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A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A
Bianchi cosmological models, focusing on the particular example of the classically recollapsing Bianchi
type-IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities
of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We
consider in particular the probabilities for classical evolution defined by a suitable coarse graining. For a
restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative
histories in which the universe behaves classically and those in which it does not. For these situations we show
that the probability is near unity for the universe to recontract classically if it expands classically. We also
determine the relative probabilities of quasiclassical trajectories for initial states of WKB form, recovering for
such states a precise form of the familiar heuristic d%.” rule of quantum cosmology, as well as a gener-
alization of this rule to generic initial states.
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I. INTRODUCTION tum stateg[2,3]. Sets of histories with negligible interfer-
ence between all pairs of members, as measured by the

Hamiltonian quantum mechanics with its requisite pre-  decoherence functional, are said to decohere, or to be

ferred timds) may need to be generalized to provide a quan-  consistent. It is logically consistent to assign probabili-
tum framework for cosmology where spacetime geometry ties in an exhaustive set of alternative histories when,
fluctuates quantum mechanically and does not specify a fixed and only when, that set is decoherent. It is the criterion
notion of time. One approach to such a generalization is the of decoherence, rather than any notion of “measure-
sum-over-histories generalized quantum theory of spacetime ment,” which determines the consistency of the quanti-
geometry, described most completely ij where references tative predictions of the theory.

to the earlier literature may be found. This is a formulation of

quantum theory in fully four-dimensional spacetime form. This paper applies sum-over-histories generalized quan-
The essential elements of this sum-over-histories formulatiotum theory to a class of homogeneous minisuperspace cos-

are:

D

(2

3

mological modelg. Other formulations of the quantum me-

) . o chanics of homogeneous cosmological models have been
Fine-grained historiesThese are the elements of the Selproposed by Ashtekar, Tate, and Ug8, by Wald[9] (see
of four-dimensional histories of spacetime metric andfurther[10]), and by Marolf11]. An implementation of gen-
matter field configurations. They are the most refinederalized quantum theory for these minisuperspace models is
descriptions of the universe it is possible to give. therefore useful for comparison with these other approaches.
Coarse-grained historiesPartitions of the fine-grained That is especially the case since the formulation of Wald
histories into four-dimensional diffeomorphism invariant makes the surprising prediction that a quantum universe
classes are called coarse-grained histories. Such sets ¥h0se expansion is accurately predicted by classical Einstein
coarse-grained histories are the most general notion dfynamics 'cannot have a r:early (?’Iassmal re_contractmg phase.
alternative describable in spacetime terms for Which.lnStead.’ time appears tp freez_e as the universe approaches
quantum theory predicts probabilities. its cla_55|cal maximum sizeln this paper we W!|| show thatf

. . in suitable circumstances, sum-over-histories generalized

Decoherence functionallhis is a measure of the quan- o,antm theory predicts that a universe may remain classical
tum mechgnlcal mterfere_nce bgtwegn members ofas both its expanding and recontracting phases.
of alternative coarse-grained histories. It is constructed gection |1 revisits the classical homogeneous cosmologi-
according to sum-over-histories principles and incorpoa| models as an introduction to their later quantization. Sec-

rates a theory of the universe's initial and final condition. tion |11 sets out the sum-over-histories generalized quantum
The decoherence functional is a natural generalization to

closed quantum systems of the algebraic notion of quan=—""—"—

There is a substantial literature on these models. They were in-
troduced into quantum cosmology by Misrdl. See MacCallum

*Email address: dcraig@hamilton.edu [5], Halliwell [6], and Wainwright and Elli§7] for partial guides to
TEmail address: hartle@physics.ucsb.edu the literature.
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mechanics for the classical models of Sec. Il for the espethe Lie algebra of the isometry group in thebasis® The
cially simple case of a closed Bianchi type-IX cosmology quantitiesL(t) and a(t) are functions oft alone;3(t) is a
with a single homogeneous scalar field and vanishing cosm@x 3 traceless symmetric matrix that measures the devia-
logical constant.(Current observations suggest thatis  tions from isotropy. The coordinate volume element of a
small but not zero. Assuming. vanishes, while evidently spatial slice scales likg¢h=exp(3«(t)) and the same is true
not realistic, simplifies some elements of the analysis by alfor the overall volume (4)%exp(3«(t)) if the spatial slices
lowing quantum evolution to be restricted to universes whichare closed.
always recontract. While the quantization framework de- The possible spatial isometry groups may be classified by
scribed in Sec. Il is in principle applicable to all type A their Lie algebrage.g., as if22]) and are usually referred to
Bianchi cosmologies, the case where the universe is alloweih the numbering scheme introduced by Bian@8] as “Bi-
to expand forever—either classically or quantumanchi type-l” through “Bianchi type-IX” models. The
mechanically—will not be considered her&ection IV ex-  (simply-connected coveringroup manifold with its natural
plicitly constructs the decoherence functional for these modmetric is the manifold for spatial geometry. In the Bianchi
els for a specific class of boundary conditions: a “pure” ini- type-I models, for example, the group is generated by the
tial state and “indifferent” final conditions. In Sec. V we translations of three-dimensional flat space and the manifold
examine its semiclassical predictions for initial conditionsis R3. In the Bianchi type-IX models the group 8U(2),
that correspond to a single classical trajectory and show howikj =egjjx (in appropriate coordinatgsand the manifold is the
classical evolution can be an approximation to quantum methree-spheres®. The classical Friedmann-Robertson-Walker
chanical evolution in a universe with expanding and con{FRw) models are the most familiar examples of Bianchi
tracting phases, as well as study more general choices @hiverses: the open FRW universe is of Bianchi type I, the
initial state. flat universe type V, and the closed FRW universe is of type
Generalized quantum theof$2,13 is a broad framework |x.
for describing and comparing different formulations of quan-  The “type A’ Bianchi models are those for which!
tum mechanics. A reduction to essentials of the general prin= g. the rest are called “type B.” We restrict attentiOIJw to
ciples of the quantum mechanics of closed systflds-16,  type A models because the action principle for the type B
the framework provides a natural language with which togjanchi models deduced from that for general relativity by
frame questions in cosmology concerning whether probabilig,ystitution of the homogeneity ansé®z1) does not lead to
ties are consistently assigned by quantum theory to a set @fie correct equations of motid24]; in these cases the ho-
alternative histories of the universe. The specific Sum-overyogeneity of the spatial metric obstructs the elimination of
histories implementation of its principles sketchedi~(3)  poyndary terms proportional to the trace of the structure ten-
above is but one of several approaches to a conceptuallyy, The Bianchi types I, 11, \gl,Vllo, VIII, and IX are all
coherent and manageable quantum theory of spacetime; f@r o A

lucid reviews of some of them and the difficulties they en- "~ vériety of matter contents are consistent with homoge-

counter se¢17]. neity. As an illustrative example we shall restrict attention to
a single, minimally coupled, homogeneous scalar fig(tl)
II. HOMOGENEOUS COSMOLOGICAL MODELS together with a positive cosmological constant For the

) ) ) ) action of the scalar field we take
In this section we review the essential features of homo-

geneous cosmological models necessary for the subsequent 1
discussion of their quantlzatm?nA spatially homogeneous Sulg,6]=— EJ d4x\/—_g[(v¢)2+v¢(¢)] (2.3
cosmological geometry is a spacetime possessing a group of
isometries whose orbits are a family of spacelike surfaces
that foliate the spacetim20]. Using a coordinaté that la-  for some potentiaV/ 4(¢). [We follow, as far as possible, the
bels these spacelike surfaces, the metric of a spatially hom@onventions of20] with respect to signature<,+,+,+),
geneous spacetime may be put in the standard f@0v21  definitions of the curvature tensors, the extrinsic curvature of
a hypersurface, etc. We employ units whérec=G=1.]
ds?=—L2(t)dt?+ eZH(t)(eZB(t))ijgigi_ (2.2 A canonical action for the type A Bianchi cosmologies
with scalar matter may be arrived at in the following manner.
first note that for all the type A models with “diagonal”
matter (To;=0), as in our example, it is possible classically
to choose the one-forms' in Eq. (2.1) so that the matriy3;;
is diagonal, and th«e!‘j take their canonical valug48,19;
the Einstein equations guarantee tgatemains diagonal as

Here thes' aret-independent spatial one-forms preserved b
the isometries whose dual vector fielats obey

[O'i,O'j]:Ciij'k, (22)

where thec!‘j are the components of the structure tensor of ———
3See Wald([20], Sec. 7.2 for example. To avoid possible confu-
sion, note that while Wald's’s coincide with thew’s of MacCal-
%A classical general reference[iB8]. Extended discussions can be lum [5], MacCallum’s structure tensar is defined with the sign
found in[5,19] and in Chap. 7 of20]. opposite to that of Wald.
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time passes. It is then traditional to parametrjgeas g factora=2e“ after changing from the Euler-angie' basis
—diag(. +v3B8_,8.—\3B8_,—28.). to the stano!ard p_olar coordinates &h) N

Assuming that the metric remains diagonal quantum me- The configuration space for these minisuperspace models
chanically is equivalent to solving the classical momenturdS SPanned by the variablea (8 ,8-,¢). Thatis, itis the
constraints before quantizatigho] (cf. [20], Eq. E.2.34; the ~ Superspace of s_;patlal geometries plus the_ space of scalar field
only remaining gauge freedom then lies in the time-values. The acth(2.4) may be- exgressed in a more compact
reparametrizations of the surfaces of homogeneity. We shalP'm by introducing the notatiog™,A=0,1,2,3 for the four
assume that the metric remains diagonal in the sequel. Howariables ¢, 8. ,8-,¢), the flat Lorentzian DeWitt metric
ever, the quantum theory thus obtained is not obviouslﬁABjd'aQ(_ 1,1,1,1), and a rescaled lapse functibit)
equivalent to a theory in which the momentum constraint is=€ "L (t)/24m. Then
instead imposed as an operator condifion.

Inserting a diagonal homogeneous meif2cl) into the N
actlon_S=(l/lf‘n-r)f(R—ZA)JrS,\,I _and doing the spatial in- S[pA.qA.N]=f dt[ pag™—NH], (2.9
tegration over a standard coordinate volume ofr{% (the 0
coordinate volume of Bianchi type-IX'SU(2) closed spa-
tial manifold; cf.[25], Box 30.] yields the reduced minisu- where
perspace action

Sy

whereH is the super-Hamiltonian

_ _ _ [Le3 H=G"Bpapg+e**V(B ,Bo)+e% [V () +A]
paa+p+ﬁ++pﬂ+p¢¢—(m)H ,

(2.4) =G"Bppe+V(a,B B, b, N), (2.9

and we have taken advantage of the arbitrarinessda a
_ 2,2 2 2 A coordinate label to assign the values 0 and 1 to the ends of
H==petpi+p=+py+e™Ve(B. . 5-) the range of integration, a choice we shall make wherever
+e%V () + €A (2.5  convenient. In this form the analogy with a relativistic par-
ticle moving in a potential is cledfl,28] and we shall exploit

after rescalingp, V4, andA by positive constantsy{4=/3,  this in what follows.

1927%, and 48r?, respectively. The potentiaV,, is given The form of the metrig2.1) is left unchanged by rep-
in general by arametrizations of the time—f(t). As already noted, this

invariance is the remnant of the four-dimensional diffeomor-
phism invariance of the full theory of general relativity once
the diagonal form{2.1) has been fixed. Correspondingly the
_action(2.8) is invariant under reparametrization transforma-
tions of the form

Vﬁ(ﬁJr ”37):_2477262a(3)R(a,B+ 1B7)1 (26)

where ®)R is the scalar curvature of the homogeneity hyper
surfaces. Various explicit expressions ¥o§ may be read off
from corresponding expressions [10,18,19,2& For the
characteristic Bianchi type-IX‘mixmaster” [27]) universe

A A —_A~A
that will be the subject of Secs. IV and V it {§25], Box q*(H—a~(t)=g7(f(1)), (2.10a
30.1, for example
V= 1272t e*f— 2e~ 2] 2.7 Pa(t) = Pa(t)=pa(f(1)), (2.10h
B . .
[For ease of comparison with the literature, note that it is ~ .
traditional to discus¥ 4 in terms of the anisotropy potential N(t)—N(t)=N((t)f(1), (2.100

Vo= (1/(6m)*)Vz+1=3 tf1—2e 2+ %], because/, is

positive definite with a global minimum of 0 =0, and is

triangularly symmetric aboy8=0.] The homogeneous iso- SO long asf(0)=0 andf(1)=1. _
tropic FRW universe may be recovered by settj$ig 0 in Variation of Eq.(2.8) or Eq. (2.4 with respect to the
the equations for Bianchi type-IX. For themf®R  multiplier N gives the constraint

=(3/2)e~?* andV 4= — (67)% (Note the usual FRW scale

H(pa,q*) =0 (2.11)

“The issue is that while the momentum constraint implies that the
spatial metric may always be diagonalized at any one moment dp€tween coordinates and their conjugate momenta. Variation
time, the classical equations of motion are required to show that iwith respect to thep, and g* give Einstein’s equations of
remains so thereafter. These issues are discussed with characterigti®tion. The character of the solutions to these equations—
lucidity in Sec. IV of[10]. the possible classical histories—depends on the isometry
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group and the value of the cosmological constAntFor  with A=0. While the construction is in principle valid even
example, in the case df =0 Bianchi type-l models we ex- for models which may expand forever, certain technical as-
pect cosmologies to expand forever from an initial singular-pects of the analysis are simplified by restricting attention to
ity. More precisely, we expect the extrinsic curvatufe quantum histories which always recontract, and the most
=(3/L)da/dt (trace of the extrinsic curvature tensof the  general case will not be considered here.

t=constant surfaces of homogeneity to remain positive to \We work within the general principles of the quantum
the future of an initially singular surface. Bianchi type-I clas- mechanics of a closed systdfit—16. The closed system is
sical solutions withA >0 also expand forever, while models most generally and accurately the universe as a whole. The
with A <0 always recollapse. Bianchi type-IX models have most general predictions of quantum mechanics are the prob-
closed spatial sections with three-sphere topology. &he gpjjities of individual members of sets of alternative coarse-
=0 Bianchi type-IX universes are just the anisotropic gen-yrained histories of the closed system. Probabilities are not

era(ljlizatilczjns of :]he cIoaed FRr\]N unir\]/erseﬁ Mé)re precisely, Ling o qicted for every set of alternative histories, but only those
and Wald[29] have shown that when the dominant energyfor which the quantum mechanical interference between the

condition is satisfied an(_:i the trace of the Spa“'?' projection ol ividual histories in the set is negligible as a consequence
the stress-energy tens@re., the sum of the principal pres- ) - .
: o . . of the system’s boundary conditions and dynamics. Such sets
sures is positive—thus excluding a cosmological constant— f histories are said to decohere. or be consistent
there are no classical solutions which expand forever from aft . ' _ o
Generalized quantum theof%,12,13 is a comprehensive

initial singularity in the sense that the extrinsic curvature of]c K for imol . h inciol f th
constantt surfaces remains positive. ramework for implementing the principles of the quantum

The stress-energy tensor arising from E2.3) satisfies mechanicg of closed system.s. As noted i_n the Introduction,
the dominant energy condition so long\g=0, though the the following elements specify a generalized quantum me-
pressures may be negative if the potential energy in th&hanics:(1) The sets of fine-grained histories which are the
scalar field exceeds the kinetic energipdeed, it is precisely most refined description of the system possilig.The al-
this feature which allows a scalar field to mimic a lowed coarse grainings which generally are partitions of a set
cosmological constant in inflationary modgI¥hus, scalar of fine-grained histories into an exhaustive set of mutually
fields only satisfy the conditions of the Lin-Wald recollapse exclusive classedgc,},h=1,2,3 ... called coarse-grained
theorem at late times for certain choices of scalarhistories.(3) A decoherence functionaD(h,h’) that mea-
potential—a free, massless, minimally coupled scalar fieldsures the interference between pairs of histories in a coarse-
for example. The general conditions ¥y for which a recol-  grained set. The decoherence functional is a complex-valued
lapse theorem holds are as far as we are aware not currentiynctional on pairs of classes that satisfies certain general
known. requirements: It igi) Hermitian, (i) normalized,(iii) posi-

With a cosmological constant the conditions of the Lin-tive, and(iv) consistent with the principle of superposition in
Wald theorem are not satisfied. The example of de Sittegenses made precise[ih12,13. The decoherence functional
space is enough to show that there will be Bianchi type-IXincorporates a specification of the boundary conditions for
splutlons with vanllsh[ng scalar fleld which evo_lve NON- the closed system—typically “initial” and “final” condi-
singularly from an initial contracting phas&0) in the  iong 1t is a natural generalization to closed systems of the

infinite past to an expanding phas€x0) in the far future. 4o, of quantum state, as the term is used in quantum logic

In_ petween the V°'“”?e of .the universe reaches a NON-Z€rQnq in algebraic quantum mechanics, to measure the quan-
minimum value. The inclusion of a small amount of homo-

geneous scalar field would not be expected to disturb this | interference between histories in addition to their prob-

behavior. However, the homogeneous, isotropic Bianchip’lb'“t'.eS [2.3] -~ .

type-IX (Friedmani models show that a positive cosmologi- With these three elements specified, the process of predic-
éion proceeds as follows: A set of alternative coarse-grained

cal constant does not remove the singularity in every case.” F ; s - )
There are also models in which the stress-energy of the schistories(@approximately, mediupndecoheres wheb(h,h’)

lar field dominates that of the cosmological constantS Negligible for allh#h'. The probabilitiesp(h) of the
throughout the model's history. Such models display thdndividual histories in a decoherent set are the d|agp_nal ele-
qualitative features of thd =0 case—an initial singularity ments ofD. The rules for decoherence and probabilities are
leading to a finite expansion followed by recontraction, forthus summarized by the fundamental formula

models satisfying the conditions of the Lin-Wald theorem.

See[7] for a wide-ranging survey of the dynamics of the

various cosmological models. D(h’,h)=p(h) &y (3.1

Ill. GENERALIZED QUANTUM MECHANICS OF A=0
BIANCHI TYPE-IX UNIVERSES obeyed by histories in decohering sets.
The four-dimensional diffeomorphism invariance charac-
teristic of a geometric theory of gravity is most easily ac-
In this section we describe a generalized quantum theorgommodated by employing a sum-over-histories formulation
for Bianchi type-IX minisuperspace cosmological modelsof quantum mechanics. A sum-over-histories quantum

A. Generalized quantum theory
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mechanics posits a unique set of fine-grained histories whichventually recontract to a final singularity of vanishing three-
in the case of gravity are four-dimensional spacetime metricgolume, assuming that the potential energy in the scalar field
and matter field configurations. A sum-over-histories generdoes not dominate the kinetic at late times. We shall confine
alized gquantum mechanics for cosmology was described inur attention to potentials for which this is so. Classical his-
[1]. Generalized quantum mechanics for models with &ories may therefore be thought of as beginning and ending
single reparametrization invariance was described as®wellgn a surfaceo, of large constant negative(= ay) in the
We now apply those discussions to homogeneous, minisupegxtended configuration space of paths,. The class of all
space cosmological models which, as formulated here, possaths that begin and end on such a surface is therefore the
sess a single time reparametrization invariance. To do tha{atral, minimal set of fine-grained histories for a general-
we specify epr|C|_tIy the three elements of their generahzeqzed quantum theory of Bianchi type-IX minisuperspace cos-
quantum mechanics. mological models with scalar field ani=0. This was the
choice advocated by Teitelboim in his theory of quantum
cosmological “scattering” between initial and final singulari-

1. Fine-grained histories ties[30]. It is the choice we shall adopt hef®estricting the
We take for the set of fine-grained histories the pathdaths in this way corresponds to the imposition of a bound-
M(t) = (gA(t),N(t)), M=0, ... 4 in theextended configu- ary condition that wave functions vanish as-.) Finally,

ration spaceCey of q*=(a,B,,B8_,¢) and multiplierz*  we add the restriction that all paths posse£§)>0 and
=N. We are thus considering a sum-over-histories quantun,(1)<o on o, i.e., “expanding” initial and “contracting”
mechanics in which there is a unique fine-grained set of hisgnai conditions.

tories. We put no restriction of single-valuedness on the

paths. Thus, for example, the total spatial volume

(47)%exp(3a(t)) may increase and decrease over the course

of the history and, indeed, go through such cycles an arbi- 2. Coarse-grained histories

trarily large number of times. In particular, the classical his-

tories of a Bianchi type-IX universe which expand and re- Coarse-grained histories correspond to the physical ques-
contract are included among the possible quantuniions that may be asked of a system. We therefore allow as

mechanical histories. coarse-grained sets of alternative histories any partition of
We put no restriction on the differentiability of the paths, the fine-grained histories inteeparametrization invariant
but do require them to be continuous. classeqcy}, h=1,2,...,because reparametrization invari-

The fine-grained histories have ends at which the cosmoance is what remains in minisuperspace of the diffeomor-
logical boundary conditions analogous to initial and finalphism invariance of general relativity. The classes generally
conditions are imposed, and these ends must be prescribedritay be thought of as partitions by values of reparametriza-
complete the specification of the set of fine-grained historiestjon invariant functional$=[q*,N] of the paths inCey;. Ex-

A natural principle restricting this choice is thite set of  pjicitly, for an exclusive set of range\p},h=1,2,... of
fine-grained histories should include all the classical histo-the real line, and a single functionglwe define

ries. Otherwise there is no hope of recovering Einstein’s

classical theory as a suitable limit of quantum the@¢mhis

will be the subject of Sec. YThe work of Lin and Wald29]

discussed at the end of Sec. Il shows that all classical Bian- (A A

chi type-IX cosmologies with scalar field ard=0 expand ch={(a"(t),N()[F[a",N]e Ap}. (3.2
from an initial singularity of vanishing three-volume and

Any partition may be thought of as of this form because we
may always consider the functional which has the valfer

one of many applications of sum-over-histories principles and techpath_S inc, and a set of ranges _that bragket the |nt_egers.
niques to quantum gravity. These are too numerous and familiar to  SIMPIe examples of interesting partitions into diffeomor-
be cited here, but two particular applications to quantum cosmologiPhism invariant classes—here reduced to reparametrization
cal dynamics should be mentioned whose spirit is consonant witlivariant classes—are readily given:

that in [1]. Teitelboim [30] developed a sum-over-histories (i) One could partition the histories by ranges of values of
“ S-matrix” theory for calculating transition amplitudes between al- the volume of the largest volume three surface of homoge-
ternatives defined near cosmological singularities. We exploit theneity_ The resulting probabilities are for the values of the
formal techniques developed by Teitelboim for constructing func-yglume of maximum expansion of the universe reached in
tional integrals over spacetime geometries and in particular hishe course of its expansion and contraction.

choice for the measure in such integrals. The way probabilities are (i) One could partition the histories of these homoge-

related to amplitudes differs and we aim, in a generalized quantum . . .
! ) neous space times into the classes which have a surface of
mechanical setting, at probabilities for much more general and a

cessible alternatives than those that can be defined near singulacn-c_)rm)ger|e|ty with a volume less tharand the CI§§S of those
ties. Sorkin’s[31] treatment of general alternatives is concordanty‘“th no such surface. The value of the probability that there

with that of the present work. is a surface with volume less than considered as—0

5The generalized quantum mechanics for cosmologi]is but
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would be one way of assigning a probability to the universezation invariant property expressible in spacetime tétifis.
becoming singulaf. answer this question one considers the partition of the fine-
(iii ) One could partition the histories into the class whichgrained histories into the class which have the property and
remain close to a solution of the classical Einstein equatiotthe class which do not. If this set of coarse-grained histories
by some standarftf. Eq. (5.3)] and the class which exhibit decoheres, then the quantum mechanics predicts the prob-
a significant excursion away from classical behavior. Theability that the universe has the property in question. If one
probability of the first class is the probability that the uni- cannot tell whether a given fine-grained history has the prop-
verse behaves classically according to the given standard. Wity or not then either it does not make sense or it is not
shall employ such coarse grainings in Sec. V. gxpressmle in terms of metric and/or matter field configura-
(iv) One could partition the fine-grained histories by oS alone.

ranges of values of the volume and anisotrgpy they as- Wh”e Itis easy to .EXh.'b't _phys!cally Interesting sets_of
. . C - " alternative reparametrization invariant coarse-grained histo-
sume a given “proper time” [ Ldt after the initial condition.

. ries for these homogeneous minisuperspace cosmological
The resulting probabilities would be the probabilities for themodels it is much harder to find sets of such histories that

volumes and anisotropies the universe could have at a give(ﬁ‘ecohere. That is because of the small number of degrees of
proper time from the initial surface. These are not unlike th&oaqom of the model. Coarse graining is essential for deco-
probabilities that would be of interest in comparing the pre-herence. Realistic mechanisms of decoherence that are effec-
dictions of a realistic quantum cosmology with observation.tiye in a variety of initial conditions qualitatively involve the

All of the coarse grainings mentioned above are intogjssipation of phases from variables followed by the coarse
manifestly reparametrization invariant classes of fine-grainegraining into variables that are ignor&dHowever, the
histories. Most are partitions that are not defined by a|temapresent minisuperspace models do not present many degrees
tives that are in any sense alternatives “at one moment obf freedom to be ignored.
time,” and hence are not defined simply by observables on
superspace. Rather they are spacetime alternatives referring 3. The decoherence functional

to properties of histories extended over time. For example, The decoherence functional is constructed in two steps

the probabilities for classical behavior refer to whether ag)iowing the analogy of the relativistic particle discussed in

suitably coarse-grained history approximately obeys the Einf1]; the final result is expressed in E@.9). It will turn out

stein equation over a course of time. to be a natural generalization to a reparametrization invariant

Coarse-grained histories correspond to the physical quesheory of the canonical decoherence functional of ordinary

tions that may be asked of a system in the following sensequantum mechanics.

Ask for the probability that the universe hasyreparametri- First we define matrix elements of class operators corre-
sponding to individual coarse-grained historfeby a sum-
over-histories in the class. Schematically, we define

5There could be many other meanings assigned to a singular quan-
tum evolution, for example, a finite probability for a curvature in-
variant to have a divergent valuef. [32]). The various possible
definitions are not necessarily easily related or of equal significance

because the paths are non-differentiable. The particular criterion faghere the sum is over paths @, that lie in the class,,
singular evolution—finite probability for a surface of homogeneity \hich begin afy’ and end aty”. Sis the(Lagrangian action

of vanishing volume—that is under discussion for these minisupery paths—a functional ofj(t) andN(t). In order to give a
space models would not be a valid criterion for a full theory of definite meaning to the functional integral in E8.3), and
quantum cosmology for two reasons: First a general geometry m particular, to fix the “measure” on the space of p:’;lths, ,it is

have no surfaces of homogeneity. Second, spacelike surfaces 8 . . ST
- . . onvenient to consider the corresponding integral over paths
nearly vanishing volume may be constructed even in non-singular

spacetimes from segments that are nearly null. The criterion i phase space,

meaningful in these minisuperspace models only becalisine-

grained histories can be foliated by surfaces of homogeneity—by <q”||Ch||q’>=f 5N;05p6qq’,’Ag[q,N]é[g[q,N]]
assumption. The important point, however, is that any meaningful Ch 4

criterion for singular quantum evolution that is expressible in space- . A

time form corresponds to a partition of the fine-grained histories Xexp(iS[pa,q™N]).

into the class which is singular by that criterion and the class which ) ) ) ) ] )

is not singular. If the alternatives éfsingulaj, (non-singulay} de- ~ The ingredients in this expression are as follo@ss the

cohere then a generalized quantum theory will assign a probabilitydCtion (2.8). G is a function such that the conditiogi=0

to a quantum universe being singular. Unlike the classical theory,

howevera finite probability for singular geometry need not mean a

breakdown of predictability. 8In path integral formulations of this kind, physical quantities that
"We follow terminology of Teitelboim[30] and Henneaux and involve derivativessuch as the extrinsic curvatuke must be ex-

Teitelboim [33] in calling the reparametrization invariant quantity pressed in terms of differences of metric variables at different times.

SLdt the “proper time.” Kuchar34] has stressed that this may be °See, e.g[35,36 for more quantitative discussions from a histo-

confusing and suggests the term “separation.” ries point of view, as well ag37].

(@[Cilla’y=" X  expiS[pat), (3.3
paths=[q"hq"]

(3.9
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fixes a unique representative from each reparametrization irthe Wheeler-DeWitt equation to decay in “spatial” directions
variant equivalence class of fine-grained historikg;is the  in minisuperspacéthat is, on surfaces of constan) fast
associated Faddeev-Popov determinant. The integral is ovenough inB. and ¢ thatV¥~0 asa— —. (More pre-
all paths inCey that lie in the clasg, and pass between the cisely, we require thag **VW¥ is bounded; see Sec. IV C.
configuration space pointg{)’ and @*)”. All possible mo-  The space of functions on minisuperspace with these prop-
mentum paths are integrated over. We take the multiplieerties will be denoted (o). Equation(3.5) is the Wheeler-
functional integral to be over positive valuds=0. Other = DeWitt equation for the “initial” and “final” conditions in
choices, for example, both positive and negative valuesthis minisuperspace quantum cosmology.
would lead to different generalized quantum theori&ame At this stage in the construction of the decoherence func-
of the issues that arise in choosing the allowed range for thgonal, the specification of the minisuperspace boundary con-
lapse are discussed[i88—41] and([1], Sec. VI).] The mea- ditions is otherwise essentially arbitrary. Ultimately, these
sure for theq and p integrations is the usual Liouville boundary conditions must be supplied by a detailed physical
“dqdp’27" measure on phase-space paths. The integratiotheory of the cosmological boundary conditions. References
over momenta may be seen as a device to induce the measUiife42] are reviews of this aspect of quantum cosmology.
on paths irC,,, from the Liouville measure since the range of  Initial and final conditions are adjoined to the class opera-
integration over the momenta are constrained neither by the®r matrix elements by means of a linear prodeain the
classc;,, the endpointsd’,q”), or the gauge fixing delta- space of solutions to Eq3.5). Following [1] we shall take
function. The skeletonized path integrals we envision ardor o the Wheeler-DeWitt(Klein-Gordon product. Specifi-
quite standard 30,39, and have already been briefly de- cally, given a surfacer in the configuration space that is
scribed in[1]. spacelike in the metriG”® we define

The decoherence functional is constructed from the class
operators(3.4) which characterize the physical histories in .
guestion, but also incorporates a theory of cosmological (Do‘lf=if dSAD* (q) VAV (q). (3.6)
boundary conditions imposed at the ends of the histories that 7
are the analogs of initial and final conditions in a quantum
system with a fixed notion of time. The inner product, so defined, is independent of the surface

An initial or final condition is represented by a set of used to define it so long @ and'¥ both satisfy Eq(3.5). In
configuration-space wave functions together with a probabilthe coordinatesq®=(a,8, ,8-,¢) in which G*®=diag
ity for each wave function. That is the same kind of infor- (—1,1,1,1) a convenient choice ofis typically a surface of
mation needed to specify an initial or final density matrix in constanta, whence
ordinary quantum mechanics. The wave functions are re-
quired to satisfy an operator implementation of the con- g
straints. Thus, for homogeneous cosmological models an ini- (I)O\If:if d3qd* (a,G)— V¥ (a,q). (3.7
tial condition is specified by a s¢W;(q"),p/}, where each @ dJa
W,(q”) satisfies an operator form of E(2.11). We take the

obvious operator orderit§and write Having introduced the produetwe now defin&"
2 4 4 ! !
HY,(q)= —GAB{9—+V(q) Vi(q)=0. (3.5 (®i|Cp|¥j)=Di(q")(a"|Chla")¥i(q"). (3.9
9q”aq°

This definition appears at first sight to depend on the choice
Similarly a final condition is specified by a sgb;(9*),p{},  of surface on which is defined, but in fact it does not, so
where the®;(q?) also solve the Wheeler-DeWitt equation long as the coarse graining, does not restrict the paths on
(3.9). In order to guarantee the independence of the decohethose surfaces. This is because the class operéabsfor
ence functional from the choice of initial surfaeg—see  such coarse grainings generally solve B35 as well as¥
below Eq.(3.8—and for additional reasons that will be ex- and ®, a fact we demonstrate in the Appendix. First, how-
plained in the sequel, we require the initial solutiohég) of  ever, we complete the definition of the generalized quantum

theory of homogeneous minisuperspace cosmologies.

The decoherence functionBI(h’,h) is defined through
OMost generally, the operator ordering in the Wheeler-DeWitt

equation obeyed by the boundary wave functions should agree with
the operator ordering in the Wheeler-DeWitt equation obeyed by the D(h',h) :/\/2 Pi{(P@i[Cp/ [ ;) pi (@i Cp|F;)*,
full propagator, Eq(A1). This ordering in turn is determined by the Ll
precise form of the measure in the functional integ8af) defining (3.9
the class operators. In the present instance, however, we have ef-
fectively circumvented this issue at the classical kinematical level
by restricting attention to an action of the for(2.9) expressed in The second in Eq. (3.8 denotes the action of the operator
coordinates in which the kinetic term is independent of the minisu-C;, on . When written out using Eq3.6) the matrix elements of
perspace coordinates; the operator ordering appropriate to thiS, are therefore not complex conjugated. One may think of
choice is just that of E¢(3.5). o as roughly analogous to thd™in Dirac notation.
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where AN is a normalizing factor determined so that The Faddeev-Popov determinant A =detdG/ e

ShD(h’,h)=1. Specifically, ifu is the class ofall fine- ~detd?/dt? is in this case independent of the integration
grained histories variables. The delta functional in E(.4) then permits only
theN=constant paths to contribute to the integral oMét),
- " ' leavin
N 122}_ P/ [{®i|Cy W) |%p; . (3.10 g

" l .
dle '=JdN>65q,ex int A—NH
The decoherence functional defined by KE8.9) is the (a"lCrlla’) ch =09P g p( 0 [Pad !
direct analogue of the “canonical” decoherence functional of (3.19

ordinary Hamiltonian quantum mechanics with initial and ) .
final boundary conditiongL,3], written in functional integral ~ fter dropping the constant factors that cancel in the deco-
:herence functional3.9). Changing variables to

form, with accommodations appropriate to the reparametri:
zation invariance of the present theory. It satisfies the general ds=Ndt (3.15
conditions required of a generalized quantum theory. It is '

(i) Hermitian, D(h’,h)=D(h,h")*, (i) normalized, the Gaussian functional integrals oyemay be performed,
2hwD(h',h)=1, (iii) positive on the diagonal elements, |eaving simply

D(h,h)=0, and(iv) consistent with the principle of super-

position in the sense that {t;} is a partition of the classes " "_ fm " ,

{cy} into coarser classes, then (alCalla’) 0 dN(a"NICrlla"0) (316

E— ) so long as we assume the coarse graining does not restrict the
D(h",h)= 2_, >, D(h',h). (3.1)  value of N; otherwise the range of thi integral must be
hieh® heh restricted appropriately as well. Here we have defined

These four conditions are enough to ensure that for sets of (q"N|Cyllq’0)

histories that decohere according to E8.1), the numbers h

p(h) defined by Eq.(3.1) are probabilities satisfying the g (1 1 - A'B
most general form of the probability sum rules. By using in = Jch&lqrex Ijo dtj 7 Gasd "~ NV

Eq. (3.1) the specific form(3.9) we can assess the probabili-

ties of alternative, coarse-grained, decohering histories of the (3.173
model homogeneous cosmologies under discussion.
o [ (N 1 dg*dg®
_ _ _ =| o6qlexpgi| dg=Gag— ———V/||,
B. Evaluation of the class operators in the proper time gauge ¢ U 0 4 ds ds
(3.17b

We apply Eq.(3.1) to predictions concerning the semi-
classical behavior of homogeneous minisuperspace cosmol@ere the path integral measute has been renormalized in
gies in the next section. To end this SeCtion, we discuss thﬂ]e usual manner induced by the momentum integrations_
evaluation of the class operatd®4) in a particularly con-  (See the Appendix for detai)sThe notation on the left hand
venient gauge—Eq3.13—called the “proper time” gauge.  side of Eq.(3.173 is inspired by the observation that the
For suitable coarse grainings, we also brleﬂy argue that the%th integra| in Eq(317b shares the form of that for the
matrix elements satisfy the constrai@5). Because the ac- propagator over a timd of a relativistic particle in a poten-
tion (2.8) is essentially that of a relativistic particle in a po- tja| V. Equation(3.16 may be thought of as a “restricted
tential, the treatment closely parallels that of the free relativpropagator” for the class of pathts,, as should be evident
istic pal’tiC|e that has been given preViOUSI)(I]ﬂ]], Sec. V”) from the restricted functional |ntegra'B4)

The first step in evaluating Eq3.4) is to choose a In general, the complexity of the minisuperspace potential
‘gauge” that fixes the reparametrization symmet&103— v precludes much further explicit progress in the non-
(2.1009, the infinitesimal form of which is invariance under perturbative evaluation ofq”[|[Cplq’). It is still possible,
the changessetf(t) =t+ e/N] however, to show that the class operators satisfy the con-

straint (3.5) for coarse grainings which do not resttfcthe
values of the endpointg’ andq” or the value ofN. This is

_ done in the Appendix. Equatiof8.8) is thus as claimed in-
opa=e(t)ipa.H}, (3.12h dependent of the surfaces on which we choose to impose the
boundary conditionaV and®.

5q™=e(t){q"H}, (3.123

SN=€(t), (3.129

whe.re{,}‘»‘ Is the f?’i,sson bracket, aed0)=€(1)=0. Acon- 12Another approach is teequire that the class operators satisfy
venient “gauge” fixing function ig38,4Q (see als¢1], Sec.  the constraints and to modify their definition appropriaf@g,43—
Vi) 45]. We do not expect such modifications to fundamentally affect

) any of the specific results presented here, and thus defer their con-
G=N. (3.13 sideration.
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IV. DECOHERENCE FUNCTIONAL FOR RECOLLAPSING
BIANCHI COSMOLOGIES

oA

The general form of the decoherence functional for type A
homogeneous cosmologies is given in E3}9). In this sec-
tion we employ some specific choices of the initial and final
conditions appropriate to\=0 closed (Bianchi type-1X
cosmologies to cast the decoherence functional into a sim-
pler and more practically useful form.

A. Initial and final conditions

As already noted, it is to be expected that the initial quan-
tum conditions of the universe are fixed by sotheory of
cosmological boundary conditions. Knowledge of this theory
is not, however, required in the construction of the decoher- FIG. 1. The minisuperspace of homogeneous cosmological
ence functional for cosmology. We shall, therefore, illustratemodels. The timelike coordinaig’=« and one spacelike coordi-
the process of prediction based on the decoherence funbate(e.g.q'=3.) are plotted. Fine grained histories are paths in
tional (3.9) with some simple choices of initial state. The this configuration space which begin and end on a surdgdbat is
practical significance of such predictions depends entirely ofPacelike in the Wheeler-DeWitt minisuperspace meBjg and

whether the chosen initial states are representative of thi@cated at large negative (=ao, say, corresponding to a small
boundary conditions on the actual physical universe. spatial volume. The restriction to paths which begin and endgn

Most of the extant theories of the initial state of the uni- corresponds to the imposition of a boundary condition that solutions

verse[6,42] produce a boundary state consisting in a singld® the Wheeler-DeWitt equation vanish as-c. The paths all

initial wave function. We will therefore in our examples con- Posses(0)>0 anda(1)<0 onay, i.e., “expanding” initial and
centrate entirely on the case of a pure initial stitte “contracting” final conditions. The universe expands from a small
Recall from Sec. 11l A 1 that the Bianchi type-1X cosmo- 1 @ maximum volume and then recontracts.
logical histories have “ends” at which we impose boundary . ] ]
conditions{¥; ,p/} and{®; ,p}. In order to correspond to a Next, we shall turn our attention to the semiclassical pre-
conventional notion of cosmtljlogical boundary conditions fordictions of the decoherence functional with an initial state of
closed,A =0 universes, we impose the boundary conditionsth® more traditional WKB form. As is to be expected, under
on a suitable surface, of large, negativex (= ay), i.e. semiclassical coarse grainings such a choice of initial state

when the universe is very small. Because the wave functionl€ads to a distribution of classical trajectories with initial
W, and @, satisfy the constrain3.5), it does not matter on value weighted according to the WKB prefactor, and initial
| I . '

% #%

t=0 t=1

which surface they are imposed so long as the coarse grai
ings under consideration do not involve regions of minisu-

fpomentum given by the gradient of the phase.

Let us now proceed with the details.

perspace intersecting those surfaces, as noted above. In this

sense, then, the cosmological histories “begin” and “end” at
small spatial volume, just as the classical histories(8ee
Fig. 1)

Maintaining a close correspondence with ordinary quan-

B. Branch wave functions

First, it is useful to define the “branch wave functions”

Wn(a)=(qlCh|¥)

tum mechanics, we shall choose final boundary conditions

which are “indifferent” to the paths, in a sense to be made

precise in Sec. IV C. There will then effectively be no final

conditions at all on the cosmological histories. These may be regarded as the wave functions corresponding
As for the choice of the initial boundary conditions, we to the initial state, propagated by the restricted propagator

will examine two instructive examples in the sequel. In order(class operat9r corresponding to the physical history in

to illustrate how the present sum-over-histories constructiomuestion:

can predict semiclassical behavior in a suitable limit as natu- The spacd¥,(q)} of branch wave functions will be de-

rally as sum-over-histories formulations always do, as a firshoted. It depends in an essential way both on the allowed

example we consider a single initial localized Wheeler-space of initial wave function®(qg), and on the allowed

DeWitt wave packe® VP which is designed to prefer a par- coarse grainings.

ticular classical path over all others in the semiclassical limit.  For arbitrary coarse grainings, it is not immediately evi-

In a partition of the minisuperspace histories by classicallent that¥(q) for qe oo must be in the spac&(o) of

paths, a steepest descents evaluation of the path integral for

the class operators then reveals that the primary contributiom———

to the decoherence functional comes from the class operator3t may be helpful to be reminded that the “matrix” appearing in

corresponding to the coarse-grained class of paths containire. (4.1) should not be complex conjugated when computing the

the classical path preferred by the initial conditign'®. product; cf. Footnote 11.

=(qlCplla")e¥(a"). (4.1)
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functions which fall off rapidly at infinity orog, even when Toy™ =+ ", (4.4
the initial wave functionsl (q) are required to be itF(oy),

as we have done. However, we will take the arguments oWvherey™ e B~.

Higuchi and Wald[10] as strongly suggestive that initial ~ Such an identityZ may be explicitly constructed by
states inF(o,), when propagated by the full propagator choosing base§®;"} for B* which are orthogonal in the
(q"|ICylla”y off of o and then back tax— —, indeed inner product3.6),

remain inF(o,) when there is a scalar field preséhior L

the present, we will assume when necessary that attention is Do ==+ G (4.5
restricted to coarse grainings for which al,(q) € (o)

whengqe oy i.e. for whichB|,, C (o). and

dod; =0. (4.6)
C. Final indifference
Boundary conditions of “final indifference” should Set.tmg_ all thep =1, with such a basis we may construct
amount, in essence, to no final boundary condition at all, ifPreJéction operators
the sense that the endpoints of all paths are weighted equally.
The final boundary condition then effectively disappears Z5(qp,97) =2, O (g5 P *(q] 4.7
from the decoherence functional, just as it does in ordinary '
guantum mechanics.
Let us be slightly more precise about how to do this.
What we seek are a complete set of solutions to the Ta" aMo (o) = + w (" 4.8
Wheeler-DeWitt equatiofi3.5) which may serve to define a (2. G0)ev(d0) == ¢ (a2). “8
positive “resolution of the identity” in the space of branch 7 is then given by
wave functions5. By this we mean the following. First, note
that if we define I=7"+T1" 4.9

for which

that
T(ag.ap) =2 P3P (af @2 M
Tog= g — g (4.10

Explicit calculations require an explicit choice of tthg" .
Since we are restricting our attention to coarse grainings
whose branch wave functionB, (q) lie in (o), we can
implement the split of the space of branch wave functions
into B~ by choosing thé®;"} to be of definite frequency on
oo with respect tow. That is, relabeling the index—p,

n

for g7 ,q5 € oy, the decoherence functiond@.9) for the case
of a pure initial statel may be written very simply in terms
of the branch wave functiong.l) as

D(h,h')=/\f§i: P (Dio W) (Do Wy )*

ZN\Ph/Ofo\Ph. (43)

In order to capture the notion of “final indifference,” we QQE(QF FiwpP5(q). (4.1
next split B into orthogonal sectors3* on which the

Wheeler-DeWitt product is positive or negative definit€.  For this to be possible, it must be that the Wheeler-DeWitt
We require for final indifference that thi; be chosen so that operatorH and 4/da commute. In fact,

14
g T (B ) =4eVy(B.) fla,B,¢)

The essence of their argument is that for scalar potentials which
do not grow exponentially at infinity, the scalar potential term in
Eq. (3.5 becomes negligible as— — and hence the scalar mo- +6€%V () f (e, B ),
mentum acts as a conserved mass term in the equation of motion. (4.12
This means that wave packets “lose energy” upon each bounce off '

of mixmaster’s potential walls, eventually slowing to the point ¢q thatg/ga andH approximately commute everywhere on
where they move more slowly than the walls recede. Wave paCket§urfaces of large negative so long as they act in the space
therefore should become asymptotically “free” as——« inside of functionsF(a) for which V,4f andV,,f remain bounded.
Fhe potential walls, escaping to infinity more slowly than the reced'SinceVB andV¢ are both boulrzded be‘fOW, this is equivalent
InPS\XIVZIErle not familiar with an explicit procedure for performing to the condition thal/f~0 on a—or more precisely, that
e~ %*Vf is bounded—whence our choice of boundary condi-

this split of the Bianchi type-IX minisuperspace in genef&ee . h I d luti h int in S
however8,11,43,46.) Nonetheless, as argued below, since we onlyt'ons on the allowed solutions to the constraint in Sec.

need to evaluate the products appearing in @) at very small A 3. . .. . i ]
volume, the arguments of Higuchi and WA4ItD] noted above sug- The explicit form of thed 5 is not difficult to find. It is
gest that the construction we give when the branch wave functionglear from Eq.(2.9) that ono there are large regions near
on o are inF(ay) is sufficient for our purposes. the origin in g-space for which the potentidl is totally
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negligible so long as/, remains bounded. In fact, it is a Cr=+D oW, (4.18
standard part of the lore of mixmaster cosmolotfiebat

V., the anisotropy potential for Bianchi type-IX—see below For the particular choice of basi4.13 for (o), this looks
Eq. (2.7—is well-approximated agr— —« by a triangular like

set of potential walls att=— (8. *+/3B8_) anda=28., .

Well inside these walls, we may takéto be essentially zero ~ L ~

for reasonable/,,.*" Near the origin of the spacelike surface ()= f d"p{W ™ (p) P (a) + W (P) Py ()},

0o, the@é(q) can then be taken to have the form (4.19
1 . o where
D5 (q)= ——=—=—=e""r"e" 1, (4.13
P ~ -
V(2m) 2wy T=(p)=+ 5w (4.20

wherew§= p2. In the asymptotic region where the potential

V is not negligible we may choose to maintaither Eq.

(3.5 or Eq. (4.1, since our branch wave functions are by
design essentially zero there. Should we choose to adhere
strictly to the requirement3.5 everywhere orrg, the (Dg

will of course be more complicated in the asymptotic region.  With the resolution of the identity in hand, we define the
Practically, however, it is usually easiest to retain the formpositive definite Wheeler-DeWitt product « by

(4.13 everywhere. So long as we restrict attention to initial

ono

D. The Wheeler-DeWitt product and the decoherence
functional

states and coarse-grainings for whis, C F(ay) the dis- pop=yeloy
tinction will be practically irrelevant and the explicit form .
(4.13 can be used in calculating the decoherence functional. =Yy ey 4.21)
The basis of function§4.13 are orthogonal in the appro- ’
priate sense, In terms of this positive producf the decoherence func-
q)goq); . 5;,:)) , (4.14 tional may be written very simply as
D(h,h")=NW ey, 4.2

and (h,h") h*Wh (4.22

BT = where N is (¥,»¥,) 1. Equation(4.22 is the form of the

p° ﬁ'_o' (4.19 decoherence functional we will use for the remainder of the

discussion. The generalization of this formula to the case of

(n is the number of "spatial® minisuperspace degrees Ofan impuresetof initial wave functions{¥;,p/} is obvious.

freedom—three, in the present exampi, and ¢.) The
projectionsZ= of Eq. (4.7) may then be explicitly con-

structed agtaking =;p/— [d"p) E. Classical initial conditions
Because we will be interested in initial conditions and
(s .q" :f d'od® (P I*(q"). 41 coarse grainings which d_|s_t|ngwsh classical behgwor, it is
(2. PP (G2) P57 (1 (418 useful to discuss the conditions necessary to specify classical

. . solutions.
Finally, we note that the orthonormal bagds } are also The classical equations of motion—the reduced Einstein
useful to represent the initial conditiok. Indeed, solutions equations—resulting from the variati@$/ sq=0 of the La-
to the Wheeler-DeWitt equation iA(o,) may be written as  grangian action appearing in E(B.173 are, in the proper
time gauge(3.13),

V=2 ¢+ o dp
I I

¥indeed, up to technical details, we expect the choices we have
=vr+v, (4.17) made are in their effect equivalent to employing the “Rieffel in-
duced” inner product to construct the decoherence functional; see
where [28,43,44 and references therein for further discussion. Equation
(4.22, employing the Rieffel induced product, is thus a natural
alternative definition of the decoherence functional that automati-
18Referenced47] are useful additions to the literature already cally incorporates a notion of “final indifference.” More generally,
cited. The discussion in Sec. IV pi0] provides an extremely use- note that Eq(4.3) defines a positive product on the space of branch
ful formulation for general type A Bianchi models; see dI28] for wave functions. When thgh;} constitute a complete set and all the
Bilgnchi type-lx models. pi'# 0 this is a genuine non-degenerate inner product. One may thus
Kuchar has shown48] that this “asymptotic freedom” of the regard the specification of “final indifference” as equivalent to the
gravitational potentiaV is a generic feature of superspace, and isproblem of defining an inner product on the space of branch wave
not special to homogeneous models. functions.
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1 d?qgu S0 as to ensure thdt, e F(og), and thatW(q) be “positive
2N g¢ =—NWV, (4.23  frequency” in the sense thatW/da<0 on a;. (This will
turn out to correspond to an “expanding” initial condition on
the paths this wave function defings.

along with the Lagrangian version of the constrad® 6N We will examine both of these choices in the sequel. First,
=0: however, we shall move on to discuss the category of coarse
N grainings defining approximately classical behavior that we
1 dq”dga i
— T NV=0 (4.24  shall consider.
AN dt dt ' '

Fixing a classical solution starting an, therefore requires
two pieces of minisuperspace data for egéhsubject to the
constraint(4.24). The initial data cannot be chosen arbitrarily ) , ,
even ifN is regarded as an unknown to be determined by Eq, !N this section, we apply the decoherence functional
(4.24): for arbitrary initial data there is no guarantee that(4-22 for A=0, Bianchi type-IX cosmologies to coarse
there exists a real constaNtthat can satisfy the constraint 9rainings WE'_C: glskt]m\gzwsh_abe':wee_n }lhose ga:]hs in n;'_”'hsu'
P 2 - perspace which behavsemi) classically, and those whic
C.lg_(ig+4N V(o). Th('a Initial data must be chosen SO that 4 iot. We find that for suitable choices of the initial condi-
ap— g has the same sign 8do). TheN thus fixed by EQ.  jon v, and for a suitable class of definitions of the semi-
(4.24 will then appear as a parameter in the classical solug|assical coarse grainings, the universe is predicted to behave
tion emanating fronwr, specified by the initial datago,do).  classically with probability near one. In particulax=0 Bi-

(Of course, a reparametrization of the timénat preserves gnchi type-IX cosmologies are predicted quantum-

V. APPROXIMATE CLASSICALITY

the proper time gauge will yield a different value fidr) mechanically to recollapse just as they do classicg2§].
o This is satisfying, not least because of the surprising predic-
F. Quantum initial states: Examples tion of Wald’s[10,26 rigorous canonical quantization of Bi-

We choose our first example initial sta#"P to be a anchi type-IX that closed quantum universes do not recol-
positive frequency solution to E¢3.5) that is localized well  lapse in a classical fashidfl.(For another discussion of
within mixmaster’s potential walls on the initial surface, and difficulties interpreting wave functions for classically recon-
also away from regions of very largé,. Such an initial ~tracting cosmologies, s¢d9].)
state will prefer a particular classical path and predict ap- We begin with a simple example to illustrate the general
proximately classical behavior along the corresponding clasprocedure we have in mind, then go on in the subsequent
sical solution. sections to explore semiclassical coarse grainings and the

wWP py assumption solves E¢3.5 with V~0 and is corresponding class operators and branch wave functions in
localized near somé, on oy. It may then be represented as greater detail.

‘I’WP :f d3 \I,WP+ = (I)T _
(@) P (P) P (4= do) A. Coarse graining by a single trajectory

f dp 1 o | As a particularly simple example of a semiclassical coarse
— e~ opla—ag . . .

3 graining, ask whether the model universe followpaaticu-
V(2m)° N2,

lar trajectory in minisuperspacg; . To this end introduce
x /P (A=d0)J WP+ () (4.25 the Euclidean distance on superspace and define a region
around the curveq,—say a tube T of radius 6.

for some ¥WP*(p), where of coursew,=|p|. Taking

w, TP () to be a Gaussian centered around sgipe
for instance, yields &"P(q) localized ono about @y, Po)
to the greatest extent consistent with the uncertainty prin

1®The trouble is rooted in the fact that Wald's quantization essen-
tially employs the volume of the univergeather,«) as a “time”
variable in the canonical quantization procedure. With this param-

ciple. , _ o etrization there is no way to construct minisuperspace wave packets
Alternatively, we could consider an initial state of WKB \hich follow an approximately classical trajectory through both
form, expanding and recollapsing phases. Moreover, there appears no sen-
WKBy W(q) sible way to define an operator momentum conjugate tevhich
W) =A(q)e™, (4.26  corresponds physically to the expansion Yateat can have both

o ) ) positive and negative eigenvalugd. In other words, this quanti-
whereA(q) is in an appropriate sense slowly varying rela- zation seems to have an “arrow of time” that precludes the con-
tive to W(q). Approximate calculations of the wave func- struction of states which follow the full course of a classical evolu-
tions corresponding to the various proposals for the initiakion. Instead, time appears to “freeze” as the universe approaches
condition of the universe tend to have components of thists classical maximum sizg0], in the sense that physical variables
form. We also require that(q) be of compact support an,  cease to evolve.
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FIG. 2. Schematic representation of a coarse graining defining FIG. 3. Schematic representation of the region of support of the
c!assmal behav_lor. Tl_1e shaded regibiflustrated in the figure con- semiclassical branch wave functioh(q") corresponding to the
sists of all configuration space far<a, , and fora>a, , atube  class of paths; for a localized initial condition¥ (q’). ¥'+(q") is

surrounding a trajectorg(t) that obeys the classical equations of concentrated around the classical trajectgryt) preferred by the
motion. The fine grained cosmological histories can be divided intqnitial condition.

the classcy that lie entirely insideT, and the classt that are
sometimes outside of {possible only fora>«, ). The probability

of ¢t is the probability that the evolution of the universe is approxi-
mately the classical evolutiogy,(t) for a>«, .

0 Yq’)

Now consider the special case of an initial condition
W(q') whose center moves along,(t). Given Eq.(5.1),

(See Fig. 2% We partition the paths|(t) by whether they

lie entirely inT or not, labeling the corresponding classgs W (q")=(q"|C+llq’)>¥(q’) (5.2a
andct.
It is plausible that wher$ is sufficiently large the path o
integral in EQ.(3.17H can be done by the stationary phase A(g”,q")e'Se@ a0 (q") q"eT
approximation to find o else
(5.2b
A(qg",q")e'Sei@.a?) q.,q9"eT
n C ! ~
(9"l[C+lla") [o olse )
(5.1a ¥7(a")~0. (5.29
., | Ag",q")eSeta”a) q’ or q"¢T  (See Fig. 3. Thus we expect according to Eg®.1) and
(q"[[Cxlla")~ 0 q.q" T (4.22 the probability for¥'; to be approximately 1 and the

(5.1 probability for V'3 to be approximately 0. For these special
choices of coarse-graining and initial condition, therefore,
the prediction is that the model universe “behaves semiclas-
sically” over the whole of its evolution from near the big
bang to the big crunch.

so thatC;+ Cy=C, as required by Eq(3.3), whereC, is
the full, unrestricted propagator. Hete is the usual semi-
classical prefactor an§l,; is the action evaluated on the clas-
sical path connecting’ to q”. (See Sec. V C for further

details) B. Coarse grainings by classical paths

The coarse graining of the previous section asks only

20Note that strictly speakingl, must not interseatr in order that whether the evolution of the universe is close Wtf‘:“'ar .
the coarse graining does not restrict paths on the initial surface. Thlgc'(t)' More generally W_e can ask for ,the prc,’bab'“ty _that it
was necessary in Sec. Ill A 3 to guarantee the independence of tfE/CIVes close tanyclassical path. In this section we discuss
decoherence functional from the choice of initial surface. We mayiN€ corresponding coarse grainings. o _
choose either to give up this independence for coarse-grainings of COarse grainings that can serve to distinguish classical
this kind—not a surprising or onerous restriction for coarse grain€havior can be characterized generally according to whether
ings which explicitly restrict paths on the initial surface—or end the@ Minisuperspace trajectory is “close to” a classical trajec-
tubeT at a volumew,, larger thana, as in the figure. Wher,, is tory in some appropriate sense. Because a classical
close toa,, or more generally for systems which are not chaotic,4-geometry is fixed by a solutioa(t)=(q”(t),N) to the
we expect these approaches to be practically equivalent. proper time gauge Einstein equatio@s23 and (4.24), we
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say thatz(t) is “approximately classical” when there existsa  First, F must not be such as to imply that paths obeying
solutionz(t) to Einstein’s equations for which Eq. (5.3 possess finite action. This is a consequence of the
well known [50] fact that paths of finite action contribute
zero measure to functional integrals. Instead, it is the small
but non-differentiable fluctuations about the classical station-
ary points which dominate the integral. In this sense, the
coarse graining must not be “too small,” or in other words
whereF[ -, -] is a reparametrization invariant distance func-myst not be so refined as to exclude the essential contribu-
tional on the extended space of paths;. F thereby parti-  {ions of the truly quantum paths in the neighborhood of the
tions the space of paths into the clagg of those which  (assical trajectories. In particular, coarse grainings which
behave classically, according to the standardnd the class imply that paths obeying Ed5.3) are differentiableare ex-

\I/EVhi?'r(]j do ng.t'fqm' An example of such al fungtiogal is thﬁ_ luded from consideratiotiSince the potentiaV is finite, the
c:r? Ibeear:evvlﬁt?ennceinor:h(saur;grrrsr?:g)e :irr?*np loyeb ?ji\(/)i\(lj?ﬁ WNICLktion will be finite if the kinetic terms argThis condition is
by & : ply by 9 necessary in order that we can make sense of the stationary
yM.ore refined coarse grainings are also possible. It is natuF-)hase approximation, and in particular argue that the values
rally of interest to knowto whichpath(s) z(t) may be close. of t'he fuqctlonal integrals are indeed \{veII approxmated by
Various strategies are possible; we describe one here that WHFe'r: stat!onary Epha;g values when integrating only over
be employed in the sequel. paths saﬂsfymg 45.3. " -
First, partition the classical trajectories into classgs This stationary-phase condition may be satisfied by ad-
possibly by rangesA’ A"} of initial and final position on mitting as semi-classical coarse grainings those which in-
L) clude all paths nearby each classical trajectory with a mini-

o, or by ranges of initial position and momentyuay/ ,I';}. : i
The former might be of interest when we want to make pre/num Euclidean distance scale set by/l/ where thex are

dictions about universes which, say, begin and end with lovihe eigenvalues 05”S[qc(t)1/69™(t") 5a°(t"). _
anisotropy; the latter, when we are more interested in com- Second, the coarse graining must not be “too large,” in
paring universes with differing initial stateEither way, the the sense that paths in the clagsof approximately classical
classical solutions provide a natural mappingPaths must be meaningfully distinct from those in the
{A{ ,A}’}<—>{Ai’ ,FJ-’} for a givenA]’ or FJ-’ .) Next, for each complementary class,,. The criteria applied to make this
guantum path, compute distinction will in general be particular to individual physical
problems in which a notion of approximate classicality is to
be applied. Nonetheless, for most semi-classical consider-
inf F[z(t),z¢(1)], (5.4  ations, the scale of such coarse grainings will typically be far
(1) coarser than the lower limits implied by the considerations of
the previous paragraphs.

say, by minimizing with respect to the initial conditions of ~ Finally, it is a generic feature of quantum mechanics that

the classical paths. If this number is greater than one, thelpcalized states spread over time. In the absence of a stabili-
z(t)ecqm. Otherwise, colleck(t) into the same classﬂ as Zation mechanism such as environmental decoherence

Flz(t),zo(1)]<1, (5.3

the z,(t) which obtains the minimurft through interaction with other degrees of freedom in a sys-
A particular choice of semiclassical coarse graining en{€m [35-37,51-58 even a wave packet whose center fol-
tails the selection of a particular distance functiofaHow-  |OWS a classical trajectory may eventually spread sufficiently

ever, we expect reasonable characterizations of semfhat its behavior is unrecognizably classical. While such sta-
classical behavior to display a certain robustness and Bilization mechanisms are widespread in the real univse
consequent insensitivity to the details of the definition of the?PP0sed to toy models with few degrees of freeglothe
coarse grainingchoice ofF) for most practical applications. Phenomenon of wave packet spreading may be a relevant
Nevertheless, we can make a few general observations abd@ctor in determining whether a particular choice of coarse

what constitutes an acceptable classical distance functiongf@ining is meaningfully “semi-classical” for a given physi-
0N Coys. cal problem.

There are, of course, many choices for the distance func-
tional F that will satisfy the general requirements laid out
above[1,36]. However, in accordance with the general ex-
paths. In those rare cases for which therezaét) in differentc;, pectation that predictions concerning semiclassical behavior

which yield the same minimum, additional criteria must be selectedVill b€ relatively insensitive to the details of the choicerof

and applied to complete the partition. Similarly, if there are quali-the® approximate calculations given in the sequel will be suf-
tatively distinct classical paths connecting pointsAifi to A{—in ficiently coarse that a detailed §peC|1‘_|cat|0n will ot .be
the case where there are multiple classical paths connecting a singi€eded. When necessary, we will typically have in mind
pair of points, for example—then it may under some circumstance§omething like the Euclidean distance on superspace em-
be desirable to further partition the class. We shall take this as  ployed in Sec. V A(A more careful assessment of suitable
understood without attempting to incorporate it into our notationchoices for the distance functionglin the context of ordi-
explicitly. nary quantum mechanics will be given elsewhigi4].)

2lFor reasonablé’s, this should be a genuine partition of the
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C. Semiclassical propagator (q"||Cu||q')%A(q”,q’)eiscl(q"vq/), 5.9
Let us now proceed with the approximate evaluation of
the class operators for the general category of semiclassicglhereN now has its classical dependeridéq”,q’) on the

coarse grainings described above. end points of the path given by substituting,(q”,q";N)
In the N=0 (proper time gauge, the class operatdi. into the constraint4.24).®> When there is more than one
Egs.(3.16), (3.17] read classical path connecting’ to q”, then there will be a sum

over such paths in Eq5.8).

) According to the famous Van Vleck formulgs5,56,

(9"[Chlla’)= L dNaoL g, A(q”,q') may be evaluated as

h h
. 1 1 AL 1 0”28 ( " I) 12 1 dr2
xexp i | dt| ——Gagd” B—NV} . nayo| = ¢ >el9.9
p( fo [4'\' Aed M@=l o e 2t
cl
(55) 2 non| 12
. : . « | det? 2 AL i (5.9
The integral is over all paths frog) to q” in the class, . It aq" o9’ ' .

is to be noted that, strictly speaking, the restricted propagator

(q"|Chxllg") need only be defined fag’ andq” in oq. ¢y, . -
h defi ibl tv ol f path . whered=n+1 is the number of minisuperspace degrees of
owever, defines gpossibly empty class of paths passing freedom—4, in the present exampée 8. , and¢p—andv is

through anyg” in minisuperspace, and wheyi is not inog ’ ) )
the integral over these paths is what is meant by the patwe Maslqv index” of the pathq(t) [55.—5ﬂ._Rougth
speaking, it counts the number of negative eigenvalues of

int l'in Eq.(5.5. Th t of points i ini fi
integral in £q.(5.9). The set of paints in minisuperspace for 529 0. (t)1/897(t") 8qB(t") evaluated along the trajectory

which this class is non-empty will be denot&g, which will . d .
therefore be the region of supportdfi of the class operator ge(t). The first factor arises of course from the ordinary
stationary phase integral ovik

(5.5 in minisuperspace. | b : i di h
Let us begin by approximately evaluating the full propa- . n su sequ_ent Se.Ct'OnS we will go on t(.) IScuss t € pre-
diction of semiclassical evolution of the universe for various

gator, the case in which;, in Eq. (5.5 happens to be the . o . L
class of all paths, from g’ to q”. A steepest descents ap- choices of initial state. For this purpose it will be helpful to
L . - L ; close this section with the observation that, as a consequence
proximation to the functional integral overgives of the choice of positive range for the lapsend the bound-
ary conditions on the ends of the paths aong,
(q”||Cu||q’)=fochA(q”,q’;N)eiSC'(q”‘q/;N), 5.6 A*(q'.q')e %@, considered as a function af’, is
0 positive frequency ine’. Recalling that the propagator in
Eq. (3.8 or Eq.(4.1) is not complex-conjugated when form-
whereS;(g”,9";N) is thg action evaluated for the clgssical ing the indicated products, this means that
path qc|(q”,q,;N)—SO|Ut|0n to Eq(423 with the given A(q”,q’)eiscl(q"rq’) over|aps on|y with the positive fre-

value of N—connectingg’ to q”, and quency part of the initial wave function .
A(q”,q’)e'Se@"9) js similarly negative frequency ia”, so
2 a(1)] that only thenegativefrequency pieces of the final boundary
A*Z(q",q';N)xdet$ conditions®; contribute. This is to be expected, as the full
Sa\(t") 5qB(t") propagator given by the path integr@.14) over all paths
and with a positive range for the lapse is in essemndar(es
d2 the Feynman propagator for this minisupersea(’:e thE’sy
xde mGAB@JrNVAVBV(qu) , To see why it is true thah*(q”,q’)e S(@".9) s posi-

(5.7 tive frequency ina’, we shall show that its Fourier trans-
' form only has support for positive frequencies. That is,

dropping a multiplicative factor of detis(t—t’)] in the  consider
last line that will cancel in the decoherence functional. Simi-

larly, neglecting® the N dependence oA(q”,q’;N) in Eq.

(5.6), the stationary phase approximation picks out the “zero
energy” patls) in Eqg. (5.6) obeying the constraint Eq.

(4.24). Thus,

j da/eiw’a’A*(q/r1qr)e7iSC|(q",q’)_ (5.10

Zstrictly speaking, it is théime integralof Eq. (4.24) that is the
constraint that emerges from the stationary phase approximation to
2?Heuristically, if we exponentiate the determinant via In@et the integral oveN, viz. (3/dN)S q.(q”,q’;N)]=0. However, the
=trin O, the N dependence of the semiclassical prefactorleft hand side of Eq(4.24 is the “energy integral” of solutions to
A(9”,q";N) is only logarithmic, as compared with that of 6S/6q=0 [i.e., Eq.(4.23], and hence is actually constant, so that
Sa(q”,9";N). the integral sign may be dropped.
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Again neglect thex’ dependence oh*(q”,q’) as logarith-
mically slower than that of;,. The largest contribution to
the integral comes from the point of stationary phase

S
o' = .
da’

(5.17

Considering the action appearing in E§.5 as a func-

tional of classical paths, it is a straightforward matter to
verify that under variations of the endpoints of those classi-

cal paths

a |
[
5SC|_ 2Nc| 5QA 01

(5.12

whereqﬁ,(t) is the classical path joining’=q.(0) to q”
=(Q(1). Thus

ISy aq(0)

= . 5.1
e 2N ®13

As we have choseN to be positive, andrg(0) is posi-
tive for all classical patté that begin on our boundary sur-
face of large negativer, we see that only a positive’
contributes  significantly to Eq. (5.10, so that

PHYSICAL REVIEW D69, 123525 (2004
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FIG. 4. Schematic representation of the region of support of the
semiclassical branch wave functioh;;(q”) corresponding to the
class of pathsc;;. W;;(q”) is concentrated around the classical
trajectories connecting to A}, a representative of which is plot-
ted in the figure. The contributions of each path are weighted by the
value of the initial condition¥(q’) in A/ . ¥;;(q") is positive
frequency inA{ and negative frequency i} . Assuming¥(q’) is
not zero inA{ , the shaded region will be roughly the sameTgs
the region of support of the class opera®r16 on minisuperspace.

A*(q",q’)e 'Sai(@".9") js positive frequency i’ . Similarly ~(q"[C.lla") (5.14h
A(q”,q’)e*Sa@".a) js negative frequency in a”. This
means thatA(q”,q’)e"S(@"9) is negative frequency in while
both @’ anda”. [This is a consequence of the fact that the
classical paths both begin and end on the same surface, so " ,
<q ”Cqm”q )~0. (5.19

that a;(0)>0 while a(1)<0 ono,. This difference can-
cels the sign difference between the endpoints that arises in
the variation of the actiofb.12.] As noted, the semiclassical [The zero on the right hand side of E@.15 and all such
class operatoA (q”,q’)e*Sei(@".9") therefore couples only to  subsequent formulas need only be true in the sense of a dis-
the positive frequency components of the initial state in thdribution, e.g., in the case in which the propagator is such a
branch wave function§4.1). The branch wave functions in rapidly oscillating function that the overlap integral in Egs.
turn will be negative frequency at the endpoints of the pathg4.1) is 0 for any initial state.

on oy,. For the more refined partition defined in Sec. V Bogf

into sub-classesc;; of semiclassical paths according to
ranges{A/ ,A{}{A{ ,I'{} of initial and final positions on

D. Semiclassical class operators s P ©
o or the corresponding initial positions and momenta,

Now consider the class operatdcg'||Cy,||q’) correspond-
ing to the semiclassical coarse-grainings discussed in Sec.

V B. For the simplest partition of the fine-grained paths into (q"ICailla”) q'eldl, q'eT;
the classc,, of those which behave classically according to  (9"[Cijlla")~ 0 olse
Eq. (5.9, and those which do notg,, it is clear from the ' (5.16

preceding section that since the leading contribution to Eq.
(5.5 comes from the classical path connectiygto q”, to
leading order in the stationary phase approximation

(5.143

HereT;, is the region of support iq” of the class operator
(q”HCc,hq’), as defined following Eq(5.5). (See Fig. 4.

These semiclassical results for the class operators are use-
ful only to the extent that the stationary phase approximation
can be trusted. Some techniques for evaluating restricted
2"More generally, recall that in Sec. Ill A 1 we chose “expanding” functional integrals such as E¢p.5 are discussed ifi1].

<qH||Cc|||CI'>%A(q”,q’)ei5c|(Q”,q’)

initial and “contracting” final boundary conditions fa@ll paths, not

just the classical ones, i.e., we requirfe({))>0 andd(1)<0 for
all paths.

Further strategies for more detailed calculation of such inte-
grals in the context of ordinary quantum mechanics are under
investigation[58].
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E. Semiclassical branch wave functions guency ina” at the endpoints of the paths ery, so that

Given the semiclassical class operattgd4), (5.15, the  ¥ij(d") is negative frequency wheq"e Aj. We will put
corresponding branch wave functiofs1) can be evaluated these observations to use in the next section.
as follows. Consider an initial stat#(q’). Then

, , F. Evaluation of the decoherence functional: Approximately
V(q")=(q"[|Cel[ V) (5.179 classical behavior

=(q"Cqlla’yo¥(q") Given the branch wave function$.17), (5.19, evalua-

17p  tion of the decoherence functiongt.22 for the partitions
into approximately classical vs highly quantum paths we

~(q"||Cy|¥) (5.170  have considered is straightforward.

For the coarsest graining of paths into the classes

e, W (q") is approximately simply the initial state propa- ¢, —paths which are close teomeclassical path—or the
gated forward by the full propagator, while remainderc,,,, decoherence is automatic because there is

V(") =0, (5.18 only one nontrivial branch wave functid.17). Hence

Note that Eqs(5.17), (5.18 are independent of any particu-

lar properties of the initial statd’(q’), and are wholly a

consequence of Eqé5.14), (5.15. ~1 (5.22
Now consider the more refined coarse-graining gfinto

sub-classes;; of approximately classical paths. Denote the

regions of position and momentum supportbfq’) on o

by € andy. Then

p.=D(cl,cl)

i.e., the universe is predicted to approximately follsame
classical trajectory—though we cannot say which one with-
out a more refined coarse graining—while

Wi(q")=(q"[Cijlla")>¥(q") (5.193 Pgm=D(qm,qm)
eNA{#+J, ~0 (5.23
"|Col| W NI #J,
(lCa¥) y" ) independent of the choice of initial state on account of Eq.
q"eT; (5.15.%
0 else To ask the question afvhich trajectory the universe fol-

(5.19b lows for a given choice of initial state requires the more
_ refined partition ofcg into the classes;;. Because the
with branch wave functions, and hence the decoherence functional
(4.22), depend in this case more sensitively on the choice of
V(q)=2> W (q"). (5.20 initial state, we will discuss the examples of a localized ini-
o T tial statew"P and an initial state of WKB formPrWKB in

) o ) their turn.
Note that for this class of coarse grainings, given Egs.

(5.17 and(5.19 we may expect the branch wave functions

to approximately satisfy the_' constraii.5), even thO_L_lgh the 25y pile this would seem to be a strong statement, it is more a
coarse-graining does restrict thg paths on the initial surfacpeﬂection[via Eqs.(5.14, (5.15] of the fact that path integrals are
(see Sec. Ill A3 Indeed, according to E¢5.19b), \I}ii(q”) dominated by paths close to the classical path than it is a claim
is just the initial data{A{,I'[} selected by the coarse- apout the actual classicality of the universe’s behavior. One would
graining and weighted by the initial stae(q’), propagated hardly expect a universe to behave in an approximately classical
by the Wheeler-DeWitt propagatds.14). As a function on  fashion under all circumstances or for all choices of initial state.
minisuperspace it is therefore concentrated around the clasideed, whether a state behaves in a recognizably classical fashion
sical trajectories connectingi’ to A]f’, (See Fig. 4.0n oy, is in gengra] as much a property of the initial spate as it i§ pf the
whenq”e A/, ¥;;(q") is essentially the part of the initial characteristics of the restricted propagator. In this regard it is thus

condition with momenta i/ . In other words, wise not to over-interpret the physical significance of the prediction
! as it stands, in that initial states normally thought of as highly

_ non-classical such as, e.g., “Schinger's cat” states—
\Ifij(q”)%f ,d”p‘I'Jr(ﬁ)CI)g(q”) (5.22)  superpositions of distinct localized wave packets—lead to a single
T non-trivial branch wave functioW ., just like any other initial state
. . . . [cf. Eq. (5.20]. To detect the classically unusual features of such
on oo Wheng”eAf, and is approximately zero otherwise. gtategrequires a more refined coarse-grainisgch as the partition
The restriction to positive frequency is a consequence of thef ¢, into the classes;; . A fuller understanding of this critical
fact—see Sec. V C—that the semiclassical propagdi® issue requires a more careful evaluation of the coarse-grained class
couples only to the positive frequency part of the initial con-operators and corresponding branch wave functions than we can
dition. Similarly, the semiclassical propagator is negative fregive here[54].
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Initial state of localized form wave functions only have support on regionsogfin which

A localized choice of initial state such as E@.25, VY~0 tbez Hamilton .Jzacobi equation fd, implies that
peaked about a particular set of classical initial conditiond?Sci/90)°=(9S¢/da)®. From Eq. (5.13, dSy/da’ is
(do,Po), leads to a decoherence functional which makes th@0sitive, so that when Eq5.26) holds, wy=p~dS; /da’,
semiclassical prediction that the univer&pproximately — and thus
follows the classical path determined by the initial conditions
(Go.Po) as follows. In general, for a localized wave packet d®p _
wWP(q"), define as above the regionsw"P's position and ‘I’xYP(Q")*J *SJZ_%‘I’WH(F*))
momentum support om, by ¢ and y. Take pe A and (2m)

poe '} for some (,J), and assume for simplicity that is e
largely contained i\ and vy is primarily concentrated in XJ d®q’A(q",q")eSe(@ elP (" ~ko),
I';. (Because of the uncertainty principle,and y cannot %

both be compact.n this case, through E@5.19 there will (5.27

then be only one nontrivial branch wave functigty"(q")
and decoherence will again be automatic, with the modePerforming the integration ove¥, we therefore see that the
universe consequently predicted with high probability to bejranch wave function is suppressed whit °(p) is small
have approximately like the classical trajectories in the clasg the neighborhood of the initial momentum of the classical
Ciy- path connectingyy to q”. The choice of initial condition
To see explicitly how this comes about, consider WwWP(g') on oy, therefore, singles out the classical path
WP ()= (q[[Cy [P specified by @.00): Wi7(q") is peaked around the classi-
o 19 Gl cal path preferred by the initial condition. Through E§.19
=(q"|Cqlla"ye¥WP(q") it is then clear that the only nontrivial branch wave function
for this coarse graining is th‘@}’gp(q”) corresponding to the

: B N classc; which contains the classical path determined by the
N 347 "o~ SC s Ay WP/ N7 .. N ..
”'J’Uod q'A(q",q")e'Se@ )aa,q’ CR2 initial conditions @g,pPo):

<

52 , o
(524 o [WERQ =13

For ¥WP(q) localized aroundjo, it is clear that only paths Fi@h=, olse. (5.28
with initial points g’ nearqg contribute significantly. Simi-

larly, inserting Eq.(4.25 and dropping a term containing o i
IA(q",q") o, This is merely a more refined statement of Eg}2).

] Initial state of WKB form

— .. dp 1 9S.(9".9")
Ve (q")~| diq T2 (Zan wpt ————— The situation for the WKB choice of initial statd.26) is
70 (2m) “p da a little different, though familiar from conventional treat-
1 @iSe(@",a") aiB- (4 — Go) WP+ ( & ments of quantum cosmology.
*Alg.a)e © v (P)- Let us evaluate the classical branch wave function corre-
(5.25  sponding to an initial state of the WKB fori4.26):
Again neglecting thg’ dependence ak(q”,q") as logarith-
mically suppressed, in the stationary phase approximatiog,wkemy_ ¢q» C.lla e wWKB( g’ 5.29
the dominant contribution to thg@' integral comes when o (@) =(a"|Calla’) @) (5.293

. 9Sa(9".9") , o o
~— (5.26 =IJ d"A{A(@)(a"[Calla")Vae™ )]
aq ’— 70
q'=dg
The right hand side of this equation is the initial momentum —(q"[Chllq"ye™@IVAA(Q")} (5.29n

of the classical path connectirg to q”.2® Since our initial

“if dX"AA(q",q")eS( @A)
ZNote that the specification af(0) is implicit. To see this, note 70
that 9S;,/d« is not independent 0fS;,/dq: these quantities are X eV v Wa' ) =V.S.(a".qa’ 5.29
related by the Hamilton-Jacobi equatioVi,SVAS+V=0 for [VAW(") = VaSu(a",a)]. (5.299
S.—effectively the constraint(4.24) with py=@qa/2N=—V,S.

Therefore when Eq5.26) holds, « is given bydS/da through Eq. 1N Ed. (5.299 we have dropped the terms containing gradi-
(5.13; N is determined by demanding consistency of the solutionents of the more slowly varying terr§(q’) andA(q”,q’).
with the constrain{cf. the variant of this argument we give below In this form, it is clear that the dominant contribution to the
while discussing the case of an initial state of WKB form integral comes when the stationary phase condition
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VAW(G')=—VAS.(9".9") (5.30 For these more refined coarse grainings, therefore, we
have acollection of non-trivial branch wave functions, and
is satisfied. The result is thus the decoherence functional has more to tell us. It is in par-

ticular of interest to ask whether the coarse graining

WKB, : , - , (cqm.,Cij) decoheres. For this purpose it suffices to consider
Vet )%Z'LOdE ECRCRLCE thg norjl-negligible branch wave functions and examine their
overlap:
><V’W(q')eiSm(Q”,Q’)eiW(q’)_ (5.30)
A D(cij ,Cx) = N[ < Popr VKB (5.333
The quantity on the right hand side of E&.30 is just
the initial momentum of the classical path connectirigto =Mq"|Cu| TV F)e(q"|Cij | wV*E).
q”. Note that it is a statement about the complete minisuper- (5.33h

space gradient 0§, not merely its projection into ther

=const surfacery. We are free to assert that contributions to The integrals in Eq(5.33b are to be evaluated omg. Ac-
the integral(5.290 are suppressed when E§.30 does not  cording to Eq.(5.32, ¥}}'“®(q") is peaked around the clas-
hold because of the independence of the branch wave fungjcal paths in the clags; . As at least one pair of the initial
tions on the choice of initial surface: wiggling, around a o final intervalsA’ or A” will be disjoint on o, (see Fig.

bit in the neighborhood off’, yet keepingq’ fixed onog,  4)—and even if one of the initial or final intervals coincide,
yieldS a fam”y of Stationarity conditions for the dominant the momentum Support will be disjoint_we see that the
contribution to the branch wave functions. For them all to begyerlap integral in Eq(5.33 will be small, and so we have

true, Eq.(5.30 must hold. Alternatively, note that""*®(q)  approximate decoherence of the coarse grainig (C;):
is a solution to the constrair(8.5. Dropping gradients of

A(q) at lowest order, this means thaf(q) obeys the same D(gm,ij)=~0. (5.34)
Hamilton-Jacobi equation as do&(9”,q’). Thus, with

“expa_nding" initial conditions on the paths, this means that|, other words, the WKB branch wave functions approxi-
Ehe “time” component of Eq.(5.30 holds whenever the 51ely decohere because they are approximately macro-
“spatial” part does, so that Eq5.30 follows from its pro-  geqpically distinct. A higher degree of decoherence would
Jection into o require correlations with additional degrees of freedom.

The significance of Eq(5.30 is that¥ (“*(q") is peaked We now estimate the relative probabilities;;
around thefamily of classical trajectories emanating from =D(cjj,c;j) of the various members of the family of classi-
points g, on oy which have initial momentum cal paths preferred by the WKB initial condition. The answer
VAW(q')|qr:q6, with a relative weight controlled by the will be a precise version of the familiar heuristic rule of
WKB prefactorA(q’). This is simply becauggr\cl\llKB(qﬁ) is  quantum cosmology according to which these _propa_bilities
suppressed when the classical path frgito g” does not ~ are given by fluxes through a spacelike surface in minisuper-
have initial momentum given by E¢5.30. When the clas- SPace(See[28,44 for related rea}ﬂ(l?.
sical trajectory frony’ to q” has momentunV JW(q’), but The branch wave function¥7""(q") have support on
A(q’) is small, the integral is similarly suppressed. oy essentially only inA{ andAj. Recall that in Sec. IV F

Now let us consider the situation of the more refinedwe chose our initial stat#/*®(q") to be positive frequency
coarse graining dym,,Ci;), Where the classes; defined in  in @', and that, as noted at the end of Sec. VI, “B(q") is
Sec. V B are the partitions of semiclassical paths accordingegative frequency at the ends of the paths og.
to ranges{A/ ,A}+{A/,I'/} of initial and final positions V{{“®(q") is therefore positive frequency i and negative
on o, or the corresponding initial positions and momenta.frequency in A}’. Further, because the curreni,
Clearly, only the classes;; containing paths with initial = —(j/2)¥*V, ¥ is conserved anc[fi"J-"KB(q”) vanishes on
pointsq’ in regions wheré\(q’) is not small can have non-  any spacelike surface; far to the future ofT;; (i.e., at very
negligible branch wave functions. Of these, the classes CONarge values ofv—see Fig. 4 integratingV,JA=0 over a
taining the classical path emanating frgfhwith initial mo-  y,gjume bounded byr, and oy we see that
mentumV ,W(q') will possess the dominant branch wave
functions; therelative magnitude of these branch wave func-
tions will be controlled by the WKB amplitud&(q). These f dEAJA=J /dEAJA+f d3”J, (5.353
wave functions will as before be concentrated around the oo A 4
corresponding classical trajectories, and are given as in Eq.

(5.19 by =0 (5.35h
eNA/ #I, from which we learn that
\I,WKB " ﬁF'i@,
‘I’iVjVKB(q")% e (") ;/”E-IJ- (5.32 \I,??/KBJrO\I,?/jVKBJr+\I,?/j\/KB—O\I,?/j\/KB—:O (5.36
i
0 else. on oy. Thus
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Pij :J\/\p}gVKB.qf}’jVKB (5.37a on oy, Where\]ﬁA is the current constructed from the positive
frequency part of the branch wave functign; for any ini-
= MW B o ITKBT g VKB=op VKB tial state.(A factor of 4 has again been absorbed ifain

(5.37bH the second ling.
We have thus recovered a version appropriate to the
=2 NW KB ogrf KB (5.370  present formalism of the familigil,6,59 “J-d3” rule of
quantum cosmology according to whichJ,d3A
(=|A|?VaWdz” for WKB initial stateg gives the relative
probabilities of the classical trajectories passing through el-
(5.379 ementsd>” of spacelike surfaces in minisuperspace. In our
formalism, however, that rule need only be applied on the
In Eq. (5.370 the most obvious vestige of the effect of the initial surfacec,, and can be applied to initial states more
class operatoC”- is the restriction, via Eq(5.32), of the general than just those of WKB form.
domain of integration oy to A{ , though the conditions on
the final positionA] (equivalently, initial momentunt’})

~2i [ ds e () TR,

corresponding to the class; are still present through Eq. VI. CONCLUSION
(5.32—cf. Eq. (5.2)—and the connectiofb.30. o )
Inserting the semiclassical forii#.26), dropping gradi- We have constructed a sum-over-histories generalized

ents of the slowly varying factoA, and evaluating the re- duantum theory for the Bianchi type-IX cosmologies. This
maining integral at the centex = (a,d/) of the domain of fully four—dlmep3|onal formalism al]ow_s pr.edlct'lons to be
integrationA! on o made concerning sets (Jrfepa'rametnzauon .|nvar|ahalter- .
: o native histories of such a universe. In particular, the predic-
tions of the theory are not restricted to those defined only at
Pij ~2N|f ,dE’A|A|22iVAW (5.38a a moment of “time,” as is typical of canonical theories, and
A hence are not restricted to alternatives defined only by ob-
o ) A servables on superspace. Many questions of physical interest
~—NA(g)|*VaW(q))dZ; are not expressible in terms of alternatives “at one moment
(5.380 of time;” the generality of the alternatives about which it is
possible to make predictions, and the naturalness with which

when the projection oV ,W(q') into oo is in 'y, and is the formalism accommodates them, are notable conceptual

zero ot_her_vvise(A fact_or of 4 has b_een absc_)rbed into the advantages of this quantization scheme.
normalization factonV'in the second ling.If o is chosen to Partitions of histories of physical interest include parti-

be a surface of constaai=a, and recalling again that the {i5ng according to whether or not the universe becomes sin-
initial s:tate was chosen to be “positive frequency” so thatgular (by, for instance, the standard discussed in Seg; i
dW/da'<0, Eq.(5.380 reduces to partitions by ranges of values of the volume and degree of
anisotropyB-. the universe has achieved a given proper time
A/ (5.39 after the initial condition; and partitions into classes of those
: histories which are close to some classical cosmological tra-
jectory, and those which are not. Approximate classicality, in
so long as’W/dG’ (q;) erj’ . The factor\ can be calculated the sense of obeying the classical equations of motion, is an

in this approximation by the requirement that the probabili-example of a prediction concerning an alternative that is de-
ties sum to unity. fined over time not just at a single moment. For this last set

Further’ it may be worth noting that in arriving at Eq of alternatives, we showed in Sec. V that, for indifferent final

(5.37d the only properties of the branch wave functions weconditions and particular choices of initial condition, the
employed were that the wave functioriy vanish ase  9generalized quantum theory predlc'gs wnr_\ a probablllty near
—o0; (i) are positive frequency im\/ ; and (iii) negative One that the universe behaves semiclassically, approximately
frequency inA}’. These properties derive essentially from following the classical trajectoryor trajectorie$ preferred

the corresponding properties of the propagator, which in turlpy the !nitial condition. This is_ a ;gnsible pre_tdiction, and
follow from our boundary conditions on the paths—namely,Sta”dS in contrast to thg Ies; intuitive predlguons of some
that they begin and end an, with “expanding” initial and othgr quantizations of Bianchi type-I¥as mentioned at the
“contracting” final conditions—and did not depend on any 2€ginning of Sec. ¥/

specific property of the WKB form of the initial state. Thus, . Thfere is much that Lem_am? to be dolne W':[rr;]th's formula-
for this class of coarse grainings we can write more generallfo" 0f @ quantum mechanics for cosmology. The most press-
ng issue concerns the development of techniques for more

careful evaluation of the class operat@814) for various
pij~ —4/\/’] e DIANAIN (5.408  choices of coarse graining, and a correspondingly improved
A understanding of the limitations of the approximations em-

., A ployed in the present work. Application of the general for-
~—=NJjja(ai)dz; (5.400  malism described here to a detailed analysis of specific ex-

IW
pij=MA(Q)|?|— (af)
Ja
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amples of analytic or numerical classical solutions will thento show that the produg8.8) is independent of the choice of
be of interest. initial hypersurfaces’ and final hypersurface” provided
Other issues include the extension of the definition of fi-they are both in the regior<<a*. There are other coarse
nal boundary conditions which are “indifferent” to the paths grainings for which Eq.(A1) holds (see, e.g., Sec. VIl in
to the case where the universe expands forever, thereby efit]). We focus on this one because it is relevant for classi-
abling consideration of ever-expanding models and the calality.
culation of the probability that a Bianchi type-IX universe |t js convenient to work in theN=0 “gauge” of Eq.
with cosmological constant will “tunnel through” to a state (3.13. The class operator matrix elements can then be writ-
of eternal expansioriOnce the technical issues are sortedien in the form(3.16 with (q"N||C+/|q’0) given by
out, defining the decoherence functional through @22
using the Rieffel induced inner product is likely to be a con- "
structive approach to this problefrPredictions relevant to <Q"N\|CT||Q'0>=f 5qq.e1[a”(s)]
modern day cosmological observations and questions of en-
vironmental decoherence will require the inclusion of inho- (N1 do® dg?
mogeneous modes of matter fields and high frequégay- xexp | fo d 282845 gs
ity wave or graviton modes of the gravitational field.
In all cases, theules for performing the required calcu- (A2)
lations are clearly defined: specify the boundary conditions; ) ] )
set out the partition defining the physical alternatives it isHere the integral is over all paths connectingto g” and
desired to Study, Compute the branch wave funcndhg) eT[qA(S)] is the characteristic functional for the tube: This is
corresponding to those partitions and initial conditions, andk for a<e* (paths unrestricted 1 if the pathq®(s) lies in
employ the decoherence functionéd.22 to determine the tube fora>a*, and O if any part lies outside it fo
whether this set of alternatives is consistent. If it is, the di->a*. Equation(A2) is just Eq.(3.17h written in terms of
agonal elements of the decoherence functional inform us dhis characteristic functional. i
the probabilities for those alternatives according to Bcfl). ~We next show thaq"N||C+[q’0) obeys the “Schre
Finally, it is perhaps worth emphasizing that the essencéinger equation”
of the predictive framework we have here described should
be straightforward to generalize to quantum-gravitational
technologies—string theory or loop quantum gravity, for
example—other than the particular path-integral formulation
we have offered[The essential technical step lies in the The demonstration is the same as Feynman’s original dem-

1 a " ! ”n !
-5 (A"NICAlla’0)=Hg(a"NlC+]q"0).  (A3)

definition of the restricted propagatai3.4).] onstration that the path integral defining the propagator in
non-relativistic quantum mechanics satisfies the Stihger
ACKNOWLEDGMENTS equation[60]. The only novelty is the characteristic func-

) tional e;[g”(s)] in Eq. (A2). We define the path integral in
We would like to thank Don Marolf and John Whelan for g4 (a2) as the limit of integrals over paths skeletonized on
useful conversations. This work was supported in part byj uniformly spaced slices afasJ tends to infinity. Spe-
NSF Grants PHY-90-08502, PHY-95-07065, and PHY'OZ'cificaIIy, let 50:0, S1,Sp ..., SJ:N be slices spaced bg
44764. D.C. was supported in part also by the Canadian In- N/J. Let g be the value ofj® on slicek. Then
stitute for Theoretical Astrophysiog€ITA) and the Natural ' K ' '

Sciences and Engineering Research Council of Canada J-1/ 3 12
(NSERC. (@NIcrao)=fim [ TT | TT daf]( ;- ex(af)
Jowed k=1 \ AZ0 4mie
APPENDIX: CLASS OPERATORS SATISFY CONSTRAINTS J 1 qA qA
. k— Ok-1
This appendix is devoted to demonstrating that the class xexp[ lkgl € ZGAB( —)

operator matrix element&y”|Cylq’) defined by Eq.(3.4)

satisfy an operator form of the constraints. More concretely, qE_qE_l
we show that, for the kind of coarse-grainings defining clas- X(—) —V(q{f) . (A4)
sicality discussed in Sec. V, €

Hg{a"[Chlq’)=0 (A1) Here,er(g”) is the characteristitunctionfor the tube equal

to 1 inside the tube and zero outside for o* and equal to
whenq” is outside the region of configuration space wherel for a<a* (unrestrictegl The product of these functions
the paths are limited by the coarse graining and is not equain different slices make up the functioref[ g”(s)] in Eq.
to g’. We consider a coarse graining where the paths to théA2). The measure factor-{1/4i€)? can be deduced from
future of someq’=a* are constrained to lie in a tubE  the Liouville measure on phase spdde61] recalling that
about a particular classical path. We denote the class operat@,z=diag(—1,1,1,1).
corresponding to this particular coarse graining@y. We The successive integrations in EqA4) evolve
will show that Eq.(A1) holds fora<a*. That can be used (q”N|C+||q’0) forward inN. Thus,
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) I = A R N Ha{(q"[Crlla") =i[{q"=l|Crla’0)=(q"0[Crlq"0)]
(a'NlCrllgoy=tim | T dafs{ 7—] er(a)) (A6)
e0J A=0 mle
for a”"<a*. The first term on the right-hand side vanishes
1 " A because what was a localized “wave packet’Ns=0 has
xexp|iel =G 991 spread over all of configuration space Ky . The second
4 A8 € term vanishes ifg”* #q’# for all A. That is because for
smallN=e
n B
q —0;-1
X(f _V(qﬁ‘) ] -1 2 . 1 qrrA_qrA
(@ elca0)=[ 5| exiczon T
X(q;-1N—€[C1]q'0). (AS5) -
ol ~

Now restrict attention ta” < a* whereeT(q’j):l. The in-
tegration overq)_, is restricted by the factoer(qf_,) in
(q;_1N—€[|C1]lq’0). As e—0, an increasingly narrow
range ofqﬁ,l nearq"” provides the only significant contri-
bution to the integral. The result is therefore no different
from the integral without any restriction in this limit faz”
<a*. As in non-relativistic quantum mechani¢a5) im-
plies the “Schralinger equation”(A3).

Integrating Eq.(A3) from N=0 to N=o gives

from Eq.(A4) whena”<a™*. But this is a representation of

a o-function ase—0, and we demonstrate EGAL) for a”
<a*. The right hand side of EqAl) vanishes wherg’

#(q", and the class operators thus in this sense satisfy an
operator form of the constrainfdViore precisely, we see that
these class operators are Green functions for the Wheeler-
DeWitt Hamiltonian. For more on the question of when class
operators constructed according to E§.14) satisfy con-
straints, se¢28,39,41,43—-4p]
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