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Dimensional regularization of the third post-Newtonian dynamics of point particles
in harmonic coordinates
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Dimensional regularization is used to derive the equations of motion of two point masses in harmonic
coordinates. At the third post-Newtonian~3PN! approximation, it is found that the dimensionally regularized
equations of motion contain a pole part@proportional to (d23)21] which diverges as the space dimensiond
tends to 3. It is proven that the pole part can be renormalized away by introducing suitable shifts of the two
world-lines representing the point masses, and that the same shifts renormalize away the pole part of the
‘‘bulk’’ metric tensor gmn(xl). The ensuing, finite renormalized equations of motion are then found to belong
to the general parametric equations of motion derived by an extended Hadamard regularization method, and to
uniquely determine the 3PN ambiguity parameterl to bel521987/3080. This value is fully consistent with
the recent determination of the equivalent 3PN ‘‘static ambiguity’’ parameter,vs50, by a dimensional-
regularization derivation of the Hamiltonian in Arnowitt-Deser-Misner coordinates. Our work provides a new,
powerful check of the consistency of the dimensional regularization method within the context of the classical
gravitational interaction of point particles.

DOI: 10.1103/PhysRevD.69.124007 PACS number~s!: 04.25.2g, 04.30.2w
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I. INTRODUCTION

A. Relation to previous work

The problem of motion, one of the cardinal problems
Einstein’s gravitation theory, has received continuous att
tion over the years. The early, classic works of Lorentz a
Droste, Eddington and Clark, Einstein, Infeld, and Ho
mann, Fock, Papapetrou and others led to a good unders
ing of the equations of motion ofN bodies at the first post
Newtonian~1PN! approximation1 ~see, e.g.,@1# for a general
review of the problem of motion!. In the 1970s, an importan
series of works by a Japanese group@2–4# led to a nearly
complete control of the problem of motion at the seco
post-Newtonian~2PN! approximation. Then, in the earl
1980s, motivated by the observation of secular orbital effe
in the Hulse-Taylor binary pulsar PSR1913116, several
groups solved the two-body problem at the 2.5PN le
~while completing on the way the derivation of the 2PN d
namics! @5–12# ~for more recent work on the 2.5PN dynam
ics see@13–15#!.

In the late 1990s, motivated by the aim of deriving hig
accuracy templates for the data analysis of the upcom
international network of interferometric gravitational-wa
detectors, two groups embarked on the derivation of

*Electronic address: blanchet@iap.fr
†Electronic address: damour@ihes.fr
‡Electronic address: gef@iap.fr
1As usual thenPN order refers to the terms of order 1/c2n in the

equations of motion.
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equations of motion at the third post-Newtonian~3PN! level.
One group used the Arnowitt-Deser-Misner~ADM ! Hamil-
tonian approach@16–20# and worked in a correspondin
ADM-type coordinate system. Another group used a dir
post-Newtonian iteration of the equations of motion in h
monic coordinates@21–26#. The end results of these tw
approaches have been proved to be physically equiva
@20,25#. However, both approaches, even after exploiting
symmetries and pushing their Hadamard-regularizati
based methods to the maximum of their possibilities, l
undeterminedone and only onedimensionless parameter:vs
in the ADM approach andl in the harmonic-coordinate
one. The unknown parameters in both approaches are re
by

l52
3

11
vs2

1987

3080
, ~1.1!

as was deduced from the comparison between the inva
energy functions for circular orbits in the two approach
@21#, and from two independent proofs of the equivalen
between the two formalisms for general orbits@20,25#. The
appearance of one~and only one! unknown parameter in the
equations of motion is quite striking; it is related to th
choice of the regularization method used to cure the self-fi
divergencies of point particles. Both lines of work@16–20#
and @21–26# regularized the self-field divergencies by som
version of the Hadamard regularization method. The sec
line of work defined an extended version of the Hadam
regularization @23,24#, which permitted a self-consisten
©2004 The American Physical Society07-1
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derivation of the 3PN equations of motion, but its use s
allowed for the presence of arbitrary parameters in the fi
equations. On the other hand, the Hadamard regulariza
also yielded some arbitrary parameters in the gravitatio
radiation field of point-particle binaries at the 3PN order, t
most important of which is the parameteru entering the bi-
nary’s energy flux@27,28#.

Let us notice that the regularization~when dealing with
point particles! and the renormalization~needed when deal
ing either with point particles or with extended bodies2! of
self-field effects has recurrently plagued the general rela
istic problem of motion. Even at the 1PN level, early wo
often contained incorrect treatments of self-field effects~see,
e.g., Sec. 6.14 of@1# for a review!. At the 2PN level, the
self-field divergencies are more severe than at the 1PN le
For instance, they caused Ref.@3# to incorrectly evaluate the
‘‘static’’ ~i.e., velocity-independent! part of the 2PN two-
body Hamiltonian. The first correct and complete evaluat
of the 2PN dynamics has been obtained by using the R
analytical continuation method@29#. ~See @8,11# for a de-
tailed discussion of the evaluation of the static 2PN tw
body Hamiltonian.! In brief, the Riesz analytical continua
tion method consists of replacing the problematic de
function stress-energy tensor of a set of point partic
ya

m(sa),

Tmn~x!5(
a

mac2E dsa

dya
m

dsa

dya
n

dsa
@2g~ya!#21/2

3d (4)
„xl2ya

l~sa!… ~1.2!

@where dsa
252gmn(ya

l)dya
mdya

n , g[detgmn] by an auxil-
iary, smoother source

TA
mn~x!5(

a
mac2E dsa

dya
m

dsa

dya
n

dsa
@2g~ya!#21/2

3ZA
(4)
„xl2ya

l~sa!…. ~1.3!

@Actually, in the implementation of@8#, one works with
T mn(x)[ug(x)uTmn(x).] In Eq. ~1.3! the four-dimensional
delta function entering Eq.~1.2! has been replaced by th
Lorentzian3 four-dimensional Riesz kernelZA

(4)(x2y),
which depends on the complex numberA. When the real part
of A is large enough the sourceTA

mn(x) is an ordinary func-
tion of xm, which is smooth enough to lead to a well-defin
iteration of the harmonically relaxed Einstein field equatio
involving no divergent integrals linked to the behavior of t
integrands whenxm→ya

m . One then analytically continuesA
down to 0, where the kernelZA

(4)(x2y) tends to d (4)(x

2In the case of extended compact bodies, the gravitational
energy ~divergent when the radii of the bodies formally tend
zero! must be renormalized into the definition of the mass.

3ZA
(d11) is the Lorentzian version of the Euclidean kernelda

(d)

discussed in Appendix B.
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2y). The important point is that it has been shown@8# that all
the integrals appearing in the 2PN equations of motion
meromorphic functions ofA which admit a smooth continu
ation atA50 ~without poles!. It was also shown there tha
the formal construction based on Eq.~1.3! does generate, a
the 2.5PN level, the metric and equations of motion ofN
‘‘compact’’ bodies~i.e., bodies with radii comparable to the
Schwarzschild radii!.

The Riesz analytic continuation method just sketch
works within a normal 4-dimensional space-time@as recalled
by the superscript~4! in Eq. ~1.3!#. However, it was men-
tioned in@30# that the same final result~at the 2.5PN level! is
obtained by replacing ZA

(4)(x2y) by Z0
(42A)(x2y)

[d (42A)(x2y), i.e., by formally considering delta-functio
sources in a space-time of complex dimension 42A. In
other words, at the 2.5PN level, the Riesz analytic contin
tion method is equivalent to thedimensional regularization
method.4 However, it was also mentioned at the time@8# that
the generalization of the Riesz analytic continuation beyo
the 2.5PN level did not look straightforward because of
appearance of poles, proportional toA21, at the 3PN level
~when using harmonic coordinates!.

Recently, Damour, Jaranowski, and Scha¨fer @35# showed
how to use dimensional regularization within the ADM c
nonical formalism. They found that the reduced Hamiltoni
describing the dynamics of two point masses in space-t
dimensionD[d11 wasfinite ~no pole part! asd→3. They
also found that the unique 3PN Hamiltonian defined
the analytic continuation ofd toward 3 had two properties
~i! the velocity-dependent terms had the unique struct
compatible with global Poincare´ invariance,5 and
~ii ! the velocity-independent~‘‘static’’ ! terms led to an un-
ambiguous determination of the unknown ADM parame
vs , namely

vs
dim. reg. ADM50. ~1.4!

The fact that the dimensionally regularized 3PN AD
Hamiltonian ends up being globally Poincare´ invariant is a
confirmation of the consistency of dimensional regulariz
tion, because this symmetry is not at all manifest within t
ADM approach which uses a space-plus-time split from
start. By contrast, the global Poincare´ symmetry is manifest

lf-

4Dimensional regularization was invented as a mean to pres
the gauge symmetryof perturbativequantumgauge theories@31–
34#. Our basic problem here is to respect the gauge symmetry
sociated with thediffeomorphism invarianceof theclassicalgeneral
relativistic description of interacting point masses.

5Thus the ‘‘kinetic ambiguity’’ parametervk , originally intro-
duced in the ADM approach@16,17#, takes the unique value
vk541/24. This value was obtained in@21# using the result for the
binary energy function in the case of circular orbits, as calculate
the harmonic-coordinates formalism, and also directly from the
quirement of Poincare´ invariance in the ADM formalism@19#.
7-2
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in harmonic coordinates, and indeed the 3PN harmo
coordinates equations of motion derived in@21,22# were
found to be manifestly Poincare´ invariant.

B. Method and main results

In the present paper, we shall show how to implem
dimensional regularization~henceforth often abbreviated a
‘‘dim. reg.’’ or even ‘‘dr’’ ! in the computation of the equa
tions of motion in harmonic coordinates, i.e., following th
same iterative post-Newtonian formalism as in Re
@13,21,22#. Similarly to the ADM calculation of Ref.@35#,
our strategy will essentially consist of computing thediffer-
encebetween thed-dimensional result and the 3-dimension
one @21,22# corresponding to Hadamard regularization. Th
difference is computed in the form of a Laurent expansion
«[d23, whered denotes the spatial dimension. The ma
reason for computing the« expansion of the difference i
that it depends only on the singular behavior of various m
ric coefficients in the vicinity of the point particles, so th
the functions involved in the delicate divergent integrals c
all be computed ind dimensions in the form of local expan
sions in powers ofr 1 or r 2 ~where r a[ux2yau; ya , a
51,2, denoting the locations of the two point masse!.
Dimensional regularization as we use it here can then be
as a powerful argument for completing the 3-dimensio
Hadamard-regularization results of@21,22# and fixing the
value of the unknown parameter. We leave to future w
the task of an exact calculation of thed-dimensional equa-
tions of motion, instead of the calculation of the first fe
terms in a Laurent expansion in« around d53, as done
here. The first step toward such a calculation is taken
Appendix C, where we give the explicit expression of t
basic quadratically non-linear Green functiong(x,y1 ,y2) in
d dimensions.

The detailed way of computing the difference betwe
dim. reg. and Hadamard’s reg. will turn out to be signi
cantly more intricate than in the ADM case. This added co
plexity has several sources. A first source of complexity
that the harmonic-gauged-dimensional calculation will be
seen to contain~as anticipated long ago@8#! poles, propor-
tional to (d23)21, by contrast to the ADM calculation
which is finite asd→3. A second source of complexity i
that the end results@22# for the 3-dimensional 3PN equation
of motion have been derived using systematically anex-
tendedversion of the Hadamard regularization method,
corporating both a generalized theory of singular pseu
functions and their associated~generalized! distributional
derivatives@23#, and an improved definition of the finite pa
asx→y1 , say@F#1 , of a singular functionF(x,y1 ,y2), de-
signed so as to respect the global Poincare´ symmetry of the
problem@24#. We shall then find it technically convenient t
subtract the various contributions to the end results of@22#
which arose because of the specific use of the extended
amard regularization methods of@23,24# before considering
the difference with thed-dimensional result. A third sourc
12400
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of added complexity~with respect to the ADM case6! comes
from the presence in the harmonic-gauge integrals we s
evaluate of ‘‘hidden-distributional’’ terms in the integrand
By hidden distributional terms we mean terms proportio
to the second spatial derivatives of the Poisson ker
D21da

(d)}r a
22d , or to the fourth spatial derivatives of th

iterated Poisson kernelD22da
(d)}r a

42d . Such terms,] i j r a
22d

or ] i jkl r a
42d , considered as Schwartz distributional deriv

tives @36#, contain pieces proportional to the delta functio
da

(d) , which need to be treated with care. The generaliz
distributional derivative defined in@23#, and used to compute
the end results of@22#, led to an improved way, compared t
the normal Schwartz distributional derivative, of evaluati
contributions coming from the product of a singular functi
and a derivative of the type] i j r a

21 or ] i jkl r a , and more
generally of any derivatives of singular functions in a certa
class. We shall find it convenient to subtract these additio
non-Schwartzian contributions to the 3PN equations of m
tion before applying dimensional regularization. Howev
we shall note at the end that dim. reg. automatically inc
porates all of these non-Schwartzian contributions.

A fourth, but minor, source of complexity concerns th
dependence of the end results of@22# for the 3PN accelera-
tion of the first particle~label a51), saya1

BF , on two arbi-
trary length scalesr 18 and r 28 , and on the ‘‘ambiguity’’ pa-
rameterl. Explicitly, we define

a1
BF@l;r 18 ,r 28#[right-hand side~RHS! of Eq. ~7.16!

in Ref. @22#. ~1.5!

Here the acceleration is considered as a function of the
massesm1 and m2 , the relative distancey12y2[r 12n12
~wheren12 is the unit vector directed from particle 2 to pa
ticle 1!, the two coordinate velocitiesv1 andv2 , and also, as
emphasized in Eq.~1.5!, the parameterl as well as two
regularization length scalesr 18 and r 28 . The latter length
scales enter the equations of motion at the 3PN level thro
the logarithms ln(r12/r 18) and ln(r12/r 28). They come from
the regularization as the field pointx8 tends toy1 or y2 of
Poisson-type integrals~see Sec. III B below!. The length
scalesr 18 ,r 28 are ‘‘pure gauge’’ in the sense that they can
removed by the effect induced on the world-lines of a co
dinate transformation of the bulk metric@22#. On the other
hand, the dimensionless parameterl entering the final result

6The specific form of the 3PN ADM HamiltonianH derived in
@18# and used~in its d-dimensional generalization! in @35# was writ-
ten, on purpose, in a way which does not involve any hidden
tributional terms@the only delta-function contributions it contain
being explicit contact termsF(x)da

(3)]. This allowed the calculation
of the difference between thed-dimensional HamiltonianH (d) and
the Hadamard-regularized 3-dimensional one Hr@H (3)# without
having to worry about distributional derivatives. However, as
check on the consistency of dim. reg., the authors of@35# did per-
form another calculation ofH based on a starting form of th
Hamiltonian which involved hidden distributional terms, with th
same final result.
7-3
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~1.5! corresponds to genuine physical effects. It was int
duced by requiring that the 3PN equations of motion adm
conserved energy~and more generally be derivable from
Lagrangian!. This extra requirement imposedtwo relations
between the two length scalesr 18 ,r 28 and two other length
scaless1 ,s2 entering originally into the formalism, namel
the constantss1 and s2 parametrizing the Hadamard part
finie of an integral as defined by Eq.~3.4! below. These
relations were found to be of the form

lnS r 28

s2
D 5

159

308
1l

m11m2

m2
and 1↔2, ~1.6!

where thesingle dimensionless parameterl so introduced
has been proved to be a purely numerical coefficient~inde-
pendent of the two masses!. When estimating the differenc
between dim. reg. and Hadamard reg. it will be convenien
insert Eq.~1.6! into Eq. ~1.5! and to reexpress the acceler
tion of particle 1 in terms of theoriginal regularization
length scales entering the Hadamard regularization ofa1 ,
which were in factr 18 ands2 . Thus we can consider alterna
tively

a1
BF@r 18 ,s2#[a1

BF@l;r 18 ,r 28~s2 ,l!# and 1↔2, ~1.7!

where the regularization constants are subject to the c
straints~1.6! @we will then check that thel dependence on
the RHS of Eq.~1.7! disappears when using Eq.~1.6! to
replacer 28 as a function ofs2 andl].

Our strategy will consist oftwo steps. Thefirst stepcon-
sists of subtracting all the extra contributions to Eq.~1.5!, or
equivalently Eq.~1.7!, which were specific consequences
the extended Hadamard regularization defined in@23,24#. As
we shall detail below, there aresevensuch extra contribu-
tions dAa1 , A51, . . . ,7. Essentially, subtracting these co
tributions boils down to estimating the value ofa1 that would
be obtained by using a ‘‘pure’’ Hadamard regularization,
gether with Schwartz distributional derivatives. Such a ‘‘pu
Hadamard-Schwartz’’~pHS! acceleration was in fact esse
tially the result of the first stage of the calculation ofa1 , as
reported in the thesis@37#. It is given by

a1
pHS@r 18 ,s2#5a1

BF@r 18 ,s2#2 (
A51

7

dAa1 . ~1.8!

The second stepof our method consists of evaluating th
Laurent expansion, in powers of«5d23, of thedifference
between thed-dimensional and the pure Hadamard-Schwa
~3-dimensional! computations of the accelerationa1 . We
shall see that this difference makes a contribution only w
a term generates apole ;1/«, in which case dim. reg. add
an extra contribution, made of the pole and the finite p
associated with the pole@we consistently neglect all term
O(«)]. One must then be especially wary of combinations
terms whose pole parts finally cancel~‘‘cancelled poles’’! but
whose dimensionally regularized finite parts generally
not, and must be evaluated with care. We denote the ab
defined difference
12400
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Da15Da1@«,,0 ;r 18 ,s2#[Da1@«,,0 ;l;r 18 ,r 28#. ~1.9!

It depends both on the Hadamard regularization scalesr 18 and
s2 ~or equivalently onl and r 18 ,r 28) and on the regularizing
parameters of dimensional regularization, namely« and the
characteristic length,0 associated with dim. reg. and intro
duced in Eq.~2.4! below. We shall explain in detail below
the techniques we have used to computeDa1 ~see Sec. IV!.
Finally, our main result will be the explicit computation o
the « expansion of the dim. reg. acceleration as

a1
dr@«,,0#5a1

pHS@r 18 ,s2#1Da1@«,,0 ;r 18 ,s2#. ~1.10!

With this result in hand, we shall prove~in Sec. VI! two
theorems.

Theorem 1.The pole part}1/« of the dimensionally regu-
larized acceleration~1.10!, as well as of the metric field
gmn(x) outside the particles, can be re-absorbed~i.e., renor-
malized away! into some shifts of the two ‘‘bare’’ world-
lines: ya→ya1ja , with, say, ja}1/« @‘‘minimal subtrac-
tion’’ ~MS!#, so that the result, expressed in terms of t
‘‘dressed’’ quantities, is finite when«→0.

The situation in harmonic coordinates is to be contras
with the calculation in ADM-type coordinates within th
Hamiltonian formalism@35#, where it was shown that al
pole parts directly cancel out in the total 3PN Hamiltoni
~no shifts of the world-lines were needed!. The central result
of the paper is then as follows.

Theorem 2.The ‘‘renormalized’’ ~finite! dimensionally
regularized acceleration is physically equivalent to t
extended-Hadamard-regularized acceleration~end result of
Ref. @22#!, in the sense that there exist some shift vect
j1(«,,0 ;r 18) andj2(«,,0 ;r 28), such that

a1
BF@l,r 18 ,r 28#5 lim

«→0
@a1

dr@«,,0#1dj(«,,0 ;r
18 ,r

28)a1#

~1.11!

~where dja1 denotes the effect of the shifts on th
acceleration7!, if and only if the heretofore unknown param
eterl entering the harmonic-coordinate equations of mot
takes the value

ldim. reg. harmonic52
1987

3080
. ~1.12!

The precise shiftsja(«) needed in Theorem 2 involve no
only a pole contribution}1/«, which defines the ‘‘minimal’’
~MS! shifts considered in Theorem 1, but also a finite co
tribution when«→0. Their explicit expressions read

7When working at the level of the equations of motion~not con-
sidering the metric outside the world-lines!, the effect of shifts can
be seen as being induced by a coordinate transformation of the
metric as in Ref.@22# ~we comment on this point in Sec. VI B
below!.
7-4
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j15
11

3

GN
2 m1

2

c6
F1

«
22 lnS r 18q̄

1/2

,0
D 2

327

1540
GaN1 and 1↔2,

~1.13!

whereGN is the usual Newton’s constant@see Eq.~2.4! be-
low#, aN1 denotes the acceleration of the particle 1~in d

dimensions! at the Newtonian level, andq̄[4peC depends
on the Euler constantC50.577 . . . . ~The detailed proofs of
Theorems 1 and 2 will consist of our investigations e
pounded in the successive sections of the paper, and wi
completed at the end of Secs. VI B and VI C, respective
taking into account also the results of Sec. VI D.!

Notice that an alternative way of presenting our cen
result is to say that, in fact, each choice of a specific ren
malization prescription~within dim. reg.!, such as ‘‘minimal
subtraction’’ as assumed in Theorem 1 for concept
simplicity,8 leads to renormalized equations of motion whi
depend only on the dim. reg. characteristic length scale,0
through the logarithm ln(r12/,0), and that any of these
renormalized equations of motion are physically equival
to the final results of@22#. In particular, this means, as w
shall see below, that each choice of renormalization presc
tion within dim. reg. determines the two regularizatio
length scalesr 18 ,r 28 entering Eq.~1.5!. Of course, what is
important is not the particular values these constants can
in a particular renormalization scheme~indeedr 18 andr 28 are
simply ‘‘gauge’’ constants which can anyway be removed
a coordinate transformation!, but the fact that the differen
renormalization prescriptions yield equations of motion fa
ing into the ‘‘parametric’’ class~i.e., parametrized byr 18 and
r 28) of equations of motion obtained in@22#.

An alternative way to phrase the result~1.11!, ~1.12! is to
combine Eqs.~1.8! and ~1.10! in order to arrive at

lim
«→0

@Da1@«,,0 ;2 1987
3080;r 18 ,r 28#1dj(«,,0 ;r

18 ,r
28)a1#5 (

A51

7

dAa1 .

~1.14!

In this form one sees that the sum of the additional ter
dAa1 differs by a mere shift,when and only whenl takes the
value ~1.12!, from the specific contributionDa1 we shall
evaluate in this paper, which comes directly from dime
sional regularization. Therefore one can say that, whel
52 1987

3080, the extended-Hadamard regularization@23,24# is in
fact ~physically! equivalent to dimensional regularizatio
However the extended-Hadamard regularization is inco
plete, both because it isa priori unable to determinel, and
also because it necessitates some ‘‘external’’ requirem
such as the imposition of the link~1.6! in order to ensure the
existence of a conserved energy—and in fact of the ten
integrals linked to the Poincare´ group. By contrast dim. reg
succeeds automatically~without extra inputs! in guarantee-

8However, for technical simplicity we shall prefer in Sec. VI
below to use a modified minimal subtraction that we shall den
j MS .
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ing the existence of the ten conserved integrals of the P
carégroup, as already found in Ref.@35#.

In view of the necessary link~1.1! provided by the
equivalence between the ADM Hamiltonian and t
harmonic-coordinate equations of motion, our result~1.12! is
in perfect agreement with the previous result~1.4! obtained
in @35#.9 Our result is also in agreement with the recent fin
ing of Itoh and Futamase@38,39# ~see also@14#!, who de-
rived the 3PN equations of motion in harmonic gauge us
a ‘‘surface-integral’’ approach, aimed at describingextended
relativistic compact binary systems in the strong-field po
particle limit. The surface-integral approach of Refs.@38,39#
is interesting because, like the matching method used
2.5PN order in@8#, it is based on the physical notion o
extended compact bodies. In this respect, we recall that
matching method used in@8# showed that the internal struc
ture ~Love numbers! of the constituent bodies would sta
influencing the equations of motion of~non-spinning! com-
pact bodies only at the 5PN level. Thiseffacement property
strongly suggests that it is possible to model, in a physica
preferred manner, two compact bodies as being two po
like particles, described by two masses and two world-lin
up to and including the 4.5PN level. It remains, however,
prove that the dimensional regularization of delta-functi
sources does yield the physically unique equations of mo
of two compact bodies up to the 4.5 PN order. The work@8#
proved it at the 2.5 PN level, and the agreement of
present results with those of@38,39# indicates that this is also
true at the 3PN level.

In addition to the independent confirmation of the val
of vs or l, let us also mention that our work provides
confirmation of theconsistencyof dim. reg., because ou
explicit calculations@which involved combinations of hun
dreds of Laurent expansions of the forma21«211a0
1O(«)] are entirely different from the ones of@35#: We use
harmonic coordinates~instead of ADM-type ones!, we work
at the level of the equations of motion~instead of the Hamil-
tonian!, we use a different form of Einstein’s field equation
and we solve them by a different iteration scheme.

Finally, from a practical point of view our confirmation o
the value ofvs or l allows one to use the full 3PN accurac
in the analytical computation of the dynamics of the la
orbits of binary orbits@40,41#. There remains, however, th
task of computing, using dimensional regularization, the
rameter u entering the 3.5PN gravitational energy flu

e

9One may wonder why the value ofl is a complicated rationa
fraction whilevs is so simple. This is becausevs was introduced
precisely to measure the amount of ambiguities of certain integr
and that the ADM Hamiltonian reported in@18# was put in a mini-
mally ambiguous form, already in three dimensions, for which aa
posteriori look at the ‘‘ambiguities’’ discussed in Appendix A o
@18# already showed thatvs50. By contrast,l has been introduced
as the only possible unknown constant in the link between the
arbitrary scalesr 18 ,r 28 ,s1 ,s2 ~which hasa priori nothing to do with
ambiguities of integrals!, in a framework where the use of the ex
tended Hadamard regularization in fact makes the calculation
ambiguous.
7-5
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@27,28# to be able to have full 3.5PN accuracy in the co
putation of the gravitational waveforms emitted by inspir
ling compact binaries~see, e.g.,@42# and references therein!.

The organization of the paper is as follows. In Sec. II
derive our basic 3PN solution of the field equations for g
eral fluid sources in d spatial dimensions, using
d-dimensional generalizations of the elementary potent
introduced in Ref.@22#. Section III collects all the additiona
terms included in@22# which are due specifically to the ex
tended Hadamard regularization, and derives the p
Hadamard-Schwartz~pHS! contribution to the equations o
motion. The differences between the dimensional and p
regularizations for all the potentials and their gradients
computed in Sec. IV. Then the dim. reg. equations of mot
are obtained in Sec. V, where we comment also on th
interpretation in terms of space-time diagrams. Section V
devoted to the renormalization of the dim. reg. equations
means of suitable shifts of the particles’ world-lines, and
the equivalence with the end results of@22# when Eq.~1.12!
holds. At this stage, the proofs of Theorems 1 and 2 sta
above are finally completed.

We end the paper with some conclusions~Sec. VII! and
three appendixes. Appendix A provides further material
thed-dimensional metric and geodesic equation, Appendi
gives a compendium of useful formulas for working ind
dimensions, and Appendix C generalizes the well-kno
quadratic-order elementary kernelg(d53)(x)5 ln(r11r2
1r12) to d dimensions. The latter calculation of th
d-dimensional kernelg(d) is not directly employed in the
present paper, but represents a first step in obtaining
equations of motion in any dimensiond ~not necessarily of
the form 31«).

II. FIELD EQUATIONS IN d¿1 SPACE-TIME
DIMENSIONS

This section is devoted to the field equations of gene
relativity in d11 space-time dimensions, and to the geode
equation describing the motion of point particles. We use
sign conventions of Ref.@43#, and in particular our metric
signature is mostly1. Space-time indices are denoted
greek letters, and spatial indices by latin letters (i , j , . . . run
from 1 to d). A summation is understood for any pair o
repeated indices. We work in the harmonic gauge, which
such that

Gl[gabGab
l 50. ~2.1!

As usual,gab denotes the inverse metric andGab
l the Christ-

offel symbols. Using this gauge condition, one can ea
prove that the Ricci tensor readsin any dimension

2Rmn
harm52gabgmn,ab1gabggdS gma,ggnb,d2gma,ggnd,b

1gma,ggbd,n1gna,ggbd,m2
1

2
gag,mgbd,nD , ~2.2!

where a comma denotes a partial derivation. Note that
spatial dimensiond does not appear explicitly in this expre
12400
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-
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re
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e
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n
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sion, whereas somed-dependent coefficients do appear wh
expressing the Ricci tensor in terms of the so-called ‘‘goth

metric gmn[A2ggmn @see Eq.~A9! in Appendix A below#.
In any dimension, the Einstein field equations read

Rmn2
1

2
gmnR5

8pG

c4
Tmn, ~2.3!

whereTmn denotes the matter stress-energy tensor, given

the functional derivativeA2gTmn[2cdSm /dgmn of the
matter actionSm with respect to the metric tensor.By defini-
tion, G denotes the constant involved in Eq.~2.3!, which
shows that its dimension is such that

G5GN,0
d23 , ~2.4!

whereGN is the usual Newton constant~in 3 spatial dimen-
sions! and,0 is an arbitrary length scale. This scale will b
involved in our dimensionally regularized results below, b
we will finally show that the physical observables do n
depend on it. As is well known, the combination of Eq.~2.3!
with its trace allows us to rewrite it as

Rmn5
8pG

c4
S Tmn2

1

d21
gmnTl

lD , ~2.5!

in which the spatial dimensiond now appears explicitly.
We wish to expand in powers of 1/c the field equations

resulting from Eqs.~2.2! and ~2.5!. The basic idea is to in-
troduce a sequence of ‘‘elementary potentials’’V, Vi ,
Ŵi j , . . . which allow one to parametrize conveniently th
successive post-Minkowskian contributions to the me
gmn(x). For instance, at the first post-Minkowskian order
is convenient to parametrize the metric as

g00[2112V/c21O~G2!, g0i[24Vi /c31O~G2!,
~2.6!

where the elementary potentialsV andVi so introduced sat-
isfy equations of the form

hV524pGs, hVi524pGs i , ~2.7!

whereh[] i
22(1/c2)] t

2 denotes the flat d’Alembertian an
where,by definition, the sourcess ands i are linear combi-
nations of the contravariant componentsTmn of the stress-
energy tensor of the matter. Let us underline that the fac
24pG in these equations is achoice. We could of course
introduce here a functional dependence on the spatial dim
siond, for instance by replacing the factor 4p by the surface
of the unit (d21)-dimensional sphere@see Eq.~B3! in Ap-
pendix B#, but this would only complicate the intermedia
expressions without changing our final result. The ma
sourcess and s i definedby Eqs. ~2.6!, ~2.7! read ~in d
spatial dimensions!
7-6
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s[
2

d21

~d22!T001Tii

c2
, s i[

T0i

c
, s i j [Ti j .

~2.8!

The definition fors i j has been added for future use. No
thats i ands i j take the same forms as usual in 3 dimensio
@see Eq.~3.9! of Ref. @22##, but that the definition ofs in-
volves an explicit dependence ond. Conversely, the first and
third of these equations allow us to expressT00 in terms of
the above matter sources:T005$@(d21)/2#sc22s i i %/(d
22). A simple consequence of the expression ofs is that
the d-dimensionalNewtonian potentialgenerated by a mas
ma located atya reads explicitly

Ua~x!5Va~x!1OS 1

c2D 52
d22

d21
k̃

Gma

r a
d22

1OS 1

c2D ,

~2.9!

where the factor 2(d22)/(d21) comes froms ~i.e., from
Einstein’s equations!, while the factor k̃5G„(d
22)/2…/p (d22)/2 comes from the expression of the Gre
function of the Laplacian ind dimensions@see Eq.~4.12!
below and Appendix B#.

We give below the simplest forms of the metric and of t
potential equations that we could obtain. We will expla
afterward what rules we followed to simplify them. Let u
first define the useful combination

V[V2
2

c2
S d23

d22
DK1

4X̂

c4
1

16T̂

c6
. ~2.10!

Then the metric components can be written in a rather c
pact form:
12400
s

-

g0052e22V/c2S 12
8ViVi

c6
2

32R̂iVi

c8 D 1OS 1

c10D ,

~2.11a!

g0i52e2(d23)V/(d22)c2H 4Vi

c3 F11
1

2 S d21

d22

V

c2D 2G
1

8R̂i

c5
1

16

c7
F Ŷi1

1

2
Ŵi j Vj G J 1OS 1

c9D , ~2.11b!

gi j 5e2V/(d22)c2H d i j 1
4

c4
Ŵi j 1

16

c6
F Ẑi j 2ViVj

1
1

2~d22!
d i j VkVkG J 1OS 1

c8D . ~2.11c!

The various elementary potentialsV, Vi , K, Ŵi j , R̂i , X̂, Ẑi j ,
Ŷi and T̂ introduced in these definitions ared-dimensional
analogues of those used in Eq.~3.24! of Ref. @22#. Actually,
an extra potential is needed fordÞ3, and it has been denote
K in Eq. ~2.10! above. We give in Appendix A the explici
expansion of this metric in powers of 1/c, as well as its
inversegmn and its determinantg, which may be useful for
future work. Note that the first post-Newtonian order of t
spatial metric,gi j 5d i j @112V/(d22)c2#1O(1/c4), explic-
itly depends ond contrary to our choice~2.6! for g00. This
dissymmetry betweeng00 and gi j is imposed by the field
equations~2.5!.

The successive post-Newtonian truncations of the fi
equations~2.2!–~2.5! give us the sources for these vario
potentials. The equations forhV andhVi have already been
written in Eqs.~2.7! above. We get for the remaining poten
tials
hK524pGsV, ~2.12a!

hŴi j 524pGS s i j 2d i j

skk

d22D2
1

2 S d21

d22D ] iV] jV, ~2.12b!

hR̂i52
4pG

d22 S 52d

2
Vs i2

d21

2
Vis D2

d21

d22
]kV] iVk2

d~d21!

4~d22!2
] tV] iV, ~2.12c!

hX̂524pGF Vs i i

d22
12S d23

d21
Ds iVi1S d23

d22
D 2

sS V2

2
1KDG1Ŵi j ] i j V12Vi] t] iV

1
1

2
S d21

d22
DV] t

2V1
d~d21!

4~d22!2
~] tV!222] iVj] jVi , ~2.12d!
7-7
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hẐi j 52
4pG

d22
VS s i j 2d i j

skk

d22
D 2

d21

d22
] tV( i] j )V1] iVk] jVk1]kVi]kVj22]kV( i] j )Vk

2
d i j

d22
]kVm~]kVm2]mVk!2

d~d21!

8~d22!3
d i j ~] tV!21

~d21!~d23!

2~d22!2
] ( iV] j )K, ~2.12e!

hŶi524pGF2
1

2
S d21

d22
DsR̂i2

~52d!~d21!

4~d22!2
sVVi1

1

2
skŴik1

1

2
s ikVk1

1

2~d22!
skkVi

2
d23

~d22!2
s iS V21

52d

2
K D G1Ŵkl]klVi2

1

2
S d21

d22
D ] tŴik]kV1] i Ŵkl]kVl2]kŴil ] lVk

2
d21

d22
]kV] i R̂k2

d~d21!

4~d22!2
Vk] iV]kV2

d~d21!2

8~d22!3
V] tV] iV2

1

2
S d21

d22
D 2

V]kV]kVi

1
1

2
S d21

d22
DV] t

2Vi12Vk]k] tVi1
~d21!~d23!

~d22!2
]kK] iVk1

d~d21!~d23!

4~d22!3
~] tV] iK1] iV] tK !, ~2.12f!

hT̂524pGF 1

2~d21!
s i j Ŵi j 1

52d

4~d22!2
V2s i i 1

1

d22
sViVi2

1

2
S d23

d22
DsX̂2

1

12
S d23

d22
D 3

sV3

2
1

2
S d23

d22
D 3

sVK1
~52d!~d23!

2~d21!~d22!
s iViV1

d23

d21
s i R̂i2

d23

2~d22!2
s i i KG1Ẑi j ] i j V1R̂i] t] iV

22] iVj] j R̂i2] iVj] tŴi j 1
1

2
S d21

d22
DVVi] t] iV1

d21

d22
Vi] jVi] jV1

d~d21!

4~d22!2
Vi] tV] iV

1
1

8
S d21

d22
D 2

V2] t
2V1

d~d21!2

8~d22!3
V~] tV!22

1

2
~] tVi !

22
~d21!~d23!

4~d22!2
V] t

2K

2
d~d21!~d23!

4~d22!3
] tV] tK2

~d21!~d23!

4~d22!2
K] t

2V2
d23

d22
Vi] t] iK2

1

2
S d23

d22
D Ŵi j ] i j K. ~2.12g!

In Eq. ~2.12e!, parentheses around indices mean their symmetrization, i.e.,a( i j )[
1
2 (ai j 1aji ). For d53, the above set of

equations~2.12! reduces to Eqs.~3.26! and~3.27! of Ref. @22#. The order of the terms and their writing has been chosen to
as close as possible to this reference.

The harmonic gauge conditions~2.1! impose the following differential identities between the potentials:

gmnGmn
0 50⇒] tH 1

2
S d21

d22
DV1

1

2c2 F Ŵ1S d21

d22
D 2

V22
2~d21!~d23!

~d22!2
KG

1
2

c4
S d21

d22
D F X̂1

d22

d21
Ẑ2

d23

d21
VkVk1

1

2
VŴ1

~d21!2

6~d22!
V32

~d21!~d23!

~d22!2
VKG

1] iH Vi1
2

c2
F R̂i1

1

2
S d21

d22
DVVi G1

4

c4
F Ŷi2

1

2
Ŵi j Vj1

1

2
ŴVi1

1

2
S d21

d22
DVR̂i

1
1

4
S d21

d22
D 2

V2Vi2
~d21!~d23!

2~d22!2
KVi5OS 1

c6D , ~2.13a!
124007-8
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gmnGmn
i 50⇒] tH Vi1

2

c2
F R̂i1

1

2
S d21

d22
DVVi G J 1] jH Ŵi j 2

1

2
Ŵd i j 1

4

c2
F Ẑi j 2

1

2
Ẑd i j G J 5OS 1

c4D ,

~2.13b!
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where Ŵ[Ŵkk and Ẑ[Ẑkk denote the traces of potentia

Ŵi j andẐi j . For d53, these identities reduce to Eqs.~3.28!
of Ref. @22#. In this paper we shall check~see Secs. IV A and
VI A ! that all the dimensionally regularized potentials w
use obey, at the indicated accuracy, the differential identi
~2.13! equivalent to the harmonic gauge conditions.

In order to simplify as much as possible the above eq
tions ~2.12! for the potentials, we used the following rules

~i! We used the harmonic gauge condition~2.13a! to re-
place ] iVi everywhere in terms of] tV and higher post-
Newtonian order terms, and the gauge condition~2.13b! to

replace] j Ŵi j in terms of] i Ŵ and ] tVi @our knowledge of
the higher order termsO(1/c2) in Eq. ~2.13b! was actually
not necessary for the simplification of Eqs.~2.12!#. We also
used the lowest order terms of Eqs.~2.13! to simplify their
own higher order contributions.

~ii ! If the source of a potentialP contained a double~con-
tracted! gradient of the formhP5]kA]kB1(other terms),
whereA andB were two lower-order potentials, we got rid o
the double gradient by defining another potentialP8[P
2 1

2 AB. We could then write its equation ashP8
52 1

2 (hA)B2 1
2 A(hB)1(1/c2)] tA] tB1(other terms), in

which hA and hB were replaced by their own explic
sources. The contribution proportional to 1/c2 was then
transferred into the source of a higher order potential.

~iii ! At order O(1/c6), Eqs. ~2.2!–~2.5! for R00 ~i.e., for

hg00) contain the termŴi j ] i j V, that we introduced in the

source of potentialX̂, Eq. ~2.12d!. In all other equations

involving the same sourceŴi j ] i j V, we usedhX̂ to elimi-
nate it, instead of reintroducing it in the sources of oth

potentials. This is the reason whyX̂ is involved in the spatial
metric gi j too at orderO(1/c6) @via the exponential ofV in

Eq. ~2.11c!#, and why VX̂ appears again ing00 at order
O(1/c8). See the expanded form of the metric~A1! in Ap-
pendix A.

~iv! In the equation forR00 at orderO(1/c8), we choseto
eliminate a source proportional toV] iVj] iVj , by including
an all-integrated termVViVi in the definition ofg00, Eq.
~2.11a!. On the other hand, we could not eliminate at t
same time the source term proportional toVi] jVi] jV in
hg00, although it involves a double~contracted! gradient
too. This is the reason why such a term appears in
~2.12g!.

The above simplification rules have been applied syst
atically with a single exception. Indeed, Eq.~2.12e! for hẐi j
involves double ~contracted! gradients ]kVi]kVj and
d i j ]kVm]kVm . Therefore, the application of rule~ii ! would
have yielded another potential
12400
s

-

r

q.

-

Z̃i j [Ẑi j 2
1

2
ViVj1

1

2~d22!
d i j VkVk , ~2.14!

such that no double gradient appears in its source~but extra
compact sourcess ( iVj ) and d i j skVk would have been in-
volved!. Although this modified potentialZ̃i j actually
slightly simplifies some equations~but not all of them!, we
have chosen to useẐi j which is the directd-dimensional
analogue of the potential written in Eq.~3.27c! of Ref. @22#.
Indeed, as explained in the following sections, t
3-dimensional results of this reference will be necessary
our d-dimensional calculations, and it is more convenient
keep the same notation.

Notice also that after the above simplifications, the res
ing metric involves only potentials which are at most cu
cally non-linear~as for the termŴi j ] i j V in the potential
X̂—using the terminology of Sec. V C below!. There is no
need to introduce any quartically non-linear elementary
tential because it turns out that it is possible to ‘‘integra
directly’’ all of them ~at the 3PN level! in terms of other
potentials. The only quartic contributions are the terms co
posed ofV4 and VX̂ in the metric componentg00 @see Eq.
~A1a! in Appendix A#. The fact that there are no intrinsicall
quartic potentials at the 3PN order made the closed-fo
calculation in@21,22# possible. We shall comment more o
this interesting fact in Sec. IV A.

Let us now apply the general potential parametrization
the metric defined above to the specific case of~monopolar!
point particles, i.e., to the action

S5E dd11x

c
A2g

c4

16pG
R~g!

2(
a

macE A2gmn~ya
l!dya

mdya
n. ~2.15!

The stress-energy tensorTmn(x)[@2c/A2g(x)#dSmatter/
dgmn(x) deduced from this action reads

Tmn~x!5(
a

mac2E dsa

dya
m

dsa

dya
n

dsa
@2g~ya!#21/2

3d~d11!
„xl2ya

l~sa!…, ~2.16!

wheredsa[A2gmn(ya
l)dya

mdya
n is (c times! the proper time

along the world-line of theath particle and whered (d11) is
the Dirac density ind11 dimensions@*dd11xd (d11)(x)
51#. Here, we take advantage of the fact~emphasized in
@35#! that dim. reg. respects the basic properties of the a
braic and differential calculus: associativity, commutativ
7-9
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and distributivity of point-wise addition and multiplication
Leibniz’s rule, Schwarz’s rule (]m]n f 5]n]m f ), integration
by parts, etc. In addition, the post-Newtonian expansion
gmn(x) yields ‘‘d-dimensional functions’’ which are formally
as smooth as wished~by taking the real part ofd small
enough! in the vicinity of the world-lines: see for instanc
Eq. ~2.9!. This allows us to work with self-gravitating poin
particles essentially as if they weretest particles. For in-
stance, we can use F@gmn(x)#d (d)(x2ya)
5F@gmn(ya)#d (d)(x2ya). In particular, theya-evaluated de-
terminant factor@2g(ya)#21/2 in Eq. ~2.16! came from the
field-point dependent factor@2g(x)#21/2 in the definition of
Tmn(x). Similarly, the usual derivation of the equations
motion of a test particle formally generalizes to the case
self-gravitating point particles ind dimensions. One then
finds that the equations of motion of point particles c
equivalently be written as

¹nTmn~x!50, ~2.17!

or as the usual geodesic equations. The latter can be wr
either in covariant formua

n¹nua
m50 (ua

m[dya
m/dsa), i.e., ex-

plicitly

d2ya
l

dsa
2

1Gmn
l @g~ya!,]g~ya!#

dya
m

dsa

dya
n

dsa

50, ~2.18!

where Gmn
l 5 1

2 gls(]mgns1]ngms2]sgmn) as usual, or in
the explicit form corresponding to using the coordinate ti
t5ya

0/c as a parameter along the world-lines, which is eas
derived from the covariant expression with a lower inde
ua

n¹num
a 50⇔d(gmrua

r)/dsa5 1
2 ]mgnrua

nua
r . As in 3 dimen-

sions@cf. Eqs.~3.32!, ~3.33! of Ref. @22##, it can thus be put
in the form

dPi

dt
5Fi , ~2.19!

where

Pi[
gimvm

A2grsvrvs/c2
, Fi[

1

2

] igmnvmvn

A2grsvrvs/c2
,

~2.20!

vm[dxm/dt5(c,v) denoting the coordinate velocity. Let u
emphasize again that ind dimensions, all the non-linea
functions ofgmn(ya) and]lgmn(ya) that will enter our cal-
culation of Eqs.~2.19!, ~2.20! can be treated as in thex
→ya evaluation of smooth functions ofx. For instance, de-
noting for simplicity f [2(d22)/(d21), the Newtonian ap-
proximation, sayU (d)(x)[U(x), of the basic scalar poten
tial V(x), reads, in the vicinity ofx5y1 ,

U~x!5 f k̃Gm1r 1
22d1U2~x!, ~2.21!

whereU2(x)5 f k̃Gm2r 2
22d is ~in any d) an indefinitely dif-

ferentiable function ofx neary1 . Analytically continuingd
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to sufficiently ‘‘low’’ ~and even with negative real part,
needed! values, we see not only that@U(x)#x5y1

5U2(y1),

but that @Un(x)#x5y1
5@U2(y1)#n, and, e.g.,

@Up(x)] iU(x)#x5y1
5@U2(y1)#p] iU2(y1), etc.

Although the expressions~2.20! do not depend explicitly
on the dimensiond, the metric~2.11! does depend on it, and
therefore the post-Newtonian expansions of Eqs.~2.20! in-
volve manyd-dependent coefficients. We give their full ex
pressions in Appendix A, Eqs.~A11!, ~A12!, but we quote
below only their Newtonian orders and the very few term
which will contribute to the poles}1/(d23) in our dimen-
sionally regularized calculations:

Pi5v i1•••2
8

c4
R̂i2

16

c6
Ŷi1OS 1

c8D ,

Fi5] iV1•••1
4

c4
] i X̂1

16

c6
] i T̂1OS 1

c8D . ~2.22!

The accelerationa[dv/dt can thus be written as

ai5Fi2
d~Pi2v i !

dt

5] iV1
1

c2
@•••#1

4

c4
F ] i X̂12

dR̂i

dt
1•••G

1
16

c6
F ] i T̂1

dŶi

dt
1•••G1OS 1

c8D . ~2.23!

In Sec. IV A we shall give flesh to the formal expressio
written above by explaining by what algorithm one can co
pute, with the required accuracy, the explicitd-dimensional
expansions nearx5y1 @analogous to the simple case~2.21!#
of the various elementary potentials entering Eq.~2.23!, and
notably of the crucial onesX̂,R̂i ~to be computed with 1PN
accuracy! and T̂,Ŷi ~to be computed at Newtonian orde
only!.

III. HADAMARD SELF-FIELD REGULARIZATIONS IN 3
DIMENSIONS

The main aim of this section is to complete thefirst step
of the strategy outlined in the Introduction, i.e. to collect
complete list of the additional contributions to the equatio
of motion which are specific consequences of the use of
extended Hadamard regularization methods defined
@23,24#. However, to do that we need to start by recalli
some material concerning the Hadamard regularization i
dimensions, and by contrasting it with dimensional regul
ization. Such material is needed for understanding our co
putation based on the ‘‘difference’’ in Sec. IV. We shall sta
by recalling the definition of the ‘‘ordinary’’ Hadamard regu
larization and complete it by defining what we shall call t
‘‘pure’’ Hadamard regularization. Then we shall recall th
7-10
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DIMENSIONAL REGULARIZATION OF THE THIRD . . . PHYSICAL REVIEW D69, 124007 ~2004!
main new features of theextendedHadamard regularization
defined in@23,24#, and collect the additional contributions t
the equations of motion which are specific consequence
the use of the extended Hadamard regularization~there are
seven such additional contributions!.

A. Ordinary and ‘‘pure’’ Hadamard regularizations

The phrase ‘‘Hadamard regularization’’ covers two d
tinct concepts: ~i! the regularization of the ‘‘limit’’
limx→y1

F(x;y1 ,y2) whereF(x;y1 ,y2) belongs to a classF
of singular functions~generated by the iteration of Einstein
equations!, and ~ii ! the regularization of the 3-dimension
integral*d3xF(x;y1 ,y2) of some functionFPF. The class
of functionsF consists of all functionsF(x) on R3 that are
smooth except aty1 and y2 , around which they admi
Laurent-type expansions in powers ofr 1 or r 2 ~see Sec. II of
@23# for the precise definition ofF). When r 1[ux2y1u→0
~i.e., around singularity 1! we have,; NPN,

F~x!5 (
p0<p<N

r 1
p f p

1
~n1!1o~r 1

N!, ~3.1!

where the Landauo symbol takes its usual meaning, an
the1f p(n1)’s denote the coefficients of the various powers
r 1 , which are functions of the positions and velocities of t
particles, and of the unit directionn1[(x2y1)/r 1 of ap-
proach to singularity 1. The powers ofr 1 are relative inte-
gers,pPZ, bounded from below by some typically negativ
p0 depending on theF in question.

The Hadamard ‘‘partie finie’’ of the singular functionF at
the location of the singular point 1~first meaning of Had-
amard regularization! is defined as the angular average of t
zeroth-order coefficient in the expansion~3.1!. It is denoted
(F)1 , so that

~F !1[^ f 0
1

&[E dV~n1!

4p
f 0

1
~n1!, ~3.2!

where dV(n1) denotes the usual surface element on
2-dimensional sphere centered on 1. We shall employ
tematically the bracket notation̂& for the angular average o
a function of the angles~either n1 or n2).10 A distinctive
feature of the Hadamard partie finie~3.2! is its ‘‘non-
distributivity’’ in the sense that

~FG!15” ~F !1~G!1 in general for F,GPF. ~3.3!

The non-distributivity represents a crucial departure from

10Since this will always be clear from the context, we do n
specify on the brackets if the angular integration should be p
formed around point 1 or 2. We do not indicate either if the in
gration sphere is two dimensional or (d21) dimensional~as we
shall see later there can be no confusion about this!.
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simple algebraic properties of the analogue of (F)1 in dim.
reg. which is merelyF (d)(y1). It is an interesting fact that in
a post-Newtonian expansion the non-distributivity sta
playing a role only at the 3PN order~because the function
there become singular enough!. Up to the 2PN order one ca
show that (FG)15(F)1(G)1 for all the functions involved in
the equations of motion in harmonic coordinates@13#. Sev-
eral of the problems of the Hadamard self-field regularizat
~in the ‘‘ordinary’’ sense! when applied at the 3PN leve
~e.g., the occurrence of the unknown constantl) are related
to the latter non-distributivity.

The second notion of Hadamard partie finie~denoted Pf in
the following! is to give a meaning to the generally diverge
integral *d3xF(x). In this work we shall have to conside
only the ultra-violet~UV! divergencies of the integrals, i.e
at the locations of the two local singularitiesy1 andy2 . All
functions involved at the 3PN order are such that there are
infra-red~IR! divergencies whenuxu→` ~this is true not only
in 3 dimensions but also for any dimensiond531« in a
neighborhood ofd53). The Hadamard partie finie of th
~UV! divergencies is then defined as

Pfs1 ,s2
E d3xF~x![ lim

s→0
H ER3\B1(s)øB2(s)

d3xF~x!

14p (
p13,0

sp13

p13
^ f p

1
&

14p lnS s

s1
D ^ f 23

1
&11↔2J .

~3.4!

The description of this formula in words is as follows. On
first excises twosphericalballs B1(s) and B2(s) surround-
ing the two singularities~each one having the same radi
s), and one computes the integral on the volume externa
these balls, i.e.,R3\B1(s)øB2(s)—the first term in Eq.
~3.4!. That integral tends to infinity whens→0, but we can
subtract from it its purely divergent part, which is given b
the additional terms in Eq.~3.4! ~which obviously are to be
duplicated when there are 2 singularities; cf. the sym
1↔2). The limits→0 then exists~by definition! and defines
Hadamard’s partie finie.

Notice the crucial dependence of the partie finie on t
constantss1 and s2 entering the log terms. These constan
have the dimension of length. We shall say thats1 is the
regularization length scale associated with the Hadam
regularization of the divergencies nearx5y1 ~similarly for
s2). Note also that the Hadamard partie finie does not
pend~modulo changing the values ofs1 ands2) on theshape
of the regularization volumesB1 and B2 , above chosen as
simple spherical balls~see the discussion in Ref.@23#!.

An important consequence of the definition~3.4! is that,
in general, the integral of a gradient] iF is not zero, because
the surface integrals surrounding the singularities beco
infinite when the surface areas tend to zero, and may pos
a finite part. We find@see Eq.~3.4! in @23##

t
r-
-
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BLANCHET, DAMOUR, AND ESPOSITO-FARE`SE PHYSICAL REVIEW D69, 124007 ~2004!
PfE d3x] iF~x!524p^n1
i f 22

1
&11↔2. ~3.5!

For a generalFPF the RHS is typically non-zero. This fac
shows that the application of the ordinary Hadamard regu
ization in the post-Newtonian iteration has to be supp
mented by a notion of distributional derivatives, in order
ensure that the integrals of gradients are zero as in the ca
regular functions. Notice that the constantss1 ands2 disap-
pear from the result~3.5!. ~We shall also see the need, with
dim. reg., to consider some derivatives in the sense of di
bution theory.!

Let us apply the definition~3.4! to the integral of a
compact-support or ‘‘contact’’ term, i.e., made of the produ
of someF and a Dirac delta function at the point 1. Let u
formally assume that11

PfE d3xF~x!d (3)~x2y1!5~F !1 , ~3.6!

which is the most natural way, within Hadamard’s regul
ization, to give a sense to such an integral. Now the prob
with that definition is that if we want to dispose of som
local meaning~at any field pointx) for the product ofF with
the delta function, then as a consequence of the n
distributivity we cannot simply equateF(x)d (3)(x2y1) with
(F)1d (3)(x2y1), i.e.,

F~x!d (3)~x2y1!5” ~F !1d (3)~x2y1! in general forFPF.
~3.7!

Indeed, if it were true thatFd1
(3)5(F)1d1

(3) @for simplicity
we denoted1

(3)[d (3)(x2y1)], then multiplying by anyG we
would haveFGd1

(3)5(F)1Gd1
(3) , and by integrating overR3

following the rule~3.6! this would yield (FG)15(F)1(G)1
in contradiction with the violation of distributivity~3.3!.
Therefore, both the violation of distributivity~3.3! and the
consequence~3.7! are unescapable in the ordinary Hadama
regularization.

The previous situation should be contrasted with
d-dimensional case for which the distributivity is always s
isfied, as we have simply

~F (d)G(d)!~y1!5F (d)~y1!G(d)~y1! ~3.8!

and

F (d)~x!d (d)~x2y1!5F (d)~y1!d (d)~x2y1!. ~3.9!

Finally, taking thed→3 limit, we see that the dim. reg. wa
of regularizing a three-dimensional ‘‘contact term,’’ i.e.,
term like F(x)d (3)(x2y1) is by considering it as thed→3
limit of its d-dimensional analogue~3.9!. That is,

11Actually this assumption should be viewed as thedefinitionof a
new object we can call Pfd (3)(x2y1) and which takes the propert
~3.6!. This is exactly what we do in the context of the extend
Hadamard regularization.
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dim. reg.@F~x!d (3)~x2y1!#[ S lim
d→3

F (d)~y1! Dd (3)~x2y1!,

~3.10!

whereF (d) is thed-dimensional version ofF, as obtained by
solving Einstein’s equations ind dimensions ~using the
method explained in Sec. IV A below!. There are no poles in
the calculation of the ‘‘contact’’ terms in any of the potentia
at the 3PN order so the limitd→3 in Eq. ~3.10! always
exists. Once again the dim. reg. prescription~3.10! owns all
the good features one wishes, notably the distributivity as
have emphasized in Eqs.~3.8!, ~3.9!.

In the following it will be convenient, in order to compar
the present dim. reg. calculation with the Hadamard-ba
work @22#, to introduce the terminologypure Hadamard
regularization to refer to the following ‘‘minimal’’ version o
the Hadamard regularization:~a! an integral *d3xF(x),
whereF is made of some product of derivatives of the no
linear potentialsV,Vi , . . . , is regularized by the ordinary
Hadamard partie finie prescription~3.4!, without bringing in
any distributional contributions~see below for the treatmen
of these!; ~b! the regularization of a product of potentia
V,Vi ,Ŵi j , . . . ~and their gradients! is assumed to be dis
tributive, which means that the value at the singular pointy1

of some polynomial inV,Vi ,Ŵi j , . . . and their gradients
sayF@V,Vi ,Ŵi j ,] iV, . . . #, is given by the replacement rul

~F@V,Vi ,Ŵi j ,] iV, . . . # !1

→F@~V!1 ,~Vi !1 ,~Ŵi j !1 ,~] iV!1 , . . . #;

~3.11!

and ~c! a contact term, i.e., of the formF(x)d (3)(x2y1),
appearing in the calculation of thesourcesof the non-linear
potentials, is regularized by using the rule

F@V,Vi ,Ŵi j , . . . #d (3)~x2y1!

→F@~V!1 ,~Vi !1 ,~Ŵi j !1 , . . . #d (3)~x2y1! ~3.12!

~there are no gradients of potentials in the contact term!.
The rules~3.11!, ~3.12! of the pure Hadamard regularizatio
are formally equivalent to assuming the replacement ru
(FG)1→(F)1(G)1 together with F(x)d (3)(x2y1)
→(F)1d (3)(x2y1), in the case whereF andG are made of
products of our elementary potentials and their gradient12

The rules of the pure Hadamard regularization are, howe
well defined, and are not submitted~by their very definition!
to the consequences of theordinary Hadamard regularization
~3.3! and~3.7!. Note also that, as done in previous compu
tions of the 3PN ADM Hamiltonian@16,17# and the 3PN
binary’s energy flux@27#, one can formally use Eqs.~3.11!,
~3.12! at the price of adding a limited number of arbitra
parameters~considered as unknown!.

12Thus we shall write (VŴi j )1→(V)1(Ŵi j )1 or (V3] iV)1

→@(V)1#3(] iV)1 , but not, for instance, (V)1→@(AV)1#2.
7-12
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DIMENSIONAL REGULARIZATION OF THE THIRD . . . PHYSICAL REVIEW D69, 124007 ~2004!
The definition~3.12! of pure-Hadamard regularization fo
contact terms is useful because we have checked that, w
using the dim. reg. prescription~3.10! ~in the limit whered
→3), all the contact terms in the sources of the non-lin
potentialsV,Vi ,Ŵi j , . . . needed at the 3PN orderagree
with the result of the pure Hadamard regularization.@Of
course, we would not need to introduce a notion of p
Hadamard regularization in a direct calculation of the eq
tions of motion ind dimensions, i.e., not based on the ‘‘di
ference’’ between Hadamard and dim. reg., because in su
pure dim. reg. approach the contact terms would be tre
unambiguously from the start using Eq.~3.10!.# On the other
hand, when computing the value at the singular point of
potentials for insertion into the geodesic equations, we
find some departure between the dim. reg. calculation
the ~ordinary or extended! Hadamard one. Let us illustrat
these differences by means of the simplest example w
does enter our 3PN calculation, namely the regularization
(U)3] iU whereU is the Newtonian potential. Ind dimen-
sionsU (d)(x) is given by Eq.~2.21! @we add here a super
script ~d! to indicate thed-dimensionality of a potential and
pose U[U (3)]. Therefore in dim. reg. the resu
is simply

lim
d→3

~@U (d)~y1!#3] iU
(d)~y1!!

5@U2~y1!#3] iU2~y1! ~dim. reg.!, ~3.13!

whereU2(y1)5Gm2 /r 12 is the value at point 1 of the po
tential of the other particle. The result~3.13! is the same as
when using the pure Hadamard regularization. Indeed,
find first that (U)15U2(y1) and (] iU)15] iU2(y1), and
then, by using the definition~3.11!,

~U3] iU !1 ——→
def

@~U !1#3~] iU !1

5@U2~y1!#3] iU2~y1! ~pure Hadamard!. ~3.14!

On the other hand, the latter results contrast with the ap
cation of the ordinary Hadamard regularization for which
find

~U3] iU !15@U2~y1!#3] iU2~y1!

1
6

5
@U1~y2!#2U2~y1!] iU2~y1!

~ordinary Hadamard!. ~3.15!

The first term is in fact the ‘‘pure Hadamard’’ result which
in agreement with the dim. reg. one. The second term is
example of the non-distributivity of the ordinary Hadama
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regularization,13 which is also systematically taken into a
count in the extended Hadamard regularization that we s
describe in Sec. III C.

B. Ordinary Hadamard regularization of three-dimensional
Poisson integrals

Let us give some reminders of the way we apply the c
siderations of Sec. III A to the computation of Hadamar
regularized potentials having the form of Poisson or Poiss
like integrals. Let us first discuss the prescription one h
taken ind53 to define the ‘‘value atx85y1’’ of a ~singular!
Poisson potentialP(x8). In d53, the Poisson integra
P(x8), at some field pointx8PR3, of some singular source
function F(x) in the classF is defined in the sense of th
partie-finie integral~3.4!, namely

P~x8!52
1

4p
Pfs1 ,s2

E d3x

ux2x8u
F~x!, ~3.16!

where s1 and s2 are the two constants introduced in E
~3.4!. At first sight we could think that a good choice fo
defining the pure Hadamard value@P(x8)#x85y1

is simply to

replacex85y1 in Eq. ~3.16!, i.e.,

P~y1![2
1

4p
Pfs1 ,s2

E d3x

r 1
F~x!. ~3.17!

However, the work on the 3PN equations of motion@21,22#
suggested that the definition~3.17! is not acceptable: it did
not seem to be able to yield equations of motion compat
with basic physical properties such as energy conservati

The choice adopted in@21,22# is to define the regularized
‘‘value at x85y1’’ of the function P(x8) by taking the Had-
amard partie finie in the singular limitx8→y1 . Notice first
that P(x8) does not belong~in general! to the classF be-
cause the Poisson integral will generate somelogarithmsof
r 18 in its expansion whenr 18→0. Thus, we shall have, rathe
than an expansion of type~3.1!,

P~x8!5 (
p0<p<N

r 18
p@gp

1
~n18!1hp

1
~n18!ln r 18#1o~r 18

N!,

~3.18!

13In the ADM Hamiltonian the analogue of this example is t
regularization ofU4, which gives automatically@U2(y1)#4 in dim.
reg. and also~by definition! in the pure Hadamard reg., while

~U4!15@U2~y1!#412@U1~y2!#2@U2~y1!#2.

The latter example represents in fact the only source of ambig
present in~the static part of! the ADM-Hamiltonian formalism@35#.
7-13
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where the coefficients1gp and 1hp depend on the anglesn18 ,
and also on the constantss1 ands2 , in such a way that when
combining together the terms in Eq.~3.18! the constantr 18
always appears in ‘‘adimensionalized’’ form as in ln(r18/s1).
Then we define the Hadamard partie finie at point 1 exa
in the same way as in Eq.~3.2!, except that we now include
a contribution linked to the~divergent! logarithm of r 18 ,
which is possibly present in the zeroth-order power ofr 18 .
More precisely, we define

~P!1[^g0
1

&1^h0
1

& ln r 18 , ~3.19!

where we introduced anew regularization length scalede-
noted r 18 , which can be seen as some ‘‘small’’ but fini
cutoff length scale@so that lnr18 in Eq. ~3.19! is a finite, but
‘‘large’’ cutoff dependent contribution#. We shall see later
that the dependence onr 18 disappears~as it should! when
adding to (P)1 the differenceDP(1)[P(d)(y1)2(P)1 . To
compute the partie finie one must apply the definition~3.19!
to the Poisson integral~3.16!, which involves evaluating cor
rectly the angular integration therein. The result, proved
Theorem 3 of@23#, is
lve

on
r

nt

lt

12400
ly

n

~P!152
1

4p
Pfs1 ,s2

E d3x

r 1
F~x!1F lnS r 18

s1
D 21G^ f 22

1
&.

~3.20!

We recover in the first term the value of the potential at
point 1:P(y1), given by Eq.~3.17!. The supplementary term
makes the partie finie differ from the ‘‘naive’’ guessP(y1) in
a way which was found to play a significant role in the co
putations of@21,22#. The apparent dependence of the res
~3.20! on the scales1 is illusory. Thes1 dependence of the
RHS of Eq.~3.20! cancels between the first and the seco
terms, so the result depends only on the constantsr 18 ands2 ,
and we have in fact the following simpler rewriting of Eq
~3.20!:

~P!1[2
1

4p
Pfr

18 ,s2
E d3x

r 1
F~x!2^ f 22

1
&. ~3.21!

Similarly the regularization performed at point 2 will depen
on r 28 ands1 , so that the binary’s point-particle dynamics
Hadamard’s regularization depends on four~a priori inde-
pendent! length scalesr 18 ,s2 andr 28 ,s1 . The explicit expres-
sion of the result~3.21! is readily obtained from the defini
tion of the partie-finie integral~3.4!. We find ~see the details

in Ref. @23#!
~P!15 lim
s→0

H 2
1

4p
E

R3\B1(s)øB2(s)

d3x

r 1

F~x!2 (
p12,0

sp12

p12
^ f p

1

&2F lnS s

r 18
D 11G ^ f 22

1

&

2 (
,50

1`
~2 !,

,!
]LS 1

r 12
D F (

p1,13,0

sp1,13

p1,13
^n2

L f p
2

&1 lnS s

s2
D ^n2

L f 2,23
2

&G J . ~3.22!
al
-

Note that the terms corresponding to singularity 2 invo
the multipolar expansion around the pointy2 of the factor
1/r 151/ux2y1u present in the integrand.14

Because we work at the level of the equations of moti
many of the terms we shall need in this paper are in the fo
of the gradient of a Poisson-like potential. For the gradie

14We write the multipole expansion in the form

1

r1
5(

,50

1`
~2!,

,!
]LS 1

r12
D r 2

,n2
L ,

employing our usual notation where capital letters denote mu
indices: L[ i 1i 2••• i , , and, for instance,n2

L[n2
i 1
•••n2

i ,. The ex-
pansion is symmetric-trace-free~STF! becaused i , i ,21

]L(1/r 12)
5]L22D(1/r 12)50. Here]L(1/r 12) is a shorthand for, partial de-
rivatives]/]y12

i of 1/r 12[1/uy12y2u. The multipole expansion ind
dimensions~also STF! is given by Eq.~4.23! below.
,
m

we have a formula analogous to Eq.~3.21! and given by Eq.
~5.17a! of @23#, namely

~] i P!152
1

4p
Pfs1 ,s2

E d3x
n1

i

r 1
2

F~x!1 lnS r 18

s1
D ^n1

i f 21
1

&

52
1

4p
Pfr

18 ,s2
E d3x

n1
i

r 1
2

F~x!, ~3.23!

where we have taken into account~in the rewriting of the
second equality! the always correct fact that the constants1

cancels out and gets ‘‘replaced’’ byr 18 . Notice that in Eq.
~3.23! there is no additional term to the partie finie integr
similar to the last term in Eq.~3.21!. The corresponding ex
plicit expression is

i-
7-14
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~] i P!15 lim
s→0

H 2
1

4p
E

R3\B1(s)øB2(s)
d3x

n1
i

r 1
2

F~x!2 (
p11,0

sp11

p11
^n1

i f p
1

&2 lnS s

r 18
D ^n1

i f 21
1

&

2 (
,50

1`
~2 !,

,!
] iLS 1

r 12
D F (

p1,13,0

sp1,13

p1,13
^n2

L f p
2

&1 lnS s

s2
D ^n2

L f 2,23
2

&G J . ~3.24!
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Finally we must also treat the more general case of po
tials in the form of retarded integrals@see Eqs.~2.12!#, but
because we shall have to consider~in Sec. IV B! only the
differencebetween the dimensional and Hadamard regu
izations, it will turn out that in fact the first-order retardatio
~1PN relative order! is sufficient for this purpose. Actually, in
this paper we are not interested in radiation-reaction effe
so we shall use the symmetric~half-retarded plus half-
advanced! integral. At the 1PN order we thus have to eva
ate

R~x8!5P~x8!1
1

2c2
Q~x8!1OS 1

c4D , ~3.25!

whereP(x8) is given by Eq.~3.16!, and where1
2Q(x8) de-

notes the double or ‘‘twice-iterated’’ Poisson integral of t
second-time derivative, still endowed with a prescription
taking the Hadamard partie finie, namely

Q~x8!52
1

4p
Pfs1 ,s2

E d3xux2x8u] t
2F~x!. ~3.26!

In the case ofQ(x8) the results concerning the partie finie
point 1 were given by Eqs.~5.16! and ~5.17b! of @23#,

~Q!152
1

4p
Pfr

18 ,s2
E d3xr 1] t

2F~x!1
1

2
^k24

1
&,

~3.27a!

~] iQ!15
1

4p
Pfr

18 ,s2
E d3xn1

i ] t
2F~x!1

1

2
^n1

i k23
1

&,

~3.27b!

where the1kp’s denote the analogues of the coefficients1f p ,
parametrizing the expansion ofF when r 18→0, but corre-
sponding to the double time derivative] t

2F instead ofF. @In
the following we shall not need the explicit forms of th
results~3.27!.#

Let us clarify an important point concerning the treatme
of the repeated time derivative] t

2F(x) in Eqs.~3.27!. As we
are talking here about Hadamard-regularized integ
~which excise small balls around bothy1 andy2), the value
of ] t

2F(x) can be simply taken in the sense of ordinary fun
tions, i.e., without including eventual ‘‘distributional’’ contri
butions proportional tod(x2y1) or d(x2y2) and their de-
rivatives. However, we know that such terms are neces
for the consistency of the calculation. This is why we mu
also include somewhere in our formalism thedifferencebe-
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tween the evaluation of these distributional terms ind dimen-
sions, and the specific distributional contributions issu
from the generalized framework used in@22#. This difference
will be included in Sec. III D below, among the complete li
of additional contributions specifically related to the use
the extended regularization approach we shall now descr

C. Extended Hadamard regularization

The ‘‘extended Hadamard’’ regularization, proposed in
Refs.@23,24#, tackles the particular properties of the ordina
Hadamard regularization, notably the non-distributivity
Eqs.~3.3! and~3.7!, and the fact that the integral of a grad
ent is not zero@Eq. ~3.5!#. These properties are implemente
within a theory of pseudo-functions, viz. linear forms defin
on the set of singular functionsF. The use of pseudo
functions in this context enables one to give a precise me
ing to the objectFd(x2y1) needed in the computation of th
contact terms, and which is otherwise ill defined in distrib
tion theory. Furthermore the use of some generalized
sions of distributional derivatives permits a systematic tre
ment of integrals and a natural implementation of t
property that the integral of a gradient is always zero. In t
paper we shall content ourselves with recalling the princi
of the extended Hadamard regularization, and with pres
ing its ‘‘ready-to-use’’ consequences.

To any FPF we associate the ‘‘partie finie’’ pseudo
function PfF, which is the linear form onF defined by the
duality bracket

^PfF,G&[PfE d3xF~x!G~x!, ~3.28!

which means that the action of PfF on any GPF is the
partie-finie integral, as given by Eq.~3.4!, of the ordinary
product. @The duality bracket in Eq.~3.28! should not be
confused with the angular average defined in Eq.~3.2!.# The
pseudo-function PfF reduces to a distribution in the ord
nary sense of Schwartz@36# when restricted to the usual se
D of smooth functions with compact support onR3. The
product of pseudo-functions coincides, by definition, w
the ordinary point-wise product, namely PfF•Pf G
[Pf(FG). In the class of pseudo-functions constructed
Ref. @23#, the ‘‘Dirac-delta’’ pseudo-function Pfd1 is defined
by

^Pfd1 ,F&[PfE d3xd1~x!F~x![~F !1 , ~3.29!

where (F)1 denotes Hadamard’s partie finie~3.2!. This defi-
nition, which obviously yields a natural extension of th
Dirac function d1(x)[d (3)(x2y1) in the context of Had-
7-15
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BLANCHET, DAMOUR, AND ESPOSITO-FARE`SE PHYSICAL REVIEW D69, 124007 ~2004!
amard’s regularization, leads also to new objects which h
no equivalent in distribution theory, the most important o
being the pseudo-function Pf(Fd1) which played a crucial
role in @21,22# for the calculation of the compact-suppo
parts of potentials as well as the purely distributional parts
derivatives. It is given by

^Pf~Fd1!,G&[~FG!1 , ~3.30!

where one should be reminded that it is in general not
lowed to replace the RHS by the product of regularizatio
(FG)15” (F)1(G)1 .

In the actual computation@21,22# the pseudo-function
Pf(Fd1) acts always on smooth functions with compact su
port (PD), in which case it reduces to a distribution in th
ordinary sense, which was shown to admit the ‘‘intrinsi
form

Pf~Fd1!5 (
,50

1`
~2 !,

,!
^n1

L f 2,
1

&]Ld1 ~when restricted toD!.

~3.31!

HereL[ i 1••• i , denotes a multi-index composed of, mul-
tipolar indicesi 1 , . . . ,i , , ]L[] i 1

•••] i ,
means a product o

, partial derivatives] i5]/]xi , andn1
L[n1

i 1
•••n1

i , a product
of , unit vectors~we do not write the, summation symbols
from 1 to 3, over the indices composingL). Notice that the
sum in Eq.~3.31! is finite becauseF admits some maxima
order of divergency whenr 1→0. Now we discover that the
‘‘monopole’’ term in the latter multipolar sum, having,
50, is nothing but (F)1d1 which is exactly the result we
would get following the pure Hadamard regularization ru
~3.12!. @Indeed, as we are considering here only the con
terms entering the source terms for the 3PN-level nonlin
potentials, the ‘‘ordinary’’ Hadamard regularization (F)1 co-
incides with the ‘‘pure’’ Hadamard regularization~3.12!.#
The sum of the other terms then defines what we can
some non-distributive contributions because their appeara
is the direct consequence of the violation of distributiv
~3.3!. Thus,

Pf~Fd1!5~F !1d11 ‘‘non-distributivity’’ contributions.
~3.32!

In @22# care has been taken of all such non-distributiv
terms. Consider for instance the Poisson integral o
compact-support term Pf(Fd1) ~say, proportional to the mat
ter source densitiess, s i or s i j ). Using Eq.~3.31! the Pois-
son integral reads15

E d3x

ux2x8u
Pf~Fd1!5 (

,50

1`
~2 !,

,!
^n1

L f 2,
1

&]LS 1

r 18
D ,

~3.33!

15To apply ~3.31! we assume thatx8 is distinct from the 2 singu-
larities y1 andy2 ; see@23# for more details.
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@where]L(1/r 18) should be better written]L8(1/r 18)]. Evaluat-
ing now the partie finie~3.2! at both singular points@i.e.,
when r 18→0 andr 28→0] we obtain

S E d3x

ux2x8u
Pf~Fd1!D

1

50, ~3.34a!

S E d3x

ux2x8u
Pf~Fd1!D

2

5 (
,50

1`
1

,!
^n1

L f 2,
1

&]LS 1

r 12
D

5E d3x

r 2
Pf~Fd1!. ~3.34b!

The result~3.34a! is in agreement with the pure Hadama
regularization; however Eq.~3.34b! does involve some extra
terms with respect to the pure Hadamard calculation, si
the latter is easily seen to simply yield (F)1 /r 12, which is
nothing but the ‘‘monopolar’’ term,50 of the multipolar
sum in the RHS of Eq.~3.34b!. Therefore we decompose Eq
~3.34b! as

S PfE d3x

ux2x8u
Fd1D

2

5
~F !1

r 12
1 ‘‘non-distributivity’’ contributions.

~3.35!

The second ingredient of the extended Hadamard regu
ization concerns the treatment of partial derivatives in so
~extended! distributional sense. Essentially, one requires@23#
that the derivative reduces to the ordinary derivative in
case of regular functions, and is such that one can integ
any integrals by parts. The latter property~valid for the spa-
tial derivative! translates into

^] i~PfF !,G&52^] i~Pf G!,F&. ~3.36!

This rule contains the standard definition of the distributio
derivative@36# as a particular case. It implies the importa
property that the integral of a divergence is zero. Let us

] i~PfF !5Pf~] iF !1Di@F#, ~3.37!

where Pf(] iF) denotes the derivative ofF viewed as an ‘‘or-
dinary’’ pseudo-function, and Di@F# represents the purely
distributional part of the spatial derivative~with support con-
centrated ony1 or y2).

Looking for explicit solutions of the basic relation~3.36!
we have found@23#, with the help of Eq.~3.5!,

Di@F#54pPfS n1
i F1

2
r 1 f 21

1

1 (
k>0

1

r 1
k

f 222k
1

Gd1D 11↔2.

~3.38!

Notice that Di@F# depends only on thesingular coefficients
of F ~coefficients of negative powers ofr 1 in the expansion
7-16
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DIMENSIONAL REGULARIZATION OF THE THIRD . . . PHYSICAL REVIEW D69, 124007 ~2004!
of F). The derivative operator defined by Eqs.~3.37!, ~3.38!
does not represent the unique solution of~3.36!, but it was
checked during the calculation@22# that using another pos
sible solution results inphysically equivalentequations of
motion at 3PN order~i.e., they reduce to each other by
gauge transformation!. Concerning multiple derivatives, w
have the general formula

DL@F#5 (
k51

,

] i 1 . . . i k21
Di k

@] i k11 . . . i ,
F#, ~3.39!

giving the distributional term associated with the,th spatial
derivative, DL@F#[]LPf F2Pf ]LF ~whereL5 i 1i 2••• i ,),
in terms of the single derivative Di@F#. As an example, to
treat the second derivative of the Newtonian potential,] i j U
whereU5Gm1 /r 11Gm2 /r 2 , one uses

Di j F 1

r 1
G52

4p

3
PfS d i j 1

15

2
n̂1

i j D d1 , ~3.40!

wheren̂1
i j [n1

i j 2 1
3 d i j . Therefore the extended distribution

derivative differs in general from the usual Schwartz deri
tive @cf. the second term in Eq.~3.40!#. @This is unavoidable
if one wants to respect the basic rule of integration by pa
~3.36! for general functions in the classF.] Notice also that
we do find a distributional term in the case of the first d
rivative: Di@1/r 1#52pPf(r 1n1

i d1). We recall also~for future
use! the case of the partial time derivative,] t(Pf F)
5Pf(] tF)1Dt@F#, whose distributional term is given b
~following Ref. @23#!

Dt@F#5v1
i Di

1
@F#1v2

i Di
2

@F#, ~3.41!

in terms of the partial derivatives with respect to thesource
points y1 and y2 , namely1Di@F# and 2Di@F#. The explicit
expression reads

Dt@F#524pPfS ~n1v1!F1

2
r 1 f 21

1

1 (
k>0

1

r 1
k

f 222k
1

Gd1D
11↔2, ~3.42!

where (n1v1) denotes the ordinary scalar product@notice the
overall sign difference with respect to Eq.~3.38!#. Multiple
time derivatives can be treated according to Eq.~3.39!. For
instance,

Dtt@F#5Dt@] tF#1] tDt@F#. ~3.43!

Following the regularization@23# all the distributional terms
@of types Pf(Fd1) and Pf(Fd2)] coming from the latter dis-
tributional derivatives are to be treated when computing
potentials according to the extended contact term definiti
of Eqs.~3.34a!, ~3.34b!.

Finally let us turn to the extension of the Hadamard re
larization ~introduced in@24#! concerning the definition of a
new operation of regularization, denoted@F#1 , consisting of
performing the Hadamard regularization (F)1 within the spa-
tial hypersurface that is geometrically orthogonal~in a
12400
-

ts

-

e
s

-

Minkowskian sense! to the four-velocity of the particle 1
The regularization@F#1 differs from (F)1 by a series of rela-
tivistic corrections calculated in@24#. Together with the other
improvements of the extended Hadamard regularization
resulted in equations of motion in harmonic coordina
which are manifestly Lorentz invariant at the 3PN ord
@21,22#. Here we give a formula, sufficient for the prese
purpose, for expressing@F#1 in terms of the basic regular
ization (F)1 , defined by Eq.~3.2!, at the 1PN order:

@F#15S F1
1

c2
~r1•v1!F ] tF1

1

2
v1

i ] iFG D
1

1OS 1

c4D .

~3.44!

The first term is simply (F)1 , while the other terms define
set of relativistic corrections required to ensure the Lore
invariance of the final equations in Hadamard’s regulari
tion. Hence, we decompose Eq.~3.44! into

@F#15~F !11 ‘‘Lorentz’’ contributions. ~3.45!

D. Contributions due to the extended Hadamard
regularization

After the reminders of the last subsections, we are now
position to explain the origin of all the contributions@in-
cluded in the final result~1.5!# which were due to the specifi
use of the extended Hadamard regularization. Actually,
shall list here the contributions due to the use of the f
prescriptions of@23,24# with respect to those that would fol
low from using what we shall call a ‘‘pure Hadamard-
Schwartz’’ regularization. By this we mean:~1! treating the
contact terms of all the non-linear potentialsV,Vi ,Ŵi j , . . .
as in Eq.~3.12! @we have checked that for all the potentia
involved this is equivalent to Eq.~3.10!#; ~2! treating the
distributional part of an integrand such asFi j ] i j U in the
normal Schwartz distributional way, for instance16

] i j S 1

r 1
D 5

3n1
i n1

j 2d i j

r 1
3

2
4p

3
d i j d

(3)~x2y1!, ~3.46!

and evaluating the contact term generated by the delta fu
tion in the ‘‘pure Hadamard’’ way~3.12!; ~3! regularizing
any three-dimensional integral by the ordinary Hadam
prescription~3.4!; and, finally, ~4! using systematically, in
the last stage of the calculation where one replaces the m
into the geodesic equations, the pure Hadamard replacem
rule appearing in Eq.~3.11! ~for instance, we write
(V3] iV)1→@(V)1#3(] iV)1 , creating therefore a net differ
ence with respect to the ordinary and/or extended Hadam
regularizations for which (V3] iV)15” @(V)1#3(] iV)1).

16Notice that the distributional term differs from the extend
Hadamard prescription~3.40!.
7-17
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BLANCHET, DAMOUR, AND ESPOSITO-FARE`SE PHYSICAL REVIEW D69, 124007 ~2004!
The usefulness of the definition of such a pHS regulari
tion is to ‘‘localize’’ the additional contributions brought b
dim. reg. to the occurrence of poles}1/« ~or ‘‘cancelled’’
poles! in d dimensions.

Our complete list of additional contributions contai
seven items. First of all there are four ‘‘non-distributivity
contributions of the type given by Eq.~3.35!:

~i! The so-called ‘‘self’’ terms, for which the delta func
tion in Pf(Fd1) comes from the purely distributional part o
the distributional derivative given by Eq.~3.38!. The self
terms were derived in Eq.~6.20! in @22#; they read explicitly

dselfa1
i 5

151

9

G4m1m2
3

c6r 12
5

n12
i 1

G3m2
3

c6
F2

1

2
~n12v2!2n12

i

1
1

10
v2

2n12
i 1

1

5
~n12v2!v2

i G , ~3.47!

where (n12v2) denotes the usual scalar product betweenn12

and v2 , and wherev2
25v2

2. The expression~3.47! can be
rewritten in a simpler way as~where we denote for simplicity
v2

jk[v2
j v2

k)

dselfa1
i 5

151

9

G4m1m2
3

c6r 12
5

n12
i 1

1

30

G3m2
3

c6
v2

jk] i jkS 1

r 12
D .

~3.48!

~ii ! The so-called ‘‘Leibniz’’ terms, which are additiona
contributions due to the extended distributional derivati
taking into account the violation of the Leibniz rule whe
performing some simplifications of the non-linear potenti
at the 3PN order~see the explanations in Sec. III B in@22#!.
The Leibniz terms were written in Eq.~6.19! in @22#, and
read

dLeibniza1
i 52

88

9

G4m1m2
3

c6r 12
5

n12
i 2

1

6

G3m2
3

c6
v2

jk] i jkS 1

r 12
D .

~3.49!

We emphasize that the contributions~3.48! and~3.49! repre-
sent some additive effects of the use of the distributio
derivative introduced in Ref.@23#, when compared to the
effect of the Schwartz derivative in the pHS regularizatio
Note that both Eqs.~3.48! and~3.49! depend on the choice o
distributional derivative, and we have given them here in
case of the ‘‘particular’’ derivative17 defined by Eq.~3.38!.

~iii ! A special non-distributivity in the compact-suppo
potentialV when it is computed at the 3PN order. In this ca

17Another derivative was introduced and discussed in@23# where
it is called the ‘‘correct’’ one, but it yields physically equivalen
3PN equations of motion.
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the Pf(Fd1) comes simply from the compact-support poin
particle sources of the potential. Equation~4.17! of @22#
gives for that term

dVa1
i 55

G4m1m2
3

c6r 12
5

n12
i . ~3.50!

~iv! A contribution coming from the compact-support pa
of the potentialT̂ parametrizing the metric at the 3PN orde
and derived at the end of Sec. IV A in@22#:

d T̂a1
i 5

1

15

G3m2
3

c6
v2

jk] i jkS 1

r 12
D . ~3.51!

In addition to the non-distributivity of the type~3.35!, we
also have the more ‘‘direct’’ non-distributivity due to the fa
that the pure Hadamard prescription for the regularization
the value of an expression ‘‘aty1 ,’’ Eq. ~3.11!, differs from
the ordinary and/or extended Hadamard ones@see for in-
stance Eq.~3.15!#. It plays a role only in the last stage of th
computation of the 3PN equations of motion, once we s
stitute all the potentials computed at the right PN order i
the geodesic equations. We thus have the following.

~v! A ‘‘direct’’ non-distributivity contribution, which can
be called non-distributivity in the equations of motio
~EOM!, and given by Eq.~6.34! in @22#,

dEOMa1
i 5

G4m1
2m2

c6r 12
5 F779

210
m12

97

210
m2Gn12

i

2
779

420

G3m1
2m2

c6
v12

jk] i jkS 1

r 12
D , ~3.52!

where v12
jk5v12

j v12
k and v12

j 5v1
j 2v2

j . This term involves
some combinations of masses different from those in E
~3.48!–~3.51!. Note that because (FG)15” (F)1(G)1 the non-
distributivity in the EOM depends on which prescription h
been chosen for the stress-energy tensor of point partic
Equation~3.52! corresponds to the particular prescription a
vocated in Sec. V of@24#. However it was checked in@22#
that different prescriptions yield physically equivalent equ
tions of motion.

The next correction brought about by the extended H
amard regularization is the one due to the regularizat
@F#1 , performed in the Lorentzian rest frame of the partic
In practice the effect of such ‘‘Lorentzian’’ regularizatio
boils down to applying Eq.~3.44!. It turned out that the only
new contribution of this type came from the regularization
the potentialX̂ at the 1PN order@and also when deriving the
result for dEOMa1

i , which is Galilean invariant, in Eq
~3.52!#, leading to the following.
7-18
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DIMENSIONAL REGULARIZATION OF THE THIRD . . . PHYSICAL REVIEW D69, 124007 ~2004!
~vi! The so-called ‘‘Lorentz’’ contribution to the accelera
tion, given by Eq.~5.35! in @22# as

dLorentza1
i 5

G3m1
2m2

c6
F2

9

70
v1

jk1
1

5
v1

j v2
kG] i jkS 1

r 12
D .

~3.53!

This term was crucial for ensuring the Lorentz invariance
the final 3PN equations of motion in@21,22#.

Finally, one must also take care of one additional con
bution ~with respect to the ‘‘pHS’’ definitions! due to the
non-Schwartzian way of treating distributional derivative
We have already mentioned two contributions coming fr
this origin: ~i! and ~ii ! above. Actually, there is a third on
with the same origin and which comes from our computat
~see Sec. IV below! of the ‘‘difference’’ between the dimen
sional and Hadamard regularizations of retarded potent
namely the crucial potentialsX̂ and R̂i which must both be
expanded to 1PN fractional accuracy. More precisely,
contribution is due to the repeated time-derivative opera
] t

2 coming when expanding the time-symmetric Green fu
tion of the d’Alembertian as h215D211c22D22] t

2

1O(c24). We shall explicitly exhibit in Eqs.~4.30! below
the way these derivatives enter our calculation of the diff
ence. For technical reasons the time derivative] t

2 must be
kept inside the integrals, so it has to be considered in a d
tributional sense, and we have therefore to take into acco
the different ways of treating the distributional derivatives
both regularizations. In the extended Hadamard regular
tion the distributional terms are given by Dtt@F# which is
shown in Eqs.~3.41!–~3.43!, and when they enter the sourc
of some Poisson-type integral they are evaluated accor
to Eqs.~3.34!. On the other hand, in dim. reg. one uses
ordinary Schwartz derivative~in d dimensions! which is de-
scribed in Sec. IV C. In this case the double time derivat
] t

2 is computed with the help of the Gel’fand-Shilov form
las ~4.34!, ~4.35! below. When examining the difference b
tween the contact terms in Dtt@F# and those issued from
limd→3] t

2F (d), we find that only the source for the 1PN p

tentialX̂ ~or rather for the combination 4] i X̂/c4 which enters
the equations of motion! contributes. This gives the follow
ing contribution.

~vii ! The ‘‘time-derivative’’ contribution to the accelera
tion,

d time derivativea1
i 52

2

15

G4m1m2
3

c6r 12
5

n12
i 1

4

35

G3m2
3

c6
v2

jk] i jkS 1

r 12
D .

~3.54!

This term was part of the final result of@22#. However it is
not mentioned in@22# because this reference never tried
compare the results of the extended distributional deriva
with those given by the ordinary Schwartz derivative in
dimensions, except in those cases, items~i! and ~ii ! above,
for which the Schwartz derivative yielded in fact some i
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defined~formally infinite! expressions in 3 dimensions.~The
latter expressions turn out to be rigorously zero when co
puted in dimensional regularization.!

In summary, there are in allsevendifferent terms,~i!–
~vii !, which are specifically due to the extended version
the Hadamard regularization. The ‘‘pure Hadama
Schwartz’’ equations of motion are then obtained from t
end result of@22#, i.e., a1

BF given by Eq.~7.16! of @22#, by
subtracting these terms. Therefore we define~see also Sec
V B below!

a1
pHS[a1

BF2~dselfa11dLeibniza11dVa11d T̂a11dEOMa1

1dLorentza11d time-derivativea1!, ~3.55!

and the same with 1↔2 for the other particle.

IV. DIMENSIONAL VERSUS HADAMARD
REGULARIZATION

In this section we come to the core of our technique
evaluating the difference between thed-dimensional equa-
tions of motion and their pure Hadamard-Schwartz expr
sions, defined above and given in practice by Eq.~3.55!.

A. Iteration of Einstein’s equations in d dimensions

Let us start by indicating how we solved~with sufficient
accuracy! Einstein’s field equations ind dimensions. One
writes the post-Minkowskian expansion of Einstein’s equ
tions in the guise of explicit formulas for the elementa
potentialsV,Vi , . . . ,T̂, as given in Sec. II. Note that it is
crucial to take into account the explicitd dependence of the
coefficients entering these equations. The first step of
formalism is to get sufficiently accurate explicit expressio
for the basic linear potentialsV andVi . As we do not need to
consider here radiation reaction effects~which do not mix
with the UV divergencies arising at the 3PN level! it is
enough to solve Eqs.~2.7! by means of the PN expansion o
the time-symmetric Green function. For instance, we hav

V524pGhsym
21 s

524pGS D21s1
1

c2
D22] t

2s1
1

c4
D23] t

4s

1
1

c6
D24] t

6s D 1OS 1

c8D . ~4.1!

From Eq.~2.16! we see that the sources reads

s~x,t !5m̃1~ t !d (d)@x2y1~ t !#11↔2, ~4.2!

where
7-19
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m̃1~ t !5
2

d21

m1c

A2grs~y1 ,t !v1
rv1

s

~d22!1v1
2/c2

A2g~y1 ,t !
.

~4.3!

Note the presence of many ‘‘contact’’ evaluations of fie
quantities ins. Such terms are unambiguously defined
dimensional regularization. They are computed by succ
sive iterations@e.g., to getm̃1(t) to 1PN fractional accuracy
we need to have already computedgmn to order O(c22)
included#. Those evaluations do not give rise to pole terms
s, up to the 3PN accuracy. Hence, as we said above, we
consider that theird→3 limits define a certain~three-
dimensional! way of estimating contact terms, that we ha
checked to be in full agreement with the ‘‘pure Hadamar
prescription defined in the previous section.

Coming now to the spatial dependence of the scalar
tential V we get from Eq.~4.1!

V~x,t !5Gm̃1~ t !u11
G

c2
] t

2@m̃1~ t !v1#1•••11↔2,

~4.4!

where we introduced the elementary solutionsu1

[D21(24pd1
(d)), v1[D21u1 , etc., whose explicit forms

are

u15 k̃r 1
22d , ~4.5a!

v15
k̃r 1

42d

2~42d!
, ~4.5b!

wherek̃ is related to the usual EulerianG function by18

k̃5
G„~d22!/2…

p (d22)/2
. ~4.6!

Inserting the explicit expression~4.4! of V into, say, the non-
linear terms in the RHS of Eq.~2.12b! yields a d’Alembert
equation for the non-linear potentialŴi j with a ‘‘source
function’’ which is the sum of some contact term
S(x)d (d)(x2ya) and of an extended non-linear sour
F (d)(x) which belongs to thed-dimensional analogue of th
classF, sayF (d). More precisely, at each stage of the iter
tion we find inhomogeneous wave equations of the type

hW(d)~x!5F (d)~x!1(
a

Sa~x!d (d)~x2ya!, ~4.7!

where the extended source functionF (d)(x) is regular every-
where except at the pointsy1 andy2 , in the vicinity of which
it admits an expansion of the general form (; NPN)

18The constantk̃ adopted here is related byk̃54pk to the con-
stantk chosen in@35#. Our present choice is motivated by the eas

to-remember fact that limd→3k̃51.
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F (d)~x!5 (
p0<p<N
q0<q<q1

r 1
p1q« f p,q

(«)

1
~n1!1o~r 1

N!, ~4.8!

wherep andq are relative integers (p,qPZ), whose values
are limited by somep0 , q0 andq1 as indicated. The expan
sion ~4.8! differs from the corresponding expansion in 3 d
mensions, as given in Eq.~3.1!, by the appearance of intege
powers ofr 1

« where«[d23. The coefficients1f p,q
(«) depend

on the unit vectorn1 in d dimensions, on the positions an
coordinate velocities of the particles, and also on the cha
teristic length scale,0 of dimensional regularization. Be
causeF (d)→F when d→3 we necessarily have the con
straint (; p>p0)

(
q0<q<q1

f p,q
(0)

1

5 f p
1

. ~4.9!

The iteration continues by inverting the wave operator
means of the time-symmetric expansion~4.1!. The basic
terms of this expansion which will turn out to be crucial f
our 3PN calculation based on thedifferenceare in fact the
first two terms. Focusing on the terms generated by the
tended sourceF (d)(x) ~rather than the simpler contact term!
we can write thed-dimensional analogue of Eq.~3.25! as

R(d)~x8![hsym
21 @F (d)~x!#

5P(d)~x8!1
1

2c2
Q(d)~x8!1OS 1

c4D , ~4.10!

where thed-dimensional Poisson integral ofF (d) reads

P(d)~x8!5D21@F (d)~x!#[2
k̃

4p
E ddx

ux2x8ud22
F (d)~x!.

~4.11!

We have used the fact, already mentioned above, that
d-dimensional elementary solution of the Laplacian reads

D~ k̃ux2x8u22d!524pd (d)~x2x8!, ~4.12!

@see Appendix B for a proof of Eq.~4.12! and for other
useful formulas valid ind dim.#, while the 1PN term is given
by

Q(d)~x8!52D22@] t
2F (d)~x!#

52
k̃

4p~42d!
E ddxux2x8u42d] t

2F (d)~x!.

~4.13!
-
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Note the important point that ind dimensions, as in 3 dimen
sions, the time-derivative operator] t

2 present in the integrand
of Eq. ~4.13! is to be considered in the sense of distributio
~see further discussion in Sec. IV C below!.

An important technical aspect of thed-dimensional PN
iteration of the elementary potentialsV, . . . ,T̂ is the exis-
tence of the generalization~4.12! of the usual Green function
for the Laplace equation, as well as of its higher PN a
logues D2nd (d), allowing one to explicitly compute the
spatial dependence of thelinear potentialsV, Vi and K for
instance. However, starting withŴi j we need to Poisson
integratenon-linearsources, such asD21(] iU] jU). In three
dimensions, these non-linear contributions are reduc
to the knowledge of the basic non-linear potentialg, such
that Dg5r 1

21r 2
21. We have succeeded in explicitly compu

ing the d-dimensional analogue of theg potential,
namely,

g(d)~x![D21~r 1
22dr 2

22d!. ~4.14!

Our result is reported in Appendix C. As indicated there
we wished to explicitly compute some of the higher PN p
tentials needed to write the closed form of the non-lin
sources relevant to the 3PN equations of motion, we sho
extend the calculation of the potentialg(d) to the potentials
f (d) and f 12

(d) of Appendix C.
Luckily, it is not needed to use a closed-form express

for any of the non-linear potentials. Indeed, similarly to wh
was used long ago@8# when discussing the iteration gene
ated by Riesz-type sources, Eq.~1.3!, one can control the UV
singular part of h21F(x) from the knowledge of the UV
singular part of its non-linear sourceF(x).19 More precisely,
in the vicinity say ofy1 , at each iteration stage we can d
compose the source inF(x)5SingF(x)1RegF(x) where the
singularpart SingF(x) ~with respect toy1) is a sum of terms
of the form Eq. ~4.8!, which are not~in the limit d→3)
smooth functions ofx2y1 , and where theregular part
RegF(x) is a smooth (C`) function of x2y1 . @The simplest
example of this decomposition is Eq.~2.21! with, near point
y1 , SingU(x)5 f k̃Gm1r 1

22d and RegU(x)5U2(x).] If, for
concreteness, we then considerP(x)[D21F(x), the above
decomposition entails a corresponding decomposition
P(x), and it is easy to see thatDSingP(x)5SingF(x). From
this result, we can uniquely determine SingP(x) from
SingF(x) using, e.g., the formula~B26c! in Appendix B. This
local procedure does not allow one to compute the reg
part of the Poisson potential ind dimensions. Fortunately
thanks to particular simplifications that occur in the struct
of Einstein’s field equations, a knowledge of RegP(x) in d
dimensions for the complicated non-linear sources is

19We have checked that for all the non-compact~extended! poten-
tials involved in this calculation, there are no IR divergencies, i
the integrals converge at infinityuxu→` for any small enough value
of «5d23.
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needed. Indeed, one can see in our explicit solution of E
stein’s field equations at 3PN given in Sec. II that there
no ‘‘quartically non-linear’’ source terms of the form, sa

] iV] jVŴi j or ] i Ŵjk] j Ŵki for g00 at the 3PN order~see Fig.
5 below!.

As explained in Sec. V C below, a nice way to understa
the origin of the poles}(d23)21 appearing in the 3PN
equations of motion is to use a diagrammatic representat
A pole can arise ina1 only when three propagator lines~in-
cluding the extra one coming fromh21 when solving
hgmn5 non-linear source! can all shrink toward the firs

world-line. If terms of the type above~e.g.] iV] jVŴi j ) were
present in the source one could have a diagram where
three shrinking propagators come fromh21, ] iV1 and] jV1 .

Then Reg(d)@Ŵi j (x)# would remain as an external attac
ment to this diagram~and would then fork into two ‘‘feet’’ on
the second world-line!. In view of the pole}«21 ~with «
[d23) arising from the triplet of shrinking propagator

one would need to know Reg(d)@Ŵi j (x)# up to « accuracy,

i.e., Reg(d)@Ŵi j (x)#5Reg(3)@Ŵi j (x)#1«Ŵi j8 (x)1O(«2) @in

which Ŵi j8 (x) is defined by this expansion#. If such a term
had been present we would have needed to use the
d-dimensional, globally determinedg potential given in Ap-

pendix C to determineŴi j8 , which would have entered th
final, renormalized equations of motion. However, beca
all such terms are absent at the 3PN order, the only exte
attachments to the dangerous shrinking diagrams are sim
lines, such for instance as the lines ending ony2(t) in Figs.
2d, 3b or 4b presented below. Such lines do need to be ev
ated to accuracy«, but this is easy because they repres
linear potentials such asV or Vi which are known in dimen-
sion d via Eq. ~4.4!.

In conclusion, the algorithm we use to solve, with suf
cient accuracy, Einstein’s equations ind dimensions consists
of ~1! starting from the fullyd-dimensional expressions fo
the linear potentialsV, Vi ~and more generally for the part
of the non-linear potentials with delta-function sources!; ~2!
determining the local expansions, nearya , of the singular
parts of the non-linear potentials by invertingD SingP

(d)(x)
5SingF

(d)(x) via formula ~B26c! of Appendix B; ~3! com-
pleting P(d)(x) by adding to SingP

(d)(x) the limit when d
→3 of RegP

(d)(x), namely RegP
(3)(x) which is known from

the previous work on the 3PN equations of motion in 3
mensions@22#. Note that we denote by RegP

(3)(x) a formal
d-dimensional function,xPRd, the explicit expression of
which in terms of r 1 , n1 , etc. coincides with its
3-dimensional counterpart. For instance Regg

(3)(x) denotes
the usual regular part ofg(3)(x), obtained by subtracting
from g(3)(x)[ ln(r11r21r12) the two three-dimensional lo
cally singular expansions ofD (3)

21(r 1
21r 2

21) aroundy1 andy2

as given by thed→3 limit of Eq. ~C9! and its 1↔2 ana-
logue. After this double subtraction, Regg

(3)(x) is considered
as a function inRd, and we can use as approximation
g(d)(x) the explicit expression gloc 1

(d) (x)1gloc 2
(d) (x)

1Regg
(3)(x). More generally, in our calculations we use

.,
7-21
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approximation toP(d) ~which symbolizes here the non-linea
potentialsR̂i andẐi j at Newtonian order, andŴi j at the 1PN
order! the expression SingP

(d)(x)1RegP
(3)(x). Evidently, the

subtraction of the singular part needs to be performed o
up to some finite order inr 1

N and r 2
N . We have checked the

choice we made ofN in each calculation by doing two sepa
rate calculations for the valuesN and N11, and checking
that the corresponding final results are the same. We
formed also direct checks of the independence of the fi
results on the precised-dimensional extensions of the ‘‘regu
lar’’ part of the non-linear potentials, such as RegP

(d)(x)
5RegP

(3)(x)1«P8(x)1O(«2) @in which P8(x) is defined by
this expansion#. We systematically added in all our non
linear potentialsR̂i , . . . ,Ŵi j some smooth contributions t
RegP

(3)(x) vanishing with «, i.e., some substitutes for th
actualP8(x). These ‘‘substitutes’’ were determined in such
way that ~i! they are homogeneous solutions of t
d’Alembertian equation at the required post-Newtonian
der, and~ii ! the differential identities obeyed by the pote
tials in d dimensions, Eqs.~2.13a!, ~2.13b!, are indeed satis
fied up to the order«, and with the required precisionN in
powers20 of r 1 or r 2 . And we checked that our final resul
are totally insensitive to the introduction of such substitu
for the functionP8(x).

Finally, when evaluating the equations of motion, as giv
by Eq.~2.23!, we must evaluate the value atx85y1 of many
terms given either by Poisson integrals of the form~4.11! or
their 1PN generalizations~4.13!. This is quite easy to do in
dim. reg., because the nice properties of analytic contin
tion allow us simply to get@P(d)(x8)#x85y1

~say! by replac-

ing x8 by y1 in the explicit integral form~4.11!. Finally, we
simply have for the values atx85y1 of the potentials,

P(d)~y1!52
k̃

4p
E ddx

r 1
d22

F (d)~x!, ~4.15a!

Q(d)~y1!52
k̃

4p~42d!
E ddxr 1

42d] t
2F (d)~x!,

~4.15b!

as well as for their spatial gradients,

] i P
(d)~y1!52

k̃~d22!

4p
E ddx

n1
i

r 1
d21

F (d)~x!, ~4.16a!

] iQ
(d)~y1!5

k̃

4pE ddxn1
i r 1

32d] t
2F (d)~x!. ~4.16b!

As said above, the main technical step of our strategy
then consist of computing thedifference between such

20Therefore, our verification that the potentials we need do sat
the harmonicity conditions~2.13! has been done only in the vicinit
of the two particles.
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d-dimensional Poisson-type potentials~4.15! or ~4.16!, and
their ‘‘pure Hadamard-Schwartz’’ 3-dimensional counte
parts, which were already obtained in Sec. III B.

B. Difference between the dimensional and Hadamard
regularizations

We denote the difference between the prescriptions of
mensional and ‘‘pure Hadamard-Schwartz’’ regularizatio
by means of the script letterD. Given the results (P)1 and
P(d)(y1) of the two regularizations@respectively obtained in
Eqs.~3.21! and ~4.15a!# we pose

DP~1![P(d)~y1!2~P!1 . ~4.17!

That is, DP(1) is what we shall have toadd to the pure
Hadamard-Schwartz result~3.55! in order to get the correc
d-dimensional result. Note that, in this paper, we shall o
compute the first two terms,a21«211a01O(«), of the
Laurent expansion ofDP(1) when«→0. This is the infor-
mation we shall need to fix the value of the parameterl. We
leave to future work an eventual computation of t
d-dimensional equations of motion as an exact function
the complex numberd.

Similarly to the evaluation of the differenceDH[H (d)

2Hadamard@H (3)# in Ref. @35#, the difference~4.17! can be
obtained by splitting thed-dimensional integral~4.15a! into
three volumes, two spherical ballsB1

(d)(s) and B2
(d)(s) of

radiuss and centered on the two singularities, and the ex
nal volumeRd\B1

(d)(s)øB2
(d)(s). Whend→3 ~with fixed s),

B1
(d)(s) andB2

(d)(s) tend to the regularization volumesB1(s)
andB2(s) we introduced in Eq.~3.22!. Consider first, for a
given value s.0, the external integral, ove
Rd\B1

(d)(s)øB2
(d)(s). ~If wished, two balls with different ra-

dii could be used, with the same result.! Since the integrand
is regular on this domain, it is clear that the external integ
reduces in the limit«→0 to the one in 3 dimensions that
part of the Hadamard regularization~3.22!. So we can write
~for any s.0)

2
k̃

4p
E

Rd\B1
(d)(s)øB2

(d)(s)

ddx

r 1
d22

F (d)~x!

52
1

4p
E

R3\B1(s)øB2(s)

d3x

r 1

F~x!1O~«!,

~4.18!

and we see that when computing the differenceDP(1) the
exterior contributions will cancel out moduloO(«). Thus we
obtain, after this preliminary step@following Eq. ~3.22!#,

fy
7-22



DIMENSIONAL REGULARIZATION OF THE THIRD . . . PHYSICAL REVIEW D69, 124007 ~2004!
DP~1!5 lim
s→0

H 2
k̃

4p
E

B1
(d)(s)

ddx

r 1
d22

F (d)~x!2
k̃

4p
E

B2
(d)(s)

ddx

r 1
d22

F (d)~x!1 (
p<23

sp12

p12
^ f p

1

&1F lnS s

r 18
D 11G ^ f 22

1

&

1 (
,>0

~2 !,

,!
]LS 1

r 12
D F (

p<2,24

sp1,13

p1,13
^n2

L f p
2

&1 lnS s

s2
D ^n2

L f 2,23
2

&G J 1O~«!. ~4.19!
c
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See Sec. IV of Ref.@35# for a careful justification of the
formal interversions of limitss→0 and«→0 that we shall
do here. The point is that in order to obtain the differen
DP(1) we do not need the expression ofF (d) for an arbitrary
source pointxPRd but only in the vicinity of the two singu-
larities: indeed the two local integrals overB1

(d)(s) and
B2

(d)(s) in Eq. ~4.19! can be computed by replacingF (d) by
its expansions whenr 1→0 andr 2→0 respectively. We sub
stitute ther 1 expansion Eq.~4.8! into the local integral over
B1

(d)(s), and integrate that expansion term by term. T
readily leads to

2
k̃

4p
E

B1
(d)(s)

ddx

r 1
d22

F (d)~x!52
1

11«
(
p,q

sp121q«

p121q«
^ f p,q

(«)

1

&,

~4.20!

where we still use the bracket notation to denote the ang
average, but now performed ind dimensions, i.e.,

^ f p,q
(«)

1
&[E dVd21~n1!

Vd21
f p,q

(«)

1
~n1!. ~4.21!

Here dVd21is the solid angle element around the directi
n1 , and Vd2152pd/2/G(d/2) is the volume of the unit
sphere withd21 dimensions~see Appendix B for more dis
cussion!. To derive Eq.~4.20! we used the following relation
linking k̃ andVd21 ,

k̃5
4p

~d22!Vd21
. ~4.22!

Concerning the other local integral, overB2
(d)(s), things are

a little bit more involved because we need to perform a m
tipolar re-expansion of the factorr 1

22d present in that integra
around the pointy2 . Writing down this multipole expansion
presents no problem, and in symmetric-trace-free~STF! form
it reads21

r 1
22d5 (

,50

1`
~2 !,

,!
]LS 1

r 12
11«D r 2

,n2
L . ~4.23!

21The expansion is STF becauseDr 22d50 in d dimensions~in
the sense of functions!. See Appendix B for a compendium o
d-dimensional formulas on STF expansions. See also Eq.~C6! in
Appendix C.
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The multipole expansion being then correctly taken into
count, we obtain

2
k̃

4p
E

B2
(d)(s)

ddx

r 1
d22

F (d)~x!

52
1

11« (
p,q

sp1,131(q11)«

p1,131~q11!«

3 (
,50

1`
~2 !,

,!
]LS 1

r 12
11«D ^n2

L f p,q
(«)

2

&.

~4.24!

As we can see, simple poles;1/« will occur in our two local
integrals, as determined by Eqs.~4.20! and ~4.24!, only for
the ‘‘critical’’ values p522 andp52,23 respectively.

Next we replace the explicit expressions~4.20! and~4.24!
into the formula~4.19! we had for the ‘‘difference.’’ As ex-
pected we find that the divergencies whens→0, some value
«Þ0 being given, cancel out between Eqs.~4.20!–~4.24! and
the remaining terms in Eq.~4.19!, so that the result is finite
for any «Þ0. Furthermore, we find that if we neglect term
of orderO(«), the only contributions which remain are th
ones coming from the poles~and their associated finite part!,
i.e., for the latter critical valuesp522 in the case of singu-
larity 1 andp52,23 in the case of singularity 2. The othe
contributions in Eqs.~4.20! and ~4.24! have a finite limit
when«→0 which is therefore cancelled by the correspon
ing terms in Hadamard’s regularization. As a result we obt
the following closed-form expression for the differenc
which will constitute the basis of all the practical calcul
tions of the present paper:

DP~1!52
1

«~11«!
(

q0<q<q1

S 1

q
1«@ ln r 1821# D ^ f 22,q

(«)

1

&

2
1

«~11«!
(

q0<q<q1

S 1

q11
1« ln s2D

3 (
,50

1`
~2 !,

,!
]LS 1

r 12
11«D ^n2

L f 2,23,q
(«)

2

&1O~«!.

~4.25!

Notice that Eq.~4.25! depends on the two ‘‘constants’’ lnr18
and lns2. As we shall check these lnr18 and lns2 will exactly
cancel out the same constants present in the ‘‘pure H
amard’’ calculation, so that the dimensionally regularized
7-23
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celeration will be finally free of the constantsr 18 and s2 .
Note also that the coefficients1f p,q

(«) and2 f
p,q
(«) in d dimensions

depend on the length scale,0 associated with dimensiona
regularization@see Eq.~2.4!#. Taking this dependence int
account one can verify thatr 18 and s2 in Eq. ~4.25! appear
only in the combinations ln(r18/,0) and ln(s2 /,0).

Let us give also~without proof! the formula for the dif-
ference between thegradientsof potentials, i.e.,

D] i P~1![] i P
(d)~y1!2~] i P!1 . ~4.26!

The formula is readily obtained by the same method as
fore, and we have

D] i P~1!52
1

«
(

q0<q<q1

S 1

q
1« ln r 18D ^n1

i f 21,q
(«)

1

&

2
1

«~11«!
(

q0<q<q1

S 1

q11
1« ln s2D

3 (
,50

1`
~2 !,

,!
] iLS 1

r 12
11«D ^n2

L f 2,23,q
(«)

2

&1O~«!.

~4.27!

The formulas~4.25! and ~4.27! correspond to the differenc
of Poisson integrals. But we have already discussed tha
shall need also the difference of inverse d’Alembertian in
grals at the 1PN order. To express as simply as possible
1PN-accurate generalizations of Eqs.~4.25! and~4.27!, let us
define twofunctionalsH and Hi which are such that thei
actions on anyd-dimensional functionF (d) are given by the
RHSs of Eqs.~4.25! and ~4.27!, i.e., so that

DP~1!5H@F (d)#, ~4.28a!

D] i P~1!5Hi@F (d)#. ~4.28b!

The difference of 1PN-retarded potentials and gradients
potentials is denoted

DR~1![R(d)~y1!2~R!1 , ~4.29a!

D] iR~1![] iR
(d)~y1!2~] iR!1 ,

~4.29b!

where in 3 dimensions the potentialR(x8) is defined by Eq.
~3.25! and the regularized values (R)1 and (] iR)1 follow
from Eqs.~3.21!, ~3.23!, ~3.27!, and where ind dimensions
R(d)(y1) and ] iR

(d)(y1) are given by Eqs.~4.10!, ~4.15!,
~4.16!. With this notation we now have our result, which w
be stated without proof, that the difference in the case
such 1PN-expanded potentials reads in terms of the ab
defined functionalsH andHi
12400
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DR~1!5HFF (d)1
r 1

2

2c2~42d!
] t

2F (d)G
2

3

4c2
^k24

1

&1OS 1

c4D , ~4.30a!

D] iR~1!5HiFF (d)2
r 1

2

2c2~d22!
] t

2F (d)G
2

1

4c2
^n1

i k23
1

&1OS 1

c4D . ~4.30b!

These formulas involve some ‘‘effective’’ functions whic
are to be inserted into the functional brackets ofH andHi .
Beware of the fact that the effective functions are not
same in the cases of a potential and the gradient of
potential. Note the presence, in addition to the main ter
H@•••# andHi@•••#, of some extra terms, purely of orde
1PN, in Eqs.~4.30!. These terms are made of the average
some coefficients1kp of the powersr 1

p in the expansion
whenr 1→0 of thesecond time derivativeof F, namely] t

2F.
They do not seem to admit a simple interpretation. They
important to get the final correct result.

C. Distributional derivatives in d dimensions

Let us end this section by explaining in more detail ho
we dealt with distributional derivatives ind dimensions.
First, it is clear that if we were dealing withd-dimensional
integrals of the type

I[E ddxw i j ~x!] i j u1 , ~4.31!

wherew i j (x) is some~formally! everywhere smooth function
of xPRd, with fast enough decay at infinity, and whereu1

[D21(24pd1
(d)) is the elementary Newtonian potential ind

dimensions@see Eq.~4.5a! above#, we should, in a straight-
forward d-continuation of Schwartz distributional deriva
tives, consider that] i j u1 contains, in addition to an ‘‘ordi-
nary’’ singular function ] i j (u1) uord

~treated as a pseudo
function in the sense of Schwartz!, a distributional part
proportional tod (d)(x2y1). In other words, we would write

] i j ~u1!5] i j ~u1! uord
2

4p

d
d i j d

(d)~x2y1!, ~4.32a!

] i jkl ~v1!5] i jkl ~v1! uord
2

4p

d~d12!
~d i j dkl1d ikd j l 1d i l d jk!

3d (d)~x2y1!, ~4.32b!

where the indication ‘‘ord’’ refers to the ‘‘ordinary’’~pseudo-
function! part of the repeated derivative. We have also add
the corresponding result for the fourth derivatives of t
‘‘less singular’’ kernelv1[D21u1 , Eq. ~4.5b!. Note that the
decompositions above of] i j u1 or ] i jkl v1 into ‘‘ordinary’’ and
7-24
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DIMENSIONAL REGULARIZATION OF THE THIRD . . . PHYSICAL REVIEW D69, 124007 ~2004!
‘‘distributional’’ pieces arise because of our working
(d-dimensional! x space, and of explicitly computing som
derivatives, say as] i j (r 1

n) uord
5@nd i j 1n(n22)n1

i n1
j #r 1

n22. If

we were working in the (d-dimensional! Fourier-transform
spacek ~which is where dimensional continuation is mo
clearly defined @34#!, the corresponding decompositio
would be simply algebraic: e.g.kikj /k2[k^ i j &/k21d21d i j ,
wherek^ i j & denotes the STF part ofki j [kikj .

The decompositions~4.32! are clearly needed when dea
ing with simple integrals of the type~4.31! @with a smooth
w(x)] to ensure consistency with the requirement that o
may integrate by parts~which is one of the defining proper
ties of dim. reg.@34#!, and we shall therefore employ i
when applicable. On the other hand, most of the singu
integrals that we have to deal with look like~4.31! but con-
tain asingular function w(x), of the type of Eq.~4.8!. It is,
however, a very simplifying feature of dim. reg. that wh
considering integrals like~4.31! with somesingularw(x) we
can simply ignore any distributional contributions}d (d)(x
2y1) or its derivatives. Indeed, as long as the integerq in the
powers r 1

p1q« present in Eq.~4.8! is different from zero
~which is precisely the case of all delicate terms involvi
several propagators shrinking towards a particle world-lin!,
the ‘‘singular’’ expansion~4.8! can be considered, in dim
reg., as defining a sufficiently smooth function@by taking
bothq« andN large enough in Eq.~4.8!# which vanishes, as
well as its derivatives, atx5y1 . Therefore, all the ‘‘danger-
ous’’ terms of the form SingF

(d)(x)d (d)(x2y1) unambigu-
ously vanish in dim. reg.

Let us now consider the consequences of this fact for
time derivatives occurring in expansions such as Eqs.~4.30!.
The distributional time derivatives, acting in our present e
ample onu1 or v1 , i.e., on functions ofr 1

i [xi2y1
i (t), can

be treated in a simple way from the rule] t52v1
i ] i appli-

cable to the purely distributional part of the derivative. F
instance we can write

] t
2~u1!5] t

2~u1! uord
2

4p

d
v1

2d (d)~x2y1!, ~4.33a!

] t
2] i j ~v1!5] t

2] i j ~v1! uord
2

4p

d~d12!
~d i j v1

212v1
i v1

j !

3d (d)~x2y1!. ~4.33b!

We have checked using these formulas that all
d-dimensional terms coming from second-order derivati
of potentials, taken in the distributional sense~for instance
the termŴi j ] i j V in the source of theX̂ potential22! yield the
samepurely distributional contributions, in the limit«→0, as
the ones that would be computed using what we called ab
a ‘‘pure Schwartz,’’ three-dimensional computation of su
contributions@to ‘‘smooth’’ integrals ~4.31!#. On the other

22Since this term is to be computed at the 1PN order, it conta
not only second-order derivatives ofu1 , but also fourth-order de-
rivatives acting onv1 .
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hand, the extended version of distributional derivatives int
duced in@23# does yield some specific additional contrib
tions, two of which were already mentioned in@22# and are
reported in the items~i! and ~ii ! of Sec. III D above, and a
third one~also included in@22#! which comes in connection
with the second time derivatives in our formulas for the d
ference, Eqs.~4.30!.

Let us indicate here that the distributional second ti
derivatives ind dimensions have been obtained by using
following ~generalizations of! Gel’fand-Shilov formulas
@44#, valid for general functionsF (d)(x) admitting some ex-
pansions of the type~4.8!: namely, for the spatial derivative

] iF
(d)5] iF

(d)
uord

1Vd21(
,50

1`
~2 !,

,!
^n1

iL f 2,22,21
(«)

1
&]Ld1

(d)

11↔2, ~4.34!

where ]Ld1
(d) is the ,th partial derivative of

the d-dimensional Dirac delta function at the point 1 (L
[ i 1i 2••• i ,) and where the angular average is perform
over the (d21)-dimensional sphere having total volum
Vd21 ; and, concerning the time derivative,

] tF
(d)5] tF

(d)
uord

2Vd21(
,50

1`
~2 !,

,!
^n1

L~n1v1! f 2,22,21
(«)

1
&

3]Ld1
(d)11↔2. ~4.35!

From the last formula one deduces the second time der
tive in a way similar to Eqs.~3.43!. We have indicated in the
item ~vii ! of Sec. III D the correction it leads to when com
pared with the extended Hadamard prescription for the s
ond time derivative, and we have subtracted it froma1

BF to
define the pure Hadamard-Schwartz result~3.55!. Therefore,
we consistently do not need to include such an effect into
differencesDP(1) discussed here.

Finally we are now in position to obtain the supplement
accelerationDa1 induced by dimensional regularization
which is composed of the sum of all the differences of p
tentials and their gradients computed by means of the gen
formulas of ~4.25!, ~4.27! and ~4.30!. The termDa1 when
added to the ‘‘pure Hadamard-Schwartz’’ acceleration
fined by Eq.~3.55!, gives our result for the dimensionall
regularized~‘‘dr’’ ! acceleration

a1
dr5a1

pHS1Da1 and 1↔2. ~4.36!

More details on the practical computation ofDaa ~which
parts of the potentials contribute; what is the diagramma
picture! will be given in Sec. V C.

V. DIMENSIONAL REGULARIZATION OF THE
EQUATIONS OF MOTION

A. Structure of the dimensionally regularized equations of
motion

The preceding section has explained the method we u
to compute the dimensionally regularized equations of m
tion as the sum (a51,2; considered modulo 2!

s

7-25
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aa
dr@«,,0#5aa

pHS@r a8 ,sa11#1Daa@r a8 ,sa11 ;«,,0#,
~5.1!

where the label ‘‘pHS’’ refers to the ‘‘pure Hadamard
Schwartz’’ definition of the acceleration@i.e., the ‘‘raw’’ re-
sult of @22#, after subtraction of the additional contribution
quoted in Sec. III D above, Eq.~3.55!#, and whereDaa is the
difference induced when using dimensional continuation
the regularization method, instead of Hadamard’s one. A
check on our results will be that, as indicated in Eq.~5.1!, the
four regularization parameters~with dimension of length!,
r 18 ,r 28 ,s1 ,s2 , that enter the Hadamard method must can
betweenaa

pHS andDaa to leave a result for the dimensional
regularized accelerationsaa

dr which depends only on the tw
regularization parameters of dimensional continuation:«
[d23 and the basic length scale,0 entering Newton’s con-
stant ind dimensions,G5GN,0

« , where we recall thatGN

denotes the usual three-dimensional Newton constant.
The dimensionally regularized acceleration~5.1! has the

structure

aa
dr@y12,v1 ,v2#5aNa@y12#1a1PNa@y12,v1 ,v2#

1a2PNa@y12,v1 ,v2#1a2.5PNa@y12,v1 ,v2#

1a3PNa@y12,v1 ,v2#, ~5.2!

where we denotey12[y12y2 . The 3PN term~which is the
only one to have a pole at«50) has a tensor structure of th
form ~say for the first particle,a51)

An121B8v12B9v2 , ~5.3!

where, as usual,n12[y12/r 12 denotes the unit vector directe
from particle 2 to particle 1. The scalar coefficientsA, B8,
B9 entering the equation of motion ofy1 can be decompose
in powers of the masses, say

A5 (
1<n11n2<4

cn1n2
~v1 ,v2 ,n12,ln r 12!

Gn11n2m1
n1m2

n2

c6r 12
n11n211

,

~5.4a!

B85 (
1<n11n2<3

cn1n2
8 ~v1 ,v2 ,n12,ln r 12!

Gn11n2m1
n1m2

n2

c6r 12
n11n211

,

~5.4b!

B95 (
1<n11n2<3

cn1n2
9 ~v1 ,v2 ,n12,ln r 12!

Gn11n2m1
n1m2

n2

c6r 12
n11n211

,

~5.4c!

where n1 and n2 are natural integers, with the restriction
indicated. Note that, in Eqs.~5.4!, we have conventionally
factored out an integer power of the ‘‘full’’ (d-dimensional!
gravitational constantG, and a corresponding integer pow
of r 12. This creates a mismatch between the us
3-dimensional dimension of, say,cn1n2

(d53) and the dimension

of cn1n2
. UsingG5GN,0

« one sees that it is the combinatio
12400
s
st

l

l

,0
(n11n2)«cn1n2

which has the same dimension ascn1n2

(d53) . Al-

ternatively said, the ensuing fact thatr 12
(n11n2)«cn1n2

has the

same dimension ascn1n2

(d53) implies, as indicated in Eqs.~5.4!,

a dependence ofcn1n2
on lnr12 when«→0. Notice also that

in Eq. ~5.3! we have introduced separate notations for
coefficient ofv1 and that ofv2 . Actually, the Poincare´ invari-
ance of the equations of motion imposes the restrictionB8
5B9 so that the last two terms in Eq.~5.3! are proportional
to the relative velocityv12[v12v2 . ~Note, however, thatB8
is not a function ofv12 only; it depends both onv1 andv2 .)
Because the calculation of the separate contributionsaa

pHS

andDaa to the equations of notion breaks the overall Po
caré invariance of the formalism, our computation of th
separate piecesaa

pHS and Daa will involve partial contribu-
tions toB8 andB9 that do not coincide. It is only at the en
of the calculation that the equalityB[B85B9 will be satis-
fied, so that finally

a3PN15An121Bv12. ~5.5!

Most of the coefficientscn1n2
, cn1n2

8 , cn1n2
9 entering the

3PN acceleration are well behaved when«→0, in the sense
that their evaluation never involves any poles}1/«. By this
we mean that whatever be the~reasonable! way of decom-
posing the integral giving a coefficient in separate contrib
tions, the latter contributions do not involve poles}1/«. The
subset of coefficients whose evaluation involves poles co
cides with the set of ‘‘delicate’’ coefficients in the Hadama
regularization, namely the nine coefficients contributing
terms of the following form in the acceleration of the fir
particle:

G4

c6r 12
5

@c31m1
3m21c22m1

2m2
21c13m1m2

3#n12

1
G3m1

2m2

c6r 12
4

@c21~v1 ,v2!n121c218 ~v1 ,v2!v1

2c219 ~v1 ,v2!v2#

1
G3m2

3

c6r 12
4

@c03~v1 ,v2!n121c038 ~v1 ,v2!v1

2c039 ~v1 ,v2!v2#. ~5.6!

The first three terms in Eq.~5.6! do not depend on velocitie
and will be referred to as thestaticdelicate contributions, by
contrast with thekinetic delicate contributions involving the
velocity-dependent coefficientsc21, c218 , c219 , c03, c038 , and
c039 ~they depend onv1 , v2 and also onn12).

B. Pure Hadamard-Schwartz static contributions to the
equations of motion

Correspondingly to the decomposition~5.1! of the equa-
tions of motion, the dimensionally regularized sta
7-26
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contributions23 c31
dr , c22

dr , c13
dr to the acceleration of the firs

particle can be written as the sum (m1n54, m>1, n>1)

cmn
dr @«#5cmn

pHS@r 18 ,s2#1Dcmn@r 18 ,s2 ,«#. ~5.7!

In this subsection, we discuss the explicit evaluation of
pure Hadamard-Schwartz static coefficientscmn

pHS.
As explained in the previous section, the pHS static c

tributionscmn
pHS@r 18 ,s2# are obtained from the results reporte

in @22# by undoing two things. First, the ‘‘BF’’ results re
ported there fora1 @Eq. ~7.16! of @22## were expressed in
terms of the three parametersr 18 , r 28 and l, instead of the
two pure Hadamard parametersr 18 ands2 more relevant for
the present purpose. The introduction of the parameterl was
motivated by requiring that the full set of equations of m
tion ~which a priori depended on four independent regula
izing parametersr 18 , r 28 , s1 , s2) admit a conserved energy
This led to the link,24 Eq. ~7.9! in @22#,

lnS r 28

s2
D 5

159

308
1l

m11m2

m2
. ~5.8!

When inserting Eq.~5.8! in the expression ofa1
BF@r 18 ,r 28 ,l#

we find, as it should be, that the result simplifies to an
pression depending only on the two pure Hadamard par
etersr 18 ands2 . This leads to the following net results from
@22#:

c31
BF@r 18 ,s2#52

3187

1260
1

44

3
lnS r 12

r 18
D , ~5.9a!

c22
BF@r 18 ,s2#5

34763

210
2

41

16
p2, ~5.9b!

c13
BF@r 18 ,s2#5

1565

9
2

41

16
p22

44

3
lnS r 12

s2
D .

~5.9c!

Second, Ref.@22# obtained their results for the equations
motion by adding to the pure Hadamard-Schwartz contri
tions 7 additional corrections, imposed by their extend
Hadamard regularization and explained in Sec. III D abo
see the items~i!–~vii ! there. Note that these various corre
tions affect the ‘‘delicate’’ contributions toa1 , in general
both the static and kinetic ones, but only five of them co

23As explained above, we consider only the ‘‘delicate’’ ones.
the present case, this means that we do not consider the contrib
c04

dr5161O(«), unambiguously obtained from the test-mass lim
m1!m2 .

24We use here the link corresponding to the ‘‘particular’’ improv
distributional derivative Di@F# given by Eq.~3.38! above. Another
derivative, the ‘‘correct’’ one, was also considered in@22# and
shown to yield equivalent equations of motion. The pure Hadam
result does not depend on this choice because we shall sub
below the specific additional contributions coming from the dis
butional derivative Di@F#.
12400
e
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tribute to the static part. These are the self term~3.48!, the
Leibniz term ~3.49!, the V correction given by~3.50!, the
EOM non-distributivity ~3.52!, and the distributional time-
derivative one~3.54!. Following Eq.~3.55!, and focusing on
the static contributions, we nowsubtract these static terms
from the result~5.9! in order to get the looked-for pure Had
amard contributions:

c31
pHS@r 18 ,s2#5c31

BF@r 18 ,s2#2
779

210
, ~5.10a!

c22
pHS@r 18 ,s2#5c22

BF@r 18 ,s2#1
97

210
, ~5.10b!

c13
pHS@r 18 ,s2#5c13

BF@r 18 ,s2#251
88

9
2

151

9
1

2

15
,

~5.10c!

i.e., explicitly,

c31
pHS@r 18 ,s2#52

1123

180
1

44

3
lnS r 12

r 18
D , ~5.11a!

c22
pHS@r 18 ,s2#51662

41

16
p2, ~5.11b!

c13
pHS@r 18 ,s2#5

7291

45
2

41

16
p22

44

3
lnS r 12

s2
D .

~5.11c!

Note in passing that though the coefficientc22 does not con-
tain regularization logarithms, its evaluation involves ma
intermediate logarithmic divergencies that cancel in the fi
result. Such ‘‘cancelled logs’’ lead to as much ambiguity
the final result as uncancelled ones that explicitly depend
an arbitrary regularization scale such asr 18 or s2 in c31 or
c13.

C. Dimensionally regularized static contributions

We now turn to the evaluation of the ‘‘dim. reg. minu
pure Hadamard’’ differencesDcmn in Eq. ~5.7!, coming from
the differencesDa1 in Eq. ~5.1!. We start from the
d-dimensional expression for the accelerationa1 @see Eq.
~2.23! for a short-hand form#, which is itself expressed in
terms of thed-dimensional elementary potentialsV, Vi , K,
Ŵi j , R̂i , X̂, Ẑi j , Ŷi and T̂ defined in Sec. II. Each elemen
tary potential can be naturally decomposed into a ‘‘compa
~or, equivalently, ‘‘contact’’! piece~whose source is compac
i.e., involves the basic delta-function sourcess, s i , s i j ) and
a ‘‘non-compact’’ one~whose source is non-linearly gene
ated and extends all over space!. The potentialsV, Vi andK
are purely ‘‘compact,’’V5VC, Vi5Vi

C , K5KC, while all

the other potentials admit a decomposition of the formŴi j

5Ŵi j
C1Wi j

NC , etc. For instance, the ‘‘compact’’ part ofŴi j is
defined by

ion

rd
act
-
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hŴi j
C524pGS s i j 2

1

d22
d i j skkD , ~5.12!

while its ‘‘non-compact’’ part is defined by

hŴi j
NC52

1

2

d21

d22
] iV] jV. ~5.13!

A more complicated example is the potentialX̂5X̂C1X̂NC

with

hX̂C524pGF 1

d22
Vs i i 12

d23

d21
s iVi

1S d23

d21D 2

sS 1

2
V21K D G , ~5.14!

and

hX̂NC5Ŵi j ] i j V22] iVj] jVi12Vi] t] iV1
1

2

d21

d22
V] t

2V

1
d~d21!

4~d22!2
~] tV!2. ~5.15!

This NC contribution can be further decomposed into t
piece whose source is quadratic in compact potenti
namely,

hX̂VV5Ŵi j
C] i j V22] iVj] jVi1other VV terms,

~5.16!

and its ‘‘cubically non-compact’’ piece given by

hX̂CNC5Ŵi j
NC] i j V5h21S 2

1

2

d21

d22
] iV] jVD ] i j V.

~5.17!

To get a feeling of the actual evaluation of the differen
Da1 let us consider a specific contribution toa1 , say the term

a1
i @X̂#[

4

c4
~] i X̂!x5y1

. ~5.18!

It can be decomposed into~i! its ‘‘compact’’ piecea1@X̂C#,
~ii ! its ‘‘quadratically non-compact’’ onea1@X̂VV#, and ~iii !
its ‘‘cubically non-compact’’ parta1@X̂CNC#.

It is sometimes convenient to think of the various con
butions toa1 in terms of space-time diagrams. If we repr
sent the basic delta-function sources@proportional tom1d(x
2y1) andm2d(x2y2)] as two world-lines and each propa
gatorh21 as a dotted line, a ‘‘compact’’ contribution toa1
will be represented by one of the diagrams in Fig. 1. F
instance, Fig. 1a can represent a term (] iV)1 in a1

i in which
the ~compact! sources of V is proportional tom2d(x2y2)
and involves no further powers of the masses, while Fig.
12400
s,

-

r

b

represents aself-actionterm25 in (] iV)1 with source propor-
tional tom1d(x2y1). By contrast, Fig. 1c might correspon
to another term in (] iV)1 where the compact sources is
concentrated aty2 , s25m̃2d(x2y2), and where a part of the
‘‘effective mass,’’

m̃25
2

d21

m2c

A2~grs!2v2
rv2

s

~d22!1v2
2/c2

A2~g!2

, ~5.19!

contains, in addition to the overall factorm2 , another factor
m1 . As all the sources ofX̂C contain, in addition to some
‘‘basic’’ smn , a potential (V, Vi , V2 or K), the diagrams
contained ina1

i @X̂C# will be at least of the form of Figs. 1c
1d, 1e, 1f, or will involve a more complicated mass depe
dence.

The quadratically non-compact termsa1
i @X̂VV# will then

contain diagrams of the type of Fig. 2, while the cubica
non-compact terma1

i @X̂CNC# contains many subdiagrams o
the type sketched in Fig. 3.

The particular term~5.18! that we considered contain
only diagrams of the general type of Figs. 1, 2 or 3. No
however, that there are also more non-linear contribution
a1

i , such as some terms in

25While in usual regularization schemes using dimensionful c
offs ~e.g. small length scaless1 , s2) the self-action diagrams, suc
as Fig. 1b or Fig. 1d, are the first divergencies that one encoun
and must then renormalize away, dimensional regularization has
technically useful property of setting all of these diagrams to ze
Indeed, when using a time-symmetric propagatorhsym

21 5D21

1c22] t
2D221••• these diagrams are seen to involve t

coinciding-point limits of ux2y1u22d12n, which vanish whenx
→y1 by dimensional continuation ind.

FIG. 1. Diagrams representing ‘‘compact’’ contributions to a
celerationa1 . The dotted line representsh21, the cross represent
the field pointx ~here taken on the first world-line!, and the bullet
represents either a source point or~in the figures below! an inter-
mediate nonlinear vertex.
7-28
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a1
i @ T̂#5

16

c6
~] i T̂!1 , ~5.20!

corresponding to diagrams of the type sketched in Fig
Similarly to the diagrams Fig. 1c and Fig. 2d, all the d
grams above can be modified by the presence of additi
lines propagating directly between the two world-lines a
corresponding to ‘‘potential’’ modifications of compac
support sources.

As underlined in Sec. IV A above, the 3PN equations
motion donot involve ‘‘quartically non-linear’’ contributions
corresponding to diagrams such as those of Fig. 5. Terms
D21(V2]kV]kV) or D21(]kV]kX̂) are of this form, and they
do occur in the 3PN accelerationa1 , but since they involve
double contracted gradients, it was possible to integrate t
away thanks to rule~ii ! of Sec. II; see Eq.~A12! in Appendix
A below. On the other hand, terms of the form] iV] jVŴi j or
] i Ŵjk] j Ŵki do not occur at the 3PN orderO(1/c6), although
they are of the third post-MinkowskianorderO(G4).

Drawing diagrams often helps to highlight the nature
the UV singularities contained in the integrals they repres
As a rule of thumb, the ‘‘delicate’’ diagrams, that might in
volve poles, or cancelled poles, when«→0 ~corresponding
to logarithms, or cancelled logarithms, ind53) are charac-
terized by the presence of a subdiagram containing th
propagator lines that can simultaneously shrink to zero s
as a subset of vertices coalesce together on one of the
world-lines. Examples of such UV dangerous diagrams
Fig. 2d and Fig. 3b @for vertices coalescing toward
„t,y1(t)…] or Fig. 3d and Fig. 4d~for vertices coalescing on
the second world-line!. The former diagrams can give pole
proportional tom1

2m2 ~with some velocity dependence, o
some extra mass dependence due to an extra line propag
between the two world-lines!, while the latter can give pole
proportional tom2

3 ~possibly with some extra velocity o
mass dependence!. The reason why three simultaneous
shrinking propagators can yield poles as«→0 is easy to see
in the approximation where the relativistic propagatorsh21

FIG. 3. Cubically non-compact contributions to accelerationa1 .

FIG. 2. Quadratically non-compact contributions to accelerat
a1 .
12400
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d
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f
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e
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are replaced by non-relativistic onesDx,x8
21

52( k̃/4p)ux
2x8u212«. Indeed, when three such propagators shrink
multaneously, the overall integral contains a subintegra
the form*d31«x(uxu212«)3;*0

adrr 2122«;a22«/(22«).
On the other hand, beyond our obtaining a heuristic fe

ing of what are the origins of the poles ina1 , we did not use
a diagrammatic technique for evaluating the equations
motion. @Note, however, that a generalization of the~2PN
level! work @45# would lead to a diagrammatic technique f
evaluating the Fokker Lagrangian of two point masses.# Our
actual computations used the techniques elaborated in
previous sections.

We evaluated the contributions to the differenceDa1
coming from all the terms in the expression fora1 deduced
from Eq. ~2.19! together with the complete expanded form
~A11!, ~A12!. However, as expected from variou
arguments—diagrammatic analysis, existence of~possibly
cancelled! logarithms in the corresponding d53
evaluation—most of the terms lead to a vanishing differen
Da1 . The only terms that give non-vanishing contributio
to Da1 are the four terms given in Eq.~2.23!,

a1
i @X̂#5

4

c4
~] i X̂!1 , a1

i @ T̂#5
16

c6
~] i T̂!1 ,

a1
i @R̂i #5

8

c4

d

dt
~R̂i !1 , a1

i @Ŷi #5
16

c6

d

dt
~Ŷi !1 .

~5.21!

Note that, for the contributions associated withX̂ and R̂i ,
one needs a 1PN-accurate treatment of both their respe
sources and the propagatorh21. Apart from the compact
support terms in the sources forX̂, T̂, R̂i andŶi which lead
to zero difference, most of the non-compact terms do lea
some non-vanishing contributions to the difference of acc
eration Da1 . We give in Tables I–IV the contributions to
Dcmn associated to the various individual source terms of
‘‘delicate’’ potentialsX̂, T̂, R̂i andŶi , which were displayed

FIG. 4. Other non-linear contributions to accelerationa1 .

FIG. 5. Quartically non-compact contributions which donot oc-
cur in our calculation of accelerationa1 at the 3PN order.

n
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TABLE I. Static contributions ofD] i X̂(1). All the results are presented modulo some neglected te
O(«). The ‘‘principal’’ part of a term corresponds to the termD21 in the 1PN symmetric propagato
h1PN

21 5D211c22] t
2D22, while the ‘‘retarded’’ part corresponds to the purely 1PN piecec22] t

2D22. The
‘‘extra term’’ refers to the last term in the RHS of Eq.~4.30b!. Note that, in view of Eqs.~5.21!, one must
multiply the results by a factor of 4 in order to get the contributions to the coefficientsDcmn in the equations
of motion.

1
4

Dc31

1
4

Dc22

1
4

Dc13

Ŵi j ] i j Vuprincipal
4
5

1
1

6«
2

1
3

lnr

103
200

1
1

20«
2

1
10

lnr 2
5

18
2

1
12«

1
1
6

lns

Ŵi j ] i j Vuretarded 2
25
18

2
1

3«
1

2
3

lnr 2
2947
1800

2
23

60«
1

23
30

lnr 2
53
90

2
1

12«
1

1
6

lns

1

2Sd21

d22DV]t
2Vuprincipal

11
18

1
1

6«
2

1
3

lnr

11
18

1
1

6«
2

1
3

lnr 0

1

2Sd21

d22DV]t
2Vuretarded

11
18

1
1

6«
2

1
3

lnr

11
18

1
1

6«
2

1
3

lnr 0

Extra term 2
1
6

2
13
60

0

Total 7
15

1
1

6«
2

1
3

lnr 2
7

60
2

13
15

2
1

6«
1

1
3

lns
-
y-

di
s:
in Sec. II, Eqs.~2.12! ~of course, we limit ourselves to non
compact source terms!. In these tables, we use the simplif
ing notation

lnr[ ln~ q̄r 18r 12!, lns[ ln~ q̄s2r 12!, q̄[4peC,
~5.22!

whereC50.577 . . . denotes the Euler constant.
Summing up the separate non-vanishing contributions

played in Tables I–IV, we get the following total difference
12400
s-

Dc3152
22

3«
1

44

3
ln~ q̄r 18r 12!2

102

5
1O~«!,

~5.23a!

Dc22591O~«!, ~5.23b!

Dc135
22

3«
2

44

3
ln~ q̄s2r 12!1

568

15
1O~«!.

~5.23c!
TABLE II. Static contributions ofD] i T̂(1).

1
16

Dc31

1
16

Dc22

1
16

Dc13

Ẑi j ] i j V 2
119
900

2
1

30«
1

1
15

lnr

1429
900

1
11

30«
2

11
15

lnr

28
9

1
2

3«
2

4
3

lns

1

8Sd21

d22D
2

V2]t
2V 2

19
36

2
1

6«
1

1
3

lnr 2
119
450

2
1

15«
1

2
15

lnr 2
19
36

2
1

6«
1

1
3

lns

2
1
2

(] tVi)
2 0 0 0

2
(d21)(d23)

4(d22)2 V] t
2K

0 0 0

2
(d21)(d23)

4(d22)2 K] t
2V

0 0 0

2
1

2Sd23

d22DŴij]ijK
0 0 0

Total 2
33
50

2
1

5«
1

2
5

lnr

397
300

1
3

10«
2

3
5

lnr

31
12

1
1

2«
2 lns
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TABLE III. Static contributions ofD(dR̂i /dt)(1). The ‘‘principal’’ part, ‘‘retarded’’ part and ‘‘extra
term’’ have the same meanings as in Table I.

1
8

Dc31

1
8

Dc22

1
8

Dc13

2
d21
d22

]kV] iVkuprincipal 2
31
18

2
1

3«
1

2
3

lnr 2
31
18

2
1

3«
1

2
3

lnr
0

2
d21
d22

]kV] iVkuretarded

43
18

1
1

3«
2

2
3

lnr

43
18

1
1

3«
2

2
3

lnr
0

2
d(d21)

4(d22)2
] tV] iVuprincipal

5
4

1
1

4«
2

1
2

lnr

5
4

1
1

4«
2

1
2

lnr
0

2
d(d21)

4(d22)2
] tV] iVuretarded

2
7
4

2
1

4«
1

1
2

lnr 2
7
4

2
1

4«
1

1
2

lnr 0

Extra term 2
1
4

2
1
4

0

Total 2
1

12
2

1
12 0
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Finally, adding Eqs.~5.23! to the pure Hadamard-Schwar
result~5.11!, we get the dimensionally regularized static co
tributions toa1 :

c31
dr52

22

3«
1

44

3
ln~ q̄r 12

2 !2
959

36
1O~«!, ~5.24a!

c22
dr51752

41

16
p21O~«!, ~5.24b!

c13
dr5

22

3«
2

44

3
ln~ q̄r 12

2 !1
1799

9
2

41

16
p21O~«!.

~5.24c!

As expected the two Hadamard regularization len
scalesr 18 and s2 have cancelled betweencmn

pHS andDcmn to
leave a result which depends only on the dim. reg. regu
ization parameter«5d23. One might be surprised by th
presence incmn

dr of terms 6 44
3 ln(r12

2 ) compared to corre-
sponding terms6 44

3 ln(r12) in cmn
pHS, and by the absence o

any adimensionalizing length scale in these logarithms
r 12

2 . These two properties can be understood when one
members from the discussion above that the coefficie
which have the same physical dimension ascmn

(d53) are the
combinations,0

(m1n)«cmn
dr . In the present case, this mea

that,0
4«cmn

dr are dimensionless. It is easy to see, thanks to
pole terms722/(3«) and the expansion,0

4«[exp(4« ln ,0)
5112« ln ,0

21O(«2), that the combinations,0
4«c31

dr and
,0

4«c13
dr do indeed depend only on the dimensionless qua

ties « and ln(r12
2 /,0

2).

VI. RENORMALIZATION OF THE EQUATIONS OF
MOTION

A. Poles in the dimensionally regularized bulk metric

The first computation of the dimensional continuation
the 3PN gravitational interaction of point masses was don
12400
-

h

r-

f
e-
ts

e

i-

f
in

ADM coordinates and resulted in afinite ~i.e., without 1/«
poles! answer@35#. Our task in analyzing the physical mea
ing of the harmonic-coordinates result~5.24! is to interpret
the presence of 1/« poles in it. For this we have to remembe
that, as in quantum field theory~QFT!, dimensional continu-
ation is aregularizationmethod which, like all regularization
methods, transforms truly infinite results, say contain
*0

r 12d3x/r 1
3, into finite, but ‘‘large’’ ones, which depend on

some cutoff parameter, e.g.*s1

r 12d3x/r 1
354p ln(r12/s1) or

*0
r 12d31«x/r 1

3(11«)}1/«. Any regularization must be fol-
lowed by arenormalizationprocess which allows one to ab
sorb the cutoff dependent terms in some of the basicbare
parametersof the theory.

In order to have a clearer understanding of the poles in
~static! equations of motion~5.24! ~we shall prove below tha
our discussion extends to the full, velocity-dependent eq
tions of motion!, we need to analyze the presence of poles
the ‘‘bulk’’ metric, i.e., the metricgmn(x;y1 ,y2) evaluated at
a generic field pointx, away from the two world-lines. In-
deed, if we were considering the gravitational field genera
by regular~i.e., non point-like! sources, a complete physica
description of their gravitational effects would necessit
the simultaneous consideration of the bulk metric and of
equations of motion of the~extended! sources. Similarly, in
the present formal study of two-point-like sources, we ne
to consider both the equations of motionÿa
5aa(y1 ,y2 ,v1 ,v2) and the bulk metric
gmn„x;y1(t),y2(t),v1(t),v2(t)….

It is here that the diagrammatic representation introdu
above plays a useful role in highlighting the structure
divergencies in the equations of motion and in the bulk m
ric. Indeed, it is clear that the divergent diagrams of t
equations of motion of the first particle, where the 1/« pole is
due to the presence of a subdivergence induced by t
propagators shrinking onto the second world-line~such as in
Fig. 3d or Fig. 4d! will correspond to similar 1/« poles in the
7-31
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TABLE IV. Static contributions ofD(dŶi /dt)(1).

1
16

Dc31

1
16

Dc22

1
16

Dc13

Ŵkl]klVi
0 0 0

2
1

2Sd21

d22D]tŴik]kV
65
18

1
2

3«
2

4
3

lnr

107
45

1
5

12«
2

5
6

lnr

71
450

1
1

60«
2

1
30

lns

] i Ŵkl]kVl
257
450

1
7

60«
2

7
30

lnr 2
149
225

2
2

15«
1

4
15

lnr

71
450

1
1

60«
2

1
30

lns

2]kŴil ] lVk 2
257
450

2
7

60«
1

7
30

lnr

149
225

1
2

15«
2

4
15

lnr 2
71

450
2

1
60«

1
1

30
lns

2
d21
d22

]kV] i R̂k

2681
900

1
19

30«
2

19
15

lnr

3791
900

1
53

60«
2

53
30

lnr 2
71

450
2

1
60«

1
1

30
lns

2
d(d21)
4(d22)2 Vk] iV]kV 2

53
100

2
1

10«
1

1
5

lnr 2
9
2

2
1
«

12 lnr 2
33

100
2

1
10«

1
1
5

lns

2
d(d21)2

8(d22)3 V] tV] iV 2
9
4

2
1

2«
1 lnr

43
25

1
2

5«
2

4
5 lnr

33
100

1
1

10«
2

1
5

lns

2
1

2Sd21

d22D
2

V]kV]kVi
0 0 0

1

2Sd21

d22DV]t
2Vi

2
9
2

2
1
«

12 lnr 2
9
2

2
1
«

12 lnr 0

2Vk]k] tVi 0 0 0

(d21)(d23)
(d22)2 ]kK] iVk

0 0 0

d(d21)(d23)
4(d22)3 ] tV] iK

0 0 0

d(d21)(d23)
4(d22)3 ] iV] tK

0 0 0

Total 2
69

100
2

3
10«

1
3
5

lnr 2
69

100
2

3
10«

1
3
5

lnr
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bulk metric, for the corresponding ‘‘bulk diagrams’’ wher
the special point marked by a cross in the diagrams ab
~denoting the coincidencex5y1) is detached from the firs
world-line to end at an arbitrary point in the bulk, as ind
cated in Fig. 6.

Evidently, in addition to such diagrams as Figs. 6a and
which will contain ~at least! a factor m2

3, there will exist
‘‘mirror diagrams,’’ containing a factorm1

3, and obtained by

FIG. 6. Some divergent diagrams for the bulk metric. He
contrary to the previous figures, the field point, labeled by anx, is
detached from the first world-line.
12400
ve

b

exchanging the labels 1 and 2. On the other hand, note
the bulk poles}m1

3 of the type of Figs. 6c and 6d do no
~necessarily! correspond to poles in the equations of moti
of y1 because their coincidence limitsx→y1 induce dia-
grams of the type of Fig. 3a or 4a containing four shrinki
propagators instead of three.~Although such diagrams would
exhibit worse divergences in dimensionful cutoff regulariz
tion schemes, they are generally non dangerous in dim
sional regularization because the integral*d31«x/r 1

4(11«) has
no pole as«→0.)

A careful analysis of the possible presence of poles in
various potentialsV,Vi , . . . ,T̂ we use to parametrize th
bulk metric ~aided by the structure of potentially dangero
terms sketched in Fig. 6! shows that, at the 3PN
approximation,26 such poles can be present only in the 1P
level expansion ofX̂ and in the Newtonian-level approxima

26That is at orderc28 in g00, c27 in g0i , andc26 in gi j .

,
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tion of T̂. Drawing on the results of@22# and @37# we can
also see that all velocity-dependent terms in the poles pre
in X̂1PN andT̂ ~i.e., the terms proportional tom1

3v1
2 or m2

3v2
2)

exactly cancel in the combination 4X̂/c4116T̂/c6 that mat-
ters for the bulk metric.@This shows up, for instance, in Eq
~7.1! of @22# which implies that the divergencies linked to th
second world-line, characterized by the presence of lns2, do
not depend on velocities. This shows up also in the abse
of poles in the velocity-dependent contributions toa1 propor-
tional to m2

3; see Eqs.~6.47c!, ~6.47d! below.# We are there-
fore left with evaluating the poles present in thestatic limit

(v1 ,v2→0) of X̂1PN andT̂. Clearly, from Fig. 6, the poles in
X̂1PN and T̂ will come only from cubically non-compac
~CNC! sources. Finally, as we are interested only in the p
part we can neglect thed dependence of the coefficients
the sources ofX̂ andT̂ ~which we indicate by using a symbo
.). Thus, these poles can only come from

X̂static
CNC5h21@] i j VŴi j

NC#

.h21@] i j Vh21~2] iV] jV!#, ~6.1a!

T̂static
CNC.h21F1

2
V2] t

2V1] i j VẐi j
NCG

.h21F1

2
V2] t

2V1] i j Vh21~22] iV] tVj !G .
~6.1b!

The static poles~involving factorsm1
3 or m2

3) in Eqs. ~6.1!
are then obtained by~1! considering sources involving thre
timesV1 or three timesV2 ~whereVa denotes the piece}ma
in V), ~2! evaluating the time derivatives in the static lim
using for instance

~] t
2Va!static52aa

j ] jVa , ~6.2!

and ~3! expanding up to the required accuracy the~time-
symmetric! propagators according to h215D21

1c22] t
2D221O(c24).

As an example among the simplest terms, let us cons
the m1

3 contribution coming from the first term on the RH
of Eq. ~6.1b!,

T̂
static(1)
m1

3

.
1

2
D21@V1

2] t
2V1#static

52
1

2
D21@V1

2a1
j ] jV1#52

1

6
a1

j ] jD
21@V1

3#.

~6.3!

Using V1 5 2„(d 2 2) / (d 2 1)…Gk̃m1r 1
22d 1 O(c22)

.Gm1r 1
212«1O(c22) and D21r 1

l5r 1
l12/@(l12)(l

1d)#, one finds that the pole part of Eq.~6.3! reads

T̂
static(1)
m1

3

.2
1

12«
G3m1

3a1
j ] j r 1

2123« . ~6.4!
12400
nt

ce

e

er

Similarly an analysis of the second source term in Eq.~6.1b!
yields

T̂
static(2)
m1

3

.
1

3«
G3m1

3a1
j ] j r 1

2123« , ~6.5!

so that the full~static! contribution ofT̂ is

T̂
static
m1

3

.
1

4«
G3m1

3a1
j ] j r 1

2123« . ~6.6!

The analysis of the pole part in the static limit ofX̂, Eq.
~6.1a!, is more intricate because one must expand to 1
accuracy bothVa.Gmar a

212«1(1/2c2)Gma] t
2r a

12« and the
propagatorh21. This yields

X̂
static
m1

3

.2
1

12«

G3

c2
m1

3a1
j ] j r 1

2123« . ~6.7!

Let us now consider the improvedV potential~2.10! that
makes up the essential part ofg00,

V[V2
2

c2
S d23

d22
DK1

4X̂

c4
1

16T̂

c6
.V1

4X̂

c4
1

16T̂

c6
,

~6.8!

such that g0052exp(22V/c2)@128ViVi /c6232RiVi /c8

1O(1/c10)#; see Eq.~2.11a!. Combining the results above
we find that the only 1/« poles in the bulk metric
gmn(x,y1 ,y2) show up ing00 at the 3PN level and are~when
expressed in terms of the improved potentialV, and after
cancellation ofma

3va
2/« terms betweenX̂ and T̂) of the fol-

lowing static form:

V~x,y1 ,y2!5V1
1

c2
V21

1

c4
V4

1
1

c6 FV681
11

3«
(

a
G3ma

3aa
j ] j r a

2123«G ,

~6.9!

where theV2 , V4 , V68’s are finite when«→0. To understand
better the structure of the result~6.9! let us introduce the
notation

za
i [1

11

3«

GN
2 ma

2

c6
aa

i , ~6.10!

whereGN is the 3-dimensional Newton constant andaa
i the

d-dimensional acceleration ofya
i . ~This definition ensures

that za
i has the physical dimension of a length.! In terms of

the definition~6.10!, the result~6.9! can be equivalently writ-
ten as
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V~x,y1 ,y2!5(
a

@Va~x2ya!1za
j ] jVa~x2ya!#

1
1

c2
V21

1

c4
V41

1

c6
V6 , ~6.11!

where the pole part is entirely contained in the terms prop
tional to z1

j andz2
j @V6 here differs fromV68 in Eq. ~6.9! by

some finite corrections when«→0]. The fact that poles ap
pear only inV, at orderc26, implies that there are no diver
gencies in the harmonic gauge conditions~2.13! in the bulk.
Indeed, Eq.~2.13a! needsV at order c24 only, and Eq.
~2.13b! at Newtonian order only.

B. Renormalization of poles by shifts of the world-lines

The result~6.11! indicates a simple way of renormalizin
away the poles present in the bulk metric. Indeed, the lo
up to now has been to describe in the simplest possible m
ner a gravitationally interacting two-particle system, para
etrized by the followingbareparameters:Gbare, m1

bare, m2
bare,

y1
bare, y2

bare, considered in everywhere harmonic coordinat
Gl[gabGab

l 50. In particular, the internal structure of eac
particle has been, up to now, entirely described by a mono
lar stress-energy distribution, i.e.,Ta

mn}ma
bared(x2ya

bare). In
other words, we have set to zero any higher multipolar str
ture. Equation~6.11! is most simply interpreted by sayin
that the non-linear interactions~see Fig. 6! dress each par
ticle by a cloud of gravitational energy which generates,
the 3PN order, a divergentdipole in the Newtonian-like po-
tential. Therefore, to get a net, finite bulk gravitational fie
we must endow each initial particle by an infinite, bare
pole, corresponding to a countertermDTa

mn}
2ma

bareza
j ] jd(x2ya), which will cancel the non-linearly

generated one~6.11!. An equivalent, but technically simple
way of endowing each particle by a bare structure able
cancel the dipolar pole terms in Eq.~6.11! is simply to say
that the centralbareworld-lines used in our derivations up t
now, henceforth denoted asya

bare, can be decomposed in
finite renormalizedpart ya

ren and a formally infinite shiftja

involving a pole}1/«,

ya
bare[ya

ren1ja , va
bare[va

ren1 j̇a . ~6.12!

The gravitational potential of two point particles@}d(x
2ya

bare)# is then

V~x,y1
bare,y2

bare!5(
a

@Va~x2ya
ren2ja!1za

j ] jVa~x2ya
ren

2ja!#1
1

c2
V2~x,ya

ren1ja!

1
1

c4
V4~x,ya

ren1ja!1
1

c6
V6~x,ya

ren1ja!.

~6.13!
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Assuming that the vectorja is of 3PN order @i.e., ja
5O(1/c6)], we can rewrite Eq.~6.13! as

V~x,y1
bare,y2

bare!5(
a

@Va~x2ya
ren!1~za

j 2ja
j !] jVa~x2ya

ren!#

1
1

c2
V2~x,ya

ren!1
1

c4
V4~x,ya

ren!

1
1

c6
V6~x,ya

ren!1OS 1

c8D , ~6.14!

which makes it clear that the potential will be finite~at 3PN
accuracy! when«→0 if we choose

ja5za1OS «0

c6D , ~6.15!

where byO(«0/c6) we mean a term finite when«→0 and of
the 3PN order. We shall henceforth refer toja in Eq. ~6.15!
as ashift of the ath world-line. The reasoning above show
that the introduction of such shifts, at the 3PN order a
having the pole structure~6.10!, is necessaryto renormalize
away the poles present in thebulk metric. It remains to show
that these shifts are alsosufficientto renormalize away the
poles present in theequations of motion.

The effect of 3PN-level shiftsja on the equations of mo
tion is easy to obtain. Indeed, the equations of motion
computed above concern the original,bareworld-linesya

bare.
For the first particle, they had the structure~in dimensional
regularization!

ÿ1
bare5a1

dr~y12
bare,v1

bare,v2
bare!

5aN1
dr ~y12

bare!1a1PN1
dr ~y12

bare,v1
bare,v2

bare!

1a2PN1
dr ~y12

bare,v1
bare,v2

bare!1a2.5PN1
dr ~y12

bare,v1
bare,v2

bare!

1a3PN1
dr ~y12

bare,v1
bare,v2

bare!, ~6.16!

where y12
bare[y1

bare2y2
bare. Here aN1

dr denotes the dimension
ally continued Newtonian-level acceleration,

aN1
i (dr)5] iV2~y12!5 f Gm2k̃] i r 12

22d , ~6.17!

where by a slight abuse of notation we set] i5]/]y12
i , where

G[GN,0
« denotes thed-dimensional gravitational constan

and where thed-dependent correcting factors

f [2
d22

d21
5

11«

11«/2
, k̃[

G„~d22!/2…

p (d22)/2
5

G„~11«!/2…

p (11«)/2
,

~6.18!

tend to 1 as«→0, but will play a significant role below.
When inserting the redefinitions~6.12! into ~6.16! one

easily finds that therenormalizedequations of motion, i.e.
the equations forya

ren, read@using onlyja5O(1/c6) at this
stage#
7-34
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ÿ1
ren5a1

ren~y12
ren,v1

ren,v2
ren!, ~6.19!

where

a1
ren~y12,v1 ,v2!5a1

dr~y12,v1 ,v2!1dja1~y12,v1 ,v2!

1OS 1

c8D , ~6.20!

with

dja1~y12,v1 ,v2!5~j1
j 2j2

j !] jaN1
dr ~y12!2 j̈1 . ~6.21!

Let us note that the effect on the equations of motion o
~3PN! shift of the world-lines, Eq.~6.21!, is technically iden-
tical to the effect on the equations of motion of the restrict
to the world-lines of a 3PN-level coordinate transformatio
sayxnew

i 5xi2e i(x,t) andtnew5t2c21e0(x,t). Indeed, a co-
ordinate transformation has two effects:~i! it changes the
bulk metric bydegmn(x)5Legmn(x), whereLe denotes the
Lie derivative alongem, and ~ii ! it induces a shift of the
world-linesya new

i 5ya
i 2ea

i 1c21ea
0va

i ~plus non-linear terms
in em), where we denote the coordinate change at the lo
tion of theath particle byea

i (t)[@e i(x,t)#x5ya
. Because of

the diffeomorphism invariance of the total action, the effe
~i! does not change the action,27 so that the net effect of a
coordinate transformation on the equations of motion
duces to the effect~6.21! of the following shift induced on
the world-lines:

ja
i 5ea

i 2c21ea
0va

i 1 non-linear terms. ~6.22!

The coordinate transformations considered in@22# @see Eq.
~6.11! there# were of the typeem(x)5c26]m((aka /r a),
where theka’s are some coefficients, so that we see that
latter induced shift reduces at the 3PN order to the~regular-
ization of the! purely spatial coordinate transformatio
evaluated on the world-line:

ja
i 5ea

i 1OS 1

c8D . ~6.23!

We have checked that the formula given by Eq.~6.15! in @22#
for the coordinate transformation of the acceleration of
particle 1 gives exactly the same result as the one comp
from the effect of the shift~6.21!. @The agreement extends t
d dimensions if we consider the straightforward extension
the latter coordinate transformationem to d dimensions,
namelyem(x)5c26]m((akak̃r a

22d).]
Note that the coordinate transformationsem(x) were con-

sidered in@22# only in terms of their effects, Eqs.~6.22!,
~6.23!, on the equations of motion. This was sufficient

27Actually, one should consider, as e.g. in@45#, a non-generally-
covariant gauge-fixed action. But the ‘‘double zero’’ nature of t

gauge-fixing term, say}A2ggmnGmGn, ensures that it does no
contribute to first order inem.
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prove, for instance, that the two constantsr 18 and r 28 in the
3PN equations of motion are not physical, because they
be gauged away in 3 dimensions and therefore will ne
appear in any physical result. However, we remark that
extension tod dimensions of the coordinate transformatio
em(x) of the bulk metric, sayem(x)5c26]m((akak̃r a

22d)
~with coefficientska}«21, as needed to remove the poles
the equations of motion!, does not lead to a bulk metric fre
of poles. Indeed, assumingka}«21, we see that the pole in
the spatial coordinate transformatione i(x) would then in-
duce a pole in the spatial components of the metric,degi j
5] ie j1] je i1•••, but this is inadmissible because we ha
proved above Eqs.~6.1! that, at 3PN order, only the time
time component of the bulk metric contained a pole. A bu
coordinate transformation of the type above can then rem
the poles in the time-time component of the bulk metric on
at the price of creating a pole in the initially pole-free spat
metric. We shall leave to future work a complete clarificati
of the possibility of using, within our dim. reg. context,
coordinate transformation to induce the shifts~6.15!. For the
time being, what is important is that our introduction abo
of shifts of the world-lines~a priori unconnected to any co
ordinate transformation! is a consistent way of renormalizin
away the poles in the metric, and that its effect on the eq
tions of motion, Eq.~6.21!, is identical to the transformation
of the acceleration obtained in Ref.@22#.

It remains now to show that the same world-line shi
~6.15! that renormalize away the poles in the bulk metric, E
~6.14!, do renormalize away also the poles present in
original bare equations of motion@see Eq.~5.24! for the
static contributions and Eq.~6.47! below for the kinetic
ones#. For this purpose let us consider a shift of the mo
general form

ja
i 5

e~d!

«

GN
2 ma

2

c6
aa

i , ~6.24!

where e(d) represents a certain numerical coefficient d
pending ond, and whereaa

i denotes thed-dimensional ac-
celeration ofya

i given by its Newtonian approximation~6.17!
~but, for notational simplicity, we henceforth drop the labelN
on such accelerations entering 3PN effects!. Inserting Eq.
~6.24! into Eq. ~6.21! yields ~for the indexa51)

dja1
i 5

e~d!

«

GN
2

c6
@~m1

22m2
2!a2

j ] ja1
i 2m1

2v12
jk] jka1

i #,

~6.25!

wherev12
j [v1

j 2v2
j andv12

jk[v12
j v12

k ~and also, as before,] j

[]/]y12
j ). Before further evaluating~6.25! by inserting the

explicit expression~6.17! for the acceleration, we shall con
sider some simple but important consequences of the st
ture ~6.25!.

C. Link to the general class of harmonic equations of motion

As recalled in the Introduction, previous work on the 3P
equations of motion inharmonic coordinateshas shown that
7-35
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these equations necessarily belonged to a three-param
class of equations of motion, say

ÿa
(d53)5aa

BF~y12,v1 ,v2 ;l,r 18 ,r 28!. ~6.26!

The dimensionless parameterl could not be determined b
the previous work in harmonic coordinates. However, co
parison with the work in ADM coordinates, has show
@20,25# that, if there were consistencybetween the two cal-
culations one should have the following link betweenl and
the corresponding ADM ‘‘static ambiguity’’ parametervs :

l52
3

11
vs2

1987

3080
. ~6.27!

If dimensional regularization is a fully consistent regulariz
tion scheme for classical perturbative gravity, we then exp
that the dim. reg. determination ofvs in ADM coordinates
@35#, namelyvs

dr ADM50, should lead to a dim. reg. direc
determination ofl ~in harmonic coordinates! of ldr harmonic

521987/3080. We will turn to this verification in a mo
ment.

The two other parameters, denoted abover 18 , r 28 , entering
the general ‘‘parametric’’ harmonic equations of motio
~6.26! have the dimension of length and have the characte
gauge parameters. Indeed, they can be chosen at will~except
that one cannot set them to zero! by the effect of shifts of the
world-line, induced for instance~but not necessarily; cf. a
discussion in Sec. VI B above! by some gauge transforma
tions. In the way they were originally introduced@22#, the
two parametersr 18 and r 28 can be interpreted as some infin
tesimal radial distances used as cutoffs when the field p
tends toward the two singularitiesy1 and y2 . Therefore in
principle lnr18 and lnr28 should initially be thought of as bein
~formally! infinite. However, it is trivial to show that by a
~formally infinite! gauge transformation, involving the loga
rithmic ratios ln(r19/r18) and ln(r29/r28), wherer 19 and r 29 denote
any two finite length scales, one can replacer 18 ,r 28 every-
where by the finite scalesr 19 ,r 29 . By this process it is there
fore possible to identify the two sets of scales and thereb
think of the scalesr 18 ,r 28 as being in fact finite, as was im
plicitly done in Ref.@22#. In the language of renormalizatio
theory, the original~infinitesimal! scalesr 18 andr 28 would be
referred to asHadamard-regularizationscales entering the
computation of divergent Poisson integrals~see Sec. III B
above!, while the~finite! scalesr 19 and r 29 would be referred
to as the arbitraryrenormalizationscales entering the fina
renormalized harmonic-coordinates equations of motion
the present paper, in order to remain close to the nota
used in@22#, we shall keep the notationr 18 andr 28 , but inter-
pret them as arbitrary finite constants, which means that
shall identify them with the finite renormalization lengt
scalesr 19 andr 29 . In other words, the scalesr 18 ,r 28 used in the
present section should in principle be distinguished from
scalesr 18 ,r 28 used in Sec. III B above.~Remember, in this
respect, that the regularization scalesr 18 , r 28 have disap-
peared when computing the dim. reg. equations of motio!
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With our notation, and still focusing on the static cont
butions to the equations of motion, the ‘‘parametric’’ equ
tions of motion~6.26! imply the following structure for the
static coefficientscmn :

c31
BF~l,r 18 ,r 28!5

44

3
lnS r 12

r 18
D 2

3187

1260
, ~6.28a!

c22
BF~l,r 18 ,r 28!5

34763

210
2

44

3
l2

41

16
p2, ~6.28b!

c13
BF~l,r 18 ,r 28!52

44

3
lnS r 12

r 28
D 1

10478

63
2

44

3
l2

41

16
p2.

~6.28c!

It will be convenient to replace the parameterl by the pa-
rametervs , using Eq.~6.27! as a defining one-to-one ma
betweenl and vs . With this change of notation the stati
coefficients become

c31
BF~vs ,r 18 ,r 28!5

44

3
lnS r 12

r 18
D 2

3187

1260
, ~6.29a!

c22
BF~vs ,r 18 ,r 28!517514vs2

41

16
p2, ~6.29b!

c13
BF~vs ,r 18 ,r 28!52

44

3
lnS r 12

r 28
D 1

110741

630
14vs2

41

16
p2.

~6.29c!

Note that there are two combinations of the three coefficie
cmn

BF which do not depend on lnr12, namely c22
BF , and the

combinationc31
BF1c13

BF , or even better the combination

c31
BF1c13

BF2c22
BF5

44

3
lnS r 28

r 18
D 2

7

4
, ~6.30!

which depends neither on lnr12 nor onvs ~or l), and which
contains, as forc22

BF , simpler looking rational numbers.
We now come back to the effect of the general shift~6.24!

on the dim. reg. equations of motion. Let us first focus on
static terms. We recall that the~dim. reg.! renormalizedequa-
tions of motion necessarily had the form~6.20!. By project-
ing the latter equation along the static termscmn , with m
1n54 @recalling Eq.~5.6!#, it will induce a result for the
renormalizedstatic coefficients of the form

cmn
ren5cmn

dr ~«!1dj(«)cmn , ~6.31!

where thedj(«)cmn’s are the static coefficients correspondin
to dj a1

i , Eq. ~6.21!. When choosingja
i («) of the form

~6.24!, we see from Eq.~6.25! thatdj cmn is simply obtained
by projecting the first term on the RHS of Eq.~6.25!. Re-
membering thata2}m1 and a1}m2 , we see that the latte
7-36
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term contains the factor (m1
22m2

2)m1m25m1
3m22m1m2

3.
Therefore, without doing any further calculation, we see t
the shiftsdjcmn have the special propertiesdj c2250 and
dj c311dj c1350. In other words, a shift of the world-line
of the type~6.24! leaves invariant bothc22 and the combina-
tion c311c13 ~as well therefore as the combinationc311c13
2c22 considered above!. As a consequence, we can compu
without effort from our previous regularized~but unrenor-
malized! dim. reg. results~5.24! the following two combina-
tions of thej i(«)-renormalizedstatic coefficients:

c22
ren5c22

dr51752
41

16
p2, ~6.32a!

c31
ren1c13

ren2c22
ren5c31

dr1c13
dr2c22

dr52
7

4
.

~6.32b!

By comparing Eq.~6.32a! with Eq. ~6.29b! we discover
that our present calculation using dimensional regulariza
in harmonic coordinates necessarily implies that

vs50⇔l52
1987

3080
. ~6.33!

This nicely confirms the previous determination ofvs by a
dim. reg. calculation in ADM-type coordinates@35#. We
think that our present harmonic-coordinates dim. reg. re
calculation is important in proving the consistency of dime
sional regularization, and thereby in confirming the physi
significance of the result~6.33!. A recent calculation@38,39#
has also independently confirmed the result~6.33! by means
of a completely different method based on surface integr
and aimed at describing compact~strongly gravitating! ob-
jects.

By comparing Eq.~6.32b! with Eq. ~6.30!, we further see
that

r 185r 28 @in the case of the dim. reg. shift~6.24!#.
~6.34!

Contrary to Eq.~6.33! which represents the determination
a physical parameter~having an invariant meaning!, the re-
sult ~6.34! has no invariant physical significance. Equati
~6.34! is simply a consequence of our particular choice
the shift vector~6.24!, in which we assumed thate(d) is a
purely numerical coefficient, independent of any propert
indexed by the particles’ labels 1 and 2. In summary
particular shift~6.24! yields some equations of motion whic
are physically equivalent to a subclass of the general eq
tions of motion considered in@22#, characterized by the con
straint ~6.34!.

Next we relate the common length scale~6.34! to the
basic length scale,0 entering dimensional regularization. T
do this we need to fully specify the value of the shift, i.e.,
choose a specific coefficiente(d)5e(3)1«e8(3)1O(«2)
in Eq. ~6.24!. We already know from Eq.~6.10! that the
coefficient e(d) in Eq. ~6.24! must tend to 11/3 whend
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→3, if the j shift is to remove the poles in the bulk metri
As in quantum field theory we could then define theminimal
subtraction~MS! shift as

jaMS
i [

11

3«

GN
2 ma

2

c6
~aa

i !d53. ~6.35!

However, as is well-known in QFT, such a MS subtracti
has the unpleasant feature of leaving some logarithms op
and the Euler constant in the renormalized results. Th
numbers come from the expansion of the Gamma func
and the associated dimension-dependent powers ofp enter-
ing the d-dimensional Green function. In our context, the
numbers showed up in Eq.~5.24! in the guise of the combi-
nation

ln~ q̄![ ln~4peC!5C1 ln~4p!. ~6.36!

As in QFT, this leads us to consider the followingmodified
minimal subtraction(MS) shift,

j
aMS

i
[

11

3«

GN
2 k̃2ma

2

c6
aa

i , ~6.37!

which differs from the MS shift~6.35! by the explicit factor
of k̃2 it contains, and by the use of thed-dimensional~New-
tonian! acceleration given by Eq.~6.17!. The inclusion of
two explicit powers ofk̃ in the coefficiente(d) entering Eq.
~6.24!, i.e. the definitioneMS(d)5 11

3 k̃2, means, when re-
membering thataa

i , Eq.~6.17!, contains one power ofk̃, that

the static terms in Eq.~6.25! will have four powers ofk̃ and
the kinetic terms three. The overall factork̃4 in the static
terms is natural because these terms are of orderG4 and the
x-space gravitational propagator ind dimensions always in-
cludes the combinationGk̃ux2x8u22d. Finally, using the fact
that the expansion ofk̃(d) neard53 reads

k̃~d![
G„~11«!/2…

p (11«)/2
512

1

2
« ln q̄1O~«2!, ~6.38!

it is easy to see that theMS shift defined by Eq.~6.37! will
cancel the lnq̄ in the bare dim. reg. results of Eq.~5.24!.
Finally, we find that the evaluation of Eq.~6.25! for the
specific MS shift, given by eMS(d)5 11

3 k̃2, yields for the
MS-renormalized static coefficients

c31
MS5

44

3
lnS r 12

,0
D2

35

36
, ~6.39a!

c22
MS51752

41

16
p2, ~6.39b!

c13
MS52

44

3
lnS r 12

,0
D1

1568

9
2

41

16
p2,

~6.39c!
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where the reader can note that the ln(r12
2 ) entering the bare

dim. reg. result~5.24! has been transformed into ln(r12/,0)
through the« expansion of the factorr 12

2522« present in
dja1

i .
We already discussed above the comparison of two sim

combinations of the dim. reg. results~6.39! with the
Hadamard-regularization results~6.28!. It is easy to see tha
the remaining independent combination, say Eq.~6.39a!, is
fully consistent with its counterpart Eq.~6.28a!, and allows
one to relate the basic renormalization length scale,0 enter-
ing dim. reg. to the common length scale~6.34! entering the
general equations of motion of@22#:

lnS r 18

,0
D 5 lnS r 28

,0
D 52

327

3080
~for theMS renormalization!.

~6.40!

Evidently, the precise values one gets forr 18 and r 28 depend
on the precise choice of the compensating shift.

Let us now remark that in fact one can recover exac
provided of course that the crucial result~6.33! holds, the
general ‘‘dissymmetric’’ class of equations of motion of@22#,
i.e., the general parametric result~6.28! or ~6.29! with r 18
Þr 28 . For this purpose it suffices to consider a slightly mo
general shift than the one assumed in theMS regularization;
namely, consider a shift of the same form as~6.24!, but in
which one allows thed-dependent coefficiente(d) to depend
on the label of the particle in question, that is

ja
i 5

ea~d!

«

GN
2 ma

2

c6
aa

i , ~6.41!

where nowe1(d) ande2(d) are allowed to be different from
each other. The most general way of parametrizing such
symmetricea(d) @however constrained byea(3)511/3] is

ea~d!5
11

3
k̃2@122«ra1O~«2!#, ~6.42!

with two independent numerical coefficientsra . It is then
easily checked that the shift~6.41! defined by the particula
choice

ra5 lnS r a8

,0
D 1

327

3080
~6.43!

transforms the dim. reg. equations of motion into the gen
(r a8-dependent! family of solutions obtained in@22#. If we
suppose that the constraints~6.40! hold, thenra50 and we
recover the shift assumed in theMS regularization. On the
other hand, note than one can reach even more gen
classes of renormalized harmonic equations of motion
dim. reg.~as one could have also done in Hadamard regu
ization!. Indeed, we could use the freedom indicated in E
~6.15! of addingarbitrary finite parts to the shifts. Anyway
the result that the shift~6.41!–~6.43! gives equivalence be
tween the dim. reg. and the extended Hadamard 3PN ac
erations~we check in Sec. VI D below that the kinetic term
12400
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work also! constitutes the main result of the present pa
~Theorem 2 in the Introduction!.

The two approaches we have discussed here are of co
equivalent: choosing some dim. reg. basic length scale,0
and some specific, simplifying dim. reg. shift~such as the
MS one!, and then determining the values of the scalesr a8 for
which the dim. reg. results match with the Hadamard r
ones; or arbitrarily choosing some Hadamard scalesr a8 and
then determining the corresponding general dissymme
dim. reg. shift ~6.41!–~6.43!, in terms of the chosenr a8’s.
What is important is that we have checked that thethree
renormalized dim. reg. static coefficients~5.24! are fully
compatible with thethreeextended Hadamard reg. static c
efficients ~6.28! or ~6.29!, and that their comparison yield
one and only onephysical result, namely:l52 1987

3080.

D. Kinetic terms and check of the consistency of dimensional
regularization

Up to now we have verified the following aspects of t
consistency of a dim. reg. treatment of the 3PN dynamics
two point particles:~1! consistency between the shift~6.10!
needed to renormalize the bulk metric and the shift~6.37! @or
~6.41!, ~6.42!# needed to renormalize the equations of m
tion; ~2! consistency between the three finite, renormaliz
dim. reg. static coefficients~6.39! and the general three
dimensional ones~6.28! @22#; and ~3! consistency between
the present dim. reg. value ofl and the previously derived
dim. reg. value ofvs in the ADM Hamiltonian@35#. It re-
mains, however, to check that the velocity-dependent te
in the renormalized dim. reg. equations of motion do ag
with their analogues in the harmonic-coordinates equati
of motion of @22#. This will in particular prove that the dim
reg. equations of motion are Lorentz invariant.

In the notation of Eq.~5.6! above, we need to consider th
values of the velocity-dependent coefficientsc21(v1 ,v2 ,n12),
c218 (v1 ,v2 ,n12), c219 (v1 ,v2 ,n12), c03(v1 ,v2 ,n12),
c038 (v1 ,v2 ,n12), andc039 (v1 ,v2 ,n12). In Ref. @22#, they were
shown to take the following parametric forms, which act
ally depend only on the regularization scaler 18 but not onr 28
or l:

c21
BF~r 18!5222@v12

2 25~n12v12!
2# lnS r 12

r 18
D 1

48197

840
v1

2

2
36227

420
~v1v2!1

36227

840
v2

22
45887

168
~n12v1!2

1
24025

42
~n12v1!~n12v2!2

10469

42
~n12v2!2,

~6.44a!

c821
BF~r 18!5c921

BF~r 18!

5244~n12v12!lnS r 12

r 18
D 1

31397

420
~n12v1!

2
36227

420
~n12v2!, ~6.44b!
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c03
BF518~v1v2!29v2

22~n12v1!212~n12v1!~n12v2!

1
43

2
~n12v2!2, ~6.44c!

c803
BF5c903

BF54~n12v1!15~n12v2!. ~6.44d!

As explained in Eq.~5.1!, the dim. reg. expressions o
these coefficients can be computed as the sum of p
Hadamard-Schwartz contributions,cmn

pHS and c8mn
pHS, and the

‘‘dr 2pHS’’ differences,Dcmn , Dcmn8 . The calculation of the
pHS contributions has been explained in Sec. III D abo
and we get the following results from Eqs.~3.55! and~6.44!:

c21
pHS5222@v12

2 25~n12v12!
2# lnS r 12

r 18
D 1

10639

168
v1

2

2
5879

60
~v1v2!1

5843

120
v2

22
50885

168
~n12v1!2

1
1892

3
~n12v1!~n12v2!2

3325

12
~n12v2!2,

~6.45a!

c821
pHS5244~n12v12!lnS r 12

r 18
D 1

7279

84
~n12v1!

2
5879

60
~n12v2!, ~6.45b!

c921
pHS5244~n12v12!lnS r 12

r 18
D 1

5189

60
~n12v1!

2
5843

60
~n12v2!, ~6.45c!

c03
pHS518~v1v2!2

64

7
v2

22~n12v1!212~n12v1!~n12v2!

1
311

14
~n12v2!2, ~6.45d!

c803
pHS54~n12v1!15~n12v2!, ~6.45e!

c903
pHS54~n12v1!1

37

7
~n12v2!. ~6.45f!

Secondly, the method explained in Secs. IV B and V C
computing the differencesDaa is found~after doing calcula-
tions similar to those reported in the tables of ‘‘static’’ co
tributions above! to lead to
12400
re

,

r

Dc215F11

«
2

33

2
ln~ q̄r 81

4/3r 12
2/3!G@v12

2 25~n12v12!
2#1

499

42
v1

2

2
359

15
~v1v2!1

184

15
v2

22
2957

42
~n12v1!2

1
425

3
~n12v1!~n12v2!2

217

3
~n12v2!21O~«!,

~6.46a!

Dc218 5F22

«
233 ln~ q̄r 81

4/3r 12
2/3!G~n12v12!1

499

21
~n12v1!

2
359

15
~n12v2!1O~«!, ~6.46b!

Dc219 5F22

«
233 ln~ q̄r 81

4/3r 12
2/3!G~n12v12!1

359

15
~n12v1!

2
368

15
~n12v2!1O~«!, ~6.46c!

Dc035
1

7
v2

22
5

7
~n12v2!2, ~6.46d!

Dc038 50, ~6.46e!

Dc039 52
2

7
~n12v2!. ~6.46f!

Together with Eqs.~5.23! above, these equations give the fu
difference between the dimensionally regularized and
pure Hadamard accelerations, and they constitute the m
new input of the present work. The bare dim. reg. resu
cmn

dr 5cmn
pHS1Dcmn , read therefore

c21
dr5F11

«
2

33

2
ln~ q̄r 12

2 !G@v12
2 25~n12v12!

2#1
1805

24
v1

2

2
1463

12
~v1v2!1

1463

24
v2

22
8959

24
~n12v1!2

1
2317

3
~n12v1!~n12v2!2

4193

12
~n12v2!2, ~6.47a!

c821
dr5c921

dr5F22

«
233 ln~ q̄r 12

2 !G~n12v12!

1
1325

12
~n12v1!2

1463

12
~n12v2!, ~6.47b!

c03
dr518~v1v2!29v2

22~n12v1!212~n12v1!~n12v2!

1
43

2
~n12v2!2, ~6.47c!

c803
dr5c903

dr54~n12v1!15~n12v2!. ~6.47d!
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Note that in the final result the equality betweencmn8 and
cmn9 , i.e., betweenB8 andB9 in Eq. ~5.3!, is recovered. The
bare dim. reg. kinetic coefficients~6.47! contain poles}1/«
but do not depend any longer on the arbitrary Hadam
regularization scaler 18 which appeared in Eq.~6.45!. As in
the case discussed above of the static coefficients the p
ous kinetic coefficients do not involve any adimensionaliz
length scales in the logarithms ofr 12 they contain. This is
consistent with the fact that it is the combinations,0

3«cmn
dr

and ,0
3«c8mn

dr which have the same physical dimension
their d53 counterparts.

Finally, given a specific choice of shift, say theMS one,
Eq. ~6.37!, therenormalizedkinetic coefficients are obtaine
by adding to Eq.~6.47! the velocity-dependent part of th
effect of the shift, i.e., the second term on the RHS of E
~6.25! @with, say,eMS(d)5(11/3)k̃2]. Our final (MS) results
for the renormalized kinetic coefficients are found to be

c21
MS5222@v12

2 25~n12v12!
2# lnS r 12

,0
D1

1321

24
v1

2

2
979

12
~v1v2!1

979

24
v2

22
6275

24
~n12v1!2

1
1646

3
~n12v1!~n12v2!2

2851

12
~n12v2!2, ~6.48a!

c821
MS5c921

MS

5244~n12v12!lnS r 12

,0
D1

841

12
~n12v1!2

979

12
~n12v2!,

~6.48b!

c03
MS518~v1v2!29v2

22~n12v1!212~n12v1!~n12v2!

1
43

2
~n12v2!2, ~6.48c!

c803
MS5c903

MS54~n12v1!15~n12v2!. ~6.48d!

When comparing these results with the ones of Ref.@22#,
Eqs.~6.44! above, one remarkably finds that our previous
derived link ~6.40! is necessary and sufficient for ensurin
the full compatibility between the renormalized dim. re
results and the corresponding Hadamard reg. ones. Note
the rational coefficients entering the dim. reg. results are
ten simpler than the coefficients entering the equations
motion of @22#.

The results Eq.~6.48! complete our check of the full con
sistency of the dim. reg. evaluation of the 3PN equations
motion, and the proof of Theorems 1 and 2 stated in
Introduction.

VII. CONCLUSIONS

We have used dimensional regularization~i.e. analytic
continuation in the spatial dimensiond) to determine the
12400
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spacetime metric and the equations of motion inharmonic
coordinates, of two, gravitationally interacting, point masse
at the third post-Newtonian order of general relativity. O
starting point consisted in writing the 3PN-accurate me
gmn(x) in terms of a certain number of ‘‘elementary pote

tials’’ V,Vi ,Ŵi j , . . . , satisfying a hierarchy of inhomoge
neous d’Alembert equations of the form
h(potential)5source. The sources of the latter equatio
contain both ‘‘compact’’ terms, i.e., in the present casecon-

tact terms of the formF@V(x),Vi(x),Ŵi j (x), . . . #d (d)(x
2y1), and nonlinearly generated ‘‘non compact’’ terms
the typical form, say,](potential)](potential). This repre-
sentation of the 3PN metric, as well as the associated it
tive way of solving for the potentials@using the time-
symmetric Green’s function h215D211c22D22] t

2

1O(c24)] is a direct generalization of the one used in R
@22#. However, it has been crucial for our work to determi
~in Sec. II! the dependence upon the dimensiond of the
coefficients appearing in this representation, as well as thd
dependence of the kernels expressing the operatorsD21 and
D22 in x space.

By studying the structure of the iterative solution for th
metric, and that of the corresponding EOM~which are con-
veniently pictured by means of diagrams; see Figs. 1–8!, we
determined, in the form of a Laurent expansion in«[d
23, the pole part of the metricgmn(x), and the pole and
finite parts of the EOM, namelyaa5Aa(yb ,vb) wherea,b
51,2 andvb[dyb /dt. @See, however, Appendix C where th
basic quadratically non-linear kernelg(x,y1 ,y2) is computed
in any d dimensions, not necessarily close to 3.# Our calcu-
lations relied heavily on previous work ind53 @22#, and
were technically implemented in two steps~at least for the
determination of the EOM, which are more delicate; the d
termination of the pole part of the metric uses only the s
ond step!.

~i! The first step consisted of subtracting from the fin
published results for the EOM@22#, seven contributions tha
were specific consequences of the use of an extension o
Hadamard regularization method@23,24# ~which included an
extension of the Schwartz notion of distributional deriv
tive!. The result of this first step is referred to as the ‘‘pu
Hadamard-Schwartz’’ evaluation of the EOM.

~ii ! The second step was the evaluation of thedifference
between the dimensional regularization of each contribut
to the EOM~written in terms of the iterative solutions for th
various potentialsV,Vi ,Ŵi j , . . . ), and thecorresponding
‘‘pure Hadamard-Schwartz’’ contribution obtained in the fir
step. This difference is obtained, similarly to the meth
used in@35#, by splitting thed-dimensional integral into sev
eral pieces, and by carefully analyzing the terms due to
neighborhoods of the two singular pointsy1 ,y2 ~including
possibled-dimensional distributional contributions!.

Concerning the ‘‘bulk’’ metricgmn(x), at a field point
away from the singular particle world-linesya(t), we de-
rived only the pole part, that is the coefficient of 1/« in the
Laurent expansion ofgmn(x;«). We found that at the 3PN
order, only the time-time component of the metricg00(x)
contained a pole@see Eq.~6.9!#. For the EOM we derived
7-40
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both the pole part and the finite part, i.e.aa;«211«0

1O(«). The parts of the EOM for which the regularizatio
was delicate are given by the nine coefficientsc31, . . . ,c039
defined in Eq.~5.6!. Our complete results for the dimensio
ally regularized values of these nine ‘‘delicate’’ coefficien
are given in Eqs.~5.24! and ~6.47!.

We proved that the pole parts of both the metric and
EOM can be ‘‘renormalized away’’ by suitableshifts of the
world-linesof the formya

bare5ya
ren1ja(«), whereya

bare is the
original world-line on which are initially concentrated th
d-function sources representing the point masses, where
shifts ja(«);«211«01O(«) are of the 3PN order, and
where the EOM of the renormalized world-lineya

ren is finite
as «→0. The general form of the needed shifts is given
Eq. ~6.15! with ~6.10!. The renormalized EOM correspond
ing to the ‘‘modified minimal subtraction’’ scheme~6.37! are
given by Eqs.~6.39! and ~6.48!.

The finite renormalized 3PN-accurate EOM obtained
using the general~two-parameter! renormalization shift
~6.41!–~6.43! were shown to beequivalentto the final~three-
parameter! EOM of @22# if and only if the Hadamard-
undetermined dimensionless parameterl which entered the
latter equations takes the unique valuel52 1987

3080. This value
is in agreement with the result of a previous dimension
regularization determination of the Arnowitt-Deser-Misn
Hamiltonian ~in ADM-like coordinates! @35#, which led to
the unique determination of the ADM analogue ofl, namely
vs50. The value forl or vs is also in agreement with recen
work @38,39# which derived the 3PN equations of motion
harmonic gauge using a surface-integral approach. Our re
provides an important check of the consistency of dim
sional regularization because our calculations are very dif
ent from the ones of@35#; notably we use a different coord
nate system and a different method for iterating Einste
field equations. However, the applicability of our general a
proach to higher post-Newtonian orders remains unexplo

Finally, the present work opens the way to a dimension
regularization determination of the several unknown dim
sionless parameters that were shown to enter the Hada
regularization of the 3PN binary’s energy flux~in harmonic
coordinates! @27,28#. The completion of the 3PN energy flu
is urgent in view of its importance in determining the gra
tational waveforms emitted by inspiralling black hole bin
ries, which are primary targets for the international netwo
of interferometric gravitational wave detectors LIGO
VIRGO/GEO.

ACKNOWLEDGMENTS

Most of the algebraic calculations reported in this pa
were done with the help of the softwareMATHEMATICA . T.D.
would like to thank the Kavli Institute for Theoretical Phy
ics for hospitality~under the partial support of the Nation
Science Foundation Grant No. PHY99-07949! while this
work was completed.

APPENDIX A: THE d-DIMENSIONAL METRIC AND
GEODESIC EQUATION

We give in this appendix several expanded express
which are too lengthy to be included in the body of t
12400
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article. The expanded form of the metric~2.11! is easier to
compare with the literature, and notably with Eqs.~3.24! of
Ref. @22#:

g005211
2

c2
V2

2

c4
FV212S d23

d22
DKG

1
8

c6
F X̂1ViVi1

1

6
V31S d23

d22
DVKG

1
32

c8
F T̂2

1

2
VX̂1R̂iVi2

1

2
VViVi2

1

48
V4

1
1

4
S d23

d22
DKV22

1

4
S d23

d22
D 2

K2G1OS 1

c10D , ~A1a!

g0i52
4

c3
Vi2

8

c5
F R̂i2

1

2
S d23

d22
DVVi G

2
16

c7 F Ŷi1
1

2
Ŵi j Vj1

1

4 S 11
1

~d22!2D V2Vi

2
1

2
S d23

d22
DVR̂i1

1

2
S d23

d22
D 2

KViG1OS 1

c9D ,

~A1b!

gi j 5d i j H 11
2

~d22!c2
V1

2

~d22!2c4
@V222~d23!K#

1
8

c6 F X̂

d22
1

VkVk

d22
1

V3

6~d22!3
2

~d23!

~d22!3
VKG J

1
4

c4
Ŵi j 1

16

c6
F Ẑi j 1

VŴi j

2~d22!
2ViVj G1OS 1

c8D .

~A1c!

The inverse metric is such thatgmngnr5dm
r in d11 space-

time dimensions. In terms of the modified Newtonian pote
tial V defined in Eq.~2.10! above, it reads

g0052e2V/c2S 12
8ViVi

c6
2

32R̂iVi

c8 D 1OS 1

c10D ,

~A2a!

g0i52e(d23)V/(d22)c2H 4Vi

c3 F11
1

2 S d21

d22

V

c2D 2G
1

8R̂i

c5
1

16

c7
F Ŷi2

1

2
Ŵi j Vj G J 1OS 1

c9D , ~A2b!
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gi j 5e2 2V/(d22)c2

3H d i j 2
4

c4
Ŵi j 2

16

c6
F Ẑi j 1

1

2~d22!
d i j VkVkG J

1OS 1

c8D . ~A2c!

Note the change of signs in the exponentials@with respect to
the covariant metric~2.11!#, in front of Ŵi j Vj in Eq. ~A2b!,
as well as for theO(1/c4) andO(1/c6) terms in Eq.~A2c!.
Note also that theViVj contribution togi j has disappeared in
the inverse spatial metricgi j . The full post-Newtonian ex-
pansion of this inverse metric reads

g005212
2

c2
V2

2

c4
FV222S d23

d22
DKG

2
8

c6
F X̂2ViVi1

V3

6
2S d23

d22
DVKG

2
32

c8
F T̂1

1

2
VX̂2R̂iVi2

1

2
VViVi1

V4

48

2
1

4
S d23

d22
DKV21

1

4
S d23

d22
D 2

K2G1OS 1

c10D ,

~A3a!

g0i52
4

c3
Vi2

8

c5
F R̂i1

1

2
S d23

d22
DVVi G

2
16

c7 F Ŷi2
1

2
Ŵi j Vj1

1

4 S 11
1

~d22!2D V2Vi

1
1

2
S d23

d22
DVR̂i2

1

2
S d23

d22
D 2

KViG1OS 1

c9D ,

~A3b!
12400
gi j 5d i j H 12
2

~d22!

V

c2
1

2

~d22!2c4
@V212~d23!K#

2
8

c6 F X̂

d22
1

VkVk

d22
1

V3

6~d22!3
1

d23

~d22!3
VKG J

2
4

c4
Ŵi j 2

16

c6
F Ẑi j 2

1

2~d22!
VŴi j G1OS 1

c8D .

~A3c!

The determinantg[detgmn of the metric is a useful quan
tity, notably to compute the ‘‘gothic’’ metric gmn

[A2ggmn, which is the natural variable when using th
harmonic-coordinate system. The simplest way to compu
is to use the exponential form~2.11! of the metric, and to
perform a cofactor expansion across both the first line
the first column:

detgmn5g00detgi j 2 (
k51

d

(
l 51

d

~2 !k1 lg0kg0ldet~giÞk jÞ l !.

~A4!

Sincegi j 5exp@2V/(d22)c2#3@d i j 1O(1/c4)#, the determi-
nant of the (d21)3(d21) matrix giÞk jÞ l reads

det~giÞk jÞ l !5e2(d21)V/(d22)c2
det~d iÞk jÞ l !1O~1/c4!

5e2(d21)V/(d22)c2
dkl1O~1/c4!. ~A5!

Therefore, the determinant of the full metric is given by

g[detgmn5g00detgi j 2e2(d21)V/(d22)c2
~g0i !

21OS 1

c10D ,

~A6!

where we have used the fact thatg0i5O(1/c3). Note that
this formula suffices to computeg up to orderO(1/c8) in-
cluded if one knows the spatial metricgi j up to this same
order. At the 3PN order, we get easily
to
g52e4V/(d22)c2H S 12
8

c6
ViVi D detF d i j 1

4

c4
Ŵi j 1

16

c6
S Ẑi j 2ViVj1

1

2~d22!
d i j VkVkD G1

16

c6
ViViJ 1OS 1

c8D
52e4V/(d22)c2F11

4

c4
Ŵ1

16

c6
S Ẑ1

1

d22
ViVi D G1OS 1

c8D , ~A7!

where we used the expansion det(11M )511Tr M1O(M2), valid for any matrixM whose entries are small with respect
1. We can now compute the square root of this determinant, and give its full post-Newtonian expansion:
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A2g5e2V/(d22)c2F11
2

c4
Ŵ1

8

c6
S Ẑ1

1

d22
ViVi D G1OS 1

c8D ~A8a!

511
2

~d22!

V

c2
1

2

c4 F Ŵ1
V2

~d22!2
2

2~d23!

~d22!2
KG

1
8

c6 F Ẑ1
ViVi

d22
1

X̂

d22
1

VŴ

2~d22!
1

V3

6~d22!3
2

d23

~d22!3
VKG1OS 1

c8D . ~A8b!

The gothic metricgmn[A2ggmn can now be written easily by combining Eqs.~A2! or ~A3! with Eqs.~A8a! or ~A8b!. We
shall not display here the explicit results, since they were not directly useful for the present article. Let us however q
expression of the Ricci tensor in terms of the gothic metric, ind11 space-time dimensions and in any gauge:

2Rmn52gmagab
,bn2gnagab

,bm1S gmagnb2
1

d21
gmngabD ~ggdgab

,gd2ggdg
«zgag

,«g
bd

,z1gab
,gg

gd
,d!2

1

2
gabggdS gag

,mgbd
,n

2
1

d21
gab

,mggd
,nD2gmagnbgag

,dg
bd

,g1gab~gmgg
bd

,n1gngg
bd

,m!gag
,d . ~A9!

As usual, a comma denotes partial derivation, andgmn[gmn /A2g is the inverse ofgmn. In terms of the gothic metric, the
harmonic gauge condition~2.1! takes a particularly simple form:

gma
,a52A2ggabGab

l 50. ~A10!

This is the reason why this gothic metric can be useful to write the field equations. Note that several terms of Eq.~A9! vanish
in this gauge, namely the first two~involving second derivatives! and those proportional toggd

,d in the third term. Neverthe-
less, this expression forRmn is slightly more complicated than the one we used in Sec. II above, Eq.~2.2!, which does not
depend explicitly on the spatial dimensiond. It should be noted that many equations given in the book@46# are erroneous when
dÞ3 ~i.e., whend115nÞ4, in this book’s notation!, including Eq.~I,14,30! in @46# which gives the Ricci tensor in terms o
the gothic metric.

Let us end this appendix by displaying the full expansion of the geodesic equation~2.19!, or more precisely of the vector
Pi andFi , quickly illustrated in Eqs.~2.22!. The following expressions ared-dimensional generalizations of Eqs.~3.35! of Ref.
@22#, and we keep the same writing and order of the terms to ease the comparison. The ‘‘linear momentum’’Pi reads

Pi5v i1
1

c2
S 1

2
v2v i1

d

d22
Vv i24Vi D

1
1

c4 F3

8
v4v i1

3d22

2~d22!
Vv2v i24Vjv

iv j22Viv
21

d2

2~d22!2
V2v i2

4

d22
VVi14Ŵi j v

j28R̂i2
2d~d23!

~d22!2
Kv iG

1
1

c6 F 5

16
v6v i1

3~5d24!

8~d22!
Vv4v i2

3

2
Viv

426Vjv
iv jv21

~3d22!2

4~d22!2
V2v2v i12Ŵi j v

jv212Ŵjkv iv jvk

2
2~2d21!

d22
VViv

22
4~2d21!

d22
VVjv

iv j24R̂iv
228R̂jv

iv j1
d3

6~d22!3
V3v i1

4d

d22
VjVjv

i1
4d

d22
Ŵi j Vv j

1
4d

d22
X̂v i116Ẑi j v

j22
d~d22!12

~d22!2
V2Vi28Ŵi j V

j2
8

d22
VR̂i216Ŷi2

~3d22!~d23!

~d22!2
Kv2v i

2
2d2~d23!

~d22!3
KVv i1

8~d23!

~d22!2
KViG1OS 1

c8D . ~A11!

This d-dimensional expression actually allows us to understand better some of the numerical coefficients found ford53 in
124007-43
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Ref. @22#. For instance, we find that a factor 33 comes from the expression 3(5d24), and that a factor 49 comes from
(3d22)2. The full post-Newtonian expansion of the ‘‘force’’Fi is given by an even longer formula:

Fi5] iV1
1

c2
F2V] iV1

d

2~d22!
] iVv224] iVjv

j22S d23

d22
D ] iKG

1
1

c4 F 3d22

8~d22!
] iVv422] iVjv

jv21
d2

2~d22!2
V] iVv212] i Ŵjkv jvk2

4

d22
~Vj] iVv j1V] iVjv

j !

28] i R̂jv
j1

1

2
V2] iV18Vj] iVj14] i X̂12S d23

d22
D ~K] iV1V] iK !2

d~d23!

~d22!2
] iKv2G

1
1

c6 F 1

16
S 5d24

d22
D v6] iV2

3

2
] iVjv

jv41
1

8
S 3d22

d22
D 2

V] iVv41] i Ŵjkv2v jvk22S 2d21

d22
DVj] iVv2v j

22S 2d21

d22
DV] iVjv

2v j24] i R̂jv
2v j1

1

4
S d

d22
D 3

V2] iVv21
4d

d22
Vj] iVjv

2

1
2d

d22
Ŵjk] iVv jvk1

2d

d22
V] i Ŵjkv jvk1

2d

d22
] i X̂v218] i Ẑ jkv jvk24

d~d22!12

~d22!2
VjV] iVv j

22
d~d22!12

~d22!2
V2] iVjv

j28Vk] i Ŵjkv j28Ŵjk] iVkv
j2

8

d22
R̂j] iVv j2

8

d22
V] i R̂jv

j216] i Ŷjv
j

2
1

6
V3] iV24VjVj] iV116R̂j] iVj116Vj] i R̂j28VVj] iVj24X̂] iV24V] i X̂116] i T̂2

d2~d23!

~d22!3
K] iVv2

22S d23

d22
DKV] iV1

8~d23!

~d22!2
K] iVjv

j2
~3d22!~d23!

4~d22!2
] iKv42

d2~d23!

~d22!3
] iKVv22

d23

d22
V2] iK

1
8~d23!

~d22!2
] iKVjv
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d22
D 2
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c8D . ~A12!
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APPENDIX B: USEFUL FORMULAS IN d DIMENSIONS

This appendix is intended to provide a compendium
~mostly well-known! formulas for working in a space withd
dimensions. As usual, though we shall motivate some form
las below by writing some intermediate expressions wh
make complete sense only whend is a strictly positive inte-
ger, our final formulas are to be interpreted, by comp
analytic continuation, for a general complex dimensiond
PC. Actually one of the main sources of the power of d
mensional regularization is its ability to prove many resu
by invoking complex analytic continuation ind.

We discuss first the volume of the sphere havingd21
dimensions~i.e., embedded into Euclideand-dimensional
space!. We separate out the infinitesimal volume element id
dimensions into radial and angular parts,

ddx5r d21drdVd21 , ~B1!
12400
f

-
h

x

s

wherer 5uxu denotes the radial variable~i.e., the Euclidean
norm of xPRd) and dVd21 is the infinitesimal solid angle
sustained by the unit sphere with (d21)-dimensional sur-
face. To compute the volume of the sphere,Vd21
5*dVd21 , one notices that the followingd-dimensional in-
tegral can be computed both in Cartesian coordinates, w
it reduces simply to a Gaussian integral, and also, using
~B1!, in spherical coordinates:

E ddxe2r 2
5S E dxe2x2D d

5pd/25Vd21E
0

1`

drr d21e2r 2

5
1

2
Vd21GS d

2D , ~B2!

whereG in the last equation denotes the Eulerian functio
This leads to the well known result
7-44



-
o

s

fin
e

ex

ri-

bu
y

t
-

-

e

s-
te

f
-

ion.

-

DIMENSIONAL REGULARIZATION OF THE THIRD . . . PHYSICAL REVIEW D69, 124007 ~2004!
Vd215
2pd/2

G~d/2!
. ~B3!

For instance one recovers the standard resultsV254p and
V152p, but alsoV052, which can be interpreted by re
marking that the sphere with 0 dimension is actually made
two points. If we parametrize the sphereVd21 in d21 di-
mensions by means ofd21 spherical coordinate
ud21 ,ud22 , . . . , which are such that the sphereVd22 in d
22 dimensions is then parametrized byud22 ,ud23 , . . . ,
and so on for the lower-dimensional spheres, then we
that the differential volume elements on each of the succ
sive spheres obey the recursive relation

dVd215~sinud21!d22dud21dVd22 . ~B4!

Note that this implies

Vd21

Vd22
5E

0

p

dud21~sinud21!d225E
21

11

dx~12x2!(d23)/2,

~B5!

which can also be checked directly by using the explicit
pression~B3!.

Next we consider the Dirac delta functiond (d)(x) in d
dimensions, which is formally defined, as in ordinary dist
bution theory@36#, by the following linear form acting on the
setD of smooth functionsPC`(Rd) with compact support:
; wPD,

^d (d),w&[E ddxd (d)~x!w~x!5w~0!, ~B6!

where the angular brackets refer to the action of a distri
tion onwPD. Let us now check that the function defined b

u5 k̃r 22d, ~B7a!

k̃5
G„~d22!/2…

p (d22)/2
~B7b!

@wherer is the radial coordinate ind dimensions, such tha
r 25( i 51

d (xi)2] is the ‘‘Green function’’ of the Poisson op
erator, namely that it obeys the distributional equation

Du524pd (d)~x!. ~B8!

For anyaPC we haveDr a5a(a1d22)r a22; thus we see
that Du50 in the sense of functions. Let us formally com
pute its value in the sense of distributions inx space.@The
usual verification of Eq.~B8! is done in Fourier space.# We
apply the distributionDu on some test functionwPD, use
12400
f

d
s-

-

-

the definition of the distributional derivative to shift th
Laplace operator fromu to w, compute the value of the
d-dimensional integral by removing a ball of small radiuss
surrounding the origin@say B(s)], apply the fact thatDu
50 in the exterior ofB(s), use the Gauss theorem to tran
form the result into a surface integral, and finally compu
that integral by inserting the Taylor expansion ofw around
the origin. The proof of Eq.~B8! is thus summarized in the
following steps:

^Du,w&5^u,Dw&

5 lim
s→0

E
Rd\B(s)

ddxuDw

5 lim
s→0

E
Rd\B(s)

ddx] i@u] iw2] iuw#

5 lim
s→0

E sd21dVd21~2ni !@u] iw2] iuw#

5 lim
s→0

E sd21dVd21~2ni !@2 k̃~22d!s12dniw~0!#

5Vd21k̃~22d!w~0!

524pw~0!. ~B9!

In the last step we used the relation betweenk̃ and the vol-
ume of the sphere, which is

k̃Vd215
4p

d22
. ~B10!

From u5 k̃r 22d one can next find the solutionv satisfying
the equationDv5u ~in a distributional sense!, namely

v5
k̃r 42d

2~42d!
. ~B11!

From Eq.~B11! we can then define a whole ‘‘hierarchy’’ o
higher-order functionsw, . . . satisfying the Poisson equa
tions Dw5v, . . . in a distributional sense.

However, the latter hierarchy of functionsu,v, . . . is bet-
ter displayed using some different, more systematic notat
This leads to the famous Riesz kernels, here denotedda

(d) , in
d-dimensional Euclidean space@29#. ~These Euclidean ker
nels differ from the Minkowski kernelsZA

(d) , also introduced
by Riesz, and alluded to in the Introduction.! These kernels
depend on a complex parameteraPC. They are defined by

da
(d)~x!5Kar a2d, ~B12a!
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Ka5
G„~d2a!/2…

2apd/2G~a/2!
. ~B12b!

For any aPC, and also for anydPC, the Riesz kernels
satisfy the recursive relations

Dda12
(d) 52da

(d) . ~B13!

Furthermore, they obey also an interesting convolution re
tion, which reads simply, with the chosen normalization
the coefficientsKa , as

da
(d)* db

(d)5da1b
(d) . ~B14!

When a50 we recover the Dirac distribution ind dimen-
sions, d0

(d)5K0r 2d5d (d) ~the coefficient vanishes in thi
case,K050), and we haveu54pd2

(d) , v524pd4
(d) , . . . .

The convolution relation~B14! is nothing but an elegan
formulation of the Riesz formula ind dimensions. To check
it let us consider the Fourier transform ofr a in d dimensions,

f̃ a~k![E ddxuxuae2 ik•x. ~B15!

Using Eq.~B1! we can rewrite it as

f̃ a~k!5E
0

1`

drr a1d21E dVd21e2 ik•x, ~B16!
lti
ut

o

a
t

12400
-
f

in which the angular integration can be performed as an
plication of Eq.~B4!. This yields an expression depending o
the usual Bessel function,28

E dVd21e2 ik•x

5Vd22E
0

p

dud21~sinud21!d22e2 ikr cosud21

5~2p!d/2~kr !12d/2Jd/221~kr !, ~B17!

where k[uku. The radial integration in Eq.~B16! is then
readily done using the previous expression, and we obta

f̃ a~k!52a1dpd/2
G~~a1d!/2!

G~2a/2!
k2a2d, ~B18!

where the factor in front of the powerk2a2d, say Aa , is
checked from the Parseval theorem for the inverse Fou
transform, which necessitates thatAaA2a2d5(2p)d. Fi-
nally we can check the Riesz formula by going to the Four
domain, using the previous relations. The result,
E ddxr 1
ar 2

b5pd/2
G~~a1d!/2!G~~b1d!/2!G~2~a1b1d!/2!

G~2a/2!G~2b/2!G~~a1b12d!/2!
r 12

a1b1d , ~B19!
n

is equivalent to Eq.~B14!.
A set of formulas concerning symmetric-trace-free mu

pole expansions ind dimensions is presented next, witho
proofs. We use the multi-index notationL5 i 1••• i , ; more
generally the notation is the same as in Appendix A
@47#. In particular n̂L denotes the STF projection ofnL
5ni 1

•••ni ,
, @,/2# means the integer part of,/2, T$ i 1••• i ,%

denotes the~unnormalized, minimal! sum of Ti s(1)••• i s(,)

where thes ’s are permutations of the indices such th
T$ i 1••• i ,% is fully symmetric inL ~for convenience we do no

normalize the latter sum, for instanced$ i j nk%5d i j nk1d iknj
1d jkni).

nL5 (
k50

[ ,/2]

a,
kd$ i 1i 2

•••d i 2k21i 2k
n̂L22K% ,

~B20a!

n̂L5 (
k50

[ ,/2]

b,
kd$ i 1i 2

•••d i 2k21i 2k
nL22K% , ~B20b!

where the coefficients are
-

f

t

a,
k5

1

2k

G~d/21,22k!

G~d/21,2k!
, ~B21a!

b,
k5

~2 !k

2k

G~d/21,2k21!

G~d/21,21!
. ~B21b!

In particular ~the bracketŝ & surrounding the indices mea
the STF projection!

ni n̂L5n̂iL1
,

d12,22
d i ^ i ,

n̂L21& , ~B22a!

28We adopt for the Bessel function the defining expression

Jn~z!5
~z/2!n

G~n11/2!G~1/2!E21

1

dx~12x2!n21/2e2 izx.

To obtain Eq.~B18! we employ the integration formula

E
0

1`

dzzmJn~z!52m
G„~11m1n!/2…

G„~12m1n!/2…
.
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nin̂iL5
d1,22

d12,22
n̂L ; ~B22b!

some spherical averages are

E dVd21

Vd21

n2P5
1

2p

G~d/2!

G~d/21p!
d$ i 1i 2

•••d i 2p21i 2p% ,

~B23a!

f̂ PĝQE dVd21

Vd21

nPQ5dp,q

p!

2p

G~d/2!

G~d/21p!
f̂ PĝP ; ~B23b!

the STF decomposition of a scalar function is

f ~n!5 (
,50

1`

f̂ Ln̂L , ~B24a!

f̂ L5
2,21G~d/21, !

,!pd/2
E dVd21n̂L f ~n!; ~B24b!

the decomposition of a functionF(n•n8) in terms of Gegen-
bauer polynomials is29

F~n•n8!5
G~d22!

G~1/2!G~~d21!/2! (
,50

1`
2,G~d/21, !

G~d1,22!
n̂Ln̂L8

3E
21

11

dx~12x2!(d23)/2C,
d/221~x!F~x!, ~B25a!

n̂Ln̂L85
,!

2,

G~d/221!

G~d/21,21!
C,

d/221~n•n8!; ~B25b!

and some integration formulas are

D21r a5
r a12

~a12!~a1d!
, ~B26a!

D2nr a5
G~a/211!G„~a1d!/2…

G~a/21n11!G„„a1d)/21n…

r a12n

22n
,

~B26b!

D21~ n̂Lr a!5
n̂Lr a12

~a2,12!~a1,1d!
. ~B26c!

29By definition, the Gegenbauer polynomialC,
g(x) is the coeffi-

cient of a, in the expansion

~122xa1a2!2g5(
,50

1`

C,
g~x!a,.

The particular polynomialP,
(d)(x)[C,

d/221(x) represents an appro
priate generalization of the Legendre polynomial ind dimensions
@indeedP,

(3)(x)5P,(x)].
12400
APPENDIX C: EXPLICIT FORM OF gÆDÀ1
„r 1

2Àdr 2
2Àd

…

IN d DIMENSIONS

A very important technical fact which allows the analyt
computation of thed53 equations of motion is the possibi
ity to obtain explicitly the quadratically nonlinear potential
i.e., to evaluate in closed form the integrals appearing in
PN expansion of the cubic-vertex diagram of Fig. 7.

At the lowest approximation in thec21 expansion, the
diagram of Fig. 7 leads, ind53, to the integral

g(d53)~x!5D21S 1

r 1r 2
D , ~C1!

which was~probably! first evaluated by Fock in 1939~‘‘Sur
le mouvement des masses finies d’apre`s la théorie de la
gravitation einsteinienne’’@48#!, with the simple result

g(d53)~x!5 ln~r 11r 21r 12!. ~C2!

Remembering thatr 1[ux2y1u, r 2[ux2y2u and r 12[uy1
2y2u the combinationr 11r 21r 12 entering the logarithm in
Eq. ~C2! is simply seen to be the perimeter of the triang
joining the three spatial pointsx, y1 and y2 entering the
~Newtonian approximation of the! diagram of Fig. 7. At the
O(c22) level of the PN expansion of Fig. 7, there ent
several new integrals which can be reduced to

f (d53)52D21g(d53), ~C3!

together with

f 12
(d53)5D21S r 1

r 2
D and 1↔2. ~C4!

The explicit evaluation of the integrals~C3!, ~C4! is also
possible, as was shown in Refs.@49,22# ~drawing on earlier
work @50,51#!. In this appendix we shall explicitly evaluat
thed-dimensional generalization of Eq.~C1!. It will be clear,
however, that our method can be rather straightforwar
generalized to theO(c22) diagrams contained in Fig. 7, i.e
to thed-dimensional generalizations of~C3!, ~C4!.

For our present purpose it will be more convenient not
include the two factors ofk̃ that accompany the two propa
gators issued from 1 and 2 in Fig. 7. We shall therefo
define

FIG. 7. Cubic-vertex diagram related to functiong
[D21(r 1

22dr 2
22d).
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g~x![D21~r 1
22dr 2

22d!. ~C5!

The method we present here consists of four basic steps~i!
expand the integrand in series and construct a correspon
series for aparticular solutiongpart5D21(r 1

22dr 2
22d)part, ~ii !

resum the series to get an explicit line-integral form ofgpart,
~iii ! computeDgpart in a distributional sense to discover th
it satisfiesDgpart5r 1

22dr 2
22d1S whereS is a distributional

source~localized along a line!, and finally~iv! subtractD21S
~which is given by another line integral! from gpart to getg as
a sum of line integrals~which are expressible in terms of on
special function of one argument!. What is crucial in the
argument is the uniqueness of the global solution~decaying
at infinity! of any ~distributional! Poisson equationDw5s
when the~distributional! source decays fast enough~or, at
least, does not grow too fast! at infinity. In our case, the
sourcess involved will have fast-enough decay at infinity
we analytically continued toward large enough real par
~sayR@d#.3).

There are several ways of implementing our method.
instance, we could start by expandingr 2

22d in the source of
Eq. ~C5! in powers ofr 1 , such an expansion being valid on
in a neighborhood ofy1 ; namely, we have thed-dimensional
generalization of the familiard53 Legendre-polynomial ex
pansion ofux2y2u21 nearx5y1 ~more precisely in the bal
r 1,r 12)

r 2
22d5r 12

22d(
,>0

S r 1

r 12
D ,

P,
(d)~c1!. ~C6!

Here, we denoted for visual clarityP,
(d)(x)[C,

d/221(x),
whereC,

g(x) is a Gegenbauer polynomial such thatC,
1/2(x)

5P,
(3)(x) is the usuald53 Legendre polynomial@see also

Appendix B above#. The quantityc1 in Eq. ~C6! denotes the
cosine of the angleu1 betweenx2y1 andy22y1 . The nota-
tion we shall use is summarized in Fig. 8.

When inserting thelocal expansion~C6! into the source
of ~C5! we are led to solving~locally! an equation of the
form Dgloc5(a,r 1

,122dP,
(d)(c1). However, using the gen

eral formula

D~r ln̂L!5~l2, !~l1d221, !r l22n̂L , ~C7!

we know a particular solution ofDw5r ln̂L , namely

D21~r ln̂L!5
r l12n̂L

~l122, !~l1d1, !
. ~C8!

FIG. 8. Notation for various angles and distances,y1 and y2

denoting the positions of the two particles, andx the field point.
12400
ing

r

The formulas~C7!, ~C8! apply to any source with fixed mul
tipolarity (,) and a power law dependence on a radius.
particular, they apply whenr→r 1 , l→,122d and n̂L

[n1
^ i 1 . . . i ,&→P,

(d)(c1) ~because a generalized Legend
polynomial is just proportional to the contraction of an ST
projected multi unit vectorn̂L onto a fixed ‘‘z’’ direction; see
Appendix B!. This leads to a corresponding expansion o
local solution gloc1 ~near y1) of Dgloc 15r 1

22dr 2
22d of the

form

gloc 15
r 12

22dr 1
32d

2~42d!
(
,>0

1

,11

r 1
,11

r 12
,

P,
(d)~c1!. ~C9!

In order to proceed further, we now need to resum the
pansion~C9!. This is done by a trick introduced, in a simila
context of resummation of multipolar expansions contain
extra ,-dependent denominators, by Ref.@52#. One intro-
duces some radial-integration operatorsRa@f#(r )
5*0

1dllaf(lr ). For instance, in the context of Eq.~C9!,
one replacesr 1

,/(,11) by R0@r 1
,#5*0

1dl(lr 1), or equiva-
lently r 1

,11/(,11) by *0
r 1d,1,1

, . This transforms back the
multipolar series appearing in Eq.~C9! into the original
‘‘Legendre’’ series entering Eq.~C6!. This allows one to
write gloc 1 as a simple line integral:

gloc 15
r 1

32d

2~42d!
E

0

r 1
d,1uy,1

2y2u22d

5
r 1

42d

2~42d!
E

0

1

dauya2y2u22d.

~C10!

Here,y,1
is a point on the segment joiningy1 to x, located a

distance,1 away fromy1 . It is more convenient to replac
the line integration over the dimensionful length,1 (0<,1
<r 1) into an integration over the dimensionless parame
a[,1 /r 1 (0<a<1). This leads to the explicit expression

y,1
[ya5ax1~12a!y1 . ~C11!

The resummed line-integral expression~C10! allows one to
define everywheregloc 1, including in the domain r1.r 12
where the original series~C9! wasnot convergent. Having in
hand such a global definition ofgloc 1 then allows one to
compute its Laplacian,in the sense of distributions, and to
see how it differs fromr 1

22dr 2
22d . The calculation ofDgloc 1

is done by techniques similar to the ones used in Ref.@51#.
One needs to rewrite some terms in the form ofa deriva-
tives. For instance, several of the terms appearing inDgloc 1
can be rewritten as the line integral

E
0

1

dar 1
22dF uya2y2u22d1a

]

]a
uya2y2u22dG

5E
0

1

da
]

]a
@ar 1

22duya2y2u22d#5r 1
22dr 2

22d ,

~C12!
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where the last line integral gave only the end contribut
a51 corresponding toya5x. In addition to the terms yield-
ing ~C12!, i.e., the looked-for ‘‘source’’ of the completeg,
the calculation ofDgloc 1 yields also the distributional sourc
~wherek[ k̃/4p entered throughDr 22d52d (d)/k)

2
r 1

42d

2~42d!kE0

1

daa2d (d)~ya2y2!. ~C13!

This is conveniently transformed by introducingb[1/a
~with 1<b<1`) and

yb[~12b!y11by2 , ~C14!

which varies along a semi-infinite line going fromy2 to in-
finity along the directiony22y1 , i.e., away from y1 . This
transformation allows one to rewrite Eq.~C13! in the more
transparent form

2
r 12

42d

2~42d!kE1

1`

dbd (d)~x2yb!. ~C15!

At this stage, we recognize in Eq.~C15! a very simple
source, namely auniform distribution of ‘‘mass’’ along the
half line along whichb runs. This allows one to easily com
pute the unique, global~decaying at infinity! solution of the
Poisson equation with source~C15! and to subtract it from
gloc 1 to get the unique, globalg in the form of two line
integrals:

g5
r 1

32d

2~42d!
E

0

r 1
d,auya2y2u22d

2
r 12

32d

2~42d!
E

r 12

`

d,bux2ybu22d, ~C16!

whered,a5udyau5r 1da andd,b5udybu5r 12db. In other
words, Eq.~C16! expressesg as, essentially, the differenc
between the Newtonian potentials generated by two unifo
line distributions: a segment joiningy1 to x and the half line
starting fromy2 in the direction away fromy1 . It is easily
seen~modulo the slight delicacy of the logarithmic dive
gence of the potential of a semi-infinite line whend→3, i.e.,
the occurrence of a 1/« pole; see below! that the result~C16!
yields, whend→3, the well-known result~C2!. @Actually,
this was the way one of us~T.D.! had long ago derived fo
himself Eq.~C2!, unaware of its derivations in the literature#

The expression~C16! has the advantage of being expli
itly regular ~except at the pointx5y1) in the ball r 1,r 12.
However, it has the default of treating dissymmetrically t
two pointsy1 andy2 @in spite of the fact that the result~C16!
for g is, actually, symmetric under 1↔2]. One can derive an
exchange-symmetric expression forg by modifying the first
step of our method. Instead of expanding the sou
r 1

22dr 2
22d in the neighborhood ofx5y1 , i.e., in a series of

positive powers ofr 1 , we can expand it in theneighborhood
of infinity, i.e., in a series of negative powers ofr 1 . Such an
expansion is directly related to the expansions used in@51#,
which led to the decomposition ofg(d53) into two pieces
12400
n

m

e

denotedk andh there, where the source ofh was a uniform
mass distribution along the segment joiningy1 and y2 . Let
us briefly indicate the successive steps of this new calc
tion of g. Instead of the ‘‘local’’ expansion~C6! ~valid for
r 1,r 12), one expandsr 2

22d near infinity (r 1.r 12) as

r 2
22d5r 1

22d(
,>0

S r 12

r 1
D ,

P,
(d)~c1!. ~C17!

Solving term by termDg`5r 1
22dr 2

22d ‘‘near infinity’’ by
means of Eq.~C8!, and transforming away the appearin
,-dependent denominators by means of* r 1

` d,1,1
22d2,

5r 1
32d2,/(,1d23), leads to the following resummation o

g` :

g`52
r 1

42d

2~42d!
E

1

`

dauya2y2u22d. ~C18!

Here,ya is still defined by Eq.~C11!, but the parametera
now varies in 1<a<1` so that Eq.~C18! is the potential
of a semi-infinite line. Computing the distributional Lapla
ian of the particular solutiong` , Eq. ~C18!, leads to the
presence, in addition to the looked-for sourcer 1

22dr 2
22d , of

an additional distributional source localized now along t
segment joiningy1 to y2 , namely,

r 12
42d

2~42d!kE0

1

dbd (d)~x2yb!, ~C19!

whereb51/a varies between 0 and 1 and whereyb is again
defined by Eq.~C14!. It is then easy to subtract fromg`

@which tends, ind53, to the functionk(x,y1 ,y2) of @51## the
Poisson integral of the source~C9! @which is a uniform dis-
tribution along the segmenty12y2 and which tends, ind
53, to the function1

2 h(x,y1 ,y2) of @51## to get the following
alternative expression forg:

g52
r 1

32d

2~42d!
E

r 1

`

d,auy22yau22d

1
r 12

32d

2~42d!
E

0

r 12
d,bux2ybu22d, ~C20!

or, equivalently,

g52
r 1

42d

2~42d!
E

1

`

dauy22yau22d

1
r 12

42d

2~42d!
E

0

1

dbux2ybu22d. ~C21!

The form ~C20!, ~C21! still does not look quite symmetric
between 1 and 2 but a moment of reflection will show tha
is.

The two methods above have expressedg in terms of the
Newtonian potentials generated by half lines or segme
i.e., integrals of the type*d,ux82y,u22d where y, varies
along a straight line~but wherex8 might bex or y2). Clearly,
7-49
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any such potential can be reduced~through linear decompo
sitions! to the Newtonian potential generated by ahalf line.
Let us then consider a generic half line starting at the po
r0 and going to infinity in the directionn, and let us conside
the Newtonian potential generated by this half line at
origin of the coordinate system~not located on the half line!.
Let us denoter ,5r01,n, r ,5ur ,u, r05r 0n0 , c5n0•n ~co-
sine of the angleu between the radius vector from the origi
i.e., the ‘‘field point,’’ toward the beginning point of the ha
line and the direction of the half line, away from its begi
ning!. Then it is easy to find that

E
0

`

d,r ,
22d5w~c!r 0

32d , ~C22!

where the functionw(c) is given by the integral

w~c![E
0

` dl

~112cl1l2!(d22)/2
. ~C23!

The integral~C23! converges ford.3, has a pole}1/(d
23) asd→3, and can be expressed in terms of hyperg

metric functions, e.g.F2,1@
1
2 , (d22)/2 ;3

2 ;z#. It is, however,
simpler to keep the form~C23!.30

Finally, using the half-line potentials~C22! as building
blocks one can write our result~C20! in the final, 1↔2
symmetric, form

g~x,y1 ,y2!5
r 12

32d

2~42d!
@2r'

32dw~0!2r 1
32dw~c1!

2r 2
32dw~c2!#2

r 1
32dr 2

32d

2~42d!
w~c12!.

~C24!

The quantities entering Eq.~C24! are those defined in Fig. 8
notablyc1[cosu1, c2[cosu2, c12[cosu12, with r' being
the orthogonal distance between the field pointx and the
segment joiningy1 to y2 @with associated argumentc'

5cos(p/2)50 in w(c)]. Note the following properties of the
function w(c):

w~c!1w~2c!5
2w~0!

~12c2!(d23)/2
, ~C25a!

w~0!5
1

2

G~1/2!G„~d23!/2…

G„~d22!/2…
, w~1!5

1

d23
.

~C25b!

30The multipolar expansion of the functionw(c) reads

w~c!5(
,>0

~2!,
2,1d22

~,11!~,1d23!
P,

(d)~c!.

On this expression one sees clearly the occurrence of the si
pole of w(c) when«[d23→0, which is given by the ‘‘monopo-
lar’’ term ,50 as

w~c!5
P0

(3)~c!

«
1O~«0!5

1

«
1O~«0!.
12400
t

e

-

The simplest way to prove Eq.~C25a! is to notice that the
Newtonian potential of aninfinite line can be written either
as twice that of two half lines beginning at the orthogon
projection of the field point on the original line, so that

E
2`

1` d,

r ,
d22

52
w~0!

r'
d23

, ~C26!

or as that of two other half lines obtained by a more arbitr
cut ~under an angleuÞp/2 andc5cosu).

We can verify thed→3 limit of Eqs. ~C16! and~C24! by
using the following«→0 expansion of the elementary func
tion w(c), namely:

w~c!5
1

«
2 lnS 11c

2 D1O~«!. ~C27!

To obtain Eq.~C27! we notice that the finite part ofw(c)
when«→0, which is

w0~c![ lim
«→0

Fw~c!2
1

«G , ~C28!

can be re-expressed in the form of the following sum of t
convergent integrals:

w0~c!5E
0

1 dl

A112cl1l2
1E

0

1 dl

l S 1

A112cl1l2
21D

52 lnS 11c

2 D . ~C29!

Combining the expansion~C27! with the basic relations31

associated with the triangle of Fig. 8, ourd-dimensional ex-
pressions~C16! and~C24! are found to admit the expansio

g52
1

2«
2

1

2
1 lnS r 11r 21r 12

2 D1O~«!, ~C30!

which indeed reduces to the three-dimensional result~C2!
modulo an additive constant linked to the 1/« pole.

Nice as it is to have in hand an analytic expression for
d-dimensional basic non linear potentialg, its practical util-
ity in explicit computations of thed-dimensional equations
of motion is not evident because, contrary to t
3-dimensional expression~C2!, the expression is notexplic-
itly regular along they12y2 segment.@The regularity of Eq.

le

31DenotingS[r 11r 21r 12 we have

11c1

S
5

r11r122r 2

2r 1r 12
,

11c2

S
5

r 21r 122r 1

2r 2r 12
,

11c12

S
5

r 11r 22r 12

2r 1r 2
.

The perpendicular distancer' is given by

r'5
r1r2

S
A2~11c1!~11c2!~11c12!.
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~C24! as r'→0 comes by compensations between the th
terms in the bracket, using Eq.~C25a!.# It would need some
transforming@using ~C25a!, and/or using the other expres
sions derived from the previous form~C16!, which are regu-
lar along they12y2 segment, but singular somewhere els#
to write an explicit expression which is regular everywhe
except at the two isolated pointsy1 andy2 .

Finally, let us just mention that the method explain
above can, in principle, be straightforwardly generalized
the computation of the higher post-Newtonian potenti
contained in the diagram of Fig. 7. For instance, in comp
,

or.

or.

or.

n

tu

12400
e

,

o
s
t-

ing thed-dimensional analogue of Eq.~C3!, say f 52D21g
52D22(r 1

22dr 2
22d), it is easy@by iterating Eq.~C8!# to get

the analogue of Eq.~C9!. Then a more complicated radia
integration operator~see, e.g.,@52#! will allow one to resum
the series to get a line-integral expression forf loc1 or f ` . We
anticipate that a somewhat more delicate application of
ther D ~to go back tog! or D2 ~to go back to 2r 1

22dr 2
22d)

will yield additional line-distributed sources. It should the
be a simple matter to compute the Poisson, or iterated P
son, integral of these line-distributed sources. We leave
explicit study of these details to future work.
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@36# L. Schwartz, Théorie des Distributions ~Hermann, Paris,

1978!.
@37# G. Faye, the`se de doctorat en physique the´orique, Universite´

Paris VI, 1999.
@38# Y. Itoh and T. Futamase, Phys. Rev. D68, 121501~R! ~2003!.
@39# Y. Itoh, Phys. Rev. D69, 064018~2004!.
@40# T. Damour, P. Jaranowski, and G. Scha¨fer, Phys. Rev. D62,

084011~2000!.
@41# L. Blanchet, Phys. Rev. D65, 124009~2002!.
@42# T. Damour, B.R. Iyer, P. Jaranowski, and B.S. Sathyapraka

Phys. Rev. D67, 064028~2003!.
@43# C. W. Misner, K. S. Thorne, and J. A. Wheeler,Gravitation

~Freeman, San Francisco, 1973!.
@44# I. M. Gel’fand and G. E. Shilov,Generalized Functions~Aca-

demic Press, New York, 1964!.
@45# T. Damour and G. Esposito-Fare`se, Phys. Rev. D53, 5541

~1996!.
@46# E. Schmutzer,Relativistische Physik~Teubner Verlagsgesell

schaft, Leipzig, 1968!.
@47# L. Blanchet and T. Damour, Philos. Trans. R. Soc. Lond

320, 379 ~1986!.
@48# V. Fock, J. Phys.~USSR! 1, 81 ~1939!.
@49# L. Blanchet, T. Damour, and B.R. Iyer, Phys. Rev. D51, 5360

~1995!.
@50# G. Scha¨fer, Phys. Lett. A123, 336 ~1987!.
@51# T. Damour and B.R. Iyer, Ann. I.H.P. Phys. Theor.54, 115

~1991!.
@52# T. Damour, M. Soffel, and C.-M. Xu, Phys. Rev. D47, 3124

~1993!.
7-51


