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Boundary value problem for five-dimensional stationary rotating black holes
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We study the boundary value problem for stationary rotating black hole solutions to the five-dimensional
vacuum Einstein equation. Assuming the existence of two additional commuting rotational Killing vector fields
and sphericity of the horizon topology, we show that a black hole with a regular event horizon is uniquely
characterized by its mass and a pair of angular momenta.
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I. INTRODUCTION

In recent years there has been renewed interest in hi
dimensional black holes in the context of both string the
and the brane world scenario. In particular, the possibility
black hole production in a linear collider has been sugges
@1–4#. Such phenomena play a key role in getting insig
into the structure of space-time; we might be able to pro
the existence of extra dimensions and have some informa
about quantum gravity. Since the primary signature of bla
hole production in a collider will be Hawking emission fro
the stationary black hole, the classical equilibrium probl
of black holes is an important subject. The black holes p
duced in colliders will be small enough compared with t
size of the extra dimensions and generically have ang
momenta; they will be well approximated by the higher
mensional rotating black hole solutions found by Myers a
Perry @5#. The Myers-Perry black hole, which has an eve
horizon with spherical topology, can be regarded as a hig
dimensional generalization of the Kerr black hole. One mi
expect that such a black hole solution describes the clas
equilibrium state continued from the black hole producti
event, if it shows stability and uniqueness like the Kerr bla
hole in four dimensions. The purpose of this paper is
consider the uniqueness and nonuniqueness of rotating b
holes in higher dimensions.

The uniqueness theorem states that a four-dimensi
black hole with a regular event horizon is characterized o
by mass, angular momentum, and electric charge@6,7#. Re-
cently, the uniqueness and nonuniqueness properties of
or higher dimensional black holes have also been stud
Emparan and Reall found a black ring solution of the fiv
dimensional vacuum Einstein equation, which describe
stationary rotating black hole with the event horizon hom
morphic toS23S1 @8#. In a certain parameter region, a bla
ring and a~Myers-Perry! black hole can carry the same ma
and angular momentum. This might suggest the nonuniq
ness of higher dimensional stationary black hole solutio
For example, Reall@9# conjectured the existence of a statio
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ary, asymptotically flat higher dimensional vacuum bla
hole admitting exactly two commuting Killing vector field
although all known higher dimensional black hole solutio
have three or more Killing vector fields. In six or highe
dimensions, the Myers-Perry black hole can have an a
trarily large angular momentum for a fixed mass. The ho
zon of such a black hole greatly spreads out in the plane
rotation and looks like a black brane in the limit where t
angular momentum goes to infinity. Hence, Emparan a
Myers @10# argued that rapidly rotating black holes are u
stable due to the Gregory-Laflamme instability@11# and de-
cay to stationary black holes with rippled horizons, implyin
the existence of black holes with less geometric symme
compared with Myers-Perry black holes. For supersymme
black holes and black rings, a string theoretical interpretat
was given by Elvang and Emparan@12#. They showed that
the black hole and the black ring with the same asympto
charges correspond to different configurations of branes,
ing a partial resolution of the nonuniqueness problem of
persymmetric black holes in five dimensions. On the ot
hand, we have uniqueness theorems for black holes at
in the static case@13–18#. Furthermore, the uniqueness
stationary black holes is supported by an argument base
linear perturbation of higher dimensional static black ho
@19,20#. There exist regular stationary perturbations that f
off in the asymptotic region only for vector perturbation, a
thus the number of independent modes corresponds to
rank of the rotation group, namely, the number of angu
momenta carried by the Myers-Perry black holes@21#. This
suggests that higher dimensional stationary black holes h
a uniqueness property in some sense, but some amendm
will be required. Here we consider the possibility of a r
stricted black hole uniqueness which is consistent with a
argument about uniqueness or nonuniqueness. Although
existence of the black ring solution explicitly violates bla
hole uniqueness, there is still a possibility of black ho
uniqueness for fixed horizon topology@22#. Hence we re-
strict ourselves to stationary black holes with spherical top
ogy.

In this paper, we consider the asymptotically flat, bla
hole solution to the five-dimensional vacuum Einstein eq
tion with a regular event horizon homeomorphic toS3, ad-
mitting two commuting spacelike Killing vector fields and
©2004 The American Physical Society05-1
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stationary~timelike! Killing vector field. The two spacelike
Killing vector fields correspond to rotations in the (X1-X2)
plane and (X3-X4) plane in the asymptotic region ($Xm% are
the asymptotic Cartesian coordinates!, respectively, which
commute with each other. According to the argument
Carter@23#, it is possible to construct a timelike Killing vec
tor field tangent to the fixed points~namely, the axis! of the
axisymmetric Killing vector field from the given timelike
Killing vector field. Repeating this procedure for each co
muting spacelike Killing vector field, the timelike Killing
vector field obtained also commutes with both space
Killing vector fields. Hence, it is natural to assume that
the three Killing vector fields commute with each other. T
five-dimensional vacuum space-time admitting three co
muting Killing vector fields is described by the nonlinears
model @24#. Then the Mazur identity@25# for this system is
derived. We show that the five-dimensional black hole so
tion with a regular event horizon of spherical topology
determined by three parameters under the appropriate bo
ary conditions.

The remainder of the paper is organized as follows.
Sec. II A, we give the field equations for the five
dimensional vacuum space-time admitting three commu
Killing vector fields. In Sec. II B, we introduce the matri
form of the field equations to clarify the hidden symmetry
this system, following Maison@24#. Then the Mazur identity
that is useful to show the coincidence of two solutions
derived in Sec. III. In Sec. IV, we determine the bounda
conditions. We summarize this paper and give a discus
of related matters in Sec. V.

II. FIVE-DIMENSIONAL VACUUM SPACE-TIME
ADMITTING THREE COMMUTING KILLING VECTOR

FIELDS

Assuming symmetry of space-time, the Einstein equati
reduce to equations for scalar fields defined on a th
dimensional space. Then we show that the system of sc
fields is described by a nonlinears model.

A. Weyl-Papapetrou metrics

We consider the five-dimensional space-time admitt
two commuting Killing vector fieldsj I5] I (I 54,5). The
metric can be written in the form

g5 f 21g i j dxidxj1 f IJ~dxI1wi
Idxi !~dxJ1wj

Jdxj !, ~1!

wherei , j 51,2,3, f 5det(f IJ). The three-dimensional metri
g i j , the functionswi

I and f IJ are independent of the coord
natesxI (x45f,x55c, and we will later identifyj4 andj5
as Killing vector fields corresponding to two independe
rotations in the case of asymptotically flat space-time!. We
define the twist potentialv I by

v I ,m5 f f IJAugue i j mg img jn]mwn
J , ~2!

wherem51, . . . ,5,g5det(g i j ), g i j is the inverse metric of
g i j , andelmn denotes a totally skew-symmetric symbol su
thate12351,e Imn50. Then the vacuum Einstein equation r
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duces to the field equations for the five scalar fieldsf IJ and
v I defined on the three-dimensional space:

D2f IJ5 f KLD f IK•D f JL2 f 21Dv I•DvJ , ~3!

D2v I5 f 21D f •Dv I1 f JKD f IJ•DvK , ~4!

and the Einstein equations on the three-dimensional spa

(g)Ri j 5
1

4
f 22f ,i f , j1

1

4
f IJ f KL f IK ,i f JL, j1

1

2
f 21f IJv I i vJ j ,

~5!

whereD is the covariant derivative with respect to the thre
metric g i j and the dot denotes the inner product determin
by g i j .

Here we assume the existence of another Killing vec
field j35]3 which commutes with the other Killing vector
as @j3 ,j I #50 ~we will later identify j3 as the stationary
Killing vector field in the case of asymptotically flat spac
time!. Then the metric can be written in Weyl-Papapetro
type form @26# as

g5 f 21e2s~dr21dz2!2 f 21r2dt21 f IJ~dxI1wIdt!~dxJ

1wJdt!, ~6!

where we denotex35t, and all the metric functions depen
only onr andz. Once the five scalar fieldsf IJ ,v I are deter-
mined, the other metric functionss andwI are obtained by
solving the following partial derivative equations:

2

r
s ,r5

1

4
f 22@~ f ,r!22~ f ,z!

2#

1
1

4
f IJ f MN~ f IM ,r f JN,r2 f IM ,zf JN,z!

1
1

2
f 21f IJ~v I ,rvJ,r2v I ,zvJ,z!, ~7!

1

r
s ,z5

1

4
f 22f ,r f ,z1

1

4
f IJ f MNf IM ,r f JN,z

1
1

2
f 21f IJv I ,rvJ,z , ~8!

w,r
I 5r f 21f IJvJ,z , ~9!

w,z
I 52r f 21f IJvJ,r . ~10!

The f IJ andv I are given by the axisymmetric solution of th
field equations~3! and ~4! on the abstract flat three-spac
with the metric

g5dr21dz21r2dw2. ~11!

Thus the system is described by the action
5-2
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S5E drdzrF1

4
f 22~] f !21

1

4
f IJ f KL] f IK•] f JL

1
1

2
f 21f IJ]v I•]vJG . ~12!

B. Matrix representation

The action ~12! is invariant under the globalSL(3,R)
transformations as shown by Maison@24#. Instead of the
nonlinear representation by the scalar fieldsf IJ andv I , we
introduce theSL(3,R) matrix field F as

F5S f 21 2 f 21vf 2 f 21vc

2 f 21vf f ff1 f 21vfvf f fc1 f 21vfvc

2 f 21vc f fc1 f 21vfvc f cc1 f 21vcvc
D ,

~13!

which is symmetric (tF5F) and unimodular (detF51). F
transforms as a covariant, symmetric, second-rank te
field under globalSL(3,R) transformations. When the Kill-
ing vector fieldsjf andjc are spacelike, all the eigenvalue
of F are real and positive. Therefore, there is anSL(3,R)
matrix field g which is a square root of the matrix fieldF,
namely,

F5g tg. ~14!

This square root matrixg is determined up to globalSO(3)
rotation because the rotationg°gL for any LPSO(3) is
canceled byL215 tL. Since anySL(3,R) matrix field g
conversely defines a symmetric and unimodular matrix fi
by F5g tg, the matrix F defines a map from the two
dimensionalr-z half plane~base space! to the coset space
SL(3,R)/SO(3).

The inverse matrix ofF is explicitly given by

F215S f 1 f IJv IvJ f fJvJ f cJvJ

f fJvJ f ff f fc

f cJvJ f fc f cc
D , ~15!

and transforms as a second-rank contravariant tensor fiel
the base space.

The current matrix defined by

Ji5F21] iF ~16!

transforms linearly according to the adjoint representation
SL(3,R). This current is conserved, namely, every elem
of DiJ

i independently vanishes due to the field equations~3!
and ~4!.

The action~12! can be expressed in terms ofJi or F as
12400
or

d

on
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t

S5
1

4E drdzr tr~JiJ
i !, ~17!

5
1

4E drdzr tr~F21] iFF21] iF!. ~18!

This action takes a nonlinears-model form.

III. MAZUR IDENTITY

Let us consider two different sets of the field configur
tionsF [0] andF [1] satisfying the field equations~3! and~4!.
To show the coincidence of the two solutions, we will deri
the Mazur identity for the nonlinears model on the symmet-
ric spaceSL(3,R)/SO(3).

A bull’s eye ( denotes the difference between the val
of the functional obtained from the field configurationF [1]
and the value obtained fromF [0] , e.g.,

J
(

i5J[1]
i 2J[0]

i 5F [1]
21] iF [1]2F [0]

21] iF [0] . ~19!

The deviation matrixC is defined by

C5F
(

F [0]
215F [1]F [0]

2121, ~20!

where1 is the unit matrix. The deviationC vanishes if and
only if the two sets of field configurations~@1# and @0#! co-
incide with each other. DifferentiatingC,

DiC5F [1] J
(

iF [0]
21 ~21!

and taking the divergence, we obtain

Di~DiC!5F [1]Di J
(

iF [0]
211F [1]$J[1] iJ[1]

i 22J[1] iJ[0]
i

1J[0] iJ[0]
i %F [0]

21 . ~22!

Due to the current conservationDiJ
i50, the first term on the

right hand side of Eq.~22! vanishes. SincetJi5FJiF21,
the second term on the right hand side can be rewritten

F [1]$J[1] iJ[1]
i 22J[1] iJ[0]

i 1J[0] iJ[0]
i %F [0]

21

5F [1]~J[1]
i J

(

i2 J
(

iJ[0]
i !F [0]

21 ~23!

5 tJ[1]
i F [1] J

(

iF [0]
212F [1] J

(

iF [0]
21 tJ[0]

i . ~24!

Then, taking the trace, we obtain the identity

~DiD
i tr C!5tr$ t J

(
iF [1] J

(

iF [0]
21%. ~25!

SinceD is covariant derivative with respect to the abstra
flat three-metric~11! and all quantities are independent ofw,
the above identity~25! is
5-3
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]a~r]atr C!5rhabtr$
t J
(

aF [1] J
(

bF [0]
21%, ~26!

wherehab is the flat two-dimensional metric

h5dr21dz2. ~27!

Integrating Eq.~26! over the relevant regionS5$(r,z)ur
>0% in the r-z plane, and using Green’s theorem, we fin

R
]S

r]atr CdSa5E
S
rhabtr$

t J
(

aF [1] J
(

bF [0]
21%drdz,

~28!

where the boundary]S corresponds to the horizon, the tw
planes of rotation, and infinity. Since the matrixF has a
square root matrixg like Eq. ~14!, the integrand of the righ
hand side of Eq.~28! is written as

rhabtr$
t J
(

aF [1] J
(

bF [0]
21%5rhabtr$g[0]

21 t J
(

ag[1]
tg[1] J

(
b tg[0]

21%.

~29!

Thus, we obtain the Mazur identity

R
]S

r]atr CdSa5E
S
rhabtr$M a tM b%drdz, ~30!

where the matrixM is defined by

M a5g[0]
21 t J

(
ag[1] . ~31!

When the current differenceJ(
a is not zero, the right hand

side of the identity~30! is positive. Hence we must hav
J(

a50 if the boundary conditions under which the left ha
side of Eq.~30! vanishes are imposed at]S. Then the dif-
ferenceC is a constant matrix over the regionS. The lim-
iting value ofC is zero on at least one part of the bounda
]S is sufficient to obtain the coincidence of two solutio
F [0] andF [1] .

IV. BOUNDARY CONDITIONS AND COINCIDENCE
OF SOLUTIONS

When one use the Mazur identity, the boundary conditio
for the fieldsF ~i.e., f IJ andv I) are needed at infinity, the
two planes of rotation, and the horizon. We will requi
asymptotic flatness, regularity at the two planes of rotati
and regularity at the spherical horizon. Under these con
tions, the Mazur identity shows coincidence of the solutio

An asymptotically flat space-time with massM
53pm/8G and angular momentaJf5pma/4G and Jc
5pmb/4G ~where we restrict ourselves to the case in wh
m.a21b212uabu) has a metric in the following form:
12400
s

,
i-
.

g52F12
m

r 2 1O~r 23!Gdt22F2ma

r 4
1O~r 25!Gdt~ydx

2xdy!2F2mb

r 4
1O~r 25!Gdt~wdz2zdw!

1F11
m

2r 2 1O~r 23!G@dx21dy21dz21dw2#. ~32!

Here we introduce the coordinates

x5Ar 21a2 sinu cos@f̄2tan21~a/r !#, ~33!

y5Ar 21a2 sinu sin@f̄2tan21~a/r !#, ~34!

z5Ar 21b2 cosu cos@c̄2tan21~b/r !#, ~35!

w5Ar 21b2 cosu sin@c̄2tan21~b/r !#, ~36!

and proceed with the further coordinate transformations

df̄5df2
a

r 21a2 dr, ~37!

dc̄5dc2
b

r 21b2 dr, ~38!

then one obtains

g52F12
m

r 2 1O~r 23!Gdt21F2ma~r 21a2!

r 4
sin2u

1O~r 23!Gdtdf1F2mb~r 21b2!

r 4
cos2u1O~r 23!Gdtdc

1F11
m

2r 2 1O~r 23!G3F r 21a2cos2u1b2sin2u

~r 21a2!~r 21b2!
r 2dr2

1~r 21a2cos2u1b2sin2u!du21~r 21a2!sin2udf2

1~r 21b2!cos2udc2G . ~39!

Here the metric~39! admits two orthogonal planes of rota
tion u5p/2 andu50, which are specified by the azimuth
anglesf andc, respectively. The planesu50 andu5p/2
are invariant under rotation with respect to the Killing vect
fields ]f and ]c , respectively. Both anglesf and c have
period 2p. Comparing the asymptotic form~39! with the
Weyl-Papapetrou form~6!, we derive boundary conditions.

The regularity on the invariant planes requires

gff5 f ff5sin2u f̃ ff , ~40!

gcc5 f cc5cos2u f̃ cc , ~41!

gfc5 f fc5sin2u cos2u f̃ fc , ~42!
5-4
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TABLE I. Boundary conditions forf IJ .

f-invariant plane c-invariant plane Horizon Infinity
m→11 m→21 l→c l→1`

f̃ ff
O(1) O(1) O(1) 2l1(a22b21m)/21O(l21/2)

f̃ fc
O(1) O(1) O(1) O(l21/2)

f̃ cc
O(1) O(1) O(1) 2l1(b22a21m)/21O(l21/2)
in

e

-
on

r-

ur
where the quantities with a tilde are regular at both the
variant planes and the black hole horizon.

The asymptotic behavior off̃ ff and f̃ cc is derived from
Eq. ~39!, and f̃ fc is at mostO(r 21) since the Killing vectors
]f and]c are asymptotically orthogonal:

f̃ ff5r 21a21
m

2
1O~r 21!, ~43!

f̃ cc5r 21b21
m

2
1O~r 21!, ~44!

f̃ fc5O~r 21!. ~45!

Since f fc is negligible as compared withf ff and f cc in
the asymptotic region, the leading terms ofgtf andgtc are
f ffwf and f ccwc, respectively. Then we have

f ffwf5
masin2u

r 2 1O~r 23!, ~46!

f ccwc5
mbcos2u

r 2 1O~r 23!. ~47!

Thus we obtain

wf5
ma

r 4 1O~r 25!, ~48!

wc5
mb

r 4 1O~r 25!. ~49!

Similarly, we have

gtt52 f 21r21 f ffwfwf12 f fcwfwc1 f ccwcwc

~50!

5211
m

r 2 1O~r 23!. ~51!

Here theO(r 22) term must come from the2 f 21r2 term
since thewI areO(r 24). Thereforer behaves as

r25@r 41~a21b2!r 21O~r !#sin2u cos2u. ~52!

r2 vanishes not only at thef-invariant plane (sinu50)
andc-invariant plane (cosu50), but also at the horizon du
12400
-to the form of the metric~6!. Since the horizon has the to
pology of S3, let us introduce the spheroidal coordinates
S as

z5lm, ~53!

r25~l22c2!~12m2!, ~54!

wherem5cos 2u. Then the relevant region isS5$(l,m)ul
>c,21<m<1%. The boundariesl5c, l51`, m51, and
m521 correspond to the horizon, infinity, thef-invariant
plane, and thec-invariant plane, respectively. In these coo
dinates, the two-dimensional metric onS is given by

h5dr21dz25~l22c2m2!S dl2

l22c2 1
dm2

12m2D . ~55!

The boundary integral in the left hand side of the Maz
identity ~30! is explicitly written as

R
]S

r]atr CdSa5E
c

`

dlSAhll

hmm
r

] tr C

]m DU
m521

1E
21

11

dmSAhmm

hll
r

] tr C

]l D
l5`

1 Èc

dlSAhll

hmm
r

] tr C

]m DU
m511

1E
11

21

dmSAhmm

hll
r

] tr C

]l D
l5c

,

~56!

where

] tr C

]xa
5

]

]xa
@ f [1]

21~2 f
(

1 f [0]
IJ v

(

Iv
(

J!1 f [0]
IJ f

(

IJ#

for xa5l,m. ~57!

Here the relation betweenl and r is given by

l5
r 2

2
1

a21b2

4
1O~r 21! ~58!

or
5-5
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r 5A2l1/2F12
a21b2

8l
1O~l23/2!G . ~59!

The boundary conditions forf IJ are summarized in Table
I, where

f ff5
~12m!

2
f̃ ff , ~60!

f fc5
~12m!~11m!

4
f̃ fc , ~61!

f cc5
~11m!

2
f̃ cc . ~62!

Next, let us derive the boundary conditions for the tw
potentials. By the definition of twist potentials, Eq.~2!,

]vf

]l
52

f f fJ

l22c2

]wJ

]m
,

]vf

]m
5

f f fJ

12m2

]wJ

]l
, ~63!

]vc

]l
52

f f cJ

l22c2

]wJ

]m
,

]vc

]m
5

f f cJ

12m2

]wJ

]l
.

~64!

From them dependence off IJ andwI , we can obtain them
dependence of the derivatives of the twist potentials: am
511,

]vf

]l
5

]vf

]m
5

]vc

]l
50 ~65!

and

]vc

]m
Þ0 ~66!

if maÞ0, and atm521,

]vc

]l
5

]vc

]m
5

]vf

]l
50 ~67!

and

]vf

]m
Þ0 ~68!

if mbÞ0.
In the asymptotic region (l→1`), the derivatives of the

twist potentials behave as

TABLE II. Boundary conditions forv I .

f-invariant plane c-invariant plane Horizon Infinity
m→11 m→21 l→c l→1`

ṽf
O„(12m)2

… O(11m) O(1) O(l21/2)

ṽc
O(12m) O„(11m)2

… O(1) O(l21/2)
12400
t

]vf

]l
5O~l23/2!, ~69!

]vf

]m
52

ma

2
~12m!1O~l21/2!.

~70!

Thus we obtain

vf52
ma

4
m~22m!1~12m!2~11m!O~l21/2!, ~71!

and similarly

vc52
mb

4
m~21m!1~12m!~11m!2O~l21/2!. ~72!

Then, of course, the condition thatv I are regular on the
horizon is required.

The boundary conditions forv I are summarized in Table
II, where

vf52
ma

4
m~22m!1ṽf , ~73!

vc52
mb

4
m~21m!1ṽc . ~74!

The behavior of the quantities which appear in the bou
ary integral~56! are easily calculated as shown in Table I

Then the boundary integral~56! vanishes. The difference
matrix C is constant and has asymptotic behavior as

C→S O~l23/2! O~l27/2! O~l27/2!

O~l21/2! O~l23/2! O~l23/2!

O~l21/2! O~l23/2! O~l23/2!
D , ~l→1`!.

~75!

C vanishes at infinity, and thusC is zero overS. Thus the
two configurationsF [0] andF [1] coincide with each other.

V. SUMMARY AND DISCUSSION

We show the uniqueness of the asymptotically flat, bla
hole solution to the five-dimensional vacuum Einstein eq
tion with a regular event horizon homeomorphic toS3, ad-
mitting two commuting spacelike Killing vector fields and

TABLE III. Quantities appearing in boundary integral~56!.

f-invariant
plane

c-invariant
plane Horizon Infinity

m→11 m→21 l→c l→1`

] tr C/]l — — O(1) O(l25/2)
] tr C/]m O(1) O(1) — —
r O(A12m) O(A11m) O(Al2c) O(l)
Ahmm /hll — — O(Al2c) O(l)
Ahll /hmm O(A12m) O(A11m) — —
5-6
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stationary Killing vector field. The solution of this system
determined by only three asymptotic charges, the massM
53pm/8G and the two angular momentaJf5pma/4G and
Jc5pmb/4G. The five-dimensional Myers-Perry black ho
solution is unique in this class.

The vacuum black ring solution satisfies the above con
tions other than that on the topology of the horizon. Th
exist two black ring solutions which have the same mass
angular momentum, which means the uniqueness prop
fails for theS23S1 event horizon. It is intriguing to investi
gate how this nonuniqueness occurs.

It will be impossible to extend our argument using t
Mazur identity to six- or higher dimensional Myers-Per
black hole solutions. Ann-dimensional space-time admittin
(n23) commuting Killing vector fields is always describe
by the nonlinears model as shown by Maison@24#. To de-
rive the Mazur identity for this nonlinears model, all the
(n23) Killing vector fields have to be spacelike. Howeve
the n-dimensional Myers-Perry black hole space-time h
only @(n21)/2# commuting spacelike Killing vector fields
Thus our method cannot be used except for a fi
dimensional Myers-Perry black hole.

The rigidity theorem in four dimensions claims that a
ymptotically flat, stationary analytic space-time is also a
symmetric@27#. However, the existence of additional spac
time Killing vector fields is no longer justified in the case
five-dimensional black holes. Therefore the uniquen
shown in the present work does not exclude the possibility
the existence of black hole solutions with less symmetry
suggested by Reall@9#.

We would like to speculate on an extension of the pres
work to the case of other theories. The configuration of
r-

ys
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e
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-
-
-

s
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nt
e

five-dimensional Einstein-Maxwell fields admitting thre
commuting Killing vector fields is encoded in eight scal
fields @26#. This system is described in terms of a harmon
~scalar! map onto eight-dimensional target space, but it is
the nonlinears model in the sense that the target space is
homogeneous. Therefore the Mazurs method utilized h
which is applicable only when the target space is homo
neous, does not work for five-dimensional Einstein-Maxw
theory. We also note that another method given by Bunt
@28#, which can be applied to harmonic maps onto the tar
space with negative curvature, fails, since it turns out that
target space corresponding to the five-dimensional Einst
Maxwell theory @26# does not always have negative curv
ture. However, such technical difficulties might be improv
when the dilatonic scalar fields are taken into account.
cently, Emparan@29# has shown the existence of an infini
number of black ring solutions with the same mass and
gular momentum as the Myers-Perry black hole@5# and the
neutral black ring solution@8# in five-dimensional Einstein-
Maxwell-dilaton theories. This suggests that the uniquen
or nonuniqueness property of the stationary black ho
might be somewhat complicated in dilatonic theories. W
hope that the boundary value formulation of the dilaton
black hole and the black ring might be helpful in understan
ing this infinite breakdown of the black hole uniqueness.
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