_S)]- (4.9

For orbits that are circulare(=0), r,=r,, so the condition&(r,)=0, R(r,) =0 do not provide separate information. In this
case, we requiréR/Jr=0; this condition guarantees tharemains zero. SolvinR=0, JR/ar =0 yields

2M —2M—p(p—2M)dipq lor
E(p.o=0)=eh [ 1 2 || P=2M-Plp—2W) il | (4.10
p /[ p—3M—2p(p—2M)dy /or
M+p(p—2M)di/or
L(p,e=0)=pe (P \/ P(p—2M)dyy . (4.12)
p—3M—=2p(p—2M)dyq/or
|
When the perturbationy, is set to zero, these expressions d¢ de¢ dr dr ) _ .
correctly reduce to formulas characterizifg and L for dy drdrdy © alrlenlr Wl (p e)e sinyp
Schwarzschild black holes:
2M
p2—AMp+4AM%(1—&?) x| E(p,g)?—e*lrll 1— r(—)}
E(p,s)= > (4.12 X
plp—M(3+¢7)] ) ,11-12
ol 1s el (p,e)
1-2M/p r(x)? '
=——— (&=0); (4.13
V1-3M/p (4.18
This equation expresses, in differential form, the amount of
L(p,e)=p / M (4.14 azimuth that accumulates per ugit Integratingd ¢»/dy over
' p—M(3+¢?) ' 0= y=<2m gives the total accumulated azimuth in one full
orbit. In Newtonian gravity, this number is72 radians—
M Newtonian orbits are closed ellipses. The periapsis preces-
=p\/ mETY (e=0). (4.15 sion is the amount of “extra” azimuth that accumulates in
P one orbit:
The functionR(r) also determines the parameters of the 27 d¢
last stable orbit solving the equation Agp= fo an—ZW- (4.19
@ -0 (4.16 Having derived about as many orbital properties as we can in
ar ' general, much of the rest of this paper will be devoted to

integrating this equation with particular choices of the per-
with E=E(p,e), L=L(p,&) determines a separatrix(¢)  turbing functionsy; andy,;. We turn now to a calculation of
such that, at fixed eccentricity, orbits with p<p(e) are  these perturbations and an exploration of their effects.
dynamically unstable(For circular orbits, we must solve
9?RI9r?=0.) The result is rather messy, so we do not V. METRIC PERTURBATIONS I: POINT MASSES
present it explicitly. When the perturbation is turned off, the AT THE POLES
Se?/séa;rrlt)a( Soan:gzla):js IE:)egebrK/; ?;ezrmi)rx .formula for bumpy In this f.ind the follpwing section, we CaICL_"ate t_he firs;—
black hole periapsis precession. First, note that, vial &), order metric perturbation in two special cases: a pair of point

the rate at which the orbital radius changes with respegt to masses at the po_le{sh|s S‘?Ct'om’ and a ring of mass about
: the equatorfollowing sectior). These two perturbations are

IS particularly interesting because they produce a quadrupolar
d . 5 distortion of the spacetime.
ar__pesixy  _resinx 4.17) Point masses at the poles were analyzed by SPR in Ref.
dx (1+ecosy)? p [29]. Their particular focus was on the perturbation at or near
the hole’s event horizon; we generalize their result to find the
Combining Eqgs(4.4), (4.5), and(4.17), we find perturbation throughout the exterior spacetime.
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We begin by choosing, in Weyl coordinatesd,z, ¢), the

4 perturbati sink?u sinfv + (b— coshu cosv )2
perturbation

=sintPu+ b%— 2b coshu cosv + cofv

2
NP_ K - 2. R/2_R2 :
\ ——ﬁ. (5.1 = (cosv — b coshu)?+ b?—b?costfu+ sinttu
p°+(z—b)
= (cosv — b coshu)?+ (1—b?)sintfu. (5.5

As described previously, this choice has a simple interpreta-
tion: adding a point mass to the system changes the Newto
ian potential at infinity—/—~by that of a point mass. Equa-
tion (5.1) describes a point with mas&@s measured at

'Next, putx=cosv, sodx= —sinvdv:

infinity) u/2 atz=b, near the “north” pole. The correspond- N M (—b+x coshu)dx
ing ¢, for a perturbing mass near the “south” pole is 1M [(x—Bcoshu)2+(1—62)sinhzu]3’2'
(5.6
L (52 ) o
\/p2+ (z+b)? Let y=x—b coshu; dy=dx (for these purposes is fixed):
The completeys perturbation is given by adding the contri- A
butions from the north and south poles. YNP= Ll (bsmh%%:ycoshu)dy
Our choice fory, has a curious property: it corresponds MJ [y?+(1-b?)sinrfu]®?
to a nonspherical naked singularity at=0, z=*b (the
Curzon solution[33]). One might object that a spacetime
which includes such a singularity cannot be physical, since _® J' y coshu dy
naked singularities are presumed, by cosmic censorship, not M [y2+(1—62)sinhzu]3’2
to exist in nature. Therefore, perhaps we should exclude such A
spacetimes from consideration. b sinffudy
As we have repeatedly emphasized, given the goals of this 2 2o 3| (5.7
\ o ; S [y2+ (1—Db?)sinttu]
analysis, the physicality of our trial spacetime is irrelevant.
We seek a family of spacetimes that we can compare with _ _
those found in nature. In particular, we need a family ofThe first of these integrals is
spacetimes that deviate controllably and only slightly from
black holes. For the purposes of uncovering whether a space- y coshudy
time is a black hole or not, it makes no difference whether J 5 —— 7
the deviations come from physics we expect or not. We [y?+(1-b?)sintfu]
merely want to set limits on the extent of any deviations that
might exist. __ coshu
Having specifiedyy;, we turn to the computation of;. [y2+(1—b?)sinrfu]?
Focus first on the perturbation at the north pole. Switching to
the prolate, spheroidal coordinate&ndv, we rewrite _ coshu
[ sinkfu sirfv + (b— coshu cosv) Y2
TP: _ : : pl2 . (5.8
[MZsintfu sirfv + (b—M coshu cosv )%]Y2
53 The second yields
Insert this into Eq(3.13: A
f b sinffudy
Iy #M(b—M coshu cosv)sinv [y2+ (1—b?)sinttu]®?
dv  [MZsintu sirfo + (b—M coshu cosv)2]%2’ -
[ v v)7] B yb sinrtu
u (b= coshu cosp)sinu [(1—Db?)sinffu][y2+ (1—b?)sintfu]2
M [sinttu sirfv + (b— coshu cosv ) 2132 b cosv — b coshu
(5.4 1— b2 [sintfu sirfv + (b— coshu cosv ) 2] Y2
We have definedb=b/M. (5.9

We now integrate this with respect toto computey}.
Several manipulations help. First, simplify the denominator:Restoring factors oM, the complete integral is
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VTP These expressions hold for alt>2M. Note the Schwarz-
schild coordinate locations of the point masses ireb
uM (b cosv —M coshu) +M, 6=0,7. We must choos&>M in order for the per-
VNI 5 - 12" turbing masses to be in the hole’s exterior.
(M?—b*)[M?sintfussirru + (b—M coshu cosv)] Combining Eqs.(4.8, (4.9), (4.18, (4.19, (5.14, and
(5.10 (5.15, we can now calculate the periapse precession for
equatorial orbits and the two-point-mass perturbation. Nu-
In these integrals, we have neglected integration constantgerical results for the general, strong-field case will be dis-
that must now be determined. We do so by requiring &  cussed in Sec. VII B; here, we show the weak-field result
go to zero at large radius, i.e. as-»e. Our current form of (p>M, p>b). This weak-field phase shift breaks naturally
the solution has into 3 pieces:

A points:A C M A anol A ro b),
uM (5,19 ¢ Dschl M + 1) + A banonf ) + A dproi 1, D)

P (U—o0)=— TR
(5.1

This is the value that must be subtracted to guarantee thgf

NP - ) ; i here
vy is well behaved at large radius. We thus finally obtain

6m(M+ w) . 37m(M?+2Mu)

uM A M+ p)= 18+¢&2),
] e bschl M + ) 0 207 ( )
M*—b (5.17
b cosv —M coshu
X MZs i 27172 muM 2
[MZ2sinifu sirfv + (b— M coshu cosv )?] Adanonf p)=————(1+2¢?), (5.189
p
uM
. 1
M2_b2 (5 2 377sz
A¢pro|(ﬂyb):_ Mp2 . (5.19

To account for the south pole perturbation, we just add the

pertLrJ]rbation With_’__hb' [Note It|ha§ we donot add the  hege three pieces each have a simple physical explanation.
south perturbation with an overall minus sign, as is done ifpye first A b, is just the periapsis precession expected for

Ref. [29]. That sign choice only holds fan<1; see Ref.  , nanicle orbiting a Schwarzschild black hole with total mass
[29], discussion following Eq(3.14). Note that this has no M+ u (to leading order inu, and to second order in ).

impact on our ability to study strong field orbits—the region The secondA ¢, iS an “anomalous’ contribution to the

E<.1 correslrlJ(_)an to fa I:egllon Justblbarely_ OUtj'de the beve%recession arising from the fact that our perturbation is non-
orizon, well inside of the last stable orffiBy direct sub-  ghharical and has non-zero total mass. As we show later, this
stitution, one can verify that this solution fox satisfies EA.  (arm can be eliminated by appropriately designing the per-
(3.9 as well . . turbing mass distribution.

The pe_rturbed metric is now fully specified. For our pur-  +1.4 third pieceA ¢y, i the leading order contribution
poses, it Is very conyement to.use HE.15 to .cc_)nvert 0 1o the precession that arises from a prolate, quadrupolar dis-
Schwarzschild coordinates. Doing so and defining the funCgyrion to the black hole. This term agrees exactly with a
tion Newtonian calculation of periapse precession in the presence

of a prolate quadrupolar distortidief. Appendix A).
D(r,0,b)=(r>—2Mr +b%+M?cog6—2br cosd P d P c( PP A

+2bM cos#)?, (5.13 VI. METRIC PERTURBATIONS II:
AN EQUATORIAL RING

the complete perturbationg, and y; are ) , .
We next examine perturbations due to a circular, equato-

P P rial ring of massy about a black hole. Our procedure is

P=— - —, (5.14  essentially the same as that used in the two-point-mass ex-
2D(r.6,b)  2D(r,6,~b) ample, though the form of the perturbing potential makes the
calculation a bit more complicated. We choose for
~ pM M+b cosf—r 1 the potential of a ring with radius=b and total mass at
V1T M2 p2 D(r,0,b) infinity u:
M —bcosf—r 2uM . 2m d
( ” " (5.15 ring__ ~ ¢ 6.1)

D(r,0,—b) M2—b2’ 27 ), [p2+Z2+b2— 2bp cosé] M2
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This potential can be re-expressed using the complete elliptithe termsA ¢gcn(M + 1) and A ¢ non{ ) are defined in
integral of the 1st kind; it turns out to be more convenient toEgs. (5.17) and(5.18); they are identical to the correspond-

leave it as written here.
Inserting this into Eq(3.13 and integrating yields

) 27 f(u,v,&)
ring_ _
. dg[c@ 9w, Oh(ue.8) 2
where
f(u,v,&)=u coshu(b?+M?coslfu
—Mb sinhu sinv cosé), (6.3
g(u,v,&)=7[(M?+b2cogé)costfu+ b?sir?é],
6.4)
h(u,v, &)= (M?sintfu sirfv + M?costu cosv + b?
—2Mb sinhu sinv cos¢) . (6.5

The integration “constant’C(¢) is chosen, as in the two-
point-mass case, to malkg vanish at large distances. It has

the value

uM

A= Merbcoge)

(6.6)

ing terms for the point mass perturbations. The term

3mub?
2Mp?

Apopi( e, b)=+ (6.11)

gives the contribution to the precession due to cdotate
quadrupolar distortion to the black hole. As in the prolate
case, this term agrees exactly with a Newtonian calculation
of periapse precession presented in Appendix A.

VIl. METRIC PERTURBATIONS Ill: PURE QUADRUPOLE
PERTURBATION

A. Weak-field analysis

Each of our perturbations changed not only the quadru-
pole (=2) structure of the spacetime, but the spacetime’s
total mass (=0) as well. To construct a perturbation that is
purely quadrupolafat least in the weak fiejdwe take ad-
vantage of the linearity of the perturbed Einstein equations to
superpose a ring of massu with a pair of points of mass
+ /2 each. A negative mass perturbation may seem strik-
ingly unphysical, but as discussed in Sec. Ill, our goal is not
to build perturbations that are likely to exist in natui®iven
the naked singularity interpretation, it is arguable that a nega-
tive mass perturbation is no less physical than one of positive
mass).

To evaluate the periapsis precession, it is useful to have these From now on, we will focus on this zero-mass perturba-

results in Schwarzschild coordinates. Using E1159), f, g,
andh become

f(r,0,6)= ﬁ(r—M)[szr(r—M)z

—b+\/rZ—2Mr siné cosé], (6.7
g(r,6,é)=m ( 1+ b—22c0§§ (r—M)>+ bzsinzgl,

. (6.9
h(r,0,&)=[(r?—2Mr)sir?6+ (r —M)?cos 6+ b?

—2b+\/r2—2Mr sin @ cos&]M2, (6.9

The ring’s radius in Schwarzschild coordinates ris M
++M“+Db%; any choiceb>0 will produce a ring in the
hole’s exterior.

Since the integration ovef commutes with other opera-

tions (notably expanding for largp) it is straightforward to
combine Eqs(4.8), (4.9), (4.18), (4.19, (6.1), and(6.2) to

tion. The weak field result periapse precession for this case is

AP™"=A psenf M) + A dguad 1£,b), (7.7)
where the quadrupole contribution is
9 ub?
Ad’qua((//ub): * (7.2

* 2Mp? .

Notice that the “anomalous” contribution to the precession
does not appear in this case. Making the perturbation have
zero mass apparently suffices to eliminate that term. What
remains is a periapsis precession term corresponding to a
purely quadrupolardeformation of the spacetime. We have
succeeded in constructing a spacetime thatrsostthat of a
black hole, that is good deep into the strong field, but has one
multipole moment—M ,—with the “wrong” value.

B. Strong-field analysis

Having demonstrated that our calculations match up in a
sensible way with Newtonian and relativistic calculations of

compute the periapsis precession in this spacetime. We do &¢/iapse precession, we now show numerical calculations for
numerically in Sec. VII B: for now, we evaluate the weak- the strong fields of bumpy black holes. In all of our figures

field precessionf>M, p>Db):

Ad)ri”g: Adschl M+ 1) + A danonf w) + A o 1,b).
(6.10

and discussion, our focus is on the precession indueked

tive to periapsis precession for a normal black hole. To help
calibrate the effect that the bumpiness has, we show in Fig. 1
the periapsis precessiaip (the amount of azimutlp accu-
mulated in one orbit, minus 2) in the strong field of a
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FIG. 1. Periapsis precession in the strong field of a Schwarz- p/M

schild black hole: the “extra” azimuth accumulated over a single

orbit with parametersi{,e). The solid curve is for eccentricity FIG. 3. Periapsis precession in the strong field of a bumpy black
=0.7; the dashed one is fer=0.1. As we go to the weak field¢  hole: the “extra” azimuth accumulated due to the hole’s bumpiness
approaches zero—orbits approach closed ellipses. The degree g a function of p,&). This plot is identical to Fig. 2 except that we
precession is large in the strong field: the limiting valué2 radi- have putb=1.5M.

ans corresponds to almost 2 extra revolutions around the symmetry

axis. w. Thus, it is a simple matter to rescale to other masses. We

. ) . examine strong-field precession fer=0.7 ande=0.1 in
Schwarzschild black hole. Notice thaip becomes quite these plots; we also compare these results to the weak-field
large in the strong field, corresponding to almost 2 eXtrabrediction(?.Z).
revolutions around the hole. _ . Several features are evident. First, in both cases, the

_Figures 2 and 3 show the shift¢ associated with two  strong-field results asymptotically approach the weak-field
different choices of bumpiness. In both plots, we have puformula for large p—an important sanity check. Interest-
/M =0.01; since the Einstein equations and the equationggly, asb is increased from 1M to 2.5M, the weak-field
of motion all scale linearly with, A¢ is likewise linear in  formula changes from overestimating the periapsis shift to
underestimating it. This behavior may be due to deviations of
our potential from that of a perfect quadrupole. Second, at

T = S e e B B B B B I B By e

A¢ per orbit (radians)

01
0.01 |5

0.001

u=001,b =25M

Strong—field formula, e= 0.7: —— _|

Strong—field formula, e= 0.1 ——-
Weak—field formula:

0.0001 £
E

20 40 60
p/M

80

) E|
100

most orbits, the eccentricity has very little impact on this
shift, at least for the values we examine. This is not surpris-
ing; the bare Schwarzschild periapsis precess$kg. 1) is
likewise fairly insensitive to the eccentricity. Finally, even
into the strong field, the periapsis shift scales approximately
with b? (the weak-field prediction We can thus regard
wb?/M?3 as a measurable, dimensionless “bumpiness param-
eter” for the black hole.

Most interesting is the robustness with which the quadru-
polar bump is manifested in the periapsis result: the effect is
quite pronounced in the strong field. Indeed, the weak-field
prediction(7.2) underestimates the degree of precession due
to the hole’s bumpiness by a facter3 over much of the
strong field - 10 as we approach the last stable opbi@ver

FIG. 2. Periapsis precession in the strong field of a bumpy blacllrnUCh ‘?f the strong _f'EId’ th_e effect is large enough that, by
hole: the “extra” azimuth accumulated due to the hole’s bumpines£2PServing over multiple orbital cycles, we should be able to
as a function of p,¢). We have pu/M=0.01 andb=2.5M. By ~ S€t very interesting limits on the bumpme;s (_)f bla}ck hole
the linearity of all relevant equations in mass, the degree of preceg:andidates. For example, pt-20M, the periapsis shift per
sion scales proportional ta. The solid curve is fore=0.7; the  Orbit is roughly
dashed one is foe=0.1. The dotted curve shows the weak-field
prediction. Both strong-field results asymptotically approach the

weak-field prediction for large.

b2/M3
pbM ) (7.3

~10° 3
Ap=~10 ( 505 )
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A bumpinessub?M3=0.02 should thus be easily measur- the fact that, by definition, bumpy black hole spacetimes are
able after tracking roughly 1000 orbitg€orresponding to nearlythe spacetimes of black holes suggests that the equa-
when the bump shifts the accumulated phase by about tions of motion mustearly separate. In other words, the
radian. Conversely, tracking the phase fdorbital cycles at  degree to which thé@ motion couples to the and ¢ motion

this value ofp should make it possible to constrain the must be small—no doubt controlled by a coupling factor that

bumpiness to be is of orderu/M. It may be possible to take advantage of this
smallness to usefully describe inclined and eccentric bumpy
ub? 20 black hole orbits.
Wsﬁ- (7.4 We have focused on perturbing mass distributions that

produce, in the weak field, a purely quadrupolar spacetime
distortion. We chose to focus on this case because an incor-

Obviously, more detailed work is needed to carefully ex-rect quad_rupole moment is sufficient to falsify the black hole
amine how well black hole bumpiness can be measured in ypothe5|s_. Th?re IS no reason why, we COUld.nOt go beyond
variety of scenariogakin to Ryan's analysis of multipole IS: by using rings out of the hole’s equatorial plane, one
measurability by LISA, Ref[26]). But, these results suggest cpuld imagine building essentially any mqupoIarl distribu-
that measurements which coherently follow orbital phases—tIon _vvhatsogver. _Indeed, the ff"‘Ct that the eql.lat'(.)n for the
such as gravitational-wave measurements and x-ray timing—mzetrlc functiony in Wey : cloordlqates{.Eq.. (3.9]is su_nply
should be able to placstringentconstraints on the bumpi- 7 #=0 tells us that it is simple in principle to specify per-
ness of black hole candidates. Bumpy black holes shoulHrbations _Whose weak-field _multlpolar structure is com-
thus be very useful tools in designing a formalism to map th&!€tely arbitrary: the perturbation

strong field structure of black hole candidates in nature.

Better limits can be obtained for orbits at smalper

BIYIO

VIIl. CONCLUSION 1//122 (p2+22)(|+1)/2 (8.)

In this paper, we have laid the foundations for a null ex-
periment to test whether a massive compact object is a blackill work perfectly. The parametes, is a generalizettpolar
hole. The bumpy black hole spacetimes we construct diffefbumpiness.” With this ansatz to define our deviations, we
only slightly from normal black hole spacetimes; and, thecan build bumpy black holes with almost arbitrarily shaped
difference is controlled by a simple adjustable parameter—bumps. This will make it possible to strongly constrain the
the hole’s “bumpiness.” It should be possible to compare theproperties of black holes in nature.
properties of black hole candidates in nature with these As this paper was being completed, an analysis appeared
bumpy black hole spacetimes. If these objects are in fact then the gr-qc archive by Ashtekar et §5] of the multipole
black holes of general relativity, measurements will showmoments of isolated horizon$6]. Although we have not
that the natural spacetimes have a bumpiness of zero. investigated this in any depth, it may be beneficial to pursue

Quite a bit more work is needed in order to make thea connection between the bumpiness of a black hole and the
bumpy black hole concept useful in practice for astrophysimultipole moments expressed in the language of (B,
cal measurements: Finally, it will be necessary to understand what impact the

Foremost is the need to generalize this analysis to bumplpcal environment may have on the bumpiness of a black
Kerr black holes—zero angular momentum is a highly unre-hole candidate. Astrophysical black holes will be distorted,
alistic idealization. In Appendix B, we show how, by choos- even if only slightly, by matter in their vicinity—for ex-
ing ¢, vy, and using an appropriate coordinate transformaample, accreting material, orbiting bodies, and the galactic
tion, the Weyl metria3.1) encompasses Kerr black holés  potential in which they are embedded. The real universe is
Boyer-Lindquist coordinat@s There should then be no se- not clean and asymptotically flat! In thinking about actual
vere difficulty perturbing this metric to build bumpy Kerr applications of this formalism, it will be important to under-
black holes, though the details are likely to be complicatedstand what level of “bumpiness” can be expected.

Probably next in importance is generalizing the orbits With these generalizations in hand, it should be possible
which we analyze to include inclination with respect toto begin examining detailed mechanisms by which orbital
the hole’'s equatorial plane. Besides the astrophysicatequencies can be imprinted on astrophysical observables.
motivation—we do not often expect orbits to be confined toFor example, one can imagine analyzing accretion disk mod-
a special plane—the inclusion of an extra degree of orbitakls to see how a spacetime’s bumpiness is imprinted on
freedom offers opportunity. Motions out of the plane arequasi-periodic oscillations in a source's x-ray spectrum
characterized by oscillations with a frequen@y, which is  [13,37,38. Another example is in gravitational-wave sci-
generically different from the frequencié€3, and ), dis-  ence. For these ideas to be useful for testing the nature of
cussed in this paper. These oscillations thus offer an addblack hole candidates, we will need to model the
tional “handle” by which deviations from the black hole gravitational-wave emission and inspiral of small compact
spacetime can be characterized. bodies captured by bumpy black holes. This problem may

As already mentioned in Sec. 1V, the equations of motionnot be much more difficult than the corresponding problem
for inclined orbits of bumpy black holes do not appear tofor normal Kerr black holes—because the wave amplitude is
separatdas they do for normal Kerr black holesHowever, itself perturbatively small, the inspiral and wave generation
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should decoupléat least to first orderfrom the spacetime’s R ,(u,)=0, Rnew{ Up) = 0—yields a solution for the en-

bumps. We hope to address at least some of these issuesdfyy E and angular momenturin as functions of) ande:
future work.
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that accumulates over that orbit; that numbminus 2r) is

APPENDIX A: PERIAPSE PRECESSION the accumulated periapsis precession. First, use the above
IN'NEWTONIAN THEORY results forE andL in the radial equation of motion:

An elliptical orbit precesses even in Newtonian gravity if dr\2 1
the orbit is about a body with a quadrupole moment. Here, ( ) =—&% sirfy[2M +3(e?—3)Qu?—6cQu2cosy].
we calculate this precession, presenting results in a form use- 2

ful for making contact with this paper’s relativistic results. (A8)
A body thh_a mass and_ a quadrupole moment has a NeWNext, usingr = 1[v(1+ & cosy)] we have
tonian gravitational potential
) dr . dy
M 3 7Z,,n%n a—r ev sm)(a. (A9)
o=————- . (A1)
r 2 r3
We obtain

For further discussion, see Thorne’s voluminous treatise on ) ) ) )
multipole moments in general relativif4]. The tensofZ,, dx|°_ 2M+3(e°—3)Qu°—6sQu*”cosy AL0
is the symmetric, trace-free quadrupole moment of the gravi- dt| 2urt - (A10)

tating source:
We leave the* in the denominator to cancel another factor
that will appear shortly.

To connect this to the azimuthal angfe we use the fact
thatL=r2d¢/dt. Combining this with Eq(A10), we obtain
The vectom? is a direction cosine. For notational simplicity, an equation for the differential periapsis advance:
we putZ ,,n*n=Q.

3 1 2
Zap= | drp xaxb—géabr . (A2)

A body in an equatorial orbit around this object obeys a/ d¢ 2_ de|?(dx| 2
simple equation of motion: dy/ \dt] ldt
dr\? L2 2 4
R A
2r r?) | 2M+3(e?—3)Qu?—6eQu? cosy
Rnew( ") 2M +3(3+£2)Qu?
= ne3 , (A3) ( € )QU (Al]_)

r  2M+3(e2—3)Qu2—6eQu2cosy

whereL is the component of orbital angular momentum per- We now take the square root. We assume tQat®
pendicular to the equatorial plane. We are interested in ec=Q/p?<M and expand in. This amounts to a weak field

centric orbits, so we reparametrize in the usual way: expansion. We find, to leading order @u?/M,
B p dé¢  3Qu*(3+ecosy)
r= —1+ & CoSy , (A4) a =1+ oM . (AlZ)
which is equivalent to Integrating over an orbit yields
— 27 d 97Qu?
u=v(1+ecosy) (A5) Ad’:f dX£—27T= '\(/? . (AL3)

with u=1/r, v =1/p. The turning points of an eccentric orbit
are at apoapsisj,=v(1l—e¢), and periapsisy,=v(1+e). We now computeQ for the cases examined in the text:
Solving the equation of motion at both turning points—two point masses on the symmetry axis, and an equatorial
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ring. The direction cosines are easy to calculate; we are only A=r?—2Mr +a?+Q?
interested in orbits on the equatorial plane, r§e=0. By
axisymmetry, all directions in the equatorial plane are
equivalent, so we choos&=1, n¥=0. Then,Q=17,,.

For a point masg./2 at the north pole,

S =r2+a%cog4. (B3)

Substituting into the metri€3.7), we find
zggj_“ diag —1,—1,2); (A14)

A+ M?3sirfo
ds?= —e?¥dt?+ eZV‘Z‘”( T) dr?

for a point mass at the south pole, we find the same result.
The pair of point masses thus h@s= — ub?/3. Using thisQ +e27 2/ (A+M?3?sirf9)d 6%+ e~ YA sirf6d ¢>.
in Eq. (A13) we find

(B4)
int 37 ub?
AgPoMe= — ——. (A15) Next, choose
pM
Repeating this exercise for the ring, we find o2V é
pb? >
I””g——diagl,l,— 2), (A16)
e?7= L (B5)
s0 Q= ub?/6, and A+MZsirgg’
2
A¢ring:+ 37T,LLb . (A]_?) and put
2p*M
Notice that A$PMs=—2A "9, This follows from the dt=dt’ ~asiréde’,
spherical harmonics that describe the ring,(#/2)] and ,
the point masselY,y(0)=—2Y 12)]. r’+a
p BY20(0) 20(7/2)] qu—( u )d¢——dt’ B6)

APPENDIX B: THE KERR METRIC
FROM THE WEYL METRIC

Dropping the primes ohand ¢, we see that the Weyl metric

In this appendiX, we |ay out the coordinate transforma_reduces to the Kerr-Newman metric in Boyer-LinquiSt CO-

tions and the choices af andy needed to go from the Weyl ordinates:

metric to the Kerr metric in Boyer-Lindquist coordinates.

Although only the uncharged version is astrophysically rel- A ) 5 Sirt e s 5 5
evant, we show the results for general cha@ydhis calcu- ~ d8°=— g(dt—asmzé’dqﬁ) + T[(r +a“)d¢—adt]
lation shares much with the Newman-Janis algorithm

[39-41]. 22 2
We begin with the Weyl metric in prolate spheroidal co- +drotxde. (B7)
ordinates, Eq(3.7). We then choose
M coshu=r—M +ia?+Q? (1)  Compare, for example Ref10], Eq. (33.2 and Ref.[30],
' Eq. (12.3.1.
Note thatu must be complex; the black hole parametets In prolate spheroidal coordinates, the functiohsand y

a, andQ, as well as the radial coordinateare of course real. are given by
As we discuss further below, this implies a severe constraint

on the valuess may take in the complex plane. M2cosRu
It follows that = —— (B8)
r2(u)+a%cosv
dr=M sinhudu,
2
MZ2costu=M?|coshul? 02— MZcosttu (B9)
M2cosHu+ M 3sirfy
=(r—M)*+a®+Q?,
M2sinffu=r2—2Mr +a’+ Q2. (B2) where
We also choose = 6. For notational convenience, define r(u)=M(coshu—1)—iya’+ Q2. (B10)
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The requirement that(u) be real implies a severe constraint In other wordsu cannot take just any value in the complex
between the real and imaginary parts iofwe must have plane, but must be confined to the trajectory defined by Eq.
Im(M coshu)=+iyaZ+ Q2. Writing u=u,+iu;, we find (B11).

Using these results, it should straightforward to generalize

M sin(u;)sinh(u,) =+ JaZ+ Qi. (B11) our calculations to describe bumpy Kerr black holes.
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