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The nature of the fuel that drives today’s cosmic acceleration is an open and tantalizing mystery. The
brane-world theory of Dvali, Gabadadze, and Por(aEP) provides a context where late-time acceleration is
driven not by some energy-momentum compor(eiark energy, but rather is the manifestation of the excru-
ciatingly slow leakage of gravity off our four-dimensional world into an extra dimension. At the same time,
DGP gravity alters the gravitational force law in a specific and dramatic way at cosmologically accessible
scales. We derive the DGP gravitational force law in a cosmological setting for spherical perturbations at
subhorizon scales and compute the growth of large-scale structures. We find that a residual repulsive force at
large distances gives rise to a suppression of the growth of density and velocity perturbations. Explaining the
cosmic acceleration in this framework leads to a present day fluctuation power spectrum normadigation
=<0.8 at about the two-sigma level, in contrast with observations. We discuss further theoretical work necessary
to go beyond our approximations to confirm these results.
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[. INTRODUCTION governing gravitational dynamics, then generically one ex-
pects that the gravitational force law of an isolated mass

The discovery of a contemporary cosmic acceleratiorsource is altered even at distance scales much smaller than
[1,2] is one of the most profound scientific observations ofH *. This effect can then be exploited to differentiate be-
the 20th century. We are now challenged to answer the opeRyeen a modified-gravity explanation of today’s cosmic ac-

and tantalizing question of what drives that accelerationce|eration and dark energyhere the gravitational force law
While a conventional explanation exists (i.e. dark energy—emains unaltered 15,16

some new negative-pressure energy-momentum component) A jeading contender in modified-gravity explanations of

an intriguing line of thought is gaining attention: the accel'.acceleration is the brane-world theory of Dvali, Gabadadze,

erated expansion is not a result of yet another ingredient i nd Porrati(DGP). In this theory, gravity appears four di-

our already gunky cosmic gas taqk, .bUt rather S a signal o ensional at short distances hsitaltered at distances large
our lack of understanding of gravitational physics on large .
compared to some freely adjustable crossover scge r

scales[3-14). . )
Being able to observationally differentiate the two possi-throth the slow evaporation of the graviton off our four-

bilities, dark energy versus modified gravity, is an essentiaﬂ'mens'ona! brane-world universe Into an unseen, yet I_arge,

component in developing the modified-gravity paradigm.f'fth dlmgnsmn[l?—lq. DGP gravity prowdgs an al_ternatlve

One can easily envision some modified-gravity model lead€XPlanation for today’s cosmic acceleratipd,4]: just as

ing to an expansion history that can be identically repro-gravity is conventional four-dimensional gravity at short

duced by some dark-energy model. Thus, observations th&€ales (<ro) and appears five dimensional at large distance

depend only on anomalous expansion histories are insuffscales (>r,), so too the Hubble scaléi(t), evolves by the

cient to tease out the acceleration’s root cause. However, &onventional Friedmann equation at high Hubble scales but

we argue in Ref[15], if one attempts to modify cosmology Saturates at a fixed value &Kt) approaches, . Thus, if

at today’s Hubble scaled,, through altering the equations one were to set,=H, *, whereH, is today’s Hubble scale,
then DGP gravity could account for today’s cosmic accelera-
tion in terms of the existence of extra dimensions and a

*Email address: lue@cern.ch modification of the laws of gravity. The resulting cosmic
"Email address: rs123@nyu.edu expansion history is specific and may be tested using a vari-
*Email address: glenn.starkman@cern.ch ety of cosmological observatiorg,20—23. However, can
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we distinguish between DGP gravity and a dark energysult in this paper that allows one to answer questions of
model that mimics the same cosmic expansion history?  cosmological interest developed in the next sections.

We would naively expect not to be able to probe the extra
dimension at distances much smaller than the crossover scale A. DGP model

-1 ; e ; _
fo=Ho *. However, in DGP, although gravity is four dimen Consider a brane-world theory of gravifpne in which

sional at distances shorter theg) it is not four-dimensional . : , ;
. : . o ordinary particles and fields, other than the graviton, are
Einstein gravity—it is augmented by the presence of an ul-__ .. . .
; 2 . : confined to a three-dimensional hypersurface—the brane—
tralight gravitational scalar. One only recovers Einstein grav- . ) ) .
L ; embedded in a higher dimensional space—the buii) an
ity in a subtle fashiof23-26¢, and a marked departure from . .~ .
4 . : ; : infinite-volume bulk and a metastable brane gravif.
Einstein gravity persists down to distances much shorter th . , i ,
Y e take a four-dimensional brane world embedded in a five-
ro. For example, fory,~H, - and a central mass source of

Sch hild radi ianifi d logicall dimensional Minkowski spacetime. The bulk is empty; all
chwarzschild radius,, significant and cosmologically sen- energy momentum is isolated on the brane. The action is
sitive deviations from Einstein gravity occur at distances

greater tharj25-28 1
8(5)=—EM3J d5x\/—gR+fd4x\/—g(45£m+SGH.

13
L =(rgré)1’3~(%> . (1.1) (2.)

0 The quantityM is the fundamental five-dimensional Planck
) ) ~ scale. The first term in Ed2.1) corresponds to the Einstein-
Thus a marked departure from conventional physics persisigjipert action in five dimensions for a five-dimensional met-
down to scales much smaller than the distance at which thge g, . (bulk metrio with Ricci scalarR. The termSgy is
extra dimension is naively hidden, or for our discussion hereyne Gibbons-Hawking action. In addition, we consider an

the distance at which the Friedmann equation was modifiethtrinsic curvature term which is generally induced by radia-

to account for accelerated cosmic expansion. This alteratiofe corrections by the matter density on the brfhd:
of gravitational interactions provides a way of differentiating

between DGP gravity and dark energy models, and is con- 1
sistent with the argument we put forth in RgL5]. - @Méf d*xy/—g@R®. (2.2
Imminent solar system tests have bedmown to be ca-

pable of probing the residual deviation from four- Here M, is the observed four-dimensional Planck sdakee

dimensional Einstein gravity at distances well beloyw  Refs. [17-19 for detaily. Similarly, Eq. (2.2) is the

physics where dramatic differences from Einstein gravity &rane,R™ being its scalar curvature. The induced metric is

anticipated. A detailed study of large scale structure in the

Universe can provide such tests of gravitational physics at 9=, X"9,XBgg, (2.3
large distance scales. Unfortunately, prior analyses related to peooH

modified-gravity explanations of cosmic accelerafi®f,16  whereX”(x*) represents the coordinates of an event on the

are not applicable here. The modified force law is, in effectprane labeled by*. The action given by Eq$2.1) and(2.2)
sensitive to the background cosmological expansion, sinCRads to the following equations of motion:

this expansion is intimately tied to the extrinsic curvature of

the brane[3,29], and this curvature controls the effective 1 8w

Newtonian potential. A more careful analysis must be per- FGABJr 5(brane)G§\4§=—2TAB|brane, (2.9
formed. In the next section we briefly review DGP gravity 0 Mp

and identify the force law necessary to calculate how large ) ] ] @) ] )
scale structure evolves in this cosmological model. We theM/NereGag is the bulk Einstein tensoG,g is the Einstein
proceed and compare those results to the standard cosm&fnsor of the induced brane metric, aNgk|praneis the matter
ogy, as well as to a cosmology that exactly mimics the DGPENergy-momentum tensor on the brane. We have defined a
expansion history using dark energy. Finally, we discuss th&0ssover scale

observational implications of our results on the growth of

structure in DGP gravity and conclude with some remarks B 'V';ZD

and a discussion of future work needed to improve upon our ro_ﬁ' (2.5
treatment.

This scale characterizes that distance over which metric fluc-
Il. DGP GRAVITY H%ions propagating on the brane dissipate into the bulk
We review the important points of the DGP brane-world
model, including cosmology. We then modify the calculation
performed in Ref[27] to determine the gravitational force  !Throughout this paper, we ugeB, ...={0,1,2,3,3 as bulk in-
law in an evolving cosmological background, rather than in adices, w,v,...={0,1,2,3 as brane spacetime indices, and
static background de Sitter space. This calculation is the resj, ...={1,2,3 as brane spatial indices.
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B. Cosmological background r(T’)\i)ZE( TN (2.9

Let us review some important details of the cosmological
background, for a general expansion of a spatially flat brane
into a Minkowski-flat bulk. We are primarily interested in the
late evolution of the Universe, in particular the matter- o
dominated era where the energy-momentum content of théer all zand wherex?= SijN'N. The line element becomes
Universe is well-represented by a pressureless distribution of ) )
galaxies, spatially homogeneous on the largest scales. The ds?’=[1F2(H+H/H)|z|—(H?+H)r?]dt?
spatially homogeneous cosmological background of such a _

Universe is driven by energy-momentum given by —[1F2H[Z]J[(1+H*r*dr*+r?d0]-d7,
(2.1

where here dot represents differentiation with respect to the
time coordinatet. Moreover,H=H(t) in this coordinate
system. All terms of)(r3H3) or O(z?H?,zHrH) and higher
have been neglected.

a 2 o i \2 The coordinate system in E(R.11) will be the most use-
ds?=| 1|7 dTZ_aZ(T)( 1::|z|) [8;d\dN]] ful when considering the cosmological scenarios we are in-

a a terested in. One can see that the bulk is a Rindler space. This
has a fairly natural interpretation if one imagines the bulk
picture [3,29]. One imagines riding a local patch of the
brane, which appears as hyperspherical surface expanding
Here, dot refers to differentiation with respect to the cosmodinto (or away from a five-dimensional Minkowski bulk.
logical time 7, the coordinate is the extra dimension, and This surface either accelerates or decelerates in its motion

the brane scale factoa(r) satisfies a modified Friedmann With respect to the bulk, creating a Rindler-type potential.
equation

4 A2 _
t(r,\)=71+ ?H(T)az(r), (2.10

Tg|brane: é(z)diag p(7),0,0,0,0, (2.6

with spacetime geometry dictated by the line eleni8iht

—dZ. (2.7

C. Nonrelativistic matter sources

H 8 We are interested in finding the metric for compact,
2tr—: >p(7), (2.8 spherically symmetric overdensities in the background of a
o 3Mp matter-dominated cosmology. Because we are only con-

cerned with distance scales such thdt<1, then to leading
order inr?H? and zH, the solutions to the field equations
(2.4) are also solutions to the static equations, i.e. the metric
is quasistatic, where the only time dependence comes from
the slow evolution of the extrinsic curvature of the brane. To
be explicit, we are looking at the nonrelativistic limit, where
the metric, or the gravitational potentials, of a matter source
depends only on the instantaneous location of its elements,
nd not on the motion of those elements.

Under this circumstance, one can choose a coordinate sys-
tem in which the cosmological metric respects the spherical
symmetry of the matter source. Let the line element be

whereH(7)=al/a. The two choices of sign represent two
distinct cosmological phases. The phase of inteftbst self-
accelerating phagecorresponds to the lower sign, but we
keep both for the sake of completeness.

This Friedmann equatio(2.8) already makes the theory
distinct from standarcdh CDM (cold dark matter with cosmo-
logical constant cosmology, and observational signatures
constraining DGP cosmology have been considered in e.&
Refs.[4,21,23. Using constraints from type 1A supernovae
[21], the best fit isro=1.21"55H, 1, whereH, is today’s
Hubble scale. Takingd,~70 km s * Mpc™?, it impliesr

~5 Gpc. ds®=N2(t,r,z)dt?— A%(t,r,z)dr?
However, we wish to focus on those properties of DGP 5 . 5
gravity that are affected by the modification of the force law, —BA(t,r,z)[d¢*+sinfodp*]—dZ.  (2.12

that produced the same expansion history. Following thi e are interested in small deviations of the metric from

and cannot be mimicked by some dark energy compone%}v
program, we focus particularly at distance scales muc latness so we define functiofa(t,r,z),a(t.,r.2),b(t,r,2)}

smaller than the Hubble radiusi . As described in the such that

Introduction, the gravitational force law is significantly dif- N(t,r,z)=1+n(t,r,z)

ferent from four-dimensional Einstein, even at these short

distance scales. We wish to determine the form of the cor- A(t,r,z)=1+a(t,r,z)

rections in the background of the expected matter-dominated

cosmology, Eq(2.8). B(t,r,z)=r[1+b(t,r,2)]. (2.13

We are concerned with processes at distangesjch that
rH<1. Under that circumstance it is useful to change coor-The key is that because we are interested primarily in phe-
dinates to a frame that surrenders explicit brane spatial haaomena whose size is much smaller than the cosmic horizon,
mogeneity but preserves isotropy the effect of cosmology is almost exclusively to control the
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extrinsic curvature, of the bran€his can be interpreted as a From inspection of Eq(2.19), we see that, in addition to
modulation of the brane’s stiffness or the strength of the scar, there exists a new transition scale
lar gravitational mode.

We take the energy-momentum tensor to now be 1

) (2.20

2
roRg

B

M=

Tl brane= (2)diag p(t) + 8p(t,r),0,0,0,0, (2.14

. ) such that whem<r, , the Einstein phase, the metric func-
where the source mass is an overdensity of compact suppa{fns on the brane reduce to

(i.e. its extent is some radiuR<H™1). Given a source

mass whose overdensity with respect to the cosmological Ry Ryf
background goes asp(r,t), we may define an effective n=—_—=*x\/%z>% (2.23
. . 2r 2ry
Schwarzschild radius
R Ryr
8w (r =9 /9
Rg(r,t)=WJ0r25p(r,t)dr. (2.19 3= *Varz (2.22
P

Whenr>r, , the weak-brane phase, the metric functions on

We solve the perturbed Einstein equations in quasistatic aQhe brane become

proximation by generalizing the method used in R&f],

obtaining the metric of a spherical mass overdengjiyt,r) R 1 1 )
in the background of the cosmology described by @q11) n=— 2—? 1+ %} - E(Hz'f' H)r? (2.23
(rather than de Sitter spacdhe metric on the brane, using
the residual gauge fixing(t,r)|,—o=0, is then given by
a:& 1_i +EH2r2 (2.24
2r 38| 2 ' '

rn’(t,r)],—o= %[1+A(r)]—(H2+ H)r2 (2.16
In this phase, the extra scalar mode, the would-be radion,
R 1 alters the effective Newton’s constants for the gravitational
a(t,r|,_o= _9[1_A(r)]+ ZH2%2 (2.17) potentials represented Imft,r) —n(t,r)|packgrouna the New-
2r 2 tonian potential, andi(t,r)—a(t,r)|backgmund the gravito-

. _ . magnetic potential.
where dot now denotes differentiation with respect tnd One may simply check that the full,¢,2)-dependent

prime denotes differentiation with respectricNote that the metric satisfies the complete modified Einstein equations

background contnbuﬂon_ 'S mt_:luded in these metric Compo'(2.4) to the desired order. Note that to this order of precision,
nents. The quantitA(r) is defined as

the velocity of the matter distributiofp(t,r) does not affect

3813 \/W spacetime geometriuntil orderv? or vrH), thus corroborat-
O g - - . - .
A(r)= —— 14+ —>—=—1], 21 ing the quasistatic approximation.
(0= 27r, oF } (2.18
and D. Caveats
- The approximationy <1 (v represents peculiar matter
_ 1%2roH+2rgH velocities andrH <1 play a role in several places and allow

1+2rH ' (2.19 a series of crucial simplifications that need to be spelled out.
These two approximations are lumped together because the
Though it is not of explicit interest here, the fuldepen-  Hubble-flow velocity and peculiar velocities play almost
dence of the metric may be deduced from E@16 and identical roles in the relevant field equations. The following
(2.17) using equations laid out in the appendix of R&¥7]  are the operational simplifications:

with trivial alterations accounting for the differing cosmo- . . o .
logical background. (i) Nonrelativistic, quasistatic sources. Source-velocity

The result Eqs(2.16—(2.19 is valid for r<H~! andr dependent contributions to the gravitational field are

<r,, but only if the spatial support afp(r,t) extends only sublea_dlng. One may use the statlc_ Einstein equat|0_ns
to radii much less thaki ~%, so that there is a clear distinc- and still be aszsurzedz that the metric on the brane is
tion between the matter making up the overdensity and the ~ accurate ta(v=,reH?). S
cosmological background. The result is virtually identical to(il) ~ Near-field regime. Related to the above simplification,

the strictly static de Sitter background case except tigere the source evolves slowly enough that radiative ef-
=1+2r,H. One may also confirm that in the absence of fects are negligible at these radii. We may safely
perturbationgi.e., 5p or Ry=0), the background metric Eq. avoid scalar radiation on the brane and gravity-wave
(2.11) is a consistent, quasistatic solution. This point is evaporation into the bulk and other radiative bulk ef-
analogous to the well-known idea that one may reproduce fects[29,30. These radiative scalar modes may also
the Friedmann equation in matter-dominated cosmologies have classical instabilities that might become relevant
with just the Newtonian interaction between matter particles. outside this regimé31].
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(ili) Resolving background matter from perturbation. Thiswherease is proportional to(),,8 with a coefficient of order
simplification is specific to DGP gravity. The metric unity. Note that for larges, Eq. (3.1 reduces to the standard
components Eqgs(2.16) and (2.17 depends on the e€volution of spherical perturbations in general relativity.
background Hubble expansion, and the calculationiowever, whens is s_mall, the_ correction term in the square
crucially depends on the assumption that the overdenPrackets can be noticeably different from unity.
sity does not alter the background cosmology. This
can been seen to be self-consistent in the DGP field ] ) )
equations only when the radius of support for the L€t us focus first on linear perturbation growth at scales

overdensity is much smaller than the Hubble radius! <H " '- In this regimes(r,t) <1, therefore one is always in
H-1 the weak-brane reginfer>r, , and the only effect of DGP

. . o L . gravity is a modification of Newton’s constant. Equation
(iv) Geodesic motion is Newtonian, i.e. the geodesic equa(3.1) reduces to

tion reduces to Newton’s second law where the poten-
tial is ggo Or N(t,r).

B. Linear growth

5. (3.3

. . 1
5+2H 5=4qu4 1+ 3B
If we stray too far from the assumptioms<1 andrH <1,

then effects safely disregarded may start intruding into andNote that the effective Newton’s constant,

complicating the analysis, particularly whéf~H,, intro-

ducing additional effects of equal significance to the ones Ger=G| 1+ 1 , (3.4)
included here. 3B
is time dependent. Singé is negative, as time goes on the
lll. GROWTH OF DENSITY PERTURBATIONS effective gravitational constant decreases, and this extra re-

pulsion (compared to general relativityeads to suppressed
) ) ) growth. For example, 2% =0.3, Go4/G=0.72,0.86,0.92 at
Let us consider the evolution of a spherical top-hat per4y=q 1,2,

turbation §(t,r) of top-hat radius R wheLep(t,r) =p(t)(1 The _growing-moo_le s_oluti_on of E¢3.3), D , is shown as
+6) is the full density distribution ang(t) is the back- @ function of redshifiz in Fig. 1. The top panel shows as
ground density. At subhorizon scaledr(<1), the contribu- dashed lines the ratio @ , in DGP gravity to that in a dark
tion from the Newtonian potentiah(t,r), dominates the €Nergy(DE) scenario with the same Friedmann equation but
geodesic evolution of the overdensity. From Ef.23 it standard gravity, for two values of the present matter density

0 _ 0_ P
follows that the equation of motion for the perturbatioris ~ !m=0-3 (top) and Q;=0.2 (bottom. Notice how the
change in the effective Newton constant leads to a suppres-

A. Spherical perturbations

) 52 _ sion of D, . Incidentally, this suppression is about two times
6— 3 1+5+2H5 larger than for models of modified gravitith the same
expansion histonythat obey the Birkhoff’s law15,16. The
_ 21 lower panel compares the growth factor, to that in the
=4m7Gpo(1+6)| 1+ 3 < Vlite—1)|, standard cosmological constant scenawith Q2 =0.3 and

0,=0.7), again forQ2=0.3 (top) and Q°=0.2 (bottom.
(3D  We see here that the change in the expansion higbow a
I logical constant to DGHFeads to an additional sup-
where the definition ot=8r2R/98%R® follows from the ~ CO5M° -
identification of the expressoior% if s&uare brackets with 1preSS|on of the growth. In the language of dark energy, this is

A Eq(2.1 q h icted | because the nonstandard term in the Friedmann equation
(r) [see Eq( y 8], and we have restricted ourselves to (2.8 can be thought of as a contribution from a dark energy
the self-accelerating branche., the lower sign choice in all

. . : component with an effective equation of state given by
equations in the previous sectjon

For clarity, we may recast the time evolution@fnde in 1
terms of § and thetime-dependenvalue of (},,. Defining Weif = — 1+—Qm 3.9
Qm(t)ESWp(t)/3M|23H2(t), and using the Friedmann equa- . 0 ) .
tion (2.8), therefore, for fixed,, such a term dominates the expansion
of the Universe earlier in DGP gravity than in DE models
1+ 02 8 (1+0,,)2 with a cosmological constant, leading to an enhanced expan-

L e=-—™ 0 5 (32

1-Q2 9 (1+02)?

. . . . 2This is always true for top-hat perturbations, but in practice the
W? stress_thaﬂm IS _a time-dependent quantity—it 9035_ to sizer is related to the amplitudé through the perturbation spec-
unity at high redshift iz<z.q, where the evolution is ., However, for # fluctuations of scale=10-100 Mpch with
Einstein—de Sittetbut in the matter dominated regimend  ica) profiles given by the two-point correlation functian, cor-

at present it reduces to the usual value that we denote 3gsponds to 5-15 Mph!/ Therefore perturbations accessible to
02=0,(z=0). We see thag is negative, of order unity at |arge-scale structure surveys are a natural probe of DGP gravity in
present, and approaches minus infinity at high redshiftthe weak-brane regime.
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FIG. 1. The top panel shows the ratio of the growth facrs
(dashed linesin DGP gravity[Eg. (3.3)] and a model of dark en-
ergy (DE) with an equation of state such that it gives rise to the
same expansion histofy.e. given by Eq(2.8), but where the force
law is still given by general relativiy The upper line corresponds
to 02=0.3, the lower one td2%=0.2. The solid lines show the
analogous result for velocity perturbations factérsrhe bottom
panel shows the growth factors as a function of redshift for models

FIG. 2. Numerical solution of the spherical collapse. The left
panel shows the evolution for a spherical perturbation with 3
X102 at z;=1000 for Q2 =0.3 in DGP gravity and iPA CDM.

The right panel shows the ratio of the solutions once they are both
expressed as a function of their linear density contrasts.

C. Nonlinear growth

with different expar(ljsion histories, correqunding (f(xgm top to The left panel in Fig. 2 shows the full solution of £§.1)
bottom) ACDM (Q;,=0.3), and DGP gravity witf2,=0.3,0.2  wjth an initial condition of §=3x10 2 at z=1000 for
respectively. 09%=0.3, and the corresponding solution in the cosmologi-

) » . cal constant case. Whereas such a perturbation collapses in
sion rateH and therefore an additional suppression over thgne A CDM case atz=0.66 when its linearly extrapolated
one provided by the change in the force law. We will exam-gensity contrast i, = 1.689, for the DGP case the collapse
ine the observational consequences of this in Sec. IV. happens much later at=0.35 when itss,=1.656. In terms

) : . . .= 1.656.
The growth of velocity perturbations is also & useful 0b-q the Jinearly extrapolated density contrasts things do not
servable, and it follows directly from the continuity equation |5, very different, in fact, when the full solutions are ex-

iE the linear approximation. It is specified bYf  yregsed as a function of the linearly extrapolated density con-
=dInD, /dIna and it can be parametrized in terms of thetrasts,énn:D+5i/(D+)i they are very similar to within a

time variable(),; in fact, one finds the following differen-  q\, percent(right panel in Fig. 2 This implies that all the

tial equation forf () directly from Eq.(3.3): higher-order moments of the density field will be very close
df to that in ACDM models. Indeed, such moments are deter-
_ _ 2 mined by the vertices,, defined from ¢,=1)
de+39m(1—Qm)[(2 Q)f+(1+Q,,)f]

©

1 (1+0,)(1+208)

_ 8(3im) =2 =1 3%, 3.7
3 (1-0,)(1+02%)

(3.6)

) ) ) e.g., the skewness B;=3v, [32], up to smoothing correc-
whogg numerical solution follows approximatel(2y)  tions that depend on the transformation from Lagrangian to
iQE}g' which can be gontrasted Wlth the stand#fd),,) Euler_ian space. H(_)WEV_er sinmzd“&/d§ﬁn_at 8in=0, the_
=" for flat models with a cosmological constant. The top,, 's in DGP gravity will all be very similar to those in
panel of Fig. 1 shows the ratio éfor DGP and DE models ACDM (we have checked this explicitly fdB;, obtaining
with the same expansion history, f&4,=0.3,0.2, showing |ess than 1% changeThis can be useful in the sense that it
that differences oft least10% are expected, whereas com- allows the use of the nonlinear growth to constrain the bias
paring DGP to cosmological constant models with the sam@etween galaxies and dark matter in the same way as it is
Q?n larger differences are obtained, e.g. f@%=0.2, done in standard case, thus inferring the linear growth factor
fOCF§ACDM=0 83, These deviations are well within the from the normalization of the power spectrum in the linear
range that can be probed with current redshift surveys. regime. Although the result in the right panel in Fig. 2 may
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seem a coincidence at first sight, £g.1) says that the non- order-unity redshiftsand other bulk effect§30,29 that we
trivial correction from DGP gravity in square brackets is were successfully able to ignore at subhorizon scales.
maximum whené=0 (which gives the renormalization of Discussion of photon geodesics naturally leads one to ask
Newton’s constant As & increases the correction disappearshow lensing may be altered due to DGP contributions. For
(since DGP becomes Einstein at high densjtise most of weak lensing by large-scale structure, one is in the weak field
the difference between the two evolutions happens in thémit and therefore Eq(3.11) applies; that is, the weak lens-
linear regime, which is encoded in the linear growth factor. ing pattern is identical to that for Einstein gravity, apart from
the difference in expansion histories and change in the force
D. Late-time ISW effect law. In other words, reconstruction of the dark matter distri-
bution in DGP from weak lensing only requires changing the

We now consider the late-time integrated Sachs—WoIfegrowth rate and the geometrical distanges.

(ISW) effect on the cosmic microwave backgrou(@MB)
for perturbations with scale<H 1. For this purpose, we
need to identify the gravitational potentials for linear over- E. Beyond isolated spherical perturbations
densities as perturbations around a homogeneous cosmologi- Since we have derived the growth of spherical isolated
cal background with the line element perturbations, it is fair to ask how well do we expect our
results to hold in the realistic case of a superposition of per-
ds*=[1+2®(r,\)]d7? turbations of arbitrary shape. In the linear regime, one ex-
—52(7)[1+2‘I'(7- MI[AN2+A2%dQ]. (3.9 pects to recover the same re_s_ult as_he_re, since the linearized
' equations obey the superposition principle and one may con-
Here ®(r,\) and W(t,\) are the relevant gravitational po- ;truct arbitrary_ perturbations from a Iinegr superp.osition of
tentials and\ is a comoving radial coordinate. In effect we isolated spherical perturbations. In the linear regime, DGP
want to determing and¥ givenn anda. Unlike the case of ~9gravity reduces to a Brans-Dicke theory with a slowly time-
Einstein’s gravity® # — ¥, due to additional contribution of dependent Newton’s constant, E§.4). The Newtonian po-
the first term in Eq.2.4. One may perform a coordinate tential is then just a solution to Poisson’s equation for a given

transformation to determine that relationship. We find thatmatter distribution source. It would be interesting, however,
o = to corroborate this prescription with a fully consistent linear
assigningr =a(7)\, and

solution for an arbitrary perturbation spectrum along the
‘D=n—n|background (3.9 lines of those presented in' Rdf30], restricted to scales
smaller than the Hubble radius.

dr For the nonlinear growth, the situation is more compli-
\If:—f—[a( 7,r)—a(7,r)|packground: (3.10 cated since the relation between the gravitational potential

' and the density fluctuatioéi is nonlinear and the principle of
superposition no longer holds. Here, however, one should
eep in mind that these nonlinearities only develop late in
he evolution after the universe starts to accelerate, thus the
corrections to superposition have a small time to act. It is
however difficult to say something more quantitative at this
point.

keeping only the important terms wheH <1. But since we
are concerned with linear density perturbations, we find fro
Egs. (2.23 and (2.29 that the quantity of interest for the
ISW effect is the time derivative of

2 81—,
\Y (CD—‘I’)zWa po, (3.1])
P IV. OBSERVATIONAL CONSEQUENCES

where V is the gradient in comoving spatial coordinates. \hat are the implications of these results for testing DGP
This result is identical to the four-dimensional Einstein re-gravity using |arge_sca|e structure? A clear Signature of DGP
sult, the contributions from the brane effects exactly Cance'gravity is the suppresse@ompared toA CDM) growth of

ling. This result is not entirely surprising since the effect of herturbations in the linear regime due to the different expan-
the brane is the introduction of a gravitational scalar thakjgn history and the addition of a repulsive contribution to
couples to the trace of the energy-momentum tensor. Howhe force law. However, in order to predict the present nor-
ever, the ISW effect has to do with the evolution of photonsygjization of the power spectrum at large scales, we need to

through a gravitational fieldin the weak field limi}, and  know the normalization of the power spectrum at early times
photons will not couple to the gravitational scalés trace

vanishes Thus, the late-time ISW effect for DGP gravity

will be identical to that of a dark energy cosmology that 3y g 4 nontrivial result that light deflection by a compact spherical
mimics the DGP cosmic expansion history, E8), at least  sorce is identical to that in four-dimensional Einstein grafiétyen

at scales small compared to the horizon. Our approximatioQith potentials Eqs(2.16—(2.19 substantially differing from those
does not allow us to address the ISW effect at the largesdt Einstein gravity through the nonlinear transition between the
scales(relevant for the CMB at low multipolgsbut it is  Einstein phase and the weak-brane phase. As such, there remains
applicable to the cross correlation of the CMB with galaxythe possibility that forasphericallenses that this surprising null
surveys. At larger scales, one expects to encounter difficukesult does not persist through that transition and that DGP may
ties associated with leakage of gravity off the brafier  manifest itself through some anomalous lensing feature.
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1 3 these modes entered the Hubble radius at redshifts high
- B enough that they evolve in the standard fashion. The value of
0.9 7 og at 00=0.3 is then given by 0.9 times the ratio of the
a8 E .3 DGP to A CDM growth factors shown in the bottom panel of
T ] Fig. 1. The error bars irrg reflect the uncertainty in the
o7 L E normalization of primordial fluctuations, and we keep them a
7 E . ) o i
. ] constant fraction as we varf,, away from 0.3. We see in
0.6 - 3 Fig. 3 that for the lower values (ﬂ% preferred by fitting the
n ] acceleration of the Universe, the additional suppression of
5 0.5 | , 3 growth plus the change in the shape of the density power
c : ] spectrum driverg to a rather small value. This could in part
0.4 - - : - be ameliorated by increasing the Hubble constant, but not to
F : ] the extent needed to keeg at reasonable values. The ver-
0.3 ! E tical lines show the best-fit andolerror bars from fitting
o B : E DGP gravity to the supernova data from Rdf} in Ref.[21].
L | ] This shows that fitting the acceleration of the universe re-
o1 E ! E quires approximatelyrg<0.7 to 1o andog<0.8 to 2.
C | ] In order to compare this prediction of; to observations
o bl t o 800 ¢oullo o 19 4 @w Py o 0 one must be careful since most determinationsrgfhave
0.1 0.2 0.3 0.4 0.5 built in the assumption of Einstein gravity &«CDM mod-

o els. We use galaxy clustering, which in view of the results in
) o Sec. Il C for higher-order moments, should provide a test of
FIG. 3. The linear power spectrum normalizatien, for DGP — ga|axy biasing independent of gravity being DGP or Ein-
gravity as a function of,,,. The vertical lines denote the best fit stein. Recent determinations @f from galaxy clustering in
9 i itti - . X
value and 68% confidence level error bars from fitting to type IAthe SDSS survef35] give o =0.89+0.02 forL* galaxies

0_ 0.07 ; ~
z:gﬁ;n;)::eaia;af::g:%’ é)f(?o g&;trf-eog'b;heevgltaigl't?]isp?;:fr_ at an effective redshift of the survey=0.1. We can convert
8 " this value toog for dark matter atz=0 as follows. We

dial spectrum as determined by WMAP by the DGP growth factor. . .
evolve toz=0 using a conservative growth factor, that of

See text for details. 0 !
DGP for Q,=0.2. In order to convert frombL* galaxies to

from the CMB. A fit of the pre-Wilkinson Microwave An- dark matter, we use the results of the bispectrum analysis of
isotropy ProbeWMAP) CMB data was performed in Ref. the 2dF survey36] whereb=1.04+0.11 for luminosityL

[21] using the angular diameter distance for DGP gravity,=1.9L*. We then scale t¢.* galaxies using the empirical
finding a best fit(flat) model with Q%=0.3, with a very relative bias relation obtained in RdB7] that b/b* =0.85
similar CMB power spectrum to the standard cosmologicalt 0-15(L/L*), which is in very good agreement with SDSS
constant modefwith Q%~0.3 andQ8=0.7) and other pa- (S€e Fig. 30 in Ref[35]). This implies 03=1.00+0.11.
rameters kept fixed at the same value. Here we use this fadgven if we allow for another 10% systematic uncertainty in
plus the normalization obtained from the best-fit cosmologithis procedure, the preferred value@f, in DGP gravity that

cal constant power-law model from WMAR3] which has fits the supernovae data is about a2way from that required
basically the saméelevant for large-scale structunearam- by the growth of structure &=0.

eters as in Ref[21], except for the normalization of the  An independent way of testing DGP gravity with large-
primordial fluctuations which has increased compared to prescale structure is to constrain the growth of velocity fluctua-
WMAP data(see e.g. Fig. 11 in Ref34]). The normaliza- tions throughf. This affects the redshift distortions of the
tion for the cosmological constant scale-invariant model corpower spectrum and can be extracted from measurements,
responds to present rms fluctuations in spheres of 8 Mpc/ though at present the errors are somewhat ldsge, e.g.,
0=0.9+0.1 (see Table 2 in Ref[33]). We assume a flat Ref. [35]) for an accurate test, but this should improve soon.
model, since it was shown in RdR21] to be consistent as The interesting feature of this test is that it is independent of
well with the DGP angular diameter distance. We ignore th¢he normalization of the primordial fluctuations, unlike the
fact that the ISW effect at low multipolesvhere the CMB g normalization discussed above; thus it will be important
power spectrum has large error bazan be differentin DGP  to check that the same conclusions follow in this case.
gravity, this has a small effect on the overall normalization of
the primordial fluctuations that are determined by the overall

power spectrum. _ In this paper we identified how one may test the modifi-

,Figure 3 shows the present value @f as a function of cations of the gravitational force law expected in Dvali-
O, for DGP gravity, where we assume that the best-fit norGabadadze-PorratbGP) gravity at scales of cosmological
malization of theprimordial fluctuations stays constant as we interest. While cosmology is altered when the Hubble scale
change(),, and recompute the transfer function and growthhecomes comparable to today’s Hubble scellg?, the force
factor as we move away froy,=0.3. Since most of the |aw is correspondingly altered at much shorter scales and
contribution toog comes from scales<10th/Mpc, we can  affects, for example, the growth of density perturbations at
calculate the transfer function using Einstein gravity, sinceredshifts of order unity.

V. CONCLUDING REMARKS
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Although the results obtained in this paper are qualitahere in the nonlinear case. To do a full comparison of the
tively comparable to those found in R¢l5], they differ in  CMB power spectrum against data it remains to solve for the
key ways since DGP gravity does not obey Birkhoff's law. ISW effect at scales comparable to the horizon. Our treat-
The form of the gravitational force law between localizedment found no difference from general relativifgxcept
mass sources is sensitive to the background cosmologiclom the change in the expansion histpriput this is only
expansion. So, while the results show deviations from Newwvalid at subhorizon scales.
tonian gravity of order unity at distance scales greater than Nevertheless, the main problem for DGP gravity to simul-
the scaler*~(rg/H§)1’3, wherer g is the Schwarzschild ra- taneously explain cosmic acceleration and the growth of
dius of the mass source, the quantitative details differ. Irstructure is easy to understand: the expansion history is al-
particular, the suppression of the growth of structure is aeady significantly different from a cosmological constant,
factor about 2 larger than in Birkhoff-law models with the corresponding to an effective equation of state wwitly
same expansion history. Moreover, DGP gravity deviates sig= —(1+ Q)" 1. This larger value ofw suppresses the
nificantly from four-dimensional Einstein gravity through the growth somewhat due to earlier epoch of the onset of accel-
emergence of an ultralight graviscalar mode. Because suchexation. In addition, the repulsive contribution to the force
mode does not couple to photons, the effects do not manifetaw suppresses the growth even more, drivingto a rather
themselves in the late-time integrated Sachs-Wa8&V) ef- low value, in contrast with observations. If as error bars
fect, at least at the subhorizon scales we consider. While thgéhrink the supernovae results continue to be consistent with
gravitational potentials are indeed altered by order-unity facw.= — 1, this will drive the DGP fit to a yet lower value of
tors late in the cosmic expansion history, they precisely canQﬁ1 and thus a smaller value efg. For these reasons we
cel, so that the late-time ISW effect in DGP gravity is iden-expect the tension between explaining acceleration and the
tical to that for a dark energy theory that mimics the DGPgrowth of structure to be robust to a more complete treat-
expansion history. The same situation applies to weak graviment of the comparison of DGP gravity against observations.
tational lensing.
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