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We consider a self-consistent system of interacting spinor and scalar fields within the framework of a
Bianchi type-I (BI) cosmological model filled with perfect fluid. The interacting term in the Lagrangian is
chosen in the form of derivative coupling, i.&i=(\2)¢ ,¢'“F. HereF is a power or trigonometric
function of the invariantd and/orJ constructed from bilinear spinor forn&%/; and P=i$y5¢/. Self-
consistent solutions to the spinor, scalar, and Bl gravitational field equations are obtained. The problems of an
initial singularity and the asymptotically isotropization process of the initially anisotropic space-time are
studied. The role of the cosmological constant {erm) in the evolution of a Bl Universe is studied. It is
shown that a positivé\ generates an oscillatory mode of expansion of the Bl model, wherdgafiil,,, is
chosen to be a trigonometric function of its arguments, there exists a nonexponential mode of evolution even
with a negativeA. It is shown also that for a suitable choice of problem parameters the present model allows
regular solutions without a broken dominant energy condition.
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I. INTRODUCTION model provides, in its general features, an adequate descrip-
tion of the present state of the Universe. Although the Uni-

The nonlinear generalization of classical field theory re-verse seems homogeneous and isotropic at present, the large
mains one of the possible ways to overcome the difficultiesscale matter distribution in the observable Universe, largely
of a theory which considers elementary particles as mathmanifested in the form of discrete structures, does not exhibit
ematical points. The gravitational field equation is nonlinearg high degree of homogeneity. Recent space investigations
by nature and the field itself is universal and unscreenablejetect anisotropy in the cosmic microwave background. In

These properties lead to a definite physical interest in theyct the theoretical argumenfg] and recent experimental

gravitational field that goes with these matter fields. data, which support the existence of an anisotropic phase that
Nonlinear self-couplings of the spinor fields may arise as,

: ““approaches an isotropic one, lead us to consider the models
a consequence.of the geometrical structure of the Spa.ce't'nb%)Universe with anisotropic background. Zel'dovich was the
and, more precisely, because of the existence of torsion.

me that th rly isotropization of th mologi-
early as 1938, Ilvanenkpl—3] showed that a relativistic st to assume that the early isotropization of the cosmolog

. . . cal expanding process can take place as a result of quantum
theory imposes in some cases a fourth-order self-coupling. In

1950, Weyl[4] proved that, if the affine and the metric prop- e_ffect of ?at[trllcle_cr??n(()jnbnear Smgﬁ'iﬁ%;?f assump-
erties of the space-time are taken as independent, the spin ph was further justiied by several au ] .

field obeys either a linear equation in a space with torsion or The simplest of ams_troplc m°‘?'e's’ W_h'Ch’ neverthele_ss,
a nonlinear one in a Riemannian space. As the selffather completely describe the anisotropic effects, are Bian-

interaction is of spin-spin type, it allows the assignment of &cNi type-I (BI) homogeneous models whose spatial sections
dynamical role to the spin and offers a clue about the origir2'® flat but the expansion or contraction rate is direction de-
of the nonlinearities. A nonlinear spinor field, suggested bypendent. Moreover, a Bl Universe falls within the general
the symmetric coupling between nucleons, muons, and leganalysis of the singularity given by Belinslet al. [12] and
tons, has been investigated by Finkelstetral. [5] in the  €volves into a Friedmann-Robertson-Walk@RW) Uni-
classical approximation. Although the existence of a spin-1/Xerse[13] in the presence of a matter obeying the equation of
fermion is both theoretically and experimentally undisputed statep= (e, {<1. Since the modern-day Universe is almost
these are described by quantum spinor fields. Possible justisotropic at large, this feature of the Bl Universe makes it a
fications for the existence of classical spinors has been agrime candidate for studying the possible effects of an an-
dressed in Refl6]. isotropy in the early Universe on present-day observations.
The present-day cosmology is based largely on the Fried- It should be noted that an important property of the iso-
mann solutions of Einstein equations, which describe theropic model is the presence of a singular point in time in its
completely uniform and isotropic Univergéclosed” and  space-time metric which means that the time is bounded
“open” models). The main feature of these solutions is their from below. Is the presence of a singular point an inherent
nonstationarity. The idea of an expanding Universe, follow-property of the relativistic cosmological models or is it only
ing from this property, is confirmed by the astronomical ob-a consequence of specific simplifying assumptions underly-
servations and it is now safe to assume that the isotropithg these models? To answer this question we studied a self-
consistent system of the nonlinear spinor and Bl gravita-
tional fields in a series of papefd4-17. It should be
*Electronic address: saha@thsunl.jinr.ru mentioned that a spinor field in a Bl Universe was also stud-
"Electronic address: todorlb@jinr.ru ied by Belinskii and Khalatnikoy18]. Using Hamiltonian
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techniques, Henneaux studied class-A Bianchi Universes 1

generated by a spinor sourft9,20. Lse=5 @09 (2.4
In this paper we consider a self-consistent system of the

spinor, scalar, and Bianchi type-l gravitation fields in the

presence of a perfect fluid and cosmological constantt The interaction between the spinor and scalar fields is

should be noted that the inclusion of theterm adds a new given by the Lagrangiafil6]

dimension in the evolution of the Universe. Assuming that

the A term may be both positive and negative, it opens a N

much wider range of possibilities in the search for a Lin=2 ¢ ¢ °F. (2.5

singularity-free solution of the field equations. Extending our 2"

previous studie14-17, where the nonlinear term was

taken to be a power law of=S?=(¢y)? and/orJ=P?  Here\ is the coupling constant arfélis an arbitrary function
:(i$75¢,)2, in the present paper we consider the nonlineaof invariants generated from the real bilinear forms of the
term to be a trigonometric function df (J), as well. In  spinor field (a comprehensive description of the invariants
addition, a numerical analysis of the corresponding nonlineagan be found, e.g., in Reff15]). We choosé==F(l,J) with

differential equations has been performed. |=S2= ()2 and J=P2=(iyy°y)2. By virtue of the
Pauli-Fierz theorem22] we claim that it describes the non-
Il. DERIVATION OF BASIC EQUATIONS linearity in the most general of its forfrl5]. Note that set-

ting A=0 in Eq. (2.5 we come to the case with minimal
Using the variational principle, in this section we derive coupling between the spinor and scalar fields.

the basic equations for the corresponding spinor, scalar, and The contribution of the perfect fluid to the system is per-
gravitational fields from the actio(@.1) and express corre-  formed by means of its energy-momentum tensor, which acts
sponding spinor, scalar, and metric functions in terms of theys one of the sources of the corresponding gravitational field
volume scaler (2.27) of the Bl universe. From the gravita- equations. So here we do not need to write the Lagrangian
tional field equations we also deduce the second-order mubensityﬁpf explicitly. The reason for writing’ in Eqs.(2.1)
tiparametric ordinary differential equation far. This last gng (2.2) is to underline that we are dealing with a self-
equation will be thoroughly studied both analytically and consistent system. An interesting discussion on the action

numerically in the following section. _ and Lagrangian for a perfect fluid can be found in Refs.
We consider a system of the nonlinear spinor, scalar, angb3_25,

Bl gravitational fields in the presence of a perfect fluid given

by the action
B. Gravitational field

C TN — As a gravitational field we consider the Bianchi type-I
SO, 4,0)= | LNV—gdQ 2.1 ; : , .
(@4 0) j g @ (BI) cosmological model. It is the simplest model of aniso-

. tropic Universe that describes a homogeneous and spatially
with flat space-time and if filled with perfect fluid with the equa-
tion of statep=_e, {<1, it eventually evolves into a FRW
L= Lyt Lopt Loct Linet Lo (2.2 Universe[13]. The isotropy of the present-day Universe
makes the Bl model a prime candidate for studying the pos-
The gravitational part of the Lagrangi&®.2) Ly is given by sjple effects of an anisotropy in the early Universe on
a Bianchi type-I(BI hereaftef space-time, whereas the terms modern-day data observations. In view of what has been

Lsp, Lsc, and Lin describe the spinor and scalar field La- mentioned above we choose the gravitational part of the La-
grangian and an interaction between them, respectively. Thgrangian(2.2) in the form

term L describes the Lagrangian density of the perfect fluid
which minimally couples to the spinor and scalar fields R
through gravitational one. Lo=7— (2.6

A. Matter field Lagrangian where R is the scalar curvaturex=87G being the Ein-

For a spinor fieldy, the symmetry betweewy andZ stein’s gravitational constant. The gravitational field in our
appears to demand that one should choose the symmetriz€gse is given by a Bianchi typetBI) metric,
Lagrangian 21]. Keeping this in mind we choose the spinor

field Lagrangian as ds?=dt?—a’dx?*—b%dy?— c?dZ 2.7

[ _ _
= — M — M —
Lsp 2[1M Vulh= Vvl = mih, 23 with a, b, ¢ being the functions of time only. Here the

speed of light is taken to be unity.
with m being the spinor mass. The metric(2.7) has the following nontrivial Christoffel
The massless scalar field Lagrangian is chosen to be  symbols:
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b c Since the nonlinearity in the foregoing equations is generated
Te==, Ti=r, T3=-, by the interacting scalar field, Eq.12) can be viewed as
a b ¢ the spinor field equations with induced nonlinearity.
0 : 0 . 0 : Variation of Eq.(2.1) with respect to the scalar field yields
I';1=aa, I'z=bb, I'z=cc. (28 the following scalar field equation:

The nontrivial components of the Ricci tensors are

(J_gW(lHF)go) 0. (213

a bo¢ J_ ox
Rgz_ 54—54‘6), (293
Finally, varying Eq.(2.1) with respect to metric tensor
b g, one finds the Einstein’s field equations. On account of
Rl=— §+ a 4 ¢ (2.9p  theA term they have the form
17 la alb ¢/
1
, b ble a RM_§5MR:KTM_5#A' (2.19
R2:— 6+E E+5 y (29@
: In view of Eqgs.(2.9) and(2.10 for the BI space-timg2.7)
" & K cla a b b\ i we rewrite Eq.(2.14) as
5 |c cla b/[ (2.99 b ¢ heo
—+ -+ - —=«kT]—A, (2.153
From Eq.(2.9 one finds the following Ricci scalar for the Bl b c bec
Universe: L
e c.a ca
Bl s a+b+C+ab bC Ca - E+5+EE—KT2—A, (215b
B b ab'bcical 210
.. . . . a a 3
The nontrivial components of Riemann tensors in this case 2 a3 kT3—A, (2.150
read
. 6 : ab bec 'c a .
RO = - ROSZZE’ RogSZE, a b be =kTg—A. (2.159
C o Here the overdot refers to a time derivative affl is the
ab bc 3 : :
R2-_2- RB__ -~ energy-momentum tensor of the matter field given by
12 ab’ 23 bc’
. T =Tutsmt Tutso™ Tutny ¥ Tu(ey - (2.16
ca
R3%,=— o3 (21)  Here T, is the energy-momentum tensor of the spinor
field defined by

Now having all the nontrivial components of Ricci and Rie-
mann tensors, one can easily write the invariants of gravita- T. p)__ng(¢7MV Y+ lMVV y—V lﬁwﬂ \v/ lﬂmlﬂ)
tional field which we need to study the space-time singular-

ity. We return to this study at the end of this section. _r 2.17
sp- .
C. Field equations The termLg, in view of Eq.(2.12) takes the form
Let us now write the field equations corresponding to the B
action (2.1). Lsp=—(DS+GP). (2.18

V_ariaFion of Eq. (2'_1) with respect to the spinor field o onergy-momentum tensor of the scalar field is given by
¢ () gives the following spinor field equations:
; .5 Izsc) "= 6, Lsc (2.19
1YV, = mi+Dip+ Gi vy =0, (2.123 r n
_ - For the interaction field we find
iV, gy +my—Dy—Giyy>=0, (2.12h
. T (iny=NF@ 0" =8, Lint- (2.20
where we use the notation
T,.(pn is the energy-momentum tensor of a perfect fluid. For
— a?l _ a?t a Universe filled with a perfect fluid, in a comoving system
D=AS¢..¢ al’ G=APe.a¢ al’ of reference such that*=(1, 0, 0, 0) we have
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T, en=(p+e)u,u’=s,p=(s, —p, —p, —p).
(2.21)

The energy and the pressune of the perfect fluid obey the
following equation of state:

(2.22

where is a constant and lies in the intervak [0, 1]. De-
pending on its numerical valug, describes the following
types of Universe$l3]:

p={e,

(=0, (dustUniversg, (2.233
{=1/3, (radiation Universg (2.23b
le(1/3, 1), (hard Universes (2.239
(=1, (Zel'dovich Universe or stiff matter

(2.239

Here once again we note that the perfect fluid is minimally

PHYSICAL REVIEW D 69, 124010(2004
0

o o)

Note that the?and thes matrices obey the following prop-
erties:

1
0

0 1 —i

1 0

0
i O

Yy +y=291, i,j=0123,

Yo +95y =0, (»®?=1, i=0123,

0'j(7k25jk+i8jk|0'|, j,k,|=l,2,3,
wheren;;={1,—1,—1,— 1} is the diagonal matrixg; is the
Kronecker symbol, andjy, is the totally antisymmetric ten-
sor with g155= + 1.

We study the space-independent solutions to the spinor

and scalar field equationf.12 and (2.13, so that ¢
=y(t) and o= ¢(t). Defining

r=abc=1\—g (2.27

coupled to the system. Being one of its sources the perfect _
fluid leaves its trace on the gravitational field which in turn from Eq. (2.13 for the scalar field we have

influences the behavior of the spinor and scalar fields.

In Egs.(2.12 and(2.17 V, is the covariant derivatives
acting on a spinor field d£6,27
p
9,
axH

Iy

vﬂl//:ﬁ—rﬂlp, V= Yy, (229

wherel",, are the Fock-lvanenko spinor connection coeffi-

cients defined by

1
L= 7" Che¥s=uYo)- (2.25
For the metria2.7) one has the following components of the
spinor connection coefficients:

1. — 1.
[o=0, T'1=35a()y"y", To=5b(t)y"y",

F3=3'c<t)?3?°. (2.26
2

The Dirac matriceg/*(x) of the curved space-time are con-
nected with those of Minkowski as follows:

Y=, y=yla, y*=9%b, y=yc.
Here
— [V 0 — 0 o
Y7o 1)t YTl=4 o)
. — [0 -l
’y_‘y_ _l O i

whereo; are the Pauli matrices:

C=const.

dt
‘P:Cf FEESYIE (2.28

The spinor field equatior(2.128 on account of Egs.
(2.24 and(2.26) takes the form

i_°3+i —my+Dy+GiySy=0. (2.29
Y\ 5 27!# b+ D+ Gy hp=0. .

SettingV;(t) = \/7¢;(t), j=1,2,3,4, from Eq(2.29 one de-
duces the following system of equations:

Vi +i(m=D)V;—GV;3=0, (2.303
V,+i(Mm=D)Vo—GV,=0, (2.30h
V3—i(m—=D)Vz+GV;=0, (2.300
V,—i(m=D)V,+GV,=0. (2.300

From Eq.(2.12 we write also the equations for the in-
variantsS, P, andA= y°y%y,

So—2GAs=0, (2.313
Po—2(m—D)A,=0, (2.31B
Ap+2(m—D)Py+2GS,=0, (2.310

where we use the notatiorgy= 7S, Po= 7P, andAy= 7A.
From Eq.(2.31) we find the following relation between the
invariants:

S+ P2+ A2=C2/72, C2=const. (2.32
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Given the concrete form of the system(2.30 can be D;D,D3=1, X;+X,+X3=0. (2.43
solved explicitly and using the solutions obtained one can
write the components of spinor current: In view of Eq. (2.43, from Egs.(2.41) and (2.42 we
o write the metric functions explicitly15],
=gy (2.33
2~ \1/3_1/3 2X +Xg [ dt
The componenj® a(t)=(D1D3) "7 "ex 3 ol (2.443
1 r _
JOz;[v’l‘V1+V§V2+V§V3+VZV4], (2.34 b(t)= (D D3) 3 %exp — X13X3f % ,
defines the charge density of the spinor field that has the (2.44b
following chronometric-invariant form: 213 13 [ Xy+2X5 [ dt
o c(t)=(D,D3) ™ **"exp ——f— .
p=(jo- i) (2.39 I 3 7(1)
(2.440

The total charge of the spinor field is defined as .
As one sees from Eqg2.449—(2.449, for r=t" with n

% >1, the exponent tends to unity at larg@nd the anisotropic
Q= fﬁxPV_ gdxdydz=p7V, (230 model evolves into an isotropic one.
Further, we will investigate the existence of singularity
whereV is the volume. From the spin tensor (singular point of the gravitational case, which can be done

by investigating the invariant characteristics of the space-

1 time. In general relativity these invariants are composed of
=gy ot oy T (2.37  the curvature tensor and the metric one. In a 4D Riemann
space-time there are 14 independent invarifb&2§. In-
one finds the chronometric invariant spin tensor stead of analyzing all 14 invariants, one can confine this
- - study only in 3, namely the scalar curvatule=R, 1,
ShP=(Sy 0879, (239 =R,,R*", and the Kretschmann scaldg=R,z,,R*“**"
o . ) [29,30. At any regular space-time point, these three invari-
and the projection of the spin vector on thexis antsly, I, I3 should be finite. Let us rewrite these invari-
. ants in detail.
Ssz S0/ =3gdxdydz= S}07V. (2.39 For the Bl metric one finds the scalar curvature
o _ _ a b ¢ ab bc ca
Let us now solve the Einstein equations. In doing so we I1=R=-2|=+~-+=-+—=—=+-=+—-—|. (24H
a b ¢ ab bc ca

first write the expression for the components of the energy-

momentum tensor explicitly: Since the Ricci tensor for the Bl metric is diagonal, the in-

variantl,=R,,R*’=R R} is a sum of squares of diagonal

2
To=msS+ < +e, components of Ricci tensor, i.e.,
27%(1+\F)
I=[(RO*+(RD*+(R)*+(RD?],  (2.46
2
TI=T3=T3=DS+GP—- —————p. with the components of the Ricci tensor being given by Eq.
272(1+\F) (2.9.
(2.40 Analogously, for the Kretschmann scalar in this case we

havel3=R";BR“B a sum of squared components of all

uv?
nontrivial R*”

On account of Eq(2.40, subtracting Eq(2.15a from Eq. T .
a(2.49 g Eql 3 q uvs Which in view of Eq.(2.11) can be written

(2.15h, one finds the following relation betweenand b:

as
a dt 01 2 02 \2 03 \2 12 \2 23 2
B=D1ex X4 —/ (2.41 [3=4[(R75) "+t (R750)“+ (R759) "+ (R™1)“+ (R33)
+ 31 \2
Analogously, (R%0)°]
a dt b dt :4§+9+E+§E EE_}_EE
—=D,ex XZJ—, —=Djex XSJ'—. a b C ab bc ca
c T c T
(2.42 (2.47)
The integration constant®q, D,, D3, X4, X,, X3 obey Let us now express the foregoing invariants in termsr.of
the following relations: From Egs.(2.443—(2.449 we have
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[ll. EXACT SOLUTIONS AND NUMERICAL ANALYSIS

aj=A 71’3exp< Yil3 f T_ldt), 2.48
b (Y3 (2483 In the preceding section we solved the spinor, scalar, and

gravitational field equations and wrote the solutions in terms

i_ Yi+r E (2.48 of volume scaler. It was also mentioned that if the right-
a 3 7 ' hand side of Eq(2.53 is a function ofr, then its solution
can be written in quadrature. In what follows, we show that
a, 3rr—27-Y;r+Y? 1 Eq. (2.53 is indeed an autonomous equation and explicitly
P 9 5 (2.489  write the corresponding solutions for a concrete choicE.of
i T
wherei=1,2,3 anda,,a,, andas stand fora, b, andc, A. Exact solutions
respectively. From Eq$2.489—(2.480 one can easily verify Here we consider the cases with minimal coupling and
that with F being the function of eithdror J (with zero mask In
this subsection we simply write the solutions to the spinor
1 1 field equations explicitly and present the solution foin
IlOC—' IZM_, |3°<_.
2 A A quadrature.
Thus we see that at any Space_time point, WhﬁF@, the 1. Mlnlmally COUpled scalar and Spinor fields

invariantsly, I, I3 as well as the scalar and spinor fields | et us first consider the case with minimal coupling when
become infinity, hence the space-time becomes singular @e scalar and spinor fields interact through gravitational one.

this point. . . ~In this case from Eq(2.31) one findsS=C,/r. The scalar
~ In what follows, we write the equation farand study it field and the components of the spinor field in this case have
in detail. the following explicit form:
Summation of the Einstein equatiori2.153, (2.15h),
2.150, and(2.15d multiplied by 3 gives dt
(2.159, and(2.15d plied by 3 g e=c[ 2, (3.0
3

2= K(MSHDS+GP+e-p)-3A. (249

N

C, C,
ha(=—2e™  ygp(t)= —e ™,
For the right-hand-side of Ed2.49 to be a function ofr G G

only, the solution of this equation is well know81].

Let us demand the energy momentum to be conserved, () Cs . a0 Cs . 32
' =—=e7, =—e", .
l.e., 3 \/; 4 \/;
Tow=T,, 1,017 T,=0, (2.50

with the integration constant€; satisfying Co=C7+C3

which in our case has the form —Cg—Ci-
Equation(2.53 in this case takes the form

1( TO)'—éTl—sz—st—O (2.50) 3
70 gl pa e ' 7= 5 K(MCo+eo(1-0)/79) ~3A T, 3.3

On account of the equation of stgte= ¢ and ) )
with the solution
(Mm—D)S,— GPy=0, dr
: . N =\3t. (3.4
which follows from Eq.(2.31), after a little manipulation Jx(MCyr+ et ©)— AP+E
from Eq. (2.51) we obtain

HereE is the constant of integration. Let us note that being
the volume scaler cannot be negative. On the other hand,
with e, being the constant of integration. In view of Eq. the radical in Eq(3_.4_1) should be positive. This leads to the
(2.52, Eq. (2.49 can be written as fact that for a _posﬂ_wd\ the valu_e ofr should be bouno!

from above giving rise to an oscillatory mode of expansion
of the BI space-time.

e=gol Tt p=leglTtTE, (2.52

r 3
—= 2 kl[MS+DS+GP+(1—)egl 4] 3A.
T 2 2. Case with F=F(1)

259 Here we consider the interacting system of the scalar and
As it was mentioned earlier, we considerto be a function spinor fields with the interaction given byZ;,,
of I, J, or 1 =J. In the section to follow we study E§2.53 =(\2)¢,o*F(1). As in the case with minimal coupling
in detail. from Eq.(2.313 one finds
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Co
S=7, Co=const. (3.5
For components of the spinor field we fiht5]
C, . C,
t)=—e ' t)=—e '/,
(1) NE (1) NE
Cs . C, .
t)=—¢€'f, t)=—¢€'f, 3.6

with C; being the integration constants and relate@€toas
Co=C?%+C5—C5—C2. Here we use the notatioi=f(m
—D)dt.

For the components of the spin current from E33 we
find

1
j°=Z[Ci+Ci+Ca+Cll,

) 2
11:;[0104+0203]C05(2,3),
o, 2 .

J :E_[C1C4_C2C3]3m(2/3),

) 2
JSZC_T[Clcs_ C,Cy4lco92p),

whereas for the projection of spin vectors on ¥jeY, andZ
axis we find

C,C,+CsCy

23,0
S bcr

531,0: 01

Cc2-c2+C3-C?

12,0_
S 2abr

The total charge of the system in a voluivien this case is

Q=[C3+C3+C3+CaV. (3.7

Thus for 7#0 the components of spin current and the pro-
jection of spin vectors are singularity free and the total

charge of the system in a finite volume is always finite.

The equation for determining in this case has the form

7= gK[mco+Dco+so(1—g)/rf]—:aAT. (3.9

Recalling thatD=\C,C?F,/7°[1+ AF(1)]? the solution to

Eq. (3.8 can be written in quadrature,

dr
VK[MCym+ C2(1+ \F)+eqrt - AP+E

=3t

(3.9

PHYSICAL REVIEW D69, 124010 (2004

with E being the integration constant. Given the explicit
form of F(I) we find various modes of expansion depending
on the sign ofA. Later we numerically study this case in

detail.

3. Case with =F(J)

Here we consider the interacting system of the scalar and
spinor fields with the interaction given byZi,;
=(N2)¢,¢"*F(J). In the case considered we assume the
spinor field to be massless. Note that, in the unified nonlinear
spinor theory of Heisenberg, the massive term remains ab-
sent, and according to Heisenberg, the particle mass should
be obtained as a result of quantization of spinor prematter
[32]. In the nonlinear generalization of classical field equa-
tions, the massive term does not possess the significance that
it possesses in the linear one, as it by no means defines total
energy(or mas$ of the nonlinear field system. Thus without
losing the generality we can consider the massless spinor
field puttingm=0. Then from Eq(2.31bH one gets

P=Dgy/7, Dy=const.

(3.10

In this case the spinor field components take the form

1 : ) 1 . .
1= T(Dle'”+iD3e*"’), ¢2=?(D2e"’+iD4e""),
T T

1 A A 1 | |
#a="7(ID1&7+Dge™'"), =" (iDz+ Dye™).
(3.1

The integration constant®; are connected t®, by Dy
=2 (D3+D3—D3—D3). Here we setr=[Gdt.

For the components of the spin current from Ej33 we
find

2
jo- 2(D3+ D3+ D340,
) 4
j'=—[D,D3+D;D,]cog20),
ar
L, 4 .
1°= 57[D2D3—DaD,]sin(20),

) 4
JBZE_[Dng_ D,D,]cog20),

whereas, for the projection of spin vectors on ¥jeY, andz

axis we find

2(D1D,+D3Dy)

23,0_
S ber

, S3l,O= O,

DZ-D3+D5-Dj

12,0_
S 2abr

For 7 in this case we have
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. 3
7'=EK[QC0+80(1—§)/T§]—3AT. (3.12

In view of Eq.(3.10), G in this case takes the form analogous
to that taken byD in the previous case witk, replaced by
F ;. Then the solution of E3.12 we write in quadrature as

dr
VK[C?I2(1+ \F)+eomt ¢]—AP+E

= /3t.
(3.13

Depending on the form df andA we have a different mode

of expansion of the Bl Universe as in the previous case. In
what follows we numerically study the aforementioned

cases.

B. Numerical experiments

In this subsection we study E¢.8) for different choices
of F. As it was mentioned earlier, setting=0 in Eq. (3.8

we come to the case with minimal coupling given by Eq.

(3.3, whereas, assuming=0 we get Eq(3.12). Let us first
rewrite Eq.(3.8):
=F(7,p), (3.149

where we use the notation

gk[mCO-I-DCO-I- go(1—0)/7¢]—3A7, (3.19

andp={«x,\,m,Cy,C,eq,{,A} is the set of the parameters.
Since in the examples we consider F(S), let us rewriteD
in terms of S On account ofS=C,/r for D we have

D=\C?Fg27[1+\F(9)]%

From a mechanical point of view E@3.14 can be inter-

preted as an equation of motion of a single particle with unit

mass under the forc&(r,p). Then the following first inte-
gral exists[35]:

r=\2[E-U(T,p)].

HereE is the integration constant and

(3.16

3
- E{K[mCOT+C2/2(1+)\F)+807'_§]—A7'2}

is the potential of the force~. We note that the radical ex-

pression must be non-negative. The zeros of this expression

which depend on all the problem parametprsdefine the
boundaries of the possible rates of changes(of. In what
follows we analyze Eqs(3.14 and (3.15 for different a
choice ofF (1) as well as for different problem parameters

1. F=s"

Let us first choosé& to be a power law o8(or 1), setting
F=S". In this case settin@,=1 andC=1 we rewriteF as

PHYSICAL REVIEW D 69, 124010(2004

Case:m=1,{=05A=1/3

Potential U(7)

FIG. 1. View of the potential/(7) [Eq. (3.18] with Bl space-
time being filled with perfect fluid describing a hard Universe.

K anr"t (1-9)
F=—| m+ +eq —3AT,
2 2(N+ 72 ¢
(3.17
with the potential
3 N
U=— 1 k| mr— ——— 4ot ¢ — A7),
2 2(N+7")
(3.18

Note that the nonnegativity of the radical in E®.16 in
view of Eq.(3.18 imposes a restriction on from above in
the case ofA >0. It means that in the case 4f>0 the value

of 7 runs between 0 and somg,,,, wherer,,, is the maxi-
mum value ofr for the givenp. This equation has been
studied for different values of parametgrsHere we dem-
onstrate the evolution of for different choices ofry for
fixed “energy” E and vice versa.

As the first example, we consider a massive spinor field
with m=1. Other parameters are chosen in the following

4
~ Case:m=1,A=0.1,n=4,{=05,A=1/3
! “
34 I’ \
el \ —E=-1
Q \ -=-E=1
!
§ 24 !
S S
> ] " \
1- \
\
0
T T T T [ T | T |
0 4 8 12 16
Time

FIG. 2. Evolution of the Bl space-time corresponding to the
potential given in Fig. 1 for a different choice &
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10,0
. -0,45 Case:m=0,{=1,A=1/3 Case: A=—-13
© ]
S 5
= - e 1,54
'E 0,50 - ©
3 =
° =
- 2 5,0
—0,55
254 —E=-05
— — E=-1
—0,60 -
0,0+
' ' T j T T T T T T
0,0 0.5 1,0 0 5 _ 4 6
T Time
FIG. 3. View of the potential/(7) [Eq. (3.18] with Bl space- FIG. 5. Evolution of the Bl Universe for a negative. As one
time being filled with a stiff matter. sees, the evolution of the Universe in this case takes exponential

character and the initial anisotropy of the Bl space-time quickly

way: coupling constanh =0.1, power of nonlinearityn  dies away.
=4, and cosmological constat=1/3. We also choosé
=0.5 describing a hard Universe. definition 7 is non-negative, we plot only the part of the

In F|g 1 we p|0t Corresponding potentiﬁ(T) mu|t|p||ed solution wherer=0 (Cf Flg 4, dashed Cur\)e Note that
by the factor 2/3. As is seen from Figs. 1 and 2, choosing th@nly that part ofr defined in the interval of timée (0,T¢) is
integration constarE we may obtain two different types of Physically relevant. Forye (B,C) we again have the oscil-
solutions. FoiE>0.5 solutions are nonperiodic, whereas forlatory mode of the evolution of. These two regions are
Emin< E=<0.5 the evolution of the Universe is oscillatory. ~ separated by the no-solution zonk,B).

As a second example we consider the massless spinor Let us also consider the case with<0. For a negative
field. Other parameters of the problem are left unaltered with\, as well as in the absence of theterm, the evolution of
the exception of,. Here we choos¢=1 describing stiff 7 is always exponential as it is seen in Fig. 5. In this case the
matter. It should be noted that this particular choicefof initial anisotropy of the Bl space-time quickly dies away and
gives rise to a local maximum. This results in two types ofthe Universe becomes an isotropic one.
solutions for a single choice d. Let us analyze the dominant energy condition in the

As one sees from Fig. 3, E is taken to be above the level Hawking-Penrose theore83,34. For a Bl Universe the
M there exists only nonperiodic solutions, whereasHgy, dominant energy condition can be written in the fdrbd]
<E<U(7=0)=-0.5 the solutions are always oscillatory.

ForE e (—0.5M) there exits two types of solutions depend- To=Tia%+ T5b?+ T3c?, (3.193
ing on the choice of. In Fig. 4 we plot the evolution of
for E€ (—0.5M). As is seen, forrge (0,A) (herery=0.1) To=Tia?, (3.19H

we have mathematical solutions that are oscillatory ai

this case becomes negative in some interval of time. Since by TOBTgbZ’ (3.199

To=T3ic2 (3.199

Let us note that in Ref.15] we considered a self-consistent
system of nonlinear spinor and Bl gravitational fields in the
presence of a perfect fluid and\aterm. It was shown that in
.5 this case the regular solutions can be obtained by virtue of
the spinor field nonlinearity and/or a positiveterm. It was

1 shown also that the absence of initial singularity in the con-

o Yolume T

1 . —19=08 _ ---14=01 _ sidered cosmological solution is consistent with the violation
¥y . AN / AN of the dominant energy condition in the Hawking-Penrose
04— N I A Ny AR theorem. Note that regular solutions obtained for a linear

0 5 10 15 20 spinqr_ﬁeld by means of a positive term do not violate thi.s.
Time condition. Let us now analyze the dominant energy condition

for the system in hand. To analyze this condition for the
FIG. 4. Evolution of the Bl space-time corresponding to the System of the interacting spinor and scalar fields we rewrite
potential given in Fig. 3 in the case of a massless spinor field fothe components of the energy-momentum tensor. For energy
different choices ofry with E< (—0.5M). density in this case we have
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15 1 10 7 \
\
Cazin =i 1 \ Case: m =E;11ér1;y= 23,{=0,1=0.1
10 - \ — e Ererpy \ Momentum
\ Momentum 57 AN
AN 1 S~ -
5 = ~ T - -
S~
] S 0 1
1 — ~—_ _ 0.5 1 1.5
O T T T T T T T
0 0.5 1 L5 2 FIG. 7. For a largen there exists some value of where the
T pressure component prevails energy. In this case the dominant en-
FIG. 6. Comparingr$ and T} for a positiven, one sees that for ergy condition breaks down.
a small value ofn it is possible to construct a regular solution o .
without violating the dominant energy condition. natesT,, may occur only for a relatively large value of
Thus we conclude that in case of interacting spinor and sca-
mGC, c2-2 lar fields it is possible to construct regular solutions without
0 T €p . . . .- .
9= + - —+ e (3.20  violating dominant energy condition of Hawking-Penrose
T 2(7"+N\Cp T theorem(see Fig. 6.
As one sees from Eq3.20 for any positive value ofr 2. F=sinS

energy density is always positive definite. As-0, Tg
—, whereasT] decreases as increases. For the pressure
components in this case we have

Let us now consider the case witbeing a trigonometric
function of S namely,F=sinS In this case fotF we have

c2"2 Leo F 3“( P R C ) Py .
1_42_13_ =5 & - T, =,
== o= e NG D=1 2 I T
0 (3.20 (3.23

The second term in Eq3.2)) is always positive, it means With the potential
that T has a greater value when the Bl Universe is filled 3 1
with dust, i.e., whery=0. To investigate the dominant en- U=— E[K mr+ m+8071—§ _ATZ].
ergy condition we study the pressure tefsince T1=T3 ( sinS) (3.24

=T3, hereafter we mention it a&}) at length. For simplicity

we setC=1 andCo=1. It is clear from Eq(3.2]) that if It should be noted that unlike the case wittbeing a power
law of S=1/7, where the nonlinearity appears in the region
n _ 1
T >\(n-1), (3-22 with a large value ofr, in the case under consideration, a
number of interesting properties emerge in the region where

we haveT1<0. In this case the dominant energy condition . e : :
! 9y 0<7<1, namely, in the vicinity of the singular point=0. A

remains unbroken. From E¢B.22 we see for\ =0 that the
foregoing inequality holds for any>0. It means that like
the linear spinor field[15], the system with minimally Case:x=2/3,m=1,A=0.01,A=2/3,{=2/3
coupled scalar and spinor fields possesses regular solution 0.0
without broken dominant energy condition. For an interact-

ing system this condition holds for any negatimewith a _
positive A and vice versa. Let us now see what happensg/ -0,5
when bothn and \ are positive(negative. Note that the
coupling constank may take any value. The magnitude)of
defines the strength of interaction.

Let us go back to Eq.3.22. As one sees, for any reason-
able value ofx the inequality(3.22 holds at larger. On the
other hand, as—0, the corresponding energy densT[ﬂ ~1,5
tends to infinity. So the condition8.19 hold for smallr as . ; ,
well. Finally, let us analyze the situation in the neighborhood 0 1 2
of 7=1. The energy densityg at this point is reasonably T
small, whereas, as it is shown in Fig. 7, violation of the FIG. 8. The potential/(7) [Eq. (3.24] with Bl space-time be-
dominant energy condition, i.e., the situation whigndomi-  ing filled perfect fluid describing a hard Universe.

1,0

Potential
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-0,70 1000
Case:xk=2/3,m=1,2=0.01,A=2/3,{=2/3 - [}
1 A
] =i & l,
e 0 -~ \
g 0,72 4 1 = « J M 4 ‘ I
= S oa
k= ‘g \ I
o ] N !
< =100 | = — Energy v !
0744 —— Momentum \J’
T T T T T
T T T T T
0,008 0,010 7 0,012 0 10 20 30
S

FIG. 9. Fragment of the potenti@B.24) in the vicinity of the ) ) ) ) )
point =0 that occurs due to the nonlinear tefn FIG. 11. Relative behavior of§ and T} with F=sin(S). This
picture clearly shows the violation of the dominant energy condition

graphical view of the potentid¥() [Eq. (3.24] is given in  (hat takes place in the case considered.
Figs. 8 and 9. Here we choose the problem parameters as
follows: k=2/3, spinor massn=1, coupling constani
=0.01, cosmological constant=2/3, eg=1 and {=2/3.
Since S=1/7 and U(7)x1/sin@©), a large number of small

To investigate the dominant energy condition let us write
the components of the energy-momentum tensor. For sim-
plicity we setCy,=1 and in terms of for the energy density

o ) we write
oscillations occurs as—0 [cf. Fig. 9].
It is clear from Figs. 8 and 9 that depending on the choice 2
of integration constanE we have two types of solutions T8=mS+ mJ@ﬁ”? (3.2

demonstrated in Fig. 2. Moreover, for some valuek tiere
exists more than one periodic solution.

Let us now study the system for a negative Contrary to
the case witlF = S", where all the solutions for a negative
grow exponentially, in this case an interesting situation 0C2 SinceS=1/r. it means thaff® has its maximum as
curs for some special choice of parameters. _)'0 and tends té) 2610 2800 0

As one sees from Fig. 10, depending on the integration For th ' t h
constant and the initial value af the mode of evolution can or the pressure components we have
be both finite and exponential. For the integration constant

Since r is a positive quantityS is positive as well. As one
sees from Eq(3.25 for any positive value oS andA<1
energy density is always positive definite and proportional to

- - o , AS%cosS s?
being at the levelAB in Fig. 10 (here it is —3), with 7 T}=T§=T§= _ _ — 6ol SHE
e (0,7,) the evolution ofr is finite and similar to the one 2(1+\1sinS)2  2(1+AsinS)
illustrated in Fig. 2 corresponding t6=1, whereas, forr (3.26

> 75 we have an exponentially expanding Thus we con- 1 .
clude that for the interacting term being a trigonometricAS One sees, for a<1, the pressuré; may be both positive
function of its arguments, the system even with a negative and negative depending on the sign of 8o8oreover, its
admits a nonexponential mode of evolution. maximum value is proportional t8°. Thus, in the case of
F=sinS for any ¢ defined as in Eq(2.23 and any non-
trivial X\, there exist intervals §,S;, ;) such that forS
€(S,S 1) the inequalityT3< T} takes place as it is shown

in Fig. 11. Therefore we conclude that the regular solutions
obtained in this case result in the broken dominant energy
condition.

IV. CONCLUSION

Potential

Within the framework of the simplest model of interacting
spinor and scalar fields it is shown that theterm plays a
very important role in the evolution of the Bl cosmology. In
—r—l ————r —————r particular, it invokes oscillations in the model. For a nonposi-

0 1 5 3 tive A with F being the power law of its arguments we find
T a Universe expanding exponentially, hence the initial anisot-
ropy of the model quickly dies away. In the casefFobeing

FIG. 10. View of the potential{(7) [Eq. (3.24] with a negative ~ the trigonometric function of its arguments, a negative
A. beside the exponential ones allows a nonexponential mode of
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evolution. For a positivé\ with a suitable choice of integra- other parameters such as order of nonlinearjtyerfect fluid
tion constant€ one finds the oscillatory mode of expansion parameter, and spinor mass in the evolution process are
of the Universe. In this case it is possible to construct solurather local. The global process is totally determined by the
tions that are regular at all space-time points. It should be\ term. For example, i\ >0, we have physically allowable
emphasized that if the spinor field nonlinearity is generate@olutions that are either oscillatory or defined on some finite
by self-interaction as in Ref15], the regularity of the solu- interval of time. In the case of <0 solutions are generally
tions obtained results in the violation of the dominant energynflationlike though for some special choices of problem pa-

condition of the Penrose-Hawking theor¢frb], whereas in  yameters the oscillatory mode of evolution can be attained.
the case considered here, when the spinor field nonlinearity

is induced by the scalar one, regular solutions can be ob-

tained even without breaking thg aforementloned.c'ondmon. ACKNOWLEDGMENT
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