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Charged black holes in quadratic gravity

Jerzy Matyjasek* and Dariusz Tryniecki
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Iterative solutions to fourth-order gravity describing static and electrically charged black holes are con-
structed. The obtained solutions are parametrized by two integration constants which are related to the electric
charge and the exact location of the event horizon. Special emphasis is put on the extremal black holes. It is
explicitly demonstrated that in the extremal limit the exact location of the~degenerate! event horizon is given
by r 15ueu. Similarly to the classical Reissner-Nordstro¨m solution, the near-horizon geometry of the charged
black holes in quadratic gravity, when expanded into the whole manifold, is simply that of Bertotti and
Robinson. Similar considerations have been carried out for boundary conditions of the second type which
employ the electric charge and the mass of the system as seen by a distant observer. The relations between
results obtained within the framework of each method are briefly discussed.
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I. INTRODUCTION

According to our present understanding, the applicabi
of the conventional Einstein-Hilbert equations is limited
curvatures significantly less than the Planck scale and sh
be considered as the first approximation to a more fundam
tal theory. Although it is not clear how to construct this mo
fundamental theory, it seems reasonable to address the q
tion of its possible low-energy impact. In the quest for im
prints of quantum gravity effects in the classical regime,
especially helpful observation is that, regardless of the
mulation of the fundamental theory, its low-energy effecti
action should consist of the classical gravity supplemen
by covariant higher-curvature terms and higher-derivat
terms involving other physical fields. The gravitational p
of the total action can be written therefore as

I G5I 01I 11I 21•••, ~1!

whereI 0 is the Einstein-Hilbert action andI i ~for i>1) de-
notes combination of operators of dimension 2i 12 with nu-
merical coefficients depending on the type of theory.

Among the various modifications of general relativi
proposed so far, a prominent role is played by Lagrangi
describing quadratic gravity. The interest in theories of t
type is motivated by the fact that such theories appear
expected, in the low-energy limit of string theory and
attempts to construct a renormalizable theory of grav
coupled to matter@1–3#. It should also be remembered th
theories of this kind are almost as old as general relati
itself and like general relativity have a noble parenta
@4–7#.

Higher-derivative terms in the equations of the gravi
tional field have very important consequences. One of th
consists in the obvious observation that such equations
presumably hard to solve even in cases when Einste
equations admit solutions expressible in terms of known s
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cial functions. Further, it should be emphasized that altho
the family of solutions is rich one should be cautious
selecting physically meaningful solutions@8#. Naive accep-
tance of solutions may lead to interesting behavior of
system but the wrong physics. It is natural therefore tha
order to gain insight into the nature of the nontrivial proble
one has to refer to approximate methods. Such methods
expected to yield reasonable solutions to the problem
simultaneously select the physical ones@8–10#.

For almost two decades perturbative methods have b
extensively used in black hole physics in the context of
back reaction of the quantized fields~both massive and mass
less! on the metric@11–19#. The~one-loop! approximation to
the stress-energy tensor of massive quantized fields in
large mass limit, for example, could be regarded as a hig
curvature term constructed from the curvature tensor, its c
tractions, and its covariant derivatives@20–24#. It should be
noted, however, that back reaction analyses are, inevita
limited to linearized equations. Similar considerations in t
context of a string inspired action with quadratic and qua
terms constructed from the Riemann tensor have been ca
out in Refs.@25,26#.

A general perturbative method has been proposed i
series of papers@27–29#, and, subsequently, successfully a
plied in a number of physically interesting cases, such as
de Sitter universe, cosmic strings, charged black holes,
gravitational waves@30#. The method is simple: assumin
that the quadratic terms can be considered as small cont
tion to the effective stress-energy tensor, which is justifi
for small curvatures of spacetime, one can iteratively so
the resulting equations order by order starting with the cl
sical Einstein field equations. Among various applicatio
the most interesting from our point of view is the perturb
tive solution describing static, spherically symmetric, a
electrically charged black hole constructed by Campane
Lousto, and Audretsch~CLA! in Ref. @29#. The calculations
have been carried out up to third order with special emph
put on the thermodynamical issues. However, their anal
is somewhat obscured by the choice of the boundary co
tions, and, moreover, propagation of errors in the metric t
sor caused errors in some of the results.
©2004 The American Physical Society16-1
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In this paper we shall return to this problem and expr
the resultant solutions in terms of the electric charge and
exactlocation of the event horizon,r 1 . It seems that such a
choice is more natural and reveals the simplicity of the
tremal configuration. It is also helpful in analyses of t
near-horizon geometry of the extremal black hole. O
method is similar to that of York@11# and Lu and Wise@31#
with a different choice of the boundary conditions.

The paper is organized as follows. In Sec. II we introdu
the basic equations and briefly sketch the method emplo
We choose the line element in the form propounded by V
ser@32#, which has proved to be a very useful representat
Since the functional dependence on the metric tensor o
terms appearing in the equations is known, we start with
exact location of the event horizon from the very beginnin
This means that the higher-order terms do not contribute
r 1 . To express our results in a more familiar form we a
introduce the horizon defined mass. A discussion of the t
perature and entropy of the nonextremal configuration is p
sented in Sec. III. A careful examination of the extrem
configuration and the role played by the Bertotti-Robins
geometry is given in Sec. IV. Moreover, it is shown that t
extremal black holes are characterized byr 15ueu. In Sec. V
we discuss the problem from the point of view of a dista
observer and explicitly demonstrate the relations between
two choices of boundary conditions. Section VI contains
nal remarks.

II. EQUATIONS

The coupled system of electrodynamics and quadr
gravity with the cosmological term set to zero is describ
by the action

I 5
1

16p
I G1I em, ~2!

where

I G5E g1/2~R1aR21bRabR
ab!d4x ~3!

and

I em52
1

16pE g1/2Fd4x. ~4!

Here F5FabF
ab, Fab5Ab,a2Aa,b , and all symbols have

their usual meaning. The Kretschmann scalar has been
moved from the action by means of the Gauss-Bonnet inv
ant.

For the numerical parametersa and b, we assume tha
they are small and of comparable order, otherwise t
would lead to observational effects within our solar syste
Their ultimate values should be determined from obser
tions of light deflection, binary pulsars, and cosmologi
data@30,33,34#. Following @29#, we shall restrict ourselves t
spacetimes of small curvatures, for which the conditions

uaRu!1, ubRabu!1 ~5!
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hold. Additional constraints could be obtained from no
tachyon conditions, which are closely connected to the
bility of the solutions@35#. Demanding the linearized equa
tions to possess a real mass@36,37#, one obtains

3a2b>0, b<0. ~6!

To simplify the calculations, especially to keep control
the order of terms in complicated series expansions, we s
introduce another~dimensionless! parameter«, substituting
a→«a andb→«b. We shall put«51 in the final stage of
the calculations. As the coefficienta does not appear in the
final formulas, introduction of the additional paramet
might appear as an unnecessary complication in the pre
context. However, it is really helpful when dealing with mo
general Lagrangians, such as, for example, those of nonli
electrodynamics.

Functionally differentiatingS with respect to the metric
tensor, one obtains the system

Ga
b2a (1)Ha

b2b (2)Ha
b58pTa

b , ~7!

where

1

g1/2

d

dgab
E g1/2Rd4x52Gab, ~8!

(1)Hab5
1

g1/2

d

dgab
E d4xg1/2R2

52R; ab22RRab1
1

2
gab~R224hR!

~9!

and

(2)Hab5
1

g1/2

d

dgab
E d4xg1/2RabR

ab

5R; ab2hRab22RcdR
cbda1

1

2
gab~RcdR

cd2hR!.

~10!

The Faraday tensorFab satisfies

Fab
;a50 ~11!

and

* Fab
;a50. ~12!

The stress-energy tensorTab, defined as

Tab5
2

g1/2

d

dgab
Sem, ~13!

is therefore given by
6-2
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Ta
b5

1

4p S FcaF
cb2

1

4
da

bF D . ~14!

Let us consider a spherically symmetric and static geo
etry. As is well known, the spacetime metric can be cas
the form

ds252 f ~r !e2c(r )dt21
dr2

f ~r !
1r 2~du21sin2udf2!

~15!

with @32#

f ~r !512
2m~r !

r
. ~16!

The metric has horizons at values of the radial coordin
satisfying

m~r 1!5
r 1

2
. ~17!

In what follows we shall restrict our analyses to the out
most horizon, i.e., the one for which

m~r !,
r

2
~18!

for r .r 1 .
Spherical symmetry places restrictions on the form of

tensorFab : the only nonvanishing components of the Fa
day tensor are connected with the static radial electric
magnetic fields. Simple integration of the Maxwell equatio
gives

F0152
a1

r 2
ec ~19!

and

F235a2sinu, ~20!

wherea1 anda2 are integration constants interpreted as
electric and the magnetic charge, respectively, and the for
will henceforth be denoted bye. In what follows we shall
confine ourselves to solutions with an electric charge on

The stress-energy tensor for the line element~15! and the
Faraday tensor~19! is simply

Tt
t5Tr

r52Tu
u52Tf

f52
e2

8pr 4
~21!

and in this form is independent of the metric potentials.
Now we are going to construct an approximate solut

describing a static and spherically symmetric charged bl
hole. The system of differential equations form(r ) andc(r )
is to be supplemented with the appropriate, physically m
vated boundary conditions. Our preferred choice, requir
knowledge of the exact location of the event horizon,r 1 , is
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m~r 1!5
r 1

2
, ~22!

which, as we shall see, is related to the horizon defined m
of the black hole. With such a choice we express the solu
in terms of the exact location of the event horizon and
electric charge. On the other hand it seems natural to exp
the results in term of the mass of the system as seen
distant observer:

lim
r→`

m~r !5M` . ~23!

For the functionc(r ) we shall adopt the natural condition

lim
r→`

c~r !50. ~24!

Let us select boundary conditions of the first type. For
functionsm(r ) and c(r ), we assume that they can be e
panded as

m~r !5M0~r !1 (
k51

n

«kMk~r !1O~«n11! ~25!

and

c~r !5 (
k51

n

«kck~r !1O~«n11!. ~26!

It should be noted thatc0(r )50.
Since we have assumed the expansion ofm(r ) in the form

given by Eq.~25!, the condition~22! can be rewritten in the
form

Mi~r 1!5H r 1

2
if i 50,

0 if i>1,

~27!

and such a choice is a typical mathematical procedure@38#.
Now, inserting the line element~15! into Eqs. ~7!, making
use of the expansions~25! and~26!, and finally collecting the
terms with like powers of the parameter«, one obtains a
system of differential equations forM0 , Mk , and ck (k
>1) of ascending complexity. The zeroth-order equatio
reduce to those of an Einstein-Maxwell system, and, a
simple manipulations, lead to the following integral:

M05
1

4E r 2Fdr1C1 , ~28!

which, when combined with the condition~22!, yields

M0~r !5
r 1

2
1

e2

2r 1
2

e2

2r
. ~29!

The first-order equation constructed from the radial co
ponent of Eq.~7! reads
6-3
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M185bS 2M08

r 2
2

8M0M08

r 3
1

2M08
2

r 2
2

2M09

r
1

5M0M09

r 2

2
M08M09

r
1

M09
2

2
1M0

(3)2
M0M0

(3)

r

2M08M0
(3)1rM 0

(4)22M0M0
(4)D . ~30!

On the other hand, the first-order equation constructed f
the time component of Eq.~7!, when combined with Eq
~30!, can be easily integrated to yield

c1~r !5bS M0
(3)2

4

r 2
M08D 1C2 , ~31!

whereC2 is an integration constant.
Inserting Eq.~29! into Eq. ~30! and integrating the equa

tion thus obtained, one has

M1~r !5bS 2e2

r 3
2

3e2r 1

2r 4
2

3e4

2r 1r 4
1

6e4

5r 5
2

e2

2r 1
3

1
3e4

10r 1
5 D .

~32!

Further, substituting the zeroth-order solution to Eq.~31! and
making use of the boundary condition~22! gives
12401
m

c1~r !5b
e2

r 4
. ~33!

Starting from the second order, the differential equations
come more and more complicated and we shall display t
solutions only. After some algebra one has

M2~r !5b2S 351

4

e4r 1

r 8
2

36e2

r 5
2

1156e4

7r 7
1

76e2r 1

r 6
1

76e4

r 6r 1

2
704

15

e6

r 9
240

e2r 1
2

r 7
240

e6

r 1
2 r 7

1
351

4

e6

r 1r 8
1

3

2

e4

r 1
3 r 4

2
9

10

e6

r 4r 1
5

1
1

12

e6

r 1
9

2
3

28

e4

r 1
7 D ~34!

and

c25b2S 32
e2r 1

r 7
132

e4

r 7r 1

224
e2

r 6
241

e4

r 8D ~35!

for the second order, whereas the third-order results rea
M3~r !5b3S 1440
e2

r 7
25508

e2r 1

r 8
121168

e4

r 9
1

12392664

385

e6

r 11
1

331624

65

e8

r 13
1

2229

572

e8

r 1
13

24
e2

r 1
7

1
652

55

e4

r 1
9

2
2587

220

e6

r 1
11

16816
e6

r 9r 1
2

276
e4

r 6r 1
3

22744
e2r 1

3

r 10
1

228

5

e6

r 6r 1
5

25508
e4

r 1r 8
2

130732

5

e4r 1

r 10
2

130732

5

e6

r 10r 1

1
115176

11

e4r 1
2

r 11

2
51347

4

e6r 1

r 12
1

115176

11

e8

r 1
2 r 11

2
51347

4

e8

r 1r 12
22744

e8

r 1
3 r 10

180
e4

r 1
2 r 7

132
e6

r 1
4 r 7

16816
e2r 1

2

r 9
248

e8

r 1
6 r 7

2
351

4

e6

r 1
3 r 8

1
1053

20

e8

r 1
5 r 8

2
e8

4r 4r 1
9

1
9

28

e6

r 1
7 r 4D ~36!
rm
and

c3~r !5b3S 96

5

e6

r 7r 1
5

23264
e2r 1

r 9
23264

e4

r 9r 1

232
e4

r 7r 1
3

2
74560

11

e4r 1

r 11
2

74560

11

e6

r 11r 1

12352
e2r 1

2

r 10

1
48384

5

e4

r 10
12352

e6

r 10r 1
2

1
69572

15

e6

r 12
11080

e2

r 8D .

~37!
It is possible to express this result in a more familiar fo
by introducing the horizon defined massM, i.e., to represent
the solution in terms of (e,M ) rather than (e,r 1). This can
be easily done by employing the equality

M5
r 1

2
1

e2

2r 1
~38!

and repeating the calculations with

M0~r !5M2
e2

2r
. ~39!
6-4
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Now theexactlocation of the event horizon is related to th
horizon defined mass by the classical formula

r 15M1~M22e2!1/2. ~40!

It should be noted, however, that although the zeroth-or
equation gives the exact location of the event horizon
same is not true for its second root,

r c5
e2

r 1
. ~41!

Indeed, it can be shown that the inner horizonr 2 is given by

r 25r c1
b

5 S 3e4

r 1
5

2
2e2

r 1
3

2
2

r 1
2

2r 1

e2
1

3r 1
3

e4 D
1b2S e6

6r 1
9

2
214

525

e4

r 1
7

1
38

525

e2

r 1
5

1
206

525r 1
3

2
131

105e2r 1

1
58

105

r 1

e41
374

525

r 1
3

e6
1

542

525

r 1
5

e8
2

191

150

r 1
7

e10D 1O~b3!,

~42!

and, moreover, a simple calculation shows that forr 15ueu
both horizons coincide to the required order. Such beha
strongly suggests that this very relation describes degene
horizons of the extreme black hole. Since extreme bl
holes deserve more accurate treatment we shall postpone
ther analysis of this and related problems to Sec. IV.

III. TEMPERATURE AND ENTROPY

One of the most important characteristics of the bla
hole is its Hawking temperatureTH . To investigate howTH
is modified by the quadratic terms, we employ the stand
procedure of the Wick rotation. The complexified line e
ment thus obtained has no conical singularity asr→r 1 pro-
vided the time coordinate is periodic with a periodP, which
is to be identified with the reciprocal ofTH . Elementary
considerations carried out for the general static and sph
cally symmetric spacetime describing a black hole lead to
formula

P5
1

TH
54p lim

r→r 1

~gttgrr !
1/2S d

dr
gttD 21

. ~43!

For the line element~15! and the boundary condition~22! the
above result assumes the simple form

TH5
ec(r 1)

2pr 1
2 S r 1

2
2r 1

dm~r !

dr U
r 5r 1

D . ~44!

Making use of Eqs.~29! and ~32!–~37!, and collecting the
terms with like powers ofb, after massive simplification on
obtains
12401
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TH5
1

4pr 1
S 12

e2

r 1
2 D 1

be2

4pr 1
5 S 12

e2

r 1
2 D 2

b2e4

8pr 1
9 S 12

e2

r 1
2 D

1
b3e2

440pr 1
13S 12

e2

r 1
2 D ~880r 1

4 23232e2r 1
2 12455e4!

1O~b4!. ~45!

We suspect that the common factor in the above expres
appears in all higher-order terms and forr 15ueu the black
hole temperature approaches zero. We shall return to
problem later in the text.

We have not, as yet, imposed any constraints on the
rameterb, but now we are going to examine the cons
quences of the nontachyon condition, which, in the case
hand, is simplyb,0. For the nonextremal black hole th
terms proportional tob andb2 in the right hand side of Eq
~45! are strictly negative, and, therefore, one concludes
the temperature~to this order! is lower as compared with the
Reissner-Nordstro¨m black hole described by the same valu
of r 1 ande. On the other hand the higher-order terms p
portional tobk ~for k>3) change sign; however, for reaso
able values of the coupling constant their contribution to
total temperature is negligible.

The entropy of the black hole in quadratic gravity may
calculated using various methods. Here we shall emp
Wald’s Noether charge technique@39#, which, as has been
shown in Refs. @40,41#, may be safely applied for
Lagrangians of the type~2! and leads to the remarkabl
simple and elegant general result

S5
1

4ES
d2xAh@112aR1b~R2habRab!#, ~46!

wherehab is the induced metric onS and the surface integra
is taken across an arbitrary section of the event horizon
our representation, the entropy after some algebra may
compactly written as

S5
A

4
2

8p2b

A
e22

1024p4e2b3

A5
~A24pe2!2

1
16384p5e2b4

A7
~A24pe2!2~26pe225A!1O~b5!,

~47!

whereA54pr 1
2 is the surface of the event horizon. We a

tribute discrepancies between our result and the entr
computed by CLA to errors in their metric tensor.

IV. THE EXTREMAL CONFIGURATION
AND ITS NEAR-HORIZON GEOMETRY

In this section we shall investigate the important issue
extremal black holes. On general grounds one expects
the extremal configuration is the one in which~at least! two
6-5
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horizons merge. This means that in the simplest case the
two terms of the expansion

f ~r !5 f ~r 1!1
d f

drU
r 5r 1

~r 2r 1!1
1

2

d2f

dr2U
r 5r 1

~r 2r 1!21•••

~48!

vanish. It is evident that if the firstn terms in the above
expansion are absent one has ann-fold merging ofn hori-
zons. In view of the further applications, we also exp
regularity of the functionc(r ) as the degenerate event ho
zon is approached:

uc~r 1!u,`, U dc~r !

dr U
r 5r 1

U,`. ~49!

In order to determine the location of the event horizo
i.e., to relate the integration constantsr 1 and e, one has to
consider the consequences of the vanishing of the black
temperature~surface gravity!. Equation~45! strongly indi-
cates thatr 15ueu. To demonstrate the validity of this rela
tion let us consider the~rr ! component of Eq.~7!. It can be
shown that if f 8(r 1)50, the conditions~49! are satisfied,
and, additionally,

u f (3)~r 1!u,`, uc (3)~r 1!u,`; ~50!

then the second derivative off computed atr 5r 1 satisfies
the constraint equation

1

r 1
2

1
b

r 1
4

2
b

4 S d2f

dr2U
r 1

D 2

5
e2

r 1
4

. ~51!

The metric of the electrically charged black hole must
independent of the coupling constanta @27,42#. Repeating
the calculations for the~rr ! component of the tensor(1)Ha

b at
r 5r 1 one has

(1)Hr
r~r 1!5

2

r 1
4

2
1

2 S d2f

dr2U
r 1

D 2

. ~52!

The absence of terms proportional toak (k50,1,2, . . . ) re-
quires (1)Ha

b to vanish identically, and, since both conditio
are to be satisfied simultaneously, one obtains the expe
exact result:

r 15ueu. ~53!

Equivalently, expressing the location ofr 1 in terms of the
horizon defined mass yields

r 15M . ~54!

The relations obtained are identical with those that cha
terize the geometry of the extremal Reissner-Nordstr¨m
black hole. As the particular form of the traceless stre
energy tensor played a decisive role in our derivation, o
should not expect simple generalizations. In a more gen
12401
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case, such as for example that of nonlinear electrodynam
there is an explicit dependence on the coupling constana,
and the stress-energy tensor lacks the simplicity of its M
wellian analogue. Indeed, repeating the calculations fo
line element of the type~15! and an arbitrary stress-energ
tensor, one has

~b12a!F S 1

2
f 9~r 1! D 2

2
1

r 1
4 G2

1

r 1
2

58pTr
r~r 1! ~55!

and

2~b12a!F S 1

2
f 9~r 1! D 2

2
1

r 1
4 G1

1

2
f 9~r 1!58pTu

u~r 1!.

~56!

It should be noted that in order to obtain Eq.~56! one has to
assume u f (4)(r 1)u,` and uc (4)(r 1)u,`. The spherical
symmetry and the field equations at the event horizon,
spectively, give

Tu
u5Tf

f , Tt
t5Tr

r . ~57!

Combining the above equations, one obtains

f 9~r 1!2
2

r 1
58pTa

a~r 1!, ~58!

whereTa
a is the trace of the stress-energy tensor.

As is well known the closest vicinity of the event horizo
of the extremal Reissner-Nordstro¨m black hole, after the co-
ordinate transformation

r 5r 1S 11
r 1

y D , ~59!

can be approximated by the Bertotti-Robinson line elem
@43,44#

ds25
r 1

2

y2
~2dt21dy21y2dV2!. ~60!

Employing new static coordinates, the Bertotti-Robinson l
element can be rewritten in the form

ds25r 1
2 ~2sinh2xdt21dx21du21sin2udf2! ~61!

or

ds252S x2

r 1
2

21D dT21S x2

r 1
2

21D 21

dx2

1r 1
2 ~du21sin2udf2!. ~62!

The latter form is particularly useful in demonstrating th
the topology of the Bertotti-Robinson solution is AdS2
3S2, i.e., it is a simple topological product of a~111!-
dimensional anti–de Sitter spacetime and a two-sphere
radiusr 1 .

One expects that this spacetime also plays some role
extremal black holes in quadratic gravity. Indeed, first o
6-6
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serve that, because of simplicity of the Bertotti-Robins
line element, the tensors(1)Hab and (2)Hab as well as the
curvature scalar vanish. The only contribution to the l
hand side of Eq.~7! comes, therefore, from the Ricci tenso
which for the metric~60! is given by

Rt
t5Rr

r52Ru
u52Rf

f52
1

r 1
2

. ~63!

As the stress-energy tensor of the electromagnetic fiel
simply

Tt
t5Tr

r52Tu
u52Tf

f52
1

8pr 1
2

, ~64!

one concludes that the line element~60! is an exact solution
if r 15ueu. Moreover, inspection of Eq.~7! suggests that
after redefinition of the time coordinate, the dominant co
tribution to the metric potentialsgtt and grr near the event
horizon comes from the functionM0(r ). It follows then that
locally it resembles the geometry of the extremal Reissn
Nordström black hole.

To investigate the role played by the Bertotti-Robins
solution in more detail let us return to the expansion~48! and
ask when the near-horizon geometry of the extremal bl
hole is that described by the line element~60!. In the vicinity
of the event horizon the line element may be written as

ds252e2c(r 1)F~r 2r 1!2dt21
1

F~r 2r 1!2
dr21r 1

2 dV2,

~65!

where

F5
1

2

d2f

dr2U
r 5r 1

. ~66!

It can be easily demonstrated that, by expressing the
element in terms of a new coordinatey defined by means o
the relation

r 5r 1S 11
r 1

ec(r 1)y
D , ~67!

one obtains the line element~60! provided

d2f

dr2U
r 5r 1

5
2

r 1
2

. ~68!

Inspection of Eq.~52! shows that it is precisely the relatio
that is satisfied by an extremal black hole. It should be no
that from Eq.~58! our demonstration requires the trace of t
stress-energy tensor to vanish atr 5r 1 only.

On the other hand, iff 9(r 1) does not obey Eq.~68!, the
topology of the solution~65! is still a simple product of
AdS23S2, but with a different modulus of curvature. Indee
it can be easily shown that
12401
n

t

is

-

r-

k

e

d

R5KAdS2
1KS2, ~69!

where

KAdS2
522F and KS25

2

r 1
2

. ~70!

Upon the substitution

r 5r 11
1

ec(r 1)Fy
, ~71!

one obtains

ds25
1

Fy2
~2dt21dy2!1r 1

2 ~du21sin2udf2!. ~72!

Finally, observe that vanishing of the curvature scalar ar
→r 1 yields Eq.~68!, and the line element~72! reduces to
~60!.

V. A DISTANT OBSERVER POINT OF VIEW

In this section we shall briefly examine the consequen
of the second choice of the boundary conditions as given
Eqs. ~23! and ~24!. This problem was considered earlier b
CLA. Unfortunately, their metric tensor and hence oth
characteristics of the charged black holes in quadratic gra
contain errors in the terms proportional tob3.

Before proceeding further let us return to the functi
m(r ) constructed with the aid of the condition~22!. Its limit
as r→` is simply

M`5
r 1

2
1

e2

2r 1
1bS 3e4

10r 1
5

2
e2

2r 1
3 D 1b2S e6

12r 1
9

2
3e4

28r 1
7 D

2b3S 4e2

r 1
7

2
652e4

55r 1
9

1
2587e6

220r 1
11

2
2229e8

572r 1
13D 1O~b4!

~73!

and is interpreted as the total mass of the system as see
a distant observer and expressed in terms of the exact l
tion of the event horizon and electric charge. On the ot
hand, one can represent the solution to the system~7! in
terms of the total mass as seen from large distances and
electric charge from the very beginning. In this case
boundary conditions for the expansion~25! are to be rewrit-
ten in the form

lim
r→`

Mi~r !5H M` if i 50,

0 if i>1,
~74!

while the condition~24! remains, of course, intact. Repeatin
the calculations order by order with the new boundary c
ditions, one obtains
6-7
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m~r !5M`2
e2

2r
1bS 2

e2

r 3
23

e2M`

r 4
1

6e4

5r 5D 1b2S 152
e2M`

r 6
2

596

7

e4

r 7
2

704

15

e6

r 9
2160

e2M`
2

r 7
1

351

2

e4M`

r 8
236

e2

r 5D
1b3S 27264

e2M`
2

r 9
211016

e2M`

r 8
11440

e2

r 7
1

4330344

385

e6

r 11
2

179144

5

e4M`

r 10
1

331624

65

e8

r 13
1

460704

11

e4M`
2

r 11

2
51347

2

e6M`

r 12
221952

e2M`
3

r 10
17536

e4

r 9D 1O~b4! ~75!
m
n
n

o

a

-

the
rms

in
ed,
on

by a

rge,
ula

de-
the
en
The
tion
the

als
and

c~r !5b
e2

r 4
2b2S 24e2

r 6
2

64e2M`

r 7
1

41e4

r 8 D
1b3S 24864e4

5r 10
1

9408e2M`
2

r 10
1

69572e6

15r 12
1

1080e2

r 8

2
6528e2M`

r 9
2

149120e4M`

11r 11 D 1O~b4!. ~76!

Equations~75! and ~76! are sufficient to determinegtt and
grr to O(b4). The metric tensor thus obtained differs fro
that obtained by CLA. To demonstrate that our calculatio
lead to correct results, let us make use of a consiste
check. Inserting Eq.~73! into Eqs.~75! and~76!, one obtains,
as expected, Eqs.~29! and ~32!–~37!. Since the calculations
have been carried out independently we conclude that
results are correct.

To determine the location of the event horizon one c
either iteratively solve the equation

gtt~r 1!50 ~77!

or invert the relation~73!. Both methods give the same re
sult, which reads

r 15r 01b
e2~5r 0

223e2!

5r 0
3~r 0

22e2!

2b2
e4~2925r 0

626515r 0
4e215095r 0

2e421337e6!

1050r 0
7~r 0

22e2!3

2b3
e2

~r 0
22e2!5 S 17268913

75075

e10

r 0
7

2
61234643

750750

e12

r 0
9

2
137993

770

e4

r 0
1

3265043

10010

e6

r 0
3
2

26686967

75075

e8

r 0
5

1
436497

35750

e14

r 0
11

28r 0
31

3064

55
e2r 0D 1O~b4!, ~78!

where
12401
s
cy

ur

n

r 05M`1~M`
2 2e2!1/2. ~79!

Repeating the steps of Sec. III necessary to compute
Hawking temperature and expressing the final result in te
of e and r 0, one has

TH5
1

4pr 0
3 ~r 0

22e2!1b
e4~2r 0

22e2!

5r 0
7~r 0

22e2!

1b2
e4

pr 0
11~r 0

22e2!3 S 8

25
e82

4

21
e2r 0

61
113

75
e4r 0

4

2
676

525
e6r 0

22
3

7
r 0

8D1O~b3!. ~80!

Although the extremal configuration can be studied
(e,M`) representation it is not the best choice. Inde
simple calculations give for the location of the event horiz

r 15M`1
1

5M`
b2

17

1050M`
3

b21
317

68250M`
5

b31O~b4!,

~81!

whereas the relation between the total mass as seen
distant observer and the electric charge has the form

M`
2 5e22

2

5
b2

4

525e2
b22

8

1365e4
b31O~b4!. ~82!

This can be contrasted with the simple relation betweenr 1 ,
and ueu given by Eqs.~53! and ~54!. Finally, observe that,
since the entropy as given by Eq.~47! is expressed in terms
of the surface of the event horizon and the electric cha
we expect that it should be described by the same form
for both choices of the conditions~22! and ~23!.

VI. CONCLUSION AND SUMMARY

In this paper we have constructed iterative solutions
scribing spherically symmetric and static black holes to
equations of fourth-order gravity with the source term giv
by the stress-energy tensor of the electromagnetic field.
line elements obtained are parametrized by two integra
constants which are related to the electric charge and
exact location of the event horizon. The metric potenti
6-8
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thus computed enabled construction of the basic charact
tics of the black hole: its Hawking temperature and entro

Special emphasis has been put on extremal black ho
Specifically, it has been explicitly demonstrated that in
extremal limit the exact location of the~degenerate! event
horizon is given byr 15ueu. It was shown that, similarly to
the classical Reissner-Nordstro¨m solution, the near-horizon
geometry of the charged black holes in quadratic grav
when expanded into the whole manifold, is simply that
Bertotti and Robinson. As a by-product of our investigatio
we obtained a simple equation that relates the horizon v
f 9 with the trace of the stress-energy tensor, which, for
lutions of the equations of quadratic gravity describing bla
holes, may serve as a useful criterion for possessing n
horizon geometry of the Bertotti-Robinson type.

Similar considerations have been carried out for bound
conditions of a second type, which employ the elect
charge and the mass of the system as seen by a distan
server. Moreover, the method to relate the appropriate res
obtained within the framework of each method has been
plicitly demonstrated.

Returning to the extremal black holes, we observe t
there are good reasons to believe that they are qualitati
different from the nonextremal ones. A proper distance,
example, between two points, one of which resides on
event horizon, is infinite. This can easily be seen from
integral
D

12401
is-
.
s.

e

,
f
s
e
-

k
ar-

ry
c
ob-
lts
x-

t
ly
r
e
e

E Agrr dr;
1

r 1
ln~r 2r 1!, ~83!

as it diverges in the limitr→r 1 . Moreover, the entropy
remains nonzero asA→4pr 1

2 and depends on the electr
charge. This behavior clearly violates the Nernst formulat
of the third law of thermodynamics, which states that t
entropy of a system must go to zero or a universal cons
asT→0. On the other hand, even if the entropy of the e
tremal black hole vanishes@45#, there are still problems sim
ply because of its noncontinous nature. Indeed, zero is
the limit to which the entropy of the nearly extremal bla
holes tends. One can argue that this behavior should no
treated as worrisome simply because the Nernst formula
probably should not be considered as a fundamental law
thermodynamics. For a recent discussion of this issue,
@46#. On the other hand according to more radical opinio
this failure indicates that extremal black holes must not
treated as thermodynamic systems to which one can as
the notions of temperature and entropy@47#. Of course, we
are unable here to judge which option should be treated
riously. All we can say now is that the entropy as given
Eq. ~47! ~probably! can be safely used for nonextremal bla
holes. However, the particular case of extreme black ho
certainly deserves further study.

Finally, let us observe that the methods of this paper co
easily be generalized to other sources, such as, for exam
nonlinear electrodynamics. This group of problems is un
active investigation and the results will be published el
where.
. D

. D

ss.

-

@1# R. Utiyama and B.S. DeWitt, J. Math. Phys.3, 608 ~1962!.
@2# K.S. Stelle, Phys. Rev. D16, 953 ~1977!.
@3# K.S. Stelle, Gen. Relativ. Gravit.9, 353 ~1978!.
@4# H. Weyl, Ann. Phys.~Leipzig! 59, 101 ~1919!.
@5# H. Weyl, Phys. Z.22, 473 ~1921!.
@6# W. Pauli, Phys. Z.20, 457 ~1919!.
@7# A. S. Eddington,The Mathematical Theory of Relativity~Cam-

bridge University Press, Cambridge, England, 1924!.
@8# J.Z. Simon, Phys. Rev. D41, 3720~1990!.
@9# J.Z. Simon, Phys. Rev. D43, 3308~1991!.

@10# L. Parker and J.Z. Simon, Phys. Rev. D47, 1339~1993!.
@11# J.W. York, Phys. Rev. D31, 775 ~1985!.
@12# C.O. Lousto and N. Sanchez, Phys. Lett. B212, 411 ~1988!.
@13# C.O. Lousto and N. Sanchez, Int. J. Mod. Phys. A4, 2317

~1989!.
@14# D. Hochberg, T.W. Kephart, and J.W. York, Phys. Rev. D48,

479 ~1993!.
@15# D. Hochberg, T.W. Kephart, and J.W. York, Phys. Rev. D49,

5257 ~1994!.
@16# J. Matyjasek, Acta Phys. Pol. B29, 529 ~1998!.
@17# J. Matyjasek and O.B. Zaslavskii, Phys. Rev. D64, 104018

~2001!.
@18# P.R.A. Brett, A. Taylor, and William A. Hiscock, Phys. Rev.

61, 084021~2000!.
@19# W. Berej and J. Matyjasek, Acta Phys. Pol. B34, 3957~2003!.
@20# L.A. Kofman and V. Sahni, Phys. Lett.127B, 127 ~1983!.
@21# V.P. Frolov and A.I. Zel’nikov, Phys. Lett.115B, 372 ~1982!.
@22# V.P. Frolov and A.I. Zel’nikov, Phys. Lett.123B, 197 ~1983!.
@23# J. Matyjasek, Phys. Rev. D61, 124019~2000!.
@24# J. Matyjasek, Phys. Rev. D63, 084004~2001!.
@25# R.C. Myers, Nucl. Phys.B289, 701 ~1987!.
@26# C.G. Callan, R.C. Myers, and M.J. Perry, Nucl. Phys.B311,

673 ~1989!.
@27# M. Campanelli, C.O. Lousto, and J. Audretsch, Phys. Rev

49, 5188~1994!.
@28# A. Economou and C.O. Lousto, Phys. Rev. D49, 5278~1994!.
@29# M. Campanelli, C.O. Lousto, and J. Audretsch, Phys. Rev

51, 6810~1995!.
@30# E.C. de Rey Neto, O.D. Aguiar, and J.C.N. de Araujo, Cla

Quantum Grav.20, 2025~2003!.
@31# M. Lu and M.B. Wise, Phys. Rev. D47, 3095~1993!.
@32# M. Visser, Phys. Rev. D48, 583 ~1993!.
@33# A. Accioly and H. Blas, Phys. Rev. D64, 067701~2001!.
@34# M.B. Mijic, M.S. Morris, and W.-M. Suen, Phys. Rev. D34,

2934 ~1986!.
@35# B. Whitt, Phys. Rev. D32, 379 ~1985!.
@36# N.H. Barth and S.M. Christensen, Phys. Rev. D28, 1876

~1983!.
@37# J. Audretsch, A. Economou, and C.O. Lousto, Phys. Rev. D47,

3303 ~1993!.
@38# C. M. Bender and S. A. Orszag,Advanced Mathematical Meth

ods for Scientists and Engineers~McGraw-Hill, New York,
1978!.
6-9



e
n.

. D

J. MATYJASEK AND D. TRYNIECKI PHYSICAL REVIEW D 69, 124016 ~2004!
@39# R.M. Wald, Phys. Rev. D48, 3427~1993!.
@40# R. C. Myers, inBlack Holes, Gravitational Radiation and th

Universe, Fundamental Theories in Physics~Kluwer, Dor-
drecht, 1999!, Vol. 100, pp. 121–136.

@41# T. Jacobson, G. Kang, and R.C. Myers, gr-qc/9502009.
@42# B. Whitt, Phys. Lett.145B, 176 ~1984!.
@43# B. Bertotti, Phys. Rev.116, 1131~1959!.
12401
@44# I. Robinson, Bull. Acad. Pol. Sci., Ser. Sci., Math., Astro
Phys.7, 351 ~1959!.

@45# S.W. Hawking, G.T. Horowitz, and S.F. Ross, Phys. Rev. D51,
4302 ~1995!.

@46# R.M. Wald, Phys. Rev. D56, 6467~1997!.
@47# S. Liberati, T. Rothman, and S. Sonego, Int. J. Mod. Phys

10, 33 ~2001!.
6-10


