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Highly damped quasinormal modes of Kerr black holes: A complete numerical investigation
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We compute for the first time very highly damped quasinormal modes dfaobeting Kerr black hole. Our
numerical technique is based on a decoupling of the radial and angular equations, performed using a large-
frequency expansion for the angular separation congfapt. This allows us to go much further in overtone
number than ever before. We find that the real part of the quasinormal frequencies approaches a nonzero
constant value which doesot depend on the spirs of the perturbing field or on the angular index
I: wg=mw(a). We numerically computes(a). Leading-order corrections to the asymptotic frequency are
likely to be ~1/w,. The imaginary part grows without bound, the spacing between consecutive modes being
a monotonic function o&.
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[. INTRODUCTION where |, is the Planck length, an# is an integer to be
determined. Hod5] proposed fixing the value ok, and

Black holes(BHs), like many other objects, have charac- therefore the area spectrum, by promoting QN frequencies
teristic vibration modes, called quasinormal mo¢@siMs). ~ With a very large imaginary part to a special position: they
The associated complex quasinormal frequenc@s fre-  should bridge the gap between classical and quantum transi-
quencies depend only on the BH fundamental parametersiions. Hod obtained, for the Schwarzschild Bki3. Fol-
mass, charge, and angular momentum. QNMs are excited BYWing his proposal, further enhanced by the prospect of us-
BH perturbationgas induced, for example, by infalling mat- iNg similar reasoning in loop quantum gravity to fix the
ter). The early evolution of a generic perturbation can beBarbero-Immirzi parameter{6], the interest in highly
described as a superposition of QNMs, and the characteri§l@mped BH QNMs has grown consideraljlg]. There is
tics of gravitational radiation emitted by BHs are intimately NOW reason to believe that the connection between QN fre-
connected to their QNM spectrum. One may in fact infer theduencies and the BH area quantum is not as straightforward
BH parameters by observing the gravitational wave signafs initially suggested. However, a relation between classical
|mp|ng|ng on the detectorgl]: this makes QNMS h|gh|y and quan-tum BH pI‘OpeI‘tIe.S does seem to e.X|.St, even In hon-
relevant in the newly born gravitational wave astronomyaSymptotically flat spacetimei8]. A prerequisite to study
[2,3]. this connection is to compute QN frequencies having very

In addition to this “classical” context, QNMs may find a large imaginary parts. So far this problem has been solved
very important place in the realm of a quantum theory ofonly for a few special geometries: Schwarzschild BHs
gravity. General semiclassical arguments sugféisthat on  [9-13, Reissner-Nordstro  (RN) BHs [11-13, the
quantizing the BH area one gets an evenly spaced spectruRprados-Teitelboim-Zanelli  BH [14], and the four-
of the form dimensional Schwarzschild—anti-de Sitter BE5].

We must try to include the Kerr geometry in this short
catalogue, due to its great importance and simplicity. This is
a problem of great relevance for the scientific community,
and quite a lot of effort is being invested here. This effort is
in direct proportion to the difficulty of the problem. All pre-
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A,=4logk)I3n, n=0,1,..., (1)

0556-2821/2004/692)/1240185)/$22.50 69124018-1 ©2004 The American Physical Society



BERTI, CARDOSO, AND YOSHIDA PHYSICAL REVIEW D69, 124018 (2004

approaches. Here we carry out such a numerical study. We AR +(s+1)(2r—1)Ryp , + V(1) Rip=0, (3)
improve on previous results by going further in overtone

number than ever before, in order to really probe thewhereA=r2?—r+a?and

asymptotic regime. The starting point for our analysis is, as ,
prgvicf)usly [13?18], Leaver’s cc?ntpi)nued fraction te)I:hnique V() =[(r*+a*?w? +is(am(2r 1)~ o(r*~a%) + a’m?

[19] as improved by Nollerf9], with a few appropriate —2amor]A "+ [2iswr —a2w?— Ayl (4)
modifications[13]. However, we now decouple the angular

and radial equations. We first determine the asymptotic exThe parametes=0,—1,—2 for scalar, electromagnetic, and
pansion for the angular separation constant, and then replaggavitational perturbations, respectively, ané, is an

this asymptotic expansion in the radial equations. This trickangular separation constant. In the Schwarzschild limit
spares us the need to solve the two equations simultaneouste angular separation constant can be determined analyti-
which was the major drawback of previous numerical work.cally: sAj,=1(1+1)—s(s+1).

A leading-order asymptotic expansion of the separation con- Boundary conditions for the two equations can be cast as
stant is typically accurate fdaw|=5, whereais the dimen-  tWo threg—term continued fraction relatiofi]. Elndlng QN
sionless Kerr rotation parametg20]. In this study we go frequencies is a t_wo-s_tep procedure: for aSS|g_ned values of
well beyond this regiméwe can usually compute modes up s,I,m,a, and.w, first find the angular sepgratlon cqnstant
to |aw|>50, an order of magnitude largeBo we have great Aim(w) looking for zeros of thengularcontinued fraction;

confidence that our results really yield “asymptotic” QN fre- then replacg the corresponqllng eigenvalue '”rma' con-
quencies. tinued fraction, and look for its zeros as a functiornwofThis

We find that our previous resulf&8] for negativem and was the strategy adopted in earlier wg8,17-13, where

moderately damped QN frequencies were quite close 1o ththe first~50 modes were computed. These numerical inves-
y damp . quie q ﬁgations showed a ricliand perhaps confusihgbehavior.
true asymptotic behaviaoespecially for large values &),

hil 0 th ot | A For negativem and large enougla the first ~50 modes
while “convergence 1o the asymplolic value was no y%isplay some kind of convergence and are consistent with
achieved for positivem. Our improved calculations have

) X g X our new results. Among modes with positivg only those
been carried out with two independent numerical codes. OUﬁaving|s| =|=m=2 seemed to converge. This convergence

main results are as followsi) The real part of the QN fre- o Geceiving: positivea results in[18] were not yet in the
quenciesng approaches a nonzero constant value. This valugsy mntotic regime. The “true” asymptotic behavior turns out
doesnotdepend on the spisiof the perturbing field or onthe {5 "he much simpler than the intermediate-damping regime
angular indeX. It depends only on the rotation parameger explored in[18].
and is proportional ton: wg=muw(a). We determinew(a) ~ gince the major numerical difficulty lies in the coupling
numerically. A fit of our numerical data by power series in y¢ the two continued fractions, here we adopt a “trick” to
1/w| andy1/w, suggests that leading-order corrections to thegecouple them. We first carry out a careful study of the an-
asymptotic frequency should be of orderwl/ (i) The  gyjar equation, determining the asymptotic form of the sepa-
imaginary parts; grows without bound, the spacing between ration constantA,,, for frequencies» with large imaginary
modesdw, being a monotonically increasing function af part. Then we substitute this expansion in E@, (4). By

this trick we reduce the problem to the numerical solution of

a single three-term recursion relation: it is then possible to

Il. BASIC EQUATIONS probe the asymptotic regime for highly damped modes. In

the following section we shall briefly discuss our main

In the Kerr geometry, the condition that agiven frequencya alytical and numerical results for the asymptotic expansion
be a QN frequency can be converted into a statement abo A
s\m -

continued fractions, which is rather easy to implement nu-
merically. This procedure has been explained thoroughly by
Leaver[19], so here we shall only recall the basic idea. The
perturbation problem reduces to a pair of coupled differential Ill. ASYMPTOTIC EXPANSION OF THE ANGULAR
equations: one for the angular part of the perturbations, and SEPARATION CONSTANT

the other for the radial part. In Boyer-Lindquist coordinates, The analytical properties of the angular equatighand
definingu=cos#, the angular equation reads of its eigenvalues have been studied by many autf@is

25]. Series expansions ofA;, for [aw|<1 are available,
and they agree well with numerical resUl&5]. On the other
hand, the asymptotic behavior for large frequencies has
hardly been studied at all. An analytical power-series expan-
sion for large(pure real and pure imaginaryalues ofaw

[(1-u?) Sl ut| (awu)?—2awsu+ s+ Ay,

_ (m+su)? -0 ) can be found in Flammer’s bodR1], but it is limited to the
1-u? me cases=0. Flammer's results are in good agreement with the
exhaustive numerical work by Ogucf26], who computed
angular eigenvalues for complex valuesaed ands=0. A
and the radial one is review of numerical methods to compute eigenvalues and
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eigenfunctions fos=0 can be found if27]. Quite surpris- 0,250 . T . T
ingly, there are no systematic humerical results for general A s=0
spins, and the few analytical predictions for large values of
|aw| do not agree with each othgz8]. Here we shall fill this 0,248
gap, presenting some results for the lajge{ expansion of
sAIm .

A straightforward generalization of Flammer's method ¢ 0,246
can be easily found for generalDefine a new angular wave
function Z,,,(u) through[23]

s=-1 1

0,244

Sim(W) = (1—u?)M92Z,(u), ©)

0,242 : - : - :
and change the independent variable by definirgy/2cu, 400 500 600 700
wherec?= — (aw)?. Substitute this in Eq(2) to get O

FIG. 1. Real part of high-order QN frequencies for scalar (
=0), electromagnetics= —1), and gravitational{= —2) pertur-

2
cx® 2msx bations of a Kerr BH witha=0.1 (| =m=2) as a function of their
Am= 5 V2ox—m(m-+1) - Pe+x Zim imaginary parts. QN frequencies of different spins converge to the
same value. For any kind of perturbation we are already deep in the
+(2¢=X)Zimxx— 2(M+ 5+ 1)XZj =0. (6)  region of validity of the asymptotic expansiaiT), since |aw|
~60.
When c—o, this equation becomes a parabolic cylinderincrease the overtone indéx (progressively increasing the
function. The arguments presented 21,23,24 lead to inversion index of our “decoupled” continued fractiprFi-
nally, we fit our numerical results by functional relations of
the form
Am=(2L+1)c+0O(c?), c—» 7)
s™m ) )
wr(N)=wg+ wg)a-ﬁ- w(Rz)a2+ w(Ff)aS, 9

wherelL is the number of zeros of the angular wave function
inside the domain. One can show that wherea=1/w, or = 1llw,. At variance with the nonrotat-
ing casg9], fits in powers of 1k, perform better, especially
for small and largea. However, both fits break down as
[=|m|, |m|=]|s|, —0: the values of higher order fitting coefficients increase in
(8)  this limit, so that subdominant terms become as important as
the leading order, and the extraction of the asymptotic fre-
becomes problematic. The numerical behavior of

=8|, Im|<]s|.

Higher order corrections in the asymptotic expansion can pguencywr
obtained as indicated if21]. However, we will not need

them here. We have verified E§7) numerically, solving 0,30 |-, .
Leaver’s angular continued fraction fgh,, as a function of 00 m=2
the Complex parametaw. Our numerical resultiwhich 0,25 B 0OOOOOOOOoOOOOOOOOOOOOOOOOOOODoOOOOODOOOOOOOOOOOOOOOOOOOO
will be presented in detail elsewhereare in excellent ",
agreement with previous wofR1,26,27 for s=0. For anys 0.20 . 1
they are consistent with E47) when og<w, and |aw| is m=1 1
|ar o 0,15} ..'Ouo - b
ge. R ’ paL LTIV
0,10 % .
IV. NUMERICAL RESULTS _ _
0051 4
To compute the asymptotic QN frequencies of the Kerr %é% L
black hole we use a technique similar to that describg@]in 0,00 50 100 150 200 250 300 350 400

We fix a value of the rotation paramet&rWe first compute o

QN frequencies for whichaw|~1, so that formula7) is !

only marginally valid. This procedure is consistent with our - g1 2. scalar QN frequencies of a Kerr BH with=0.1, |
previous intermediate-damping calculations: for example—2 and different values ah. The asymptotic value is proportional
when we include terms up to ordgrw|~? in the asymptotic 1o m, Modes withm=0 oscillate around zero. The amplitude of
expansion forgA,, provided in[21], our new results foa  these oscillations at fixed decreases very fast, probably tending to
=0.1 andl =m=2 match the results for the scalar case pre-zero asw,—=: this is consistent with the behavior shown in Fig. 6
sented in[18] at overtone numbers 20N=<30. Then we of [18].
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i T ) T i T 7 T T V. CONCLUSIONS
0,25} R, -
/ ~°\o\.u ] Motivated by recent suggestions of a link between classi-
© cal black hole oscillations and quantum gravity, we have
0,20 i computed for the first time very highly damped QNMs of the
Kerr black hole. Our calculation was made possible by a
o, : 1 decoupling of the radial and angular equations, carried out
using asymptotic expansions of the angular separation con-
0,15 7 stant A, for w,<w, and|aw|>1. Our results are very
—e—m=2, |=2, s=0 weakly dependent on the number of terms used in the
—o—m=2, |=2, s=-2 ] asymptotic expansion ofp,,, and this provides a powerful
consistency check. We found the following.
00—t . ;
0,0 0,1 0,2 0,3 0,4 0,5 (i) The real part of the QN frequenciesy approaches a
a nonzero constant value. This value doex depend on the
spin s of the perturbing field and on the angular indext
FIG. 3. Asymptotic real parbg=2w(a) of thel=m=2 gravi-  depends only on the rotation parameteand is proportional
tational and scalar QN frequencies extrapolated from numericalo m:
data:wr— 2w (1/2)=0.21 asa— 1/2. The extrapolated frequencies
are independent dfands.

wr=Mw(a). (11)

subdominant coefficients supports the expectatiahich

has not yet been verified analyticalfthat subdominant cor-  \we determineds(a) numerically(Fig. 3), and showed that
rections area erenQent. The.re.fore one has to be careful a§ is not given by simple polynomial functions of the black
to the order in which the limitN—c, a—0 are taken poie temperatureT and angular velocity) (or their in-
[11,13,18. These observations are consistent with the fac(/ersess. At fixed a, a fit of our numerical data by power

that, in the RN case, the zero-charge limit of the asymptotlcSeries in 1, and\/Tan suggests that leading-order correc-

QN frequency spectrum does not yield the aSymIOtOtICtions to the asymptotic frequency are probably of order; 1/

Schwarzschild QN spectrupil-13. . ) _ . )
We have extracted asymptotic frequencies using two in!il) The imaginary par», grows without bound, the spacing

dependent numerical codes. For each value,ofe found ~Petween modesw, being a monotonically increasing func-
that the extrapolated value ok is independent of (Fig. 1), ~ tion of a. . .
independent ofl, and proportional tom (Fig. 2: wg We wish to stress, once again, that the asymptotic fre-
=mw(a). quency wg is independent of the spis of the perturbing
We obtainedwg computing QN frequencies both for sca- field: this is consistent with results for highly damped QNMs
lar perturbations §=0) and for gravitational perturbations Of (charged RN black holeq11,12,.
(s=—2). For definiteness, in both cases we pickedm By now it is quite clear that the original Hod proposal
=2. The agreement between the extrapolated behaviors ¢¢quires some modificatiofsee, e.g.[30]). However, the
wg as a function ofiis excellent, suggesting that both sets of “universality” of the asymptotic Kerr behavior we estab-
results are typically reliable with an erre¥1%. Our results lished in this paper is good news. For both charged and ro-
are also weakly dependent on the number of terms used iating black holes the asymptotic QNM frequeney de-
the asymptotic expansion ofA,: this provides another pends only on the black hole geometry, not on the perturbing
powerful consistency check. We have tried to fit the resultingfield. If QNMs do indeed play a role in black hole quantiza-

“universal function,” displayed in Fig. 3, by simple polyno- tion this is an essential prerequisite, and it seems to hold.
mials in the BH’s Hawking temperatufieand angular veloc-

ity Q) (and their inverses None of these fits reproduces our
numbers with satisfactory accuracy. It is quite likely that
asymptotic QN frequencies will be given by an implicit for- ACKNOWLEDGMENTS
mula involving the exponential of the Kerr black hole tem-
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