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Gravitational energy loss in high energy particle collisions: Ultrarelativistic plunge
into a multidimensional black hole
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We investigate the gravitational energy emission of an ultrarelativistic particle radially falling into a
D-dimensional black hole. We numerically integrate the equations describing black hole gravitational pertur-
bations and obtain the energy spectra, total energy, and angular distribution of the emitted gravitational radia-
tion. The black hole quasinormal modes for scalar, vector, and tensor perturbations are computed in the WKB
approximation. We discuss our results in the context of black hole production at the TeV scale.
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I. INTRODUCTION

Brane-world models describe the visible Universe a
four-dimensional brane embedded in a higher-dimensio
bulk @1#. A generic consequence of the brane-world scena
is that the fundamental gravitational scale is lower than
observed Planck scale. In some models, the fundame
scale is lowered to values that would be accessible to n
generation particle colliders, thus enabling laboratory-ba
studies of strong gravitational physics via perturbative@2#
and nonperturbative events@3#. Ultrahigh energy cosmic ray
could also probe trans-Planckian energies@4#. The possibility
that strong gravitational effects such as black hole~BH! and
brane formation could be observed in the near future
sparked a lot of interest in the investigation of nonpertur
tive gravitational phenomena in hard-scattering events@5#.
~For a review and more references, see Ref.@6#.!

Trans-Planckian BH formation at energy scales mu
larger than the fundamental gravitational scale is a class
process@3#. The event is dominated by thes channel and the
initial state is modeled by two classical shock waves w
given impact parameter. In this context, a major issue is
estimate of the collisional energy loss. The hoop conject
states that the collision of two particlesij with center-of-
mass~c.m.! energyEcm and impact parameter smaller tha
the Schwarzschild radiusr s(Ecm) forms a trapped surfac
@7#. This event is formally described by the proce
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i j →BH1E(X), whereE(X) denotes the collisional ‘‘junk’’
energy which does not contribute to the BH mass. The ju
energy includes a bulk component of gravitational radiat
and other possible nonstandard model gauge fields, an
brane component of standard model collisional by-produ
carrying the charge of the initial particles. The newly form
BH is expected to decay first by loss of gauge radiation i
the bulk and then by thermal Hawking emission. The Haw
ing evaporation ends when the mass of the BH approac
the fundamental gravitational scale. At this stage the BH
ther decays completely by emitting the residual Planck
energy or leaves a stable remnant with mass about the Pl
mass@8#. Most of the observable signatures of BH formatio
come from Hawking’s phase and strongly depend on the
tial BH mass@9#. Hence, a precise calculation of the col
sional energy loss is essential to the phenomenology of
formation.

A numerical estimate of the total collisional energy lo
for spherically symmetric BHs inD>4 dimensions has bee
given by Yoshino and Nambu~YN! @10# ~see also Ref.@11#!.
The YN approach evaluates the total junk energyE(X) by
investigating the formation of the BH apparent horizon@12#.
The colliding particles are assumed massless, uncharged
pointlike. Each particle is modeled by an infinitely boost
Schwarzschild solution with fixed energy. This solution d
scribes a plane-fronted gravitational shock wave correspo
ing to the Lorentz-contracted longitudinal gravitational fie
~Aichelburg-Sexl wave! @13#. The collision is simulated by
combining two shock waves traveling in opposite directio
The apparent horizon arises in the union of the two sh
waves. The junk energy is estimated by comparing the ini
c.m. energy with the BH mass. The result is that the co
sional energy loss depends on the impact parameter an
creases as the number of spacetime dimensions increas

The YN method allows estimation of the total junk ener

n

:
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in the classical uncharged point-particle approximati
However, it cannot discriminate between different comp
nents of E(X), which is theoretically and experimentall
most important. In a realistic BH event such as a prot
proton collision at the Large Hadron Collider~LHC! @14#,
the BH is formed by the collision of two partons. The bu
component of the junk energy is dominated by gravitatio
radiation and is invisible to the detector. The gravitation
junk energy and the invisible component of Hawking em
sion ~neutrinos, gravitons, etc.! add to the total missing en
ergy of the process. Therefore, the knowledge of collisio
energy loss in gravitational emission should provide a go
estimate of the different sources of energy loss and mis
energy.

An accurate estimate of the gravitational collisional e
ergy loss would require the use of the full nonlinear Einst
equations inD dimensions. This is a formidable task, even
four dimensions. Recently, significant advances in numer
relativity allowed stable numerical simulations of BH-B
collisions for initial BH separation of a few Schwarzschi
radii in the nonlinear Einstein theory. The gravitation
waveforms predicted by these simulations are in excel
agreement with analytical results from first and second or
perturbation theory@15#. Since the linearization of the Ein
stein equations yields results that are surprisingly close to
full theory ~see, e.g., Ref.@16#!, BH perturbation theory is
likely to provide accurate estimates of gravitational wa
emission in higher-dimensional spacetimes. Relying on
result, we compute the gravitational wave emission in hig
dimensions via a perturbative approach. Our computatio
the first of this kind to our knowledge.

The formalism for the computation of gravitational wa
emission from perturbed BHs was developed by Regge
Wheeler@17# and Zerilli @18#, who reduced the problem t
the solution of two Schro¨dinger-like equations. Daviset al.
@19# computed the energy radiated in the radial infall of
particle of massm0 starting from rest at infinity into a four
dimensional BH of massMBH@m0. This study was later
generalized to the radial infall of a particle with finite initia
velocity or starting at a finite distance from the BH@20#. ~For
a more comprehensive introduction to BH perturbat
theory see, e.g., Refs.@21#.! Cardoso and Lemos@22,23#
have recently investigated the plunge of ultrarelativistic t
particles into a four-dimensional static BH and along t
rotation axis of a Kerr BH, improving early estimates b
Smarr @24#. In this paper we generalize these results
higher dimensions by computing the gravitational radiat
emitted by an ultrarelativistic particle falling into
D-dimensional spherically symmetric BH. Since wa
propagation in odd-dimensional curved spacetimes is not
fully understood, we restrict our investigation to even dime
sions. ~Wave late-time behavior and propagation are v
different in odd- and even-dimensional spacetimes@25–27#.
Moreover, open issues in the definition of asymptotic flatn
@28# do not allow an unambiguous definition of ‘‘gravita
tional waves radiated at infinity’’ in odd dimensions.!

We model the particle collision as a relativistic test p
ticle plunging into a BH with massMBH5Ecm. We use re-
cent results ofD-dimensional gravitational-wave theory b
12401
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Cardosoet al. @25# and theD-dimensional extension of Zer
illi’s formalism by Kodama and Ishibashi~KI ! @29–32#,
which reduces the problem to the solution of thr
Schrödinger-like equations. Our method provides a simp
and relativistically consistent estimate of the collision
gravitational emission in higher dimensions. We derive
emitted energy in terms of the wave amplitude and study
angular dependence of the radiation using the KI formalis
We also present a systematic calculation of BH quasinor
modes~QNMs! for the different perturbations in the WKB
approach, extending recent calculations by Konop
@33,34#. We show that there is a significant relation betwe
the QNM frequencies and the spectral content of the emi
radiation.

The outline of the paper is as follows. In Sec. II we intr
duce our notations and the basic equations. In Sec. III
briefly describe our numerical approach to the computat
of gravitational wave emission~details are in the Appen
dixes!. Section IV contains the main results of the pap
Conclusions are presented in Sec. V.

II. PERTURBATION EQUATIONS AND QUASINORMAL
MODES

In the next subsection we introduce the background m
ric and the KI perturbation equations@30#. In Sec. II B we
describe the method to compute the BH QNMs.

A. Background metric and perturbation equations

The spherically symmetric BH inD5n12 dimensions is
described by the Schwarzschild-Tangherlini metric@35#

ds252 f ~r !dt21
dr2

f ~r !
1r 2dVn

2 , ~1!

wheredVn is the metric of then-dimensional unit sphereSn,
and

f ~r !512
2M

r n21
. ~2!

The BH massMBH is given in terms of the parameterM by

MBH5
nMA n

8pc2Gn12

, ~3!

whereAn52p (n11)/2/G„(n11)/2… is the area ofSn, Gn12 is
the (n12)-dimensional Newton constant, andc is the speed
of light. We will setGn1251 andc51 in the following. The
(n12)-dimensional tortoise coordinater * is defined by

dr*
dr

5
1

f ~r !
. ~4!

Integrating Eq.~4! we find

r * 5r 1
2M

n21 (
j 50

n22
ln~r /a j21!

a j
n22

, ~5!
1-2
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where

a j5~2M !1/(n21)e2p i j /(n21) ~ j 50, . . . ,n22!, ~6!

and the integration constant has been chosen to make
argument of the logarithm dimensionless. Here and throu
out the paper we use the notations of Refs.@29,30#; the in-
dices (m,n), (i , j ), and (a,b) denote the coordinates of th
D-dimensional spacetime, the coordinates ofSn, and the co-
ordinates of the two-dimensional spacetime (t,r ), respec-
tively.

Kodama and Ishibashi@30# showed that the gravitationa
perturbation equations for this metric can be reduced
Schrödinger-like wave equations:

S d2

dr
*
2

1v22VD F50, ~7!

where the potentialV depends on the kind of perturbatio
Settingx[2M /r n21, the potential for scalar perturbations

VS5
f ~r !Q~r !

16r 2H2
, ~8!

where

k25 l ~ l 1n21!, l 50, 1, 2, . . . ,

m5k22n, H~r !5m1
n~n11!

2
x, ~9!

and

Q~r !5n4~n11!2x31n~n11!@4~2n223n14!m

1n~n22!~n24!~n11!#x2212n@~n24!m

1n~n11!~n22!#mx116m314n~n12!m2.

~10!

Equation~8! reduces to the Zerilli equation@18# for n52.
The potential for vector perturbations is

VV5
f

r 2 FkV
2111

n~n22!

4
2

3n2M

2r n21G , ~11!

where

kV
25 l ~ l 1n21!21, l 51, 2, . . . . ~12!

Equation~11! reduces to the Regge-Wheeler equation@17#
for n52. Finally, the potential for tensor perturbations is

VT5
f

r 2 FkT
2121

n~n22!

4
1

n2M

2r n21G , ~13!

where

kT
25 l ~ l 1n21!22, l 51, 2, . . . . ~14!
12401
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Equation~13! was derived by Gibbons and Hartnoll@36# in a
more general case~see also Ref.@37#, where a Gauss-Bonne
term is included! and has no equivalent in four dimension

B. Quasinormal modes

The knowledge of the QNM frequencies of multidime
sional BHs enables a clear physical interpretation of th
gravitational emission. QNMs are free damped BH oscil
tions that are characterized by pure ingoing radiation at
BH horizon and pure outgoing radiation at infinity. The n
hair theorem implies that QNM frequencies depend only
the BH mass, charge, and angular momentum. Numer
simulations of BH collapse and BH-BH collision show tha
after a transient phase depending on the details of the
cess, the newly formed BH has aringdown phase, i.e., it
undergoes damped oscillations that can be described
superposition of slowly damped QNMs~modes with a small
imaginary part!. Furthermore, the QNMs determine the lat
time evolution of perturbation fields in the BH exterior~for
comprehensive reviews on QNMs see Refs.@38#!.

Gravitational radiation from four-dimensional astrophy
cal BHs is dominated by slowly damped modes. In the f
lowing we show that these also dominate the emission
gravitational radiation in higher dimensions and determ
important properties of the energy spectra. Recently, Ko
plya computed slowly damped QNMs of higher-dimension
BHs @33,34# using the WKB method. This method is know
to be inaccurate for large imaginary parts, but it is accur
enough for the slowly damped modes that are relevant in
context. Therefore, QNM frequencies for scalar, vector, a
tensor gravitational perturbations are computed here in
WKB approximation. Our results are in good agreement w
those presented by Konoplya in Ref.@34# ~modulo a different
normalization!. At variance with Ref.@34#, we concentrated
on uncharged black holes in asymptotically flat, eve
dimensional spacetimes. We extended Konoplya’s calc
tion in two ways:~i! in addition to the fundamental QNM we
also computed the first two overtones;~ii ! we carried out our
calculations for a much larger range of values ofl ~Ref. @34#
only shows results forl 52 andl 53).

The method consists of applying the WKB approximati
to the potential in Eq.~7! with appropriate boundary condi
tions. The result is a pair of connection formulas that rel
the amplitudes of the waves on either side of the poten
barrier, and ultimately yield an analytical formula for th
QNM frequencies~for details see Refs.@39,40#!. The WKB
QNM frequenciesv2 are given in terms of the potentia
maximum V0 and of the potential derivatives at the max
mum by

v25~V01A22V09L!2 i ~ j 1 1
2 !A22V09~11V!,

j 50,1,2, . . . , ~15!

where

L5
1

A22V09
F1

8

V0
(4)

V09
S 1

4
1a2D2

1

288 S V0-

V09
D 2

~7160a2!G ,

~16!
1-3
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V5
1

A22V09
F 5

6912S V0-

V09
D 4

~771188a2!2
1

384S V0-
2V0

(4)

V09
3 D

3~511100a2!1
1

2304S V0
(4)

V09
D 2

~67168a2!

1
1

288S V0-V0
(5)

V09
2 D ~19128a2!2

1

288S V0
(6)

V09
D ~514a2!G ,

~17!

a5 j 11/2 andj is the mode index. The QNM frequencie
for the scalar, vector, and tensor potentials of Sec. II a

TABLE I. QNMs for n52. The first three quasinormal frequen
cies for scalar and vector perturbations are listed from left to rig
The scalar modes and the vector modes are isospectral in fou
mensions.

n52 Scalar and vector modes
l j 50 j 51 j 52

2 0.746-0.178i 0.692-0.550i 0.606-0.942i
3 1.199-0.185i 1.165-0.563i 1.106-0.953i
4 1.618-0.188i 1.593-0.569i 1.547-0.958i
5 2.025-0.190i 2.004-0.572i 1.967-0.960i
6 2.424-0.191i 2.407-0.573i 2.375-0.961i
7 2.819-0.191i 2.805-0.574i 2.777-0.961i
8 3.212-0.191i 3.200-0.575i 3.175-0.961i
9 3.604-0.192i 3.592-0.575i 3.570-0.962i
10 3.994-0.192i 3.983-0.576i 3.963-0.962i
11 4.383-0.192i 4.373-0.576i 4.355-0.962i
12 4.771-0.192i 4.762-0.576i 4.745-0.962i
13 5.159-0.192i 5.151-0.576i 5.135-0.962i
14 5.546-0.192i 5.539-0.577i 5.524-0.962i
15 5.934-0.192i 5.927-0.577i 5.913-0.962i
12401
d

various dimensions are shown in Tables I–IV and will
discussed in Sec. IV. Let us stress that the application of
WKB technique is questionable in a few higher-dimensio
cases; forl 52 and l 53 the vector and scalar potentials
D.6 are not positive definite and/or display a second, sm
scattering peak close to the BH horizon. An accurate anal
of these potentials would require a refinement of the stand
WKB technique, which is not presented here. These spe
cases are denoted by italic numbers in Tables III and IV.

We mention that highly damped QNMs of four- an
higher-dimensional BHs have recently become a subjec
great interest in a different context. A few years ago, H
proposed to use Bohr’s correspondence principle to de
mine the BH area quantum from highly damped BH QNM
@41#. Hod’s proposal is quite general: the asymptotic QN
frequency for scalar perturbations of a nonrotating BH inD
dimensions is the same as in four dimensions@42#. Quite
notably, this result holds also for scalar, vector, and ten
gravitational perturbations@43,42#. Reference@44# contains a
partial list of references on recent developments in this fie

III. INTEGRATION METHOD

The computation of the gravitational wave emission of
ultrarelativistic particle plunging into a BH requires the n
merical integration of the inhomogeneous wave equation
scalar gravitational perturbations.~Vector and tensor gravita
tional perturbations are not excited by a particle in rad
infall.! The source termS(n) for the corresponding wave
equation inn12 dimensions can be calculated from th
stress-energy tensor of the infalling particle. Details of t
derivation are in Appendix A.

The integration in (n12) dimensions proceeds as in fou
dimensions@19,20#. A good summary of the integration pro
cedure can be found in Ref.@22#. In this section we simply
stress the differences between the four- and
(n12)-dimensional cases. For the sake of simplicity, in o

t.
di-
left to

-2.732i
-2.632i
-2.580i
-2.549i
-2.530i
-2.517i
-2.508i
-2.501i
-2.496i
-2.492i
-2.489i
-2.487i
-2.485i
-2.483i
TABLE II. QNMs for n54. The first three quasinormal frequencies for scalar, vector, and tensor perturbations are listed from
right.

n54 Scalar modes Vector modes Tensor modes
l j 50 j 51 j 52 j 50 j 51 j 52 j 50 j 51 j 52

2 1.131-0.386i 0.922-1.186i 0.537-2.053i 1.543-0.476i 1.279-1.482i 0.825-2.583i 2.004-0.503i 1.764-1.568i 1.378
3 1.915-0.399i 1.715-1.217i 1.336-2.103i 2.191-0.471i 1.988-1.445i 1.625-2.492i 2.576-0.499i 2.393-1.531i 2.075
4 2.622-0.438i 2.476-1.331i 2.208-2.271i 2.824-0.474i 2.664-1.441i 2.369-2.460i 3.146-0.498i 2.998-1.514i 2.729
5 3.279-0.457i 3.156-1.384i 2.924-2.347i 3.441-0.478i 3.310-1.447i 3.063-2.453i 3.716-0.497i 3.592-1.504i 3.359
6 3.911-0.467i 3.803-1.412i 3.598-2.385i 4.046-0.481i 3.935-1.453i 3.723-2.454i 4.286-0.496i 4.179-1.498i 3.974
7 4.527-0.474i 4.432-1.429i 4.249-2.408i 4.644-0.484i 4.547-1.458i 4.360-2.456i 4.856-0.496i 4.762-1.495i 4.580
8 5.133-0.478i 5.048-1.441i 4.883-2.422i 5.236-0.485i 5.150-1.462i 4.983-2.458i 5.427-0.495i 5.342-1.492i 5.178
9 5.732-0.481i 5.655-1.449i 5.505-2.432i 5.824-0.487i 5.747-1.466i 5.596-2.460i 5.997-0.495i 5.921-1.490i 5.772
10 6.326-0.484i 6.256-1.455i 6.118-2.439i 6.409-0.488i 6.339-1.468i 6.201-2.462i 6.567-0.495i 6.498-1.489i 6.361
11 6.916-0.485i 6.852-1.459i 6.725-2.444i 6.992-0.489i 6.928-1.470i 6.801-2.463i 7.138-0.495i 7.074-1.488i 6.948
12 7.504-0.487i 7.444-1.463i 7.326-2.448i 7.574-0.490i 7.514-1.472i 7.396-2.464i 7.708-0.495i 7.649-1.487i 7.532
13 8.088-0.488i 8.033-1.465i 7.923-2.452i 8.153-0.490i 8.098-1.473i 7.988-2.465i 8.279-0.495i 8.224-1.486i 8.115
14 8.671-0.489i 8.619-1.468i 8.517-2.454i 8.732-0.491i 8.680-1.474i 8.577-2.465i 8.849-0.495i 8.798-1.486i 8.696
15 9.253-0.489i 9.204-1.469i 9.108-2.456i 9.309-0.491i 9.261-1.475i 9.164-2.466i 9.420-0.495i 9.371-1.485i 9.275
1-4
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i
-4.012i
-3.895i
-3.830i
-3.789i
-3.763i
-3.745i
-3.732i
-3.722i
-3.715i
-3.709i
-3.705i
-3.701i
-3.698i
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TABLE III. QNMs for n56. The first three quasinormal frequencies for scalar, vector, and tensor perturbations are listed from
right. The numbers in italic indicate that the potential at the givenl is not everywhere positive definite. The square brackets indicate tha
potential has two scattering peaks.

n54 Scalar modes Vector modes Tensor modes
l j 50 j 51 j 52 j 50 j 51 j 52 j 50 j 51 j 52

2 [1.778-0.571i] [1.289-1.770i] [0.395-3.201i] 2.388-0.720i 1.831-2.237i 0.825-4.001i 2.956-0.751i 2.365-2.357i 1.339-4.245
3 2.604-0.628i 2.198-1.916i 1.403-3.355i 3.102-0.715i 2.660-2.191i 1.814-3.833i 3.623-0.747i 3.181-2.294i 2.351
4 3.401-0.645i 3.050-1.958i 2.346-3.375i 3.815-0.712i 3.450-2.165i 2.730-3.731i 4.282-0.744i 3.926-2.264i 3.235
5 4.174-0.660i 3.875-1.997i 3.270-3.403i 4.522-0.712i 4.213-2.156i 3.595-3.678i 4.940-0.741i 4.640-2.247i 4.047
6 4.923-0.675i 4.665-2.037i 4.144-3.449i 5.222-0.714i 4.954-2.156i 4.418-3.654i 5.598-0.740i 5.337-2.236i 4.818
7 5.653-0.687i 5.425-2.070i 4.967-3.492i 5.915-0.716i 5.679-2.160i 5.207-3.645i 6.255-0.739i 6.024-2.229i 5.563
8 6.369-0.695i 6.164-2.095i 5.753-3.525i 6.602-0.719i 6.392-2.164i 5.969-3.643i 6.913-0.738i 6.705-2.224i 6.290
9 7.075-0.702i 6.888-2.113i 6.515-3.550i 7.285-0.721i 7.094-2.169i 6.712-3.644i 7.570-0.738i 7.382-2.221i 7.004
10 7.772-0.707i 7.602-2.128i 7.259-3.570i 7.964-0.722i 7.790-2.173i 7.441-3.646i 8.228-0.737i 8.055-2.218i 7.709
11 8.464-0.711i 8.306-2.139i 7.989-3.585i 8.640-0.724i 8.480-2.177i 8.158-3.648i 8.885-0.737i 8.726-2.216i 8.406
12 9.151-0.715i 9.004-2.148i 8.709-3.598i 9.314-0.725i 9.165-2.180i 8.867-3.650i 9.543-0.737i 9.395-2.215i 9.098
13 9.834-0.717i 9.697-2.156i 9.421-3.607i 9.986-0.726i 9.847-2.183i 9.569-3.653i 10.200-0.737i 10.062-2.214i 9.785
14 10.51-0.720i 10.39-2.162i 10.13-3.616i 10.66-0.727i 10.53-2.185i 10.27-3.655i 10.86-0.737i 10.73-2.213i 10.47
15 11.19-0.721i 11.07-2.167i 10.83-3.622i 11.32-0.728i 11.20-2.187i 10.96-3.657i 11.52-0.736i 11.39-2.212i 11.15
ns

en
ith

th

the
n

numerical integrations we set the horizon radiusr h
5(2M )1/(n21)51. The equation for the scalar perturbatio
is

S d2

dr
*
2

1v22VSD F5S(n). ~18!

The general solution of Eq.~18! is obtained via a Green
function technique as follows. Consider two independ
~left and right! solutions of the homogeneous equation w
boundary conditionsFL;e2 ivr

* for r * →2`, and FR
;eivr

* for r * →1`. For r * →1` the left solution is a
superposition of ingoing and outgoing waves of the form
12401
t

FL;B~v!eivr
* 1C~v!e2 ivr

* . ~19!

The Wronskian is given byW52ivC(v). The wave ampli-
tude is obtained from a convolution of the left solution wi
the source term

F5
1

WE
2`

1`

FLS(n)dr* . ~20!

The energy spectrum can be expressed in terms of
wave amplitude as~details of the derivation are given i
Appendix B!
left to
t the

i
i
-5.018i
-4.904i
-4.838i
-4.798i
-4.772i
-4.755i
-4.743i
-4.735i
-4.728i
-4.724i
-4.720i
-4.718i
TABLE IV. QNMs for n58. The first three quasinormal frequencies for scalar, vector, and tensor perturbations are listed from
right. The numbers in italic indicate that the potential at the givenl is not everywhere positive definite. The square brackets indicate tha
potential has two scattering peaks.

n54 Scalar modes Vector modes Tensor modes
l j 50 j 51 j 52 j 50 j 51 j 52 j 50 j 51 j 52

l52 [2.513-0.744i] [1.686-2.299i] [0.159-4.345i] 3.261-0.924i 2.335-2.851i 0.598-5.287i 3.886-0.959i 2.765-2.988i 0.706-5.720
l53 @3.388-0.812i# @2.696-2.461i# @1.277-4.431i# 4.017-0.923i 3.269-2.804i 1.747-5.016i 4.618-0.959i 3.806-2.917i 2.141-5.241
l54 4.223-0.841i 3.631-2.532i 2.367-4.420i 4.775-0.920i 4.147-2.777i 2.824-4.840i 5.336-0.955i 4.691-2.885i 3.331
l55 5.042-0.855i 4.524-2.568i 3.407-4.401i 5.531-0.918i 4.991-2.762i 3.840-4.734i 6.049-0.951i 5.507-2.866i 4.360
l56 5.848-0.865i 5.390-2.595i 4.403-4.399i 6.283-0.917i 5.810-2.757i 4.802-4.676i 6.761-0.949i 6.291-2.854i 5.297
l57 6.640-0.874i 6.231-2.622i 5.357-4.415i 7.030-0.918i 6.610-2.757i 5.719-4.646i 7.473-0.947i 7.056-2.846i 6.178
l58 7.420-0.883i 7.052-2.647i 6.270-4.441i 7.774-0.920i 7.396-2.759i 6.599-4.634i 8.184-0.946i 7.808-2.841i 7.022
l59 8.191-0.890i 7.855-2.669i 7.149-4.469i 8.514-0.921i 8.167-2.764i 7.450-4.630i 8.895-0.945i 8.553-2.837i 7.841
l510 8.953-0.896i 8.645-2.688i 7.999-4.495i 9.250-0.923i 8.935-2.768i 8.278-4.630i 9.606-0.944i 9.292-2.834i 8.640
l511 9.709-0.902i 9.423-2.705i 8.829-4.519i 9.984-0.924i 9.692-2.773i 9.088-4.633i 10.32-0.944i 10.03-2.832i 9.426
l512 10.46-0.906i 10.19-2.718i 9.641-4.539i 10.71-0.926i 10.44-2.777i 9.884-4.637i 11.03-0.943i 10.76-2.831i 10.20
l513 11.20-0.910i 10.95-2.730i 10.44-4.556i 11.44-0.927i 11.19-2.781i 10.67-4.642i 11.74-0.943i 11.49-2.829i 10.97
l514 11.95-0.914i 11.71-2.740i 11.23-4.571i 12.17-0.928i 11.93-2.785i 11.44-4.646i 12.45-0.943i 12.21-2.828i 11.73
l515 12.68-0.916i 12.46-2.748i 12.01-4.584i 12.90-0.929i 12.67-2.788i 12.21-4.650i 13.16-0.943i 12.94-2.828i 12.48
1-5
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dE

dv
5

v2

16p

n21

n
k2~k22n!uFu2, ~21!

wherek2[ l ( l 1n21). The Wronskian for a given value o
v is obtained by integrating the homogeneous equation f
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a point located as close as possible to the horizon, and
pandingFL as

FL;e2 ivr
* @11an12~r 21!1 . . . #, ~22!

where
an125
2~ l 412l 32 l 222l 13!1~n22!@22l 31 l 21~n211!l 2~n314n21n16!/4#

~2iv21!~ l 21 l 11!1~n22!@2 l 21~2iv2n!l 1~n11!iv2~n211!/2#
. ~23!
the
i-
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by
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tra.
C(v) ~and W) can be obtained with good accuracy b
matching the numerically integratedFL to the asymptotic
expansion

FL;eivr
* F11

an12~v!

r
1

bn12~v!

r 2
1 . . . G

1e2 ivr
* F11

an12~2v!

r
1

bn12~2v!

r 2
1 . . . G ,

~24!

where the leading-order coefficient is

an12~v!5
i@ l 21~n21!l 1n~n22!/4#

2v
. ~25!

For givenn, l, andv, the error on the Wronskian and on th
energy spectrum is typically of the order ofO(1024).

IV. RESULTS

The main results of our work are the computation of t
QNM frequencies in the WKB approximation, the compu
tion of the energy spectra, and the estimate of the total
ergy and angular distribution of the radiation emitted dur
the plunge. These results are discussed in detail below.

A. Quasinormal frequencies

The WKB QNM frequencies for different even values
n are listed in Tables I–IV. Each line shows the first thr
quasinormal frequencies (j 50,1,2) for scalar, vector, an
tensor perturbations at givenl. For n52 tensor perturbations
do not exist. In this case the scalar and vector entries co
spond to the QNMs of the Zerilli and Regge-Wheeler eq
tions, which are known to be isospectral@21#. The isospec-
trality is broken forn.2. This has been shown analytical
by Kodama and Ishibashi@30# and later verified numerically
by Konoplya @34#. The real and imaginary parts of scal
QNM frequencies at givenn, l, and j are smaller than thos
of vector QNMs, which are in turn smaller than those
tensor QNMs. Since scalar modes are the least damped,
are likely to dominate the gravitational radiation emission
-
n-

e-
-

f
ey

As l grows, the isospectrality tends to be restored. In
eikonal limit l→` the centrifugal term of the potential dom
nates and is the same for scalar, vector, and tensor pertu
tions. In this limit, the QNM frequencies for all perturbation
are

vR;
n12l 21

2 S 2

n11D 1/(n21)S n21

n11D 1/2

,

v I;
n21

2~n11!1/2S 2

n11D 1/(n21)

~2 j 11!. ~26!

The previous relation was derived in Ref.@33# for multidi-
mensional BH perturbations induced by a scalar field.~No-
tice that the normalization used in Ref.@33# is different from
ours.! Here we have shown that it also holds for gravitation
perturbations. Isospectrality of scalar and gravitational p
turbations is a common feature of the eikonal limit and of t
large-damping limit@42,43# for any n.

B. Multipolar components of the energy spectra

The numerical integration described in Sec. III gives t
energy spectra of Figs. 1 and 2. The spectra forn52 ~top left
panel in Fig. 1! are in excellent agreement with those of Re
@22#. The spectra are flat in the region between the ze
frequency limit and a ‘‘cutoff’’ frequencyvc , beyond that
they fall exponentially to zero. The cutoff frequencyvc is
given by the fundamental QNM frequency to a good level
accuracy. This result can be understood in terms
gravitational-wave scattering from the potential barrier th
surrounds the black hole.v2 plays the role of the energy in
the Schro¨dinger-like equation~7!. From Eq. ~15! it follows
thatv25V0 at first order in the WKB approximation. There
fore, only the radiation with energy smaller than the peak
the potential is backscattered to infinity; radiation with larg
frequency is exponentially suppressed.

The gravitational emission of a two-particle hard collisio
in higher dimensions has been computed by Cardosoet al.
@25# using techniques developed in four dimensions
Weinberg@45# and later used by Smarr@24#. The main result
of Ref. @25# is that the spectra inn12 dimensions grow as
vn22; thus the integrated spectra diverge asvn21. Physi-
cally meaningful results for the total energy can only be o
tained by imposing some cutoff on the integrated spec
1-6
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FIG. 1. Multipolar components of the energy spectra up tol 510 for n52, n54 ~top left and top right panels!, n56 andn58 ~bottom
left and bottom right panels! in units r h51. Open circles mark the real part of the fundamental scalar gravitational quasinormal freq
v ln , for the givenl andn.
iu

cy

a-

he
as
Smarr@24# first suggested to use the inverse horizon rad
as a cutoff. The relativistic perturbative calculation inn52
@22# shows that the cutoff frequency at fixedl is very close to
the fundamental BH QNM. Therefore, the cutoff frequen
12401
sshould be given by some ‘‘weighted average’’ of the fund
mental gravitational QNM frequencies@25#.

Our results for the spectra and the QNMs confirm t
above picture. Figure 1 shows that all spectra go to zero
uency,

FIG. 2. Multipolar components of the energy spectra at fixedl for different values ofn in units r h51. The left panel corresponds tol

52 and the right panel corresponds tol 53. Open circles mark the real part of the fundamental scalar gravitational quasinormal freq
v ln , for the givenl andn.
1-7
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v→0. Forv,vc the spectrum at fixedl is

dEl

dv
5 f n,lv

n22, ~27!

where f n,l is a constant that can be found by a fit of t
spectra. For largel f n,l decays as

f n,l5kn12l 23(n12)/4. ~28!

A fit of the numerical data givesk452.25, k650.832, k8
50.184, andk1050.040. Our result forn52 is consistent
with that of Ref.@22#.

As conjectured in Ref.@25#, all spectra have a maximum
at some cutoff frequencyvc . This cutoff frequency is very
close to the fundamental QNM frequencyv ln for ~scalar!
gravitational perturbations with givenl and n, which is
marked by open circles in Figs. 1 and 2. The deviation
tweenvc andv ln is of order 10% for lowl, and decrease
for large l ~compare Figs. 1 and 2 to the first column
Tables I–IV!. The deviation is larger when the WKB metho
is least reliable, namely forl 52 andn.4. In these cases
the location of the peaks in the spectra can presumably
used as a more reliable estimate of the QNM frequency.
spectrum decays exponentially forv.vc with an
n-dependent slopean12 ~see Fig. 2!:

dEl

dv
;e2an12(v2vc). ~29!

Thus thev-integrated multipolar contributionsDEl at given
l are finite. With our choice of units, Cardoso and Lem
@22# find a4513.5a ~herea is a constant of order unity tha
cannot easily be determined because the spectra decay
quickly!. Our numerical fits givea4.15, in good agreemen
with their result. In higher dimensions the constantsan12 are
comparatively easier to determine. Their values area6
.5.5, a8.3.4, anda10.2.3. It is not clear if there is any
relation between thisn-dependent slope and the late-time t
behavior predicted in Ref.@26#.

Figure 1 shows that higher multipoles contribute more
n grows. This is evident when we look at thev-integrated
multipolar components of the energy spectra of Fig. 3. T
quadrupole (l 52) is dominant only forn52 andn54. For
n56 andn58 the dominant multipoles arel 54 andl 56,
respectively~see Table V!. This effect may be related to th
appearance of a negative well in the scalar potentials fl
52 andn.4. It would be interesting to understand bett
the physical relation between the dominant multipole and
spacetime dimension.

C. Total energy

The total emitted energy is obtained by numerically in
grating the results of the previous section overv and sum-
ming the multipolar components. For largel the integrated
energy in the multipolel can be fitted by

DEl5an12l 2bn12, ~30!
12401
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where (a650.110,b651.69), (a850.050,b851.64), and
(a1050.022,b1051.40) for n54, n56, andn58, respec-
tively. The coefficients (an12 ,bn12) have been obtained b
fitting the data froml 514 to l 520 and are weakly depen
dent on the chosen range ofl. This variability affects our
final results on the total energy within less than a few p
cent.

Restoring the dependence on the BH horizonr h and on
the conserved particle energyp0, the total emitted energy is

Eem5
p0

2

MBH

nAn

16p (
l 52

`

DEl[
p0

2

MBH

nAn

16p
Etot

(D)[
p0

2

MBH
Etot

(D) ,

~31!

whereEtot
(D) is the ‘‘dimensionless’’ total energy~expressed in

the unitsr h51 that we used in our numerical integrations!.

FIG. 3. The integrated energyDEl as a function ofl for different
values ofn. The dominant multipolar component isl 52 only for
n,6; this is probably related to the appearance of a negative
in the scalar potentials forl 52 andn.4. The dominant multipole
is l 54 ~6! for n56 ~8! ~see Table V!.

TABLE V. Multipolar contributions to the total energy for dif
ferentn in units r h51.

l n52 n54 n56 n58

2 0.1845 0.18931021 0.19431022 0.26931023

3 0.0855 0.12031021 0.23831022 0.65331023

4 0.0500 0.08631021 0.24131022 0.98331023

5 0.0329 0.06431021 0.22431022 1.18731023

6 0.0234 0.05031021 0.19931022 1.25831023

7 0.0175 0.03931021 0.17231022 1.22531023

8 0.0136 0.03231021 0.14931022 1.13031023

9 0.0109 0.02731021 0.12831022 1.00931023

10 0.0089 0.02231021 0.11131022 0.88831023

11 0.0074 0.01931021 0.09631022 0.78031023

12 0.0063 0.01631021 0.08431022 0.68831023

13 0.0054 0.01431021 0.07531022 0.61231023

14 0.0047 0.01331021 0.06631022 0.54931023

15 0.0041 0.01131021 0.05931022 0.49731023
1-8



y

tu

r
tic
.
e
al
i-

b

to

in
on
al
en-
in-

at
l to
r

he
nd
. It

ion
-

par-
gy

a
om
s
he

a-

al

al
ap-

nt
not
ns:
ions

YN
o-

cts

on,

the
ed
e

gi-
the
cal
the
or

y

f
ler

s.

ed

GRAVITATIONAL ENERGY LOSS IN HIGH ENERGY . . . PHYSICAL REVIEW D69, 124011 ~2004!
We obtained the integrated spectra numerically up tol 520
and extrapolated them for largerl using the fits in Eq.~30!.
Results are presented in Table VI.

Following Ref.@22# we estimate the gravitational energ
loss for a collision of two particles with equal massM by the
replacementp0→M , MBH→M tot52M . For n52 this ex-
trapolation gives results in good agreement with the per
bative shock-wave calculation of Ref.@12#, which considers
two BHs of equal mass. An analogous extrapolation fon
52 gives results in close agreement with the fully relativis
computation@16# for a particle starting from infinity at rest
Therefore, we believe that our extrapolation should provid
qualitative but realistic estimate. The results for different v
ues ofn are given in the last column of Table VI. The grav
tational energy loss is;13%, ;10%, 7%, and 8% forn
52 to n58, respectively. The result forn52 is in good
agreement with previous estimates@12# ~see the discussion in
Ref. @22#!.

D. Angular dependence

The angular dependence of the radiation is obtained
evaluating numerically Eqs.~B17! and ~B18!. Figure 4
shows the angular dependence of the total energy upl
515 for n52, n54, andn56.

TABLE VI. Total energy for different spacetime dimension
From left to right, the columns give the spacetime dimensionD
5n12, the factornAn/16p, the total energyEtot

(D) in units r h51,
the rescaled total energyEtot

(D)5nA nEtot
(D)/16p and the gravitational

energy loss~see text!.

D nAn/16p Etot
(D) Etot

(D) Energy loss

4 1/2 0.52 0.26 13%
6 2p/3 0.095 0.20 10%
8 2p2/5 0.034 0.13 7%
10 16p3/105 0.032 0.15 8%

FIG. 4. Angular dependence of the radiation forn52, 4, and 6,
summing all multipoles up tol 515 in units r h51. The angular
distribution forn58 is not shown. The latter is even more peak
in a narrow region aroundu50 since also the multipoles withl
.15 contribute significantly to the radiation.
12401
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The angular distribution of the gravitational radiation
the BH frame goes to zero along the axis of the collisi
(u50,p) in any dimensions. Therefore, the gravitation
emission is never back- or forward scattered. In four dim
sions the angular spectrum of the gravitational radiation
creases rapidly at smallu and becomes approximately flat
greater angles with a maximum in the direction orthogona
the axis of the collision, before falling rapidly to zero fo
values of the angles close top. The angular distribution of
the gravitational radiation forn.2 is peaked atu and p
2u, whereu is a small angle. The difference between t
behavior of the angular distribution in four dimensions a
in higher dimensions has no evident physical reason
would be interesting to further explore this point.

V. CONCLUSION AND PERSPECTIVES

In this paper we have computed the gravitational emiss
of a two-particle collision in an evenD-dimensional space
time. We have presented the numerical results forD54 to
10. The collision has been modeled as a massless test
ticle plunging into a BH with mass equal to the c.m. ener
of the event.

According to our estimates, the total emitted energy in
head-on collision with particles of equal mass ranges fr
;13% (D54) to ;8% (D510). This shows that the los
in gravitational radiation is quite stable under variation of t
spacetime dimension and slightly decreases for higherD.
The result forD54 confirms previous numerical and an
lytical calculations@12#.

Our result contrasts with the YN estimation for the initi
mass of a BH in head-on collisions@10#. A possible expla-
nation is that the junk emission is not wholly gravitation
emission. The YN method predicts the mass within the
parent horizon to be;0.71Ecm in four dimensions. If all the
junk energy were gravitational radiation, this would amou
to a total loss of around 30%. The disagreement is likely
due to numerical uncertainties or inaccurate approximatio
the YN mass decreases for higher spacetime dimens
(;0.71Ecm to ;0.58Ecm for D54 to D511), whereas the
loss in gravitational radiation remains stable. Since both
and our methods are purely gravitational, this ‘‘dark comp
nent’’ of the junk radiation should describe the by-produ
of the collision. According to this picture,;60% of the c.m.
energy in ten dimensions is trapped inside the horiz
;10% is emitted in gravitational radiation, and;30% goes
into particle by-products in the final state. These could be
carriers of the initial charge in a collision between charg
particles. ForD.4 a fraction of the by-products may b
emitted into the bulk.

Let us conclude by briefly discussing the phenomenolo
cal consequences of these results for BH formation at
TeV scale. Although uncertainties may affect the numeri
estimates, different approaches now confirm that some of
initial c.m. energy is not trapped inside the BH horizon. F
head-on collisions inD510, for example, this junk energ
ranges from;10% ~optimistic value—our result! to ;40%
~pessimistic value—YN result!. Hence, the initial mass o
the BH formed in the collision could be considerably smal
1-9
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than the c.m. energy. The experimental signatures of BH p
duction at particle colliders and in ultrahigh energy cosm
ray events strongly depend on the initial BH mass. The to
multiplicity of the Hawking phase in ten dimensions cou
be almost halved in the pessimistic case, leading to a gre
average energy of the emitted quanta.

A thorough investigation of the effects of energy loss
TeV-scale BH production is undoubtedly worth pursuing. F
ture research should focus on the extension of the ab
results to spacetimes with odd dimensions and to grav
tional events with different geometries. BHs produced in c
liders, for instance, possess nonvanishing angular mom
tum. Rotating BHs are expected to lose more energy
gravitational waves than Schwarzschild BHs of equal ma
A larger gravitational emission is also expected for no
spherically symmetric BHs. This is particularly releva
when the compactified space is asymmetric, and some o
extra dimensions have size of order of the fundame
gravitational scale. It would be extremely important to qua
tify these differences.
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APPENDIX A: THE SOURCE TERM

In this appendix we derive the source term of the KI eq
tion that describes the radial plunge of a massless par
into the (n12)-dimensional BH. The perturbation of th
stress-energy tensor is

dTmn52
p0

A2g
*dldn

„x2x~l!…
dxm

dl

dxn

dl
, ~A1!

wherep0 is the conserved energy of the particle. The on
nonvanishing components of the particle velocity areut and
ur . Thus the source excites only scalar perturbations. F
lowing the notations of Ref.@29#, Eq.~A1! reads

~A2!

whereS are the scalar harmonics andtab are the nonvanish
ing gauge-invariant perturbations of the stress-energy ten
The BH1source system is symmetric under rotation of t
(n21)-sphereSn21 @46#. Consequently, the harmonic de
composition of the fields contains only harmonics invaria
underSn21. We can write the metric ofSn as
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dVn~u,f1 , . . . ,fn21!5du21sin2udVn21~f1 , . . . ,fn21!
~A3!

and choose the trajectory of the test particle to beu50. The
harmonics which are invariant underSn21 do not depend on
f1 , . . . ,fn . The scalar harmonics onSn belong to the rep-
resentationsD ( l ) of SO(n11)

~A4!

Each harmonic is labeled by the indexl denoting its repre-
sentation and by additional indices in the representation.
fix a particular element of each representationD ( l ) @the sin-
glet underSO(n21)] by requiring the harmonics to be in
variant underSn21. Therefore, the harmonics in the expa
sion of the perturbations depend only onl and on the
dimensionn of the sphere. A (n12)-dimensional scalar field
can then be expanded as@46#

f~ t,r ,u,f1 , . . . ,fn21!5(
l

f̃ l~ t,r !S (nl)~u!, ~A5!

whereS (nl)(u) satisfy

DiD
iS (nl)52k2S (nl), k2[ l ~ l 1n21!, ~A6!

and

E dVnS (nl)S * (nl8)5d l l 8 . ~A7!

The solution of Eq.~A6! is

S (nl)~u!5K (nl)Cl
(n21)/2~u!, ~A8!

where Cl
(n21)/2(u) are Gegenbauer polynomials@47# and

K (nl) are normalization factors. Using Eq.~A7! we have

K (nl)

5F232npn/211

G~n/2!

G~ l 1n21!

~ l 1n/221/2!G~n/221/2!2G~ l 11!
G21/2

.

~A9!

The scalar harmonics for the source are obtained settinu
50:

S(nl)~u50!5K (nl)
~ l 1n22!!

~n22!! l !
. ~A10!

For a massive particle in radial geodesic motion

dt

dr
52

1

f ~r !
. ~A11!

From Eqs.~A11! and ~4! it follows that
1-10
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r * ~r !52t~r !, ~A12!

where we have set to zero the integration constant.
stress-energy tensor perturbations are

dTrr ~ t,r ,u,f1 , . . . !52p0f 22r 2nd~ t2t~r !!dn~Vn!,

dTtr~ t,r ,u,f1 , . . . !52p0f 21r 2nd~ t2t~r !!dn~Vn!.
~A13!

(dTtt does not contribute to the source of the KI equatio!
Integrating Eqs.~A13! on Sn and applying a Fourier trans
form, the gauge-invariant perturbations are

t rr ~v,r !52p0f 22r 2n
eivt(r )

A2p
S(nl)~u50!,

t tr~v,r !52p0f 21r 2n
eivt(r )

A2p
S(nl)~u50!.

~A14!

The source termS(n) for scalar gravitational perturbations
obtained in terms oftab by substituting Eqs.~A14! in
Eq. ~5.44! of Ref. @32#, where

Sab58pr n22tab , Sa5ST5A5 J̃a50. ~A15!

The result is

S(2)5e2 ivr
*

8A4l 12

ivr

~ l 21!~ l 12!~r 21!

@~ l 12!~ l 21!r 13#2
, ~A16!

S(4)5e2 ivr
*

16A~2l 13!l2

A2p ivr 3

3
@~ l 213l !~r 62r 3!1524r 62r 3#

@~ l 14!~ l 21!r 3110#2
, ~A17!

S(6)5e2 ivr
*

6A~2l 15!l4

p ivr 4

3
@~ l 215l !~r 102r 5!11426r 1028r 5#

@~ l 16!~ l 21!r 5121#2
,

~A18!

S(8)5e2 ivr
*

4A~2l 17!l6

A3p3ivr 5

3
@~ l 217l !~r 142r 7!12728r 14219r 7#

@~ l 18!~ l 21!r 7136#2
,

~A19!

where lk[@( l 1k)( l 1k21) . . . (l 11)#. The BH horizon
r h and the particle energyp0 have been set equal to on
Equation~A16! coincides with Eq.~8! of Ref. @22#.
12401
e

APPENDIX B: ENERGY AND ANGULAR DISTRIBUTION

We derive here the formulas for the energy and the an
lar dependence of the gravitational emission. Gravitatio
waves in a (n12)-dimensional spacetime behave asympto
cally as;r 2n/2 @25# and possessn(n11)/221 degrees of
freedom. The transverse-traceless~TT! gauge is defined by
dgab50, dgai50, anddgi j g

i j 50. These conditions can b
chosen by imposing the harmonic gauge in the wave z
and using the remaining gauge freedom to constraindgtt
50, dgti50, andg i j dgi j 50.

We separate the angular part of the perturbations us
tensor spherical harmonics, following Ref.@30#. In the TT
gauge, the only nonvanishing term in the decomposition
theHT component. Hence, the gauge invariant quantities
scalar perturbations (F andFab) depend only onHT :

F5
1

n
HT1

1

r
~Dar !Xa , Fab5DaXb1DbXa , ~B1!

where

Xa5
r 2

k2
DaHT . ~B2!

The scalar perturbationF is written in terms of the gauge
invariant quantities as

F5
nZ̃2r ~X1Y!

r n/221@k22n1n~n11!x/2#
, ~B3!

where

X1Y522nrn22F, Z̃5
1

iv
r n22F t

r . ~B4!

Setting

HT→
A

r n/2
eivr

* , ~B5!

the asymptotic behavior ofF is

lim
r→`

F5
2A

k2
eivr

* . ~B6!

The asymptotic behavior ofhi j in the TT gauge is

hi j
TT52r 2HTS i j ;

k2F

r n/222
Si j 5

F

r n/222 S DiD jS1
k2

n
g i j SD .

~B7!

The energy-momentum pseudotensor does not depend o
spacetime dimension and is given by@25#

dE

dSdt
5^t00&5

v2

32p
^hi j

TThTTi j&, ~B8!
1-11
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wherehi j
TT are metric perturbations in the time domain. U

ing Parseval’s theorem, the energy-momentum pseudote
in the frequency domain is

dE

dSdv
5

v2

32p
^h̃i j

TTh̃* TTi j&, ~B9!

whereh̃i j
TT are now the metric perturbations in the frequen

domain. Substituting Eq.~B7! in Eq. ~B9! we get

dE

dSdv
5

v2

32p

uFu2

r n S DiD jS1
k2

n
g i j SD

3S DkDlS* 1
k2

n
gklS* Dg ikg j l . ~B10!

Integrating on the spheredS5r ndVn and using the relations

DiD
iS52k2S, @D j ,Di #V

j5RkiV
k5~n21!Vi ,

~B11!

whereVi is a generic vector~here and in the following, in-
dices are raised and lowered withg i j ), we find the ‘‘two-
sided’’ power spectrum

dE

dv two-sided5E dS(n)
dE

dSdv
5

v2

32p

n21

n
k2~k22n!uFu2.

~B12!

The ‘‘one-sided’’ spectrum in Eq.~21! is obtained by multi-
plying Eq. ~B12! by two. In the four-dimensional limit the
one-sided spectrum is

dE

dv U
n52

5
v2

32p

~ l 12!!

~ l 22!!
uFu2. ~B13!

Equation ~B13! is Zerilli’s formula for the l th multipole
component of the energy spectrum in four dimensions. T
total energy spectrum is given by the sum over the mu
poles.
R.
,

n

12401
-
sor

e
i-

For eachl the energy spectrum is

dEl

dVdv
5

v2

32p
uF l u2S DiD jS1

k2

n
g i j SD

3S DiD jS* 1
k2

n
g i j S* D . ~B14!

Substituting Eq.~B12! in the previous equation, we find

dEl

dVdv
5

dEl

dv

n

n21

1

k2~k22n!
S DiD jS1

k2

n
g i j SD

3S DiD jS* 1
k2

n
g i j S* D . ~B15!

The angular dependence for thel th multipole is obtained by
integrating over frequency@22#. The result is

dEl

dV
5DEl

n

n21

1

k2~k22n!
S DiD jS1

k2

n
g i j SD

3S DiD jS* 1
k2

n
g i j S* D[DElL l~u!, ~B16!

where

L l~u!5
1

k2~k22n!
S n

n21
S,uu1

k

n21
SD 2

. ~B17!

For n52 Eq. ~B17! reduces to the known result in four d
mensions@22#. The angular dependence is obtained by su
ming over the multipoles:

dE

dV
~u!5(

l

dEl

dV
5(

l
DElL l~u!. ~B18!

The result truncated tol max515 is shown in the left panel o
Fig. 4. The curve corresponding ton52 shows good agree
ment with Fig. 3 of Ref.@22#.
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