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The nature of the fuel that drives today’s cosmic acceleration is an open and tantalizing mystery. The
brane-world theory of Dvali, Gabadadze, and Porrati~DGP! provides a context where late-time acceleration is
driven not by some energy-momentum component~dark energy!, but rather is the manifestation of the excru-
ciatingly slow leakage of gravity off our four-dimensional world into an extra dimension. At the same time,
DGP gravity alters the gravitational force law in a specific and dramatic way at cosmologically accessible
scales. We derive the DGP gravitational force law in a cosmological setting for spherical perturbations at
subhorizon scales and compute the growth of large-scale structures. We find that a residual repulsive force at
large distances gives rise to a suppression of the growth of density and velocity perturbations. Explaining the
cosmic acceleration in this framework leads to a present day fluctuation power spectrum normalizations8

<0.8 at about the two-sigma level, in contrast with observations. We discuss further theoretical work necessary
to go beyond our approximations to confirm these results.
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I. INTRODUCTION

The discovery of a contemporary cosmic accelerat
@1,2# is one of the most profound scientific observations
the 20th century. We are now challenged to answer the o
and tantalizing question of what drives that accelerati
While a conventional explanation exists (i.e. dark energ
some new negative-pressure energy-momentum compon,
an intriguing line of thought is gaining attention: the acc
erated expansion is not a result of yet another ingredien
our already gunky cosmic gas tank, but rather is a signa
our lack of understanding of gravitational physics on larg
scales@3–14#.

Being able to observationally differentiate the two pos
bilities, dark energy versus modified gravity, is an essen
component in developing the modified-gravity paradig
One can easily envision some modified-gravity model le
ing to an expansion history that can be identically rep
duced by some dark-energy model. Thus, observations
depend only on anomalous expansion histories are ins
cient to tease out the acceleration’s root cause. Howeve
we argue in Ref.@15#, if one attempts to modify cosmolog
at today’s Hubble scale,H0, through altering the equation
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governing gravitational dynamics, then generically one
pects that the gravitational force law of an isolated m
source is altered even at distance scales much smaller
H0

21. This effect can then be exploited to differentiate b
tween a modified-gravity explanation of today’s cosmic a
celeration and dark energy~where the gravitational force law
remains unaltered! @15,16#.

A leading contender in modified-gravity explanations
acceleration is the brane-world theory of Dvali, Gabadad
and Porrati~DGP!. In this theory, gravity appears four d
mensional at short distances butis altered at distances large
compared to some freely adjustable crossover scale0

through the slow evaporation of the graviton off our fou
dimensional brane-world universe into an unseen, yet la
fifth dimension@17–19#. DGP gravity provides an alternativ
explanation for today’s cosmic acceleration@3,4#: just as
gravity is conventional four-dimensional gravity at sho
scales (r !r 0) and appears five dimensional at large distan
scales (r @r 0), so too the Hubble scale,H(t), evolves by the
conventional Friedmann equation at high Hubble scales
saturates at a fixed value asH(t) approachesr 0

21. Thus, if
one were to setr 0.H0

21, whereH0 is today’s Hubble scale
then DGP gravity could account for today’s cosmic accele
tion in terms of the existence of extra dimensions and
modification of the laws of gravity. The resulting cosm
expansion history is specific and may be tested using a v
ety of cosmological observations@4,20–22#. However, can
©2004 The American Physical Society15-1
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we distinguish between DGP gravity and a dark ene
model that mimics the same cosmic expansion history?

We would naively expect not to be able to probe the ex
dimension at distances much smaller than the crossover s
r 05H0

21. However, in DGP, although gravity is four dimen
sional at distances shorter thanr 0, it is not four-dimensional
Einstein gravity—it is augmented by the presence of an
tralight gravitational scalar. One only recovers Einstein gr
ity in a subtle fashion@23–26#, and a marked departure from
Einstein gravity persists down to distances much shorter t
r 0. For example, forr 0'H0

21 and a central mass source
Schwarzschild radiusr g , significant and cosmologically sen
sitive deviations from Einstein gravity occur at distanc
greater than@25–28#

r * 5~r gr 0
2!1/3'S r g

H0
2D 1/3

. ~1.1!

Thus a marked departure from conventional physics pers
down to scales much smaller than the distance at which
extra dimension is naively hidden, or for our discussion he
the distance at which the Friedmann equation was modi
to account for accelerated cosmic expansion. This altera
of gravitational interactions provides a way of differentiati
between DGP gravity and dark energy models, and is c
sistent with the argument we put forth in Ref.@15#.

Imminent solar system tests have beenshown to be ca-
pable of probing the residual deviation from four
dimensional Einstein gravity at distances well belowr *
@27,28#. Nevertheless, it would be ideal to test gravitation
physics where dramatic differences from Einstein gravity
anticipated. A detailed study of large scale structure in
Universe can provide such tests of gravitational physics
large distance scales. Unfortunately, prior analyses relate
modified-gravity explanations of cosmic acceleration@15,16#
are not applicable here. The modified force law is, in effe
sensitive to the background cosmological expansion, s
this expansion is intimately tied to the extrinsic curvature
the brane@3,29#, and this curvature controls the effectiv
Newtonian potential. A more careful analysis must be p
formed. In the next section we briefly review DGP grav
and identify the force law necessary to calculate how la
scale structure evolves in this cosmological model. We t
proceed and compare those results to the standard cos
ogy, as well as to a cosmology that exactly mimics the D
expansion history using dark energy. Finally, we discuss
observational implications of our results on the growth
structure in DGP gravity and conclude with some rema
and a discussion of future work needed to improve upon
treatment.

II. DGP GRAVITY

We review the important points of the DGP brane-wo
model, including cosmology. We then modify the calculati
performed in Ref.@27# to determine the gravitational forc
law in an evolving cosmological background, rather than i
static background de Sitter space. This calculation is the
12401
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sult in this paper that allows one to answer questions
cosmological interest developed in the next sections.

A. DGP model

Consider a brane-world theory of gravity(one in which
ordinary particles and fields, other than the graviton, a
confined to a three-dimensional hypersurface—the bran
embedded in a higher dimensional space—the bulk)with an
infinite-volume bulk and a metastable brane graviton@17#.
We take a four-dimensional brane world embedded in a fi
dimensional Minkowski spacetime. The bulk is empty;
energy momentum is isolated on the brane. The action is

S(5)52
1

16p
M3E d5xA2gR1E d4xA2g(4)Lm1SGH .

~2.1!

The quantityM is the fundamental five-dimensional Planc
scale. The first term in Eq.~2.1! corresponds to the Einstein
Hilbert action in five dimensions for a five-dimensional me
ric gAB ~bulk metric! with Ricci scalarR. The termSGH is
the Gibbons-Hawking action. In addition, we consider
intrinsic curvature term which is generally induced by rad
tive corrections by the matter density on the brane@17#:

2
1

16p
M P

2E d4xA2g(4)R(4). ~2.2!

Here,M P is the observed four-dimensional Planck scale~see
Refs. @17–19# for details!. Similarly, Eq. ~2.2! is the
Einstein-Hilbert action for the induced metricgmn

(4) on the
brane,R(4) being its scalar curvature. The induced metric1

gmn
(4)5]mXA]nXBgAB , ~2.3!

whereXA(xm) represents the coordinates of an event on
brane labeled byxm. The action given by Eqs.~2.1! and~2.2!
leads to the following equations of motion:

1

2r 0
GAB1d~brane!GAB

(4)5
8p

MP
2

TABubrane, ~2.4!

whereGAB is the bulk Einstein tensor,GAB
(4) is the Einstein

tensor of the induced brane metric, andTABubraneis the matter
energy-momentum tensor on the brane. We have define
crossover scale

r 05
M P

2

2M3
. ~2.5!

This scale characterizes that distance over which metric fl
tuations propagating on the brane dissipate into the b
@17#.

1Throughout this paper, we useA,B, . . . 5$0,1,2,3,5% as bulk in-
dices, m,n, . . . 5$0,1,2,3% as brane spacetime indices, an
i , j , . . . 5$1,2,3% as brane spatial indices.
5-2
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B. Cosmological background

Let us review some important details of the cosmologi
background, for a general expansion of a spatially flat br
into a Minkowski-flat bulk. We are primarily interested in th
late evolution of the Universe, in particular the matte
dominated era where the energy-momentum content of
Universe is well-represented by a pressureless distributio
galaxies, spatially homogeneous on the largest scales.
spatially homogeneous cosmological background of suc
Universe is driven by energy-momentum given by

TB
Aubrane5d~z!diag~r~t!,0,0,0,0!, ~2.6!

with spacetime geometry dictated by the line element@3#

ds25S 17
ǟ

aG
uzu D 2

dt22ā2~t!S 17
aG

ā
uzu D 2

@d i j dl idl j #

2dz2. ~2.7!

Here, dot refers to differentiation with respect to the cosm
logical time t, the coordinatez is the extra dimension, an
the brane scale factor,ā(t) satisfies a modified Friedman
equation

H26
H

r 0
5

8p

3M P
2

r~t!, ~2.8!

where H(t)5 ǡ/ā. The two choices of sign represent tw
distinct cosmological phases. The phase of interest~the self-
accelerating phase! corresponds to the lower sign, but w
keep both for the sake of completeness.

This Friedmann equation~2.8! already makes the theor
distinct from standardLCDM ~cold dark matter with cosmo
logical constant! cosmology, and observational signatur
constraining DGP cosmology have been considered in
Refs. @4,21,22#. Using constraints from type 1A supernova
@21#, the best fitr 0 is r 051.2120.09

10.09H0
21 , whereH0 is today’s

Hubble scale. TakingH0'70 km s21 Mpc21, it implies r 0
'5 Gpc.

However, we wish to focus on those properties of DG
gravity that are affected by the modification of the force la
and cannot be mimicked by some dark energy compon
that produced the same expansion history. Following
program, we focus particularly at distance scales m
smaller than the Hubble radius,H21. As described in the
Introduction, the gravitational force law is significantly di
ferent from four-dimensional Einstein, even at these sh
distance scales. We wish to determine the form of the c
rections in the background of the expected matter-domina
cosmology, Eq.~2.8!.

We are concerned with processes at distances,r, such that
rH !1. Under that circumstance it is useful to change co
dinates to a frame that surrenders explicit brane spatial
mogeneity but preserves isotropy
12401
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r ~t,l i !5ā~t!l ~2.9!

t~t,l i !5t1
l2

2
H~t!ā2~t!, ~2.10!

for all z and wherel25d i j l
il j . The line element becomes

ds25@172~H1Ḣ/H !uzu2~H21Ḣ !r 2#dt2

2@172Huzu#@~11H2r 2!dr21r 2dV#2dz2,

~2.11!

where here dot represents differentiation with respect to
time coordinate,t. Moreover, H5H(t) in this coordinate
system. All terms ofO(r 3H3) or O(z2H2,zHrH) and higher
have been neglected.

The coordinate system in Eq.~2.11! will be the most use-
ful when considering the cosmological scenarios we are
terested in. One can see that the bulk is a Rindler space.
has a fairly natural interpretation if one imagines the bu
picture @3,29#. One imagines riding a local patch of th
brane, which appears as hyperspherical surface expan
into ~or away from! a five-dimensional Minkowski bulk.
This surface either accelerates or decelerates in its mo
with respect to the bulk, creating a Rindler-type potential

C. Nonrelativistic matter sources

We are interested in finding the metric for compa
spherically symmetric overdensities in the background o
matter-dominated cosmology. Because we are only c
cerned with distance scales such thatrH !1, then to leading
order in r 2H2 and zH, the solutions to the field equation
~2.4! are also solutions to the static equations, i.e. the me
is quasistatic, where the only time dependence comes f
the slow evolution of the extrinsic curvature of the brane.
be explicit, we are looking at the nonrelativistic limit, whe
the metric, or the gravitational potentials, of a matter sou
depends only on the instantaneous location of its eleme
and not on the motion of those elements.

Under this circumstance, one can choose a coordinate
tem in which the cosmological metric respects the spher
symmetry of the matter source. Let the line element be

ds25N2~ t,r ,z!dt22A2~ t,r ,z!dr2

2B2~ t,r ,z!@du21sin2udf2#2dz2. ~2.12!

We are interested in small deviations of the metric fro
flatness so we define functions$n(t,r ,z),a(t,r ,z),b(t,r ,z)%
such that

N~ t,r ,z!511n~ t,r ,z!

A~ t,r ,z!511a~ t,r ,z!

B~ t,r ,z!5r @11b~ t,r ,z!#. ~2.13!

The key is that because we are interested primarily in p
nomena whose size is much smaller than the cosmic hori
the effect of cosmology is almost exclusively to control t
5-3
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extrinsic curvature, of the brane.This can be interpreted as
modulation of the brane’s stiffness or the strength of the s
lar gravitational mode.

We take the energy-momentum tensor to now be

TB
Aubrane5d~z!diag~r~ t !1dr~ t,r !,0,0,0,0!, ~2.14!

where the source mass is an overdensity of compact sup
~i.e. its extent is some radius,R!H21). Given a source
mass whose overdensity with respect to the cosmolog
background goes asdr(r ,t), we may define an effective
Schwarzschild radius

Rg~r ,t !5
8p

M P
2E0

r

r 2dr~r ,t !dr. ~2.15!

We solve the perturbed Einstein equations in quasistatic
proximation by generalizing the method used in Ref.@27#,
obtaining the metric of a spherical mass overdensitydr(t,r )
in the background of the cosmology described by Eq.~2.11!
~rather than de Sitter space!. The metric on the brane, usin
the residual gauge fixingb(t,r )uz5050, is then given by

rn8~ t,r !uz505
Rg

2r
@11D~r !#2~H21Ḣ !r 2 ~2.16!

a~ t,r !uz505
Rg

2r
@12D~r !#1

1

2
H2r 2 ~2.17!

where dot now denotes differentiation with respect tot and
prime denotes differentiation with respect tor. Note that the
background contribution is included in these metric com
nents. The quantityD(r ) is defined as

D~r !5
3br 3

4r 0
2Rg

FA11
8r 0

2Rg

9b2r 321G , ~2.18!

and

b5
162r 0H12r 0

2H2

162r 0H
. ~2.19!

Though it is not of explicit interest here, the fullz depen-
dence of the metric may be deduced from Eqs.~2.16! and
~2.17! using equations laid out in the appendix of Ref.@27#
with trivial alterations accounting for the differing cosm
logical background.

The result Eqs.~2.16!–~2.19! is valid for r !H21 and r
!r 0, but only if the spatial support ofdr(r ,t) extends only
to radii much less thanH21, so that there is a clear distinc
tion between the matter making up the overdensity and
cosmological background. The result is virtually identical
the strictly static de Sitter background case except therb
5162r 0H. One may also confirm that in the absence
perturbations~i.e., dr or Rg50), the background metric Eq
~2.11! is a consistent, quasistatic solution. This point
analogous to the well-known idea that one may reprod
the Friedmann equation in matter-dominated cosmolog
with just the Newtonian interaction between matter particl
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From inspection of Eq.~2.19!, we see that, in addition to
r 0, there exists a new transition scale

r * 5F r 0
2Rg

b2 G1/3

, ~2.20!

such that whenr !r * , the Einstein phase, the metric fun
tions on the brane reduce to

n52
Rg

2r
6ARgr

2r 0
2 ~2.21!

a5
Rg

2r
7ARgr

8r 0
2. ~2.22!

Whenr @r * , the weak-brane phase, the metric functions
the brane become

n52
Rg

2r F11
1

3bG2
1

2
~H21Ḣ !r 2 ~2.23!

a5
Rg

2r F12
1

3bG1
1

2
H2r 2. ~2.24!

In this phase, the extra scalar mode, the would-be rad
alters the effective Newton’s constants for the gravitatio
potentials represented byn(t,r )2n(t,r )ubackground, the New-
tonian potential, anda(t,r )2a(t,r )ubackground, the gravito-
magnetic potential.

One may simply check that the full (t,r ,z)-dependent
metric satisfies the complete modified Einstein equati
~2.4! to the desired order. Note that to this order of precisi
the velocity of the matter distributiondr(t,r ) does not affect
spacetime geometry~until orderv2 or vrH!, thus corroborat-
ing the quasistatic approximation.

D. Caveats

The approximationsv!1 (v represents peculiar matte
velocities! andrH !1 play a role in several places and allo
a series of crucial simplifications that need to be spelled o
These two approximations are lumped together because
Hubble-flow velocity and peculiar velocities play almo
identical roles in the relevant field equations. The followi
are the operational simplifications:

~i! Nonrelativistic, quasistatic sources. Source-veloc
dependent contributions to the gravitational field a
subleading. One may use the static Einstein equati
and still be assured that the metric on the brane
accurate toO(v2,r 2H2).

~ii ! Near-field regime. Related to the above simplificatio
the source evolves slowly enough that radiative
fects are negligible at these radii. We may safe
avoid scalar radiation on the brane and gravity-wa
evaporation into the bulk and other radiative bulk e
fects @29,30#. These radiative scalar modes may al
have classical instabilities that might become relev
outside this regime@31#.
5-4
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~iii ! Resolving background matter from perturbation. Th
simplification is specific to DGP gravity. The metr
components Eqs.~2.16! and ~2.17! depends on the
background Hubble expansion, and the calculat
crucially depends on the assumption that the overd
sity does not alter the background cosmology. T
can been seen to be self-consistent in the DGP fi
equations only when the radius of support for t
overdensity is much smaller than the Hubble radi
H21.

~iv! Geodesic motion is Newtonian, i.e. the geodesic eq
tion reduces to Newton’s second law where the pot
tial is g00 or n(t,r ).

If we stray too far from the assumptionsv!1 andrH !1,
then effects safely disregarded may start intruding into
complicating the analysis, particularly whenH;H0, intro-
ducing additional effects of equal significance to the on
included here.

III. GROWTH OF DENSITY PERTURBATIONS

A. Spherical perturbations

Let us consider the evolution of a spherical top-hat p
turbationd(t,r ) of top-hat radius Rt, wherer(t,r )5 r̄(t)(1
1d) is the full density distribution andr̄(t) is the back-
ground density. At subhorizon scales (Hr !1), the contribu-
tion from the Newtonian potential,n(t,r ), dominates the
geodesic evolution of the overdensity. From Eq.~2.23! it
follows that the equation of motion for the perturbationd is

d̈2
4

3

ḋ2

11d
12H ḋ

54pGr̄d~11d!F11
2

3b

1

e
~A11e21!G ,

~3.1!

where the definition ofe[8r 0
2Rg/9b2Rt

3 follows from the
identification of the expression in square brackets with
1D(r ) @see Eq.~2.18!#, and we have restricted ourselves
the self-accelerating branch~i.e., the lower sign choice in al
equations in the previous section!.

For clarity, we may recast the time evolution ofb ande in
terms ofd and thetime-dependentvalue of Vm . Defining
Vm(t)[8pr̄(t)/3M P

2H2(t), and using the Friedmann equ
tion ~2.8!,

b52
11Vm

2

12Vm
2

, e5
8

9

~11Vm!2

~11Vm
2 !2

Vmd. ~3.2!

We stress thatVm is a time-dependent quantity—it goes
unity at high redshift 1!z!zeq , where the evolution is
Einstein–de Sitter~but in the matter dominated regime!, and
at present it reduces to the usual value that we denot
Vm

0 5Vm(z50). We see thatb is negative, of order unity a
present, and approaches minus infinity at high redsh
12401
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wherease is proportional toVmd with a coefficient of order
unity. Note that for larged, Eq. ~3.1! reduces to the standar
evolution of spherical perturbations in general relativi
However, whend is small, the correction term in the squa
brackets can be noticeably different from unity.

B. Linear growth

Let us focus first on linear perturbation growth at sca
r !H21. In this regimed(r ,t)!1, therefore one is always in
the weak-brane regime,2 r @r * , and the only effect of DGP
gravity is a modification of Newton’s constant. Equatio
~3.1! reduces to

d̈12H ḋ54pGr̄S 11
1

3b D d. ~3.3!

Note that the effective Newton’s constant,

Geff5GS 11
1

3b D , ~3.4!

is time dependent. Sinceb is negative, as time goes on th
effective gravitational constant decreases, and this extra
pulsion ~compared to general relativity! leads to suppresse
growth. For example, ifVm

0 50.3, Geff /G50.72,0.86,0.92 at
z50,1,2.

The growing-mode solution of Eq.~3.3!, D1 , is shown as
a function of redshiftz in Fig. 1. The top panel shows a
dashed lines the ratio ofD1 in DGP gravity to that in a dark
energy~DE! scenario with the same Friedmann equation
standard gravity, for two values of the present matter den
Vm

0 50.3 ~top! and Vm
0 50.2 ~bottom!. Notice how the

change in the effective Newton constant leads to a supp
sion ofD1 . Incidentally, this suppression is about two tim
larger than for models of modified gravity~with the same
expansion history! that obey the Birkhoff’s law@15,16#. The
lower panel compares the growth factorD1 to that in the
standard cosmological constant scenario~with Vm

0 50.3 and
VL50.7), again forVm

0 50.3 ~top! and Vm
0 50.2 ~bottom!.

We see here that the change in the expansion history~from a
cosmological constant to DGP! leads to an additional sup
pression of the growth. In the language of dark energy, thi
because the nonstandard term in the Friedmann equa
~2.8! can be thought of as a contribution from a dark ene
component with an effective equation of state given by

weff52
1

11Vm
, ~3.5!

therefore, for fixedVm
0 such a term dominates the expansi

of the Universe earlier in DGP gravity than in DE mode
with a cosmological constant, leading to an enhanced exp

2This is always true for top-hat perturbations, but in practice
size r is related to the amplituded through the perturbation spec
trum. However, for 1s fluctuations of scaler 510–100 Mpc/h with
typical profiles given by the two-point correlation function,r * cor-
responds to 5 –15 Mpc/h. Therefore perturbations accessible
large-scale structure surveys are a natural probe of DGP gravi
the weak-brane regime.
5-5
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sion rateH and therefore an additional suppression over
one provided by the change in the force law. We will exa
ine the observational consequences of this in Sec. IV.

The growth of velocity perturbations is also a useful o
servable, and it follows directly from the continuity equatio
in the linear approximation. It is specified byf
[d ln D1 /d ln a and it can be parametrized in terms of t
time variableVm ; in fact, one finds the following differen
tial equation forf (Vm) directly from Eq.~3.3!:

2
d f

dVm
1

1

3Vm~12Vm!
@~22Vm! f 1~11Vm! f 2#

5
1

3

~11Vm!~112Vm
2 !

~12Vm!~11Vm
2 !

~3.6!

whose numerical solution follows approximatelyf (Vm)
.Vm

2/3, which can be contrasted with the standardf (Vm)
.Vm

5/9 for flat models with a cosmological constant. The t
panel of Fig. 1 shows the ratio off for DGP and DE models
with the same expansion history, forVm

0 50.3,0.2, showing
that differences ofat least10% are expected, whereas com
paring DGP to cosmological constant models with the sa
Vm

0 larger differences are obtained, e.g. forVm
0 50.2,

f DGP/ f LCDM50.83. These deviations are well within th
range that can be probed with current redshift surveys.

FIG. 1. The top panel shows the ratio of the growth factorsD1

~dashed lines! in DGP gravity@Eq. ~3.3!# and a model of dark en
ergy ~DE! with an equation of state such that it gives rise to t
same expansion history@i.e. given by Eq.~2.8!, but where the force
law is still given by general relativity#. The upper line correspond
to Vm

0 50.3, the lower one toVm
0 50.2. The solid lines show the

analogous result for velocity perturbations factorsf. The bottom
panel shows the growth factors as a function of redshift for mod
with different expansion histories, corresponding to~from top to
bottom! LCDM (Vm

0 50.3), and DGP gravity withVm
0 50.3,0.2

respectively.
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C. Nonlinear growth

The left panel in Fig. 2 shows the full solution of Eq.~3.1!
with an initial condition of d i5331023 at zi51000 for
Vm

0 50.3, and the corresponding solution in the cosmolo
cal constant case. Whereas such a perturbation collaps
the LCDM case atz50.66 when its linearly extrapolate
density contrast isdc51.689, for the DGP case the collaps
happens much later atz50.35 when itsdc51.656. In terms
of the linearly extrapolated density contrasts things do
look very different, in fact, when the full solutions are e
pressed as a function of the linearly extrapolated density c
trasts,d lin5D1d i /(D1) i they are very similar to within a
few percent~right panel in Fig. 2!. This implies that all the
higher-order moments of the density field will be very clo
to that in LCDM models. Indeed, such moments are det
mined by the verticesnn defined from (n1[1)

d~d lin!5 (
n51

`
nn

n!
d lin

n , ~3.7!

e.g., the skewness isS353n2 @32#, up to smoothing correc-
tions that depend on the transformation from Lagrangian
Eulerian space. However sincenn5dnd/dd lin

n at d lin50, the
nn’s in DGP gravity will all be very similar to those in
LCDM ~we have checked this explicitly forS3, obtaining
less than 1% change!. This can be useful in the sense that
allows the use of the nonlinear growth to constrain the b
between galaxies and dark matter in the same way as
done in standard case, thus inferring the linear growth fac
from the normalization of the power spectrum in the line
regime. Although the result in the right panel in Fig. 2 m

ls

FIG. 2. Numerical solution of the spherical collapse. The l
panel shows the evolution for a spherical perturbation withd i53
31023 at zi51000 for Vm

0 50.3 in DGP gravity and inLCDM.
The right panel shows the ratio of the solutions once they are b
expressed as a function of their linear density contrasts.
5-6
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seem a coincidence at first sight, Eq.~3.1! says that the non
trivial correction from DGP gravity in square brackets
maximum whend50 ~which gives the renormalization o
Newton’s constant!. As d increases the correction disappea
~since DGP becomes Einstein at high densities!, so most of
the difference between the two evolutions happens in
linear regime, which is encoded in the linear growth fact

D. Late-time ISW effect

We now consider the late-time integrated Sachs-Wo
~ISW! effect on the cosmic microwave background~CMB!
for perturbations with scaler !H21. For this purpose, we
need to identify the gravitational potentials for linear ove
densities as perturbations around a homogeneous cosmo
cal background with the line element

ds25@112F~t,l!#dt2

2ā2~t!@112C~t,l!#@dl21l2dV#. ~3.8!

Here F(t,l) and C(t,l) are the relevant gravitational po
tentials andl is a comoving radial coordinate. In effect w
want to determineF andC givenn anda. Unlike the case of
Einstein’s gravity,FÞ2C, due to additional contribution o
the first term in Eq.~2.4!. One may perform a coordinat
transformation to determine that relationship. We find th
assigningr 5ā(t)l, and

F5n2nubackground ~3.9!

C52E dr

r
@a~t,r !2a~t,r !ubackground#, ~3.10!

keeping only the important terms whenrH !1. But since we
are concerned with linear density perturbations, we find fr
Eqs. ~2.23! and ~2.24! that the quantity of interest for th
ISW effect is the time derivative of

¹2~F2C!5
8p

M P
2 ā2rd, ~3.11!

where ¹ is the gradient in comoving spatial coordinate
This result is identical to the four-dimensional Einstein
sult, the contributions from the brane effects exactly canc
ling. This result is not entirely surprising since the effect
the brane is the introduction of a gravitational scalar t
couples to the trace of the energy-momentum tensor. H
ever, the ISW effect has to do with the evolution of photo
through a gravitational field~in the weak field limit!, and
photons will not couple to the gravitational scalar~its trace
vanishes!. Thus, the late-time ISW effect for DGP gravit
will be identical to that of a dark energy cosmology th
mimics the DGP cosmic expansion history, Eq.~2.8!, at least
at scales small compared to the horizon. Our approxima
does not allow us to address the ISW effect at the larg
scales~relevant for the CMB at low multipoles!, but it is
applicable to the cross correlation of the CMB with gala
surveys. At larger scales, one expects to encounter diffi
ties associated with leakage of gravity off the brane~for
12401
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order-unity redshifts! and other bulk effects@30,29# that we
were successfully able to ignore at subhorizon scales.

Discussion of photon geodesics naturally leads one to
how lensing may be altered due to DGP contributions. F
weak lensing by large-scale structure, one is in the weak fi
limit and therefore Eq.~3.11! applies; that is, the weak lens
ing pattern is identical to that for Einstein gravity, apart fro
the difference in expansion histories and change in the fo
law. In other words, reconstruction of the dark matter dis
bution in DGP from weak lensing only requires changing t
growth rate and the geometrical distances.3

E. Beyond isolated spherical perturbations

Since we have derived the growth of spherical isola
perturbations, it is fair to ask how well do we expect o
results to hold in the realistic case of a superposition of p
turbations of arbitrary shape. In the linear regime, one
pects to recover the same result as here, since the linea
equations obey the superposition principle and one may c
struct arbitrary perturbations from a linear superposition
isolated spherical perturbations. In the linear regime, D
gravity reduces to a Brans-Dicke theory with a slowly tim
dependent Newton’s constant, Eq.~3.4!. The Newtonian po-
tential is then just a solution to Poisson’s equation for a giv
matter distribution source. It would be interesting, howev
to corroborate this prescription with a fully consistent line
solution for an arbitrary perturbation spectrum along t
lines of those presented in Ref.@30#, restricted to scales
smaller than the Hubble radius.

For the nonlinear growth, the situation is more comp
cated since the relation between the gravitational poten
and the density fluctuationd is nonlinear and the principle o
superposition no longer holds. Here, however, one sho
keep in mind that these nonlinearities only develop late
the evolution after the universe starts to accelerate, thus
corrections to superposition have a small time to act. I
however difficult to say something more quantitative at t
point.

IV. OBSERVATIONAL CONSEQUENCES

What are the implications of these results for testing D
gravity using large-scale structure? A clear signature of D
gravity is the suppressed~compared toLCDM) growth of
perturbations in the linear regime due to the different exp
sion history and the addition of a repulsive contribution
the force law. However, in order to predict the present n
malization of the power spectrum at large scales, we nee
know the normalization of the power spectrum at early tim

3It is a nontrivial result that light deflection by a compact spheri
source is identical to that in four-dimensional Einstein gravity@even
with potentials Eqs.~2.16!–~2.19! substantially differing from those
of Einstein gravity# through the nonlinear transition between th
Einstein phase and the weak-brane phase. As such, there rem
the possibility that foraspherical lenses that this surprising nu
result does not persist through that transition and that DGP m
manifest itself through some anomalous lensing feature.
5-7
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from the CMB. A fit of the pre-Wilkinson Microwave An-
isotropy Probe~WMAP! CMB data was performed in Ref
@21# using the angular diameter distance for DGP grav
finding a best fit~flat! model with Vm

0 .0.3, with a very
similar CMB power spectrum to the standard cosmologi
constant model~with Vm

0 .0.3 andVL
0 50.7) and other pa-

rameters kept fixed at the same value. Here we use this
plus the normalization obtained from the best-fit cosmolo
cal constant power-law model from WMAP@33# which has
basically the same~relevant for large-scale structure! param-
eters as in Ref.@21#, except for the normalization of th
primordial fluctuations which has increased compared to p
WMAP data~see e.g. Fig. 11 in Ref.@34#!. The normaliza-
tion for the cosmological constant scale-invariant model c
responds to present rms fluctuations in spheres of 8 Mph,
s850.960.1 ~see Table 2 in Ref.@33#!. We assume a fla
model, since it was shown in Ref.@21# to be consistent as
well with the DGP angular diameter distance. We ignore
fact that the ISW effect at low multipoles~where the CMB
power spectrum has large error bars! can be different in DGP
gravity, this has a small effect on the overall normalization
the primordial fluctuations that are determined by the ove
power spectrum.

Figure 3 shows the present value ofs8 as a function of
Vm

0 for DGP gravity, where we assume that the best-fit n
malization of theprimordial fluctuations stays constant as w
changeVm

0 , and recompute the transfer function and grow
factor as we move away fromVm

0 50.3. Since most of the
contribution tos8 comes from scalesr ,100h/Mpc, we can
calculate the transfer function using Einstein gravity, sin

FIG. 3. The linear power spectrum normalization,s8, for DGP
gravity as a function ofVm

0 . The vertical lines denote the best fi
value and 68% confidence level error bars from fitting to type
supernovae data from@21#, Vm

0 50.1820.06
10.07. The other lines corre-

spond tos8 as a function ofVm
0 obtained by evolving the primor

dial spectrum as determined by WMAP by the DGP growth fac
See text for details.
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these modes entered the Hubble radius at redshifts
enough that they evolve in the standard fashion. The valu
s8 at Vm

0 50.3 is then given by 0.9 times the ratio of th
DGP toLCDM growth factors shown in the bottom panel
Fig. 1. The error bars ins8 reflect the uncertainty in the
normalization of primordial fluctuations, and we keep them
constant fraction as we varyVm

0 away from 0.3. We see in
Fig. 3 that for the lower values ofVm

0 preferred by fitting the
acceleration of the Universe, the additional suppression
growth plus the change in the shape of the density po
spectrum drives8 to a rather small value. This could in pa
be ameliorated by increasing the Hubble constant, but no
the extent needed to keeps8 at reasonable values. The ve
tical lines show the best-fit and 1s error bars from fitting
DGP gravity to the supernova data from Ref.@1# in Ref. @21#.
This shows that fitting the acceleration of the universe
quires approximatelys8<0.7 to 1s ands8<0.8 to 2s.

In order to compare this prediction ofs8 to observations
one must be careful since most determinations ofs8 have
built in the assumption of Einstein gravity orLCDM mod-
els. We use galaxy clustering, which in view of the results
Sec. III C for higher-order moments, should provide a tes
galaxy biasing independent of gravity being DGP or E
stein. Recent determinations ofs8 from galaxy clustering in
the SDSS survey@35# give s8* 50.8960.02 forL* galaxies
at an effective redshift of the surveyzs50.1. We can convert
this value tos8 for dark matter atz50 as follows. We
evolve to z50 using a conservative growth factor, that
DGP for Vm

0 50.2. In order to convert fromL* galaxies to
dark matter, we use the results of the bispectrum analysi
the 2dF survey@36# whereb51.0460.11 for luminosityL
.1.9L* . We then scale toL* galaxies using the empirica
relative bias relation obtained in Ref.@37# that b/b* 50.85
10.15(L/L* ), which is in very good agreement with SDS
~see Fig. 30 in Ref.@35#!. This implies s851.0060.11.
Even if we allow for another 10% systematic uncertainty
this procedure, the preferred value ofVm

0 in DGP gravity that
fits the supernovae data is about 2s away from that required
by the growth of structure atz50.

An independent way of testing DGP gravity with larg
scale structure is to constrain the growth of velocity fluctu
tions throughf. This affects the redshift distortions of th
power spectrum and can be extracted from measureme
though at present the errors are somewhat large~see, e.g.,
Ref. @35#! for an accurate test, but this should improve so
The interesting feature of this test is that it is independen
the normalization of the primordial fluctuations, unlike th
s8 normalization discussed above; thus it will be importa
to check that the same conclusions follow in this case.

V. CONCLUDING REMARKS

In this paper we identified how one may test the mod
cations of the gravitational force law expected in Dva
Gabadadze-Porrati~DGP! gravity at scales of cosmologica
interest. While cosmology is altered when the Hubble sc
becomes comparable to today’s Hubble scale,H0

21, the force
law is correspondingly altered at much shorter scales
affects, for example, the growth of density perturbations
redshifts of order unity.

r.
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Although the results obtained in this paper are qual
tively comparable to those found in Ref.@15#, they differ in
key ways since DGP gravity does not obey Birkhoff’s la
The form of the gravitational force law between localiz
mass sources is sensitive to the background cosmolog
expansion. So, while the results show deviations from Ne
tonian gravity of order unity at distance scales greater t
the scaler * ;(r g /H0

2)1/3, wherer g is the Schwarzschild ra
dius of the mass source, the quantitative details differ.
particular, the suppression of the growth of structure i
factor about 2 larger than in Birkhoff-law models with th
same expansion history. Moreover, DGP gravity deviates
nificantly from four-dimensional Einstein gravity through th
emergence of an ultralight graviscalar mode. Because su
mode does not couple to photons, the effects do not man
themselves in the late-time integrated Sachs-Wolfe~ISW! ef-
fect, at least at the subhorizon scales we consider. While
gravitational potentials are indeed altered by order-unity f
tors late in the cosmic expansion history, they precisely c
cel, so that the late-time ISW effect in DGP gravity is ide
tical to that for a dark energy theory that mimics the DG
expansion history. The same situation applies to weak gr
tational lensing.

We have done a first assessment of the observationa
ability of DGP gravity to simultaneously explain the acce
eration of the Universe and the growth of structure. In or
to improve the comparison against observations a numbe
issues remain unsolved. First, one would like to check t
the linear growth factor for subhorizon scales derived un
the spherical approximation holds for more general pertur
tions, as expected by the superposition principle in the lin
regime. A more nontrivial check would be to generalize t
to the nonlinear case, or at least second-order in perturba
theory, to check the deviations from superposition assum
tte

.
r,

J
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here in the nonlinear case. To do a full comparison of
CMB power spectrum against data it remains to solve for
ISW effect at scales comparable to the horizon. Our tre
ment found no difference from general relativity~except
from the change in the expansion history!, but this is only
valid at subhorizon scales.

Nevertheless, the main problem for DGP gravity to sim
taneously explain cosmic acceleration and the growth
structure is easy to understand: the expansion history is
ready significantly different from a cosmological consta
corresponding to an effective equation of state withweff
52(11Vm)21. This larger value ofw suppresses the
growth somewhat due to earlier epoch of the onset of ac
eration. In addition, the repulsive contribution to the for
law suppresses the growth even more, drivings8 to a rather
low value, in contrast with observations. If as error ba
shrink the supernovae results continue to be consistent
weff521, this will drive the DGP fit to a yet lower value o
Vm

0 and thus a smaller value ofs8. For these reasons w
expect the tension between explaining acceleration and
growth of structure to be robust to a more complete tre
ment of the comparison of DGP gravity against observatio
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