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Nonlinear spinor field in cosmology
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Within the scope of the Bianchi type VI models, the self-consistent system of nonlinear spinor field and
gravitational fields is considered. Exact self-consistent solutions to the spinor and gravitational field equations
are obtained for a special choice of spatial inhomogeneity and nonlinear spinor term. The role of inhomoge-
neity in the evolution of spinor and gravitational field is studied. Some solutions allow an oscillating behavior
of the Universe’s volume. It should be emphasized that for a suitable choice of spinor field nonlinearity some
of these solutions are nonsingular at all space-time points.
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[. INTRODUCTION the entire history of cosmic evolution dating back to the
recombination era and are being considered as indicative of
The problem of an initial singularity still remains at the the geometry and the content of the Universe. More informa-

center of modern day cosmology. Though the Big Bangfion about cosmic microwave background anisotropy is ex-

theory is deeply rooted among the scientists dealing with th@€cted to be uncovered by the investigations of the micro-
idepvave anisotropy probe. There is widespread consensus

models of a universe free from initial sin.gularities. In doing amgggos%zn;?lgﬂzltlsar%%tla?c;ir:lgs g]rlgrt%\givei/ tt())at%l;gggtjmng-
=0, We pre viously conspler_ed a sglf-con&stent system of norfi£on of discrete structures. The theoretical arguméditaind
linear spinor and grawtathnal fields n the presence .Of Fecent experimental data that support the existence of an an-
perfect fluid[1-5]. The nonlinear term in the corresponding

. . ; . s . 2 isotropic phase that approaches an isotropic phase leads one
L_agranglan mainly dgscnbed the self-lnteractmn of a SPINOky, consider universe models with an anisotropic background.
field [1-4], whereas in Re{5] we studied the case when the ¢ gimpjicity, the Kasner-universe-like behavior near the sin-

spinor field nonlinearity is induced by an interacting Scalargularity [7] and evolution into a FRW universe when filled
field. As a gravitational field we chose a Bianchi typ&Bl)  \ith matter obeying the equation of state= e, {<1 [8]
anisotropic cosmological model. We studied also the role ofhake the Bianchi type (Bl) model a prime candidate for
the cosmological constamt in the formation of oscillatory studying the possible effects of an anisotropy in the early
modes of evolution of the Bl universe. Universe on present-day observations. But there are a few

Why study a nonlinear spinor field? It is well known that other models, which describe an anisotropic space-time and
the nonlinear generalization of classical field theory remaingjenerate particular interest among physidiSts16]. In Ref.
one possible way to overcome the difficulties of a theory thaf10] methods of dynamical systems analysis were used to
considers elementary particles as mathematical points. In thishow that the presence of a magnetic field orthogonal to the
approach elementary particles are modeled by regstali-  two commuting Killing vector fields in any spatially homo-
tonlike) solutions of the corresponding nonlinear equationsgeneous Bianchi type Ivacuum solution to Einstein’s
The gravitational field equation is nonlinear by nature andequation changes the evolution towards the singularity from
the field itself is universal and unscreenable. These propeeollapse to bounce. The authors in Réfl] studied the prob-
ties lead to a definite physical interest in the gravitationalem of isotropization of scalar field Bianchi models with an
field that goes with these matter fields. We prefer a spinoexponential potentiéd). Other papers mentioned above are
field to scalar or electromagnetic fields, as the spinor field iglevoted to tilted perfect fluid solutions, chaotic singularities,
the most sensitive to the gravitational field. and conditional symmetries.

Why study an anisotropic universe? Though spatially ho- In this paper we study the self-consistent system of the
mogeneous and isotropic, Friedmann-Robertson-Walkerionlinear spinor field and an anisotropic inhomogeneous
(FRW) models are widely considered as a good approximagravitational field in order to clarify the role of the spinor
tion of the present and early stages of the Universe. Howfield nonlinearity and the space-time inhomogeneity in the
ever, the large scale matter distribution in the observablgormation of a singularity-free universe. As an anisotropic
Universe, largely manifested in the form of discrete struc-space-time we choose a Bianchi type{8VI) model, since
tures, does not exhibit a high degree of homogeneity. Recent suitable choice of its parameters yields a few other Bianchi
space investigations detect anisotropy in the cosmic micromodels including Bl and FRW universes. It can be noted that
wave background. The Cosmic Background Explorer’s dif-unlike the Bl universe, the BVI space-time is inhomoge-
ferential radiometer has detected and measured cosmic mieous. Inclusion of inhomogeneity in the gravitational field
crowave background anisotropies at different angular scalesignificantly complicates the search for an exact solution to

These anisotropies are supposed to contain in their folthe system. In Sec. Il, we write the equations for nonlinear

spinor fields and the system of Einstein equations. In this
section we also give their solutions in some general form;
*Electronic address: saha@thsunl.jinr.ru more precisely, we write the solutions in terms of a time-
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dependent function that can be defined only when the con- Lo=A AP=(drySvH A S 25
crete form of the spinor field nonlinearity is given. In Sec. AT Gy Y DGy y ), (259
[ll, we give exact solutions to the equations for some special .
choices of spinor field nonlinearity and space-time inhomo- 1o=QuQ
geneity. Beside this, we also present some numerical solu- P — B
tions in graphical form. = (Yo" Y)9,u09,p($o ). (2.59
Il. FUNDAMENTAL EQUATIONS According to the Pauli-Fierz theoref8] among the five
AND GENERAL SOLUTIONS invariants onlyl andJ are independent as all others can be

expressed by themiy=—1,=1+J andIo=1-J. There-
ore, we choose the nonlinear terffnas a function of the

Snvariantsl andJ, i.e., F=F(l1,J), thus claiming that it de-
scribes the nonlinearity in the most general form.

We shall investigate a self-consistent system of nonline
spinor and Einstein gravitational fields. These two fields ar
to be codetermined by the following action:

S(g;¢.9) = f Ly—gdQ 2.0 B. The gravitational field

with The gravitational part of the Lagrangian (8.2) has the

form:
L= Lgrav+ Espinor- (2.2 R
o . . . ACgrav: B (26)

The gravitational part of the Lagrangi@R.?) is given by a 2k

BVI space-time, while the spinor part is a usual spinor field

Lagrangian with an arbitrary nonlinear term. Here R is the scalar curvature an is Einstein’s gravita-
tional constant. The gravitational field in our case is given by

A. Spinor field Lagrangian a BVI metric:

For a spinor fieldy, symmetry betweew and ¢ appears
to demand that one should choose a symmetrized Lagrangian
[17]. Accordingly we choose the spinor field Lagrangian
with a nonlinear term in2.3) as follows: with a,b,c being functions of time only. Herm,n are some
arbitrary constants and the velocity of light is taken to be
unity. It should be emphasized that the BVI metric models a
universe that is anisotropic and inhomogeneous. A suitable
choice ofm,n as well as the metric functiors,b,c in the
Here M is the spinor mass.The nonlinear tefmdescribes  BVI metric given by(2.7) generates Bianchi-type universes
the self-interaction of the spinor field and can be presented afiscussed in the following:
some arbitrary functions of invariants generated from the re
bilinear forms of a spinor field having the form

ds?=dt’—a%e ?Mdx?—b2%e?"dy’—c?dZ, (2.7)
i — _ _
‘Cspinorzz[(//'yﬂv,u'r//_ VM¢7M¢] -Myy+F. (2.3

a . . . .
Jl) For m=n the BVI metric transforms into a Bianchi-type
V (BV) universe, i.e.m=n, BVI=BVe open FRW

SZZM/ (scalay, (2.43 with the line elemerts)
d&=dt?—a’e *"dx¥— b’ dy’—c2dZ. (2.9

P=iyy®y (pseudoscalar (2.4b)
(2) Forn=0 the BVI metric transforms into a Bianchi-type
v":(ay“t/r) (vectop, (2.49 Il (BlIl') universe, i.e.n=0, BVI=BIIl with the line
elements)
Ak=(yy°y*y) (pseudovector (2.40 d&=dt2—a2e M-’ dy>—c2dZ (2.9
- (3) Form=n=0 the BVI metric transforms into a Bianchi-
Q*’= (Yo" ) (antisymmetric tensor (2.46 type | (Bl) universe, i.e.m=n=0, BVI=BI with the
line elements)
where o“*= (i/2)[ y*y"— y"y*]. Invariants, corresponding ds’=df—a’dx¥’—b’dy?— c?dZ. (2.10

to the bilinear forms, are . .
(4) Form=n=0 and an equal scale factor in all three direc-

|=S2, (2.59 tions the BVI metric transforms into a FRW universe,
i.,e., m=n=0 anda=b=c, BVI=FRW with the line

J=P2, (2.5b elements)

L, =v,0"=(UY" )9, (Y P), (2.50 d2=dt?—a%(dx2+dy’+dZ). (2.11)
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Let us write the nontrivial components of Ricci and Rie-
mann tensors as well as Christoffel symbols of the BVI met-
ric. The nontrivial Christoffel symbols of the BVI metric

read
I'y,=ala, TI'3,=b/b, T3;=clc,
'Y =aae 2% TI2,=bbe’"? T'Y=cc,

ma®

1 _ 2 _ 3 _ —-2mz
F31——m, Fsz_n, Fll_ C2 e y

The nontrivial components of Riemann tensor are

poL__2__ac ., b abc
01 a T ’ 02 b - ]
=03 c abc
037 - T ’
R12 mn ab mn abc
12 2 ab c? T
Ri3 m2 ca m? bca
¥ w2 ca ¢2 71
,3 N2 bc n? bca
Ry rwz=—5——

The nontrivial components of the Ricci tensor are

[ a b ¢
R;= ma—nB—(m—n)E

1 . . .
= ;[mabc—nbca—(m—n)cab],

mo_ (é+6+6
0 a? b? c?

1. . .
=— ;[abc+ bca+cab],

I

|

|

—
m:
(e
o
+
VR
o
(@]
+
o-
Q) -
(e}
—_
+
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2 b ab bc n?-mn
=" ab b T2

n2—mn

2 ’

1 . .. ..
=— —[abc+abc+bca]+
T c

53 é+éé+bé m?2+ n?
3 \lc ac bec 2

c

m2+n?
2 1

1. .. ..
=— —[cab+cab+bca]+
T c

where we define
T7=abc. (2.12

To investigate the existence of a singularitsingular
point), one has to study the invariant characteristics of space-
time. As we know, in general relativity, these invariants are
composed of the curvature tensor and the metric one. Al-
though in 4D Riemann space there are 14 independent in-
variants[4,19], it is sufficient to study only three of them,
namely the scalar curvaturg =R, 1,=R,,R*" and the
Kretschmann scaldp=R,z,,R***" [20,21].

From the Riemann and Ricci tensors written above one
finds

2. .. .. . . ab
l1=R=—— r—abc—abc—abc— ?(mz—mn+n2) ,
(2.133
1,=(R9)2+ (R} 2+ (R3)2+ (R3)2+ RSRS, (2.130

13=4[(R3D)2+ (R3D2+ (R)2+ (RIH2+ (R3D 2+ (R5H?].
(2.130

From (2.13 it follows that I, 1/7, 1,0¢1/72, and |0 1/72.

Note that the remaining 11 invariants are composed of two or
more Ricci and/or Riemann tensors and hence are inversely
proportional to )P, wherep is the number of tensors in the
corresponding invariant. Thus we see that at any space-time
point wherer=0, the invariantd 1,l,,l3 become infinity;
hence the space-time becomes singular at this point.

C. Field equations

The field equations for the spinor and gravitational fields
can be obtained from the variational principle. Variation of

the Lagrangiari2.3) with respect to the field functionsg( )
gives the nonlinear spinor field equations:

YV, =M+ Dy +iGy° =0, (2.143

iV, 47"+ My—Dy—iGyy*=0,
(2.14h

whereD=2SF andG=2PF;.
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Varying (2.2) with respect to metric functiong(,,), we  Here ei is a set of tetrad four-vectors defined as

find Einstein’s field equation
9= €307,  7map=diagl, —1, =1, —1)

1 (2.2
R5_§5’JR: KTh, (2.195 (2.22
For the metric elemen®.7) this gives
whereR/, is the Ricci tensorR is the Ricci scalar, andl) is [e=0

the energy-momentum tensor of the spinor field. In our case,
where space-time is given by a BVI metii2.7), the equa-

tions for the metric functionsa,b,c read 1. —— a——| _
F1:§ aylyo—mg 7173 e Mz
Ib+é+b-C " T 2.16 1 b
btothe @ <Tb (2163 Fzzz[b??%ng?? e
o )
c a ca m 1.
o D = T? _ - 3.0
c a ca g2 «T2 Ta=5cry
(2.16b )
It is easy to show that
a+b+éb+mn 13 L e
— — R — T — —N —
a'b ab ¢ ¥ PTu==5 - P+ 5 7.
(2.160 T
S 5 5 The Dirac matricegy”(x) of curved space-time are con-
ab bc ca m—mn+tn® nected with those of Minkowski space-time as follows:
Tt ot oo —————=«T,, (2.1609
ab bc ca c2 _ _ _ _
’)’O: '}/O, ')’1: ,ylemZ/a' ')’2: ,yZ/benZ' '}’3: ,)/3/(:’
a b é_ 1o with
My~ Np (MM =«Ts. (1t oy — [0 &
(2.166 o ) s o)
Here over dots denote differentiation with respect to time
(t). The energy-momentum tensor of the material figld Y5=5f =( 0 - I)
has the form: -1 0/

P — — — — whereo; are the Pauli matrices:
TZ:ng (l//’)/,u.vvlzb_{— lM’uVM'ﬁ_ V,u,lr//’)/V‘l/_ Vulﬂ)’,ﬁﬂ)

L (01 , [0 —i , (10

- 5ZLspinor- (2.17 7 1 0/ 7" i 0)’ 7 0 -1/
HereL spino i the spinor field Lagrangian, which on account Ngte that they and theo matrices obey the following rela-
of the spinor field equation®.14) takes the form: tions:

einor~ ~DSTGREE: (219 Yy =27, 1j=0123
In the expressions abow, denotes the covariant derivative — 5 . )
on spinors, having the forf22] Yy’ +y’y=0, (y)°=I, i=01.23
V=3,0-T 4, (2.19 oclo¥=sy+iguo!, jkl1=123

wherel’,, is the spin connection. The spin affine connectionwhere 7;; ={1,—1,—1,—1} is the diagonal matrixgj is the
matricesT",,(x) are uniquely determined up to an additive Kronecker symbol, and;y, is the totally antisymmetric ten-

multiple of the unit matrix by the following equatidi23], sor with e,5=+1.
Let us consider the spinors to be functiong ahdz only,
3uYy= T35 Ya U uyvut v, =0, (220  such that
with the solution l//(t,Z):v(t)eikz, E(I,Z):U_(t)eiikz. (2.23

T,(x)= ngg(x)(ﬁﬂegeb—rﬁ,;) VYR, 2.21) Wel?iizrtmg(z.Z& into (2.14) for the nonlinear spinor field,
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. m-n  k\— —
v+t=—v|— yuv+idv+Gyv=0,

— Kk
ZTU 2c Ic
(2.24a

Y

-—+ -T——O m—n
vl Y 2c

vy3—idv—Gvy®=0.
(2.24h

k
+i=
C

Here we defineb =M —D. Let us introduce a new function

uj(t):\/;vj(t)-

Then for the components of the nonlinear spinor field from

(2.24), one obtains

. ‘m-n k|
u+idu,— oC _iE+g uz=0, (2.25a
o [m—n Kk
Up+idu,+ 7 —|E—Q us=0,
) ' (2.25b
. m-n Kk
u3—|(1>u3—_ oC —|E—g_u1 0,
(2.250
o 'm—n Kk |
u4—|<I>u4+_ oC —|E+g u,=0.
(2.259

Using the spinor field equatior.14) and(2.24), it can
be shown that the bilinear spinor forms, defined®y), i.e.,

S=yy=vv, P=iyy’y=ivy°,
=57 U= P,
A= gy*=vy® Y, V0= u=vy,
V=g g=vyPu, Q¥=iyy Y y=ivy*y v,
S R e T

obey the following system of equations:

C K 30 0
SH—2, Q5" 20A5=0, (2.263
.k
Po—2_Q5'—20A5=0, (2.26h
LU L
AG— ——AS+2PPo+2G5=0, (2.260
-3 m—n 0
AO_ C AOZO, (Zzed
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. m—n
Vo— S VE=0, (2.266
V- LY 200Q3X-260%=0 (2.26f
0 c 0 0 0 ’ .
. K
Q3°+2Eso—2<bvg:o, (2.269
221+ ZEP +26V3i=0 (2.26h
0 c 0 (Vg .

where we use the notatidh,= 7F. Combining these equa-
tions and taking the first integral one gets

(So)?+ (Po)?+(Ag)* = (Ag)% = (Vo) >+ (Vg) 2+ (Q5)?
+(Q3H2=C=const. (2.27
Before dealing with the Einstein equatioi®&s16) let us go

back to(2.25. From the first and the third equations of the
system(2.25 one finds

Uss= (G— Q)UTz—2i DU+ (G+Q), (2.28

where we denoteu;s3=u;/u3; and Q=[m—n-—_2ik]/2c.
Equation(2.28 is of the Riccati typd 24] with variable co-
efficients. A transformatiof25]

vla=eXF<—f (g_Q)UBdt)’ (2.29

leads from the general Riccati equati@h28 to a second

order linear one, namely,

(G- Q)05+ [2iD(G—Q)~G+Qlv13+ (G- QA (G+Q)uys
=0. (2.30

Sometimes it is easier to solve a linear second order differ-
ential equation than a first order nonlinear equation. Here we
give a general solution t?.28). For this purpose we rewrite
(2.28 in the form

Wig=(G=Qwige 210 (G+Q)e? /T,
(2.31

where we seti;3=w;3 exd —2i [P (t)dt]. This is an inho-
mogeneous nonlinear differential equation ¥ef;. The so-
lution for the homogeneous part (1.31), i.e.,

Wi3=(G—Q)w2, exp(—ziJ (D(t)dt) (2.32

reads

-1
W”:_H (g—Q)ex;(—Zide(t)dt)dtJrC} ,
(2.33
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whereC is an arbitrary constant. Then the general solution to d 2.2

d a m<—n
the inhomogeneous equati¢®.31) can be presented as —|r=iIn| =] |= T (2.40
dt| " dt b c2
-1
Wig= — J(Q—Q)GXD—(ZJ ¢ (t)dt|dt+C(t)| Analogously, subtraction d2.163 from (2.169 and(2.16b

(2.34  from (2.160 gives

with the time dependent parameté(t) to be determined dl d a mn+n2  kk .

from a T&{ln E } =—- C2 T— TV T (2.4])
2

C=U (Q—Q)exp<—2if <D(t)dt)dt+C(t)} and

X (G+Q)edIrmdt (2.39 d
dt

mn+m?  «k .
V3, (242
c C

(3l
T7—/1In| =

Thus given a concrete nonlinear term in the Lagrangian and dt ¢
the solutions of the Einstein equations, one finds the relation
betweenul and Us (u2 and u, as We», hence the compo- I’eSpeCtively. It can be shown that, in view &26) and
nents of the spinor field. (2.39, Egs.(2.40, (2.41, and(2.42 are interchangeable.

Now we study the Einstein equatiof®.16). In doing so, Taking into account that=abc, from (2.39 we can
we write the components of the energy-momentum tensotVrite @ andb in terms ofc, such that

which in our case read
1/(m+n)

K a=|7cM 2"\ ex;{—xkf V°dt) , (2.43
TS=MS—F+ Ev3, (2.363
and
1_2_
T1=T5=DS+GP—F, (2.36b (mn)
‘ b:[Tan2m/ N exp(—xkf Vodt)H .
T3=DS+GP—F— EV3’ (2.360 (2.44
In view of (2.43), (2.44), and(2.26) from (2.40 one finds
T9=—kVO. (2.360 (243, (249, and(2.20 (249
. L )
Let us demand the energy-momentum tensor to be con- Z=3ZE+3 c. e _ZK_kvs_M_ (2.45
served, i.e., T TC c c2 o 2
Th =T 414 TO-TF Th=0. (2.3 In getting(2.45 we employ only four out of five Einstein

o _ _ equations, leavin¢?2.16d unused. On the other hand, adding
Taking into account thal , is a function oft only, from (2,163, (2.16b, (2.160, and(2.16d, multiplied by 3 we get

(2.37) we find the equation forr, which in view of (2.36) takes the form
dS,—GP +E\'/3_Ifm_n\/0_o (2.383 r  m’-mn+tn? &« k
So=GPot Vom o Vo=0, ' S+ 3(MS+Ds+gP—2F)+2EV3.
c
. (2.49

Vo— Vi=o. . .
c Thus we are left with two equations, name(2.45 and
(2.380 (2.46), for two unknownsc and 7. These two equations can

As one can easily verify, Eq92.38 are consistent with be combined to get

those 0f(2.26). T

Let us go back to Eqs(2.16. In view of (2.36, from  ¢_ &  TC_ K_kV3+ m
(2.166 one obtains the following relation between the metricC ¢2 7C € c?
functionsa,b,c: (2.47

2+n2

+g[MS+DS+ GP—2F].

a

c

m [b\" 0 Thus we have come to E€R.47) where all the equations at
=\c N exp{ - ka v dt)’ N=const. hand, both spinor and gravitational, are employed. Assuming
(2.39 c as a function ofr (or vice versaand given a concrete form
of the spinor field nonlinearity one finds the solution of
Subtracting(2.16a from (2.160H we find (2.47). This is exactly what we do in the next section.
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Ill. ANALYSIS OF THE RESULTS

. m—n
, , , AS— ——A3+2MP,=0, (3.60
In the preceding section we derived the fundamental c

equations for nonlinear spinor fields and metric functions.

Comparing the equation with those in a Bl univefsee €e.g., A3 m-—n

AS=0, (3.60

Ref. [4]) we conclude that introduction of inhomogeneity o T ¢

both in gravitationalthroughm andn) and spinorthrough

k) fields significantly complicates the whole picture. In what o M—N_ o

follows, we will write the solutions explicitly. Vo=~ Vo=0, (3.69

Let us first consider Eq2.47). As one sees, there are two
unknown functions in this equation, nametyand =, with 7 _
\ : . o3 M—N 4 30
defined asr=abc. As a first step, we demand an additional Vo= TV°+ 2MQy =0, (3.61)
assumption relating and =, namely,c= 7 or c= /7. Note
that such an assumption imposes some restrictions on the K
metric functions, though leaving the space-time anisotropic. ' 80+ 2—50—2MV3=0, (3.69
In what follows, we study Eq(2.47) under the assumptions ¢
made above for different types of nonlinear spinor terms.

. K
Qo +2=-Py=0, (3.6h
A. Case | c
Let us assume that with the first integrals
c=r @1 (S)*+(VO)*+(Q))°—(Vg)’=0,  (3.7a
Under this assumption in view af=abc, we should have P2+ (A%2+ (02h2— (A3)2=0
a=1/b. Indeed, from(2.43 and(2.44) we find (Po)™+(A0)"+(Qo (Ao) ' (3.70
Himen Thus we see that even in the case of a linear spinor field with
—| ~m—n _ 0
a=|7™W exp{ ka v dt) ' 3.2 k#0 we cannot write/® or Sexplicitly. In order to express
Sor P, hence the massive term or spinor field nonlinearity, in
and terms of r, we now consider the spinor field to be space
1U(m-+n) independent setting=0.
b:[Tn—m/ N ex;{ _KkJ V°dt) ] . (3.3 From (2.2 in this case one obtains,
, . Co
With regard to(3.1), from (2.47) we obtain S= - (3.8
- 2., 12
T_ K_kv3+ men® 5[MS+ DS+GP—2F]. (3.4  With Co being the integration constant. Equati@) in this
T T 72 2 case takes the form
Let us now study3.4) for some special choice of spinor field . m?+n®
. ) T= +=MC,. (3.9
nonlinearity. T 2
1. Linear spinor field The solution 0f(3.9) can be written in quadrature as
To begin with we consider the linear case setti(d,J) dr
0. It immediately leads t®=0 andg=0. Equation(3.4) f ~t  E=const.
now takes the form V2(m?+n?)In 7+ kMCyr+E
(3.10
kk m’+n? « : . .
V! +—MS. (3.5  For the solution to be meaningful, the integrand(8110
T T 7 2 should be positive. This means that ferto have an initial

. . _ value close to zero, one has to set small valuesrfandn,
As one sees, to solvd.5), we have to findv= and Sfirst.  while the constanE should be large enough.

From (2.26 for the linear spinor field we have The components of the spinor field can be obtained from
‘ (2.33. In the case considereg=0, Q=(m—n)/27 and®
S-2;Q%’=0, 36a M

2. Nonlinear spinor field with k=0

_on A2l 0_ Let us now consider the nonlinear spatially independent
Po 20 Qo' —2MA=0, (3.60 spinor field. We first choose the nonlinear term as a function

124006-7



BIJAN SAHA

PHYSICAL REVIEW D 69, 124006 (2004

of 1=5? only, followed by a massless spinor field with the This equation can be solved exactly as in the previous case if

nonlinear term being a function df= P2,

If the nonlinear spinor term is given a&s=F(1)=\S",
where\ is the (self-) coupling constant, then in view &
=Cqy/ 7 for 7, we find

2 2
m<+n<  « kN(p—2)C{J
T= E 0+ T’ (311)
with the solution in quadrature
dr .
V2(m?+n?)In 7+ kMCyr— kNCI7% "+E .
(3.12

we setk=0 and choose the spinor field nonlinearity s
=F(l) or in case of a massless spinor fidld=-F(J) or F
=F(I=J).

For the reason that will be given afterwards, we consider
the nonlinear spinor field in a BV universe setting=n in
the corresponding equations. To begin with we write the
equations for bilinear spinor forms. Settimg=n in (2.2
one finds

As one sees, the inclusion of the nonlinear term sets an ad-

ditional restriction on the smallness of the initial valuerof

The components of the spinor field, as in linear case, can be

obtained from(2.33. In the case considered,=0 andQ
=(m-—n)/2c.

For the massless spinor field, if the nonlinear term is cho-

sen a==F(J)=AP7”, from (2.26) for P we find

P=D,/r. (3.13
The equation forr then takes the form
2.2 —2\D7
L (3.1
with the solution in quadrature
dr
j V2(m?+n?)In 7— kADJ72 7+ E =t @19

So—2GAS=0, (3.20a
Po—2®A=0, (3.20h

A+ 2D Py +2GS,=0, (3.209
Ad=0, (3.200

V3=0, (3.20¢

V3+ 20032602 =0, (3.20f)
- 2dV3=0, (3.209

M+ 2GV3i=0, (3.20h

with the following relations between spinor bilinear forms,

The components of the spinor field can be obtained from

(2.33. In the case considere@=(m—n)/2c and®=0.

B. Case Il

Let us now consider the cassetting

c=4r. (3.16

This leads to the following expressions famand b:

1/(m+n)
a=|7mN exp( —ka Vodt) (3.17)
and
1/(m+n)
bZ[Tn/Z/ N ex;{ —KkJ' Vodt) J

(3.18

Under this assumption frorf2.47) we get

7=2xkkV3 7+ 2(m?+n2) + k[ MS+ DS+ GP— 2F ] 7.
(3.19

(So)2+ (Pg)?+(A9)?=By, (3.213
Ag: B,,
(3.21b
V5=Bg,
(3.210
(V3)2+(Q392+(Q3H%=8,,
(3.210

whereB; are the constants of integration.
Let us now go back to Einstein’s equations. Equation
(2.169 in this case takes the form
a b_ xk 0

a b——ﬁv . (3.22

Unlike the BVI universe, where the corresponding equation,
i.e., (2.169, connects all the three metric functioagb,c,
Eq. (3.22 relates onlya andb between them:

a=N exp[—(xk/m)f Vodt}b. (3.23

Recallingr=abc in view of (3.23 and(3.16) we can now
expressa andb in terms of r:

a= N2 14 ex;{—(KkIZm) f Vodt}, (3.29
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o 0 Thus, for the nonlinear term in the Lagrangian given as
b=N""*r exr{(xk/Zm)f \ dt} F=F(l), the components of the spinor field take the form
(3.25 (4]
In view of (3.24), (3.25 and the fact thai/8=0, from ¢//1(t)=(C1/\/;)exp _iJ (M —D)dt}, (3.313
d| d | b\|| 2m?
a @M )T e T (320 b= (o rexg —i | <M—D>dt}, (3318
one obtains
7 orc (¢ ) m Y5(H)=(Cs/\m)exy iJ (M—D)dt}, (3319
—=3-—+3|-——|—-4—. (3.27
TC c 2 c?
On the other hand2.46) in this case has the form :,//4(t)=(C4/\/7-)exp if (M —D)dt}. (3.319

T m ok xk
—=2—+5[3(MS+DS+GP—2F)]+ —V°. _ _
T C 2 c HereC,,C,,C;,C, are the integration constants, such that

(3.28
Ci+C5—C5-C3=Cy,
Combining(3.27) and(3.28 we obtain
W|th C():ST.
c ¢ rc «kk s m?ok In case, the nonlinear term is given By=F(J), and the
c 2treT 3V +2?+ 5[MS+DS+gP-2F]. components of the spinor field have the form
(3.29 1 _ _
=—(D,e'7+iD3e '), 3.32
Thus we see that a straightforward insertionnofn into i \/7-( ' ° ) ( ?

(2.47) does not lead t63.29, since Eq.(2.169 for different

Bianchi type space-times gives different relations between _ _
the metric functions. Here we simply note that for a BIlI Y= T(Dze"’+iD4e*'”),
metric, wheren=0, Eq.(2.169 relatesa andc, whereas for T

a Bl universe, as well as for a FRW universe, there is no such (3320

equation. Note that, though in a BV space-time whare 1

=n, many equations in question become significantly sim- 3= —(iD,'7+D4e 1),

pler, it is not enough to write the solutions explicitly, since Jr

V3, S, andP are still not explicitly defined. As in the previ- (3.320

ous case, we again consider only a time-dependent spinor

field settingk=0. It will give us enough ground to solve 1 i o

both spinor and gravitational field equations explicitly. Ya= TT('DZG +Dge ).

Before studying Eq(3.29 in detail, we go back to the (3.329

nonlinear spinor field equations. With=n andk=0 for the

spinor field we immediately find Here o= [Gdt, and the integration constarily obey
Uy+idUuy—Gus=0, (3.308 2(Df+D3-D35-D3) =Dy,
- _ with D to be determined fron®=Dg,/7. Thus we see that
Uz T DUz —GU,=0, (3.30D in the cases considered here the spinor bilinear forms are
. inversely proportional tar, i.e.,S=Cy/7 andP=Dg/7.
uz—iduz+Gu,; =0, (3.309 Let us now go back t¢3.29. As one sees, fok=0, the
) assumptionr=c makes no sense, since in this case the met-
u,—idu,+Gu,=0. (3.300 ric functionsa and b turn out to be constant. So as was

) ) . ) mentioned earlier, we consider the case vath\/7. Under
As in BVI space-time we consider the nonlinear term to bethis assumption front3.29 we get

F=F(l), or for a massless spinor field=F(J) or F

=F(1+J). The spinor field equatiof3.30 completely co- 7=4m*+ k[ MS+ DS+ GP—2F ] 7. (3.33
incides with those for a Bl metric. So in what follows we

simply write the corresponding results without any details. AConsider the case with=\S”. Taking into account tha®
detailed analysis of these results can be found in Ref. =Cy/7andG=0, from (3.33 one derives
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T=4m*+ k[MCo+\C{(7=2)7'"7],  (3.34

with the solution in quadrature

dr
=t. (3.3
V(8M?+2kMCq) 7— 2\ kCI 7~ "+E (333

]

Note that, for a linear spinor field and for the massless spinot
field with F=AP” one has to puh=0 andM =0, respec-
tively, into (3.35. It should be noted that for a positive con-
stantE, in case of a linear spinor field may have even a
trivial initial value.

C. Numerical solutions

Let us now demonstrate some numerical solutions to the
Egs. (3.1 and(3.34). For simplicity we consider the case o R A
with F=F(1), since by setting the self-coupling constant Z,lnzr:g)l\y:no—l 3 and7=-4in a BVl model withm=2, n
=0 one comes to linear case, while setting the spinor mass ' o
M =0 we have the case with=F(J).

FIG. 1. View of the potentiaU () (3.39 for different values of

As one sees from Fig. 2, a negativegives rise to an
1. Case | oscillatory mode of evolution. Depending on the valueEof

we have two type of solutions: periodicorresponding to

Let us first consider the case with=AS”. In this case E=0 andE= 10) and bounded in a finite interv@borre_

the equation in question has the following form: sponding toE =25).
. Let us now see whether the dominant energy condition
=F(p), (3.36  holds here. The dominant energy condition in a BVI universe

has the form
where we define

242 To=Tia%e 2M4+Toh%e?2+T5c?,  (3.403
F(P) =ty ——— +0m*+ k[qsM + (7= 2) 71" 7],
(3.3 To=Tia%e *™, (3.40D
Here p is the set of problem parameters, namefy, T9=T2b%e?, (3.400
={x,m,n,M,\,n}. Equation (3.3 admits the following
first integral, 0— T3.2
To=Tic% (3.40d
r=\2[E-U(7)], (3.39
Forc= 7 andk=0 with regard t03.2) and(3.3), Egs.(3.40
with the potential in a BVI space-time can be written as
U(7)=—[ga(m*+n?)In(7) +gom*7 b
+ k(qzM 71— g A 72" 7)]. (3.39 35| e T

Note that settingg,=1, 9,=0, q3=0.5,0,=0.5 and q; 3

=0,0,=4,03=1,9,=1, we get Eqs(3.11) and(3.34) cor- 25
responding toc= 7 in a BVI universe anct=/7 in a BV
universe, respectively. E
Here we illustrate some numerical results obtained for 15 3
cases considered above. The parameters of the equations &
taken as follows: for spatial inhomogeneity parameters we 1

e 2

setm=2 andn=1, whereas Einstein’'s gravitational con- 05
stantk is taken to be unity. For the nonlinear spinor field we
chooser=0.1. As one sees fronB.39 and (3.38, for a 0 i ’ ' ' ' ; ' '
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

negativey the value ofr should be bound from above; on
the other hand, since the metric is positively defireghould
be non-negative as well. In Figs. 1 and 2 we show some FIG. 2. Evolution ofr as a solution 0f3.38 with the potential
numerical results for some negative valuepf given in Fig. 1 for different values dE. Here n=—4.

t
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100 . ; . ; ;
0
-100 |
-200 |
-300 |
Energy ———
400 | 0 — ]
Pr3

Pr1+Pr2+Pr3 -
_500 1 1 1 1

0 05 1 15 2 25 3

FIG. 3. View of energyTy, and pressure components; , i
=1,2,3 corresponding t8.44) for =—4. Here Prl, Pr2, and Pr3
denote the pressure components alrng andz axes, respectively.

T 82T1T2(m7 n)/(m+n)e72mz+ Tngz(mfn)/(m+ n)e2nz+ TgTz,

(3.413
T82T%T2(mfn)/(m+n)e72mz, (3.41b
T 0= T2, 2(m-n/(m+me2nz (3.419
TOBTgTZ, (3.419

whereas, forc=+/r and k=0 on account of(3.24 and
(3.25, EQgs.(3.40 in a BVI space-time take the form

To=TiVNe 2"+ T5(\7/N)e*"*+T3r, (3.423
T=TH/rNe 2™, (3.42h
To=To(NTIN)e*™, (3.429
To=Tir (3.429
The components of the energy-momentum tensorkfor
=0 are
TI=MS-F, Ti=T3=T3=DS-F. (343
For F=\S", (3.43 in account ofS=C,/r reads
M A ANnp—1
oM Mo Mo,
T 77

For simplicity here we se€y=1. As one sees fron3.44),
for a negativen (say = — 74), the energy density of the
systemT 9 becomes negative for>(M/\)¥*7) and de-

creases as”t. On the other hand, all the pressure compo-

nents are negative, but the components alongxttaad y
axes decreases a§712(M=M/(m+n) gng l71=2(m=n)y/(m+n)

PHYSICAL REVIEW 69, 124006 (2004

1000 T T T T T T T

-1000

-2000

-3000

-4000

Energy ——
Pressure

0 2 4 6 8

-5000

FIG. 4. View of energyTy, and pressure componen, for 7
=—4. It clearly shows the dominance of the pressure component
beginning at some value of

the pressure components of the system are independent of
the integration constartf, whereas the value af in case of
a negativen strongly depends on it. As shown in Fig. 2, for
some values oOE, 7 runs between 0 and 3, while the largest
pressure component in the case in question becomes domi-
nant only for7>10. Figure 3 shows the dominance of en-
ergy in the regionre (0,3). This means that for a suitable
choice of integration constari it is still possible to con-
struct regular solutions without breaking the dominant en-
ergy condition.

Let us now illustrate the behavior of for the casec
=4/7 in a BV space-timgsee Figs. 5 and)6As one sees
from Fig. 6, a negativey gives rise to the oscillatory mode
of evolution. Depending on the value Bfwe have two types
of solutions. Unlike in the previous case here we have a
solution where the process may repeat after some interval of
time(s) (as it is seen foE=25 in Figs. 2 and 6 As in the
previous case the dominant energy conditions holds for a
negativer.

]

(see Fig. 3 It means sooner or later one of the pressure

components becomes dominant. A graphical view of it is
given in Fig. 4. It should be noted that the energy density and;= -3

FIG. 5. PotentialU(7) (3.39 for different values ofp, namely

andn=—4 for a BV model withm=n=2 andA=0.1.
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FIG. 6. Evolution ofr as a solution of3.38 for different values FIG. 8. Evolution of r for a positive » in both BV and BVI

of E with »=—4. The corresponding potential in this case is the space-times. As one sees, the evolution in BV is rather rapid.
one given in Fig. 5.

For simplicity we only consider the case in a BVI metric
Finally we compare the models for a positiyesee Figs. with c=r. Note that for the case with= /7 we come to
7 and 8. As was expected, in this case the universe expand&he) similar results.
monotonically. In case of a BV model the expansion process

is rather rapid.

3. Case lll
We now consider the case whé&n=exp(©). In this case
2. Case Il we have
We now consider the case whEr=sin(9). In this case we
have
m2+n? )
M2+ n2 F=a +02m*+ x{dsM + A [1-27]exp(1/7) ]}

f:qlf_qumz‘i‘ K{an +q4)\[COS(l/T)

(3.47)
=27 sin(1/7)]} (3.4H ) )
with the potential
with the potential
— 2 2 2
U= —{qy(m?+n?)In(7) + g,m?r U=—{q;(m“+n?)In(7)+qg,m°r
_ 2
+k[gMr—aA 7 SN (346 TlaM 7=k expl/nl} (348
20 . . . . . . . . .
25 . . . . . . ——
pexpvi
o
o
"BV
"BVI" o
-100 s —
0 05 1 15 2 25 3 35 4 45 5 15 . s s s s s s s s
1 0 05 1 15 2 25 3 35 4 45 5
FIG. 7. Potential of the system for a positive namely =4 '

for both BV (m=2, n=1) and BVI (m=n=2) models forx
=0.1. Unlike the case with negativg the potential in this case is
not bounded from the right, allowing expand infinitely.

FIG. 9. View of the potential(7) given by (3.46 (“psinvi” )

and (3.48 (“pexpvi”), respectively, in a BVl model withm=2,
n=1, andA=0.1.
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30

: r : : r : IV. CONCLUSION

"fauevi’” ——
»s | Hausvl® e e A self-consistent system of nonlinear spinor and gravita-
tional fields, modeled by a BVI space-time, is studied. Exact
00 | solutions of the spinor and gravitational field equations are
obtained for a special choice of the spinor field nonlinearity
and the space-time inhomogeneity. It is shown that if the
w15 nonlinear spinor term is chosen to be a function of the in-
variants| =S? or J=P?, with a negative power, the model
10 provides an oscillatory mode of expansion. For a suitable
value of the integration constart these solutions are
St singularity-free at any space-time point. We showed also that
though a suitable choice ofi andn in a BVI metric yields

other Bianchi models, namely, BV, BIIl and Bl, the solutions
of Einstein equations in these universes cannot be obtained
by simply settingm and n in the corresponding solutions
FIG. 10. Evolution ofr for the potentials given in Fig. 9. Here obtained in a BVI universe, since in different models the
“tausvi” corresponds toF =\ sin(S) and “tauevi” corresponds to  metric functions are connected to each other differently. In-

0 L 1 1 L 1 L L 1 L
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t

F=\exp@®. deed, it follows from Eq(2.168,
i i | - a b ¢
_As' in the previous case we consider only the case with MmN —(m—n)~=xT 2. 4.1
c=rin a BVI metric. a b c

In Fig. 9 the corresponding potentials with the nonlinear
term being a sinusoidal or exponential function ®fare  that for a BVI model the metric functiona,b,c are con-
shown for the case when we assume tbatr. It is clear nected with each other H2.39), whereas, for a BV universe,
from these figures that with the nonlinear terms considered4.1) gives a relation betweea andb by (3.23 and for a
here the process of evolution is similar to that of a power lawBlll space-time it connecta andc. For Bl or FRW models
nonlinearity with a positivep. (See Figs. 8 and 20 Eq. (4.1) does not exist.
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