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Charged black holes in quadratic gravity
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Iterative solutions to fourth-order gravity describing static and electrically charged black holes are con-
structed. The obtained solutions are parametrized by two integration constants which are related to the electric
charge and the exact location of the event horizon. Special emphasis is put on the extremal black holes. It is
explicitly demonstrated that in the extremal limit the exact location of(tlegenerateevent horizon is given
by r . =|e|. Similarly to the classical Reissner-Nordstrgolution, the near-horizon geometry of the charged
black holes in quadratic gravity, when expanded into the whole manifold, is simply that of Bertotti and
Robinson. Similar considerations have been carried out for boundary conditions of the second type which
employ the electric charge and the mass of the system as seen by a distant observer. The relations between
results obtained within the framework of each method are briefly discussed.
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I. INTRODUCTION cial functions. Further, it should be emphasized that although
the family of solutions is rich one should be cautious in
According to our present understanding, the applicabilityselecting physically meaningful solutiof8]. Naive accep-
of the conventional Einstein-Hilbert equations is limited totance of solutions may lead to interesting behavior of the
curvatures significantly less than the Planck scale and shouksystem but the wrong physics. It is natural therefore that in
be considered as the first approximation to a more fundamemyrder to gain insight into the nature of the nontrivial problem
tal theory. Although it is not clear how to construct this moregne has to refer to approximate methods. Such methods are
fundamental theory, it seems reasonable to address the quespected to yield reasonable solutions to the problem and
tion of its possible low-energy impact. In the quest for im- simultaneously select the physical ori&s-10).
prints of quantum gravity effects in the classical regime, an  For almost two decades perturbative methods have been
especially helpful observation is that, regardless of the forextensively used in black hole physics in the context of the
mulation of the fundamental theory, its Iow-energy effeCtiveback reaction of the quantized f|e|dmth massive and mass-
action should consist of the classical gravity supplementegesg on the metrid11—19. The (one-loop approximation to
by covariant higher-curvature terms and higher-derivativehe stress-energy tensor of massive quantized fields in the
terms involving other physical fields. The gravitational partjarge mass limit, for example, could be regarded as a higher-

of the total action can be written therefore as curvature term constructed from the curvature tensor, its con-
tractions, and its covariant derivativE¥0—24. It should be
lg=lot+l+lpt+---, (1) noted, however, that back reaction analyses are, inevitably,

limited to linearized equations. Similar considerations in the
wherel is the Einstein-Hilbert action and (for i=1) de-  context of a string inspired action with quadratic and quartic
notes combination of operators of dimensian+2 with nu-  terms constructed from the Riemann tensor have been carried
merical coefficients depending on the type of theory. out in Refs.[25,26].

Among the various modifications of general relativity A general perturbative method has been proposed in a
proposed so far, a prominent role is played by Lagrangianseries of paper7-29, and, subsequently, successfully ap-
describing quadratic gravity. The interest in theories of thisplied in a number of physically interesting cases, such as the
type is motivated by the fact that such theories appear, agde Sitter universe, cosmic strings, charged black holes, and
expected, in the low-energy limit of string theory and in gravitational waveg30]. The method is simple: assuming
attempts to construct a renormalizable theory of gravitythat the quadratic terms can be considered as small contribu-
coupled to mattef1—3]. It should also be remembered that tion to the effective stress-energy tensor, which is justified
theories of this kind are almost as old as general relativityfor small curvatures of spacetime, one can iteratively solve
itself and like general relativity have a noble parentagethe resulting equations order by order starting with the clas-
[4-7]. sical Einstein field equations. Among various applications

Higher-derivative terms in the equations of the gravita-the most interesting from our point of view is the perturba-
tional field have very important consequences. One of thentive solution describing static, spherically symmetric, and
consists in the obvious observation that such equations aegectrically charged black hole constructed by Campanelli,
presumably hard to solve even in cases when Einstein’sousto, and AudretschiCLA) in Ref.[29]. The calculations
equations admit solutions expressible in terms of known spehave been carried out up to third order with special emphasis

put on the thermodynamical issues. However, their analysis

is somewhat obscured by the choice of the boundary condi-

*Electronic address: matyjase@tytan.umcs.lublin.pl; tions, and, moreover, propagation of errors in the metric ten-
jurek@kft.umcs.lublin.pl sor caused errors in some of the results.

0556-2821/2004/6922)/12401610)/$22.50 69 124016-1 ©2004 The American Physical Society



J. MATYJASEK AND D. TRYNIECKI PHYSICAL REVIEW D 69, 124016 (2004

In this paper we shall return to this problem and expres$iold. Additional constraints could be obtained from non-
the resultant solutions in terms of the electric charge and th&achyon conditions, which are closely connected to the sta-
exactlocation of the event horizom,, . It seems that such a bility of the solutions[35]. Demanding the linearized equa-
choice is more natural and reveals the simplicity of the extions to possess a real md$$,37], one obtains
tremal configuration. It is also helpful in analyses of the

near-horizon geometry of the extremal black hole. Our 3a— =0, pB=0. (6)
method is similar to that of York11] and Lu and Wisg¢31] o ) .
with a different choice of the boundary conditions. To simplify the calculations, especially to keep control of

The paper is organized as follows. In Sec. Il we introducethe order of terms in complicated series expansions, we shall
the basic equations and briefly sketch the method employedntroduce anothetdimensionlessparametere, substituting
We choose the line element in the form propounded by Visa—ea and f—&B. We shall pute =1 in the final stage of
ser[32], which has proved to be a very useful representationthe calculations. As the coefficient does not appear in the
Since the functional dependence on the metric tensor of affnal formulas, introduction of the additional parameter
terms appearing in the equations is known, we start with théight appear as an unnecessary complication in the present
exact location of the event horizon from the very beginning.context. However, it is really helpful when dealing with more
This means that the higher-order terms do not contribute tgeneral Lagrangians, such as, for example, those of nonlinear
r. . To express our results in a more familiar form we alsoelectrodynamics.
introduce the horizon defined mass. A discussion of the tem- Functionally differentiatingS with respect to the metric
perature and entropy of the nonextremal configuration is pret€nsor, one obtains the system
sented in Sec. lll. A careful examination of the extremal b_ (b @b b
configuration and the role played by the Bertotti-Robinson Ga—aWHy— B H,=87T,, 0
geometry is given in Sec. IV. Moreover, it is shown that the
extremal black holes are characterizedrhy=|e|. In Sec. v Where
we discuss the problem from the point of view of a distant

observer and explicitly demonstrate the relations between the 1 4 128y — — Gab ®
two choices of boundary conditions. Section VI contains fi- g2 69ap 9 B :
nal remarks.
1 6
Il. EQUATIONS (ab= _f d*xg*?R?
. . gl/2 5gab
The coupled system of electrodynamics and quadratic
gravity with the cosmological term set to zero is described 1
by the action =2R 3—2RRAP+ Egab( R?—40R)
1 9
|—E|G+|em, 2 and
where
(2)yab_— i i d4xgl/2R bRab
12 2 by 44 Y2 69ap 2
o= | g4 R+ aR?+ BR,,R??)d*x (3) g a
1
and =R - OR™®= 2R R+ S g (R R™-IR).
1 (10
lem=~ 6 f g'Fdx. (4)
m The Faraday tensdf,, satisfies
Here F=F,F?, Fap,=Apa—Aap, and all symbols have Fab__( (11)
their usual meaning. The Kretschmann scalar has been re- a
moved from the action by means of the Gauss-Bonnet invarié\nd
ant.
For the numerical parametets and 8, we assume that *pab__q (12)
they are small and of comparable order, otherwise they @
would lead to observational effects within our solar systemThe stress-energy tenso??, defined as
Their ultimate values should be determined from observa-
tions of light deflection, binary pulsars, and cosmological 2 s
data[30,33,34. Following[29], we shall restrict ourselves to Tab=___ S (13

spacetimes of small curvatures, for which the conditions 9" 89ab o
|aR|<1, |BRapl<1 (5) s therefore given by
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1 1 r
Tg:—( FoaF 5 0%F |. (14) m(ry)= . 22

41 2

Let us consider a spherically symmetric and static geomwhich, as we shall see, is related to the horizon defined mass
etry. As is well known, the spacetime metric can be cast irof the black hole. With such a choice we express the solution

the form in terms of the exact location of the event horizon and the
dr? electric charge. On the other hand it seems natural to express
r .
d?=—f(r)e?Nd2+ — +r2(d 6%+ sirfod ¢2) the results in term of the mass of the system as seen by a
f(r) distant observer:
(15
limm(r)=M,. (23
with [32] r oo
2m(r i iti
f(r)=1- r( ) 16) For the functiony(r) we shall adopt the natural condition
lim ¢(r)=0. (24
The metric has horizons at values of the radial coordinate r—e
satisfying . '
Let us select boundary conditions of the first type. For the
r. functionsm(r) and ¢(r), we assume that they can be ex-
m(ry)=-. (17 panded as

In what follows we shall restrict our analyses to the outer-

n
most horizon, i.e., the one for which m(r)= MO(r)+gl &M (N +0(e™) (25)

r
m(r)<3 1g and
n
for r>r, . (=2, s (1) + 0", (26)
Spherical symmetry places restrictions on the form of the k=1
tensorF,,: the only nonvanishing components of the Fara-g should be noted thalrg(r) = 0.

day tensor are connected with the static radial electric an . _ .
Y Since we have assumed the expansiom@f) in the form

magnetic fields. Simple integration of the Maxwell equatlonsgiven by Eq.(25), the condition(22) can be rewritten in the

gives form
a
Fo=— 3¢ (19 Tt i=o,
Mi(r,)= 2 (27)
and 0 if i=1,
Fos=a,sing, (200  and such a choice is a typical mathematical procefia@

Now, inserting the line elementl5) into Egs.(7), making
wherea, anda, are integration constants interpreted as theuse of the expansiori&5) and(26), and finally collecting the
electric and the magnetic charge, respectively, and the formeerms with like powers of the parameter one obtains a
will henceforth be denoted bg. In what follows we shall system of differential equations fdvl,, M,, and ¢, (k
confine ourselves to solutions with an electric charge only. =1) of ascending complexity. The zeroth-order equations

The stress-energy tensor for the line elem@ and the  reduce to those of an Einstein-Maxwell system, and, after
Faraday tensof19) is simply simple manipulations, lead to the following integral:

e2

8mr?

1
T=Tl=—T/=-T¢=— (21) Mo=zf r2Fdr+Cy, (28)

and in this form is independent of the metric potentials. ~ which, when combined with the conditid®2), yields
Now we are going to construct an approximate solution 5 5

describing a static and spherically symmetric charged black M B f_++ e & (29

hole. The system of differential equations fa(r) and (r) olr)= 2 2r, 2r’ )

is to be supplemented with the appropriate, physically moti-

vated boundary conditions. Our preferred choice, requiring The first-order equation constructed from the radial com-

knowledge of the exact location of the event horizon, is  ponent of Eq(7) reads
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, 2M{  8MyM(, 2M(% 2M{§ 5MMj e?
M;=8 23 + 2y + 2 lﬂl(f)—Brj- (33
M(’)Mg M2 MoME) _ _ . :
- — M- —— Starting from the second order, the differential equations be-

0
2 r come more and more complicated and we shall display their

solutions only. After some algebra one has

~M{MP+rM§P—2mMEP | (30

351e'r, 36e® 1156" 76er. 76e’
On the other hand, the first-order equation constructed frotM2(r) =5 4 8 N *

. . : rd 7’ ré rér
the time component of Eq.7), when combined with Eqg.
(30), can be easily integrated to yield 704e e?r2 40 e 351 b . 3 et
, 4 159 r’ r2r7 4 rr® 234
a(r)=B| M= = Mg | +C;, (31)
r 9 et 1 e® 3¢
. . . T e —9 ~oa T (34)
whereC, is an integration constant. 10 14,5 12 287
Inserting Eq.(29) into Eq. (30) and integrating the equa-
tion thus obtained, one has
and
M(r) [3(282 3e’r, 3¢t Jr6e4 e? . 3e?
W=p| 5~ 4 4" 5.5 5.3 5 | et e? et
r 2r 2rr* 5r> 2r1 10r3 2 oA a1 35
(32 ve=P r’ r'r, ré& 8 (39
Further, substituting the zeroth-order solution to 84) and
making use of the boundary conditid®2) gives for the second order, whereas the third-order results read
|
3 144 0e_2 550 e2r++2116 zﬁ . 12392664¢° . 331624¢° | 2229 e’ 4e2 | 652 e’ 2587¢€°
3(1) r7 r8 r9 385 (11 65 18 572,13 7 55,9 220 1
+ + + +
+ 61 e® . et o e’rs , 228 e’ _e*  130732e%r, 130732 &° . 115176€*r?
ror2 3 5 65 Tord 5 rl0 5 i, 1 1
51347e‘5r+i 115176 e® 51347 €8 o744 e 80 et 3 e 681 e’r? 4 e8 351 €
4 ¢z 11 201 4 g gt P3rl0 27 T4 T 4 38
1053 € e? . 9 e 39
20 r3r8 4r%9  28y7y4
|
and It is possible to express this result in a more familiar form
by introducing the horizon defined malsk i.e., to represent
5[ 96 eb et et the solution in terms of&,M) rather than ¢,r ,). This can
P3(r)=p° = _r_ 3264— 32647 327 be easily done by employing the equality
+ +
2
4 6 2.2 I, e
_ 74560er, 74560 e +2352e re M = ?Jr T (39)
11 1 11 r11r+ r 10 +
48384 ¢* e 69572eb e and repeating the calculations with
+Tm+2352m+?r_12+1086r_8 . o2
37 Mo(r)=M—§. (39
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Now theexactlocation of the event horizon is related to the 1 e2 Be? e2 B2’ e2
horizon defined mass by the classical formula Ty= -t 1= ol 1=
4r ry)  4mrs re) 8mrs re
r,=M+(M?-e?2 (40)

+ pe’ 1 ¢ 880 — 323274 +245%*
It should be noted, however, that although the zeroth-order 44013\ T 2 (8803~ et )
equation gives the exact location of the event horizon the
same is not true for its second root, +0O(BY). (45)

We suspect that the common factor in the above expression
Fe=1—- (4D appears in all higher-order terms and far=|e| the black
hole temperature approaches zero. We shall return to this
Indeed, it can be shown that the inner horizanis given by ~ Problem later in the text.
We have not, as yet, imposed any constraints on the pa-
(3e4 2¢2 2 or, 3ri) rameter 8, but now we are going to examine the conse-
r_=rq+ quences of the nontachyon condition, which, in the case at
hand, is simply3<<0. For the nonextremal black hole the
5 4 5 terms proportional tgg and 82 in the right hand side of Eq.
o & 214" 38 206 13l (45) are strictly negative, and, therefore, one concludes that
6r® 5257 525¢% 5253 10%?%r, the temperaturéo this ordey is lower as compared with the
Reissner-Nordstr black hole described by the same values
58 r, 374r% 542r3 191r’ . of r, ande. On the other hand the higher-order terms pro-
e ﬁ§+ 5258 150 g0 +0O(B°), portional to ¥ (for k=3) change sign; however, for reason-
able values of the coupling constant their contribution to the
(42) total temperature is negligible.

The entropy of the black hole in quadratic gravity may be
and, moreover, a simple calculation shows thatrfor=|e| calculated using various methods. Here we shall employ
both horizons coincide to the required order. Such behaviowald’s Noether charge techniqui89], which, as has been
strongly suggests that this very relation describes degenerashown in Refs. [40,41, may be safely applied for
horizons of the extreme black hole. Since extreme blackagrangians of the typ€2) and leads to the remarkably
holes deserve more accurate treatment we shall postpone figimple and elegant general result
ther analysis of this and related problems to Sec. IV.

1
_ 2 ab

Ill. TEMPERATURE AND ENTROPY S 4fzd X\/ﬁ[l 2aR+ B(R=N"Rap)], (46)

One of the most important characteristics of the black _ _ ) .
hole is its Hawking temperatuf®, . To investigate how yvherehab is the |nduceq metric OE_ and the surface mtggral
is modified by the quadratic terms, we employ the standard® taken across an arbitrary section of the event horizon. In
procedure of the Wick rotation. The complexified line ele-OUr representation, the entropy after some algebra may be
ment thus obtained has no conical singularityr asr . pro- compactly written as
vided the time coordinate is periodic with a periBdwhich

is to be identified with the reciprocal df,. Elementary 8w’B , 1024m'e’p’ -
considerations carried out for the general static and spheri->= 2~ ~ A €7 5 (A=4meT)
cally symmetric spacetime describing a black hole lead to the
formula 16384m°e?3*
+ ——————(A—4me®)?(26me®>—5A) + O(B°),
1 d ! AT
P:T_H:47T lim (gttgrr)UZ(agtt) . (43 (47)

r—r,

For the line elemenf15) and the boundary conditia22) the ~ WhereA=4ar’ is the surface of the event horizon. We at-
above result assumes the simple form tribute discrepancies between our result and the entropy

computed by CLA to errors in their metric tensor.

ers) [ dm(r)
TH:—zwri (7_r+—dr - ) : (44) IV. THE EXTREMAL CONFIGURATION
Tt AND ITS NEAR-HORIZON GEOMETRY
Making use of Eqs(29) and (32)—(37), and collecting the In this section we shall investigate the important issue of
terms with like powers of3, after massive simplification one extremal black holes. On general grounds one expects that
obtains the extremal configuration is the one in whi@t least two
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horizons merge. This means that in the simplest case the firsase, such as for example that of nonlinear electrodynamics,
two terms of the expansion there is an explicit dependence on the coupling constant
and the stress-energy tensor lacks the simplicity of its Max-

B df 14d? ) wellian analogue. Indeed, repeating the calculations for a

f(r)=f(ry)+ ar (r=ry)+ 2 dr2 (r=rs)® - Jine element of the typ&l5) and an arbitrary stress-energy
r=r+ r=r, tensor, one has
(48)

: o . . . 1 2 1] 1

vanish. It is evident that if the first terms in the above (B+2a)||5f"(r )| ——|——5=8=T|(ry) (55
. . . 2 4 2 et

expansion are absent one hasmafold merging ofn hori- rel rs

zons. In view of the further applications, we also expect q
regularity of the function/(r) as the degenerate event hori- an

zon is approached: P
1 ” 1 1 ” 6
Ef (ry) _r_4 +§f (ry)=8mTy(r).

+

—(B+2a)
o<, |0

(49

(56)

r=r,
) ) ) It should be noted that in order to obtain E§6) one has to

In order to determine the location of the event hor'zon'assume|f(4)(r+)|<oo and [¢(r,)|<w. The spherical
i.e., to relate the integration constamts ande, one has 10 qymmetry and the field equations at the event horizon, re-
consider the consequences of the vanishing of the black ho@pectively, give
temperature(surface gravity. Equation(45) strongly indi-
cates thar , =|e|. To demonstrate the validity of this rela- T)=T5, Ti=T;. (57)
tion let us consider thér) component of Eq(7). It can be
shown that iff’(r.)=0, the conditions49) are satisfied, Combining the above equations, one obtains
and, additionally,

2
” I a

|f(3)(r+)|<oo, |¢(3)(r+)|<oo; (50) f (r+) r, 877Ta(r+): (58)
then the second derivative 6fcomputed at =r , satisfies WhereTj is the trace of the stress-energy tensor.
the constraint equation As is well known the closest vicinity of the event horizon

5 of the extremal Reissner-Nordsinablack hole, after the co-
1 B pB[d* e? ordinate transformation
Tt T g2 | T (51
re rJ dref, ri r,
* r=r, |1+ 7 , (59

The metric of the electrically charged black hole must be _ _ _ _
independent of the coupling constamt[27,47. Repeating can be approximated by the Bertotti-Robinson line element
the calculations for thér) component of the tensdPH2 at ~ [43,44

r=r, one has (2
o 1/ \2 dsz=y—;(—dt2+ dy?+y2dQ?). (60)
(1)Hr(r ): _— = — (52)
r+ 4 2
ri o 2\dr r Employing new static coordinates, the Bertotti-Robinson line

element can be rewritten in the form
The absence of terms proportionald® (k=0,1,2 . ..) re-
quires WH? to vanish identically, and, since both conditions ds’=r% (—sinlxdr?+dy*+do?+sinfod¢?) (61)
are to be satisfied simultaneously, one obtains the expect%q
exact result:

x? x2 -
r.=lel. (53 ds?=—| 5 —1|dT2+| > —1] dx
r r
Equivalently, expressing the location of in terms of the ) ! _ ’
horizon defined mass vyields +r1%(d#%+sirfod¢?). (62
ry=M. (54)  The latter form is particularly useful in demonstrating that

the topology of the Bertotti-Robinson solution is AdS
The relations obtained are identical with those that characx S, i.e., it is a simple topological product of @-+1)-
terize the geometry of the extremal Reissner-Norastro dimensional anti—de Sitter spacetime and a two-sphere of
black hole. As the particular form of the traceless stressradiusr, .
energy tensor played a decisive role in our derivation, one One expects that this spacetime also plays some role for
should not expect simple generalizations. In a more generalxtremal black holes in quadratic gravity. Indeed, first ob-
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serve that, because of simplicity of the Bertotti-Robinson R= KAdSZ+ K2, (69)
line element, the tensors'H,, and ®H,, as well as the

curvature scalar vanish. The only contribution to the left,,ere

hand side of Eq(7) comes, therefore, from the Ricci tensor,

which for the metric(60) is given by 2

L Kads,=—2F and Kg= = (70)
RI=R'=—Rj=—R}=— . (63) '
= Upon the substitution
As the stress-energy tensor of the electromagnetic field is n
simply r:r++m, (72)
T{:sz—ng—Tﬁz—L (64) ,
8rr2’ one obtains

one concludes that the line elemé@0) is an exact solution 1 5 5 5 _ 5
if r.=|e|. Moreover, inspection of Eq(7) suggests that, dSz:;(—dt +dy?) +r3(d6*+sirfodp?). (72
after redefinition of the time coordinate, the dominant con- y

tribution to the metric potentialg, andg,, near the event Finally, observe that vanishing of the curvature scalar as

horizon comes from the functiod (r). It follows then that . d
locally it resembles the geometry of the extremal Reissner.+ + yields Eq.(68), and the line elemer(72) reduces to

Nordstran black hole. (60).

To investigate the role played by the Bertotti-Robinson
solution in more detail let us return to the expansi®) and V. A DISTANT OBSERVER POINT OF VIEW
ask when the near-horizon geometry of the extremal black
hole is that described by the line elemé®®). In the vicinity
of the event horizon the line element may be written as

In this section we shall briefly examine the consequences
of the second choice of the boundary conditions as given by
Egs. (23) and (24). This problem was considered earlier by
CLA. Unfortunately, their metric tensor and hence other

ds?= — e/ (r —r, )2dt2+ ;dr% r2d0?, characteristics of the charged black holes in quadratic gravity
F(r—r.)? contain errors in the terms proportional/&?.
(65) Before proceeding further let us return to the function
m(r) constructed with the aid of the conditi¢2). Its limit
where asr—o is simply
2
(= Lat (66) ry e 3e* € e® 3¢t
2 dr2 M,=—+-—+8 - 2 -
r=r, 2 2ry oS 2rd 12r9 287
It can bg easily demonstrated t_hat, by. expressing the line 42 6524 258%° 222g8
element in terms of a new coordinatelefined by means of B == o =] T OBY
the relation ry 55 220 57
(73)
My
F=re| 1+ e«//(u)y) ' (67) and is interpreted as the total mass of the system as seen by
a distant observer and expressed in terms of the exact loca-
one obtains the line eleme(@0) provided tion of the event horizon and electric charge. On the other
hand, one can represent the solution to the systémin
d?f 2 terms of the total mass as seen from large distances and the
ﬁ :E' (68) electric charge from the very beginning. In this case the

r=r,

boundary conditions for the expansi@b) are to be rewrit-

i - . ) in the f
Inspection of Eq(52) shows that it is precisely the relation ten in the form

that is satisfied by an extremal black hole. It should be noted M. if i=0
that from Eq.(58) our demonstration requires the trace of the lim M, (r)= 7 (74)
stress-energy tensor to vanishratr . only. o0 0 if i=1,

On the other hand, if”(r ) does not obey Eq68), the
topology of the solution(65) is still a simple product of while the condition(24) remains, of course, intact. Repeating
AdS,x S, but with a different modulus of curvature. Indeed, the calculations order by order with the new boundary con-
it can be easily shown that ditions, one obtains
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M ez+ ) 2 3e2Mm+ 4 e e’M. 596e* 704¢€° 662M§,+351e4Mw 6e_2
B T A I A T R A BT
. e’M? e’M., e? 4330344e° 179144e’M. 331624€® 460704e'M?
+ 27264—Irg —11016—r8 +1440r—7+ 38 15 o o5 r13+—11 —
51347e°M., e’M? e’ .
> —21952rT+7536r—9 +0O(B% (75)
|
and ro=M.+(M2—e?)'2 (79
e 24e2 64e’M,,  41e* Repeating the steps of Sec. lll necessary to compute the
P(r)= ,3——,3 6 7 + 8 Hawking temperature and expressing the final result in terms
of e andrg, one has
24864% 9408°MZ 69572° 108G T
3 + + , o €Y2rg—e’)
5r10 rio 15012 ré Th=——(5-)+B——5—-
4y Sro(ro—e”)
6528°M,, 14912@*M., (8" - . g . 113
- - . e
ro 11rtt B 3<— e®— —elr§+ ——e'r}
7Tr0 (ro—e) 25 21 75
Equations(75) and (76) are sufficient to determing,; and 676 3
g to O(B*). The metric tensor thus obtained differs from — b ro_ —r +0(B3). (80)
that obtained by CLA. To demonstrate that our calculations - 525 70

lead to correct results, let us make use of a consistenc

check. Inserting Eq(73) into Egs.(75) and(76), one obtains,
as expected, Eq$29) and(32)—(37). Since the calculations

have been carried out independently we conclude that o

results are correct.

To determine the location of the event horizon one can r.

either iteratively solve the equation

Ou(r4+)=0

or invert the relation73). Both methods give the same re-
sult, which reads

(77

e?(5r5—3e?)
r+=ro — 3 .2 o
5ri(ri—e?
,€%(2925 - 6515 ge? + 5095 je* — 133%°)

1050 {(rz—e?)®

, € [17268913e™ 61234643
h (r2—e?5| 75075 7 750750 %
137993e* 3265043e° 26686967€°
770 ro 10010 (& 75075 5

436497

" 35750 (1 (78

3 3064 , .
—8rpt ﬁe ro| +0O(B8%),

where

X\Ithough the extremal configuration can be studied in
(e,M..) representation it is not the best choice. Indeed,

Lﬁ,imple calculations give for the location of the event horizon

=M.+ o(BY,

(81)

17
2
BT

_ 3
5Mwﬂ 105av2 5B

6825(M .,

whereas the relation between the total mass as seen by a
distant observer and the electric charge has the form

2 4
52502

2__ 3+
B>~ 1365343 oBY. (82
This can be contrasted with the simple relation between
and|e| given by Egs.(53) and (54). Finally, observe that,
since the entropy as given by E@7) is expressed in terms
of the surface of the event horizon and the electric charge,
we expect that it should be described by the same formula

for both choices of the condition®2) and (23).

VI. CONCLUSION AND SUMMARY

In this paper we have constructed iterative solutions de-
scribing spherically symmetric and static black holes to the
equations of fourth-order gravity with the source term given
by the stress-energy tensor of the electromagnetic field. The
line elements obtained are parametrized by two integration
constants which are related to the electric charge and the
exact location of the event horizon. The metric potentials
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thus computed enabled construction of the basic characteris- 1
tics of the black hole: its Hawking temperature and entropy. f @dw r—ln(r —ry),

Special emphasis has been put on extremal black holes. ’
Specifically, it has been explicitly demonstrated that in theaS it diverges in the limir -r, . Moreover, the entropy
extremal limit the exact location of thelegenerateevent ~fémains nonzero a8—4sr’. and depends on the electric
horizon is given byr . =|e|. It was shown that, similarly to charge. This behavior clearly violates the Nernst formulation

the classical Reissner-Nordstnosolution, the near-horizon of the third law of thermodynamics, which states that the
' . . entropy of a system must go to zero or a universal constant

geometry of the charged black holes in quadratic gravitygsT_,0. On the other hand, even if the entropy of the ex-
when expanded into the whole manifold, is simply that oftremal black hole vanishdd5], there are still problems sim-
Bertotti and Robinson. As a by-product of our investigationsply because of its noncontinous nature. Indeed, zero is not
we obtained a simple equation that relates the horizon valuthe limit to which the entropy of the nearly extremal black
f with the trace of the stress-energy tensor, which, for sololes tends. One can argue that this behavior should not be
lutions of the equations of quadratic gravity describing blackréated as worrisome simply because the Nernst formulation
holes, may serve as a useful criterion for possessing ne robably shogld not be con5|der(_ad as a fundameqtal law of

) ) ) hermodynamics. For a recent discussion of this issue, see
horizon geometry of the Bertotti-Robinson type. [46]. On the other hand according to more radical opinions,

Similar considerations have been carried out for boundaryhis failure indicates that extremal black holes must not be
conditions of a second type, which employ the electrictreated as thermodynamic systems to which one can assign
charge and the mass of the system as seen by a distant dbe notions of temperature and entrdpy]. Of course, we
server. Moreover, the method to relate the appropriate resul@e unable here to judge which option should be treated se-
obtained within the framework of each method has been exdoUsly: All we can say now is that the entropy as given by
plicitly demonstrated. Eq. (47) (probably can be safely used for nonextremal black

Returning to the extremal black holes, we observe thaEoles. However, the particular case of extreme black holes

. ... —certainly deserves further study.
there are good reasons to believe that they are qualitatively Finally, let us observe that the methods of this paper could

different from the nonextremal ones. A proper distance, forasjly be generalized to other sources, such as, for example,
example, between two points, one of which resides on th@onlinear electrodynamics. This group of problems is under
event horizon, is infinite. This can easily be seen from theactive investigation and the results will be published else-

(83

integral

where.
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