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We investigate the gravitational energy emission of an ultrarelativistic particle radially falling into a
D-dimensional black hole. We numerically integrate the equations describing black hole gravitational pertur-
bations and obtain the energy spectra, total energy, and angular distribution of the emitted gravitational radia-
tion. The black hole quasinormal modes for scalar, vector, and tensor perturbations are computed in the WKB
approximation. We discuss our results in the context of black hole production at the TeV scale.
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. INTRODUCTION ij —BH+E(X), whereE(X) denotes the collisional “junk”
energy which does not contribute to the BH mass. The junk

Brane-world models describe the visible Universe as anergy includes a bulk component of gravitational radiation
four-dimensional brane embedded in a higher-dimensionaind other possible nonstandard model gauge fields, and a
bulk [1]. A generic consequence of the brane-world scenaridrane component of standard model collisional by-products
is that the fundamental gravitational scale is lower than thearrying the charge of the initial particles. The newly formed
observed Planck scale. In some models, the fundament@H is expected to decay first by loss of gauge radiation into
scale is lowered to values that would be accessible to nexthe bulk and then by thermal Hawking emission. The Hawk-
generation particle colliders, thus enabling laboratory-basethg evaporation ends when the mass of the BH approaches
studies of strong gravitational physics via perturbafi2¢ the fundamental gravitational scale. At this stage the BH ei-
and nonperturbative ever|3]. Ultrahigh energy cosmic rays ther decays completely by emitting the residual Planckian
could also probe trans-Planckian enerdils The possibility  energy or leaves a stable remnant with mass about the Planck
that strong gravitational effects such as black H&@lEl) and  masg8]. Most of the observable signatures of BH formation
brane formation could be observed in the near future hasome from Hawking's phase and strongly depend on the ini-
sparked a lot of interest in the investigation of nonperturbatial BH mass[9]. Hence, a precise calculation of the colli-
tive gravitational phenomena in hard-scattering evéhis sional energy loss is essential to the phenomenology of BH
(For a review and more references, see Reff) formation.

Trans-Planckian BH formation at energy scales much A numerical estimate of the total collisional energy loss
larger than the fundamental gravitational scale is a classicdbr spherically symmetric BHs iD =4 dimensions has been
procesg3]. The event is dominated by tlsechannel and the  given by Yoshino and Namb{¥'N) [10] (see also Ref.11]).
initial state is modeled by two classical shock waves withThe YN approach evaluates the total junk eneEf(X) by
given impact parameter. In this context, a major issue is thénvestigating the formation of the BH apparent horiZaa).
estimate of the collisional energy loss. The hoop conjectur@he colliding particles are assumed massless, uncharged, and
states that the collision of two particlajs with center-of-  pointlike. Each particle is modeled by an infinitely boosted
mass(c.m,) energyE., and impact parameter smaller than Schwarzschild solution with fixed energy. This solution de-
the Schwarzschild radiuss(E.) forms a trapped surface scribes a plane-fronted gravitational shock wave correspond-
[7]. This event is formally described by the processing to the Lorentz-contracted longitudinal gravitational field

(Aichelburg-Sexl wavg[13]. The collision is simulated by
combining two shock waves traveling in opposite directions.
*Present address: Groupe de Cosmologie et Gravitatiomhe apparent horizon arises in the union of the two shock
(GReCO), Institut d’Astrophysique de PariiCNRS, 98 Boule-  waves. The junk energy is estimated by comparing the initial
vard Arago, 75014 Paris, France. Email address:c.m. energy with the BH mass. The result is that the colli-

berti@astro.auth.gr sional energy loss depends on the impact parameter and in-
"Email address: cavaglia@phy.olemiss.edu creases as the number of spacetime dimensions increases.
*Email address: leonardo.gualtieri@romal.infn.it The YN method allows estimation of the total junk energy
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in the classical uncharged point-particle approximation.Cardoscet al.[25] and theD-dimensional extension of Zer-
However, it cannot discriminate between different compo-illi's formalism by Kodama and IshibashiKl) [29-32,
nents of E(X), which is theoretically and experimentally which reduces the problem to the solution of three
most important. In a realistic BH event such as a protonSchralinger-like equations. Our method provides a simple
proton collision at the Large Hadron CollidétHC) [14], and relativistically consistent estimate of the collisional
the BH is formed by the collision of two partons. The bulk gravitational emission in higher dimensions. We derive the
component of the junk energy is dominated by gravitationafMitted energy in terms of the wave amplitude and study the
radiation and is invisible to the detector. The gravitationa/@ngular dependence of the radiation using the KI formalism.
junk energy and the invisible component of Hawking emis-Ye also present a syste_matlc calculatlon_ of BH quasinormal
sion (neutrinos, gravitons, efcadd to the total missing en- Modes(QNMs) for the different perturbations in the WKB
ergy of the process. Therefore, the knowledge of collisionafiPProach, —extending recent calculations by Konoplya
energy loss in gravitational emission should provide a good33.34. We show that there is a significant relation between
estimate of the different sources of energy loss and missinf'®¢ QNM frequencies and the spectral content of the emitted
energy. radiation. _ _ _

An accurate estimate of the gravitational collisional en- The outline of the paper is as follows. In Sec. Il we intro-
ergy loss would require the use of the full nonlinear Einsteinduce our notations and the basic equations. In Sec. Ill we
equations irD dimensions. This is a formidable task, even in briefly describe our numerical approach to the computation
four dimensions. Recently, significant advances in numerica®f gravitational wave emissiofdetails are in the Appen-
relativity allowed stable numerical simulations of BH-BH dixes. Section IV contains the main results of the paper.
collisions for initial BH separation of a few Schwarzschild Conclusions are presented in Sec. V.
radii in the nonlinear Einstein theory. The gravitational
waveforms predicted by these simulations are in excellent Il. PERTURBATION EQUATIONS AND QUASINORMAL
agreement with analytical results from first and second order MODES
perturbation theory15]. Since the linearization of the Ein-
stein equations yields results that are surprisingly close to thﬁc
full theory (see, e.g., Ref[16]), BH perturbation theory is
likely to provide accurate estimates of gravitational wave
emission in higher-dimensional spacetimes. Relying on this
result, we compute the gravitational wave emission in higher
dimensions via a perturbative approach. Our computation is The spherically symmetric BH iD=n+ 2 dimensions is
the first of this kind to our knowledge. described by the Schwarzschild-Tangherlini mef&b]

The formalism for the computation of gravitational wave
emission from perturbed BHs was developed by Regge and dr?
Wheeler[17] and Zerilli [18], who reduced the problem to f(r)
the solution of two Schidinger-like equations. Daviet al.

[19] computed the energy radiated in the radial infall of awhered(), is the metric of thea-dimensional unit spherg”,

particle of massn, starting from rest at infinity into a four- and

dimensional BH of masg,>m,. This study was later

generalized to the radial infall of a particle with finite initial 2M

velocity or starting at a finite distance from the B2D]. (For f(r)=1- pn-1’ @

a more comprehensive introduction to BH perturbation

theory see, e.g., Ref$21].) Cardoso and Lemo§22,23  The BH masdM gy is given in terms of the parametit by

have recently investigated the plunge of ultrarelativistic test

particles into a four-dimensional static BH and along the nMA ,

rotation axis of a Kerr BH, improving early estimates by Mgu=——"7>—"",

Smarr [24]. In this paper we generalize these results to 8mC G2

hig.*;fr dd"g‘e”SiO”S Itt’y C‘?”:P‘.“i.”g the t.grla"“f‘t:l‘?”a' Tafia“m\mhereAn= 27" DD ((n+1)/2) is the area 0", G, , is

([a)r?c:lirﬁensigna?nsp:jher{rjli:;ﬁylvfylfnmﬁ:i::c eBHa 'QI% Cén 3va3e the (n+2)-dimensional Newton constant, ands the speed
' f light. We will setG,,, ,=1 andc=1 in the following. The

propagation in odd-dimer!sional _curveq spacetimes s not yg( +2)-dimensional tortoise coordinatg is defined by
fully understood, we restrict our investigation to even dimen-

sions. (Wave late-time behavior and propagation are very dr, 1
different in odd- and even-dimensional spacetif&s—27. ar - m (4)
Moreover, open issues in the definition of asymptotic flatness
[28] do not allow an unambiguous definition of “gravita- Integrating Eq.(4) we find
tional waves radiated at infinity” in odd dimensiops.

We model the particle collision as a relativistic test par- oM N2 In(r/a;—1)
ticle plunging into a BH with masM gy =E_,. We use re- r,=r+ :
cent results oD-dimensional gravitational-wave theory by

In the next subsection we introduce the background met-
and the Kl perturbation equatioh80]. In Sec. Il B we
describe the method to compute the BH QNMs.

A. Background metric and perturbation equations

ds’=—f(r)dt?+ — +r2dQ2, (6N

)

, ©)

n_l ]:O a?72
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where

aj=(2M)V0- D@m= (j=0,... n-2), (6)

and the integration constant has been chosen to make the
argument of the logarithm dimensionless. Here and through-

out the paper we use the notations of R¢29,30]; the in-

PHYSICAL REVIEW D69, 124011 (2004

Equation(13) was derived by Gibbons and Hartnf86] in a
more general cagsee also Ref.37], where a Gauss-Bonnet
term is includedl and has no equivalent in four dimensions.

B. Quasinormal modes

The knowledge of the QNM frequencies of multidimen-

dices (u,v), (i,j), and @,b) denote the coordinates of the sional BHs enables a clear physical interpretation of their

D-dimensional spacetime, the coordinatesSdf and the co-
ordinates of the two-dimensional spacetinter), respec-
tively.

Kodama and IshibasHhB0] showed that the gravitational

gravitational emission. QNMs are free damped BH oscilla-
tions that are characterized by pure ingoing radiation at the
BH horizon and pure outgoing radiation at infinity. The no-

hair theorem implies that QNM frequencies depend only on

perturbation equations for this metric can be reduced téhe BH mass, charge, and angular momentum. Numerical

Schralinger-like wave equations:

P=0, (7)

d2
<—2+w2_v

drg

where the potential/ depends on the kind of perturbation.
Settingx=2M/r"" 1, the potential for scalar perturbations is

f(r)Q(r)
ST o
where
’=I(1+n-1), 1=0, 1, 2,...,
m=«’—n, H(r)=m+n(n2+1)x, 9
and
Q(r)=n*(n+1)>3+n(n+1)[4(2n?—3n+4)m
+n(n—2)(n—4)(n+1)]x?>—12n[(n—4)m
+n(n+1)(n—2)]mx+16m3+4n(n+2)m?.
(10

Equation(8) reduces to the Zerilli equatiofil8] for n=2.
The potential for vector perturbations is

fl, n(n—2) 3n’M
VV_r_Z K1+ — “ ol (11)
where
kZ=I(l+n-1)—-1, 1=1, 2,.... (12

Equation(11) reduces to the Regge-Wheeler equatjitid]
for n=2. Finally, the potential for tensor perturbations is

f n(n—2) n?M

Vr= | kit 2t =t oo, (13
where

K2=1(l+n-1)-2, 1=1, 2,.... (14)

simulations of BH collapse and BH-BH collision show that,
after a transient phase depending on the details of the pro-
cess, the newly formed BH hasrangdown phase, i.e., it
undergoes damped oscillations that can be described as a
superposition of slowly damped QNMmodes with a small
imaginary part Furthermore, the QNMs determine the late-
time evolution of perturbation fields in the BH exteridor
comprehensive reviews on QNMs see RERS]).

Gravitational radiation from four-dimensional astrophysi-
cal BHs is dominated by slowly damped modes. In the fol-
lowing we show that these also dominate the emission of
gravitational radiation in higher dimensions and determine
important properties of the energy spectra. Recently, Kono-
plya computed slowly damped QNMs of higher-dimensional
BHs [33,34] using the WKB method. This method is known
to be inaccurate for large imaginary parts, but it is accurate
enough for the slowly damped modes that are relevant in our
context. Therefore, QNM frequencies for scalar, vector, and
tensor gravitational perturbations are computed here in the
WKB approximation. Our results are in good agreement with
those presented by Konoplya in RE34] (modulo a different
normalization. At variance with Ref[34], we concentrated
on uncharged black holes in asymptotically flat, even-
dimensional spacetimes. We extended Konoplya’'s calcula-
tion in two ways:(i) in addition to the fundamental QNM we
also computed the first two overtonés) we carried out our
calculations for a much larger range of values ¢Ref.[34]
only shows results for=2 andl =3).

The method consists of applying the WKB approximation
to the potential in Eq(7) with appropriate boundary condi-
tions. The result is a pair of connection formulas that relate
the amplitudes of the waves on either side of the potential
barrier, and ultimately yield an analytical formula for the
QNM frequenciedfor details see Ref§39,40). The WKB
QNM frequenciesw? are given in terms of the potential
maximumV, and of the potential derivatives at the maxi-
mum by

w?= (Vo V= 2VGA) =i (j+ ) =2Vg(1+0),

j=01.2..., (15)
where
1 |1 vg4>(1 2) 1 (Vg2
= = — —=—— | —| (7+60a?) |,
[—2v§|8 v |4 288\ v; ( )
(16)
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TABLE I. QNMs for n=2. The first three quasinormal frequen- various dimensions are shown in Tables I-IV and will be
cies for scalar and vector perturbations are listed from left to rightdiscussed in Sec. IV. Let us stress that the application of the

The scalar modes and the vector modes are isospectral in four dj//KB technique is questionable in a few higher-dimensional
mensions.

n=2 Scalar and vector modes
| j=0 ji=1 j=2
2 0.746-0.178i 0.692-0.550i 0.606-0.942i
3 1.199-0.185i 1.165-0.563i 1.106-0.953i
4 1.618-0.188i 1.593-0.569i 1.547-0.958i
5 2.025-0.190i 2.004-0.572i 1.967-0.960i
6 2.424-0.191i 2.407-0.573i 2.375-0.961i
7 2.819-0.191i 2.805-0.574i 2.777-0.961i
8 3.212-0.191i 3.200-0.575i 3.175-0.961i
9 3.604-0.192i 3.592-0.575i 3.570-0.962i
10 3.994-0.192i 3.983-0.576i 3.963-0.962i
11 4.383-0.192i 4.373-0.576i 4.355-0.962i
12 4.771-0.192i 4.762-0.576i 4.745-0.962i
13 5.159-0.192i 5.151-0.576i 5.135-0.962i
14 5.546-0.192i 5.539-0.577i 5.524-0.962i
15 5.934-0.192i 5.927-0.577i 5.913-0.962i
1 5 (vr\* AV
= || — | (77+1880%) 5~ ————
V—2V5| 6912 vy ( 88 384\ vy3
v\ ?
X (51+1000?) + ==——| — | (67+68a>
1 (Vv V)
+5o 19+28a%) — 5| ——|(5+4a?)|,
288( & ( )" 288 V- (5+4a9

a=]+1/2 andj is the mode index. The QNM frequencies stress

17

cases; fol =2 andl =3 the vector and scalar potentials in
D>6 are not positive definite and/or display a second, small
scattering peak close to the BH horizon. An accurate analysis
of these potentials would require a refinement of the standard
WKB technique, which is not presented here. These special
cases are denoted by italic numbers in Tables Il and IV.
We mention that highly damped QNMs of four- and
higher-dimensional BHs have recently become a subject of
great interest in a different context. A few years ago, Hod
proposed to use Bohr’s correspondence principle to deter-
mine the BH area quantum from highly damped BH QNMs
[41]. Hod’s proposal is quite general: the asymptotic QNM
frequency for scalar perturbations of a nonrotating BHDin
dimensions is the same as in four dimensipaAg]. Quite
notably, this result holds also for scalar, vector, and tensor
gravitational perturbationgt3,42. Referenc¢44] contains a
partial list of references on recent developments in this field.

Ill. INTEGRATION METHOD

The computation of the gravitational wave emission of an
ultrarelativistic particle plunging into a BH requires the nu-
merical integration of the inhomogeneous wave equation for
scalar gravitational perturbation&/ector and tensor gravita-
tional perturbations are not excited by a particle in radial
infall.) The source ternS™ for the corresponding wave
equation inn+2 dimensions can be calculated from the
stress-energy tensor of the infalling particle. Details of the
derivation are in Appendix A.

The integration in i+ 2) dimensions proceeds as in four
dimensiong19,20. A good summary of the integration pro-
cedure can be found in R€i22]. In this section we simply

the differences between the four- and the

for the scalar, vector, and tensor potentials of Sec. Il andn+2)-dimensional cases. For the sake of simplicity, in our

TABLE Il. QNMs for n=4. The first three quasinormal frequencies for scalar, vector, and tensor perturbations are listed from left to

right.

n=4 Scalar modes Vector modes Tensor modes
I j=0 ji=1 =2 j=0 =1 j=2 j=0 ji=1 =2
2 1.131-0.386i 0.922-1.186i 0.537-2.053i 1.543-0.476i 1.279-1.482i 0.825-2.583i 2.004-0.503i 1.764-1.568i 1.378-2.732i
3 1.915-0.399i 1.715-1.217i 1.336-2.103i 2.191-0.471i 1.988-1.445i 1.625-2.492i 2.576-0.499i 2.393-1.531i 2.075-2.632i
4 2.622-0.438i 2.476-1.331i 2.208-2.271i 2.824-0.474i 2.664-1.441i 2.369-2.460i 3.146-0.498i 2.998-1.514i 2.729-2.580i
5 3.279-0.457i 3.156-1.384i 2.924-2.347i 3.441-0.478i 3.310-1.447i 3.063-2.453i 3.716-0.497i 3.592-1.504i 3.359-2.549i
6 3.911-0.467i 3.803-1.412i 3.598-2.385i 4.046-0.481li 3.935-1.453i 3.723-2.454i 4.286-0.4961 4.179-1.498i 3.974-2.530i
7 4.527-0.474i 4.432-1.429i 4.249-2.408i 4.644-0.484i 4.547-1.458i 4.360-2.456i 4.856-0.496i 4.762-1.495i 4.580-2.517i
8 5.133-0.478i 5.048-1.441i 4.883-2.422i 5.236-0.485i 5.150-1.462i 4.983-2.458i 5.427-0.4951 5.342-1.492i 5.178-2.508i
9 5.732-0.481i 5.655-1.449i 5.505-2.432i 5.824-0.487i 5.747-1.466i 5.596-2.460i 5.997-0.495i 5.921-1.490i 5.772-2.501i
10 6.326-0.484i 6.256-1.455i 6.118-2.439i 6.409-0.488i 6.339-1.468i 6.201-2.462i 6.567-0.495i 6.498-1.489i 6.361-2.496i
11 6.916-0.485i 6.852-1.459i 6.725-2.444i 6.992-0.489i 6.928-1.470i 6.801-2.463i 7.138-0.495i 7.074-1.488i 6.948-2.492i
12 7.504-0.487i 7.444-1.463i 7.326-2.448i 7.574-0.490i 7.514-1.472i 7.396-2.464i 7.708-0.495i 7.649-1.487i 7.532-2.489i
13 8.088-0.488i 8.033-1.465i 7.923-2.452i 8.153-0.490i 8.098-1.473i 7.988-2.465i 8.279-0.495i 8.224-1.486i 8.115-2.487i
14 8.671-0.489i 8.619-1.468i 8.517-2.454i 8.732-0.491i 8.680-1.474i 8.577-2.465i 8.849-0.495i 8.798-1.486i 8.696-2.485i
15 9.253-0.489i 9.204-1.469i 9.108-2.456i 9.309-0.491i 9.261-1.475i 9.164-2.466i 9.420-0.495i 9.371-1.485i 9.275-2.483i
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TABLE Ill. QNMs for n=6. The first three quasinormal frequencies for scalar, vector, and tensor perturbations are listed from left to
right. The numbers in italic indicate that the potential at the givismot everywhere positive definite. The square brackets indicate that the
potential has two scattering peaks.

n=4 Scalar modes Vector modes Tensor modes

I j=0 i=1 ji=2 j=0 i=1 ji=2 j=0 i=1 ji=2

2 [1.778-0.571] [1.289-1.770] [0.395-3.201] 2.388-0.720 1.831-2.237 0.825-4.001 2.956-0.751i 2.365-2.357i 1.339-4.245i

3 2.604-0.628i 2.198-1.916i 1.403-3.355i 3.102-0.715i 2.660-2.191i 1.814-3.833i 3.623-0.747i 3.181-2.294i 2.351-4.012i
4 3.401-0.645i 3.050-1.958i 2.346-3.375i 3.815-0.712i 3.450-2.165i 2.730-3.731i 4.282-0.744i 3.926-2.264i 3.235-3.895i
5 4.174-0.660i 3.875-1.997i 3.270-3.403i 4.522-0.712i 4.213-2.156i 3.595-3.678i 4.940-0.741li 4.640-2.247i 4.047-3.830i
6 4.923-0.6751 4.665-2.037i 4.144-3.449i 5.222-0.714i 4.954-2.156i 4.418-3.654i 5.598-0.740i 5.337-2.236i 4.818-3.789i
7 5.653-0.687i 5.425-2.070i 4.967-3.492i 5.915-0.716i 5.679-2.160i 5.207-3.645i 6.255-0.739i 6.024-2.229i 5.563-3.763i
8 6.369-0.695i 6.164-2.095i 5.753-3.525i 6.602-0.719i 6.392-2.164i 5.969-3.643i 6.913-0.738i 6.705-2.224i 6.290-3.745i
9 7.075-0.702i 6.888-2.113i 6.515-3.550i 7.285-0.721i 7.094-2.169i 6.712-3.644i 7.570-0.738i 7.382-2.221i 7.004-3.732i
10 7.772-0.707i 7.602-2.128i 7.259-3.570i 7.964-0.722i 7.790-2.173i 7.441-3.646i 8.228-0.737i 8.055-2.218i 7.709-3.722i
11 8.464-0.711i 8.306-2.139i 7.989-3.585i 8.640-0.724i 8.480-2.177i 8.158-3.648i 8.885-0.737i 8.726-2.216i 8.406-3.715i
12 9.151-0.715i 9.004-2.148i 8.709-3.598i 9.314-0.725i 9.165-2.180i 8.867-3.650i 9.543-0.737i 9.395-2.215i 9.098-3.709i
13 9.834-0.717i 9.697-2.156i 9.421-3.607i 9.986-0.726i 9.847-2.183i 9.569-3.653i 10.200-0.737i 10.062-2.214i 9.785-3.705i
14 10.51-0.720i 10.39-2.162i 10.13-3.616i 10.66-0.727i 10.53-2.185i 10.27-3.655i 10.86-0.737i 10.73-2.213i 10.47-3.701i
15 11.19-0.721i 11.07-2.167i 10.83-3.622i 11.32-0.728i 11.20-2.187i 10.96-3.657i 11.52-0.736i 11.39-2.212i 11.15-3.698i
numerical integrations we set the horizon radiug chNB(w)eiwr*Jrc(w)e—iwr*_ (19

=(2M)Y("~1=1_ The equation for the scalar perturbations

IS The Wronskian is given bW=2iwC(w). The wave ampli-

tude is obtained from a convolution of the left solution with

d2
the source term

- 2_
drz +w VS

=M, (18)

*
The general solution of Eq18) is obtained via a Green o=
function technique as follows. Consider two independent

(left andright) solutions of the homogeneous equation with

boundary conditionsb, ~e™'“'+ for r,——, and ®r  The energy spectrum can be expressed in terms of the
~ge'®"s for r, —+o. Forr,—+o the left solution is a wave amplitude agdetails of the derivation are given in
superposition of ingoing and outgoing waves of the form  Appendix B

1 (+=
v_vf, o, S"dr, . (20)

TABLE IV. QNMs for n=8. The first three quasinormal frequencies for scalar, vector, and tensor perturbations are listed from left to
right. The numbers in italic indicate that the potential at the givismot everywhere positive definite. The square brackets indicate that the
potential has two scattering peaks.

n=4 Scalar modes Vector modes Tensor modes
I j=0 ji=1 j=2 j=0 ji=1 j=2 j=0 ji=1 j=2

|=2 [2.513-0.744] [1.686-2.299] [0.159-4.345] 3.261-0.924 2.335-2.851 0.598-5.287 3.886-0.959i 2.765-2.988i 0.706-5.720i

|=3 [3.388-0.817) [2.696-2.461] [1.277-4.431 4.017-0.928 3.269-2.804 1.747-5.016 4.618-0.959i 3.806-2.917i 2.141-5.241i

|=4 4.223-0.841i 3.631-2.532i 2.367-4.420i 4.775-0.920i 4.147-2.777i 2.824-4.840i 5.336-0.955i 4.691-2.885i 3.331-5.018i
|=5 5.042-0.855i 4.524-2.568i 3.407-4.401i 5.531-0.918i 4.991-2.762i 3.840-4.734i 6.049-0.951i 5.507-2.866i 4.360-4.904i
|=6 5.848-0.865i 5.390-2.595i 4.403-4.399i 6.283-0.917i 5.810-2.757i 4.802-4.676i 6.761-0.949i 6.291-2.854i 5.297-4.838i
|=7 6.640-0.874i 6.231-2.622i 5.357-4.415i 7.030-0.918i 6.610-2.757i 5.719-4.646i 7.473-0.947i 7.056-2.846i 6.178-4.798i
|=8 7.420-0.883i 7.052-2.647i 6.270-4.441i 7.774-0.920i 7.396-2.759i 6.599-4.634i 8.184-0.946i 7.808-2.841i 7.022-4.772i
=9 8.191-0.890i 7.855-2.669i 7.149-4.469i 8.514-0.921i 8.167-2.764i 7.450-4.630i 8.895-0.945i 8.553-2.837i 7.841-4.755i
|=10 8.953-0.896i 8.645-2.688i 7.999-4.495i 9.250-0.923i 8.935-2.768i 8.278-4.630i 9.606-0.944i 9.292-2.834i 8.640-4.743i
=11 9.709-0.902i 9.423-2.705i 8.829-4.519i 9.984-0.924i 9.692-2.773i 9.088-4.633i 10.32-0.944i 10.03-2.832i 9.426-4.735i
|=12 10.46-0.906i 10.19-2.718i 9.641-4.539i 10.71-0.926i 10.44-2.777i 9.884-4.637i 11.03-0.943i 10.76-2.831i 10.20-4.728i
|=13 11.20-0.910i 10.95-2.730i 10.44-4.556i 11.44-0.927i 11.19-2.781i 10.67-4.642i 11.74-0.943i 11.49-2.829i 10.97-4.724i
=14 11.95-0.914i 11.71-2.740i 11.23-4.571i 12.17-0.928i 11.93-2.785i 11.44-4.646i 12.45-0.943i 12.21-2.828i 11.73-4.720i
|=15 12.68-0.916i 12.46-2.748i 12.01-4.584i 12.90-0.929i 12.67-2.788i 12.21-4.650i 13.16-0.943i 12.94-2.828i 12.48-4.718i
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dE 2 n—1 a point located as close as possible to the horizon, and ex-
20,2 2 .
do 167 n Kk —n)|[®|?, (21)  panding®, as
D ~e U [1+a, H(r—1)+...], (22

wherex?=I(1+n—1). The Wronskian for a given value of
w is obtained by integrating the homogeneous equation fromvhere

. (1P 213=12=214+3) + (n—2)[ = 213+1%2+ (n*+ 1) = (n*+4n®+n+6)/4] -
" Qie—1)(12+1+ 1)+ (n—2)[— 12+ (2io—n)l +(n+ Dio—(n2+1)/2] @3

C(w) (and W) can be obtained with good accuracy by As | grows, the isospectrality tends to be restored. In the
matching the numerically integrateli, to the asymptotic €ikonal limitl —co the centrifugal term of the potential domi-

expansion nates and is the same for scalar, vector, and tensor perturba-
tions. In this limit, the QNM frequencies for all perturbations
q p
are
i anio(®)  bpio(w)
—alory
o) b “R 2 \n+1 n+1)
' a —w —w
—iwr, n+2 n+2
E T +1 n-1 2 1/(H)(z- 1) (26)
o~ —— | —— +1).
(24) " 2(nr1intl :

The previous relation was derived in REB3] for multidi-
mensional BH perturbations induced by a scalar fiéitb-
i[124+ (n— 1)l +n(n—2)/4] tice that the normalization used in RE33] is different f_ror_n
anso(w)= ] (25) ours) Here we have shown that it also holds for gravitational
2w perturbations. Isospectrality of scalar and gravitational per-

_ turbations is a common feature of the eikonal limit and of the
For givenn, |, andw, the error on the Wronskian and on the |arge-damping limif42,43 for any n.

energy spectrum is typically of the order ©{10™%).

where the leading-order coefficient is

B. Multipolar components of the energy spectra

IV. RESULTS The numerical integration described in Sec. Il gives the

The main results of our work are the computation of the€nergy spectra of Figs. 1 and 2. The spectrarfer (top left
QNM frequencies in the WKB approximation, the computa-pa”e| in Fig. 2 are in excellgnt agreement with those of Ref.
tion of the energy spectra, and the estimate of the total ef22]. The spectra are flat in the region between the zero-
ergy and angular distribution of the radiation emitted duringfrequency limit and a “cutoff” frequencyw., beyond that

the plunge. These results are discussed in detail below. they fall exponentially to zero. The cutoff frequenay is
given by the fundamental QNM frequency to a good level of

accuracy. This result can be understood in terms of
gravitational-wave scattering from the potential barrier that
The WKB QNM frequencies for different even values of surrounds the black hole? plays the role of the energy in
n are listed in Tables I1-IV. Each line shows the first threethe Schrdinger-like equation(7). From Eq. (15) it follows
quasinormal frequenciesj£0,1,2) for scalar, vector, and thatw?=V, at first order in the WKB approximation. There-
tensor perturbations at givénForn=2 tensor perturbations fore, only the radiation with energy smaller than the peak of
do not exist. In this case the scalar and vector entries corréhe potential is backscattered to infinity; radiation with larger
spond to the QNMs of the Zerilli and Regge-Wheeler equafrequency is exponentially suppressed.
tions, which are known to be isospectfall]. The isospec- The gravitational emission of a two-particle hard collision
trality is broken forn>2. This has been shown analytically in higher dimensions has been computed by Cardzisal.
by Kodama and Ishibash80] and later verified numerically [25] using techniques developed in four dimensions by
by Konoplya[34]. The real and imaginary parts of scalar Weinberg[45] and later used by Smalr24]. The main result
QNM frequencies at given, |, andj are smaller than those of Ref.[25] is that the spectra in+2 dimensions grow as
of vector QNMs, which are in turn smaller than those of w"?; thus the integrated spectra diverge @% . Physi-
tensor QNMs. Since scalar modes are the least damped, theglly meaningful results for the total energy can only be ob-
are likely to dominate the gravitational radiation emission. tained by imposing some cutoff on the integrated spectra.

A. Quasinormal frequencies

124011-6
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FIG. 1. Multipolar components of the energy spectra up=td0 forn=2, n=4 (top left and top right panelsn=6 andn=28 (bottom
left and bottom right panelsn unitsr,=1. Open circles mark the real part of the fundamental scalar gravitational quasinormal frequency,

|, , for the givenl andn.

Smarr[24] first suggested to use the inverse horizon radiushould be given by some “weighted average” of the funda-
as a cutoff. The relativistic perturbative calculationns 2 mental gravitational QNM frequenci¢25].

[22] shows that the cutoff frequency at fixes very close to Our results for the spectra and the QNMs confirm the
the fundamental BH QNM. Therefore, the cutoff frequencyabove picture. Figure 1 shows that all spectra go to zero as

100 T v L} v T T T T T v 100 M T v L} v T T T T T
; n=2 ]
10k 1 10 |
, o h=4 ,
10°F 1 10°
10°} . =6 - 10°
N dE./do
dE/do Mo nes Jdo
4 TN X, = h -
1 S SN N 10
N , \ N _
10‘5-_,: ; NN : 10°
. *. N
-6 ' .' 1 . \I N N 1 ‘\. 1 M -6 . M M N AN M
10 0 1 2 3 4 5 6 10 0 1 2 3 4 5 6
(0] (O]

FIG. 2. Multipolar components of the energy spectra at fikéat different values oh in unitsry,=1. The left panel corresponds ko
=2 and the right panel correspondslte3. Open circles mark the real part of the fundamental scalar gravitational quasinormal frequency,

w), , for the givenl andn.
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w—0. Forw<w, the spectrum at fixetlis . e
10-1 | bl n=2 |
%:f n—-2 (27) _-._-n=4
dw n,| @ ' ...A...n=6
. ) -2 Y . —v—n=8
where f, | is a constant that can be found by a fit of the 10°F - ~a E
spectra. For largéf,, | decays as e T,y ]
AEI a-Ahoh-al, \.\.i\."\.~
fn,l = kn+2| ~3n+2)la (28 10'3 . v -'V"—:-:;:;::\:- e .
. . . ; ~ I AU
A fit of the numerical data give&,=2.25, ks=0.832, kg A /
=0.184, andk,;;=0.040. Our result fom=2 is consistent - v
with that of Ref.[22]. 10 L L PR TP SR
As conjectured in Ref[25], all spectra have a maximum 0 2 4 6 8 10 12 14 16

at some cutoff frequency.. This cutoff frequency is very I

close to the fundamental QNM frequen for (scala
Q 9 @n ( d FIG. 3. The integrated energyE, as a function of for different

gravitational perturbations with giveh and n, which is X . :

. - - values ofn. The dominant multipolar component lis-2 only for
marked by open circles in Figs. 1 and 2. The deviation be- """~ = " .
¢ d is of order 10% for lowl d d n<6; this is probably related to the appearance of a negative well
Weenw, andw, IS 0 Qr er o for low, ar_l BCreases i, e scalar potentials fdr=2 andn>4. The dominant multipole
for large | (compare Figs. 1 and 2 to the first column of

is1=4 (6) for n=6 (8) (see Table V.
Tables I1-I\). The deviation is larger when the WKB method © ® ¥
is least reliable, namely fdr=2 andn>4. In these cases,

the location of the peaks in the spectra can presumably
used as a more reliable estimate of the QNM frequency. Th

bWhere @=0.110hs=1.69), (@g=0.050hg=1.64), and
10=0.022b;,=1.40) forn=4, n=6, andn=28, respec-
vely. The coefficients 4,,,,,b,+,) have been obtained by

spectrum decays exponentially - fow>w; with fitting the data from =14 to| =20 and are weakly depen-
n-dependent slope,.» (see Fig. 2 dent on the chosen range bfThis variability affects our
dE final results on the total energy within less than a few per-
d_|~e_0‘n+2(w—wc)_ (29  cent.
w

Restoring the dependence on the BH horizgrand on

. . o . the conserved particle energy, the total emitted energy is
Thus thew-integrated multipolar contributionSE, at given

| are finite. With our choice of units, Cardoso and Lemos
[22] find a,=13.5 (herea is a constant of order unity that E
cannot easily be determined because the spectra decay very
quickly). Our numerical fits givex,~=15, in good agreement
with their result. In higher dimensions the constadats , are (D) : e ) i ,
comparatively easier to determine. Their values age WhereEy’ is the “dimensionless” total energiexpressed in
=55, ag=3.4, anday;=2.3. It is not clear if there is any the unitsr,,=1 that we used in our numerical integratigns
relation between thie-dependent slope and the late-time tail
behavior predicted in Ref26].

Figure 1 shows that higher multipoles contribute more a
n grows. This is evident when we look at theintegrated

P Ay <
&M Mgy 167 =5

2 2
_ Po nAn o) PO o)
| MBH 167 tot MBH tot

(31

TABLE V. Multipolar contributions to the total energy for dif-
gerentn in unitsr,=1.

multipolar components of the energy spectra of Fig. 3. The ! n=2 n=4 n=6 n=38
quadrupole =2) is dominant only fom=2 andn=4. For 2 0.1845 0.18%10°! 0.194<10°2 0.269<10° 2
n=6 andn=28 the dominant multipoles ale=4 andl=6, 3 0.0855 0.12610°% 0.238<10°2 0.653x10° 3
respectively(see Table V. This effect may be related tothe 4 00500 008810 0241x102 0.983<10° 3
appearance of a negative well in the scalar potentiald for 5 0.0329 0.06% 1071 0.224x 102 1.187x10°3
=2 andp>4. It yvould be interesting.to under;tand better ¢ (00234 005810 0199x10°2 1.258<10° 3
the physmal 'relatlo'n between the dominant multipole and the 5 00175 003910°! 0172x10-2 1.225¢10°3
spacetime dimension. 8 00136 00310 ' 0.149%10°2 1.130<10°3
9 00109 0.02%10! 0.128<10°2 1.009<10 3
C. Total energy 10 0.0089 0.02210°' 0.111x10°2 0.888<10®
The total emitted energy is obtained by numerically inte- 11~ 0.0074 ~ 0.01810°'  0.096<10°%  0.780x10°°
grating the results of the previous section oveand sum- 12 0.0063  0.01810°' 0.084<10°2  0.688<10°°
ming the multipolar components. For largehe integrated 13  0.0054  0.01410°*  0.075<10°  0.612x10°°
energy in the multipolé can be fitted by 14 00047 0.018310°' 0.066<10* 0.549x10°°
15  0.0041 0.01%x10°! 0.059x10°2 0.497x10°3

AE;=a,, ol ez, (30
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TABLE VI. Total energy for different spacetime dimensions.  The angular distribution of the gravitational radiation in
From left to right, the columns give the spacetime dimendion the BH frame goes to zero along the axis of the collision
=n+2, the factom.4,/167, the total energ)e>) in unitsr,=1, (0=0,7) in any dimensions. Therefore, the gravitational
the rescaled total enerdf})) =n.A,E{Q)/167 and the gravitational ~emission is never back- or forward scattered. In four dimen-

energy losgsee text sions the angular spectrum of the gravitational radiation in-
creases rapidly at sma#l and becomes approximately flat at
D nA,/16m EGY &t Energy loss greater angles with a maximum in the direction orthogonal to
4 1/2 0.52 0.26 13% the axis of the collision, before falling rapid]y t.o zero for
6 on/3 0.095 0.20 10% values of th_e angles_cl_ose to. The_angular distribution of
8 225 0034 013 7% the grawtatlorjal radiation fon>2 is peaked a) and 7
10 1673/105 0032 015 8% — 6, wheref is a small angle. The difference between the

behavior of the angular distribution in four dimensions and
in higher dimensions has no evident physical reason. It

We obtained the integrated spectra numerically up+@0  Would be interesting to further explore this point.
and extrapolated them for largeusing the fits in Eq.(30).

Results are presented in Table VI. V. CONCLUSION AND PERSPECTIVES
Following Ref.[22] we estimate the gravitational energy
loss for a collision of two particles with equal madsby the In this paper we have computed the gravitational emission

replacemenipy—M, Mgy—M;;=2M. For n=2 this ex- of a two-particle collision in an eveB®-dimensional space-
trapolation gives results in good agreement with the perturtime. We have presented the numerical resultsber4 to
bative shock-wave calculation of R¢fL2], which considers 10. The collision has been modeled as a massless test par-
two BHs of equal mass. An analogous extrapolationrfor ticle plunging into a BH with mass equal to the c.m. energy
=2 gives results in close agreement with the fully relativisticof the event.
computation[16] for a particle starting from infinity at rest. According to our estimates, the total emitted energy in a
Therefore, we believe that our extrapolation should provide dnead-on collision with particles of equal mass ranges from
qualitative but realistic estimate. The results for different val-~13% (D=4) to ~8% (D=10). This shows that the loss
ues ofn are given in the last column of Table VI. The gravi- in gravitational radiation is quite stable under variation of the
tational energy loss is-13%, ~10%, 7%, and 8% fon spacetime dimension and slightly decreases for higher
=2 to n=8, respectively. The result fan=2 is in good The result forD=4 confirms previous numerical and ana-
agreement with previous estimafd®] (see the discussion in lytical calculationg12].
Ref.[22]). Our result contrasts with the YN estimation for the initial
mass of a BH in head-on collisiorj40]. A possible expla-

D. Angular dependence nation is that the junk emission is not wholly gravitational
emission. The YN method predicts the mass within the ap-
}Sarent horizon to be-0.71E,, in four dimensions. If all the
junk energy were gravitational radiation, this would amount
shows the angular dependence of the total energy up to to a total loss of around 30%. The disagreement is likely not
=15forn=2, n=4, andn=6. due to numerical uncertainties or inaccurate approximations:
———————————— the YN mass decreases for higher spacetime dimensions

The angular dependence of the radiation is obtained b
evaluating numerically Eqs(B17) and (B18). Figure 4

0.10F —n=2 : '-,. 4 (~0.7IE.m to ~0.58y for D=4 to D=11), whereas the
| e =4 P loss in gravitational radiation remains stable. Since both YN
0.08 : : n= I and our methods are purely gravitational, this “dark compo-
Mer ey e n=6 v nent” of the junk radiation should describe the by-products
o Do of the collision. According to this picture; 60% of the c.m.
0.06f : ; : V] energy in ten dimensions is trapped inside the horizon,
AE,(G) SRR ; . ~10% is emitted in gravitational radiation, are30% goes
0.04}: Do into particle by-products in the final state. These could be the
L ~ carriers of the initial charge in a collision between charged
0.02F:f \: i/ \i] particles. ForD>4 a fraction of the by-products may be
v ARV emitted into the bulk.
0.00 Ve e i ,.,—:.;" \ Let us conclude by briefly discussing the phenomenologi-

0.0 ' 0i5 ' 1.-;0 15 20 25 ' 3j0 cal consequences of these results for BH formation at the
TeV scale. Although uncertainties may affect the numerical
0 estimates, different approaches now confirm that some of the
FIG. 4. Angular dependence of the radiation fier 2, 4, and 6,  initial c.m. energy is not trapped inside the BH horizon. For
summing all multipoles up td=15 in unitsr,=1. The angular head-on collisions irD=10, for example, this junk energy
distribution forn=8 is not shown. The latter is even more peakedranges from~10% (optimistic value—our resultto ~40%
in a narrow region around=0 since also the multipoles with  (pessimistic value—YN resylt Hence, the initial mass of
> 15 contribute significantly to the radiation. the BH formed in the collision could be considerably smaller
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than the c.m. energy. The experimental signatures of BH prodQ (0, ¢4, . . . ,¢,_1) =d6?+sirt0dQ,_1(d1, . . . ,n_1)
duction at particle colliders and in ultrahigh energy cosmic (A3)

ray events strongly depend on the initial BH mass. The total

multiplicity of the Hawking phase in ten dimensions could and choose the trajectory of the test particle toybe0. The

be almost halved in the pessimistic case, leading to a greatégrmonics which are invariant undg?~* do not depend on

average energy of the emitted quanta. é1, .. .,¢,. The scalar harmonics o' belong to the rep-
A thorough investigation of the effects of energy loss inresentation®® of SO(n+1)

TeV-scale BH production is undoubtedly worth pursuing. Fu-

ture research should focus on the extension of the above

results to spacetimes with odd dimensions and to gravita- DO =

tional events with different geometries. BHs produced in col-

liders, for instance, possess nonvanishing angular momen- !

tum. Rotating BHs are expected to lose more energy in

gravitational waves than Schwarzschild BHs of equal mass.

A larger gravitational emission is also expected for non-Each harmonic is labeled by the indexlenoting its repre-

spherically symmetric BHs. This is particularly relevant sentation and by additional indices in the representation. We

when the compactified space is asymmetric, and some of tHix a particular element of each representatid? [the sin-

extra dimensions have size of order of the fundamentaglet underSO(n—1)] by requiring the harmonics to be in-

gravitational scale. It would be extremely important to quan-variant underS"~ 1. Therefore, the harmonics in the expan-

(A4)

tify these differences. sion of the perturbations depend only ®nand on the
dimensionn of the sphere. Aif+ 2)-dimensional scalar field
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We warmly thank V. Cardoso for his encouragement to ~ (nl)
carry out this work and for several useful suggestions. M.C. d(t.r,0,¢1, ... ,¢n71)=§|: & (t,r)S(0), (AS)
is grateful to E.-J. Ahn for many helpful comments on the
content of this paper. This work has been supported by th@hereS")(6) satisfy
EU Program “Improving the Human Research Potential and

the Socio-Economic Knowledge BaséResearch Training DD'SM=—x28M  2=|(1+n—-1), (A6)
Network Contract HPRN-CT-2000-0018M.C. is partially
supported by PPARC. and

APPENDIX A: THE SOURCE TERM f dQ,sMs*M=g, . (A7)

In this appendix we derive the source term of the Kl equa- . .
tion that describes the radial plunge of a massless partici&he solution of Eq.(A6) is
into the (h+2)-dimensional BH. The perturbation of the _
stress-energy tensor is sM(g) =KV g), (A8)

0o dxt dx” wgﬁ)re c("V’2(g) are Gegenbauer polynomialg¢7] and
M= — N(x— —_ K" are normalization factors. Using EGA7) we have
o=~ SN N gy gy (AD) g EGA7)
K (nh
wherep, is the conserved energy of the particle. The only e
nonvanishing components of the particle velocity arand 23 N2+l r(+n-1)
u’. Thus the source excites only scalar perturbations. Fol- = | " /2 — _ 2
lowing the notations of Ref.29], Eq.(Al) reads (N/2) (14 n/2=12)T(n/2=1/2°T (1 +1)
(A9)
TapS | O ) The scalar harmonics for the source are obtained se#ting
T ,,= , A2 =0:
" 0 10 e (I+n—-2)!
n—2)!
("g=0)=gMHh "
S"™(e=0)=K eI (A10)
whereS are the scalar harmonics amgl, are the nonvanish- For a massive particle in radial geodesic motion
ing gauge-invariant perturbations of the stress-energy tensor.
The BH+source system is symmetric under rotation of the ﬂ_ _ 1 ALl
(n—1)-sphereS" ! [46]. Consequently, the harmonic de- dr  f(r)’ (ALD)
composition of the fields contains only harmonics invariant
underS"~ 1. We can write the metric 08" as From Eqgs.(A11) and (4) it follows that
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re(r)=—t(r), (A12)

where we have set to zero the integration constant. Th%r

stress-energy tensor perturbations are

ST (t,r,60,0q,...)=—pof 2r "8(t—1t(r))s"(Q,),

STu(t,r,0,¢q, .. Pof “Lr"8(t—1t(r)) 8"(Qy).

(A13)

=-

(6T, does not contribute to the source of the Kl equajion.
Integrating Egs.(A13) on S" and applying a Fourier trans-
form, the gauge-invariant perturbations are

iwt(r)
7 (@,r)=—pof 2r "—=SM(9=0),
rr( ) pO \/ﬂ ( )

iwt(r)
ro(w,r)=—pof Ir "——SM(9=0).
tr( ) pO \/E ( )

(A14)

The source terns™ for scalar gravitational perturbations is
obtained in terms ofr,, by substituting Eqs(Al4) in
Eq. (5.44 of Ref.[32], where

Sap=87""21,, S,=S=A=J,=0. (Al5)

The result is

8Val+2 (1-1)(1+2)(r—1)
[ [(1+2)(1—-1)r+3]%

16V(21+3)\,

27iord
><[(I2+3I)(r6— r3)+5—4r6—r3]
[(1+4)(1-1)r3+10)?
6V(2IH5)Ns

mort

><[(|2+5|)(r1°—r5)+ 14— 6r19—8r9]
[(1+6)(I—1)r°+21]?

8(2): e—iwr

(A16)

lor

S(4): e—iwr*

. (AL7)

e iory

S(6) =

(A18)
4(21+7)\g
\/ﬁiwl’5
><[(|2+ 70(rt—r")+27-8r'-19r"]
[(1+8)(I-1)r"+36]?

S(S): efiwr*

(A19)

where N\ =[(1+K)(I+k—=1)...(1+1)]. The BH horizon
r, and the particle energp, have been set equal to one.
Equation(A16) coincides with Eq.(8) of Ref.[22].
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APPENDIX B: ENERGY AND ANGULAR DISTRIBUTION

We derive here the formulas for the energy and the angu-
dependence of the gravitational emission. Gravitational
waves in a (+ 2)-dimensional spacetime behave asymptoti-
cally as~r "2 [25] and possesa(n+1)/2—1 degrees of
freedom. The transverse-tracelé3¥) gauge is defined by
89ap=0, 89,i=0, anddg;; ¥ =0. These conditions can be
chosen by imposing the harmonic gauge in the wave zone
and using the remaining gauge freedom to constégp

=0, 89;=0, andy" 6g;;=0.

We separate the angular part of the perturbations using
tensor spherical harmonics, following R¢80]. In the TT
gauge, the only nonvanishing term in the decomposition is
the Hy component. Hence, the gauge invariant quantities for
scalar perturbationsH andF,;) depend only orHy:

1 1
FZEHT—FF(Dar)Xa, Fab=DaXp+DpXs, (BL)
where
(B2)

The scalar perturbatio® is written in terms of the gauge
invariant quantities as

nZ—r(X+Y)
= : (B3)
r2- 1 k2—n+n(n+1)x/2]
where
~ 1
X+Y==2n1""2F,  Z= 1" (B4)
Setting
Hi— rT/zei'"r*' (B5)
the asymptotic behavior @b is
. 2A
limd= —Ze"‘"*. (B6)
r—oo K
The asymptotic behavior df;; in the TT gauge is
T 5 K>D ) K?
hij =2r HTS”"’I’H/?S”:W D,DJS+ Fy”S .
(B7)

The energy-momentum pseudotensor does not depend on the
spacetime dimension and is given [36]

dE

2
(10— 2 TTRTT
asar ()= g7 (T,

(B8)
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WherehﬁT are metric perturbations in the time domain. Us-  For eachl the energy spectrum is
ing Parseval’s theorem, the energy-momentum pseudotensor

in the frequency domain is dE _ “’_2|q> 12 DD, S+ zy S
dQdew 327" 1
dE N
hiTh*TT), (B9) - 2
dSdv 327T< ) X D'Dls*+%y'15*). (B14)
wherehﬁT are now the metric perturbations in the frequency

domain. Substituting Eq(B7) in Eq. (B9) we get Substituting Eq.(B12) in the previous equation, we find

2
dE w2 |q)|2 K2 dE :dE| n : 12 DiDjS-}-K_yijg)
dS(h) 3277 n Di D S+ — ‘yijS dQdw dow n—1 k2(k%—n) n
2 o K>
ik _j D! A
DkD.S*+%yk|S*)y'ky“. (810 x|pDis Ty S*)- 815

The angular dependence for tht multipole is obtained by

Integrating on the sphei@S=r"d(}, and using the relations integrating over frequenci22]. The result is

2

DiD'S=-«%S, [Dj,Di]V'=RV¥=(n-1)V;, dE n K
|
;yi,-s)

1
B11 —_ " DD
| (B11) dQ—AE,n_le(KZ_n)(D,DJS+
whereV' is a generic vectothere and in the following, in-
dices are raised and lowered wit¥), we find the “two-
sided” power spectrum

2
DIDIS* + %y”s*)zAE.A.(a), (B16)

2
o n—1 where

d tw05|ded de(n)deu ETKZ(KZ_n)M)lZ.

(B12) A(0)=

( n S 99t —k 8)2 (B17)

2, 2 -1 ,06 -1 .

The “one-sided” spectrum in Eq(21) is obtained by multi- k5 (k=) AN :

plying Eq. (B12) by two. In the four-dimensional limit the Fqrpn=2 Eq. (B17) reduces to the known result in four di-

one-sided spectrum is mensiond22]. The angular dependence is obtained by sum-
dE w? (1+2)! ming over the multipoles:
do “mma-anl®” (B13 aE
n=2 ’ —
POk 2 dQ =2 AEA(0).  (B1§)

Equation (B13) is Zerilli's formula for the Ith multipole
component of the energy spectrum in four dimensions. Th& he result truncated th,,,= 15 is shown in the left panel of
total energy spectrum is given by the sum over the multi-Fig. 4. The curve corresponding to=2 shows good agree-

poles. ment with Fig. 3 of Ref[22].
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