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Dimensional regularization is used to derive the equations of motion of two point masses in harmonic
coordinates. At the third post-Newtoni@BPN) approximation, it is found that the dimensionally regularized
equations of motion contain a pole p@proportional to —3) 1] which diverges as the space dimensibn
tends to 3. It is proven that the pole part can be renormalized away by introducing suitable shifts of the two
world-lines representing the point masses, and that the same shifts renormalize away the pole part of the
“bulk” metric tensor gw(x”). The ensuing, finite renormalized equations of motion are then found to belong
to the general parametric equations of motion derived by an extended Hadamard regularization method, and to
uniquely determine the 3PN ambiguity parametdo be\ = —1987/3080. This value is fully consistent with
the recent determination of the equivalent 3PN “static ambiguity” parameigs 0, by a dimensional-
regularization derivation of the Hamiltonian in Arnowitt-Deser-Misner coordinates. Our work provides a new,
powerful check of the consistency of the dimensional regularization method within the context of the classical
gravitational interaction of point particles.
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[. INTRODUCTION equations of motion at the third post-Newtoni@®N) level.
One group used the Arnowitt-Deser-Misn&DM) Hamil-
tonian approacH16-20 and worked in a corresponding
The problem of motion, one of the cardinal problems of ADM-type coordinate system. Another group used a direct
Einstein’s gravitation theory, has received continuous attenpost-Newtonian iteration of the equations of motion in har-
tion over the years. The early, classic works of Lorentz andnonic coordinate§21—-26. The end results of these two
Droste, Eddington and Clark, Einstein, Infeld, and Hoff- approaches have been proved to be physically equivalent
mann, Fock, Papapetrou and others led to a good understarl@0,25. However, both approaches, even after exploiting all
ing of the equations of motion dfl bodies at the first post- Symmetries and pushing their Hadamard-regularization-
Newtonian(1PN) approximation (see, e.g.[1] for a general based methods to the maximum of their possibilities, left
review of the problem of motignIn the 1970s, an important undetermineane and only oneimensionless parametes;
series of works by a Japanese grd2p-4] led to a nearly in the ADM approach and. in the harmonic-coordinates
complete control of the problem of motion at the secondone. The unknown parameters in both approaches are related
post-Newtonian(2PN) approximation. Then, in the early by
1980s, motivated by the observation of secular orbital effects

A. Relation to previous work

in the Hulse-Taylor binary pulsar PSR19436, several A= 3 1987 (1.1)

groups solved the two-body problem at the 2.5PN level 11“s™ 3080

(while completing on the way the derivation of the 2PN dy-

namics [5-12] (for more recent work on the 2.5PN dynam-

ics seg(13—15). as was deduced from the comparison between the invariant

In the late 1990s, motivated by the aim of deriving high-energy functions for circular orbits in the two approaches

accuracy templates for the data analysis of the upcominf2l], and from two independent proofs of the equivalence

international network of interferometric gravitational-wave between the two formalisms for general orli29,25. The

detectors, two groups embarked on the derivation of theppearance of on@nd only ong¢ unknown parameter in the
equations of motion is quite striking; it is related to the
choice of the regularization method used to cure the self-field

*Electronic address: blanchet@iap.fr divergencies of point particles. Both lines of wdik6—2Q
"Electronic address: damour@ihes.fr and[21-26 regularized the self-field divergencies by some
*Electronic address: gef@iap.fr version of the Hadamard regularization method. The second
As usual thenPN order refers to the terms of ordecdY in the  line of work defined an extended version of the Hadamard
equations of motion. regularization [23,24], which permitted a self-consistent
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derivation of the 3PN equations of motion, but its use still—y). The important point is that it has been shohthat all
allowed for the presence of arbitrary parameters in the finathe integrals appearing in the 2PN equations of motion are
equations. On the other hand, the Hadamard regularizatiomeromorphic functions of which admit a smooth continu-
also yielded some arbitrary parameters in the gravitationaition atA=0 (without poles. It was also shown there that
radiation field of point-particle binaries at the 3PN order, thethe formal construction based on HG.3) does generate, at

most important of which is the parametérentering the bi-
nary’s energy fluX27,28.
Let us notice that the regularizatigwhen dealing with

point particles and the renormalizatiotneeded when deal-

ing either with point particles or with extended bodiesf

self-field effects has recurrently plagued the general relativ
istic problem of motion. Even at the 1PN level, early work

often contained incorrect treatments of self-field efféste,
e.g., Sec. 6.14 ofl] for a review. At the 2PN level, the

self-field divergencies are more severe than at the 1PN levef:

the 2.5PN level, the metric and equations of motionNof
“compact” bodies(i.e., bodies with radii comparable to their
Schwarzschild radji

The Riesz analytic continuation method just sketched
works within a normal 4-dimensional space-tifias recalled
by the superscript4) in Eq. (1.3)]. However, it was men-
tioned in[30] that the same final resulat the 2.5PN levelis
obtained by replacing Z{"(x—y) by Z{"M(x-y)
54N (x—vy), i.e., by formally considering delta-function

For instance, they caused RES] to incorrectly evaluate the Sources in a space-time of complex dimensionAt In

“static” (i.e., velocity-independeptpart of the 2PN two-

other words, at the 2.5PN level, the Riesz analytic continua-

body Hamiltonian. The first correct and complete evaluatiorfion method is equivalent to theéimensional regularization
of the 2PN dynamics has been obtained by using the Riespethod: However, it was also mentioned at the tifi that

analytical continuation methof29]. (See[8,11] for a de-

the generalization of the Riesz analytic continuation beyond

tailed discussion of the evaluation of the static 2PN two-the 2.5PN level did not look straightforward because of the
body Hamiltonian. In brief, the Riesz analytical continua- appearance of poles, proportional A0 %, at the 3PN level
tion method consists of replacing the problematic delta{when using harmonic coordinajes

function stress-energy tensor of a set of point particles Recently, Damour, Jaranowski, and Send35] showed

Ya(Sa),

dy% dy;
v — 2 a ar_ -1/2
()= 2 mec folsadsa ds, | 90va)]

X 8D (X~ yi(sa)) (1.2

[where ds§=—gﬂv(y;)dy§dyg, g=deg,,] by an auxil-
iary, smoother source

, dyf dys ~
TR0 =2 mgc? f dsagg, gs, | 9Va)l

X ZE(M = yA(s,)). (1.3

[Actually, in the implementation of8], one works with
T+ (x)=|g(x)|T#*(x).] In Eqg. (1.3 the four-dimensional

delta function entering Eq.1.2) has been replaced by the

Lorentziart four-dimensional Riesz kerneZ{)(x—y),
which depends on the complex numi#eWhen the real part
of A is large enough the sour@&”(x) is an ordinary func-

tion of x*, which is smooth enough to lead to a well-defined
iteration of the harmonically relaxed Einstein field equations, 4
involving no divergent integrals linked to the behavior of the

integrands whex*—y% . One then analytically continues
down to 0, where the kerneZ{’(x—y) tends to &“)(x

how to use dimensional regularization within the ADM ca-
nonical formalism. They found that the reduced Hamiltonian
describing the dynamics of two point masses in space-time
dimensionD=d+ 1 wasfinite (no pole pant asd— 3. They
also found that the unique 3PN Hamiltonian defined by
the analytic continuation ofl toward 3 had two properties:

(i) the velocity-dependent terms had the unique structure
compatible with global Poincare invariance, and

(ii) the velocity-independent'static” ) terms led to an un-
ambiguous determination of the unknown ADM parameter
wg, hamely

wgim. reg. ADM_ () (1.4

The fact that the dimensionally regularized 3PN ADM
Hamiltonian ends up being globally Poincareariant is a
confirmation of the consistency of dimensional regulariza-
tion, because this symmetry is not at all manifest within the
ADM approach which uses a space-plus-time split from the
start. By contrast, the global Poincagmmetry is manifest

Dimensional regularization was invented as a mean to preserve
the gauge symmetrgf perturbativequantumgauge theorie§31—
34]. Our basic problem here is to respect the gauge symmetry as-
sociated with theliffeomorphism invariancef the classicalgeneral
relativistic description of interacting point masses.

SThus the “kinetic ambiguity” parametet,, originally intro-

2In the case of extended compact bodies, the gravitational selfduced in the ADM approach16,17, takes the unique value
energy (divergent when the radii of the bodies formally tend to w,=41/24. This value was obtained [ia1] using the result for the

zerg must be renormalized into the definition of the mass.
37(4*Y) s the Lorentzian version of the Euclidean kerngf’
discussed in Appendix B.

binary energy function in the case of circular orbits, as calculated in
the harmonic-coordinates formalism, and also directly from the re-
quirement of Poincar@variance in the ADM formalisni19].
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in harmonic coordinates, and indeed the 3PN harmonicef added complexitgwith respect to the ADM caSgcomes
coordinates equations of motion derived [i21,22 were from the presence in the harmonic-gauge integrals we shall
found to be manifestly Poincaiavariant. evaluate of “hidden-distributional” terms in the integrands.
By hidden distributional terms we mean terms proportional
to the second spatial derivatives of the Poisson kernel
B. Method and main results A 16@ocr27d or to the fourth spatial derivatives of the
iterated Poisson kernél ~25{ecr2~?. Such termsg;;r2°
In the present paper, we shall show how to implemenpr 4,,,ra~¢, considered as Schwartz distributional deriva-
dimensional regularizatiothenceforth often abbreviated as tives [36], contain pieces proportional to the delta function
“dim. reg.” or even “dr”) in the computation of the equa- 5 which need to be treated with care. The generalized
tions of motion in harmonic coordinates, i.e., following the distributional derivative defined 23], and used to compute
same iterative post-Newtonian formalism as in Refs.the end results d22], led to an improved way, compared to
[13,21,23. Similarly to the ADM calculation of Ref[35],  the normal Schwartz distributional derivative, of evaluating
our strategy will essentially consist of computing tiéer-  contributions coming from the product of a singular function
encebetween thel-dimensional result and the 3-dimensional and a derivative of the typ@ijrgl or dijira, and more
one[21,27 corresponding to Hadamard regularization. Thisgenerally of any derivatives of singular functions in a certain
difference is computed in the form of a Laurent expansion inclass. We shall find it convenient to subtract these additional
e=d—3, whered denotes the spatial dimension. The mainnon-Schwartzian contributions to the 3PN equations of mo-
reason for computing the expansion of the difference is tion before applying dimensional regularization. However,
that it depends only on the singular behavior of various metwe shall note at the end that dim. reg. automatically incor-
ric coefficients in the vicinity of the point particles, so that Porates all of these non-Schwartzian contributions.
the functions involved in the delicate divergent integrals can A fourth, but minor, source of complexity concerns the
all be computed ird dimensions in the form of local expan- dependence of the end results[ag] for thBeF 3PN accelera-
sions in powers ofr; or r, (where r,=|x—vy,|; V., a tion of the first particle(labela=1), saya; , on_tw_o arbi-
=1,2, denoting the locations of the two point magses {rary length scales; andr;, and on the “ambiguity” pa-
Dimensional regularization as we use it here can then be sedgmetern. Explicitly, we define
as a powerful argument for completing the 3-dimensional BE\ .1 s .
Hadanaard-regulagr]ization results 521,2% and fixing the 3 '[Ny rz]=right-hand sidg RHS) of Eq. (7.16
value of the unknown parameter. We leave to future work in Ref. [22]. (1.5
the task of an exact calculation of tliedimensional equa-

tions of motion, instead of the calculation of the first few yere the acceleration is considered as a function of the two
terms in a .Laurent expansion i aroundd=.3, as done “massesm; and m,, the relative distance/;—y,=r 1N,
here. The first step toward such a calculation is taken iNwheren,, is the unit vector directed from particle 2 to par-
Appendix C, where we give the explicit expression of thetjcle 1), the two coordinate velocities, andv,, and also, as
basic quadratically non-linear Green functigfx,y1,y.) in emphasized in Eq(1.5, the parameteh as well as two
d dimensions. regularization length scales; and r,. The latter length

The detailed way of computing the difference betweenscales enter the equations of motion at the 3PN level through
dim. reg. and Hadamard's reg. will turn out to be signifi- the logarithms In(,/r}) and In¢;,/r}). They come from
cantly more intricate than in the ADM case. This added COM+the regularization as the field point tends toy, ory, of
plexity has several sources. A first source of complexity isPoisson-type integralésee Sec. Il B below The length
that the harmonic-gaugd-dimensional calculation will be scalesry,r, are “pure gauge” in the sense that they can be
seen to contairfas anticipated long ag@]) poles, propor- removed by the effect induced on the world-lines of a coor-
tional to (d—3)"%, by contrast to the ADM calculation dinate transformation of the bulk metrf22]. On the other
which is finite asd— 3. A second source of complexity is hand, the dimensionless parameteentering the final result
that the end resul{2] for the 3-dimensional 3PN equations
of motion have been derived using systematically ea
tendedversion of the Hadamard regularization method, in- ®The specific form of the 3PN ADM HamiltoniaH derived in
corporating both a generalized theory of singular pseudokl8] and usedin its d-dimensional generalizatiom [35] was writ-
functions and their associate@eneralizeyl distributional ~ ten, on purpose, in a way which does not involve any hidden dis-
derivatives[23], and an improved definition of the finite part giputionall.te.trms[tthet(:nI)r/rg(elt)a(;(f;?c;i_c;p cclalntribgtiﬁns itl Colni,ains

: : i eing explicit contact termB(x . This allowed the calculation

2isg)r(1:dygo Saasyt[(l)zaé's;;j tsr:zgg;l(?kzgllj ggglf?gﬂ'(m*%le’t)r/;)(’)fdtie of the difference between trisdimensional Hamiltoniami® and

S . . the Hadamard-regularized 3-dimensional ong Hi¥)] without
problem[24]. We shall then find it technically convenient to having to worry about distributional derivatives. However, as a

subtract the various contributions to the end resultf2@]  peck on the consistency of dim. reg., the authorE3si did per-
which arose because of the specific use of the extended Haghym another calculation oH based on a starting form of the
amard regularization methods [#3,24 before considering Hamiltonian which involved hidden distributional terms, with the
the difference with thel-dimensional result. A third source same final result.
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(1.5 corresponds to genuine physical effects. It was intro- Da;=Day[e,lo;r1,S]1=Day[e,€;\;r1,r5]. (1.9
duced by requiring that the 3PN equations of motion admit a

conserved energyand more generally be derivable from a
Lagrangian. This extra requirement imposedo relations
between the two length scale$,r, and two other length
scaless;,s, entering originally into the formalism, namely
the constants; ands, parametrizing the Hadamard partie
finie of an integral as defined by E@3.4) below. These
relations were found to be of the form

It depends both on the Hadamard regularization seglesd
s, (or equivalently on\ andr1,r;) and on the regularizing
parameters of dimensional regularization, namelgnd the
characteristic lengtlf , associated with dim. reg. and intro-
duced in Eq.(2.4) below. We shall explain in detail below
the technigues we have used to compDig (see Sec. V.
Finally, our main result will be the explicit computation of
the ¢ expansion of the dim. reg. acceleration as

r 159 m;+m
n( 2) L 2 and 12, (1.6

s/ 308 Tm,
’ ’ aile,bol=a"Tr],5p]+ Dayle, oir],sol. (110
where thesingle dimensionless parametar so introduced . _ . _

has been proved to be a purely numerical coefficiemde- ~ With this result in hand, we shall provén Sec. V) two
pendent of the two masgesVhen estimating the difference theorems. _ .

between dim. reg. and Hadamard reg. it will be convenientto  Theorem 1The pole part-1/e of the dimensionally regu-
insert Eq.(1.6) into Eq. (1.5 and to reexpress the accelera- larized acceleratior(1.10, as well as of the metric field
tion of particle 1 in terms of theoriginal regularization — 9,.,(X) outside the particles, can be re-absorliesl, renor-
length scales entering the Hadamard regularizatior,of ~ Malized away into some shifts of the two “bare” world-

which were in fact; ands,. Thus we can consider alterna- lines: Ya—Yya+ &, with, say, £ 1/e [*minimal subtrac-
tively tion” (MS)], so that the result, expressed in terms of the

“dressed” quantities, is finite whea—0.
aBr} s 1=al N r)ro(sp,0)] and -2, (1.7 'The situation in ha.rmonic coordinates.is to be po_ntrasted
with the calculation in ADM-type coordinates within the

where the regularization constants are subject to the corfdamiltonian formalism[35], where it was shown that all
straints(1.6) [we will then check that tha dependence on pole parts directly cancel out in the total 3PN Hamiltonian
the RHS of Eq.(1.7) disappears when using E¢L.6) to  (no shifts of the world-lines were neededhe central result
replacer as a function of, and\]. of the paper is then as follows.  ~ _

Our strategy will consist ofwo steps Thefirst stepcon- Theorem 2.The ‘renormalized” (finite) dimensionally
sists of subtracting all the extra contributions to Eg5), or ~ regularized acceleration is physically equivalent to the
equivalently Eq(1.7), which were specific consequences of €Xtended-Hadamard-regularized acceleratiend result of
the extended Hadamard regularization definef2Bi24. As Ref. [22]), in the sense that there exist some shift vectors
we shall detail below, there agevensuch extra contribu- $1(8:€0:r1) and&;(e,€o;r5), such that

tions &"a;, A=1,...,7. Essentially, subtracting these con-

tributions boils down to estimating the valueafthat would &N ri,ra]=lim[aTe,€0]+ Sge.epirr rpyaul

be obtained by using a “pure” Hadamard regularization, to- e—0 v

gether with Schwartz distributional derivatives. Such a “pure (1.1

Hadamard-Schwartz{pHS) acceleration was in fact essen-
tially the result of the first stage of the calculationaf, as  (where 5z, denotes the effect of the shifts on the

reported in the thesig37]. It is given by acceleratiof), if and only if the heretofore unknown param-
eter\ entering the harmonic-coordinate equations of motion
! takes the value
a"r],s,]= a?F[ri,sz]—AZl May . (1.9

i . 1987
)\ dim. reg. harmonic_ __ — .
The second stef our method consists of evaluating the 3080
Laurent expansion, in powers ef=d— 3, of thedifference

between thel-dimensional and the pure Hadamard-SchwartzThe precise shifts,(¢) needed in Theorem 2 involve not
(3-dimensional computations of the acceleratiom. We  only a pole contribution<1/e, which defines the “minimal”
shall see that this difference makes a contribution only whenms) shifts considered in Theorem 1, but also a finite con-
a term generates jgole ~ 1/e, in which case dim. reg. adds tribution whene — 0. Their explicit expressions read

an extra contribution, made of the pole and the finite part

associated with the polpve consistently neglect all terms

O(e)]. One must then be especially wary of combinations of “when working at the level of the equations of motigrot con-
terms whose pole parts finally can¢ttancelled poles) but  sjdering the metric outside the world-lineshe effect of shifts can
whose dimensionally regularized finite parts generally dme seen as being induced by a coordinate transformation of the bulk
not, and must be evaluated with care. We denote the abowvgetric as in Ref[22] (we comment on this point in Sec. VI B
defined difference below).

(1.12
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ay; and X-2,

2 In(
(1.13

whereGy is the usual Newton’s constafgee Eq.(2.4) be-
low], ay; denotes the acceleration of the particlg(id d
dimensions at the Newtonian level, andq=4me® depends
on the Euler constar@=0.577 . . . . (The detailed proofs of

6

c

Theorems 1 and 2 will consist of our investigations ex-
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ing the existence of the ten conserved integrals of the Poin-
caregroup, as already found in RdB5].

In view of the necessary linK1.1) provided by the
equivalence between the ADM Hamiltonian and the
harmonic-coordinate equations of motion, our reslit?) is
in perfect agreement with the previous resdl#4) obtained
in [35].° Our result is also in agreement with the recent find-
ing of Itoh and Futamasg38,39 (see alsq14]), who de-
rived the 3PN equations of motion in harmonic gauge using
a “surface-integral” approach, aimed at describexgended

pounded in the successive sections of the paper, and will beslativistic compact binary systems in the strong-field point
completed at the end of Secs. VIB and VI C, respectivelyparticle limit. The surface-integral approach of Ré&8,39

taking into account also the results of Sec. V) D.

is interesting because, like the matching method used at

Notice that an alternative way of presenting our centrab spN order in[8], it is based on the physical notion of

result is to say that, in fact, each choice of a specific renor

malization prescriptioriwithin dim. reg), such as “minimal

subtraction” as assumed in Theorem 1 for conceptua

simplicity leads to renormalized equations of motion which
depend only on the dim. reg. characteristic length ségle
through the logarithm Img,/€¢o), and that any of these

to the final results 0f22]. In particular, this means, as we
shall see below, that each choice of renormalization prescri
tion within dim. reg. determines the two regularization

length scales,r; entering Eq.(1.5. Of course, what is

extended compact bodies. In this respect, we recall that the
[natching method used i8] showed that the internal struc-
ure (Love numbers of the constituent bodies would start
influencing the equations of motion @fon-spinning com-

pact bodies only at the 5PN level. The§facement property
strongly suggests that it is possible to model, in a physically

breferred manner, two compact bodies as being two point-

like particles, described by two masses and two world-lines,

ij to and including the 4.5PN level. It remains, however, to

prove that the dimensional regularization of delta-function
sources does yield the physically unique equations of motion

important is not the particular values these constants can takg 1o compact bodies up to the 4.5 PN order. The w@k

in a particular renormalization scherfiadeedr; andr; are

proved it at the 2.5 PN level, and the agreement of the

simply “gauge” constants which can anyway be removed bypresent results with those [88,39 indicates that this is also

a coordinate transformatipnbut the fact that the different
renormalization prescriptions yield equations of motion fall-
ing into the “parametric” clasgi.e., parametrized by; and
r,) of equations of motion obtained [22].

An alternative way to phrase the res(lt1l), (1.12 is to
combine Eqs(1.8) and(1.10 in order to arrive at

7
’ 2 — A
1] Oge,eqir) rp@al Azl 5.

(1.19

_ 1987,
3080°

||m [Da1[8,€0;

g—0

In this form one sees that the sum of the additional term
& a, differs by a mere shiftwhen and only when takes the
value (1.12), from the specific contributiorDa; we shall

evaluate in this paper, which comes directly from dimen-

sional regularization. Therefore one can say that, when
=— 138/ the extended-Hadamard regularizati@B,24] is in

fact (physically equivalent to dimensional regularization.

However the extended-Hadamard regularization is incom- 4

plete, both because it & priori unable to determing, and
also because it necessitates some “external” requiremen
such as the imposition of the linid.6) in order to ensure the

true at the 3PN level.

In addition to the independent confirmation of the value
of wg or \, let us also mention that our work provides a
confirmation of theconsistencyof dim. reg., because our
explicit calculationgwhich involved combinations of hun-
dreds of Laurent expansions of the fora e 1+a,
+O(&)] are entirely different from the ones g85]: We use
harmonic coordinate§nstead of ADM-type onéswe work
at the level of the equations of motigimstead of the Hamil-
tonian, we use a different form of Einstein’s field equations
and we solve them by a different iteration scheme.

Finally, from a practical point of view our confirmation of

the value ofwg or X allows one to use the full 3PN accuracy

in the analytical computation of the dynamics of the last
orbits of binary orbit§40,41]. There remains, however, the
task of computing, using dimensional regularization, the pa-
rameter 6 entering the 3.5PN gravitational energy flux

One may wonder why the value af is a complicated rational
fraction while wg is so simple. This is because; was introduced

t;?recisely to measure the amount of ambiguities of certain integrals,

and that the ADM Hamiltonian reported ji8] was put in a mini-

existence of a conserved energy—and in fact of the ten firsh 41y ambiguous form, already in three dimensions, for whictaan
integrals linked to the Poincaigroup. By contrast dim. reg. posteriori look at the “ambiguities” discussed in Appendix A of

succeeds automaticalyvithout extra inputsin guarantee-

8However, for technical simplicity we shall prefer in Sec. VI C

[18] already showed thab,= 0. By contrast\ has been introduced

as the only possible unknown constant in the link between the four
arbitrary scalesy,r5,s;,S, (which hasa priori nothing to do with
ambiguities of integrals in a framework where the use of the ex-

below to use a modified minimal subtraction that we shall denoteended Hadamard regularization in fact makes the calculation un-

&vis-

ambiguous.
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[27,28 to be able to have full 3.5PN accuracy in the com-sion, whereas sonedependent coefficients do appear when
putation of the gravitational waveforms emitted by inspiral-expressing the Ricci tensor in terms of the so-called “gothic”
ling compact binariessee, e.g.[42] and references thergin  metric g#*=+/— gg** [see Eq(A9) in Appendix A below.

The organization of the paper is as follows. In Sec. Il we |, any dimension, the Einstein field equations read
derive our basic 3PN solution of the field equations for gen-

eral fluid sources ind spatial dimensions, using 1 87G

d-dimensional generalizations of the elementary potentials RV~ —gr'R= Tr

introduced in Ref[22]. Section Il collects all the additional 2

terms included irf22] which are due specifically to the ex-

tended Hadamard regularization, and derives the PU&here T+ denotes the matter stress-energy tensor, given by

Hadamard-SchwartgpHS) contribution to the equations of ) o

motion. The differences between the dimensional and pH&e functional de_rlvat|ve\/—_gT“"5205_Sm/5gW of the

regularizations for all the potentials and their gradients arénatter actior§, with respect to the metric tens@y defini-

computed in Sec. IV. Then the dim. reg. equations of motiorfion, G denotes the constant involved in E@.3), which

are obtained in Sec. V, where we comment also on theifhows that its dimension is such that

interpretation in terms of space-time diagrams. Section VI is

devoted to the renormalization of the dim. reg. equations by G=Gyt§ 2, 2.9

means of suitable shifts of the particles’ world-lines, and to

the equivalence with the end results[@R] when EQ.(1.12  whereGy is the usual Newton constafin 3 spatial dimen-

holds. At this stage, the proofs of Theorems 1 and 2 stategiong and <, is an arbitrary length scale. This scale will be

above are finally completed. involved in our dimensionally regularized results below, but
We end the paper with some conclusid&c. VI) and  we will finally show that the physical observables do not

three appendixes. Appendix A provides further material ordepend on it. As is well known, the combination of E2.3)

the d-dimensional metric and geodesic equation, Appendix Byith its trace allows us to rewrite it as

gives a compendium of useful formulas for working dn

dimensions, and Appendix C generalizes the well-known 872G 1

quadratic-order elementary kernety(d=3)(x)=In(r,+r, R = 7 (Tw_ _QMT}\)’ 2.5

%
= THY, 2.3

a d—1

+ryy) to d dimensions. The latter calculation of the mY 4

d-dimensional kerneg(® is not directly employed in the

present paper, but represents a first step in obtaining thg \yhich the spatial dimensiod now appears explicitly.

equations of motion in any dimensiah(not necessarily of We wish to expand in powers ofdthe field equations

the form 3+e¢). resulting from Eqs(2.2) and (2.5). The basic idea is to in-
troduce a sequence of “elementary potentials) V,,

Il. FIELD EQUATIONS IN d+1 SPACE-TIME \7Vij , ... which allow one to parametrize conveniently the
DIMENSIONS successive post-Minkowskian contributions to the metric

This section is devoted to the field equations of genera..(X). For instance, at the first post-Minkowskian order it
relativity in d+ 1 space-time dimensions, and to the geodesidS convenient to parametrize the metric as
equation describing the motion of point particles. We use the
sign conventions of Ref43], and in particular our metric Joo=—1+2V/c*+O(G?), ggi=—4V,/c*+0(G?),
signature is mostly+. Space-time indices are denoted by (2.6
greek letters, and spatial indices by latin lettarg,(. .. run
from 1 to d). A summation is understood for any pair of where the elementary potentialsandV; so introduced sat-
repeated indices. We work in the harmonic gauge, which igsfy equations of the form
such that

TAEg“BF);BZO. 2.0 OV=—-47Go, 0OV,=-47Go;, 2.7

— 12 2\ 72 ) :
As usualg** denotes the inverse metric afig); the Christ- ~ WhereLJ=d7—(1/c%); denotes the flat d'Alembertian and

offel symbols. Using this gauge condition, one can easilyVhere,by definition the sourcesr ando; are linear combi-
prove that the Ricci tensor readsany dimension nations of the contravariant componeft$” of the stress-

energy tensor of the matter. Let us underline that the factor
—47G in these equations is ehoice We could of course
Oua,v9v8,6~ Yua,y9vs,p introduce here a functional dependence on the spatial dimen-
siond, for instance by replacing the factotby the surface
1 of the unit d—1)-dimensional sphersee Eq.(B3) in Ap-
T Oua 9850 T Dvay9ps.u™ Egamgﬁ&v)' (2.2 pendix B, but this would only complicate the intermediate
expressions without changing our final result. The matter
where a comma denotes a partial derivation. Note that theourceso and o; definedby Egs. (2.6), (2.7) read (in d
spatial dimensionl does not appear explicitly in this expres- spatial dimensions

2RIAM= —g°fg,,, .+ QPg"°
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2 (d=2)TO%+T" TO } [ 8ViVi 3RV, 1
o= , Oj=—", O'i'ETIJ- gOO:_e72wC 1- - o —|,
d—1 2 c ! c® c® ctf
(2.9 (2.113
The definition foro;; has been added for future use. Note . i 1{d=1Vv\?
thato; ando;; take the same forms as usual in 3 dimensions ~ go=—e (@ 3VE=2e% 174 | —— —
[see Eq.(3.9 of Ref.[22]], but that the definition ot in- c? 2\d-2¢?
volves an explicit dependence dnConversely, the first and D 1 1
third of these equations allow us to exprds¥ in terms of b B T -
the above matter sourced’={[(d—1)/2]oc®— o;;}/(d N 5 - o7 it zw”vj +0 )’ (2119
—2). A simple consequence of the expressiorpois that
the d-dimensionalNewtonian potentiagjienerated by a mass 4 16
m, located aty, reads explicitl )2 A A
a lya p y g” — eZV/(d 2)c [ 5” + _4W|j + _6 ZIJ _VI\/J
c c
1 d—2_Gm, 1
Ua(X)=Va(X)+0O| —|=2—Kk +0| —|, 1
: : 2] Td-1 g2 g2 +———8VVil| [ +O| — . (2.119
2(d—2) 8
(2.9 c

where the factor 2{—2)/(d—1) comes fromo (i.e., from | Ne various elementary potentiafsV;, K, Wi, Ri, X, Z;j,

: - : - T Y; and T introduced in these definitions atedimensional
Einstein’s equations while the factor k=I'((d ' .
_2)/2)/77((1,2)% com?es from the expression of the ((Green analogues of those used in H§.24) of Ref. [22]. Actually,
function of the Laplacian ird dimensions[see Eq.(4.12) an extra potential is needed fdg: 3, and it has been denoted
below and Appendliax B q-(%- K in Eqg. (2.10 above. We give in Appendix A the explicit

We give below the simplest forms of the metric and of the%ﬁ%?r;:ggy gfnéh;tss rgeett:r(;nli?]arng%sicﬁfncg?sbgv Ege?jl |ftosr

potential equations that we could obtain. We will explaingq,re work. Note that the first post-Newtonian order of the
afterward what rules we followed to simplify them. Let us spatial metricg;; :5”-[1+2V/(d—2)c2]+O(l/c“), explic-

first define the useful combination ity depends ord contrary to our choicé2.6) for ggg. This
A A dissymmetry betweey, and g;; is imposed by the field
2 [(d-3 4X 16T equationg2.5).
V= __2<ﬁ K+—4+ T (2.10 The successive post-Newtonian truncations of the field
c N c C equations(2.2—(2.5) give us the sources for these various

potentials. The equations farV andJV; have already been
Then the metric components can be written in a rather comwritten in Egs.(2.7) above. We get for the remaining poten-

pact form: tials
OK=—-47GaV, (2.123
~ Okk 1 d_l
DWij:_47TG Uij_éijm _E ﬁ c?,Vc?JV, (2120
R 47G[(5—d d-1 d-1 d(d—-1)
DRi:_d—Z 2 V(Ti— 2 ViO' —d_—zﬁkvaivk—mﬂtVﬁiV, (2120
R Vo d-3 d—3\2 [V? R
OX=—-47G d—+2 ﬂ O'iVi+ ﬁ o ?-FK +W”-<?ijV+2Vi<9t(7iV
1/d-1 d(d—1)
+ = ——=|Vo*V+ ————(9,V)?— 24,V 0;V, , (2.120
2\d-2/ """ 4d-2)2 Y
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d—1

47G

]
N>

8 d(d—1) , (d=1)(d-3)
— —— AV (V= InVi) — ———— 8 (V) >+ ——————— 3V, K, (2.12¢
d-2 8(d—2)3 2(d—2)?

O'VVi+ _O-kWik+ —o-ika-i— —Ukai

1(d—1) N (5—d)(d—1) 1 . 1 1
| 4d-2)? 2 2 2(d-2)

1/d-1

+ Wi dg Vi — E( d_2) WiV + 3 Wi iV — 3 Wi 6, Vi

d-1 . d(d—-1) d(d—1)? 1/{d—1\2
- —— Vo Ry— —————V, VoV — ————Va Vi V— —| ——

VaVaV,
d-2 4(d—2)? 8(d—2)°

(d—1)(d—3) d(d—1)(d—3)
VIV + 2V Vi + —————— Ko Vet ——————— (9 VK + Vi K), (2.12
(d—2)? 4(d—2)3

1 R 5-d 1 1/d-3\ . 1/d-3)\3
oW+ ————Vi0+ ——oV\V,i— = | —=|oX— —| —=| oV?
2(d—1) 4(d—2)? - 2\d-2 12\ d-2

1(d—3>3 (5—d)(d—3) d-3 d-3

d_

+—0'iViV+ O'iﬁi_ O'iiK
2(d—1)(d—2) d—-1 2(d—2)2

+Z;;0;,V+RiaaV

d-1 d-1 d(d—-1)
—— | VViddV+ —— V9,V 0,V + ————V,4,VaV
d-2 d-2 2)2

. .1
- 2(9|Vjt9] Ri - (?,VJ &tWij + -
2 4(d—

1/{d-1\? , . dd- 1)2 1 (d=1)(d=3)
ala—2 Y — . V@aV) 2= —(g\Vi)?— —————— V4K
- 8(d—2)3 2 4(d—2)>?

d(d—1)(d—3) (d—1)(d—3) d—3
- - K#V- 55 ViddK—

d—3) R
oV K — W 0 K. (2.129
4d-2)° 0 ad-2)? d—2/

In Eqg. (2.126, parentheses around indices mean their symmetrizationai‘-g.,s%(aij+aji). For d=3, the above set of
equationg2.12) reduces to Eqg3.26) and(3.27) of Ref.[22]. The order of the terms and their writing has been chosen to be
as close as possible to this reference.

The harmonic gauge conditiori2.1) impose the following differential identities between the potentials:

d—1 1| . [d—1\2 2(d—1)(d—3)
g“' TS, =0= at V+ — | W+|—| V2= ————K
d-2 2¢2 d-2 (d—2)2
2 (d-1\[_ d-2_ d-3 1 . (d-1)? _ (d—1)(d—3)
— X+ 7— ViV + =VW+ Vv3— VK
4\d-2/| d-1 d-1 2 6(d—2) (d—2)2
2. d-1 4 o1 1 d—1\ .
+,{ Vi+ — Ri+ VV, Yi— Wi v+ wv+ ——|VR
c?| d-2 C4 2 2 d-2
1({d—1)\? (d—1)(d—23) 1
b —] vV ———— —kv,=0| —|, (2.133
4\d-2 2(d—2)? c®
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_ 21 1/d-1 1 4l 1. 1
g’u'VFIMV:O=>07t Vi+_ Ri+_ — VV, +&J Wij_—Wﬁi"F— Zij——Zb‘ij :O i
2l 2la-2 2 o2 2 4
(2.139
|
where W=W,, and Z=Z,, denote the traces of potentials 5 _5 1VV . 1 . 214
W, andZ;; . Ford=3, these identities reduce to E¢8.28 A 2 T p(d—2) i Tk ke '

of Ref.[22]. In this paper we shall che¢kee Secs. IV A and ) o
VIA) that all the dimensionally regularized potentials weSuch that no double gradient appears in its sodoe extra
use obey, at the indicated accuracy, the differential identitie§OMPact sources;Vj) and ;o Vy would have been in-
(2.13 equivalent to the harmonic gauge conditions. volved). Although this modified potentialZ; actually

In order to simplify as much as possible the above equaslightly simplifies some equatiorigut not all of them, we
tions (2.12 for the potentials, we used the following rules: have chosen to usg;; which is the directd-dimensional

(i) We used the harmonic gauge conditith133 to re-  analogue of the potential written in E8.279 of Ref.[22].
place 4;V; everywhere in terms o#,V and higher post- Indeed, as explained in the following sections, the
Newtonian order terms, and the gauge conditi2ri3h to 3-dimensional results of this reference will be necessary for

replace&jVVij in terms ofai\fv and 4,V; [our knowledge of ﬁg;d’?ﬁ?igﬂ?ggfg:gwm'ons' and it is more convenient to
the higher order termé)(l/cz) in Eq. (2.13h was actually Npotice also that after .the above simplifications, the result-
not necessary for the simplification of Eq2.12)]. We also b !

used the lowest order terms of Eq8.13 to simplify their ing metric involves only potentiaIAs which are at most cubi-
own higher order contributions ’ cally non-linear(as for the termW;;4;;V in the potential
(ii) If the source of a potentid® contained a doublecon- ~ X—Using the terminology of Sec. V C belgwThere is no
tracted gradient of the formCIP = d,Ad,B+ (other terms), nee_d to mtroduc_e any quartlcally_ n_on-l|nee_1r eleme_ntary po-
whereA andB were two lower-order potentials, we got rid of tential because it turns out that it is possible to “integrate
the double gradient by defining another potenfii=P directly” all of them (at the 3PN levelin terms of other
1AB W L2 : , potentials. The only quartic contributions are the terms com-
—3AB. e could then write its equation a§lP . 2 ;
= —L(OA)B— LA(OB)+ (1/c?)3,AdB+ (other terms), in posed' ofV and'VX in the metric componer@oo'[sge Eq.
which CJA and OB were replaced by their own explicit (Ala)_ln Appendlx Al. The fact that there are no intrinsically
sources. The contribution proportional toci/was then quartic _pote_nt|als at the 3PN order made the closed-form
transferred into the source of a higher order potential. calculation in[21,22 possible. We shall comment more on

6 ; this interesting fact in Sec. IV A.
(iii) At order O(1/c), Egs.(2.2~(2.9) for Ry (i.e., for Let us now apply the general potential parametrization of

[goo) contain the tAemWij(?ijV, that we introduced in the the metric defined above to the specific cas¢nabnopolay
source of potentiaX, Eq. (2.12d. In all other equations point particles, i.e., to the action

involving the same sourcé/;;3;V, we used X to elimi-

nate it, instead of reintroducing it in the sources of other S:f dd+lx\/__g c* R(g)

potentials. This is the reason whyis involved in the spatial ¢ 167G

metric gj; too at orderO(1/c®) [via the exponential o¥ in

Eq. (2.119], and why VX appears again img, at order -2 macf V=g, dykdys.  (2.19
O(1/c®). See the expanded form of the metfil) in Ap- 2

pendix A. The stress-energy tensor*’(x)=[2c/~ —g(X)]8Smatte

(iv) In the equation foR, at order®(1/c?), we choseto
eliminate a source proportional ¥d;V;d;V;, by including
an all-integrated ternVV;V; in the definition ofgqy, EQ.
(2.113. On the other hand, we could not eliminate at the T’”(X)=§ maczf ds,

89,,,(x) deduced from this action reads

dy; dy;

[—9(ya) 1™

ds, d
same time the source term proportional ¥d;V;d;V in S 0%
[ggo, although it involves a doublécontracted gradient X STV (M —yA(s,)), (2.16
too. This is the reason why such a term appears in Eq.
(2.129. whereds, =/ — 9,..(yh)dykdyy is (c times the proper time

The above simplification rules have been applied systemgjong the world-line of thath particle and wherg@*1) is
atically with a single exception. Indeed, H8.12¢ for 0Z;;  the Dirac density ind+1 dimensions| [d?"1x&(* ) (x)

involves double (contracted gradients 4, VidV; and =1]. Here, we take advantage of the fdemphasized in
3ij NV mdVm . Therefore, the application of rulgi) would  [35]) that dim. reg. respects the basic properties of the alge-
have yielded another potential braic and differential calculus: associativity, commutativity
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and distributivity of point-wise addition and multiplication, to sufficiently “low” (and even with negative real part, if
Leibniz's rule, Schwarz’s ruled,d,f=4,d,f), integration  needed values, we see not only th@U(x)]X:ylzuz(yl),
by parts, etc. In addition, the post-Newtonian expansion oft that  [U"(X)]x=y,=[Ua(y2)]", and, e.qg.
0,..(X) yields “d-dimensional functions” which are formally _ _ _

as smooth as wishetby taking the real part ofi small [UPO)a1U () ]y, =[Ua(y1) I°3iUaly,), ete.
enough in the vicinity of the world-lines: see for instance
Eq. (2.9). This allows us to work with self-gravitating point
particles essentially as if they wetest particles. For in-
stance, we can use F[9,,(x)]18(x—ya)
=F[9,,(Ya) 18P (x—y,). In particular, they,-evaluated de-
terminant factof —g(y,)] *?in Eq. (2.16 came from the
field-point dependent factdr—g(x)]~ *2in the definition of
T#”(x). Similarly, the usual derivation of the equations of

Although the expression®.20 do not depend explicitly
on the dimensioml, the metric(2.11) does depend on it, and
therefore the post-Newtonian expansions of HGs20 in-
volve manyd-dependent coefficients. We give their full ex-
pressions in Appendix A, EqgA1l), (A12), but we quote
below only their Newtonian orders and the very few terms
which will contribute to the polesc1/(d—3) in our dimen-
sionally regularized calculations:

motion of a test particle formally generalizes to the case of 8 16 1
self-gravitating point particles ird dimensions. One then Plmpit...— — R——Y+0| =
finds that the equations of motion of point particles can ct ! c6 ! c8
equivalently be written as
Vi) — _ 4 16 1
V,T# (%) =0, (2.17 Fi=gV+-+—aX+—aT+0| —|. (2.22
c* c® c®
or as the usual geodesic equations. The latter can be written
either in covariant formu2V,u4=0 (uf=dy4/ds,), i.e., ex-  The acceleratiom=dv/dt can thus be written as
plicitly o
o d(P'=vY)
2\,\ v a=F'-———

d%ys N dys dy; dt

— +1,,09(Ya),99(Ya) ]| -— ——=0, (218

ds, ds, dsa 1 4 dR

=¢9iV+—[~ . ']+_ (9i5(+2—+~ N
where I'),,=39"7(9,9,5+9,9,0~ 9,9,,) as usual, or in c? ct dt
the explicit form corresponding to using the coordinate time o
t=y%c as a parameter along the world-lines, which is easil 16| . Yi 1
va P 2ond : . oesly + | oT+—+--|+0| = (2.23

derived from the covariant expression with a lower index, c6 dt c

uaV,u8,=04d(g,,us)/ds,=34,9,,usus. As in 3 dimen-
sions|cf. Egs.(3.32, (3.33 of Ref.[22]], it can thus be put |n Sec. IV A we shall give flesh to the formal expressions

in the form written above by explaining by what algorithm one can com-
i pute, with the required accuracy, the expliditimensional
d_P —Fi 2.19 expansions near=y, [analogous_to the simple caga2])]
dt of the various elementary potentials entering E423), and
Where notably of the crucial oneX,R; (to be computed with 1PN
accuracy and T,Y; (to be computed at Newtonian order
o gi 0" o 1 49,0 only).
\ _ganpUU/CZ 2 \ _gpavpvalcz I1l. HADAMARD SELF-FIELD REGULARIZATIONS IN 3
(220 DIMENSIONS

v#=dx*/dt=(c,v) denoting the coordinate velocity. Let us
emphasize again that id dimensions, all the non-linear
functions ofg,,,(ya) andd\g,.(ya) that will enter our cal-
culation of Egs.(2.19, (2.20 can be treated as in the
—Y, evaluation of smooth functions of For instance, de-
noting for simplicityf=2(d—2)/(d—1), the Newtonian ap-
proximation, sayU(®(x)=U(x), of the basic scalar poten-
tial V(x), reads, in the vicinity ok=y;,

The main aim of this section is to complete thst step
of the strategy outlined in the Introduction, i.e. to collect a
complete list of the additional contributions to the equations
of motion which are specific consequences of the use of the
extended Hadamard regularization methods defined in
[23,24]. However, to do that we need to start by recalling
some material concerning the Hadamard regularization in 3
dimensions, and by contrasting it with dimensional regular-
~ r—d ization. Such material is needed for understanding our com-
U)=fkGmyri "+ Ua(x), (221 putation based on the “difference” in Sec. IV. We shall start
_ by recalling the definition of the “ordinary” Hadamard regu-
whereU,(x) =fkGm,ra % is (in anyd) an indefinitely dif-  larization and complete it by defining what we shall call the
ferentiable function ok neary;. Analytically continuingd  “pure” Hadamard regularization. Then we shall recall the
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main new features of thextendedHadamard regularization simple algebraic properties of the analogue Bj4(in dim.
defined in[23,24], and collect the additional contributions to reg. which is merelfr(?(y,). It is an interesting fact that in
the equations of motion which are specific consequences @& post-Newtonian expansion the non-distributivity starts
the use of the extended Hadamard regularizattbere are playing a role only at the 3PN ordébecause the functions
seven such additional contributions there become singular enoyghlp to the 2PN order one can
show that £G),=(F)1(G), for all the functions involved in
the equations of motion in harmonic coordinafé8]. Sev-
o ~eral of the problems of the Hadamard self-field regularization
~ The phrase “Hadamard regularization” covers two dis- (i the “ordinary” sens¢ when applied at the 3PN level
tinct concepts: (i) the regularization of the “limit" (g 4. the occurrence of the unknown constentre related
lim,_.y F(Xy1.y2) whereF(x;y;,y;) belongs to a clas§ g the latter non-distributivity.
of singular functionggenerated by the iteration of Einstein’s ~ The second notion of Hadamard partie fitdenoted Pf in
equationy and (i) the regularization of the 3-dimensional the following) is to give a meaning to the generally divergent
integral fd3xF(x;y;,Yy,) of some functiorF e F. The class integral fd®xF(x). In this work we shall have to consider
of functions F consists of all function&(x) on R® that are  only the ultra-violet(UV) divergencies of the integrals, i.e.,
smooth except aly; and y,, around which they admit at the locations of the two local singularitigs andy,. All
Laurent-type expansions in powersrgfor r, (see Sec. Il of functions involved at the 3PN order are such that there are no
[23] for the precise definition ofF). Whenr,=|x—y;|—0 infra-red(IR) divergencies whefx|— o (this is true not only
(i.e., around singularity )lwe have,¥Y Ne N, in 3 dimensions but also for any dimensids=3+¢ in a
neighborhood ofd=3). The Hadamard partie finie of the
(UV) divergencies is then defined as

A. Ordinary and “pure” Hadamard regularizations

F= 2 rlf,(n)+o(r}), (3.)
1

po<=p=N

. _ Pf, f d3xF(x)= Iim[ f d3xF(x)
where the Landaw symbol takes its usual meaning, and 172 s-0| JRAB(s)UB,(s)
the,f,(n,)’s denote the coefficients of the various powers of
r4, which are functions of the positions and velocities of the A 2 St
particles, and of the unit direction,=(x—y,)/r, of ap- pi3co p+3', P
proach to singularity 1. The powers of are relative inte-
gers,p e Z, bounded from below by some typically negative s
Po depending on thé& in question. +47T|”(S_1)<f3>+1‘_’2]-

The Hadamard partie fini€' of the singular functionF at !
the location of the singular point (first meaning of Had- (3.9
amard regularizationis defined as the angular average of the
zeroth-order coefficient in the expansit®l). It is denoted The description of this formula in words is as follows. One
(F)4, so that first excises twasphericalballs B;(s) and B,(s) surround-
ing the two singularitiegeach one having the same radius
s), and one computes the integral on the volume external to
(F)15<fO>EJMfO(nl), (3.2) these balls, i.e.R*\B;(s)UB,(s)—the first term in Eq.
1 47 (3.4). That integral tends to infinity whes— 0, but we can
subtract from it its purely divergent part, which is given by
where dQ(n,) denotes the usual surface element on théhe additional terms in E¢3.4) (which obviously are to be
2-dimensional sphere centered on 1. We shall employ sygluplicated when there are 2 singularities; cf. the symbol
tematically the bracket notatia() for the angular average of 1<>2). The limits—0 then existgby definition and defines

a function of the anglegeither n, or n,).% A distinctive ~ Hadamard's partie finie. o
feature of the Hadamard partie fini8.2) is its “non- Notice the crucial dependence of the partie finie on two
distributivity” in the sense that constantss; ands, entering the log terms. These constants

have the dimension of length. We shall say tbatis the
regularization length scale associated with the Hadamard
(FG)1#(F)1(G); ingeneralforF,GeF. (3.3 regularization of the divergencies neary, (similarly for
S,). Note also that the Hadamard partie finie does not de-
The non-distributivity represents a crucial departure from theoend(modulo changing the values sf ands;) on theshape
of the regularization volumeB,; andB,, above chosen as
simple spherical ballésee the discussion in R¢23)).
since this will always be clear from the context, we do not An important consequence of the definitié®4) is that,
specify on the brackets if the angular integration should be perin general, the integral of a gradieff is not zero, because
formed around point 1 or 2. We do not indicate either if the inte-the surface integrals surrounding the singularities become
gration sphere is two dimensional od+1) dimensional(as we infinite when the surface areas tend to zero, and may possess
shall see later there can be no confusion abouj.this a finite part. We findsee Eq(3.4) in [23]]

p+3
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dim. reg[ F(x) 5(3)(X—Y1)]E(c!im F(d)(Y1)) & x=y),
—3
(3.10

For a generaF e 7 the RHS is typically non-zero. This fact \yheref(® is thed-dimensional version of, as obtained by
shows that the application of the ordinary Hadamard regularSOMng Einstein’s equations il dimensions (using the
ization in the post-Newtonian iteration has to be suppleinethod explained in Sec. IV A belowThere are no poles in
mented by a notion of distributional derivatives, in order t0tne calculation of the “contact” terms in any of the potentials
ensure that the integrals of gradients are zero as in the case 9f 1he 3PN order so the limii—3 in Eq. (3.10 always
regular functions. Notice that the constarisands, disap- _ exists. Once again the dim. reg. prescripti8rL0 owns all
pear from the resul3.5). (We shall also see the need, within he good features one wishes, notably the distributivity as we
d|m. reg., to consider some derivatives in the sense of distripgye emphasized in Eg8.8), (3.9).
bution theory) o . In the following it will be convenient, in order to compare
Let us apply the definition3.4) to the integral of a he present dim. reg. calculation with the Hadamard-based

compact-support or “contact” term, i.e., made of the producty,ork [22], to introduce the terminologypure Hadamard
of someF and a Dirac delta function at the point 1. Let us yeqgyarization to refer to the following “minimal” version of

Pff dsxaiF(x)=—47r(ni1f,2>+1<—>2. (3.5
1

formally assume that the Hadamard regularization(a) an integral fdxF(x),
whereF is made of some product of derivatives of the non-
Pff d3xF(x) 8@ (x—y,)=(F)y, (3.6) linear potential_sV,_Vi_, Ce is_ re_gularize_d by the_ o_rdingry
Hadamard partie finie prescriptidB.4), without bringing in

o o , any distributional contributionésee below for the treatment
which is the most natural way, within Hadamard'’s regular- ¢ these; (b) the regularization of a product of potentials

ization, to give a sense to such an integral. Now the proble G . . : .
with that definition is that if we want to dispose of somerQ/’V' Wiy, ... (and their gradienisis assumed to be dis

local meaning(at any field poin) for the product of with tributive, which m(.aanls that trle value at the sihgular pp{nt
the delta function, then as a consequence of the norff Some polynomial inv,Vi Wi, ... and their gradients,
distributivity we cannot simply equafe(x) 5 (x—y,) with  sayF[V,V;,W;;,d;V, ...], is given by the replacement rule
(F)16®(x—y,), i.e., R
. (.7-'[V,V| ,Wij ,(9iV, A ])1
F(x) 6@ (x—y,)#(F);6®)(x—y;) ingeneral forF e F. A
3.7 —=H(V)1,(Vi)1,(Wij)1,(diV)1, ... ];

Indeed, if it were true thaF 8{¥=(F),s{® [for simplicity (3.1
(3= s3)(y— inlvi

we denotey _(53) (x yl)]g,(glen multiplying by anyG wg and (c) a contact term, i.e., of the forr(x) 5 (x—vy;),

would haveFGé7~'=(F),Gé1, and by integrating ovel appearing in the calculation of trs®urcesof the non-linear

in contradiction with the violation of distributivity(3.3).

Therefore, both the violation of distributivit{3.3) and the VS Ay
consequencél.7) are unescapable in the ordinary Hadamard AV Wy, - 1000x-yy)
regularization. =AMV (W), - 16P(x—yy) (312

The previous situation should be contrasted with the
d-dimensional case for which the distributivity is always Sat'(there are no gradients of potentials in the contact terms

isfied, as we have simply The rules(3.11), (3.12) of the pure Hadamard regularization
are formally equivalent to assuming the replacement rules
(FOGD) (y)=F O ynGD(y1) 38 (FG)lﬂ(Fgll((g)l together with F(x)p5<3>(x—y1)

—(F)16®)(x—y,), in the case wher€ andG are made of
products of our elementary potentials and their graditnts.
The rules of the pure Hadamard regularization are, however,
well defined, and are not submittéloly their very definition

to the consequences of thedinary Hadamard regularization
(3.3) and(3.7). Note also that, as done in previous computa-
tions of the 3PN ADM Hamiltoniar{16,17 and the 3PN
binary’s energy flu{27], one can formally use Eq$3.11),
(3.12 at the price of adding a limited number of arbitrary
parametergconsidered as unknown

and
FO(x) 6D (x—yy) =FD(y;) 6D (x—y;). (3.9

Finally, taking thed— 3 limit, we see that the dim. reg. way
of regularizing a three-dimensional “contact term,” i.e., a
term like F(x) 5®)(x—vy;) is by considering it as thd—3
limit of its d-dimensional analogu€s.9). That is,

Hactually this assumption should be viewed as tledinitionof a
new object we can call P§3)(x—y;) and which takes the property . .
(3.6). This is exactly what we do in the context of the extended Thus we shall write YW;);—(V)1(Wj), or (V34,V),
Hadamard regularization. [(V)113(d,V)4, but not, for instance ), —[ (VV)]2.
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The definition(3.12 of pure-Hadamard regularization for regularization:* which is also systematically taken into ac-
contact terms is useful because we have checked that, wheount in the extended Hadamard regularization that we shall
using the dim. reg. prescriptiof8.10 (in the limit whered  describe in Sec. Ill C.

—3), all the contact terms in the sources of the non-linear

potentials V,V; ,\7Vij , ... heeded at the 3PN ordegree
with the result of the pure Hadamard regularizatip®f B. Ordinary Hadamard regularization of three-dimensional
course, we would not need to introduce a notion of pure Poisson integrals

Hadamard regularization in a direct calculation of the equa- | gt ys give some reminders of the way we apply the con-

tions of motion ind dimensions, i.e., not based on the “dif- gjerations of Sec. Il A to the computation of Hadamard-
ference” between Hadamard and dim. reg., because in sucgﬁi

di h th tact t Id be treat régularized potentials having the form of Poisson or Poisson-
Ez;%bligﬁgﬁgl.yifgr?%ce staertcu?sri]nZCE(;rln(;).S] V(;%uthe oeth;era e in'_[egrals. Let us first discuss the prescripti(_)n one has
. ; . taken ind= 3 to define the “value ax’ =y;" of a (singulay

hand, when computing the value at the singular point of the, . : f - . ;

potentials for insertion into the geodesic equations, we d 0|s,son potentlaIP(x )_' I,n d§3’ the P0|_sson integral

find some departure between the dim. reg. calculation an (x ) at some field poink _EH ' (,)f some singular source

the (ordinary or extendedHadamard one. Let us illustrate 'Unction F(x) in the class7 is defined in the sense of the

these differences by means of the simplest example whicRartie-finie integral3.4), namely

does enter our 3PN calculation, namely the regularization of

(U)34,U whereU is the Newtonian potential. ld dimen- p(X/):_i Pf f

sionsU@(x) is given by Eq.(2.21) [we add here a super- 4m = P12

script (d) to indicate thed-dimensionality of a potential and

pose U=U®)]. Therefore in dim. reg. the result

is simply where s, ands, are the two constants introduced in Eq.
(3.4). At first sight we could think that a good choice for
defining the pure Hadamard valliB(x") ] -y, is simply to

(Lim3([U(d)(Y1)]3<9iU(d)()’l)) replacex’ =y, in Eq. (3.16), i.e.,

d3x
|X—X F(x), (3.1

|

=[Ua(yD) 1?9 Ua(yy) (dim.reg), (3.13 .

1 d°x
P(yD=- - Pl s, f TF. (3.17

whereU,(y;)=Gm,/r, is the value at point 1 of the po-
tential of the other particle. The resy.13 is the same as
when using the pure Hadamard regularization. Indeed, welowever, the work on the 3PN equations of mot[@i,22]
find first that U);=U,(y;) and @U);=0d;U,(y;), and  suggested that the definitiai3.17) is not acceptable: it did
then, by using the definitio(8.11), not seem to be able to yield equations of motion compatible
with basic physical properties such as energy conservation.
The choice adopted 21,27 is to define the regularized
(U39,U); —— [(U)113(a,U), “value at x' =y,” of the function P(x’) by taking the Had-
def amard partie finie in the singular limi' —y;. Notice first
_ 3. that P(x’) does not belondin general to the classF be-
=[Valy)TPaiU2(y,) (pure Hadamand (3.14 o\ e Poisson integral will generate sdagarithmsof
rj in its expansion when;— 0. Thus, we shall have, rather

On the other hand, the latter results contrast with the applit"@n an expansion of typ@.1),

cation of the ordinary Hadamard regularization for which we
find
P(x")= riPlgp(n) +hy(ninri]+o(r M),
Po=p=N 1 1
(U33,U)1=[U,(y1) 133U (y1) (3.1

6
+ 2 [U1(y2)1Ua(y1) i U2(y1)
5[ 12 U224 U2y In the ADM Hamiltonian the analogue of this example is the

regularization ofu#, which gives automaticalljU,(y;)]* in dim.
reg. and alsgby definition in the pure Hadamard reg., while

(Uh1=[Us(yn) 1*+2[U1(y2) T U2y 1%

(ordinary Hadamard (3.15

The first term is in fact the “pure Hadamard” result which is
in agreement with the dim. reg. one. The second term is amhe latter example represents in fact the only source of ambiguity
example of the non-distributivity of the ordinary Hadamard present inthe static part ofthe ADM-Hamiltonian formalisnj35].
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where the coefficientgg, and ;h, depend on the anglex ,
and also on the constardgs ands,, in such a way that when
combining together the terms in E.18 the constant;
always appears in “adimensionalized” form as inrlji§,).

PHYSICAL REVIEW D69, 124007 (2004

ry
n s—l)‘lh”'

(3.20

1 d3x
(P)1=- E Pfsl,szf ?F(X)‘F

Then we define the Hadamard partie finie at point 1 exactly

in the same way as in E¢3.2), except that we now include
a contribution linked to thedivergent logarithm of r g,
which is possibly present in the zeroth-order power pf
More precisely, we define

(P)15<?o>+<z‘o>|”ri: (3.19

where we introduced aew regularization length scalde-
notedr;, which can be seen as some “small” but finite
cutoff length scaldso that Irr; in Eq. (3.19 is a finite, but
“large” cutoff dependent contribution We shall see later
that the dependence ar] disappeargas it shouldl when
adding to @), the differenceDP(1)=P(y;)—(P);. To
compute the partie finie one must apply the definiidri9

to the Poisson integr&B.16), which involves evaluating cor-
rectly the angular integration therein. The result, proved i
Theorem 3 0f 23], is

We recover in the first term the value of the potential at the
point 1: P(y,), given by Eq.(3.17). The supplementary term
makes the partie finie differ from the “naive” gueBgy,) in

a way which was found to play a significant role in the com-
putations of[21,22. The apparent dependence of the result
(3.20 on the scales; is illusory. Thes; dependence of the
RHS of Eq.(3.20 cancels between the first and the second
terms, so the result depends only on the constgnénds,,

and we have in fact the following simpler rewriting of Eq.

(3.20:

1 d3x
(Pli= = 4 Pl | T FOO—(F) (320

Similarly the regularization performed at point 2 will depend
onr, ands,, so that the binary’s point-particle dynamics in
Hadamard’s regularization depends on fdarpriori inde-
pendenk length scales'l,sz andrj,s;. The explicit expres-
r§|on of the resul(3.2)) is readily obtained from the defini-
tion of the partie-finie integral3.4). We find (see the details
in Ref.[23])

1 d3x gP+2
P),=lim f —F(x)— el 2 e1les
(P s—0 4nm 3\By(S)UB(S) 'y ( p§<o p+2<1p> " (1 2)
€ 1 gp+(+3
prers nafetin oJnate 3.2
(flz){muko p+€+3< 2fp) s)< 21— 3)“ (3.22

Note that the terms corresponding to singularity 2 involvewe have a formula analogous to E§.21) and given by Eq.

the multipolar expansion around the point of the factor
1/ry=1/|x—y,| present in the integrand.

Because we work at the level of the equations of motion,
many of the terms we shall need in this paper are in the form
of the gradientof a Poisson-like potential. For the gradient

e write the multipole expansion in the form

1 ( o1y,
_2 4 L(rlz)r(énlé'

i =o

(5.173 of [23], namely

1 ny r
(&iP)1=——Pf51,SZJ d3x— F(x)+In| = |(n} f 1)
am r1 1
1 ny
=—— Pf. SJ d3x—F(x) (3.23
4ar rl

employing our usual notation where capital letters denote multiwhere we have taken into accoufim the rewriting of the

indices: L=i,i,--i,, and, for instancenz=n--ny. The ex-
pansion is symmetric-trace-fre€STF becauseb‘i{i{flaL(llr 12)
=0, _»A(1/r 1) =0. Hered, (1/r,) is a shorthand fof partial de-
rivatives d/ ay', of 1/r ;,=1/]y;—y,|. The multipole expansion id
dimensiongalso STF is given by Eq.(4.23 below.

second equalitythe always correct fact that the constant
cancels out and gets “replaced” hy, . Notice that in Eq.
(3.23 there is no additional term to the partie finie integral
similar to the last term in Eq.3.21). The corresponding ex-
plicit expression is
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1 n} Pt s\
(0;P);=Ilim ——f dBx—F(x)— >, ——(nifp)—In| —|(n3f_q)
B3\B,(5)UBy(s) +1° 7 r’ 1

so| 47 ra p+1<0 P |

o 4 +0+3
(—) ( 1) sP
- — | — ———(n5f, ) +In
ZO o " P p+(;3<0 p+€+3< 22p>

s
;)(nég—f—e)H- (3.29

2

Finally we must also treat the more general case of potertween the evaluation of these distributional termd @imen-

tials in the form of retarded integralsee Eqs(2.12], but  sions, and the specific distributional contributions issued
because we shall have to considar Sec. IV B only the from the generalized framework used #2]. This difference
differencebetween the dimensional and Hadamard regularwill be included in Sec. Il D below, among the complete list
izations, it will turn out that in fact the first-order retardation of additional contributions specifically related to the use of
(1PN relative orderis sufficient for this purpose. Actually, in the extended regularization approach we shall now describe.
this paper we are not interested in radiation-reaction effects,
so we shall use the symmetrialf-retarded plus half-
advanceglintegral. At the 1PN order we thus have to evalu- The “extended Hadamatdregularization, proposed in
ate Refs.[23,24), tackles the particular properties of the ordinary

Hadamard regularization, notably the non-distributivity of

Egs.(3.3 and(3.7), and the fact that the integral of a gradi-
, (3.25 ent is not zerdEg. (3.5]. These properties are implemented

within a theory of pseudo-functions, viz. linear forms defined
o i on the set of singular function#. The use of pseudo-
whereP(x’) is given by Eq.(3.16, and where;Q(x") de-  fynctions in this context enables one to give a precise mean-
notes the double or “twice-iterated” Poisson integral of theing to the objecE §(x—y;) needed in the computation of the
second-time derivative, still endowed with a prescription ofcontact terms, and which is otherwise ill defined in distribu-
taking the Hadamard partie finie, namely tion theory. Furthermore the use of some generalized ver-
sions of distributional derivatives permits a systematic treat-
ment of integrals and a natural implementation of the
property that the integral of a gradient is always zero. In this
paper we shall content ourselves with recalling the principle
In the case oR(x’) the results concerning the partie finie at of the extended Hadamard regularization, and with present-
point 1 were given by Eq<5.16) and(5.17b of [23], ing its “ready-to-use” consequences.

To any Fe F we associate the “partie finie” pseudo-

C. Extended Hadamard regularization

1
R(X")=P(x")+ —Q(x" )+ 0O —
2c? ct

1
QX)==7— Pfsl,szf d3X|x—x'|9?F(x). (3.26

1 1 function PfF, which is the linear form o defined by the
— 3 2 L
(Q=—7— PffiyszJ dxr e (X) + §<l1<*4>* duality bracket
(3.273
<PfF,G)EPff d3xF(x)G(x), (3.28
1 ) 1 .
_ , 3yni 192 /Al . . .
(3iQ)1= 4 Pfrlvszf d*xny 9t F(x) + 2(n1I1<,3), which means that the action of Pfon anyGe F is the

(3.27h partie-finie integral, as given by E@3.4), of the ordinary

product.[The duality bracket in Eq(3.28 should not be

where the;ky's denote the analogues of the coefficiepts, confused with the angular average defined in BR).] The
parametrizing the expansion & whenr;—0, but corre- pseudo-function PF reduces to a distribution in the ordi-
sponding to the double time derivativ@F instead ofF. [In  hary sense of Schwarfa6] when restricted to the usual set

the following we shall not need the explicit forms of the P of smooth functions with compact support 1. The

results(3.27).] product of pseudo-functions coincides, by definition, with
Let us clarify an important point concerning the treatmentthe ordinary point-wise product, namely PfPfG
of the repeated time derivativF(x) in Egs.(3.27. Aswe  =Pf(FG). In the class of pseudo-functions constructed in

are talking here about Hadamard-regularized integral&ef.[23], the “Dirac-delta” pseudo-function P4, is defined
(which excise small balls around bogh andy,), the value by

of afF(x) can be simply taken in the sense of ordinary func-

tions, i.e., without including eventual “distributional” contri- <Pf51,F>EPfj d3x81(X)F(x)=(F)4, (3.29
butions proportional ta(x—y,) or §(x—Yy,) and their de-

rivatives. However, we know that such terms are necessarywhere F); denotes Hadamard's partie fini@.2). This defi-
for the consistency of the calculation. This is why we mustnition, which obviously yields a natural extension of the
also include somewhere in our formalism ttiéferencebe-  Dirac function 8;(x)=36®)(x—y,) in the context of Had-
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amard’s regularization, leads also to new objects which havpwvhered, (1/r1) should be better writtes| (1/r;)]. Evaluat-
no equivalent in distribution theory, the most important oneing now the partie finig(3.2) at both singular pointsi.e.,
being the pseudo-function F¥@;) which played a crucial whenr;—0 andr,—0] we obtain

role in [21,22 for the calculation of the compact-support

parts of potentials as well as the purely distributional parts of d3x
derivatives. It is given by J X—x|

Pf(FrSl)) =0, (3.343
1
(Pf(F51),G)=(FG)y, (3.30 »
d®x . 1

where one should be reminded that it is in general not al- f x—x'| PI(F 1) ZZO Hmllf—f)aL r_12
lowed to replace the RHS by the product of regularizations: 2
(FG)1#(F)1(G):. d3x

In the actual computatiof21,2Z the pseudo-function =f? Pf(F &7). (3.34bh
Pf(F 6,) acts always on smooth functions with compact sup- 2

port (e D), in which case it reduces to a distribution in the 1o result(3.344 is in agreement with the pure Hadamard

ordinary sense, which was shown to admit the “intrinsic” yoqjarization; however Eq3.34b does involve some extra

form terms with respect to the pure Hadamard calculation, since
) thehlgtteLis ek?sily seen t(l) sierIr)T/fyie(IJ(EX]}/trhlz, Wflltiph Iis
_ - L . nothing but the “monopolar” term¢ =0 of the multipolar
Pf(F&l)_ggo 0! <n11f*" )98, (whenrestricted tD). ¢\ in‘the RHS of Eq(3.34b. Therefore we decompose Eq.
(33];' (3.34b as
HereL=i,---i, denotes a multi-index composed ©fmul- PfJ' d®x £s
tipolar indicesiq, ... ,i¢, d =4, ---d;, means a product of [x—x'| ! )
¢ partial derivatives’;= g/Jx', andng=n'- - -n}’ a product
of € unit vectors(we do not write the! summation symbols, _(F1 + “non-distributivity” contributions.
from 1 to 3, over the indices composihg. Notice that the 2
sum in Eq.(3.3)) is finite becausé admits some maximal (3.35
order of divergency when;—0. Now we discover that the
“monopole” term in the latter multipolar sum, having The second ingredient of the extended Hadamard regular-

=0, is nothing but F);6; which is exactly the result we ization concerns the treatment of partial derivatives in some
would get following the pure Hadamard regularization rule(extendegl distributional sense. Essentially, one requ(i23]
(3.12. [Indeed, as we are considering here only the contacthat the derivative reduces to the ordinary derivative in the
terms entering the source terms for the 3PN-level nonlineacase of regular functions, and is such that one can integrate
potentials, the “ordinary” Hadamard regularizatioR); co-  any integrals by parts. The latter propeftalid for the spa-
incides with the “pure” Hadamard regularizatiof8.12.] tial derivative translates into

The sum of the other terms then defines what we can call

some non-distributive contributions because their appearance (9i(PfF),G)=—(ai(Pf G),F). (3.36

is the direct consequence of the violation of distributivity . L o
(3.3). Thus, This rule contains the standard definition of the distributional

derivative[36] as a particular case. It implies the important
Pf(F 8,) = (F), 8, + “non-distributivity” contributions. property that the integral of a divergence is zero. Let us set

(3.32 3,(PfF)=Pf(d,F) + D[[F], (3.3

In [22] care has been taken of all such non-distributivity
terms. Consider for instance the Poisson integral of
compact-support term F¥(@,;) (say, proportional to the mat-
ter source densities, o; or j;). Using Eq.(3.3)) the Pois-
son integral reads

where Pf@;F) denotes the derivative éf viewed as an “or-
inary” pseudo-function, and [DF] represents the purely
distributional part of the spatial derivativeith support con-
centrated ory; orys,).
Looking for explicit solutions of the basic relatid.36
we have found 23], with the help of Eq(3.5),

d3x e 1
f —Pf(Fo)=2 €—|(n'if_€)a,_ —1, 11 1
x=x’] (o £ 1 DI[F]=47Pf| ni| —ryf 1+ —f o, |6 | +102.
(3-33) 2 1 k=0 r'{l
(3.39
1570 apply (3.31) we assume that’ is distinct from the 2 singu- Notice that [f F] depends only on theingular coefficients
laritiesy; andy,; see[23] for more details. of F (coefficients of negative powers of in the expansion
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of F). The derivative operator defined by E¢3.37), (3.39
does not represent the unique solution(®f36), but it was

checked during the calculatidi22] that using another pos-

sible solution results irphysically equivalentequations of
motion at 3PN orde(i.e.,

PHYSICAL REVIEW D69, 124007 (2004

Minkowskian senseto the four-velocity of the particle 1.
The regularizatiofiF ], differs from (F), by a series of rela-
tivistic corrections calculated if24]. Together with the other
improvements of the extended Hadamard regularization, it

they reduce to each other by a resulted in equations of motion in harmonic coordinates

gauge transformation Concerning multiple derivatives, we which are manifestly Lorentz invariant at the 3PN order

have the general formula

€

D.[F]= 2

[y i

Fl, (3.39

Ay 'k

giving the distributional term associated with thn spatial
derivative, D[F]=0d PfF—Pf g .F (whereL=iji,---i,),
in terms of the single derivative;[F]. As an example, to
treat the second derivative of the Newtonian potentigl)
whereU=Gm,/r;+Gm,/r,, one uses

D 1_ 47TPf 3.4
in= 3 (3.40

i 15“ii
5 +7n1 517

wherenj=n{j -4, . Therefore the extended distributional
derivative dn‘fers in general from the usual Schwartz deriva-

tive [cf. the second term in E@3.40]. [This is unavoidable

[21,22. Here we give a formula, sufficient for the present
purpose, for expressing=]; in terms of the basic regular-
ization (F),, defined by Eq(3.2), at the 1PN order:

1
[F]1:< F+ _Z(rl'vl)
c

1
HF+ 5u'lail:

1
+0| =
C4

1

(3.49

The first term is simply £),, while the other terms define a
set of relativistic corrections required to ensure the Lorentz
invariance of the final equations in Hadamard’s regulariza-
tion. Hence, we decompose E®.44) into

[F]i=(F),+“Lorentz” contributions.

(3.49

if one wants to respect the basic rule of integration by parts

(3.36 for general functions in the clask.] Notice also that

we do find a distributional term in the case of the first de-

rivative: D[ 1/r {]=2=P1(r 1ni151). We recall alsdfor future
use the case of the partial time derivative),(PfF)

=Pf(6;F) + Dy F], whose distributional term is given by

(following Ref. [23])

D[F]=v'Di[F]+v,D[F], (3.4))
1 2

in terms of the partial derivatives with respect to Swirce
pointsy; andy,, namelyD;[F] and ,D;[F]. The explicit
expression reads

(3.42

where f1,v,) denotes the ordinary scalar prodiicbtice the
overall sign difference with respect to E®.38]. Multiple
time derivatives can be treated according to E339. For
instance,

1 1
_rlf 1+ _f 2-k
k=0 r11

Dt[F] = _47Tpf( (nll)l)

+12,

DulF]=D{ diF]+ D F]. (3.43

Following the regularizatiof23] all the distributional terms
[of types PfE 8,) and PfE ,)] coming from the latter dis-

D. Contributions due to the extended Hadamard
regularization

After the reminders of the last subsections, we are now in
position to explain the origin of all the contributiom-
cluded in the final resultl.5)] which were due to the specific
use of the extended Hadamard regularization. Actually, we
shall list here the contributions due to the use of the full
prescriptions 0f 23,24 with respect to those that would fol-
low from using what we shall call a pure Hadamard-
Schwart? regularization. By this we mean(l) treating the

contact terms of all the non-linear potentidsv; ,\W;. , . . .
as in Eq.(3.12 [we have checked that for all the potentials
involved this is equivalent to Eq3.10]; (2) treating the
distributional part of an integrand such &gd;;U in the
normal Schwartz distributional way, for instaﬁée

1\ 3nini-61 4z
ij ( _) e ?5”' ¥ (x—yy), (3.46

3

i ri

and evaluating the contact term generated by the delta func-
tion in the “pure Hadamard” way(3.12; (3) regularizing

any three-dimensional integral by the ordinary Hadamard
prescription(3.4); and, finally, (4) using systematically, in

the last stage of the calculation where one replaces the metric
into the geodesic equations, the pure Hadamard replacement

tributional derivatives are to be treated when computing theule appearing in Eqg.(3.11) (for instance, we write
potentials according to the extended contact term definitiongV3s,V),;—[(V)113(¢,V),, creating therefore a net differ-

of Egs.(3.343, (3.34b.

ence with respect to the ordinary and/or extended Hadamard

Finally let us turn to the extension of the Hadamard regu+egularizations for which\(34,V);#[(V)113(d;V),).

larization (introduced in[24]) concerning the definition of a

new operation of regularization, denotgel],, consisting of
performing the Hadamard regularizatidn)g within the spa-
tial hypersurface that is geometrically orthogon@ a

18Notice that the distributional term differs from the extended
Hadamard prescriptiof8.40).
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The usefulness of the definition of such a pHS regularizathe Pf(F §;) comes simply from the compact-support point-
tion is to “localize” the additional contributions brought by particle sources of the potential. Equatiori4.17) of [22]
dim. reg. to the occurrence of polesl/s (or “cancelled” gives for that term
poles in d dimensions.

Our complete list of additional contributions contains

seven items. First of all there are four “non-distributivity” o G'mmd
contributions of the type given by E¢3.35: s8Val=5———-nl,. (3.50
(i) The so-called “self” terms, for which the delta func- c‘arf2

tion in Pf(F&;) comes from the purely distributional part of
the distributional derivative given by Ed3.38. The self

: . . e iv) A contribution coming from the compact-support part
terms were derived in Eq46.20 in [22]; they read explicitly (iv) g P pportp

of the potentiaﬁ' parametrizing the metric at the 3PN order,
and derived at the end of Sec. IV Aj22]:

151G*mms ~ Gmi[ 1 _
5°May =— ni, — = (Nw5)%ny,
9 53, ct 2 . 1Gm 1
5Ta|1=— 5 szkﬁijk —. (351)
1,1 i 15 ¢ EP)
+Evzn12+g(n1202)vz ) (3.47

In addition to the non-distributivity of the typ@.35), we
also have the more “direct” non-distributivity due to the fact
where f110) denotezs thze usual scalar product between  hat the pure Hadamard prescription for the regularization of
andv,, and wherevy;=V,. The expressior3.47 can be  the value of an expression “at,” Eq. (3.11), differs from
rewritten in a simpler way asvhere we denote for simplicity the ordinary and/or extended Hadamard ofwse for in-

szkEszvlﬁ) stance Eq(3.15]. It plays a role only in the last stage of the

computation of the 3PN equations of motion, once we sub-
. 3 3 3 stitute all the potentials computed at the right PN order into
seel ,151GTmm; +i G°m; i 1 the geodesic equations. We thus have the following.
19 c6r5 N1z 30 (6 U2 Yijk f1o) (v) A “direct” non-distributivity contribution, which can
12 (3.48 be called non-distributivity in the equations of motion
' (EOM), and given by Eq(6.34) in [22],

(i) The so-called “Leibniz” terms, which are additional
contributions due to the extended distributional derivative,

4.2

taking into account the violation of the Leibniz rule when SEOMy :G m1m2[7_79m _ zm }ni

performing some simplifications of the non-linear potentials ! Cﬁriz 210 © 210 2| *?

at the 3PN orde(see the explanations in Sec. Il B[i#a2]).

The Leibniz terms were written in Eq6.19 in [22], and 779Gmim, 1

read - — —Ullkzﬁijk<_> ) (352
420 C6 o

4 3 33 i X . X .
sheibnizgi — 88 G'mum; ni,— 16 mzvjzkai. (i) where vis=vlv}, and vl,=v}—v}. This term involves
9 53, 6 b Mrp, some combinations of masses different from those in Egs.

(3.49  (3.48—(3.51. Note that becausd=G), # (F)1(G), the non-
distributivity in the EOM depends on which prescription has

We emphasize that the contributiof@48 and (3.49 repre- been phosen for the stress-energy tensor of poiqt particles.
sent some additive effects of the use of the distributionafF9uation(3.52) corresponds to the particular prescription ad-

derivative introduced in Refl23], when compared to the vocatgd in Sec. V 9[2_4]' Hoyvever it was chec.ked ie2]

effect of the Schwartz derivative in the pHS regularization.[nat different prescriptions yield physically equivalent equa-

Note that both Eqs3.48 and(3.49 depend on the choice of 10NS of motion.

distributional derivative, and we have given them here in the "€ Next correction brought about by the extended Had-

case of the “particular” derivativll defined by Eq(3.39. amard regulanzgﬂon is the one due to the regularlzatlon
(iii) A special non-distributivity in the compact-support [F],, performed in the Lorentzian rest frame of the particle.

potentialV when it is computed at the 3PN order. In this case!l Practice the effect of such “Lorentzian” regularization
boils down to applying Eq(3.44). It turned out that the only

new contribution of this type came from the regularization of
YAnother derivative was introduced and discussef] where ~ the potentialX at the 1PN ordefand also when deriving the

it is called the “correct” one, but it yields physically equivalent result for 85°™a’, which is Galilean invariant, in Eq.
3PN equations of motion. (3.52)], leading to the following.
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(vi) The so-called “Lorentz” contribution to the accelera- defined(formally infinite) expressions in 3 dimension§he
tion, given by Eq.(5.39 in [22] as latter expressions turn out to be rigorously zero when com-
puted in dimensional regularization.
3.2 In summary, there are in afievendifferent terms,(i)—
shorentzy :G mm; B ivjk-l- Evjvk e i (vii), which are specifically due to the extended version of
1 6 70t g 172|7ik the Hadamard regularization. The “pure Hadamard-
(3.53 Schwartz” equations of motion are then obtained from the
end result of22], i.e., af" given by Eq.(7.16 of [22], by
fsubtracting these terms. Therefore we defisee also Sec.

M2

This term was crucial for ensuring the Lorentz invariance o

. . . V B below)
the final 3PN equations of motion {21,22. )
Finally, one must also take care of one additional contri-
bution (with respect to the “pHS” definitionsdue to the pHS_ _BF self Leibniz v T EOM
; . e o =a’ — + + + +
non-Schwartzian way of treating distributional derivatives. ot A
We have already mentioned two contributions coming from + gtorentzy 4 gtime-derivativey ) (3.55

this origin: (i) and (i) above. Actually, there is a third one

with the same origin and which comes from our computation

(see Sec. IV beloyof the “difference” between the dimen- and the same with 42 for the other particle.
sional and Hadamard regularizations of retarded potentials,

namely the crucial potentiak and R, which must both be
expanded to 1PN fractional accuracy. More precisely, this
contribution is due to the repeated time-derivative operator
atz coming when expanding the time-symmetric Green func- In this section we come to the core of our technique for
tion of the d’'Alembertian asgfle*1+C*2A*2(;t2 evaluating the difference between tbedimensional equa-
+O(c™*). We shall explicitly exhibit in Eqs(4.30 below tions of motion and their pure Hadamard-Schwartz expres-
the way these derivatives enter our calculation of the differsions, defined above and given in practice by &655.

ence. For technical reasons the time derivatifemust be

keptinsidethe integrals, so it has to be considered in a dis- A. lteration of Einstein’s equations in d dimensions
tributional sense, and we have therefore to take into account o ) .

the different ways of treating the distributional derivatives in €t US start by indicating how we solvédith sufficient
both regularizations. In the extended Hadamard regularize2ccuracy Einstein's field equations inl dimensions. One
tion the distributional terms are given by,[F] which is writes the post—_Mlnkowsklgr_\ expansion of Einstein’s equa-
shown in Eqs(3.41)—(3.43, and when they enter the source tions in the guise oj explicit formulas for the elementary
of some Poisson-type integral they are evaluated accordingotentialsV,V;, ..., T, as given in Sec. Il. Note that it is
to Egs.(3.34. On the other hand, in dim. reg. one uses thecrucial to take into account the explidtdependence of the
ordinary Schwartz derivativén d dimensions which is de- ~ coefficients entering these equations. The first step of the
scribed in Sec. IV C. In this case the double time derivativeformalism is to get sufficiently accurate explicit expressions
92 is computed with the help of the Gel'fand-Shilov formu- for the basic linear potentialé andV; . As we do not need to
las (4.34), (4.35 below. When examining the difference be- c9n5|der here rad|at|on_ reaction effectghich do not mix
tween the contact terms inpF] and those issued from With the UV divergencies arising at the 3PN levél is

limg_.392F @, we find that only the source for the 1PN po- €nough to solve Eqs2.7) by means of the PN expansion of
the time-symmetric Green function. For instance, we have

IV. DIMENSIONAL VERSUS HADAMARD
REGULARIZATION

tential X (or rather for the combination#X/c* which enters
the equations of motigncontributes. This gives the follow-

ing contribution. V=—47G0g0
(vii) The “time-derivative” contribution to the accelera- 1 1
tion, =—47G| A o+ —A_z&t20'+ —A_g&fa
c? ct
4 3 3,13
Stime derivativeyi — _ i G mlmzni + i G mzvjk "k( 1 _ 1 5 1
1 15 corS, 12735 6 27Ky, + —GA"‘ata +0| — . 4.1
(3.54 ¢ ¢
This term was part of the final result §22]. However itis  From Eq.(2.16 we see that the sourae reads
not mentioned iM22] because this reference never tried to
compare the results of the extended distributional derivative ~
o o D=1 (DO x-y,(D]+1-2, (4.2

with those given by the ordinary Schwartz derivative in 3
dimensions, except in those cases, itgimsand (i) above,
for which the Schwartz derivative yielded in fact some ill- where
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_ 212
;L (t): 2 m,C (d 2)+V1/C F(d)(x): E rg*—(]s:fgc:‘()q(nl)_l_o(r?), (48)
T AL g,y tu! V=gt e
po\Y1ls Y1 1 (4 3) Go=q=dz

Note the presence of many “contact” evaluations of field wherep andq are relative integersp(q e Z), whose values
quantities ino. Such terms are unambiguously defined inare limited by some,, g, andq, as indicated. The expan-
dimensional regularization. They are computed by succession (4.8) differs from the corresponding expansion in 3 di-
sive iterationde.g., to gefi,(t) to 1PN fractional accuracy MeNsions, as given in E(B.1), by the a_ppearan((:()a of integer
we need to have already computgg, to order o(c™?) powers of_ri wheres_zd—?_L The_coefflmentslfpfq _d_epend
included. Those evaluations do not give rise to pole terms inON the unit vecton, in d dimensions, on the positions and
o, up to the 3PN accuracy. Hence, as we said above, we cdipordinate velocities of the particles, and also on the charac-
consider that theird—3 limits define a certain(three-  teristic length scalef of dimensional regularization. Be-
dimensional way of estimating contact terms, that we havecau§eF(d)—>F when d—3 we necessarily have the con-
checked to be in full agreement with the “pure Hadamard”straint (v p=po)
prescription defined in the previous section.

Coming now to the spatial dependence of the scalar po-

tential V we get from Eq(4.1) DERIYE 4.9
Go=<dsdi 1 1
~ G, -
VOO =Gpa(Our+ —dlpa(Dvalt - +1=2, The iteration continues by inverting the wave operator by

c
(4.4) means of the time-symmetric expansi¢h.l). The basic

terms of this expansion which will turn out to be crucial for
where we introduced the elementary solutions;  our 3PN calculation based on tlfferenceare in fact the
EA—l(_4775(1d>), v;=A"1u;, etc., whose explicit forms first two terms. Focusing on the terms generated by the ex-
are tended sourc&@(x) (rather than the simpler contact tefms
we can write thed-dimensional analogue of E¢3.25 as

u,=kr2~9, (4.53
kr4-d ROX) =04 F O]
V1= 5, (4.5b) 1
2(4—d) , '
=P@(x")+ ;Q(d)(x )+0| — |, (410
wherek is related to the usual Euleridh function by*® ¢ ¢
_ T(d-2)2) where thed-dimensional Poisson integral &9 reads
k ddx
Inserting the explicit expressiad@.4) of V into, say, the non- PO(x")=A"YFD(x)]=— — ﬁF(d)(x).
linear terms in the RHS of Eq2.12b yields a d’Alembert 4ml - x—x'|
equation for the non-linear potentiaﬂlij with a “source (4.1)

function” which is the sum of some contact terms

S(x) 8@ (x—y,) and of an extended non-linear source We have used the fact, already mentioned above, that the
F(@(x) which belongs to the-dimensional analogue of the d-dimensional elementary solution of the Laplacian reads
classF, sayF@. More precisely, at each stage of the itera-

tion we find inhomogeneous wave equations of the type -
g q yp A(k|X—X’|2_d): — 478D (x—x"), (4.12

OW@O(x)=F@(x)+ >, Sy(x) 8D (x—y,), (4.
(x) ) ; 20O (x7Ya), (4.1 [see Appendix B for a proof of Eq4.12 and for other

useful formulas valid ird dim.], while the 1PN term is given
where the extended source functibff)(x) is regular every-  py
where except at the poinyg andy,, in the vicinity of which

it admits an expansion of the general forv [ e N) QO(x') = 242 PF @ (x)]
t

~ _ k
The constank adopted here is related =47k to the con- =— mf d9%|x—x'|4"992F D (x).
stantk chosen i 35]. Our present choice is motivated by the easy- 7( )
to-remember fact that lig, sk= 1. (4.13
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Note the important point that id dimensions, as in 3 dimen- needed. Indeed, one can see in our explicit solution of Ein-
sions, the time-derivative operatq?r present in the integrand stein’s field equations at 3PN given in Sec. Il that there are
of Eq. (4.13 is to be considered in the sense of distributionsno “quartically non-linear” source terms of the form, say,

(see further discussion in Sec. IV C below aiVa; VW, or 3, W;, 9, Wy for goo at the 3PN ordefsee Fig.
An important technical aspect of thiedimensional PN 5 pejoy).
iteration of the elementary potentiads ... T is the exis- As explained in Sec. V C below, a nice way to understand

tence of the generalizatiaq@.12) of the usual Green function the origin of the poles<(d—3)~! appearing in the 3PN
for the Laplace equation, as well as of its higher PN anagquations of motion is to use a diagrammatic representation.
logues A~"6@), allowing one to explicitly compute the A pole can arise iy only when three propagator linés-
spatial dependence of tHimear p9tentia|sv, V; andK for cluding the extra one coming froml~% when solving
instance. However, starting witth;; we need to Poisson- [g,,= non-linear sourdecan all shrink toward the first

. - 71 ~
integratenon-linearsources, such a8~ *(d;Ug;U). In three world-line. If terms of the type abov.g.4,Va;V\W,;) were

dimensions, these non-linear contributions are redUCibl?)resent in the source one could have a diagram where the
to the knowledge of the basic non-linear potentialsuch three shrinking propagators come frT %, 4.V, andd;V,
] i ] .

thatAg=r;'r, 1. We have succeeded in explicitly comput- r ,
ing the d-dimensional analogue of they potential, Then Reff [W;;(x)] would remain as an external attach-

namely, ment to this diagrantand would then fork into two “feet” on
the second world-line In view of the polexe ™! (with ¢
=d-3) arising from the triplet of shrinking propagators,

g D) =A"1(r2-9r379), (4.14  one would need to know REB[W;;(x)] up to e accuracy,
i.e., Re§[W;;(x)]=Red [ W;;(x)]+eW];(x) + O(&?) [in

. . . - _.Wwhich Wi’j(x) is defined by this expansidnlf such a term
Our result is reported in Appendix C. As indicated there, 'fhad been present we would have needed to use the full

we wished to explicitly compute some of the higher PN po- . : . A . i
tentials needed to write the closed form of the non-Iineard dimensional, globally determinegipotential given in Ap

sources relevant to the 3PN equations of motion, we shoul@endix C to determin&V;; , which would have entered the
extend the calculation of the potentigi® to the potentials ~final, renormalized equations of motion. However, because
@ and f{? of Appendix C. all such terms are absent at the 3PN order, the only external
Luckily, it is not needed to use a closed-form expressiorgttachments to the dangerous shrinking diagrams are simple
for any of the non-linear potentials. Indeed, similarly to whatlines, such for instance as the lines endingys(t) in Figs.
was used long agfB] when discussing the iteration gener- 2d, 3b or 4b presented below. Such lines do need to be evalu-
ated by Riesz-type sources, Ef].3), one can control the UV ated to accuracy, but this is easy because they represent
singular part of 0~ 'F(x) from the knowledge of the UV linear potentials such a& or V; which are known in dimen-
singular part of its non-linear sourégx).'° More precisely, ~siond via Eq. (4.4).
in the vicinity say ofy,, at each iteration stage we can de- In conclusion, the algorithm we use to solve, with suffi-
compose the source l(x) = Sing:(x) + Reg:(x) where the  cient accuracy, Einstein’s equationsdmimensions consists
singular part Sing(x) (with respect toy;) is a sum of terms  of (1) starting from the fullyd-dimensional expressions for
of the form Eg.(4.8), which are not(in the limit d—3)  the linear potential®, V; (and more generally for the parts
smooth functions ofx—y;, and where theregular part  of the non-linear potentials with delta-function soudceg)
Reg:(x) is a smooth C*) function ofx—y;. [The simplest  determining the local expansions, negr, of the singular
example of this~decompositi0n is E®.21) with, near point parts of the non-linear potentials by invertiﬂgSind;f’)(x)
y1, Sing,(x)=fkGmri™ and Reg(x)=U,(x).] If, for =Sind?¥(x) via formula (B26¢ of Appendix B; (3) com-
concreteness, we thgn consid%(rx)EA_‘lF(x), the ab.o_ve Pleting P@(x) by adding to Sinﬁ’)(x) the limit whend
decomp03|_t|c_)n entails a corre;pondlng Qecomposmon f.3 of Re(j:d)(x), namely Reé”(x) which is known from
P(x), and it is easy to see thatSings(x) = Sing:(x). From ¢ yrevious work on the 3PN equations of motion in 3 di-
this result, we can uniquely determine Sig) from ,ohqiong22]. Note that we denote by REYx) a formal

Sing:(x) using, e.g., the formuléB26¢) in Appendix B. This d-dimensional functionxe RY, the explicit expression of
local procedure does not allow one to compute the regula\;\lhiCh in terms of r.. n. etc. coincides with its
1 1 .

part of the Poisson potential id dimensions. Fortunately, 3-dimensional counternart. For instance E%%( ) denotes
thanks to particular simplifications that occur in the structure part. g

of Einstein’s field equations, a knowledge of Rég) in d the us(us{;ll rezglularfa:t_ of tﬁX) 't obt&lneddt_)y suptracltllrlg
dimensions for the complicated non-linear sources is nof oM 9 09 =In(ry 2 12) ,1e \ivloilree- 'mensionat 10-
cally singular expansions d 3)(r, r, °) aroundy; andy,

as given by thed—3 limit of Eqg. (C9) and its -2 ana-

%We have checked that for all the non-comp@ottendedl poten- logue. Afte_r thi_s dguble subtraction, %@gx) is conside_red
tials involved in this calculation, there are no IR divergencies, i.e.,asd a function inkt", and we can use a(sd)apprOXI(n;)atlon to
the integrals converge at infinity| — o for any small enough value g9(x) the explicit expression gisl(X)+gisAX)

of e=d—3. +Red?(x). More generally, in our calculations we use as

o
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approximation ta(® (which symbolizes here the non-linear d-dimensional Poisson-type potentid#.15 or (4.16, and

potentialsR; andZ;; at Newtonian order, and/; atthe 1PN their “pure Hadamard-Schwartz” 3-dimensional counter-
orde) the expression Sil’ﬁﬁ(X)‘F Redf)(x). Evidently, the parts, which were already obtained in Sec. Il B.
subtraction of the singular part needs to be performed only

up to some finite order im) andr} . We have checked the

choice we made ol in each calculation by doing two sepa- ) _ _

rate calculations for the valued and N+ 1, and checking B. Difference between the dimensional and Hadamard

that the corresponding final results are the same. We per- regularizations

formed also direct checks of the independence of the final ] o )
results on the precisi:dimensional extensions of the “regu- ~ We denote the difference between the prescriptions of di-
lar” part of the non-linear potentials, such as Kg)  mensional and “pure Hadamard-Schwartz” regularizations
_ Red>3)(x)+sP’(x)+O(sz) [in which P’ (x) is defined by bydmeans of the script IettldD..leen the .results R); anq
this expansioh We systematically added in all our non- P@(y,) of the two regularizationfrespectively obtained in

linear potentialsR , .. . ,\Nij some smooth contributions to Egs.(3.2) and(4.153] we pose

Red¥(x) vanishing withe, i.e., some substitutes for the

actualP’(x). These “substitutes” were determined in such a DP(1)=PW(y,)—(P). (4.17)

way that (i) they are homogeneous solutions of the

d’Alembertian equation at the required post-Newtonian or-

der, and(ii) the differential identities obeyed by the poten-

tials in d dimensions, Eq92.133, (2.13b, are indeed satis- That is, DP(1) is what we shall have tadd to the pure

fied up to the ordee, and with the required precisiod in Hadamard-Schwartz resul8.55 in order to get the correct

powergC of r; or r,. And we checked that our final results d-dimensional result. Note that, in this paper, we shall only

are totally insensitive to the introduction of such substitutescompute the first two termsa_;e~ 1+ag+ O(e), of the

for the functionP’(x). Laurent expansion PP (1) whene—0. This is the infor-
Finally, when evaluating the equations of motion, as givermation we shall need to fix the value of the paramateye

by Eq.(2.23, we must evaluate the valuext=y,; of many |eave to future work an eventual computation of the

terms given either by Poisson integrals of the faill) or  g.dimensional equations of motion as an exact function of

their 1PN generalization§}.13. This is quite easy to do in  the complex numbed.

dim. reg., because the nice properties of analytic continua- gjmijlarly to the evaluation of the differencBH=H©

tion allow us simply to gefP“(x') .-y, (say by replac-  _ HadamarfiH®)] in Ref.[35], the difference4.17) can be
ing X" by y; in the explicit integral form(4.11). Finally, we  obtained by splitting th&l-dimensional integra{4.153 into
simply have for the values af =y, of the potentials, three volumes, two spherical balg{”(s) and B{”(s) of
radiuss and centered on the two singularities, and the exter-
k ¢ di% nal volumeR“\B{? (s) UB{(s). Whend— 3 (with fixed's),
POy =~ 4—f EF(d)(X), (4158 B{9(s) andB{¥(s) tend to the regularization volumes(s)
TN andB,(s) we introduced in Eq(3.22. Consider first, for a

given value s>0, the external integral, over
0 B k dupd—d 20 (d) Rd\B(ld)(s)UB(zd)(s). (If wished, two balls with different ra-
QW (y)=- mj dxry CarF(x), dii could be used, with the same resuBince the integrand
(4.15H is regular on this domain, it is clear that the external integral
reduces in the limie—0 to the one in 3 dimensions that is
as well as for their spatial gradients, part of the Hadamard regularizati¢8.22. So we can write
(for any s>0)

. k(d—2) ; ny ;
aPW(yy)=— . fd x——F9x), (4.163 ~
™ r kJ ddx @
-— —F@(x
- 4 Jrhe{d(9usf(s) rd-2 0
3Q(y,) =7 f dxnyr“aEF O (x). (4.16 1 &

=—4— . —F(X)+0(e),
. . . . R r
As said above, the main technical step of our strategy will I RABSUBAS) T

then consist of computing thelifference between such (4.18

2OTherefore, our verification that the potentials we need do satisfyand we see that when computing the differefizie(1) the
the harmonicity condition&2.13 has been done only in the vicinity ~exterior contributions will cancel out modut@(e). Thus we
of the two particles. obtain, after this preliminary stdgollowing Eq. (3.22],
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ddx sPt2 s
—F9)+ > ——(f In| —|+1
p<=-3P+2 r

(f-2)

1

p)t

(4.19

s
_><n|£f—(—3> ] +0(e).
2

7

See Sec. IV of Ref[35] for a careful justification of the The multipole expansion being then correctly taken into ac-

formal interversions of limits—0 ande—0 that we shall

do here. The point is that in order to obtain the difference ~

DP(1) we do not need the expressionfdf) for an arbitrary
source poinke RY but only in the vicinity of the two singu-
larities: indeed the two local integrals ov&{?(s) and
B (s) in Eq. (4.19 can be computed by replacirig? by
its expansions when,—0 andr,— 0 respectively. We sub-
stitute ther,; expansion Eq(4.8) into the local integral over

B{?(s), and integrate that expansion term by term. This

readily leads to

Sp+2+qs

s (1)

1+& pg p+2+qe 7Y’

k d’x
_ =TC)
41 )8 (s) rd=2

()=~

count, we obtain

k d @
—F@(x
4 ) rd-2 )

1 gPH{+3+(q+1)e

C1+e f4 pte+3+(q+l)e

+ 4
(=) 1
x> aL (nSf)y.
= rﬂg 22p,q

(4.24

As we can see, simple polesl/e will occur in our two local
integrals, as determined by Eq4.20 and (4.24), only for

(4.20 the “critical” values p=—2 andp= — € — 3 respectively.
where we still use the bracket notation to denote the anguIaIF] tc’)\'?ﬁé \:‘\:)err;euq;jfelg)]?/vzxﬁggtfi)r(%?ftlj(fftrzgsgg(:ézg)x
average, but now performed thdimensions, i.e., pected we find that the divergencies wher 0, some value
e# 0 being given, cancel out between EGE20—(4.24) and
the remaining terms in Ed4.19), so that the result is finite
for any e #0. Furthermore, we find that if we neglect terms
of orderO(¢g), the only contributions which remain are the
Hered(Q4_,is the solid angle element around the directionones coming from the poléand their associated finite part
n;, and Qq4_;=27%4T(d/2) is the volume of the unit j.e., for the latter critical valuep= —2 in the case of singu-
sphere withd— 1 dimensiongsee Appendix B for more dis- larity 1 andp=— ¢ — 3 in the case of singularity 2. The other
cussion. To derive Eq(4.20 we used the following relation contributions in Eqs(4.20 and (4.24 have a finite limit
linking’k andQg4_4, whene—0 which is therefore cancelled by the correspond-
ing terms in Hadamard’s regularization. As a result we obtain
the following closed-form expression for the difference,
which will constitute the basis of all the practical calcula-
tions of the present paper:

dQgy_41(ny)
=[S M o). @2
1 - 1

4

k= —r——.
(d=2)Qq—4

(4.22

Concerning the other local integral, ongd)(s), things are
a little bit more involved because we need to perform a mul- DP(1)=—
tipolar re-expansion of the factoﬁ‘d present in that integral
around the poiny,. Writing down this multipole expansion
presents no problem, and in symmetric-trace-f&EF) form

1
—+s[|nr1—1])<f<f;,q>
q 1

o > (Lﬁ-slnsz)

e(l+e) Jo=d=qy

it readg® e(1+e) qp=g=q, \q+1
o0 +oo
rzfd:% (_)€o7 o réns (4.23 X2 (_)601 (N5t 3+ OCe).
' = o " ri;s 22 ' i=o {! rﬂe 2 4

(4.295

21The expansion is STF becaude? =0 in d dimensionsin ~ Notice that Eq(4.25 depends on the two “constants” fp

the sense of functions See Appendix B for a compendium of and Ins,. As we shall check these ) and Ins, will exactly
d-dimensional formulas on STF expansions. See also(€§). in cancel out the same constants present in the “pure Had-
Appendix C. amard” calculation, so that the dimensionally regularized ac-
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2

r
FO+ 1 52p@
2c?(4—d)

celeration will be finally free of the constantg ands,.

Note also that the coefficientg ) and,() in d dimensions DR(1)=H
depend on the length scalg associated with dimensional

regularization[see Eq.(2.4)]. Taking this dependence into

account one can verify that; ands, in Eq. (4.25 appear 3
——(k_)+0O| — 4,
only in the combinations Im{/¢o) and In&,/¢,). 4C2<1 #+O ¢4’ (4.303
Let us give alsawithout proo) the formula for the dif-
ference between thgradientsof potentials, i.e., rf
DoR(1)="H, F<d)—2—a§|:<d)
Do;P(1)=d;PD(y;)—(4;P);. (4.26 2¢c5(d—2)
. . . 1 1
The formula is readily obtained by the same method as be- - —(ntk_g)+0O[ —|. (4.30D
fore, and we have 4c? 1 ct
1 1 These formulas involve some “effective” functions which
DIP(l)=—— > —+eln r1)<nilf(81 ) are to be inserted into the functional brackets-bhnd7; .
€ gp=q=0q; 1 a Beware of the fact that the effective functions are not the
same in the cases of a potential and the gradient of that

potential. Note the presence, in addition to the main terms
H[---]andH[---], of some extra terms, purely of order
1PN, in Egs.(4.30. These terms are made of the average of
=)t some coefficients;k, of the powersr} in the expansion
PO E— <n§f(_‘"}_3q>+0(s). whenr;—0 of thesecond time derivativef F, namelysF.
— al 1+e o . . . .
(=0 12 They do not seem to admit a simple interpretation. They are
(4.27) important to get the final correct result.

1 1
s (i,
e(l+e) do=9=0; g+l

. C. Distributional derivatives in d dimensions
The formulas(4.25 and (4.27) correspond to the difference

of Poisson integrals. But we have already discussed that we Let us end this section by explaining in more detail how
shall need also the difference of inverse d’Alembertian intewe dealt with distributional derivatives id dimensions.
grals at the 1PN order. To express as simply as possible tHarst, it is clear that if we were dealing wittkdimensional
1PN-accurate generalizations of E¢625 and(4.27), letus  integrals of the type

define twofunctionals# and H; which are such that their

actions on any-dimensional fu_nctiorF(d) are given by the IEJ A% (X) a3y 4.31)
RHSs of Eqs(4.25 and(4.27), i.e., so that

whereg;; (x) is some(formally) everywhere smooth function

DP(1)=H[F¥], (4.288  of xe RY, with fast enough decay at infinity, and whare
=A"Y(—475{Y) is the elementary Newtonian potentialdn
Do;P(1)=H,[F®D]. (4.289  dimensiongdsee Eq.(4.53 abovd, we should, in a straight-

forward d-continuation of Schwartz distributional deriva-

. . . ives, consider thaf;;u; contains, in addition to an “ordi-
The dl_ffergnce of 1PN-retarded potentials and gradients Oﬁary” singular function d,;(u;)|  (treated as a pseudo-
potentials is denoted ] ord

function in the sense of Schwayiza distributional part

roportional to5¥(x—y,). In other words, we would write
DR(1)=R(y,)~ (R}, (4200 PP (=¥

4
. =9.. 5. 5@y —
D&iR(l)EﬂiR(d)(yl)—(ﬂiR)l, au(ul) alj(ul)\ord d 6”5 (X Y1)a (4-323

(4.29h
ik (V1) =ik (V1) —4—7(5--5 + 6, 8+ 6 6y)

where in 3 dimensions the potentRR(x") is defined by Eq. e KT o d(d-+2) 1T ST A
(3.295 and the regularized valuek); and @;R); follow X 8D (x—yy,), (4.32b
from EQgs.(3.2)), (3.23, (3.27), and where ird dimensions
R@(y;) and 4,R(y;) are given by Eqs(4.10, (4.19,  where the indication “ord” refers to the “ordinary(pseudo-
(4.16. With this notation we now have our result, which will function part of the repeated derivative. We have also added
be stated without proof, that the difference in the case othe corresponding result for the fourth derivatives of the
such 1PN-expanded potentials reads in terms of the abovéess singular” kernelv;=A ~*u;, Eq.(4.5b. Note that the
defined functional${ and; decompositions above &f;u; or d;;v4 into “ordinary” and
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“distributional” pieces arise because of our working in hand, the extended version of distributional derivatives intro-
(d-dimensional x space, and of explicitly computing some duced in[23] does yield some specific additional contribu-
derivatives, say asij(r'l‘)‘orf[n&ij +n(n—2)ninl]ri 2 If  tions, two of which were already mentioned[i22] and are
we were working in the ¢-dimensional Fourier-transform ~ 'éported in the itemsi) and (ii) of Sec. Il D above, and a
spacek (which is where dimensional continuation is most third one(also included ir[22]) which comes in connection
clearly defined [34]), the corresponding decomposition with the second time derivatives in our formulas for the dif-
would be simply algebraic: e.g'ki/k?=k(/k?+d 15, ference, Eqgs(4.30. o ,
wherek(i) denotes the STF part dfi =kik. Let us indicate here that the distributional second time
The decomposition&.32 are clearly needed when deal- derivatives ind dimensions have been obtained by using the
ing with simple integrals of the typ&+.31) [with a smooth following (generalizations ¢f Gel'fand-Shilov formulas

. . d . .
()] to ensure consistency with the requirement that ond44): valid for general function&?(x) admitting some ex-
may integrate by partévhich is one of the defining proper- Pansions of the typé4.8): namely, for the spatial derivative,

ties of dim. reg.[34]), and we shall therefore employ it, o)
yvhen applicable. On the other _hand, m_ost of the singular f9iF(d):(9iF(d)|o,d+Qd—12 i <n'1|-f(_‘°“%_2‘_1>(9l_5§-d)
integrals that we have to deal with look liké.31) but con- (=0 t! 1

tain asingular function ¢(x), of the type of Eq(4.9). It is,
however, a very simplifying feature of dim. reg. that when t1e2, (4.39
considering integrals like4.31) with somesingular ¢(x) we
can simply ignore any distributional contributionss(®(x
—Yy,) or its derivatives. Indeed, as long as the integar the
powers "% present in Eq.(4.9 is different from zero
(which is precisely the case of all delicate terms involving
several propagators shrinking towards a particle worldyline

where aLa(;” is the <{th partial derivative of
the d-dimensional Dirac delta function at the point L (
=i,i,---iy) and where the angular average is performed
over the @—1)-dimensional sphere having total volume
Q4_1; and, concerning the time derivative,

the “singular” expansion(4.8) can be considered, in dim. ()

reg., as defining a sufficiently smooth functifloy taking HFO=0F | —Qq 1> ——(ni(nw) 9, )

bothge andN large enough in Eq4.8)] which vanishesas o =o ¢! 1

well as its derivatives, at=y,. Therefore, all the “danger- NP ORI 43

ous” terms of the form Sing (x)5¥(x—y;) unambigu- oy tlez. (4.39

ously vanish in dim. reg. . From the last formula one deduces the second time deriva-
Let us now consider the consequences of this fact for thgye in a way similar to Eqs(3.43. We have indicated in the

time derivatives occurring in expansions such as E480.  jiem (vii) of Sec. Il D the correction it leads to when com-

; i — . . .
ample onuy or vy, i.e., on functions of ;=x'—y;(t), can  ongd time derivative, and we have subtracted it fraffi to

be treated in a simple way from the rule=—vd; appli-  define the pure Hadamard-Schwartz resal65. Therefore,
cable to the purely distributional part of the derivative. Forwe consistently do not need to include such an effect into the
Instance we can write differencesDP(1) discussed here.

Finally we are now in position to obtain the supplement of
accelerationDa; induced by dimensional regularization,
which is composed of the sum of all the differences of po-
tentials and their gradients computed by means of the general

4

dR(u) =dF(uy)|,~ g VidD(x—yy),  (4.333

A o formulas of (4.25, (4.27 and (4.30. The termDa; when
&faij(ul)=¢9t2(9i,-(ul)|ord—m(&jvinL 2vv}) added to the “pure Hadamard-Schwartz” acceleration de-
fined by Eq.(3.55, gives our result for the dimensionally
X 8 (x—y,). (4.33)  regularized(“dr” ) acceleration
dr__ ,pHS
We have checked using these formulas that all the ay=a " +Da, and 1-2. (4.39

d-dimensional terms coming from second-order derivativeiore details on the practical computation D, (which

of potentials, taken in the distributional seri$er instance  parts of the potentials contribute; what is the diagrammatic
the term\W;; 9;;V in the source of th& potentiaf?) yield the  picture will be given in Sec. V C.

samepurely distributional contributions, in the limit—0, as

the ones that would be computed using what we called above V. DIMENSIONAL REGULARIZATION OF THE

a “pure Schwartz,” three-dimensional computation of such EQUATIONS OF MOTION

contributions[to “smooth” integrals (4.31)]. On the other
[ 9 (4.31] A. Structure of the dimensionally regularized equations of

motion

22Since this term is to be computed at the 1PN order, it contains The preceding section has explained the method we used
not only second-order derivatives of, but also fourth-order de- to compute the dimensionally regularized equations of mo-
rivatives acting orv, . tion as the sumd=1,2; considered modulo)2
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ag'[s,eo]=a2“5[rg,sa+1]+1>aa[r;,sa+1;s,eo],( )
5.1

where the label “pHS” refers to the “pure Hadamard-
Schwartz” definition of the acceleratidme., the “raw” re-
sult of [22], after subtraction of the additional contributions
quoted in Sec. Il D above, E¢3.55], and whereDa, is the

PHYSICAL REVIEW D69, 124007 (2004

€f)”1+"2)scnln2 which has the same dimension a{S;:). Al-
ternatively said, the ensuing fact thﬂ 1+"2)€cn1n2 has the
same dimension & %) implies, as indicated in Eq$5.4),
a dependence m‘nlnz on Inry, whene— 0. Notice also that

in Eq. (5.3 we have introduced separate notations for the
coefficient ofv, and that ofv,. Actually, the Poincarewvari-

difference induced when using dimensional continuation as,ca of the equations of motion imposes the restricBn

the regularization method, instead of Hadamard’s one. A first_ g»

check on our results will be that, as indicated in Eql), the
four regularization parametersvith dimension of length

ri,r5,51,S,, that enter the Hadamard method must cance

betweeral™ andDa, to leave a result for the dimensionally
regularized acceleratior:ﬂr which depends only on the two
regularization parameters of dimensional continuatien:
=d— 3 and the basic length scafg entering Newton’s con-
stant ind dimensionsG=G\{{, where we recall thaG,
denotes the usual three-dimensional Newton constant.

The dimensionally regularized acceleratithl) has the
structure

agr[Y12,V1 V2= anal Yzl + a1pnal Y12, V1, Vo]
+ &ppal Y12,V1: V2] + @2 spral Y125 V1, V2]
+ agppal Y12,V1, V2], (5.2

where we denotg,,=Y;—Y,. The 3PN term(which is the
only one to have a pole at=0) has a tensor structure of the
form (say for the first particlea=1)

Ani,+B'v;—B"vs, (5.3
where, as usuah,,=Y;,/r 1, denotes the unit vector directed
from particle 2 to particle 1. The scalar coefficied{sB’,
B” entering the equation of motion gf can be decomposed
in powers of the masses, say

Gt em’tm)2
1 m;
A= > Cnyn,(V1,V2,N12,INT 1)) T
1<n;+n,<4 c6rlé 2
(5.43
Gt em’tm)2
1 m;
B'= > Ch . (V1,Vo,N10,INT 1)
o Mt Y1 Y2 T2 L 6 .Nytnyt1
1sn;+n,<3 r12
(5.4b
Gt rem’tm)2
1m;
n __ n
B'= > 3Cnln2(V11V21n121|nr12) P
<n;+n,<
1=n3+ny Cry
(5.40

wheren; and n, are natural integers, with the restrictions
indicated. Note that, in Eq$5.4), we have conventionally
factored out an integer power of the “full"d-dimensional
gravitational constan®, and a corresponding integer power
of rq,.
3-dimensional dimension of, sagi,*) and the dimension
of Cnyn,- UsingG= G\{g one sees that it is the combination

This creates a mismatch between the usual

so that the last two terms in E(5.3) are proportional

to the relative velocity,,=v;—V,. (Note, however, thaB’

is not a function ofv,, only; it depends both om; andv,.)
Because the calculation of the separate contribut@}is
and Da, to the equations of notion breaks the overall Poin-
care invariance of the formalism, our computation of the
separate piecea] > and Da, will involve partial contribu-
tions toB’ andB” that do not coincide. It is only at the end
of the calculation that the equaligz=B’=B" will be satis-
fied, so that finally

agpn1= AN+ By,

(5.5

Most of the coefficients, c,;lnz, Cnyn, entering the

3PN acceleration are well behaved when: 0, in the sense
that their evaluation never involves any pote$/s. By this

we mean that whatever be tlieeasonableway of decom-
posing the integral giving a coefficient in separate contribu-
tions, the latter contributions do not involve pole&/s. The
subset of coefficients whose evaluation involves poles coin-
cides with the set of “delicate” coefficients in the Hadamard
regularization, namely the nine coefficients contributing to
terms of the following form in the acceleration of the first
particle:

G4

6.5
Cry,

3 2 3
[Caimimy+ CooMim;+C13mMim; Ny,

32
G’mim,

o2 [C21(V1,V2) N1+ Coa(Ve,Vo) Vg

—Chy(V1,V) Vo]

3m3
G°m;
+

o2 [Coa(V1,V2)N1pt Coa(Vy, Vo) Ve

—Cog(V1,V2)Va]. (5.9
The first three terms in Eq5.6) do not depend on velocities
and will be referred to as th&taticdelicate contributions, by
contrast with thekinetic delicate contributions involving the
velocity-dependent coefficients;, €5, €5, Coz, Chg, and
Cos (they depend owy, v, and also om,,).

B. Pure Hadamard-Schwartz static contributions to the
equations of motion

Correspondingly to the decompositi¢s.1) of the equa-
tions of motion, the dimensionally regularized static
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contributiong® c¢37, ¢35, ¢ to the acceleration of the first tribute to the static part. These are the self t¢88), the

particle can be written as the sum¢n=4, m=1, n=1) Leibniz term (3.49, the V correction given by(3.50, the
EOM non-distributivity (3.52), and the distributional time-
cI [el=cP 1,50+ Demd r1,8z.6]. (5.7  derivative ong3.54). Following Eq.(3.55, and focusing on

the static contributions, we nosubtractthese static terms
In this subsection, we discuss the explicit evaluation of thefrom the result(5.9) in order to get the looked-for pure Had-

pure Hadamard-Schwartz static coefficiecl&:. amard contributions:
As explained in the previous section, the pHS static con-
tributionscP ' r! ,s,] are obtained from the results reported 779
y pH ’ __ ~BFf . -
in [22] by undoing two things. First, the “BF” results re- cBiri s]=c5ilr},s;] 210" (5.103

ported there fora; [Eq. (7.16 of [22]] were expressed in
terms of the three parameter$, r;, and\, instead of the 9
two pure Hadamard parametersands, more relevant for By ri.so]=cB5[r1,s,]+ 210’ (5.100
the present purpose. The introduction of the parametgas

motivated by requiring that the full set of equations of mo-

tion (which a priori depended on four independent regular- cPr! ,s,]=cBilr),s,]—5+ 88_ £1+ i
izing parameters;, r5, S;, S;) admit a conserved energy. 9 9 15
This led to the link* Eq. (7.9 in [22], (5.100
r - 159+ my+m, o i.e., explicitly,
"5/ 308 T m, 8

1123 44 ( 12

cBir),s]=———+—1In —) (5.113

When inserting Eq(5.8) in the expression o0&~ r;,ry,\] 180 3

r. !
we find, as it should be, that the result simplifies to an ex- !
pression depending only on the two pure Hadamard param- 21
etersr; ands,. This leads to the following net results from chhr] ,s,]=166— 1_67T2' (5.11h
[22]:
3187 44 [ry, s, 7291 41 | 44 [ry,
CglF[ri.Sz]=—F6o+ Eln(—,), (5.93 C‘fss[fl,sz]=f—§3ﬂ2—§|n %)
M1 (5.119
cBr! s,]= 34763_ 4_1772 (5.9 Note in passing that though the coefficien} does not con-
2207 210 167 ' tain regularization logarithms, its evaluation involves many

intermediate logarithmic divergencies that cancel in the final
BF 1565 41 44 [y, result. Such “cancelled logs” lead to as much ambiguity in
C13[r1,82]= 9 16" = In the final result as uncancelled ones that explicitly depend on
(5.90 an arbitrary regularization scale such gsor s, in cg; or
C13-
Second, Ref[22] obtained their results for the equations of e
motion by adding to the pure Hadamard-Schwartz contribu-
tions 7 additional corrections, imposed by their extended
Hadamard regularization and explained in Sec. Il D above: We now turn to the evaluation of the “dim. reg. minus
see the itemsi)—(vii) there. Note that these various correc- pure Hadamard” differenceBc,, in Eq. (5.7), coming from
tions affect the “delicate” contributions ta,, in general the differencesDa; in Eq. (5.1). We start from the
both the static and kinetic ones, but only five of them con-d-dimensional expression for the acceleratan[see Eg.
(2.23 for a short-hand formy which is itself expressed in
terms of thed-dimensional elementary potentidls V,, K,

2°As explained above, we consider only the “delicate” ones. InW;;, R, X, Z;;, ¥; and T defined in Sec. II. Each elemen-
the present case, this means that we do not consider the contributi¢ary potential can be naturally decomposed into a “compact
c¥=16+0O(¢), unambiguously obtained from the test-mass limit (or, equivalently, “contact) piece(whose source is compact,
my<<ms. i.e., involves the basic delta-function souregso;, ;) and

24W€ use here the link corresponding to the “particular” improved a “non_compact" One(whose source is non-”neaﬂy gener-

distributional derivative [JF] given by Eq.(3.38 above. Another  zted and extends all over spacEhe potentiald/, V; andK
derivative, the “correct” one, was also considered [@2] and are purely “compact "=VC V.=VvC K=KEC. while all
1 ’ I [ ’

shown to yield equivalent equations of motion. The pure Hadamard . . . ~
result does not depend on this choice because we shall subtramg other potentials admit a decomposition of the J‘ON{}
below the specific additional contributions coming from the distri- =W5+W”C. etc. For instance, the “compact” part Wf; is
butional derivative LI F]. defined by

C. Dimensionally regularized static contributions
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A 1
DWﬁ:—47TG O'ij_d__zaij()'kk), (512 S B ...
.... E . .....:::a
while its “non-compact” part is definedby | | | | 7
ne__1d-1 1 2 1 2 1 2
DIW;; ——Ed_—zaiv(;jv. (5.13 . X .
A more complicated example is the potentiaE X+ XNC
with -, =
|=.-;.‘_"~ :_'.':4» 2z etc.
oc 1 -3 | T 1 g g
OX>= _4’7TG d_2V0'“+2d_1O'|V|
d—3\2 1 1 2 1 2 1 2
+ _d—l) U(§V2+K : (5.14 d ¢ f
FIG. 1. Diagrams representing “compact” contributions to ac-
and celerationa; . The dotted line represenis 2, the cross represents
the field pointx (here taken on the first world-lineand the bullet
1d-—1 represents either a source point(or the figures beloyan inter-

CXNC= Wij 9V =20V;9;V;+2V;d,0,V + E Ev(yfv mediate nonlinear vertex.

d(d—1) represents aelf-actiontern? in (J;V), with source propor-
(A2 (5.15 tional tom, 6(x—y,). By contrast, Fig. 1c might correspond
4(d—2)2 to another term in &Nll where the compact sourae is
concentrated aty, o,= u,8(X—Y,), and where a part of the
This NC contribution can be further decomposed into the“effective mass,”
piece whose source is quadratic in compact potentials,
namely,

5 2 m,C (d—2)+v3/c?
SVV_\A/C M2= , (6.19
OXY"Y=W;;d;;V—24;V;d;V;+other VV terms, d-1 \/—(g,,(,)zv‘z)v‘g’ V=(9),
(5.1

and its “cubically non-compact” piece given by contains, in addition to the overall factor,, another factor
m;. As all the sources oK® contain, in addition to some

¢ - d-1 “hacin? - T2 :
DXCNC=W”C(9”V=D*1 4+ VPRV basu? o#_y, iaApCoter?tlaI V, Vi, V° or K), the d|a_grams
2d-2 contained ina;[ X~] will be at least of the form of Figs. 1c,

(5.17  1d, 1e, 1f, or will involve a more complicated mass depen-
nce.

The quadratically non-compact terra$[ X"V] will then
contain diagrams of the type of Fig. 2, while the cubically

de
To get a feeling of the actual evaluation of the difference
Da, let us consider a specific contributiondp, say the term

4 non-compact terna;[ X°N©] contains many subdiagrams of
ail[)”(]z _(ai)”()xzy . (5.18  the type sketched in Fig. 3.
c* ' The particular term(5.18 that we considered contains

only diagrams of the general type of Figs. 1, 2 or 3. Note,
It can be decomposed intd) its “compact” piecea;[ X°], however, that there are also more non-linear contributions to

ey 1 .

(ii) its “quadratically non-compact” on@,[X"V], and (iii) 21 Such as some terms in
its “cubically non-compact” part,[ X°NC].

It is sometimes convenient to think of the various contri-

butions toa; in terms of space-time diagrams. If we repre-
sent the basic delta-function sourd@soportional tom; 8(x

ZWhile in usual regularization schemes using dimensionful cut-
offs (e.g. small length scales, s,) the self-action diagrams, such
. as Fig. 1b or Fig. 1d, are the first divergencies that one encounters
—Y1) an_dlmzé(x—yz)] as two ‘\‘NOI’|d-|Ine”S and _eac_h Propa- and must then renormalize away, dimensional regularization has the
gatorl]™" as a dotted line, a “compact” contribution ®  echnically useful property of setting all of these diagrams to zero.
will be represented by one of the diagrams in Fig. 1. Folipdeed, when using a time-symmetric propagag’y}n=A*1
instance, Fig. 1a can represent a tedjV}; in a; in which +c 292A"2%+... these diagrams are seen to involve the
the (compac}t sourceo of V is proportional tom,8(x—y,)  coinciding-point limits of |[x—y,|>~ 92", which vanish whenx
and involves no further powers of the masses, while Fig. 1b-y, by dimensional continuation id.
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Wy etc.

FIG. 2. Quadratically non-compact contributions to acceleration  FIG. 4. Other non-linear contributions to acceleratin
a.
-1

are replaced by non-relativistic onesxyx,z—(~k/47-r)|x
.16 —x'|717%. Indeed, when three such propagators shrink si-
ay[T]= — (M1, (5.20  multaneously, the overall integral contains a subintegral of
c the form fd3"ex(|x| "1 7¢)3~ f3drr ~172¢~a~2¢/(—2¢).

corresponding to diagrams of the type sketched in Fig. 4. On the other hand, beyond our obtaining a heuristic feel-
Similarly to the diagrams Fig. 1c and Fig. 2d, all the dia-ing of what are the origins of the polesag, we did not use
grams above can be modified by the presence of addition&@ diagrammatic technique for evaluating the equations of
lines propagating directly between the two world-lines andmotion. [Note, however, that a generalization of t(@PN
corresponding to “potential” modifications of compact- level) work [45] would lead to a diagrammatic technique for
support sources. evaluating the Fokker Lagrangian of two point mask@sir

As underlined in Sec. IV A above, the 3PN equations ofactual computations used the techniques elaborated in the
motion donotinvolve “quartically non-linear” contributions ~ previous sections.
corresponding to diagrams such as those of Fig. 5. Terms like We evaluated the contributions to the differeney
AL(V23,VaV) or A~ (3 VaX) are of this form, and they coming from all the terms in the expression fardeduced
do occur in the 3PN acceleratiag, but since they involve 1oM EQ. (2.19 together with the complete expanded forms

double contracted gradients, it was possible to integrate theff*1l); (A12). However, as expected from various
away thanks to ruléi) of Sec. Il: see Eq(A12) in Appendix arguments—diagrammatic analysis, existence(dssibly

- cancelledd logarithms in the correspondingd=3
A below. On the other hand, terms of the fosVa;VW; or evaluation—most of the terms lead to a vanishing difference

YYBERY, 6 : S .
9iWixdjWyi do not occur at the 3PN ord€¥(1/c®), although  pa, . The only terms that give non-vanishing contributions

they are of the third po#inkowskianorder O(G?). to Da, are the four terms given in E2.23,
Drawing diagrams often helps to highlight the nature of
the UV singularities contained in the integrals they represent. 4 16
As a rule of thumb, the “delicate” diagrams, that might in- al[X]=—(3;X),, ay[T]=—(4T),,
volve poles, or cancelled poles, wher-0 (corresponding c? c®
to logarithms, or cancelled logarithms, @+ 3) are charac-
terized by the presence of a subdiagram containing three o 8 d oA 16d |
propagator lines that can simultaneously shrink to zero size, ai[Ri]= — 7 (R, a[Yi]= — o (Y1
as a subset of vertices coalesce together on one of the two c* dt c® dt
world-lines. Examples of such UV dangerous diagrams are (5.21

Fig. 2d and Fig. 3b[for vertices coalescing towards

t,y;(t))] or Fig. 3d and Fig. 4dfor vertices coalescing on . .
t(hglsfe)c)c])nd w:)grld-lin)e Thel?omg(er d;/agrlams can giv:e ?)oles one needs a 1PN-accurate treatment of both their respective

-1
proportional tom"{mz (with some velocity dependence, or sources and the propagatar N A:paArt fromA the _Compact
some extra mass dependence due to an extra line propagatipigPPort terms in the sources fdr T, R andY; which lead

between the two world-lingswhile the latter can give poles 0 zero difference, most of the non-compact terms do lead to
proportional to mg (possibly with some extra velocity or SOMe non-vanishing contributions to the difference of accel-

mass dependenceThe reason why three simultaneously eration Da; . We give in Tgble; I—_Iy the contributions to
shrinking propagators can yield polessas: 0 is easy to see Dc,,n associated to the various individual source terms of the

in the approximation where the relativistic propagatars®  “delicate” potentialsX, T, R; andY;, which were displayed

Note that, for the contributions associated withand R,

.. .. ..
e e e, ... S .
D U S R I ey 1] ete
2 I 4 * 4 etc Yoo
1 2 1 1 2 1 2
1 21 2 1 201 2 a b ¢ d
a b c d

FIG. 5. Quatrtically non-compact contributions which riat oc-
FIG. 3. Cubically non-compact contributions to acceleratipn  cur in our calculation of acceleratiam at the 3PN order.
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TABLE |. Static contributions ofDﬁif((l). All the results are presented modulo some neglected terms
O(g). The “principal” part of a term corresponds to the terti ! in the 1PN symmetric propagator
Oipv=A"1+c292A 2, while the “retarded” part corresponds to the purely 1PN piec€s?A 2. The
“extra term” refers to the last term in the RHS of E@.30D. Note that, in view of Egs(5.21), one must
multiply the results by a factor of 4 in order to get the contributions to the coefficiegts, in the equations

of motion.
1
ZDCSl ZDCZZ ZDC13
" 4 1 1 103 1 1 5 1 1
Wi i V] princi -z bl e
19 Vlprincpa 5t 6s 3 200" 205 10" 18 12 '6M
A 25 2947 23 23 53
Wi 4,V 2 - e _evml e2 L, es e R
ij%ij | retarded 18 38+3|nr 1800 608-‘1-30|I‘1r 90 1284-6"'1S
1/d—1 1 1 1 1 1 1
E(de)Vprrincipal 1876 3™ 18 65 3™ 0
1/d—1 1 1 1 1 1 1
z(de)V‘fV'retawed 186 3 6765 3™ 0
Extra term _E 1_3 0
6 60
7 1 1 7 13 1 1
Total Ly - _ e
15 65 3™ 60 15 65 3"
in Sec. Il, Eqs(2.12 (of course, we limit ourselves to non- 22 44 102
compact source termsin these tables, we use the simplify- Degy=— e + g'n(qflfn)— 5 +0(e),
ing notation (5.23a
=In(ar’ =In(Qqs q= C
In,=In(qrir), Ing=In(gsarin), q=4me~, De,p=9+0(s), (5.23H
(5.22
whereC=0.577 . . . denotes the Euler constant. B 44 568
Summing up the separate non-vanishing contributions dis- Deys= 3 3 IN(aS,rs2) + 15 +0(2).
played in Tables -1V, we get the following total differences: (5.230

TABLE II. Static contributions ofDa; T(1).

1
16 PCar 16 DC22 16 PC13
2,0,V 119 y 1429 11 11 28 2 4
900 30s 15" 900 ' 30s 15" 9 "3 3
1Yd-12 19 1 1 119 1 2 19 1 1
g(—d_z)va?v 36 65 3™ 250 15 "15M™ 36 65 3M
1
—5(aVv)? 0 0 0
_@-ne-9) 0 0 0
4(d-2)2 "
(d-1)(d-3) p 0 0 0
4d-22
1/d-3) .
0 0 0
‘z(de)Wﬂ%K
Total _g_i E 3_97 = T E i_
50 5 (5™ 300 10 5™ 15 2: s
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TABLE |Il. Static contributions ofD(d}?{i/dt)(l). The ‘principal” part, “retarded” part and “extra
term” have the same meanings as in Table I.

1 1
§DC31 §D022 g'DClg
d-1 31 1 2 31 1 2 0
e 3NV Vil principal ~18 3% -i-§|nr 18" 3 +§ In,
d-1 43 1 2 43 1 2 0
e NV 6 Vilretarded E+ 3 *§|nr l—8+ 373 In,
da-1) 5,1 1 5,1 1 0
- 5 atvaiv|pnnmpal 4+ 4e 2 In, 4+ de 2 In,
4(d—2)
7 1 1 7 1 1
-1 a2 tan ELANE 0
B VOV retarded 4 4e 2 4 4e 2
4(d—2)2
Extra term L 1 0
ate Z Z
1 1
Total - -3 0

Finally, adding Egs(5.23 to the pure Hadamard-Schwartz ADM coordinates and resulted in faite (i.e., without 1£
result(5.11), we get the dimensionally regularized static con-poles answer[35]. Our task in analyzing the physical mean-
tributions toa; : ing of the harmonic-coordinates resif.24) is to interpret
22 a4 959 the presence of &/poles in it. For this we have to remember
I T n(arl) — —+ 0 5.24 that, as in quantum field theof@FT), dimensional continu-
C31 3 3 n(quZ) 36 (8)1 ( . 6) . . . . . . . .
€ ation is aregularizationmethod which, like all regularization
methods, transforms truly infinite results, say containing

cI=175- i'_éﬂer O(e), (5.24bH f512d3x/r§, into finite, but “large” ones, which depend on
some cutoff parameter, e.q.;izd3x/rf:47rln(r12/sl) or
44— 1799 41 fhzg3tey 312 1/e Any regularizati t be fol-
ar 5 ) 3 . Any regularization must be fo
cli=—— —=In(qré)+ — — — 7>+ O(¢). 0 o .
373 3 (arz) 9 16" (&) lowed by arenormalizationprocess which allows one to ab-

(5.240  sorb the cutoff dependent terms in some of the basie
L arametersf the theory.
As expected the two Hadamard regularization Iengtl‘P In order to have a clearer understanding of the poles in the

’ HS
scalesr, ands, hgve cancelled betwees;; gnd DCpp to (statig equations of motioii5.24) (we shall prove below that
leave a result which depends only on the dim. reg. regular(—)ur discussion extends to the full, velocity-dependent equa-
ization parametee=d—3. One might be surprised by the ' y-aep d

- dr 4412 tions of motion, we need to analyze the presence of poles in
presence inc,, of terms = 3 In(r{,) compared to corre- . » Co . .
sponding terms* % In(r,,) in ™S, and by the absence of the “bulk” metric, i.e., the metricg,,,(X;y1,y2) evaluated at
2 ! mn '’ g generic field poink, away from the two world-lines. In-

any adimensionalizing length scale in these logarithms o . . o .
2 . deed, if we were considering the gravitational field generated
ri,. These two properties can be understood when one re-

. . . y regular(i.e., non point-like sources, a complete physical
members from the discussion above that the Coemc'emaescription of their gravitational effects would necessitate

Wh'Ch. haye th?mf%medrphysmal dimensioncs ® are the  ihe simultaneous consideration of the bulk metric and of the
combinations{y" " "*cy,. In the present case, this means gqyations of motion of théextended sources. Similarly, in
that€°chy, are dimensionless. It is easy to see, thanks to thene present formal study of two-point-like sources, we need
pole terms¥ 22/(3¢) and the expansiofig®=exp(4 In €o) to consider both the equations of motiony,

=1+2¢In €3+ O(s?), that the combinationsf¢®cy; and = a,(Y1,Y2,V1,Vs) and the bulk metric
¢5°c; do indeed depend only on the dimensionless quamigw(x;yl(t),y2(t),v1(t),vz(t)).
tiese and In¢i,/¢5). It is here that the diagrammatic representation introduced
above plays a useful role in highlighting the structure of
VI. RENORMALIZATION OF THE EQUATIONS OF divergencies in the equations of motion and in the bulk met-
MOTION ric. Indeed, it is clear that the divergent diagrams of the
. . . . . equations of motion of the first particle, where the pble is
A. Poles in the dimensionally regularized bulk metric due to the presence of a subdivergence induced by three

The first computation of the dimensional continuation of propagators shrinking onto the second world-ligech as in
the 3PN gravitational interaction of point masses was done ifrig. 3d or Fig. 4d will correspond to similar ¥ poles in the
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EDCgl EDCZZ EDC:B
Wy di Vi 0 0 0
1/d-1\ . 65,2 4 107, 5 5 111
—5(—d,2)atwmv 183 3™ 75 12 6 750 60 30
5 257 7 7 149 2 4 71 1 1
I WV 2o 1 149 2 4 ot 1
K 450" 60c 30 225 15 15" 450" 60s 30Ms
- 257 149 71 1 1
— 3 W, 9,V _esro o 149 2 4 .1 1.1
KTk 450 60s 30 225 15 15" 450 60 30Ms
d-1 o 2681 19 19 3791 53 53 111
d—2 VIR 900 " 306 15 900 " 60c 30 450 60 30"
d(d—1) 7537 1 +1| 7971+2| 7337 1 +1|
T A[d-2) VidiVa v 100 10s 5™ 2 & My 1700 10s 5'Ms
d(d—1)> 9 43 2 . 8 11
~g@=2)y VAVav 4 25 M 25" 5 5 100" 10: 5"
1/d—1\2
_ E(_d — 2) V(?kVﬁkVi 0 0 0
1/d—1 9 1 9 1
E(dTZ)V(;tZVi 5 +21In, 5 8-‘r?_h’lr 0
LAY 0 0 0
(d—1)(d—3) 0 0 0
Wz_ﬁkKﬁin
d(d—1)(d—3) 0 0 0
2@ VK
d(d—1)(d—3)
—a@ 2y VK 0 0 0
69 3 3 69 3 3 0
Total 2 .° _ - _ 2 .F
100 10e (5" 100 10e 5"

bulk metric, for the corresponding “bulk diagrams” where exchanging the labels 1 and 2. On the other hand, note that
the special point marked by a cross in the diagrams abovehe bulk poles=m? of the type of Figs. 6¢ and 6d do not
(denoting the coincidence=y,) is detached from the first (necessarilycorrespond to poles in the equations of motion
world-line to end at an arbitrary point in the bulk, as indi- of y, because their coincidence limits—y, induce dia-
grams of the type of Fig. 3a or 4a containing four shrinking
Evidently, in addition to such diagrams as Figs. 6a and 6propagators instead of thre@lthough such diagrams would
exhibit worse divergences in dimensionful cutoff regulariza-
tion schemes, they are generally non dangerous in dimen-
sional regularization because the integrdf* *x/r}*** has

cated in Fig. 6.

which will contain (at least a factor mg, there will exist
“mirror diagrams,” containing a factomi, and obtained by

o
“ex

FIG. 6. Some divergent diagrams for the bulk metric. Here,
contrary to the previous figures, the field point, labeled bykais

detached from the first world-line.

no pole as=—0.)

A careful analysis of the possible presence of poles in the

various potentialsV,V;, ..., T we use to parametrize the
bulk metric (aided by the structure of potentially dangerous
terms sketched in Fig. )6 shows that, at the 3PN
approximatiorf® such poles can be present only in the 1PN-

level expansion oK and in the Newtonian-level approxima-

*That is at ordec™® in goo, ¢~ 7 in gg;, andc™®in g;; .
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tion of T. Drawing on the results di22] and[37] we can  Similarly an analysis of the second source term in @b
also see that all velocity-dependent terms in the poles preselvil.e'dS

in X;pyandT (i.e., the terms proportional @3y 2 or m3v3)

exactly cancel in the combinationx4c*+ 16T/c® that mat- 1‘-"‘?_ ~
ters for the bulk metric[ This shows up, for instance, in Eq. static(2)
(7.1) of [22] which implies that the divergencies linked to the

second world-line, characterized by the presence sf,ldo  so that the full(statio contribution of T is

not depend on velocities. This shows up also in the absence

of poles in the velocity-dependent contributionsigropor- S m? 1 .5 P13

tional tom3; see Eqs(6.479, (6.479 below] We are there- Toaic™ 75 © Mia1djM - (6.6
fore left with evaluating the poles present in thatic limit

(v1,v2—0) of XypyandT. Clearly, from Fig. 6, the poles in  The analysis of the pole part in the static limit Xf Eq.
Xipn @and T will come only from cubically non-compact (6.1a, is more intricate because one must expand to 1PN
(CNC) sources. Finally, as we are interested only in the poleaccuracy both/,=Gm,r_ 1™+ (1/2c2)Gm,d?rL ¢ and the
part we can neglect thé dependence of the coefficients in propagatoi~!. This yields

the sources ok andT (which we indicate by using a symbol

=). Thus, these poles can only come from g
1 ~

static

1 )
—Gmialar 6.5

16 3] —1-3
— ——-—maldr,; - C. (6.7

“ _ n 12 2
XSate=0 l[ﬁijVVV{\j‘C] c

=0 Ya;vO H—aVo;V)], (6.19 Let us now consider the improved potential(2.10 that
makes up the essential part gy,
A 1 -
Tsane=1 1[§V20?V+ IV i 2 (d—3 ax 16T 4% 16T
=V—- —| ——=|K+ —+—=V+—+ —,
1 c2\d—2 ¢t cf ¢t cf
zml{iv%fw aijvml(—zaivatvj)} (6.9

(6.1b

The static poleginvolving factorsm? or m3) in Egs. (6.1)

such that goo=—exp(—2V/c?)[1-8V,;V,/c®—32RV;/c®
+0(1/c19]; see Eq.(2.113. Combining the results above,
we find that the only ¥ poles in the bulk metric

are then obtained b§l) considering sources involving three 9,.,(X.Y1,Y2) show up ingo at the 3PN level and arevhen
timesV, or three times/, (whereV, denotes the piecem,  expressed in terms of the improved potential and after
in V), (2) evaluating the time derivatives in the static limit, ~5ncellation ofmgvils terms betweeX andT) of the fol-

using for instance

(&tzva) static— aja5]-Va ) (6.2

and (3) expanding up to the required accuracy fiene-

symmetri¢  propagators to O 1=A"1

+c20?A 2+ O(c™H).

according

As an example among the simplest terms, let us consider
the m? contribution coming from the first term on the RHS

of Eq. (6.1b),
g 1
T;:;tic(l)z EA l[Viatzvl]static
A VEalaVy)= - rakaa V)
2 1919 V1 6 219] 1]
(6.3
Using  V;=2((d—2)/(d— 1))Gkmyri *+ O(c™?)

=Gmr; T *+0(c?  and AT)=r}TI[( +2)(A
+d)], one finds that the pole part of E(.3) reads

~mj . 3134] -1-3¢
Tst;tic(l)z_EG miaidiry . (6.9

lowing static form:

1 1
V(X,Y1,Y2)=V+ _2V2+ _4V4
C C

1 11 . .
+—| Vit — 2 Gmialgyrat
C6 38 a

(6.9
where theV,, V,, Vg's are finite where —0. To understand

better the structure of the resul$.9) let us introduce the
notation

(6.10

whereGy, is the 3-dimensional Newton constant asidthe
d-dimensional acceleration of,. (This definition ensures
that g; has the physical dimension of a lengtin terms of
the definition(6.10), the result6.9) can be equivalently writ-
ten as
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Assuming that the vectog, is of 3PN order[i.e., &

V(XY1,Y2) = 2 [Va(X—Ya) + {40, Va(X—Va)] =0O(1/c®)], we can rewrite Eq(6.13 as
a

111 VOXYE Y82 = 2 [Va(X— Y5 +(£h= D3 Va(x—yE]
Vot SVt =V, (6.1 Loz g T Tantee salTen e
c c c
1 1
where the pole part is entirely contained in the terms propor- + —2V2(X,y;e”) + _4V4(X'y;e
tional to ¢} and £, [V here differs fromVg in Eq. (6.9) by ¢ ¢
some finite corrections whes—0]. The fact that poles ap- 1 1

pear only inV, at orderc™®, implies that there are no diver-

gencies in the harmonic gauge conditid2sl3 in the bulk.
Indeed, Eq.(2.133 needsV at orderc™* only, and Eq.
(2.13bh at Newtonian order only.

5 , (6.19

+ —=Ve(X, Y5+ O
6

which makes it clear that the potential will be finitet 3PN
accuracy whene—0 if we choose

B. Renormalization of poles by shifts of the world-lines 0

The result(6.1]) indicates a simple way of renormalizing
away the poles present in the bulk metric. Indeed, the logic
up to now has been to describe in the simplest possible man-
ner a gravitationally interacting two-particle system, param-where byO(z°/c®) we mean a term finite when—0 and of
etrized by the f0||owin@areparameter@bare bare, mtz)’r‘lre the 3PN order. We shall henceforth referﬂpin Eq (613

] ml ]
yt1>are’ ygare, considered in everywhere harmonic coordinatesas ashift of the ath world-line. The reasoning above shows

szgaﬁrzﬁzol In particular, the internal structure of each that the introduction of such shifts, at the 3PN order and

&=6TO0O (6.195

&€
CG

particle has been, up to now, entirely described by a monopd@Vind the pole structuré. 10, is necessaryo renormalize
away the poles present in thelk metric It remains to show

that these shifts are alsfficientto renormalize away the
poles present in thequations of motion

The effect of 3PN-level shift§, on the equations of mo-
ion is easy to obtain. Indeed, the equations of motion we
computed above concern the originiadre world-linesy2?'.
For the first particle, they had the structuie dimensional

regularization

lar stress-energy distribution, i.€[%"smb@es(x—y229. In

other words, we have set to zero any higher multipolar struc

ture. Equation(6.11) is most simply interpreted by saying
that the non-linear interactionsee Fig. 6 dress each par-

ticle by a cloud of gravitational energy which generates, alt

the 3PN order, a divergewuipole in the Newtonian-like po-
tential. Therefore, to get a net, finite bulk gravitational field
we must endow each initial particle by an infinite, bare di-
pole, corresponding to a countertermAT,"x

— mgaregjaaj 8(Xx—Yy,), which will cancel the non-linearly
generated oné5.11). An equivalent, but technically simpler

way of endowing each particle by a bare structure able to

cancel the dipolar pole terms in E@.1]) is simply to say
that the centrabareworld-lines used in our derivations up to
now, henceforth denoted 382", can be decomposed in a
finite renormalizedpart y;*" and a formally infinite shiftg,

a
involving a polec1/e,
g, ST (612

The gravitational potential of two point particldsc 5(x
—y2297 is then

ren
a

ren
a

VO YPE Y0 = 7 [V (x— Y= &)+ {Ld;Va(x—y
a

1

- ga)] + _ZVZ(varaen+ ga)
C

1
+ —Va(X,y
4

1
+ ga) + _BVG(
C

ren
a

ren
X,¥Ya

+t&a).

(6.13

yll)are: ati r( y!l)ezlre, Vkl)are, sz)ar
= (Y159 + &by Y13 S VE e Vo
+ 85pN(Y13 VA VR + 8 lsend V13 S VR VR
+a3pna( Y5 Vi Ve, (6.16
where ybare=ybare_ybare Here ol denotes the dimension-

ally continued Newtonian-level acceleration,

aNi"=aiVa(y1o) = FGmpkarf; ¢, (6.1
where by a slight abuse of notation we 8gt a/&yilz, where
G=G\{g denotes thel-dimensional gravitational constant,
and where thal-dependent correcting factors

d—2 1+e¢ _ T((d=2)/2) T({(1+¢&)/2)
fEZ—:—, k= =
d—1 1+¢/2 (d=2)2 (1)
(6.18

tend to 1 as—0, but will play a significant role below.
When inserting the redefinition.12 into (6.16) one

easily finds that theenormalizedequations of motion, i.e.,

the equations foy ", read[using only &= O(1/c®) at this

stagd
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yIen=ale yen yien vien, (6.19  Prove, for instance, that the two constan{sandr in the
3PN equations of motion are not physical, because they can
where be gauged away in 3 dimensions and therefore will never
appear in any physical result. However, we remark that the
aP(y12,V1,V2) =@l (Y12, V1 Vo) + S (Y12,V1, V) extension tod dimensions of the coordinate transformation
€“(x) of the bulk metric, saye,(x)=c 59 ,(S.xakra 9
, (6.20 (with coefficientsk,ce 1, as needed to remove the poles in
the equations of motiondoes not lead to a bulk metric free
of poles. Indeed, assuming,><s 1, we see that the pole in
with the spatial coordinate transformati@n(x) would then in-
S ) duce a pole in the spatial components of the mewig;
5§a1(y12,v1,v2):(§11—g'z)ajaﬁrl(ylz)—gl. (6.2)  =dje;+ 9+ - - -, but this is inadmissible because we have
proved above Eq96.1) that, at 3PN order, only the time-
Let us note that the effect on the equations of motion of &ime component of the bulk metric contained a pole. A bulk
(3PN shift of the world-lines, Eq(6.21), is technically iden-  coordinate transformation of the type above can then remove
tical to the effect on the equations of motion of the restrictionthe poles in the time-time component of the bulk metric only
to the world-lines of a 3PN-level coordinate transformation,at the price of creating a pole in the initially pole-free spatial
SaYXpey= X — € (X,t) andtpe,=t—c 1e(x,t). Indeed, aco- metric. We shall leave to future work a complete clarification
ordinate transformation has two effect$) it changes the of the possibility of using, within our dim. reg. context, a
bulk metric bys.g,,(X)=L.9,.(x), whereL, denotes the coordinate transformation to induce the shifisl5. For the
Lie derivative alonge”, and (ii) it induces a shift of the time being, what is important is that our introduction above
world-linesy), o, =Ya— €a+ ¢ tew}, (plus non-linear terms  of shifts of the world-linega priori unconnected to any co-
in €), where we denote the coordinate change at the loceerdinate transformatioris a consistent way of renormalizing
tion of theath particle bye;(t)z[ei(x,t)]xzya. Because of away the poles in the metric, and that its effect on the equa-

the diffeomorphism invariance of the total action, the effecttions of motion, Eq(6.21), is identical to the transformations
(i) does not change the actidhso that the net effect of a ©Of the acceleration obtained in R¢22]. _ _
coordinate transformation on the equations of motion re- |t réemains now to show that the same world-line shifts

duces to the effect6.21) of the following shift induced on (6.15 that renormalize away the poles in the bulk metric, Eq.
the world-lines: (6.14), do renormalize away also the poles present in the

original bare equations of motiofsee Eq.(5.24 for the
é=e,—c 1! + non-linearterms. (6.22  static contributions and Eq6.47 below for the kinetic
oned. For this purpose let us consider a shift of the more
The coordinate transformations considered 28] [see Eq. general form
(6.11) therd were of the typee,(x)=c °3,(Sakalra),
where thex,'s are some coefficients, so that we see that the - e(d) Gﬁ,mg1 )
latter induced shift reduces at the 3PN order to (fegular- o= 5 ag, (6.29
ization of the purely spatial coordinate transformation & ¢
evaluated on the world-line:

+0

C8

where e(d) represents a certain numerical coefficient de-
pending ond, and wherea}, denotes thed-dimensional ac-

. (6.23 celeration ofy}, given by its Newtonian approximatid6.17)
(but, for notational simplicity, we henceforth drop the labkl
on such accelerations entering 3PN effectaserting Eq.

We have checked that the formula given by 8§19 in[22]  (6.24) into Eq. (6.21) yields (for the indexa=1)
for the coordinate transformation of the acceleration of the

1

i
E,=€, 10O e

particle 1 gives exactly the same result as the one computed ~ e(d) G§ o _ _

from the effect of the shift6.21). [The agreement extends to Sy =—— —6[(m§— m3)abd;ay—miviaayl,

d dimensions if we consider the straightforward extension of € c

the latter coordinate transformatioe* to d dimensions, (6.29

namelye,(x)=c %, (Saxakra %).]

Note that the coordinate transformatiostqx) were con-
sidered in[22] only in terms of their effects, Eq$6.22),
(6.23, on the equations of motion. This was sufficient to

Wherez‘;jlzzvjl—vj2 andvl=0vl2%, (and also, as before),

=3l ay’,). Before further evaluating6.25 by inserting the
explicit expression6.17) for the acceleration, we shall con-
sider some simple but important consequences of the struc-
ture (6.25).

2’Actually, one should consider, as e.g.[#5], a non-generally-
covariant gauge-fixed action. But the “double zero” nature of the
gauge-fixing term, say \/—_ggMI‘“F”, ensures that it does not As recalled in the Introduction, previous work on the 3PN
contribute to first order ire”. equations of motion itarmonic coordinatetas shown that

C. Link to the general class of harmonic equations of motion
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these equations necessarily belonged to a three-parameterWith our notation, and still focusing on the static contri-

class of equations of motion, say butions to the equations of motion, the “parametric” equa-
e tions of motion(6.26) imply the following structure for the
YO =aB(y,,vy VN T L)), (6.26  static coefficients
The dimensionless parametercould not be determined by e, . 44 [ryp) 3187
the previous work in harmonic coordinates. However, com- C31(\.F1.r2)= g'” =1 1260 (6.283
parison with the work in ADM coordinates, has shown !
[20,25 that, if there were consistendyetween the two cal-
culations one should have the following link betweemand CBEONLTL )= 34763_ f)\_ 4_1772 (6.28h
the corresponding ADM “static ambiguity” parameter,: 22Tzl 210 37 160
3 1987 o 44 [ry,\| 10478 44 41
NI4T 3080 (6.2 Cls()\arlvrz)—_gm Z o 3™
(6.280

If dimensional regularization is a fully consistent regulariza-

tion scheme for classical perturbative gravity, we then expedt will be convenient to replace the parameteby the pa-
that the dim. reg. determination af, in ADM coordinates rameterog, using Eq.(6.27) as a defining one-to-one map
[35], name|ng'AD'V':o, should lead to a dim. reg. direct between\ and ws. With this change of notation the static
determination of\ (in harmonic coordinatgsof A hamonic  coefficients become

=—1987/3080. We will turn to this verification in a mo-

ment. BF ., 44 12 3187

The two other parameters, denoted aboyer}, entering ~ C31(®s.1.12)= 3'” | 1260 (6.293
the general “parametric” harmonic equations of motion 1
(6.26 have the dimension of length and have the character of 41

auge parameters. Indeed, they can be chosen afexdept BF Py — _ = 2

tghatgong cannot set them to zkt)l/y the effect of shifts of tFrJ1e Co2(@s,11,M2) =175+ dws— e, (6.298
world-line, induced for instancébut not necessarily; cf. a
discussion in Sec. VI B aboydy some gauge transforma- 44 [ry,\ 110741 41
tions. In the way they were originally introducéd?], the  c¥(wq,r) ,r))=——In| — |+ +4ws— — .
two parameters; andr; can be interpreted as some infini- r 630 16
tesimal radial distances used as cutoffs when the field point (6.299

tends toward the two singularitigg andy,. Therefore in hat th binati he th .
principle Inr; and Inrj should initially be thought of as being NE?Fte that there are two combinations of the tBLee coefficients
which do not depend on In,, namelycy,;, and the

(formally) infinite. However, it is trivial to show that by a Cmn WHICT BF . BF e
(formally infinite) gauge transformation, involving the loga- combinationcg; +ci3, or even better the combination
rithmic ratios In¢7/r;) and In¢3/r5), wherer’] andr} denote )

any two finite length scales, one can replack,r, every- g 44 (rz)

7
BF BF__ —— _

where by the finite scales/,r;. By this process it is there- Ca1+Ci3™ C22 In 4’ (6.30

fore possible to identify the two sets of scales and thereby to

think of the scales;,r; as being in fact finite, as was im-
plicitly done in Ref.[22]. In the language of renormalization ,ntains  as focSF, simpler looking rational numbers.
theory, the originalinfinitesima) scalesr; andr; would be We now come back to the effect of the general siif24)
referred to asHadamard-regularizatiorscales entering the o, the dim. reg. equations of motion. Let us first focus on the
computation of divergent Poisson integréee Sec. B giatic terms. We recall that thidim. reg) renormalizedequa-
above, while the(finite) scalesr; andr would be referred  tions of motion necessarily had the fori®.20. By project-

to as the arbitraryenormalizationscales entering the final, jng the latter equation along the static terms,, with m
renormalized harmonic-coordinates equations of motion. Ini n=4 [recalling Eq.(5.6)], it will induce a result for the

the present paper, in order to remain close to the notatiofenormalizedstatic coefficients of the form

used in[22], we shall keep the notatiar{ andr,, but inter-

pret them as arbitrary finite constants, which means that we cren=cdr (&) + Sg(e)Crmns (6.3D)
shall identify them with the finite renormalization length

scaleg'] andr5. In other words, the scaleg,r; used inthe  where thed.)cmn's are the static coefficients corresponding
present section should in principle be distinguished from theo &.a), Eq. (6.21). When choosing¢,(¢) of the form
scalesry,r; used in Sec. Ill B above(Remember, in this (6.24), we see from Eq(6.25 that §;Cpyy, is simply obtained
respect, that the regularization scales, r, have disap- by projecting the first term on the RHS of E(.25. Re-
peared when computing the dim. reg. equations of mation. membering thag,>=m; and a;*m,, we see that the latter

!
r

which depends neither on g, nor onwg (or \), and which
BF
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term contains the factornfz—m3)m;m,=m3m,—m;ms. —3, if the & shift is to remove the poles in the bulk metric.
Therefore, without doing any further calculation, we see thats in quantum field theory we could then define thiimal
the shifts 5,c,, have the special propertia$;c,,=0 and  subtraction(MS) shift as

0¢Cgz11 6;C13=0. In other words, a shift of the world-lines .

of the type(6.24) leaves invariant both,, and the combina- i 11 Gymj Caes

tion ca;+ C15 (as well therefore as the combinatiog,+ Cq3 aMs= 3= ¢ (ay)" . (6.39
—C,, considered aboyeAs a consequence, we can compute
without effort from our previous regularize@ut unrenor-
malized dim. reg. result$5.24) the following two combina-
tions of the&'(e)-renormalizedstatic coefficients:

However, as is well-known in QFT, such a MS subtraction
has the unpleasant feature of leaving some logarithms of
and the Euler constant in the renormalized results. These
numbers come from the expansion of the Gamma function

clen— Cg'2= 175— 4—1772, (6.323 gnd the as_sociat.ed dimension—dependent powets efter-
16 ing the d-dimensional Green function. In our context, these
numbers showed up in E¢5.24) in the guise of the combi-
g g g 7 nation
Ca1'+ C13'— Cop'= gt C13— Coo= — 7. _ .
(6.325 In(q)=In(47e~)=C+In(4). (6.36

As in QFT, this leads us to consider the followingpdified

By comparing Eq.(6.32g with Eq. (6.29H we discover minimal subtraction(MS) shift,

that our present calculation using dimensional regularizatio

in harmonic coordinates necessarily implies that ~
y imp 11 Gik?mZ
- ay, (6.37

g =
1987 ams
0= 0eh= 633 3 ¢

3080
which differs from the MS shif6.35 by the explicit factor

This nicely confirms the previous determination«af by a  of k? it contains, and by the use of tiledimensionalNew-
dim. reg. calculation in ADM-type coordinatd85]. We  tonian acceleration given by Eq6.17). The inclusion of

think that our present harmonic-coordinates dim. reg. resuliyo explicit powers ok in the coefficiente(d) entering Eq.

calculation is important in proving the consistency of dimen-(6 24, i.e. the definitioneys(d)=4%k?, means, when re-
sional regularization, and thereby in confirming the physical " "~ MS ST '

significance of the resul6.33. A recent calculatiof38,39 membering thaa, , Ed.(6.17), contains one power d’,{ that
has also independently confirmed the re¢6I83 by means the static terms in Eq6.25 will have four powers ok and
of a completely different method based on surface integralghe kinetic terms three. The overall factktf in the static
and aimed at describing compastrongly gravitating ob-  terms is natural because these terms are of d&feand the
jects. X-space gravitational propagator éhdimensions always in-

" E’y comparing Eq(6.32D with Eq. (6.30, we further see  ¢jydes the combinatioBk|x—x’|2~%. Finally, using the fact
a

that the expansion d(d) neard=3 reads

!

r;=r5 [inthe case of the dim. reg. shis.24)]. T(1+8)/2) 1

(6.34 k(d) :1—Eslna+0(82), (6.39

(1+¢)/2
a
Contrary to Eq(6.33 which represents the determination of L
a physical parametehaving an invariant meaningthe re- it is easy to see that thdS shift defined by Eq(6.37) will
sult (6.34 has no invariant physical significance. Equationcancel the Iy in the bare dim. reg. results of E¢5.24).
(6.34 is simply a consequence of our particular choice forginally, we find that the evaluation of Eq6.25 for the
the shift vector(6.24), in which we assumed tha&(d) is a specific MS shift, given byem(d)z%iz, yields for the

purely numerical coefficient, independent of any propertie . . g
indexed by the particles’ labels 1 and 2. In summary thé\TS-renormahzed static coefficients

particular shift(6.24) yields some equations of motion which 44 [ry| 35
are physically equivalent to a subclass of the general equa- cgﬂf= §In<€—) ~ 35 (6.39a
tions of motion considered if22], characterized by the con- 0
straint(6.34). a1

Next we relate the common length scd@34) to the MS—175- — 72, (6.39H
basic length scalé, entering dimensional regularization. To 16
do this we need to fully specify the value of the shift, i.e., to
choose a specific coefficiert(d) =e(3)+ee’(3)+ O(?) MS_ 4_4| (r_IZ) n @_ 4_1 2
in Eq. (6.24. We already know from Eq(6.10 that the Ciz=— 3N 4 9 6™
coefficiente(d) in Eqg. (6.24 must tend to 11/3 whem (6.390
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where the reader can note that ther{g entering the bare work also constitutes the main result of the present paper
dim. reg. result5.24 has been transformed into tpf/¢,) ~ (Theorem 2 in the Introduction
through thee expansion of the factor;,’ 2° present in The two approaches we have discussed here are of course
5§ai1_ equivalent: choosing some dim. reg. basic length ségle

We already discussed above the comparison of two simpl@mj some specific, S'mp','fY'”g dim. reg. shituch as the
combinations of the dim. reg. result6.39 with the MS one, and then determining the values of the scalgfor
Hadamard-regularization result§.29). It is easy to see that Which the dim. reg. results match with the Hadamard reg.
the remaining independent combination, say 393, is  ONes; or arbitrarily choosing some Hadamard scaleand
fully consistent with its counterpart E¢6.288, and allows then determining the corresponding general dissymmetric

dim. reg. shift(6.41)—(6.43, in terms of the chosen/’s.

one to relate the basic renormalization length sé€glenter- What is | < th h hecked that th
ing dim. reg. to the common length scd&34) entering the at is important is that we have checked that theee
renormalized dim. reg. static coefficien(5.24) are fully

general equations of motion g22]: compatible with thehree extended Hadamard reg. static co-

r r! 327 L efficients (6.28 or (6.29, and that their comparison yields
In(e—l =In<—2) =~ 30g0 (fortheMs renormalization ~ one and only onghysical result, namelyx = — 5555,
0 0
(6.40 D. Kinetic terms and check of the consistency of dimensional

) ] , regularization
Evidently, the precise values one gets fgrandr, depend

on the precise choice of the compensating shift.
Let us now remark that in fact one can recover exactly,
provided of course that the crucial resg#.33 holds, the

general “dissymmetric” class of equations of motion[ﬁfz]’, (6.41), (6.42] needed to renormalize the equations of mo-
.e., the general parametric resu@.28 or (6.29 with ry  4,h."(5) consistency between the three finite, renormalized
#I5. For this purpose it suffices to consider a slightly moregim_ reg. static coefficient$6.39 and the general three-
general shift than the one assumed in Bh® regularization;  dimensional one$6.28 [22]; and (3) consistency between
namely, consider a shift of the same form (824, but in  the present dim. reg. value af and the previously derived
which one allows thel-dependent coefficierg(d) to depend dim. reg. value ofwg in the ADM Hamiltonian[35]. It re-

Up to now we have verified the following aspects of the
consistency of a dim. reg. treatment of the 3PN dynamics of
two point particles(1) consistency between the shif.10
needed to renormalize the bulk metric and the g6if87) [or

on the label of the particle in question, that is mains, however, to check that the velocity-dependent terms
in the renormalized dim. reg. equations of motion do agree
e,(d) Gﬁmg _ with their analogues in the harmonic-coordinates equations
&= a,, (6.4  of motion of[22]. This will in particular prove that the dim.
€ c® reg. equations of motion are Lorentz invariant.

_ In the notation of Eq(5.6) above, we need to consider the
where nowe,(d) ande,(d) are allowed to be different from values of the velocity-dependent coefficieasg(Vv,,V,,n1,),
each other. The most general way of parametrizing such dis},(v,,v,,n;,), Chy(Ve,V2,N10), Coz(V1,V2,N10),
symmetrice,(d) [however constrained by,(3)=11/3] is  ¢j4(v;,v,,N;5), andcys(Vi,V,,n50). In Ref.[22], they were

shown to take the following parametric forms, which actu-

e (d)= %122[1_28%4r O(&d)], (6.42 zlrI);\.depend only on the regularization scalebut not onr
with two independent numerical coefficientg. It is then ry,| 48197
easily checked that the shif6.41) defined by the particular ¢35 (r;)=—22v2,— 5(nyw12)?]In| — | + v?
choice ry 840
'l 397 36227 . 36227 ) 45887 )
pa=ln(€—0 +m (6.43 420 (v1v2) 840 U3 168 (N12v1)
transforms the dim. reg. equations of motion into the general + 24025(n YN ) — 10469(n )2
(r.-dependentfamily of solutions obtained if22]. If we 4o DTl 4o 2
suppose that the constrain®40 hold, thenp,=0 and we (6.443
recover the shift assumed in tiMS regularization. On the '
other hand, note than one can reach even more generabfgf(r;):c"gf(r;)
classes of renormalized harmonic equations of motion in
dim. reg.(as one could have also done in Hadamard regular- rp| 31397
ization). Indeed, we could use the freedom indicated in Eq. =—44(nywqy)In — |t 220 (Nyq)
(6.19 of addingarbitrary finite parts to the shifts. Anyway, r
the result that the shift6.41)—(6.43 gives equivalence be- 36227
tween the dim. reg. and the extended Hadamard 3PN accel- _ (Ny0s), (6.44b
erations(we check in Sec. VI D below that the kinetic terms 420
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ng: 18(v105) — 95— (N1 1) %+ 2(N10 1) (N0 5)

43 )
+?(n12v2) , (6.440
C'BE=c"8E=4(Nyw1) +5(Nyws). (6.449

As explained in Eq(5.1), the dim. reg. expressions of

these coefficients can be computed as the sum of pure

1 pHS
mn_» and the

pHS” differences Dc,,, Dc;,,. The calculation of the

Hadamard-Schwartz contributions™> and ¢
“dr —

pHS contributions has been explained in Sec. Il D above,

and we get the following results from Eq8.55 and(6.44):

riz| 10639
cBS= -2 v 1~ 5(n1w 1) %]In| — | + v
] 168
5879 5843 5 50885
—_—— +_ J—
60 (viv2) 12002 168 (n 1201)
1892 3325 5
+——(n n ———(n ,
3 (N1 1)(N1202) 12 (N1v2)
(6.453
s rp| 7279
C'o =44 )Nl — [+ ——(N101)
] 84
5879
———(n , 6.45
60 (N1v2) ( b
”pHS rqo 5189
C"y = — 44Ny ) Inf — [+ ——(Nyv1)
] 0
5843
———(n 6.45
60 (N1w2), ( )

— (N0 1)+ 2(Ny 1) (N105)

64
cBy5=18(v1v,) — V2

311 )
+H(n1202) , (6.450
¢'BES=4(n1w1) +5(N1wy), (6.45¢

37
c"BES=4(nywy) + = (nlzvz)- (6.450

Secondly, the method explained in Secs. IV B and V C for

computing the differencePa, is found(after doing calcula-
tions similar to those reported in the tables of “static” con-
tributions abovgto lead to

PHYSICAL REVIEW D69, 124007 (2004

1413, 2/3 9 2

1 33 , , 49
Dcyi= ?—?In(qr 1 712) [[v1=5(N1w12) ]+ 2o V1

359
15

184 ,
1572

2957

_E(nlﬂ)l)

Vo)t

5 17 )
+ T(n12vl)(n12vz)_ T(”lzvz) +0(e),

(6.46a

, |22 1413, 2/3 499
Dcy= ;_33|n(qr 1 112) [(N1012) + E(nﬂvl)
59
— 75 (Nw2) + O(e), (6.46H
22 3
Dc’z'1=[;—33|n<qr"{’3ri’§) (Ny015) + 2 (N1)
368
— 75 (Nw2) + O(e), (6.460
1, 2
Dcps= 7U2~ 7(”1202) , (6.460
Dely=0, (6.460
n 2
Deog=— 7(”1202)- (6.461)

Together with Eqs(5.23 above, these equations give the full
difference between the dimensionally regularized and the
pure Hadamard accelerations, and they constitute the main
new input of the present work. The bare dim. reg. results,
dr =cPHSipe.,,, read therefore

Cmn
dr ll
Co1= o

1463
?(U1U2)+

2317

T(nlzvl)(nlzvz)_

1805
24 °

[012 5(

33
In(quz)

1463 , 8959
71)2 24 (nlzvl)

193 )
+ ?(nlzvz) , (6.473

dr _ ~pdr _
c'5=

=C'1= (N101)

22 .,
— —33In(qry,)

1325

E(nlzvl)_

1463

+ ?(nlﬂ)Z)a

(6.47b

ng: 18(v105) — 95— (N0 1) %+ 2(N10 1) (N30 5)

43
+ ?(nlzvz)za (6.479

rdr _ mdr _

€' 03=C"p3=4(N101) +5(N107). (6.470
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Note that in the final result the equality betweel,, and
Crp» I-€., betweerB’ andB” in Eq. (5.3), is recovered. The
bare dim. reg. kinetic coefficient§.47) contain polesx1/e

PHYSICAL REVIEW D69, 124007 (2004

spacetime metric and the equations of motiorharmonic
coordinates of two, gravitationally interacting, point masses,
at the third post-Newtonian order of general relativity. Our

but do not depend any longer on the arbitrary Hadamardgtarting point consisted in writing the 3PN-accurate metric

regularization scale; which appeared in E¢6.45. As in

the case discussed above of the static coefficients the previals” v, v, Wi
ous kinetic coefficients do not involve any adimensionalizingnegus

length scales in the logarithms of, they contain. This is
consistent with the fact that it is the combinatioé%‘c?nrn
and ¢3¢’
their d=3 counterparts. L
Finally, given a specific choice of shift, say thMS one,
Eq. (6.37), therenormalizedkinetic coefficients are obtained
by adding to Eq.(6.47) the velocity-dependent part of the

effect of the shift, i.e., the second term on the RHS of Edsymmetric

(6.25 [with, say,eVS(d) = (11/3)k?]. Our final (MS) results
for the renormalized kinetic coefficients are found to be

M2

e—o>+
979 979 , 6275 )
5(0102)_’_%02 24 (anUI)

1321 ,

c¥f=—zaviz—5<n12vlz>2]ln( 7l

1646 2851 )
+T(n1201)(n1202)_?(n12112) , (6.483

/M_S_ I/M_S
C21=C1
841 979

;
- |t E(nlzvl)_ E(nlzvz),

12
= _44(n12012)|n( 0
0

(6.48b

Cgﬂss: 18(vqv5) — 905_ (N101)2+2(Nyw 1) (N1207)

43 )
+ 7(”1202) , (6.489
C'MS=c"¥S=4(nyw1) +5(Nw5). (6.489

When comparing these results with the ones of R22],
Egs.(6.44) above, one remarkably finds that our previously
derived link (6.40 is necessary and sufficient for ensuring
the full compatibility between the renormalized dim. reg.
results and the corresponding Hadamard reg. ones. Note t

the rational coefficients entering the dim. reg. results are ofYarl

» Which have the same physical dimension aSiact terms of the form FV(X),V; (x) W
1 ] 1

9.,(X) in terms of a certain number of “elementary poten-
ij»---, satisfying a hierarchy of inhomoge-
d’Alembert equations of the form
C(potential}=source. The sources of the latter equations
contain both “compact” terms, i.e., in the present casa-
(%), . 189 (x
—vy,), and nonlinearly generated “non compact” terms of
the typical form, sayg(potentialy(potential). This repre-
sentation of the 3PN metric, as well as the associated itera-
tive way of solving for the potential§using the time-
Green's function (7 *=A"1+c 2A 292
+O(c™*)] is a direct generalization of the one used in Ref.
[22]. However, it has been crucial for our work to determine
(in Sec. I) the dependence upon the dimensidrof the
coefficients appearing in this representation, as well aslthe
dependence of the kernels expressing the operatofsand
A~?in x space.

By studying the structure of the iterative solution for the
metric, and that of the corresponding EQMhich are con-
veniently pictured by means of diagrams; see Figs.)1w8
determined, in the form of a Laurent expansion&rd
—3, the pole part of the metrig,,(x), and the pole and
finite parts of the EOM, namelg,=A,(yy,Vy) Wherea,b
=1,2 andv,=dy,/dt. [See, however, Appendix C where the
basic quadratically non-linear kerrgx,y, ,Y,) is computed
in any d dimensions, not necessarily close t¢ Qur calcu-
lations relied heavily on previous work id=3 [22], and
were technically implemented in two stefs least for the
determination of the EOM, which are more delicate; the de-
termination of the pole part of the metric uses only the sec-
ond step.

(i) The first step consisted of subtracting from the final,
published results for the EOfR2], seven contributions that
were specific consequences of the use of an extension of the
Hadamard regularization meth¢23,24] (which included an
extension of the Schwartz notion of distributional deriva-
tive). The result of this first step is referred to as the “pure
Hadamard-Schwartz” evaluation of the EOM.

(i) The second step was the evaluation of difterence
between the dimensional regularization of each contribution

hte% the EOM(written in terms of the iterative solutions for the

ous potentialsv,V, ,\7Vij , ...), and thecorresponding

ten simpler than the coefficients entering the equations ofPure Hadamard-Schwartz” contribution obtained in the first

motion of[22].
The results Eq(6.48 complete our check of the full con-

step. This difference is obtained, similarly to the method
used in[35], by splitting thed-dimensional integral into sev-

sistency of the dim. reg. evaluation of the 3PN equations ofal pieces, and by carefully analyzing the terms due to the
motion, and the proof of Theorems 1 and 2 stated in thdeighborhoods of the two singular poings,y, (including

Introduction.

VII. CONCLUSIONS

We have used dimensional regularizatiGre. analytic
continuation in the spatial dimensiat) to determine the

possibled-dimensional distributional contributions
Concerning the “bulk” metricg,,,(x), at a field point
away from the singular particle world-lineg,(t), we de-
rived only the pole part, that is the coefficient ot lih the
Laurent expansion of,,(x;e). We found that at the 3PN
order, only the time-time component of the metggy(x)
contained a pol¢see Eq.(6.9)]. For the EOM we derived
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both the pole part and the finite part, i.e,~c +¢°  article. The expanded form of the met(2.11) is easier to
+O(¢). The parts of the EOM for which the regularization compare with the literature, and notably with E¢3.24) of

was delicate are given by the nine coefficieats, ... ch;  Ref.[22]:

defined in Eq(5.6). Our complete results for the dimension-

ally regularized values of these nine “delicate” coefficients 2 2 d-3
are given in Eqs(5.24 and (6.47). Joo=—1+—V——|V?+2 —) K}

We proved that the pole parts of both the metric and the ¢z d-2
EOM can be “renormalized away” by suitabkhifts of the
world-linesof the formy2@e=y®"+ £ (¢), wherey?*®is the 8. 1 d-3
original world-line on which are initially concentrated the +— X+ViVi+gV3+ a_2 VK
S-function sources representing the point masses, where the c
shifts &,(e)~& 1+e%+O(e) are of the 3PN order, and
where the EOM of the renormalized world-lig€™" is finite + 3_2 3 EV;(‘F RV EVV-V-— iv4

H H H 1Y [
ase—0. The general form of the needed shifts is given by c8 2 2 48
Eqg. (6.15 with (6.10. The renormalized EOM correspond-
ing to the “modified minimal subtraction” schent6.37) are 1/d-3 1/d-3\2
given by Eqs(6.39 and(6.48. +— _) KVZ—_(_) K2|+0| —|, (Ala

The finite renormalized 3PN-accurate EOM obtained by 4\d-2 4\d-2 cl®
using the general(two-parameter renormalization shift
(6.41)—(6.43 were shown to bequivalento the final(three-
parameter EOM of [22] if and only if the Hadamard- __iv _E = _E d__3 WV
undetermined dimensionless parametewhich entered the 901~ 3ol 2ld=2) "
latter equations takes the unique value — 3337 This value
is in agreement with the result of a previous dimensional- 16 1 1 1
regularization determination of the Arnowitt-Deser-Misner ——| Y+ WijVj+— 1+ V2V,
Hamiltonian (in ADM-like coordinate$ [35], which led to c’ 4 (d—2)?
the unique determination of the ADM analoguexgfnamely
ws=0. The value foin or wy is also in agreement with recent 1{d=3\ _ 1({d-3\? 1
work [38,39 which derived the 3PN equations of motion in “5lg=2)VRT3l9g2 KVi|+0| —

. . . C
harmonic gauge using a surface-integral approach. Our result
provides an important check of the consistency of dimen- (Alb)
sional regularization because our calculations are very differ-
ent from the ones df35]; notably we use a different coordi-
nate system and a different method for iterating Einstein’s 2 2 2
fi . . . _gij= j 1+ V+ [V —Z(d—3)K]
ield equations. However, the applicability of our general ap (d—2)c? (d—2)2c*
proach to higher post-Newtonian orders remains unexplored.

Finally, the present work opens the way to a dimensional- 8| X Vi Vi \V& (d—3)
regularization determination of the several unknown dimen- a5t 5t 3 3VK
sionless parameters that were shown to enter the Hadamard ct[d=2 d-2 g(d-2)% (d-2)
regularization of the 3PN binary’s energy fldx harmonic -
coordinates[27,28. The completion of the 3PN energy flux 4 16) . VW 1
) POLE o : s ) +—W; +—|Zij+ —————-V,V, |+ O —
is urgent in view of its importance in determining the gravi- ct s 2(d-2) J c8
tational waveforms emitted by inspiralling black hole bina-
ries, which are primary targets for the international network (Alc)
of interferometric gravitational wave detectors LIGO/

VIRGO/GEO. The inverse metric is such thgt,,g"”= &% in d+1 space-
time dimensions. In terms of the modified Newtonian poten-
ACKNOWLEDGMENTS tial V defined in Eq(2.10 above, it reads

Most of the algebraic calculations reported in this paper 8V.V. 3RV 1
were done with the help of the softwavaTHEMATICA . T.D. g%0= _e2V/c2( 1— e et O( _) ,
would like to thank the Kavli Institute for Theoretical Phys- cb c8 clo
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work was completed. ) ,| 4V 1{d-1V)\?

gO|: _e(df3)V/(d72)c - 1+ — —
APPENDIX A: THE d-DIMENSIONAL METRIC AND c® 2\d=2¢?

GEODESIC EQUATION 8F 6
R, 16| . R

We give in this appendix several expanded expressions bt — Yi— WV,

which are too lengthy to be included in the body of the ¢ cf 2
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gij — e~ 2VI(d-2)¢? 2 v 2
gi=s —+ [V2+2(d—3)K]
4 16[, 1 (d-2) ¢2 (d—2)2%c*
X{ 86— =Wy — —| Zjj+ ——— & vkvk} .
c* c® 2(d=2) 8| X vkvk Ve d-3
-— + VK
1 -2 d-2 6(d—2)° (d-2)°
+0| — (A2c)
c 4  16[ . 1 . 1
Note the change of signs in the exponentfalith respect to ct c® 2(d-2) c®
the covariant metri¢2.12)], in front ofW jVj in Eq. (A2b), (A30)

as well as for the)(1/c*) and O(1/c®) terms in Eq.(A20). _ o
Note also that th&;V; contribution tog;; has disappeared in The determinang=detg,,, of the metric is a useful quan-
the inverse spatial metngIJ The full post-Newtonian ex- tity, notably to compute the “gothic” metric g

pansion of this inverse metric reads =\ —gg"”, which is the natural variable when using the
harmonic-coordinate system. The simplest way to compute it
00_ 2 2 d-3 is to use the exponential forif2.11) of the metric, and to
gr=-1- _V_ ~a V-2l — d—2 K perform a cofactor expansion across both the first line and
¢’ ¢ the first column:
8. v [d-3
- X—ViVi+€— ﬁ VK d d
¢ dEtnggoodetgij_kZl 21 (—)*"'9okgoidet gi 4k j+1)-
32[, 1 1 V4 (A4)
——| T+ =VX=R\V,— =VV\V;+
c8 2 Sinceg;; =exg 2V (d—2)c?] X[ §; + O(1/c*)], the determi-
nant of the (I—1)X(d—1) matrixg; .y - reads
1/d-3 1/d-3)\2
——|— +—|—| K?|+0| —]|, ,
4\d-2 4\d- ¢ det(g; +y j1) = €@ IVE=2¢ge(( 5,y ;) + O(1/c?)
A3a)
(A3 =2~ DVIE-2e 5 1 O(1/c?). (AS)
4 8 1/d-3 . L
9= —Vi— —|R+= vV Therefore, the determinant of the full metric is given by
C?’ I C5 I 2 d_2 I
O v et ey g=detg,,, = godetg; — 2@ V@2 (gg)2 4+ 0| —
¢l 2 4l @-22/ c
(A6)
1(d=3) . 1(d-3\? 1 where we have used the fact thg; = O(1/c®). Note that
* 2ld—2 VR— 2\ld= KVi| +0 o)’ this formula suffices to computg up to orderO(1/c®) in-

cluded if one knows the spatial metrg;; up to this same
(A3b) order. At the 3PN order, we get easily

16

4 1
ct c®

Zij_vivj"’_ ma]

16 1
ViV (0| —

Vi Vi

8
g=-— eMd-2)c?] | q_ —VV,
6 8
c c

C

4 16
1+ —W+ —
ct c

1
Z+ ViV,

1
+0| =
CS

— _ #VI(d-2)c? (A7)

where we used the expansion detM)=1+TrM+ ©O(M?), valid for any matrixM whose entries are small with respect to
1. We can now compute the square root of this determinant, and give its full post-Newtonian expansion:
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J 2. 8. 1 1
/_g:ezw(d—Z)c 1+ —W+ —| Z+ —VV, | | +0O| — (A8a)
¢t ¢t d=2 c?
2 V. 2. V2 2(d-3)
=1+ ————+—| W+ - K
(d=2) ¢z ¢* (d=2)? (d—2)?
8. Vivi X VW V3 d-3 1
+—|Z+ + + + - VK|+0| —]. (A8b)
6 d-2 d-2 2(d-2) gd-2)® (d—2)° c8

The gothic metrigg””=+/—gg"” can now be written easily by combining Ed&2) or (A3) with Eqgs.(A8a) or (A8h). We
shall not display here the explicit results, since they were not directly useful for the present article. Let us however quote the
expression of the Ricci tensor in terms of the gothic metriaj#l space-time dimensions and in any gauge:

1 1
ZRMV: - g,uagaﬁ,ﬂv_ gvagaﬁ,ﬁ,u—‘r ( g,uagVB_ d__lg,uvgaﬂ) (gyﬁgaﬁvws_ gyégsggay,agﬁﬁ,{—'— gaB,ygyg,é) - Egaﬁgw?( gay,ugﬁﬁ,v

1

— G198 | 0080587 607t 0apl(9,,870 1 0,870 )87 5. (A9)

As usual, a comma denotes partial derivation, apg=g,,/V—d is the inverse of*”. In terms of the gothic metric, the
harmonic gauge conditiof2.1) takes a particularly simple form:

0" o= =\ =gg*T =0 (A10)

This is the reason why this gothic metric can be useful to write the field equations. Note that several term@\8j Egnish
in this gauge, namely the first twnvolving second derivativesand those proportional tg)y‘s,,; in the third term. Neverthe-
less, this expression fdR,,, is slightly more complicated than the one we used in Sec. Il above(Z2), which does not
depend explicitly on the spatial dimensidnit should be noted that many equations given in the Hdékare erroneous when
d+# 3 (i.e., whend+1=n##4, in this book’s notatio)) including Eq.(1,14,30 in [46] which gives the Ricci tensor in terms of
the gothic metric.

“Let us end this appendix by displaying the full expansion of the geodesic eq2ti®h or more precisely of the vectors
P' andF', quickly illustrated in Eqs(2.22). The following expressions atedimensional generalizations of Eq8.35 of Ref.
[22], and we keep the same writing and order of the terms to ease the comparison. The “linear monntaatds

N d .
Pl=v'+ —| 02+ Vo' -4V,
2\ 2 d—2
1/3  3d-2 _ o d? 4 . . 2d(d-3)
+—|=vh'+ Vo' —4Vip'v)—2Vp?+ V'~ VVi+4W;v! - 8R;— Ko'
ct| 8 2(d-2) 2(d-2)? d-2 (d—2)?
1[5  3(5d—4) 3 . (3d-2)2 o o
+— —vﬁv'-i-—Vv4v'——Viv4—6Vjv'v'v2+ —V2v20'+2Wijv'vz+2ijv'v'vk
c| 16 8(d—2) 2 4(d—2)?
2(2d—1) 4(2d—1) L L d® ~ 4d o 4d
———VVip?= —————VVp'v/ = 4R -8R v + ———— V3 + ——V Vo' + —— W, Vo
d-2 d—2 6(d—2)3 d—2 d—2
ad . dd-2)+2 8 . (3d—-2)(d—3) _
+—Xo'+162;;p) - 2————— V2V, —8W,Vi- — VR —16Y,— —————— Ko %'
d-2 (d-2)? d-2 (d—2)?
2d%(d—3) - 8(d—23) 1
- KVu'+ KV, |+0| —]. (A11)
(d—2)3 (d—2)2 c8

This d-dimensional expression actually allows us to understand better some of the numerical coefficients falin@ far
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Ref. [22]. For instance, we find that a factor 33 comes from the expressiod-34), and that a factor 49 comes from
(3d—2)2. The full post-Newtonian expansion of the “forcé is given by an even longer formula:

_ 1 _ d—3
Fl=gV+—| —VgV+ HVv2—4gVjpl -2 —| K
c2 2(d—2) d—2
1| 3d-2 _ d? L 4 _ .
— ANV =20,V viv2+ ———V3, Vo2 + 20;Wy vlv8— ——(V,9;Vui + Vo,V v))
c*| 8(d—2) : 2(d—2)2 : d-2"" :
.1 R d—3 d(d—3)
—8a;Riv!+ =V29,V+8V 3,V + 49, X+ 2| —— | (KV+Va,K)— 9,Kv?
i 2 IR d—2 (d—2)2
1|1 /5d-4 3 , 1/3d-2\2 R , 2d—1 ,
_6 1_6 d 2 UBﬁiV_EO”iVJ‘UJULl‘l‘g W V(?iVU4+0”inkU21)]Uk_2 d— V]'O”iVUZUI
. _ _ _
2d—1 _ R 1 3 4d
ey vaiv,-vva—4aiij2vl+Z i V29, Vo2 + d—zviaivjv2
2d _ 2d o 2d o d(d—2)+2 ,
+ﬁij(9iVUJUk+ ﬁV(inijJUk‘{‘ nr9iX02+8(9iijvJvk—4—2VjV(9inJ
- - - (d=2)
d(d-2)+2 . P .8 . 8 L .
_Z—VzaiV'UJ _8Vk&iW'kUJ - 8W<k(9invJ - —Rﬂin' - _VaiR'UJ - 16(9iY‘UI
J ] ] ] ] ]
(d—2)2 d-2 d-2
1 ) ) ) . . d¥d-3)
—gv3aiv—4vjvjaiv+16R,—<9ivj+16v,-aiRj—8vvjovivj—4xaiv—4vaix+16<9iT——3Kaivu2
(d=2)
d—3 8(d—23) - (3d—2)(d—23) . d?(d—3) , d-3
—2 — KV&iV+ 8iV]-v _—(?iKU ——&iKVv ——V (9iK
d—2 (d—2)2 4(d—2)? (d—2)3 d—2
8(d—3) _ d—3)\?2 1
+ Z&iKVJ‘UJ_4 ﬁ KL;',K +0 _8 . (A12)
(d—2) - c

APPENDIX B: USEFUL FORMULAS IN d DIMENSIONS

This appendix is intended to provide a compendium 0fwherer=|x| denotes the radial variablée., the Euclidean

(mostly well-known formulas for working in a space witth norm of xe RY) andd(}y_, is the infinitesimal solid angle

dimensions. As usual, though we shall motivate some formu§UStaInecj by the unit sphere with £ 1)-dimensional sur-

las below by writing some intermediate expressions whicr{_a(}?j'ﬂ-ro %Onrgpnu;teicetsh?ha\t/ct)#ar?glIo(\j\ting];m?ﬂ;%?;ﬁ% i
make complete sense only whdris a strictly positive inte- d-1

ger, our final formulas are to be interpreted, by complextegral can be computed both in Cartesian coordinates, where

analytic continuation, for a general complex dimensidn, I redgces swnply oa Qaussgn integral, and also, using Eq.

e C. Actually one of the main sources of the power of di- (B1), in spherical coordinates:

mensional regularization is its ability to prove many results

by invoking complex analytic continuation ih Ao —r2_ 2
We discuss first the volume of the sphere havihg1 f de " = f dxe

dimensions(i.e., embedded into Euclidead-dimensional

space. We separate out the infinitesimal volume element in 1 d

dimensions into radial and angular parts, - EQd—lr 5)' (B2)

d o ,
:wd/2=Qd,1f drrd=te "
0

wherel" in the last equation denotes the Eulerian function.
dix=r9"1drdQq_,, (B1)  This leads to the well known result
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2 7Td/2

Qa1=F )

(B3)

For instance one recovers the standard redults 4 and
QO,=27, but alsoQ =2, which can be interpreted by re-

PHYSICAL REVIEW D69, 124007 (2004

the definition of the distributional derivative to shift the
Laplace operator fromu to ¢, compute the value of the
d-dimensional integral by removing a ball of small radais
surrounding the origirjsay B(s)], apply the fact thatAu
=0 in the exterior ofB(s), use the Gauss theorem to trans-

marking that the sphere with 0 dimension is actually made oform the result into a surface integral, and finally compute

two points. If we parametrize the sphetk_; in d—1 di-
mensions by means ofd—1 spherical coordinates
04_1,604_2, . .., which are such that the sphefk, , in d
—2 dimensions is then parametrized By _,,04_3, . ..,

that integral by inserting the Taylor expansion @faround
the origin. The proof of Eq(B8) is thus summarized in the
following steps:

and so on for the lower-dimensional spheres, then we find Au,¢)=(u,A¢)
that the differential volume elements on each of the succes-

sive spheres obey the recursive relation

de,1=(Sin gdfl)dizdgd,ldﬂdfz. (B4)

Note that this implies

Qg1
Q42

m +1
:f dgd—l(Sinad—l)dﬂ:f dx(1—x?)d=3)72
0 -1
(B5)

which can also be checked directly by using the explicit ex-

pression(B3).
Next we consider the Dirac delta functiafi®(x) in d

dimensions, which is formally defined, as in ordinary distri-

bution theory[36], by the following linear form acting on the
setD of smooth functionse C*(RRY) with compact support:
Y oeD,

(89, )= J d?% 8D (x) @(x) = ¢(0), (B6)

where the angular brackets refer to the action of a distribu
tion one e D. Let us now check that the function defined by

u=kr2-¢, (B7a)

- T'({(d=2)/2)

k=—— (B7b)
d=2)2

[wherer is the radial coordinate id dimensions, such that
r2=3% ,(x)?] is the “Green function” of the Poisson op-
erator, namely that it obeys the distributional equation

Au=—4789(x). (B8)
For anya e C we haveAr*= a(a+d—2)r* 2; thus we see
that Au=0 in the sense of functions. Let us formally com-
pute its value in the sense of distributionsxirspace[The
usual verification of Eq(B8) is done in Fourier spaceWe
apply the distributioPAu on some test functiop € D, use

=lim
s—0

f d9uA ¢
RAB(s)

:llmJ' ddXU"i[UéiQD_(%UQD]
RAB(s)

s—0

=lim | s?'dQg_4(—np[ude—diue]

=lim
s—0

f s971dQg 1 (—n)[—k(2—d)st Un;e(0)]

=04-1k(2—d)¢(0)

=—47¢(0). (B9)

In the last step we used the relation betw&eand the vol-
ume of the sphere, which is

- 4
de_1=d_—2. (B10)

Fromu=kr?~% one can next find the solution satisfying
the equatiomv =u (in a distributional sengenamely

'Rr4—d

= m (Bll)

v

From Eq.(B11) we can then define a whole “hierarchy” of
higher-order functionsv, . .. satisfying the Poisson equa-
tionsAw=v, ... in a distributional sense.

However, the latter hierarchy of functionsv, . . . is bet-
ter displayed using some different, more systematic notation.
This leads to the famous Riesz kernels, here dendif2d in
d-dimensional Euclidean spa¢29]. (These Euclidean ker-
nels differ from the Minkowski kernelg(® , also introduced
by Riesz, and alluded to in the Introductipithese kernels
depend on a complex parametee C. They are defined by

S (x)=K,r*9, (B123
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I'(d—a)/2) in which the angular integration can be performed as an ap-
. (B12b) plication of Eq.(B4). This yields an expression depending on
294792 (al2) the usual Bessel functiofi,

For any ¢ e C, and also for anyde C, the Riesz kernels
satisfy the recursive relations

do., e—ik-x
ASD = — 5@ (B13) f -t
Furthermore, they obey also an interesting convolution rela- :Qd—szd 04 1(SinBy_ )" 2k cosby-1
tion, which reads simply, with the chosen normalization of 0
the coefficientX,, as _
=(2m) Y3(kr)* =235 (kr), (B17)

s =5 . (B14)

When a=0 we recover the Dirac distribution id dimen-  where k=|k|. The radial integration in Eq(B16) is then
sions, 8§V =K,r ~9=6@ (the coefficient vanishes in this readily done using the previous expression, and we obtain
caseKo=0), and we havei=47w& , v=—47&D, . ...

The convolution relatiorfB14) is nothing but an elegant

formulation of the Riesz formula id dimensions. To check - T((a+d)/2

. . . . . . a+d__d/2 (( ) ) —a—d

it let us consider the Fourier transformdfin d dimensions, fo(k)=2"""r T(—ai2) k , (B18)
T (k)= f ddx|x| “e "1k, (B15)

where the factor in front of the powdr ¢~ 9 sayA,, is
Using Eg.(B1) we can rewrite it as checked from the Parseval theorem for the inverse Fourier
transform, which necessitates thatA_,_4=(2m)% Fi-
- + o0 . . . .
F (k)= f drr,ﬁdflf dQy e ik, (B16) nally we can check the Rlesz formula by going to the Fourier
0 domain, using the previous relations. The result,

F((a+d)2)T'(B+d)/I2)T(—(a+ B+d)/2)
f ddxr frb= 792 royArd (B19)
I'(=al2)T (=BT ((a+ B+2d)/2)
|
is equivalent to Eq(B14). . _ _ 1 T(d/2+€—2K)
A set of formulas concerning symmetric-trace-free multi- a‘{f: _— (B213
pole expansions il dimensions is presented next, without 2k T'(d/2+€—k)
proofs. We use the multi-index notatidr=i,---i,; more
generally the notation is the same as in Appendix A of ’ (—)kT(d2+€—k—1)
i n iecti by= . B21b
[47]. In particular n; denotes_ the STF projection of, ¢ ok T(di2+€—1) ( )
=ni,- N, [€/2] means the integer part d@f2, T, i
denotes the(unnormalized, minimal sum Of.Ti(r(l)"'i(r(f,) In particular (the bracketg) surrounding the indices mean
where theo’s are permutations of the indices such thatthe STF projection
Tiiy g is fully symmetric inL (for convenience we do not
normalize the latter sum, for instan@g;ny,= N+ GikN; A oA 4 -
+ 8jy). NiNL=Nic+ 45572 %, M-y (B229

[€/2]

‘ R
n = ayo; -0 L n ,
- I(ZO (Al -1z L~ 2K 2\ adopt for the Bessel function the defining expression

(B20a (Z2)" 1 _
J(2)=—--— dx l—X2 V-l/Ze—|le
[¢/2] (2 F(V+1/2)F(1/2)f_1 ( )
n = ;_:O b‘{f(s{iliz. B 2K (B20h)  To obtain Eq.(B18) we employ the integration formula
- de #1.(2 L L@t put v
22, (2)=2F .
where the coefficients are 0 r(1—up+v)2)
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. d+e-2 Bo2H
e T (5220
some spherical averages are
dQqg_ 1 1 I'(d2)
f —nZP:_—g{iliZ.‘.ﬁiZ —1i2}’
Qg1 op I'(d/2+p) p-12p
(B233
. J dQyqy 1 p! I'(d/2)
f ——Npo=0pq— ——f ;
P9Q Qg . PQ PA o T(d/2+ p) POp (B23b)
the STF decomposition of a scalar function is
+
fm=2 fin, (B24a
€=0
o 207Ird+¢) R
sz—f dQqg_qn f(n); (B24b)
2! ,ﬂ_dIZ

the decomposition of a functidf(n-n’) in terms of Gegen-
bauer polynomials 8

fmn— Ld=2) < 2T(d2+0).. .,
(NN = T (d=1)/2) & T(d+f—2) "M
+1
x_f dx(1—x?)@4=32c¥2"1x)F(x), (B25a
-1
. €1 T(di2—1)
nn=—————C% Yn.n"); (B25b)
ot T(d/2+€—1)
and some integration formulas are
ra+2
—lra_
A= T D (ar ) (B263
. I'(al2+1D)I'(a+d)/2) patan
hpa_ ,
IN'al2+n+1)I'((e+d)/2+n) p2n
(B26b)
R ﬁLra+2
A Y nro= (B260)

(a—€+2)(a+0+d)

2%By definition, the Gegenbauer polynomiaf(x) is the coeffi-
cient of & in the expansion

+oo
(1—2xa+ az)—V:;O Clx)a'.

The particular polynomiaP{®(x)=C%2"1(x) represents an appro-

priate generalization of the Legendre polynomialdiimensions
[indeedP{®(x) =P, (x)].
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APPENDIX C: EXPLICIT FORM OF g=A~%(r27%279
IN d DIMENSIONS

A very important technical fact which allows the analytic
computation of thel=3 equations of motion is the possibil-
ity to obtain explicitly the quadratically nonlinear potentials,
i.e., to evaluate in closed form the integrals appearing in the
PN expansion of the cubic-vertex diagram of Fig. 7.

At the lowest approximation in the ! expansion, the
diagram of Fig. 7 leads, id=3, to the integral

g“’3er=A1(4£J, (C1)

rirs

which was(probably first evaluated by Fock in 193@Sur
le mouvement des masses finies d’apta therie de la
gravitation einsteiniennel'48]), with the simple result

gU9=3(x)=In(ry+ry+r10). (C2
Remembering that;=|x—y;|, r,=[x—y,| and r=|y;
—Y,| the combinatiorr; +r,+r, entering the logarithm in
Eq. (C2) is simply seen to be the perimeter of the triangle
joining the three spatial pointg, y; andy, entering the
(Newtonian approximation of theliagram of Fig. 7. At the
O(c™?) level of the PN expansion of Fig. 7, there enter
several new integrals which can be reduced to

f(@=3)=pA ~1gd=3), (C3
together with
r
f(1%=3):Al(r_l and 1-2. (C4
2

The explicit evaluation of the integralC3), (C4) is also
possible, as was shown in Refd9,22 (drawing on earlier
work [50,57]). In this appendix we shall explicitly evaluate
the d-dimensional generalization of EGC1). It will be clear,
however, that our method can be rather straightforwardly
generalized to thé€(c™?) diagrams contained in Fig. 7, i.e.,
to thed-dimensional generalizations ¢€3), (C4).

For our present purpose it will be more convenient not to
include the two factors ok that accompany the two propa-

gators issued from 1 and 2 in Fig. 7. We shall therefore
define

1 2

FIG. 7. Cubic-vertex diagram
EAfl(rifdrgfd).

related to functiony

124007-47



BLANCHET, DAMOUR, AND ESPOSITO-FARBE

g(x)=A"Y(r 939, (C5)

The method we present here consists of four basic steps:

PHYSICAL REVIEW D69, 124007 (2004

The formulagC7), (C8) apply to any source with fixed mul-
tipolarity (¢) and a power law dependence on a radius. In

particular, they apply whem—r;, A—€¢+2—d and n,

expand the integrand in series and construct a correspondinagngil'"”f>—>Pf¢d)(cl) (because a generalized Legendre

series for gparticular solutiongpa=A " 1(rf 3™ pan, (i)
resum the series to get an explicit line-integral formggf;,

polynomial is just proportional to the contraction of an STF-
projected multi unit vecton® onto a fixed ‘2" direction; see

(|||) ComputeAgpartin a distributional sense to discover that Appendix 3 This leads to a Corresponding expansion of a

it satisfiesAgya=r2 %5 9+S whereSis a distributional

source(localized along a ling and finally(iv) subtractA ~1S
(which is given by another line integjdrom gy, to getg as

a sum of line integraléwhich are expressible in terms of one

special function of one argumentWhat is crucial in the
argument is the uniqueness of the global solutidecaying
at infinity) of any (distributiona) Poisson equation o= o
when the(distributiona) source decays fast enougbr, at
least, does not grow too fasat infinity. In our case, the

sourcesr involved will have fast-enough decay at infinity if
we analytically continued toward large enough real parts

(sayR[d]>3).

There are several ways of implementing our method. Fo

instance, we could start by expandinﬁd in the source of

local solution gige; (Neary;) of Ag.=r2 %2 ¢ of the
form

2—-d,.3-d +1
e PO(cy).  (CY
Qioc 1 204—d) & +1 rgz ¢ '(C1).

In order to proceed further, we now need to resum the ex-
pansion(C9). This is done by a trick introduced, in a similar
context of resummation of multipolar expansions containing
extra ¢-dependent denominators, by REb2]. One intro-
duces some radial-integration operatorf, [ ¢](r)
r=féd)\)\“d>()\r). For instance, in the context of E¢C9),

one replaces|/(¢+1) by Ro[r{]=/3d\(Ar;)¢ or equiva-

Eq. (C5) in powers ofr ;, such an expansion being valid only lently r{**/(¢+1) by f{!d¢,¢{. This transforms back the

in a neighborhood of, ; namely, we have thd-dimensional
generalization of the familiad =3 Legendre-polynomial ex-
pansion of|x—y,| ! nearx=y, (more precisely in the ball

ri<rip

¢

r

2—d_ .2—d 1 d

r; "=rp 2 <—) P% )(cy).
(=0 I’12

(Co
Here, we denoted for visual claritp{®(x)=C%?"%(x),
whereCJ(x) is a Gegenbauer polynomial such tlﬁa}t/z(x)
=P{)(x) is the usuakd=3 Legendre polynomigisee also
Appendix B abové The quantityc, in Eq. (C6) denotes the
cosine of the angl®, betweenx—y,; andy,—y,;. The nota-
tion we shall use is summarized in Fig. 8.

When inserting thdocal expansion(C6) into the source
of (C5) we are led to solvinglocally) an equation of the
form Ag,o.==a,ri " P{¥(c,). However, using the gen-
eral formula

A(r*n)=(N—€)(\+d=2+0)r""2n.,  (C?
we know a particular solution ak=r*n,, namely
~ r)\+2ﬁL
=1/ —
A= T AT (C8)

X
1 012\02
Tl
01 2 92
yi 12 Y2

FIG. 8. Notation for various angles and distances,and y,
denoting the positions of the two particles, anthe field point.

multipolar series appearing in E4C9) into the original
“Legendre” series entering Eq(C6). This allows one to
write gic 1 @s a simple line integral:

3-d
! " 2-d
Jioc1= 2(4_d)f0 d€1|Y€1_Y2|

rid (1
— _ 2—d
_2(4_d)j0 da|ya y2| .

(C10

Here,y€l is a point on the segment joining to x, located a

distancef, away fromy; . It is more convenient to replace
the line integration over the dimensionful length (0<¢;
<r,) into an integration over the dimensionless parameter
a={,I/r; (0<a=<1). This leads to the explicit expression

Ve, =Ya=ax+(1-a)y;. (C11)
The resummed line-integral expressi@@i10) allows one to
define everywhere,,. , including in the domain >r,

where the original serig€9) wasnot convergent. Having in
hand such a global definition df,,.; then allows one to
compute its Laplaciann the sense of distributiongand to
see how it differs front2~ 929, The calculation ofA g, 1

is done by techniques similar to the ones used in Ref].

One needs to rewrite some terms in the formaofieriva-

tives. For instance, several of the terms appearinydp.. 1

can be rewritten as the line integral

L ad
f darj
0

1 Jd
2—d . 2-d,2—d
:jodag[arl Vo= Yal? d]:rl r. -,

(C12

d
e R ) 2 1
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where the last line integral gave only the end contributiondenotedk andh there, where the source bfwas a uniform
a=1 corresponding tg,=x. In addition to the terms yield- mass distribution along the segment joinipgandy,. Let
ing (C12), i.e., the looked-for “source” of the completg, us briefly indicate the successive steps of this new calcula-
the calculation ofA gy, ; yields also the distributional source tion of g. Instead of the “local” expansioiC6) (valid for

(Wherek=k/4 entered througtr?=9= — 5(¥/k) r1<ri,), one expands3 “ near infinity (,>r1,) as
12
1 2 5(d) Z —) PP (c,). (C17)
T 2= d)kf daa®8'“(y,—VY,). (C13 ~ 1
This is conveniently transformed by introducing=1/a  Solving term by termAg..=r% 5 ¢ “near infinity” by
(with 1< B=<+=) and means of Eq.C8), and transforming away the appearing
¢-dependent denominators by means ﬁfldelef‘d‘€
yp=(1=B)y1+ By, (C14 =r3797¢/(¢+d-3), leads to the following resummation of

which varies along a semi-infinite line going froyg to in- ~ 9=-

finity along the directiony,—y,, i.e., away from y;. This (4= "

transformation allows one to rewrite E¢C13) in the more 0.= — 1_J daly,—y,2 ¢ (C189
transparent form 2(4—d) “

Here,y, is still defined by Eq(C11), but the parametes
T 24— d)kf dB D (x—yp). (C19  now varies in I a< -+ so that Eq(C18) is the potential
of a semi-infinite line. Computing the distributional Laplac-
At this stage, we recognize in E¢C15 a very simple i1an of the particular solutio.,, Eq. (C18), leads to the
source, namely aniform distribution of “mass” along the ~ Presence, in addition to the looked-for sourée“r3~¢, of
half line along whichB runs. This allows one to easily com- an additional distributional source localized now along the
pute the unique, globdHecaying at infinity solution of the ~ Segment joiningy; to y,, namely,
Poisson equation with sour¢€15 and to subtract it from

Oc1 tO get the unique, globad in the form of two line f (d)
integrals: 2(4 d dB&'V(x—yg), (C19

N 1 o where = 1/a varies between 0 and 1 and whergis again
9= 2(4_d)J0 dlalya—Yol defined by Eq.(C14). It is then easy to subtract from,.
[which tends, ird= 3, to the functiork(x,y;,y,) of [51]] the
rf;d 2-d Poisson integral of the sour¢€9) [which is a uniform dis-
T 2a-d)), d€ﬁ|x Vgl (C18  tribution along the segment,—y, and which tends, ird
=3, to the functionth(x,y; ,Y,) of [51]] to get the following
whered? = |dy,|=r,da andd{z=|dy|=r,,dB. In other ~ alternative expression fa:
words, Eq.(C16) expresseg as, essentially, the difference

between the Newtonian potentials generated by two uniform g=-— f de,y,—y,|2 ¢

line distributions: a segment joining to x and the half line 2(4—d)J,, 72 e

starting fromy, in the direction away frony,. It is easily 3-d

seen(modulo the slight delicacy of the logarithmic diver- n M2 r12d€ Ix—y 2 ¢ (C20
gence of the potential of a semi-infinite line whes- 3, i.e., 2(4—dy)o XY

the occurrence of a 4/pole; see beloywthat the resul{C16)
yields, whend— 3, the well-known resul{C2). [Actually,  or, equivalently,
this was the way one of ud.D.) had long ago derived for
himself Eq.(C2), unaware of its derivations in the literatufe. ___n f daly,—y,[>¢
The expressioiC16) has the advantage of being explic- 9 2(4—-d) ), aY2"Ya
itly regular (except at the poink=y,) in the ballr,<r,.
However, it has the default of treating dissymmetrically the 2-d
two pointsy; andys, [in spite of the fact that the resul€16) 2(4 d)f dBIx—ygl (C21)
for g is, actually, symmetric under<:2]. One can derive an
exchange-symmetric expression fpby modifying the first  The form (C20), (C21) still does not look quite symmetric
step of our method. Instead of expanding the sourcéyetween 1 and 2 but a moment of reflection will show that it
r2-%2-4in the neighborhood ok=vy,, i.e., in a series of is.

positive powers of ;, we can expand it in theeighborhood The two methods above have expresged terms of the
of infinity, i.e., in a series of negative powersrgf. Such an  Newtonian potentials generated by half lines or segments,
expansion is directly related to the expansions usedin, i.e., integrals of the typgd¢|x’'—y,|?~ ¢ wherey, varies

which led to the decomposition af(®=2) into two pieces along a straight linébut wherex’ might bex orys,). Clearly,
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any such potential can be redudgdrough linear decompo-
sitiong to the Newtonian potential generated byalf line.

PHYSICAL REVIEW D69, 124007 (2004

The simplest way to prove E¢C253 is to notice that the
Newtonian potential of amfinite line can be written either

Let us then consider a generic half line starting at the pointis twice that of two half lines beginning at the orthogonal

ro and going to infinity in the direction, and let us consider

projection of the field point on the original line, so that

the Newtonian potential generated by this half line at the

origin of the coordinate systefmot located on the half line
Let us denote&,=ro+{n, r,=|ry|, rg=rong, c=ng-n (co-

sine of the angl® between the radius vector from the origin,

i.e., the “field point,” toward the beginning point of the half

line and the direction of the half line, away from its begin-

ning). Then it is easy to find that

f der2 9=p(c)r3 ¢, (C22)
where the functionp(c) is given by the integral
°° . (€23
e(c)= f . C23
0 (1+2cN+\?)ld72)2

The integral(C23) converges ford>3, has a polex1/(d

—3) asd—3, and can be expressed in terms of hypergeo-

metric functions, e.gF, 3, (d 2)/2 :3:7]. Itis, however,
simpler to keep the forniC23.%°

Finally, using the half-line potential&€C22) as building
blocks one can write our resu{tC20 in the final, k-2
symmetric, form

3—d
90Y1.Y2) = 50 —gr[2r e(0)—ri Ye(en)
3 drg—d
—r57%(cy)] - 2(4—d) ¢(C1o).

(C24

The quantities entering EC24) are those defined in Fig. 8,
notably c;=co0s#;, c,=c0s6#,, C1,=C0Sb;,, With r, being
the orthogonal distance between the field poinand the
segment joiningy; to y, [with associated argument;
=cos@@/2)=0 in ¢(c)]. Note the following properties of the
function ¢(c):

240
p(C)+o(—0C)= m, (C253
12T (d-3)2) B
¢O=3 "Ta-2m  *Y=i=3
(C25b

30The multipolar expansion of the functiap(c) reads

20+d—2
e(0)=2, (-

= (e+1) ¢+d-3) G

On this expression one sees clearly the occurrence of the simple

pole of ¢(c) whene=d—3—0, which is given by the “monopo-
lar” term €=0 as
(3) )

¢(c)= +0(e 0)—3+(9(e°).

e dl @(0)
f — = (C26)
d—2 d-3

oy re
or as that of two other half lines obtained by a more arbitrary
cut (under an angl@+ 7/2 andc= cosb).
We can verify thed— 3 limit of Egs.(C16) and(C24) by

using the followinge — 0 expansion of the elementary func-
tion ¢(c), namely:

1 1+c
cp(c)zg—ln(T +0O(e). (C27

To obtain Eq.(C27) we notice that the finite part ap(c)
wheng—0, which is

1
@o(C)=lim <p(c)—g , (C298

e—0

can be re-expressed in the form of the following sum of two
convergent integrals:

1 d\ 1 dA 1
o[ 0L,
0 J1+2cA+A2 Jo N | {142cN+22

1+c

5 (C29

=—In

Combining the expansiofC27) with the basic relatior’
associated with the triangle of Fig. 8, oghdimensional ex-
pressiongC16) and(C24) are found to admit the expansion

2

+0(e), (C30

which indeed reduces to the three-dimensional reQT®)
modulo an additive constant linked to thes Jdole.

Nice as it is to have in hand an analytic expression for the
d-dimensional basic non linear potentmlits practical util-
ity in explicit computations of thal-dimensional equations
of motion is not evident because, contrary to the
3-dimensional expressiaiC2), the expression is naxplic-
itly regular along they; —y, segment[The regularity of Eq.

3DenotingS=r,+r,+r;, we have

1+c; rytryp—rsy 1+c, rotrp—ry
s 2riryp s 2,015
1+cyp, rqtro—rqp
s 2rqr,

The perpendicular distanee is given by

E1)
L:?\/Z(l+c1)(1+02)(1+c12).
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(C24) asr, —0 comes by compensations between the threéng the d-dimensional analogue of E¢C3), sayf=2A"1g

terms in the bracket, using E(C253.] It would need some
transforming[using (C2539, and/or using the other expres-
sions derived from the previous for(@16), which are regu-
lar along they,; —y, segment, but singular somewhere ¢lse

to write an explicit expression which is regular everywhere,

except at the two isolated poinys andys,.
Finally, let us just mention that the method explained

=2A72(r279%279%, it is easy[by iterating Eq.(C8)] to get

the analogue of Eq.C9). Then a more complicated radial-
integration operatof(see, e.g.[52]) will allow one to resum
the series to get a line-integral expressionffgg; or f.,. We
anticipate that a somewhat more delicate application of ei-
ther A (to go back tog) or A% (to go back to 227929

will yield additional line-distributed sources. It should then

above can, in principle, be straightforwardly generalized tabe a simple matter to compute the Poisson, or iterated Pois-
the computation of the higher post-Newtonian potentialsson, integral of these line-distributed sources. We leave an
contained in the diagram of Fig. 7. For instance, in computexplicit study of these details to future work.

[1] T. Damour, inThree Hundred Years of Gravitatipedited by
S.W. Hawking and W. Israe(Cambridge University Press,
Cambridge, England, 1987pp. 128-198.

[2] T. Ohta, H. Okamura, T. Kimura, and K. Hiida, Prog. Theor.
Phys.50, 492(1973.

[3] T. Ohta, H. Okamura, T. Kimura, and K. Hiida, Prog. Theor.
Phys.51, 1220(1974.

[4] T. Ohta, H. Okamura, T. Kimura, and K. Hiida, Prog. Theor.
Phys.51, 1598(1974.

[5] L. Bel, T. Damour, N. Deruelle, J. Ibanez, and J. Martin, Gen.
Relativ. Gravit.13, 963 (1981).

[6] T. Damour and N. Deruelle, Phys. Le&7A, 81 (1981).

[7] T. Damour, C.R. Seances Acad. Sci. Se292A, 1355(1982.

[8] T. Damour, inGravitational Radiation edited by N. Deruelle
and T. Piran(North-Holland, Amsterdam, 1983p. 59.

[9] G. Schéer, Ann. Phys(N.Y.) 161, 81 (1985.

[10] G. Schéer, Gen. Relativ. Gravitl8, 225 (1986.

[11] T. Damour and G. Sclier, Gen. Relativ. Gravit17, 879
(1985.

[12] S. Kopejkin, Astron. Zh62, 889 (1985.

[13] L. Blanchet, G. Faye, and B. Ponsot, Phys. Re%8>124002
(1998.

[14] Y. Itoh, T. Futamase, and H. Asada, Phys. Re\63) 064038
(2001.

[15] M.E. Pati and C.M. Will, Phys. Rev. B5, 104008(2002.

[16] P. Jaranowski and G. Sdiea, Phys. Rev. 567, 7274(1998;
63, 029902E) (2001).

[17] P. Jaranowski and G. Sdiea, Phys. Rev. 350, 124003(1999.

[18] T. Damour, P. Jaranowski, and G. SfdraPhys. Rev. D62,
044024(2000.

[19] T. Damour, P. Jaranowski, and G. SféraPhys. Rev. D62,
021501R) (2000; 63, 029903E) (2001).

[20] T. Damour, P. Jaranowski, and G. SfdvaPhys. Rev. D63,
044021(2001); 66, 029901E) (2002.

[21] L. Blanchet and G. Faye, Phys. Lett.2X1, 58 (2000.

[22] L. Blanchet and G. Faye, Phys. Rev.63, 062005(2002.

[23] L. Blanchet and G. Faye, J. Math. Phyid, 7675(2000.

[24] L. Blanchet and G. Faye, J. Math. Phy®, 4391(2001.

[27] L. Blanchet, B.R. lyer, and B. Joguet, Phys. Re\6%) 064005
(2002.

[28] L. Blanchet, G. Faye, B.R. lyer, and B. Joguet, Phys. Rev. D
65, 061501R) (2002.

[29] M. Riesz, Acta Math81, 1 (1949.

[30] T. Damour, C.R. Seances Acad. Sci., SeR%¥, 227 (1980.

[31] G. 't Hooft and M. Veltman, Nucl. PhysB44, 139 (1972.

[32] C.G. Bollini and J.J. Giambiagi, Phys. Le#tOB, 566 (1972.

[33] P. Breitenlohner and D. Maison, Commun. Math. Pi§%.11
(1977).

[34] J. Collins, Renormalization (Cambridge University Press,
Cambridge, England, 1984

[35] T. Damour, P. Jaranowski, and G. StdraPhys. Lett. B513
147 (2001).

[36] L. Schwartz, Theorie des Distributions (Hermann, Paris,
1978.

[37] G. Faye, thee de doctorat en physique thigue, Universite
Paris VI, 1999.

[38] V. Itoh and T. Futamase, Phys. Rev.68, 121501R) (2003.

[39] Y. Itoh, Phys. Rev. D69, 064018(2004.

[40] T. Damour, P. Jaranowski, and G. Sfdra Phys. Rev. D62,
084011(2000.

[41] L. Blanchet, Phys. Rev. B5, 124009(2002.

[42] T. Damour, B.R. lyer, P. Jaranowski, and B.S. Sathyaprakash,
Phys. Rev. D67, 064028(2003.

[43] C. W. Misner, K. S. Thorne, and J. A. Wheel&ravitation
(Freeman, San Francisco, 1973

[44] 1. M. Gel'fand and G. E. Shilowseneralized FunctionéAca-
demic Press, New York, 1964

[45] T. Damour and G. Esposito-Fags Phys. Rev. 53, 5541
(1996.

[46] E. SchmutzerRelativistische PhysikTeubner Verlagsgesell-
schaft, Leipzig, 1968

[47] L. Blanchet and T. Damour, Philos. Trans. R. Soc. London
320, 379(1986.

[48] V. Fock, J. Phys(USSR 1, 81 (1939.

[49] L. Blanchet, T. Damour, and B.R. lyer, Phys. Rev5D) 5360
(1995.

[50] G. Schéer, Phys. Lett. A123 336(1987).

[25] V.C. de Andrade, L. Blanchet, and G. Faye, Class. Quantunj51] T. Damour and B.R. lyer, Ann. I.H.P. Phys. Theé#, 115

Grav. 18, 753(200).
[26] L. Blanchet and B.R. lyer, Class. Quantum Gra@, 755
(2003.

(1991
[52] T. Damour, M. Soffel, and C.-M. Xu, Phys. Rev. 4V, 3124
(1993.

124007-51



