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Boundary value problem for five-dimensional stationary rotating black holes
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We study the boundary value problem for stationary rotating black hole solutions to the five-dimensional
vacuum Einstein equation. Assuming the existence of two additional commuting rotational Killing vector fields
and sphericity of the horizon topology, we show that a black hole with a regular event horizon is uniquely
characterized by its mass and a pair of angular momenta.
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[. INTRODUCTION ary, asymptotically flat higher dimensional vacuum black
hole admitting exactly two commuting Killing vector fields
In recent years there has been renewed interest in highatthough all known higher dimensional black hole solutions
dimensional black holes in the context of both string theoryhave three or more Killing vector fields. In six or higher
and the brane world scenario. In particular, the possibility ofdimensions, the Myers-Perry black hole can have an arbi-
black hole production in a linear collider has been suggestettarily large angular momentum for a fixed mass. The hori-
[1-4]. Such phenomena play a key role in getting insightzon of such a black hole greatly spreads out in the plane of
into the structure of space-time; we might be able to proveotation and looks like a black brane in the limit where the
the existence of extra dimensions and have some informatioangular momentum goes to infinity. Hence, Emparan and
about quantum gravity. Since the primary signature of blackMyers[10] argued that rapidly rotating black holes are un-
hole production in a collider will be Hawking emission from stable due to the Gregory-Laflamme instabilifyl] and de-
the stationary black hole, the classical equilibrium problemcay to stationary black holes with rippled horizons, implying
of black holes is an important subject. The black holes prothe existence of black holes with less geometric symmetry
duced in colliders will be small enough compared with thecompared with Myers-Perry black holes. For supersymmetric
size of the extra dimensions and generically have angulaslack holes and black rings, a string theoretical interpretation
momenta; they will be well approximated by the higher di-was given by Elvang and Empar&h2]. They showed that
mensional rotating black hole solutions found by Myers andhe black hole and the black ring with the same asymptotic
Perry[5]. The Myers-Perry black hole, which has an eventcharges correspond to different configurations of branes, giv-
horizon with spherical topology, can be regarded as a higheng a partial resolution of the nonuniqueness problem of su-
dimensional generalization of the Kerr black hole. One mightpersymmetric black holes in five dimensions. On the other
expect that such a black hole solution describes the classichbnd, we have unigueness theorems for black holes at least
equilibrium state continued from the black hole productionin the static cas¢13—18. Furthermore, the uniqueness of
event, if it shows stability and uniqueness like the Kerr blackstationary black holes is supported by an argument based on
hole in four dimensions. The purpose of this paper is tdinear perturbation of higher dimensional static black holes
consider the uniqueness and nonuniqueness of rotating bla¢k9,20. There exist regular stationary perturbations that fall
holes in higher dimensions. off in the asymptotic region only for vector perturbation, and
The uniqueness theorem states that a four-dimensionghus the number of independent modes corresponds to the
black hole with a regular event horizon is characterized onlyrank of the rotation group, namely, the number of angular
by mass, angular momentum, and electric ch&fyé. Re-  momenta carried by the Myers-Perry black hdl2s]. This
cently, the uniqueness and nonuniqueness properties of fiveuggests that higher dimensional stationary black holes have
or higher dimensional black holes have also been studied uniqueness property in some sense, but some amendments
Emparan and Reall found a black ring solution of the five-will be required. Here we consider the possibility of a re-
dimensional vacuum Einstein equation, which describes atricted black hole uniqueness which is consistent with any
stationary rotating black hole with the event horizon homeo-argument about uniqueness or nonuniqueness. Although the
morphic toS?x St [8]. In a certain parameter region, a black existence of the black ring solution explicitly violates black
ring and a(Myers-Perry black hole can carry the same masshole uniqueness, there is still a possibility of black hole
and angular momentum. This might suggest the nonuniquasniqueness for fixed horizon topolod22]. Hence we re-
ness of higher dimensional stationary black hole solutionsstrict ourselves to stationary black holes with spherical topol-
For example, Reall9] conjectured the existence of a station- ogy.
In this paper, we consider the asymptotically flat, black
hole solution to the five-dimensional vacuum Einstein equa-
*Electronic address: morisawa@yukawa.kyoto-u.ac.jp tion with a regular event horizon homeomorphicS% ad-
"Electronic address: d.ida@th.phys.titech.ac.jp mitting two commuting spacelike Killing vector fields and a
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stationary(timelike) Killing vector field. The two spacelike duces to the field equations for the five scalar fidlgsand
Killing vector fields correspond to rotations in th&-X?) w, defined on the three-dimensional space:
plane and X3-X*) plane in the asymptotic regiofX*} are

the asymptotic Cartesian coordingtesespectively, which D2f,;=fK'Df-Df; —f Dw,-Dw;, 3
commute with each other. According to the argument by
Carter[23], it is possible to construct a timelike Killing vec- D2w,=f " Df-Dw,+f*Df,;- Dw, (4)

tor field tangent to the fixed pointmamely, the axisof the

axisymmetric Killing vector field from the given timelike and the Einstein equations on the three-dimensional space:
Killing vector field. Repeating this procedure for each com-

muting spacelike Killing vector field, the timelike Killing

vector field obtained also commutes with both spacelike (’/)R”:—f 2+ fIJfKLfIKlfJL] —f o)y,
Killing vector fields. Hence, it is natural to assume that all (5)

the three Killing vector fields commute with each other. The

five-dimensional vacuum space-time admitting three comy,perep js the covariant derivative with respect to the three-

muting Killing vector fields 'S_ desprlbed by the nonllnear metric ;; and the dot denotes the inner product determined
model[24]. Then the Mazur identity25] for this system is by i
ij -

derived. We show that the five-dimensional black hole solu- Here we assume the existence of another Killing vector

tion with a regular event horizon of spherical topology |s field £,=d, which commutes with the other Killing vectors
determined by three parameters under the appropriate boun‘g\S [£.£]=0 (we will later identify ¢ as the stationary

ary conditions. Killing vector field in the case of asymptotically flat space-

The remalnder_of the paper s orga_\nized as fOHOW_S' Intime). Then the metric can be written in Weyl-Papapetrou—
Sec. IIA, we give the field equations for the five- éype form[26] as

dimensional vacuum space-time admitting three commutin
Killing vector fields. In Sec. Il B, we introduce the matrix 120,42 —1 242 Il
form%f the field equations to clarify the hidden symmetry of g=171e*(dp®+dZ) — o dt*+ fiy(dx +w'dt) (dx’
this system, following Maisoh24]. Then the Mazur identity +wldt), (6)
that is useful to show the coincidence of two solutions is
derived in Sec. Ill. In Sec. IV, we determine the boundarywhere we denote®=t, and all the metric functions depend
conditions. We summarize this paper and give a discussiodnly onp andz Once the five scalar fields, ,w, are deter-
of related matters in Sec. V. mined, the other metric functions andw' are obtained by
solving the following partial derivative equations:
Il. FIVE-DIMENSIONAL VACUUM SPACE-TIME

ADMITTING THREE COMMUTING KILLING VECTOR 2 1
—0 =712 )2 = (f )%
FIELDS P » z

Assuming symmetry of space-time, the Einstein equations 1
reduce to equations for scalar fields defined on a three- +Zf'JfMN(f|MJ,fJN,p—f,M,ZfJN,Z)
dimensional space. Then we show that the system of scalar
fields is described by a nonlinear model.

+ EfﬁlflJ(wl,pwJ,p_ W ;03 7), (7)
A. Weyl-Papapetrou metrics
We consider the five-dimensional space-time admitting 1 , 136 MN
two commuting Killing vector fields¢, =49, (1=4,5). The ;U,z:Zf f,pf,z+Zf o impfane
metric can be written in the form
o . . 1
g="F "Ly dxXdx +fy(dx +wldx) (dxX+wldx), (D) + 51 0 0, (8)
wherei,j=1,2,3, f=det(f,;). The three-dimensional metric U em1eld
%ij» the funct|on9N andf,; are independent of the coordi- w,=pf 0,2, ©
natesx' (x*= =, and we will later identifyé, and &g | el
as Killing vector fields corresponding to two independent w,=—pf f w,,. (10
rotations in the case of asymptotically flat space-jinwge
define the twist potentiab, by Thef,; andw, are given by the axisymmetric solution of the
o field equations(3) and (4) on the abstract flat three-space
o, = VY €]y ™Y I, (2)  with the metric
whereu=1,...,5 y=det(y;), ¥ is the inverse metric of y=dp?+dZ?+ p2de?. (12)

¥ij » ande, ,, denotes a totally skew-symmetric symbol such
thateip3=1,¢,,=0. Then the vacuum Einstein equation re- Thus the system is described by the action
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1 1
Zf_z((?f)z‘i' ZfIJfKL(yf”(‘ﬁfJL

S= J dpdzp

1 —1¢1J

B. Matrix representation

The action(12) is invariant under the globaSL(3,R)
transformations as shown by Mais¢84]. Instead of the
nonlinear representation by the scalar fielgsand w,, we
introduce theSL(3,R) matrix field ® as

.I:—l _ .I:—l

—1 -1 -1
T wy fuptf o0, fo+f 0,0,

w4 —f_lwl/,

q):

-1 -1 -1
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1 i
S= ZJ dpdzp tr(J;J"), (17

1 _
:Zf dpdzp tr(® 1o, 0D 15P). (18)

This action takes a nonlinear-model form.

IIl. MAZUR IDENTITY

Let us consider two different sets of the field configura-
tions®o; andd,; satisfying the field equatior®) and(4).
To show the coincidence of the two solutions, we will derive
the Mazur identity for the nonlinear model on the symmet-
ric spaceSL(3,R)/SO(3).

A bull's eye © denotes the difference between the value
of the functional obtained from the field configuratidn;;
and the value obtained frodq, €.9.,

(13
which is symmetric {®=®) and unimodular (ddt=1). ® ‘]IZ‘]I[l]_‘]I[OI:q)[_lll‘alq)[ll_@[_ollalq)[ol- (19
transforms as a covariant, symmetric, second-rank tens o Al .
field under globalSL(3,R) trangformations. When the Kill- ¥ne deviation matrixy is defined by
ing vector fields¢,, and§,, are spacelike, all the eigenvalues o
of @ are real and positive. Therefore, there is @(3,R) \P:(I)(I)[B]l:CI)[l](I)[B]l—]_, (20)

matrix field g which is a square root of the matrix fietH,
namely, wherel is the unit matrix. The deviatiod vanishes if and
only if the two sets of field configuration$l] and[0]) co-
‘ incide with each other. Differentiating,
d=g'g. (149

©]

DW= '@y (21)

This square root matrig is determined up to glob& O(3)
rotation because the rotatigm—=gA for any A e SO(3) is
canceled byA "'="'A. Since anySL(3,R) matrix field g
conversely defines a symmetric and unimodular matrix field
by ®=g'g, the matrix® defines a map from the two-
dimensionalp-z half plane(base spageto the coset space
SL(3R)/SO(3).
The inverse matrix ofb is explicitly given by

and taking the divergence, we obtain

O
Di{(D'W)=®4;D;J 'q>[5]1+ D 1{I13i9p;— 2303910
+ 31079101 P o] - (22)

Due to the current conservatinJ' =0, the first term on the
right hand side of Eq(22) vanishes. Sincdl'=dJ'd 1,

f+fVo0; Po; P, the second term on the right hand side can be rewritten as
o l=| o, feé fo0 (15) o i i i -1
' Jr1idrr— 2311119101 + Jioridior 1 P
. cou o 919t = 231910y * Ji01idyo) Ppo)
. _ = @135 (Jp1) i = 3 30) Pro] (23
and transforms as a second-rank contravariant tensor field on
the base space. o 0]
; : _ tqi -1 —1tqi
The current matrix defined by =P 1 Pop— Pp1y 3 i P oy o - (24)
Ji=® " 15,® (16)  Then, taking the trace, we obtain the identity
. . . . . @ @
transforms linearly according to the adjoint representation of (DD'tr¥)=tr{'J icp[l]J iq’[?)]l}- (25)

SL(3,R). This current is conserved, namely, every element
of D;J" independently vanishes due to the field equati@s
and (4).

The action(12) can be expressed in terms ffor @ as

SinceD is covariant derivative with respect to the abstract
flat three-metrid11) and all quantities are independentgaf
the above identity(25) is
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© O]
o pdPtr W) = phptr{ '3 3 (4; 3 D o7}, (26)

whereh,y, is the flat two-dimensional metric

h=dp2+dZ. (27)
Integrating Eq.(26) over the relevant regio ={(p,z)|p
=0} in the p-z plane, and using Green’s theorem, we find

© ©
ﬁzpﬁatr\l’dsa= jzphabtr{tJ aCD[llJ b(I)[BiL}dde,
(28

where the boundarys, corresponds to the horizon, the two
planes of rotation, and infinity. Since the matdx has a
square root matrixg like Eq. (14), the integrand of the right
hand side of Eq(28) is written as

0] o} o} 0]
phaptr{ 1321} b‘b[_o]l}: Phabtr{g[_o]ltJ %g(11'911)J btg[_o]l}-

(29)
Thus, we obtain the Mazur identity

jg p&atr‘PdSa=f phaptr{ M3 MPldpdz,  (30)
a3 3%

where the matrixM is defined by

0]
M2=g1 3%, . (31
When the current differencéo @ is not zero, the right hand
side of the identity(30) is positive. Hence we must have
Jo2=0 if the boundary conditions under which the left hand
side of Eq.(30) vanishes are imposed &&. Then the dif-
ferenceV is a constant matrix over the regi@h The lim-
iting value of ¥ is zero on at least one part of the boundary
d% is sufficient to obtain the coincidence of two solutions
Do and Py .

IV. BOUNDARY CONDITIONS AND COINCIDENCE
OF SOLUTIONS

PHYSICAL REVIEW D 69, 124005 (2004

m 2ma
r
2mb
—xdy)—| —,—+0(r~°) |dt(wdz—zdw)
r
m
+ 1+?+O(r*3) [dx®+dy?+dZ2+dw?]. (32
Here we introduce the coordinates
x=JrZ+a?singcog ¢—tan (a/r)], (33
y=+rZ+a?sinésin ¢—tan Y(a/r)], (34)
z=r?+b?cosf cog y—tan *(b/r)], (35
w=/r2+b? cosé sin y—tan 1(b/r)], (36)

and proceed with the further coordinate transformations

— a

d¢=d¢—r—+ﬁadr, (37)
— b

dl[l:diﬂ— mdr, (38

then one obtains

2ma(r’+a’)
— s

m
g=— 1—r—z+0(r‘3)}dt2+ info
r
2mb(r?+b?
+0O(r %) |dtdep+ ¥c0§9+0(r*3) dtdy
r

r2+a2co€ 6+ b?sinfe )
(rZ+a)(r+b?)

+(r?2+ a’cog 6+ b?sirf0)d 6%+ (r?+ a?)sir? 0d ¢>

+ X dr

1+ o3
2r2 (r )

+(r?+b?cogody? (39

Here the metriq39) admits two orthogonal planes of rota-
tion #= /2 and#=0, which are specified by the azimuthal
angles¢ and ¢, respectively. The plane#=0 and 6= /2

are invariant under rotation with respect to the Killing vector

When one use the Mazur identity, the boundary conditiondields d4 and d,,, respectively. Both angleg and s have
for the fields® (i.e., f;; andw,) are needed at infinity, the Period 27. Comparing the asymptotic forr89) with the
two planes of rotation, and the horizon. We will require Weyl-Papapetrou fornf6), we derive boundary conditions.
asymptotic flatness, regularity at the two planes of rotation, The regularity on the invariant planes requires
and regularity at the spherical horizon. Under these condi-

tions, the Mazur identity shows coincidence of the solutions. Qpgp= f¢¢=Sin2‘9f¢¢, (40
An asymptotically flat space-time with mas$ _

=37m/8G and angular momentd,=mma/4G and J, 9yy=fyy=cosot,,, (41)

=7mb/4G (where we restrict ourselves to the case in which

m>a’+b?+2|ab|) has a metric in the following form: 9gy=f gy=SiFO cog 6t 4, (42
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TABLE |. Boundary conditions foff ;.

¢-invariant plane y-invariant plane Horizon Infinity
p—+1 p——1 A—C N—+oo
Foo 0o(1) 0(1) 0(1) 2\ +(a?—b%+m)/2+O(\ "3
Tou 0(1) O(1) O(1) O(\""?)
[ 0(1) 0(1) 0(1) 2\ +(b2—aZ+m)/2+O(\ 13

where the quantities with a tilde are regular at both the into the form of the metrid6). Since the horizon has the to-

variant planes and the black hole horizon. pology of S%, let us introduce the spheroidal coordinates on
The asymptotic behavior df,, andf,, is derived from > as

Eq. (39, and?w is at mostO(r ~1) since the Killing vectors _

d, andd, are asymptotically orthogonal: Z=\p, (53

. m p?=(\2=c?)(1-u?), (54)
fgp=r?+a’+ §+O(r‘l), (43
where u=cos 2. Then the relevant region B={(\,u)|\
m =c,—1=su<1}. The boundariea=c, A=+, u=1, and
?W: r’+b%+ —+0(r 1), (44) pu=—1 correspond to the horizon, infinity, thg-invariant

7 plane, and thes-invariant plane, respectively. In these coor-
_ dinates, the two-dimensional metric &nis given by
fy,=0(r 1. (45)
d\?

du?
Sincef 4, is negligible as compared witfy,, andf,,,, in h=dp®+dz*=(\*~c’u )( 1_—’“2) (55
the asymptotic region, the leading termsgyf, and g, are

fsow? andf,,w", respectively. Then we have The boundary integral in the left hand side of the Mazur

. ma5|n20 By identity (30) is explicitly written as
a hy, dtrw
pa trvdS,= d>\ P
mbcog 6 L, R PP
' f [ ﬁtrllf)
Thus we obtain NN N
ma j /hM atr\If)
wé= r—4+O(r’5), (48 MM o

u=+1

,_mb y J' ( b atr\I')
w'= 7 +0(r ™). (49) ot )

AN

56
Similarly, we have (56
where
gu=—f1p?+ f yowow?+2f 5 ,wow/+f , ,whw?
50
0 orw 9 O OO i
m P :?[f[l](_f+f[0]wlw3)+f[o]fIJ]
=—1+ 7 +0(r 3. (51)
for x3=\,u. (57
Here theO(r ~?) term must come from the-f~1p? term . o
since thew' are O(r ~%). Thereforep behaves as Here the relation betweex andr is given by
2_r4 2.1 12y ,2 ; 12 a24p2
p?=[r*+(a2+b?)r?+0(r)]sird cog. (52 A=+ +o(r Y (58)

p? vanishes not only at the-invariant plane (si®=0)
and y-invariant plane (cog=0), but also at the horizon due or
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TABLE Il. Boundary conditions fotw, .

PHYSICAL REVIEW D 69, 124005 (2004

TABLE lll. Quantities appearing in boundary integi(&6).

¢-invariant plane ¢-invariant plane  Horizon  Infinity
p—+1 p——1 A—C A—+o
v, O(1-w? O(1+pu) o(1) O(™ ')
W, O(1—w) O((1+w)? o(1) ON™ ')
a?+b?
r=V2a"1- ——+0(\ 37|, (59
The boundary conditions fd,; are summarized in Table
I, where
(1= p)
(1) (1+p)-
(1+p)y

Next, let us derive the boundary conditions for the twist

potentials. By the definition of twist potentials, EQ),

J J

I\ N2—¢c2 du ' du 1-pu2 N '

2N AN2—c? du ' dm 1—pu? INT
(64)

From theu dependence of;; andw', we can obtain thex

dependence of the derivatives of the twist potentialsu at

=+1,
IN  du N
and
i,
+#0 (66)
I
if ma#0, and atu=—1,
&w¢_&w¢_&w¢_ 6
N o N 7
and
a(,!)¢
—#0 (68)
I
if mb#0.

In the asymptotic region— + =), the derivatives of the
twist potentials behave as

¢-invariant  y-invariant

plane plane Horizon Infinity

pu—+1 pu——1 A—C N—+oo
atr¥/on — — 0(1) O\
atrvlopm 0(1) o(1) — —
p O(V1-u) O(1l+pu) O(VA-c)  O(Q)
Vhy — — O(yx—c)  O(n)
vha/h,,  O(W1-u) OW1+w) — —

c?w¢_ _3

an o, (69)

%_ (70

ma
[ _ —1/2
” 5 (1= )0\,

Thus we obtain

ma
wy== - w(2= w)+ (1= p)*(L+ WO 1), (71)
and similarly

p(2+ p)+ (1= p)(1+p)?0(\N"Y3). (72)

Then, of course, the condition that are regular on the
horizon is required.

The boundary conditions fap, are summarized in Table
II, where

ma -
wy= = w2 p) oy, (73

mb ~
a)w:—T,u(Z-l—,u,)-l-wl/,. (74)
The behavior of the quantities which appear in the bound-
ary integral(56) are easily calculated as shown in Table III.
Then the boundary integr&b6) vanishes. The difference
matrix ¥ is constant and has asymptotic behavior as

O()\73/2) O()\77/2) O()\77/2)
v O()\—l/Z) O()\_3/2) O()\—3/2) , ()\_)4_00).
0(7\_1/2) O()\—3/2) O()\—SIZ)
(795)

V¥ vanishes at infinity, and thug is zero overX. Thus the
two configurationsP; and®(;; coincide with each other.

V. SUMMARY AND DISCUSSION

We show the uniqueness of the asymptotically flat, black
hole solution to the five-dimensional vacuum Einstein equa-
tion with a regular event horizon homeomorphicS% ad-
mitting two commuting spacelike Killing vector fields and a
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stationary Killing vector field. The solution of this system is five-dimensional Einstein-Maxwell fields admitting three
determined by only three asymptotic charges, the nddss commuting Killing vector fields is encoded in eight scalar
=3mm/8G and the two angular momenig = 7ma/4G and  fields[26]. This system is described in terms of a harmonic
J,= mmbl/4G. The five-dimensional Myers-Perry black hole (scalaj map onto eight-dimensional target space, but it is not
solution is unique in this class. the nonlineai- model in the sense that the target space is not
The vacuum black ring solution satisfies the above condihomogeneous. Therefore the Mazurs method utilized here,
tions other than that on the topology of the horizon. Therewhich is applicable only when the target space is homoge-
exist two black ring solutions which have the same mass andeous, does not work for five-dimensional Einstein-Maxwell
angular momentum, which means the uniqueness propertyeory. We also note that another method given by Bunting
fails for the S>x St event horizon. It is intriguing to investi- [28], which can be applied to harmonic maps onto the target
gate how this nonunigueness occurs. space with negative curvature, fails, since it turns out that the
It will be impossible to extend our argument using thetarget space corresponding to the five-dimensional Einstein-
Mazur identity to six- or higher dimensional Myers-Perry Maxwell theory[26] does not always have negative curva-
black hole solutions. Am-dimensional space-time admitting ture. However, such technical difficulties might be improved
(n—3) commuting Killing vector fields is always described when the dilatonic scalar fields are taken into account. Re-
by the nonlinealr model as shown by Maisdi24]. To de-  cently, Emparari29] has shown the existence of an infinite
rive the Mazur identity for this nonlineasr model, all the number of black ring solutions with the same mass and an-
(n—3) Killing vector fields have to be spacelike. However, gular momentum as the Myers-Perry black hi@¢ and the
the n-dimensional Myers-Perry black hole space-time hagieutral black ring solutiofi8] in five-dimensional Einstein-
only [(n—1)/2] commuting spacelike Killing vector fields. Maxwell-dilaton theories. This suggests that the uniqueness
Thus our method cannot be used except for a fiveor nonuniqueness property of the stationary black holes
dimensional Myers-Perry black hole. might be somewhat complicated in dilatonic theories. We
The rigidity theorem in four dimensions claims that as-hope that the boundary value formulation of the dilatonic
ymptotically flat, stationary analytic space-time is also axi-black hole and the black ring might be helpful in understand-
symmetric[27]. However, the existence of additional space-ing this infinite breakdown of the black hole unigueness.
time Killing vector fields is no longer justified in the case of
five-dimensional black holes. Therefore the uniqueness
shown in the present work does not exclude the possibility of
the existence of black hole solutions with less symmetry, as The authors would like to thank H. Kodama for valuable
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