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Highly damped quasinormal modes of Kerr black holes: A complete numerical investigation
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We compute for the first time very highly damped quasinormal modes of the~rotating! Kerr black hole. Our
numerical technique is based on a decoupling of the radial and angular equations, performed using a large-
frequency expansion for the angular separation constantsAlm . This allows us to go much further in overtone
number than ever before. We find that the real part of the quasinormal frequencies approaches a nonzero
constant value which doesnot depend on the spins of the perturbing field or on the angular index
l: vR5mÃ(a). We numerically computeÃ(a). Leading-order corrections to the asymptotic frequency are
likely to be ;1/v I . The imaginary part grows without bound, the spacing between consecutive modes being
a monotonic function ofa.
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I. INTRODUCTION

Black holes~BHs!, like many other objects, have chara
teristic vibration modes, called quasinormal modes~QNMs!.
The associated complex quasinormal frequencies~QN fre-
quencies! depend only on the BH fundamental paramete
mass, charge, and angular momentum. QNMs are excite
BH perturbations~as induced, for example, by infalling ma
ter!. The early evolution of a generic perturbation can
described as a superposition of QNMs, and the charact
tics of gravitational radiation emitted by BHs are intimate
connected to their QNM spectrum. One may in fact infer
BH parameters by observing the gravitational wave sig
impinging on the detectors@1#: this makes QNMs highly
relevant in the newly born gravitational wave astronom
@2,3#.

In addition to this ‘‘classical’’ context, QNMs may find
very important place in the realm of a quantum theory
gravity. General semiclassical arguments suggest@4# that on
quantizing the BH area one gets an evenly spaced spec
of the form

An54 log~k!l P
2n, n50,1, . . . , ~1!
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where l P is the Planck length, andk is an integer to be
determined. Hod@5# proposed fixing the value ofk, and
therefore the area spectrum, by promoting QN frequenc
with a very large imaginary part to a special position: th
should bridge the gap between classical and quantum tra
tions. Hod obtained, for the Schwarzschild BH,k53. Fol-
lowing his proposal, further enhanced by the prospect of
ing similar reasoning in loop quantum gravity to fix th
Barbero-Immirzi parameter@6#, the interest in highly
damped BH QNMs has grown considerably@7#. There is
now reason to believe that the connection between QN
quencies and the BH area quantum is not as straightforw
as initially suggested. However, a relation between class
and quantum BH properties does seem to exist, even in n
asymptotically flat spacetimes@8#. A prerequisite to study
this connection is to compute QN frequencies having v
large imaginary parts. So far this problem has been sol
only for a few special geometries: Schwarzschild B
@9–13#, Reissner-Nordstro¨m ~RN! BHs @11–13#, the
Bañados-Teitelboim-Zanelli BH @14#, and the four-
dimensional Schwarzschild–anti-de Sitter BH@15#.

We must try to include the Kerr geometry in this sho
catalogue, due to its great importance and simplicity. This
a problem of great relevance for the scientific commun
and quite a lot of effort is being invested here. This effort
in direct proportion to the difficulty of the problem. All pre
vious attempts@13,16–18# at probing the asymptotic QNMs
of Kerr BHs have been unsuccessful, or at least unsatis
tory. There have been several contradictory ‘‘analytical’’ r
sults, which either were based on incorrect assumptions
could not probe the highly damped regime@16#. The few
numerical results@13,17,18# are not decisive either, althoug
they definitely show some trend. A numerical investigation
necessary both as a benchmark and as a guide to analy
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approaches. Here we carry out such a numerical study.
improve on previous results by going further in overto
number than ever before, in order to really probe
asymptotic regime. The starting point for our analysis is,
previously @13,18#, Leaver’s continued fraction techniqu
@19# as improved by Nollert@9#, with a few appropriate
modifications@13#. However, we now decouple the angul
and radial equations. We first determine the asymptotic
pansion for the angular separation constant, and then rep
this asymptotic expansion in the radial equations. This tr
spares us the need to solve the two equations simultaneo
which was the major drawback of previous numerical wo
A leading-order asymptotic expansion of the separation c
stant is typically accurate foruavu*5, wherea is the dimen-
sionless Kerr rotation parameter@20#. In this study we go
well beyond this regime~we can usually compute modes u
to uavu.50, an order of magnitude larger!. So we have grea
confidence that our results really yield ‘‘asymptotic’’ QN fre
quencies.

We find that our previous results@18# for negativem and
moderately damped QN frequencies were quite close to
true asymptotic behavior~especially for large values ofa),
while convergence to the asymptotic value was not
achieved for positivem. Our improved calculations hav
been carried out with two independent numerical codes.
main results are as follows.~i! The real part of the QN fre-
quenciesvR approaches a nonzero constant value. This va
doesnot depend on the spins of the perturbing field or on the
angular indexl. It depends only on the rotation parametera
and is proportional tom: vR5mÃ(a). We determineÃ(a)
numerically. A fit of our numerical data by power series
1/v I andA1/v I suggests that leading-order corrections to
asymptotic frequency should be of order 1/v I . ~ii ! The
imaginary partv I grows without bound, the spacing betwe
modesdv I being a monotonically increasing function ofa.

II. BASIC EQUATIONS

In the Kerr geometry, the condition that a given frequen
be a QN frequency can be converted into a statement a
continued fractions, which is rather easy to implement
merically. This procedure has been explained thoroughly
Leaver@19#, so here we shall only recall the basic idea. T
perturbation problem reduces to a pair of coupled differen
equations: one for the angular part of the perturbations,
the other for the radial part. In Boyer-Lindquist coordinat
definingu5cosu, the angular equation reads

@~12u2!Slm,u# ,u1F ~avu!222avsu1s1sAlm

2
~m1su!2

12u2 GSlm50, ~2!

and the radial one is
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DRlm,rr 1~s11!~2r 21!Rlm,r1V~r !Rlm50, ~3!

whereD5r 22r 1a2 and

V~r !5@~r 21a2!2v21 is~am~2r 21!2v~r 22a2!!1a2m2

22amvr #D211@2isvr 2a2v22sAlm#. ~4!

The parameters50,21,22 for scalar, electromagnetic, an
gravitational perturbations, respectively, andsAlm is an
angular separation constant. In the Schwarzschild li
the angular separation constant can be determined ana
cally: sAlm5 l ( l 11)2s(s11).

Boundary conditions for the two equations can be cas
two three-term continued fraction relations@19#. Finding QN
frequencies is a two-step procedure: for assigned value
s,l ,m,a, and v, first find the angular separation consta
sAlm(v) looking for zeros of theangularcontinued fraction;
then replace the corresponding eigenvalue in theradial con-
tinued fraction, and look for its zeros as a function ofv. This
was the strategy adopted in earlier work@13,17–19#, where
the first;50 modes were computed. These numerical inv
tigations showed a rich~and perhaps confusing! behavior.
For negativem and large enougha the first ;50 modes
display some kind of convergence and are consistent w
our new results. Among modes with positivem, only those
having usu5 l 5m52 seemed to converge. This convergen
was deceiving: positive-m results in@18# were not yet in the
asymptotic regime. The ‘‘true’’ asymptotic behavior turns o
to be much simpler than the intermediate-damping reg
explored in@18#.

Since the major numerical difficulty lies in the couplin
of the two continued fractions, here we adopt a ‘‘trick’’ t
decouple them. We first carry out a careful study of the
gular equation, determining the asymptotic form of the se
ration constantsAlm for frequenciesv with large imaginary
part. Then we substitute this expansion in Eqs.~3!, ~4!. By
this trick we reduce the problem to the numerical solution
a single three-term recursion relation: it is then possible
probe the asymptotic regime for highly damped modes.
the following section we shall briefly discuss our ma
analytical and numerical results for the asymptotic expans
of sAlm .

III. ASYMPTOTIC EXPANSION OF THE ANGULAR
SEPARATION CONSTANT

The analytical properties of the angular equation~2! and
of its eigenvalues have been studied by many authors@21–
25#. Series expansions ofsAlm for uavu!1 are available,
and they agree well with numerical results@25#. On the other
hand, the asymptotic behavior for large frequencies
hardly been studied at all. An analytical power-series exp
sion for large~pure real and pure imaginary! values ofav
can be found in Flammer’s book@21#, but it is limited to the
cases50. Flammer’s results are in good agreement with
exhaustive numerical work by Oguchi@26#, who computed
angular eigenvalues for complex values ofav ands50. A
review of numerical methods to compute eigenvalues
8-2
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eigenfunctions fors50 can be found in@27#. Quite surpris-
ingly, there are no systematic numerical results for gen
spin s, and the few analytical predictions for large values
uavu do not agree with each other@28#. Here we shall fill this
gap, presenting some results for the large-uavu expansion of
sAlm .

A straightforward generalization of Flammer’s meth
can be easily found for generals. Define a new angular wav
function Zlm(u) through@23#

Slm~u!5~12u2!(m1s)/2Zlm~u!, ~5!

and change the independent variable by definingx5A2cu,
wherec252(av)2. Substitute this in Eq.~2! to get

F sAlm2
cx2

2
2 iA2cx2m~m11!2

2msx

A2c1x
GZlm

1~2c2x2!Zlm,xx22~m1s11!xZlm,x50. ~6!

When c→`, this equation becomes a parabolic cylind
function. The arguments presented in@21,23,24# lead to

sAlm5~2L11!c1O~c0!, c→`, ~7!

whereL is the number of zeros of the angular wave functi
inside the domain. One can show that

L5H l 2umu, umu>usu,

l 2usu, umu,usu.
~8!

Higher order corrections in the asymptotic expansion can
obtained as indicated in@21#. However, we will not need
them here. We have verified Eq.~7! numerically, solving
Leaver’s angular continued fraction forsAlm as a function of
the complex parameterav. Our numerical results~which
will be presented in detail elsewhere! are in excellent
agreement with previous work@21,26,27# for s50. For anys
they are consistent with Eq.~7! when vR!v I and uavu is
large.

IV. NUMERICAL RESULTS

To compute the asymptotic QN frequencies of the K
black hole we use a technique similar to that described in@9#.
We fix a value of the rotation parametera. We first compute
QN frequencies for whichuavu;1, so that formula~7! is
only marginally valid. This procedure is consistent with o
previous intermediate-damping calculations: for examp
when we include terms up to orderuavu22 in the asymptotic
expansion for0Alm provided in@21#, our new results fora
.0.1 andl 5m52 match the results for the scalar case p
sented in@18# at overtone numbers 20&N&30. Then we
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increase the overtone indexN ~progressively increasing th
inversion index of our ‘‘decoupled’’ continued fraction!. Fi-
nally, we fit our numerical results by functional relations
the form

vR~N!5vR1vR
(1)a1vR

(2)a21vR
(3)a3, ~9!

wherea51/v I or a5A1/v I . At variance with the nonrotat-
ing case@9#, fits in powers of 1/v I perform better, especially
for small and largea. However, both fits break down asa
→0: the values of higher order fitting coefficients increase
this limit, so that subdominant terms become as importan
the leading order, and the extraction of the asymptotic f
quencyvR becomes problematic. The numerical behavior

FIG. 1. Real part of high-order QN frequencies for scalars
50), electromagnetic (s521), and gravitational (s522) pertur-
bations of a Kerr BH witha50.1 (l 5m52) as a function of their
imaginary parts. QN frequencies of different spins converge to
same value. For any kind of perturbation we are already deep in
region of validity of the asymptotic expansion~7!, since uavu
;60.

FIG. 2. Scalar QN frequencies of a Kerr BH witha50.1, l
52, and different values ofm. The asymptotic value is proportiona
to m. Modes withm50 oscillate around zero. The amplitude o
these oscillations at fixeda decreases very fast, probably tending
zero asv I→`: this is consistent with the behavior shown in Fig.
of @18#.
8-3
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subdominant coefficients supports the expectation~which
has not yet been verified analytically! that subdominant cor
rections area dependent. Therefore one has to be carefu
to the order in which the limitsN→`, a→0 are taken
@11,13,18#. These observations are consistent with the f
that, in the RN case, the zero-charge limit of the asympt
QN frequency spectrum does not yield the asympto
Schwarzschild QN spectrum@11–13#.

We have extracted asymptotic frequencies using two
dependent numerical codes. For each value ofa, we found
that the extrapolated value ofvR is independent ofs ~Fig. 1!,
independent of l, and proportional tom ~Fig. 2!: vR
5mÃ(a).

We obtainedvR computing QN frequencies both for sc
lar perturbations (s50) and for gravitational perturbation
(s522). For definiteness, in both cases we pickedl 5m
52. The agreement between the extrapolated behavior
vR as a function ofa is excellent, suggesting that both sets
results are typically reliable with an error&1%. Our results
are also weakly dependent on the number of terms use
the asymptotic expansion ofsAlm : this provides anothe
powerful consistency check. We have tried to fit the result
‘‘universal function,’’ displayed in Fig. 3, by simple polyno
mials in the BH’s Hawking temperatureT and angular veloc-
ity V ~and their inverses!. None of these fits reproduces o
numbers with satisfactory accuracy. It is quite likely th
asymptotic QN frequencies will be given by an implicit fo
mula involving the exponential of the Kerr black hole tem
perature, as in the RN case@11–13#.

For anya, the imaginary partv I grows without bound.
Quite surprisingly, the spacing between modesdv I is a
monotonically increasing function ofa: it is not simply given
by 2pT, as recent calculations and previous numerical
sults suggested@13,29#. A power fit in a of our numerical
results yields

dv I51/210.0438a20.0356a2. ~10!

FIG. 3. Asymptotic real partvR52Ã(a) of the l 5m52 gravi-
tational and scalar QN frequencies extrapolated from numer
data:vR→2Ã(1/2).0.21 asa→1/2. The extrapolated frequencie
are independent ofl ands.
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V. CONCLUSIONS

Motivated by recent suggestions of a link between clas
cal black hole oscillations and quantum gravity, we ha
computed for the first time very highly damped QNMs of t
Kerr black hole. Our calculation was made possible by
decoupling of the radial and angular equations, carried
using asymptotic expansions of the angular separation c
stant sAlm for v r!v I and uavu@1. Our results are very
weakly dependent on the number of terms used in
asymptotic expansion ofsAlm , and this provides a powerfu
consistency check. We found the following.

~i! The real part of the QN frequenciesvR approaches a
nonzero constant value. This value doesnot depend on the
spin s of the perturbing field and on the angular indexl. It
depends only on the rotation parametera, and is proportional
to m:

vR5mÃ~a!. ~11!

We determinedÃ(a) numerically~Fig. 3!, and showed that
it is not given by simple polynomial functions of the blac
hole temperatureT and angular velocityV ~or their in-
verses!. At fixed a, a fit of our numerical data by powe
series in 1/v I andA1/v I suggests that leading-order corre
tions to the asymptotic frequency are probably of order 1/v I .
~ii ! The imaginary partv I grows without bound, the spacin
between modesdv I being a monotonically increasing func
tion of a.

We wish to stress, once again, that the asymptotic
quencyvR is independent of the spins of the perturbing
field: this is consistent with results for highly damped QNM
of ~charged! RN black holes@11,12#.

By now it is quite clear that the original Hod propos
requires some modification~see, e.g.,@30#!. However, the
‘‘universality’’ of the asymptotic Kerr behavior we estab
lished in this paper is good news. For both charged and
tating black holes the asymptotic QNM frequencyvR de-
pends only on the black hole geometry, not on the perturb
field. If QNMs do indeed play a role in black hole quantiz
tion this is an essential prerequisite, and it seems to hold
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