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Generalized quantum theory of recollapsing homogeneous cosmologies
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A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A
Bianchi cosmological models, focusing on the particular example of the classically recollapsing Bianchi
type-IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities
of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We
consider in particular the probabilities for classical evolution defined by a suitable coarse graining. For a
restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative
histories in which the universe behaves classically and those in which it does not. For these situations we show
that the probability is near unity for the universe to recontract classically if it expands classically. We also
determine the relative probabilities of quasiclassical trajectories for initial states of WKB form, recovering for
such states a precise form of the familiar heuristic ‘‘J•dS ’’ rule of quantum cosmology, as well as a gener-
alization of this rule to generic initial states.
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I. INTRODUCTION

Hamiltonian quantum mechanics with its requisite p
ferred time~s! may need to be generalized to provide a qu
tum framework for cosmology where spacetime geome
fluctuates quantum mechanically and does not specify a fi
notion of time. One approach to such a generalization is
sum-over-histories generalized quantum theory of space
geometry, described most completely in@1# where references
to the earlier literature may be found. This is a formulation
quantum theory in fully four-dimensional spacetime for
The essential elements of this sum-over-histories formula
are:

~1! Fine-grained histories. These are the elements of the s
of four-dimensional histories of spacetime metric a
matter field configurations. They are the most refin
descriptions of the universe it is possible to give.

~2! Coarse-grained histories. Partitions of the fine-grained
histories into four-dimensional diffeomorphism invaria
classes are called coarse-grained histories. Such se
coarse-grained histories are the most general notion
alternative describable in spacetime terms for wh
quantum theory predicts probabilities.

~3! Decoherence functional. This is a measure of the quan
tum mechanical interference between members of a
of alternative coarse-grained histories. It is construc
according to sum-over-histories principles and incorp
rates a theory of the universe’s initial and final conditio
The decoherence functional is a natural generalizatio
closed quantum systems of the algebraic notion of qu
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tum state@2,3#. Sets of histories with negligible interfer
ence between all pairs of members, as measured by
decoherence functional, are said to decohere, or to
consistent. It is logically consistent to assign probab
ties in an exhaustive set of alternative histories wh
and only when, that set is decoherent. It is the criter
of decoherence, rather than any notion of ‘‘measu
ment,’’ which determines the consistency of the quan
tative predictions of the theory.

This paper applies sum-over-histories generalized qu
tum theory to a class of homogeneous minisuperspace
mological models.1 Other formulations of the quantum me
chanics of homogeneous cosmological models have b
proposed by Ashtekar, Tate, and Ugla@8#, by Wald @9# ~see
further @10#!, and by Marolf@11#. An implementation of gen-
eralized quantum theory for these minisuperspace mode
therefore useful for comparison with these other approac
That is especially the case since the formulation of W
makes the surprising prediction that a quantum unive
whose expansion is accurately predicted by classical Eins
dynamics cannot have a nearly classical recontracting ph
~Instead, time appears to ‘‘freeze’’ as the universe approac
its classical maximum size.! In this paper we will show that,
in suitable circumstances, sum-over-histories generali
quantum theory predicts that a universe may remain class
in both its expanding and recontracting phases.

Section II revisits the classical homogeneous cosmolo
cal models as an introduction to their later quantization. S
tion III sets out the sum-over-histories generalized quant

1There is a substantial literature on these models. They were
troduced into quantum cosmology by Misner@4#. See MacCallum
@5#, Halliwell @6#, and Wainwright and Ellis@7# for partial guides to
the literature.
©2004 The American Physical Society25-1
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mechanics for the classical models of Sec. II for the es
cially simple case of a closed Bianchi type-IX cosmolo
with a single homogeneous scalar field and vanishing cos
logical constant.~Current observations suggest thatL is
small but not zero. AssumingL vanishes, while evidently
not realistic, simplifies some elements of the analysis by
lowing quantum evolution to be restricted to universes wh
always recontract. While the quantization framework d
scribed in Sec. III is in principle applicable to all type
Bianchi cosmologies, the case where the universe is allo
to expand forever—either classically or quantu
mechanically—will not be considered here.! Section IV ex-
plicitly constructs the decoherence functional for these m
els for a specific class of boundary conditions: a ‘‘pure’’ in
tial state and ‘‘indifferent’’ final conditions. In Sec. V w
examine its semiclassical predictions for initial conditio
that correspond to a single classical trajectory and show
classical evolution can be an approximation to quantum
chanical evolution in a universe with expanding and co
tracting phases, as well as study more general choice
initial state.

Generalized quantum theory@12,13# is a broad framework
for describing and comparing different formulations of qua
tum mechanics. A reduction to essentials of the general p
ciples of the quantum mechanics of closed systems@14–16#,
the framework provides a natural language with which
frame questions in cosmology concerning whether proba
ties are consistently assigned by quantum theory to a se
alternative histories of the universe. The specific sum-ov
histories implementation of its principles sketched in~1!–~3!
above is but one of several approaches to a conceptu
coherent and manageable quantum theory of spacetime
lucid reviews of some of them and the difficulties they e
counter see@17#.

II. HOMOGENEOUS COSMOLOGICAL MODELS

In this section we review the essential features of hom
geneous cosmological models necessary for the subseq
discussion of their quantization.2 A spatially homogeneous
cosmological geometry is a spacetime possessing a grou
isometries whose orbits are a family of spacelike surfa
that foliate the spacetime@20#. Using a coordinatet that la-
bels these spacelike surfaces, the metric of a spatially ho
geneous spacetime may be put in the standard form@20,21#

ds252L2~ t !dt21e2a(t)~e2b(t)! i j s
is j . ~2.1!

Here thes i aret-independent spatial one-forms preserved
the isometries whose dual vector fieldss i obey

@s i ,s j #5ci j
k sk , ~2.2!

where theci j
k are the components of the structure tensor

2A classical general reference is@18#. Extended discussions can b
found in @5,19# and in Chap. 7 of@20#.
12352
e-

o-

l-
h
-

ed

-

w
e-
-
of

-
n-

i-
of
r-

lly
for
-

-
ent

of
s

o-

y

f

the Lie algebra of the isometry group in thes basis.3 The
quantitiesL(t) and a(t) are functions oft alone;b(t) is a
333 traceless symmetric matrix that measures the de
tions from isotropy. The coordinate volume element of
spatial slice scales likeAh5exp„3a(t)… and the same is true
for the overall volume (4p)2exp„3a(t)… if the spatial slices
are closed.

The possible spatial isometry groups may be classified
their Lie algebras~e.g., as in@22#! and are usually referred to
in the numbering scheme introduced by Bianchi@23# as ‘‘Bi-
anchi type-I’’ through ‘‘Bianchi type-IX’’ models. The
~simply-connected covering! group manifold with its natural
metric is the manifold for spatial geometry. In the Bianc
type-I models, for example, the group is generated by
translations of three-dimensional flat space and the mani
is R3. In the Bianchi type-IX models the group isSU(2),
ci j

k 5« i jk ~in appropriate coordinates!, and the manifold is the
three-sphereS3. The classical Friedmann-Robertson-Walk
~FRW! models are the most familiar examples of Bianc
universes: the open FRW universe is of Bianchi type I,
flat universe type V, and the closed FRW universe is of ty
IX.

The ‘‘type A’’ Bianchi models are those for whichci j
i

50; the rest are called ‘‘type B.’’ We restrict attention t
type A models because the action principle for the type
Bianchi models deduced from that for general relativity
substitution of the homogeneity ansatz~2.1! does not lead to
the correct equations of motion@24#; in these cases the ho
mogeneity of the spatial metric obstructs the elimination
boundary terms proportional to the trace of the structure t
sor. The Bianchi types I, II, VI0 ,VII 0, VIII, and IX are all
type A.

A variety of matter contents are consistent with homog
neity. As an illustrative example we shall restrict attention
a single, minimally coupled, homogeneous scalar fieldf(t)
together with a positive cosmological constantL. For the
action of the scalar field we take

SM@g,f#52
1

2E d4xA2g@~¹f!21Vf~f!# ~2.3!

for some potentialVf(f). @We follow, as far as possible, th
conventions of@20# with respect to signature (2,1,1,1),
definitions of the curvature tensors, the extrinsic curvature
a hypersurface, etc. We employ units where\5c5G51.#

A canonical action for the type A Bianchi cosmologie
with scalar matter may be arrived at in the following mann
First note that for all the type A models with ‘‘diagonal
matter (T0i50), as in our example, it is possible classica
to choose the one-formss i in Eq. ~2.1! so that the matrixb i j

is diagonal, and theci j
k take their canonical values@18,19#;

the Einstein equations guarantee thatb remains diagonal as

3See Wald~@20#, Sec. 7.2! for example. To avoid possible confu
sion, note that while Wald’ss ’s coincide with thev ’s of MacCal-
lum @5#, MacCallum’s structure tensorc is defined with the sign
opposite to that of Wald.
5-2



e
um

e
h
o
s
t i

-

-

er

t i
l

-

e

dels

field
ct

s of
ver
r-

-

or-
ce
e
a-

tion
f
s—
etry

th
t
at
er
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time passes. It is then traditional to parametrizeb as b
5diag(b11A3b2 ,b12A3b2 ,22b1).

Assuming that the metric remains diagonal quantum m
chanically is equivalent to solving the classical moment
constraints before quantization@10# ~cf. @20#, Eq. E.2.34!; the
only remaining gauge freedom then lies in the tim
reparametrizations of the surfaces of homogeneity. We s
assume that the metric remains diagonal in the sequel. H
ever, the quantum theory thus obtained is not obviou
equivalent to a theory in which the momentum constrain
instead imposed as an operator condition.4

Inserting a diagonal homogeneous metric~2.1! into the
actionS5(1/16p)*(R22L)1SM and doing the spatial in
tegration over a standard coordinate volume of (4p)2 ~the
coordinate volume of Bianchi type-IX’sSU(2) closed spa-
tial manifold; cf. @25#, Box 30.1! yields the reduced minisu
perspace action

S5E dtFpaȧ1p1ḃ11p2ḃ21pfḟ2S Le23a

24p DHG ,
~2.4!

whereH is the super-Hamiltonian

H52pa
21p1

2 1p2
2 1pf

2 1e4aVb~b1 ,b2!

1e6aVf~f!1e6aL ~2.5!

after rescalingf, Vf , andL by positive constants (A4p/3,
192p3, and 48p2, respectively!. The potentialVb is given
in general by

Vb~b1 ,b2!5224p2e2a (3)R~a,b1 ,b2!, ~2.6!

where (3)R is the scalar curvature of the homogeneity hyp
surfaces. Various explicit expressions forVb may be read off
from corresponding expressions in@10,18,19,26#. For the
characteristic Bianchi type-IX~‘‘mixmaster’’ @27#! universe
that will be the subject of Secs. IV and V it is~@25#, Box
30.1, for example!

Vb512p2tr@e4b22e22b#. ~2.7!

†For ease of comparison with the literature, note that i
traditional to discussVb in terms of the anisotropy potentia
Va5„1/(6p)2

…Vb115 1
3 tr@122e22b1e4b#, becauseVa is

positive definite with a global minimum of 0 atb50, and is
triangularly symmetric aboutb50.‡ The homogeneous iso
tropic FRW universe may be recovered by settingb50 in
the equations for Bianchi type-IX. For them(3)R
5(3/2)e22a andVb52(6p)2. ~Note the usual FRW scal

4The issue is that while the momentum constraint implies that
spatial metric may always be diagonalized at any one momen
time, the classical equations of motion are required to show th
remains so thereafter. These issues are discussed with charact
lucidity in Sec. IV of @10#.
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factor a52ea after changing from the Euler-angles i basis
to the standard polar coordinates onS3.!

The configuration space for these minisuperspace mo
is spanned by the variables (a,b1 ,b2 ,f). That is, it is the
superspace of spatial geometries plus the space of scalar
values. The action~2.4! may be expressed in a more compa
form by introducing the notationqA,A50,1,2,3 for the four
variables (a,b1 ,b2 ,f), the flat Lorentzian DeWitt metric
GAB5diag(21,1,1,1), and a rescaled lapse functionN(t)
5e23a(t)L(t)/24p. Then

S@pA ,qA,N#5E
0

1

dt@pAq̇A2NH#, ~2.8!

where

H5GABpApB1e4aVb~b1 ,b2!1e6a@Vf~f!1L#

[GABpApB1V~a,b1 ,b2 ,f,L!, ~2.9!

and we have taken advantage of the arbitrariness int as a
coordinate label to assign the values 0 and 1 to the end
the range of integration, a choice we shall make where
convenient. In this form the analogy with a relativistic pa
ticle moving in a potential is clear@1,28# and we shall exploit
this in what follows.

The form of the metric~2.1! is left unchanged by rep
arametrizations of the timet→ f (t). As already noted, this
invariance is the remnant of the four-dimensional diffeom
phism invariance of the full theory of general relativity on
the diagonal form~2.1! has been fixed. Correspondingly th
action ~2.8! is invariant under reparametrization transform
tions of the form

qA~ t !→q̃A~ t !5qA
„f ~ t !…, ~2.10a!

pA~ t !→ p̃A~ t !5pA„f ~ t !…, ~2.10b!

N~ t !→Ñ~ t !5N„f ~ t !… ḟ ~ t !,
~2.10c!

so long asf (0)50 and f (1)51.
Variation of Eq. ~2.8! or Eq. ~2.4! with respect to the

multiplier N gives the constraint

H~pA ,qA!50 ~2.11!

between coordinates and their conjugate momenta. Varia
with respect to thepA and qA give Einstein’s equations o
motion. The character of the solutions to these equation
the possible classical histories—depends on the isom

e
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D. CRAIG AND J. B. HARTLE PHYSICAL REVIEW D69, 123525 ~2004!
group and the value of the cosmological constantL. For
example, in the case ofL50 Bianchi type-I models we ex
pect cosmologies to expand forever from an initial singul
ity. More precisely, we expect the extrinsic curvatureK
5(3/L)da/dt ~trace of the extrinsic curvature tensor! of the
t5constant surfaces of homogeneity to remain positive
the future of an initially singular surface. Bianchi type-I cla
sical solutions withL.0 also expand forever, while mode
with L,0 always recollapse. Bianchi type-IX models ha
closed spatial sections with three-sphere topology. TheL
50 Bianchi type-IX universes are just the anisotropic ge
eralizations of the closed FRW universe. More precisely,
and Wald@29# have shown that when the dominant ener
condition is satisfied and the trace of the spatial projection
the stress-energy tensor~i.e., the sum of the principal pres
sures! is positive—thus excluding a cosmological constan
there are no classical solutions which expand forever from
initial singularity in the sense that the extrinsic curvature
constantt surfaces remains positive.

The stress-energy tensor arising from Eq.~2.3! satisfies
the dominant energy condition so long asVf>0, though the
pressures may be negative if the potential energy in
scalar field exceeds the kinetic energy.~Indeed, it is precisely
this feature which allows a scalar field to mimic
cosmological constant in inflationary models.! Thus, scalar
fields only satisfy the conditions of the Lin-Wald recollap
theorem at late times for certain choices of sca
potential—a free, massless, minimally coupled scalar fie
for example. The general conditions onVf for which a recol-
lapse theorem holds are as far as we are aware not curr
known.

With a cosmological constant the conditions of the L
Wald theorem are not satisfied. The example of de Si
space is enough to show that there will be Bianchi type
solutions with vanishing scalar field which evolve no
singularly from an initial contracting phase (K,0) in the
infinite past to an expanding phase (K.0) in the far future.
In between the volume of the universe reaches a non-
minimum value. The inclusion of a small amount of hom
geneous scalar field would not be expected to disturb
behavior. However, the homogeneous, isotropic Bian
type-IX ~Friedmann! models show that a positive cosmolog
cal constant does not remove the singularity in every ca
There are also models in which the stress-energy of the
lar field dominates that of the cosmological consta
throughout the model’s history. Such models display
qualitative features of theL50 case—an initial singularity
leading to a finite expansion followed by recontraction,
models satisfying the conditions of the Lin-Wald theore
See @7# for a wide-ranging survey of the dynamics of th
various cosmological models.

III. GENERALIZED QUANTUM MECHANICS OF LÄ0
BIANCHI TYPE-IX UNIVERSES

A. Generalized quantum theory

In this section we describe a generalized quantum the
for Bianchi type-IX minisuperspace cosmological mod
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with L50. While the construction is in principle valid eve
for models which may expand forever, certain technical
pects of the analysis are simplified by restricting attention
quantum histories which always recontract, and the m
general case will not be considered here.

We work within the general principles of the quantu
mechanics of a closed system@14–16#. The closed system is
most generally and accurately the universe as a whole.
most general predictions of quantum mechanics are the p
abilities of individual members of sets of alternative coar
grained histories of the closed system. Probabilities are
predicted for every set of alternative histories, but only tho
for which the quantum mechanical interference between
individual histories in the set is negligible as a conseque
of the system’s boundary conditions and dynamics. Such
of histories are said to decohere, or be consistent.

Generalized quantum theory@1,12,13# is a comprehensive
framework for implementing the principles of the quantu
mechanics of closed systems. As noted in the Introduct
the following elements specify a generalized quantum m
chanics:~1! The sets of fine-grained histories which are t
most refined description of the system possible.~2! The al-
lowed coarse grainings which generally are partitions of a
of fine-grained histories into an exhaustive set of mutua
exclusive classes$ch%,h51,2,3 . . . called coarse-graine
histories.~3! A decoherence functional,D(h,h8) that mea-
sures the interference between pairs of histories in a coa
grained set. The decoherence functional is a complex-va
functional on pairs of classes that satisfies certain gen
requirements: It is~i! Hermitian, ~ii ! normalized,~iii ! posi-
tive, and~iv! consistent with the principle of superposition
senses made precise in@1,12,13#. The decoherence functiona
incorporates a specification of the boundary conditions
the closed system—typically ‘‘initial’’ and ‘‘final’’ condi-
tions. It is a natural generalization to closed systems of
idea of quantum state, as the term is used in quantum lo
and in algebraic quantum mechanics, to measure the q
tum interference between histories in addition to their pro
abilities @2,3#.

With these three elements specified, the process of pre
tion proceeds as follows: A set of alternative coarse-grai
histories~approximately, medium! decoheres whenD(h,h8)
is negligible for all hÞh8. The probabilitiesp(h) of the
individual histories in a decoherent set are the diagonal
ments ofD. The rules for decoherence and probabilities a
thus summarized by the fundamental formula

D~h8,h!'p~h!dh8h ~3.1!

obeyed by histories in decohering sets.
The four-dimensional diffeomorphism invariance chara

teristic of a geometric theory of gravity is most easily a
commodated by employing a sum-over-histories formulat
of quantum mechanics. A sum-over-histories quant
5-4
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GENERALIZED QUANTUM THEORY OF RECOLLAPSING . . . PHYSICAL REVIEW D69, 123525 ~2004!
mechanics posits a unique set of fine-grained histories w
in the case of gravity are four-dimensional spacetime met
and matter field configurations. A sum-over-histories gen
alized quantum mechanics for cosmology was describe
@1#. Generalized quantum mechanics for models with
single reparametrization invariance was described as w5

We now apply those discussions to homogeneous, minisu
space cosmological models which, as formulated here,
sess a single time reparametrization invariance. To do
we specify explicitly the three elements of their generaliz
quantum mechanics.

1. Fine-grained histories

We take for the set of fine-grained histories the pa
zM(t)5„qA(t),N(t)…, M50, . . . ,4 in theextended configu-
ration spaceCext of qA5(a,b1 ,b2 ,f) and multiplier z4

5N. We are thus considering a sum-over-histories quan
mechanics in which there is a unique fine-grained set of
tories. We put no restriction of single-valuedness on
paths. Thus, for example, the total spatial volum
(4p)2exp„3a(t)… may increase and decrease over the cou
of the history and, indeed, go through such cycles an a
trarily large number of times. In particular, the classical h
tories of a Bianchi type-IX universe which expand and
contract are included among the possible quant
mechanical histories.

We put no restriction on the differentiability of the path
but do require them to be continuous.

The fine-grained histories have ends at which the cos
logical boundary conditions analogous to initial and fin
conditions are imposed, and these ends must be prescrib
complete the specification of the set of fine-grained histor
A natural principle restricting this choice is thatthe set of
fine-grained histories should include all the classical his
ries. Otherwise there is no hope of recovering Einstei
classical theory as a suitable limit of quantum theory.~This
will be the subject of Sec. V.! The work of Lin and Wald@29#
discussed at the end of Sec. II shows that all classical B
chi type-IX cosmologies with scalar field andL50 expand
from an initial singularity of vanishing three-volume an

5The generalized quantum mechanics for cosmology in@1# is but
one of many applications of sum-over-histories principles and te
niques to quantum gravity. These are too numerous and familia
be cited here, but two particular applications to quantum cosmol
cal dynamics should be mentioned whose spirit is consonant
that in @1#. Teitelboim @30# developed a sum-over-historie
‘‘ S-matrix’’ theory for calculating transition amplitudes between
ternatives defined near cosmological singularities. We exploit
formal techniques developed by Teitelboim for constructing fu
tional integrals over spacetime geometries and in particular
choice for the measure in such integrals. The way probabilities
related to amplitudes differs and we aim, in a generalized quan
mechanical setting, at probabilities for much more general and
cessible alternatives than those that can be defined near sing
ties. Sorkin’s@31# treatment of general alternatives is concorda
with that of the present work.
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eventually recontract to a final singularity of vanishing thre
volume, assuming that the potential energy in the scalar fi
does not dominate the kinetic at late times. We shall con
our attention to potentials for which this is so. Classical h
tories may therefore be thought of as beginning and end
on a surfaces0 of large constant negativea(5a0) in the
extended configuration space of pathsCext. The class of all
paths that begin and end on such a surface is therefore
natural, minimal set of fine-grained histories for a gener
ized quantum theory of Bianchi type-IX minisuperspace c
mological models with scalar field andL50. This was the
choice advocated by Teitelboim in his theory of quantu
cosmological ‘‘scattering’’ between initial and final singular
ties @30#. It is the choice we shall adopt here.~Restricting the
paths in this way corresponds to the imposition of a bou
ary condition that wave functions vanish asa→`.! Finally,

we add the restriction that all paths possessȧ(0).0 and

ȧ(1),0 on s0, i.e., ‘‘expanding’’ initial and ‘‘contracting’’
final conditions.

2. Coarse-grained histories

Coarse-grained histories correspond to the physical q
tions that may be asked of a system. We therefore allow
coarse-grained sets of alternative histories any partition
the fine-grained histories intoreparametrization invariant
classes$ch%, h51,2, . . . , because reparametrization invar
ance is what remains in minisuperspace of the diffeom
phism invariance of general relativity. The classes gener
may be thought of as partitions by values of reparametr
tion invariant functionalsF@qA,N# of the paths inCext. Ex-
plicitly, for an exclusive set of ranges$Dh%,h51,2, . . . of
the real line, and a single functionalF we define

ch5$„qA~ t !,N~ t !…uF@qA,N#PDh%. ~3.2!

Any partition may be thought of as of this form because
may always consider the functional which has the valueh for
paths inch and a set of ranges that bracket the integers.

Simple examples of interesting partitions into diffeomo
phism invariant classes—here reduced to reparametriza
invariant classes—are readily given:

~i! One could partition the histories by ranges of values
the volume of the largest volume three surface of homo
neity. The resulting probabilities are for the values of t
volume of maximum expansion of the universe reached
the course of its expansion and contraction.

~ii ! One could partition the histories of these homog
neous space times into the classes which have a surfac
homogeneity with a volume less thane and the class of those
with no such surface. The value of the probability that the
is a surface with volume less thane considered ase→0
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would be one way of assigning a probability to the unive
becoming singular.6

~iii ! One could partition the histories into the class whi
remain close to a solution of the classical Einstein equa
by some standard@cf. Eq. ~5.3!# and the class which exhibi
a significant excursion away from classical behavior. T
probability of the first class is the probability that the un
verse behaves classically according to the given standard
shall employ such coarse grainings in Sec. V.

~iv! One could partition the fine-grained histories
ranges of values of the volume and anisotropyb6 they as-
sume a given ‘‘proper time’’7 *Ldt after the initial condition.
The resulting probabilities would be the probabilities for t
volumes and anisotropies the universe could have at a g
proper time from the initial surface. These are not unlike
probabilities that would be of interest in comparing the p
dictions of a realistic quantum cosmology with observatio

All of the coarse grainings mentioned above are in
manifestly reparametrization invariant classes of fine-grai
histories. Most are partitions that are not defined by alter
tives that are in any sense alternatives ‘‘at one momen
time,’’ and hence are not defined simply by observables
superspace. Rather they are spacetime alternatives refe
to properties of histories extended over time. For exam
the probabilities for classical behavior refer to whethe
suitably coarse-grained history approximately obeys the E
stein equation over a course of time.

Coarse-grained histories correspond to the physical q
tions that may be asked of a system in the following sen
Ask for the probability that the universe hasanyreparametri-

6There could be many other meanings assigned to a singular q
tum evolution, for example, a finite probability for a curvature i
variant to have a divergent value~cf. @32#!. The various possible
definitions are not necessarily easily related or of equal significa
because the paths are non-differentiable. The particular criterion
singular evolution—finite probability for a surface of homogene
of vanishing volume—that is under discussion for these minisup
space models would not be a valid criterion for a full theory
quantum cosmology for two reasons: First a general geometry
have no surfaces of homogeneity. Second, spacelike surface
nearly vanishing volume may be constructed even in non-sing
spacetimes from segments that are nearly null. The criterio
meaningful in these minisuperspace models only becauseall fine-
grained histories can be foliated by surfaces of homogeneity—
assumption. The important point, however, is that any meanin
criterion for singular quantum evolution that is expressible in spa
time form corresponds to a partition of the fine-grained histor
into the class which is singular by that criterion and the class wh
is not singular. If the alternatives of$~singular!, ~non-singular!% de-
cohere, then a generalized quantum theory will assign a probab
to a quantum universe being singular. Unlike the classical the
however,a finite probability for singular geometry need not mean
breakdown of predictability.

7We follow terminology of Teitelboim@30# and Henneaux and
Teitelboim @33# in calling the reparametrization invariant quanti
*Ldt the ‘‘proper time.’’ Kucharˇ @34# has stressed that this may b
confusing and suggests the term ‘‘separation.’’
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zation invariant property expressible in spacetime terms.8 To
answer this question one considers the partition of the fi
grained histories into the class which have the property
the class which do not. If this set of coarse-grained histo
decoheres, then the quantum mechanics predicts the p
ability that the universe has the property in question. If o
cannot tell whether a given fine-grained history has the pr
erty or not then either it does not make sense or it is
expressible in terms of metric and/or matter field configu
tions alone.

While it is easy to exhibit physically interesting sets
alternative reparametrization invariant coarse-grained hi
ries for these homogeneous minisuperspace cosmolog
models it is much harder to find sets of such histories t
decohere. That is because of the small number of degree
freedom of the model. Coarse graining is essential for de
herence. Realistic mechanisms of decoherence that are e
tive in a variety of initial conditions qualitatively involve th
dissipation of phases from variables followed by the coa
graining into variables that are ignored.9 However, the
present minisuperspace models do not present many deg
of freedom to be ignored.

3. The decoherence functional

The decoherence functional is constructed in two st
following the analogy of the relativistic particle discussed
@1#; the final result is expressed in Eq.~3.9!. It will turn out
to be a natural generalization to a reparametrization invar
theory of the canonical decoherence functional of ordin
quantum mechanics.

First we define matrix elements of class operators co
sponding to individual coarse-grained historiesh by a sum-
over-histories in the class. Schematically, we define

^q9iChiq8&5 (
pathsP[q8hq9]

exp~ iS@path# !, ~3.3!

where the sum is over paths inCext that lie in the classch
which begin atq8 and end atq9. S is the~Lagrangian! action
for paths—a functional ofq(t) andN(t). In order to give a
definite meaning to the functional integral in Eq.~3.3!, and,
in particular, to fix the ‘‘measure’’ on the space of paths, it
convenient to consider the corresponding integral over pa
in phase space,

^q9iChiq8&5E
ch

dN>0dpdqq8
q9DG@q,N#d@G@q,N##

3exp~ iS@pA ,qA,N# !. ~3.4!

The ingredients in this expression are as follows:S is the
action ~2.8!. G is a function such that the conditionG50
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8In path integral formulations of this kind, physical quantities th
involve derivativessuch as the extrinsic curvatureK must be ex-
pressed in terms of differences of metric variables at different tim

9See, e.g.@35,36# for more quantitative discussions from a hist
ries point of view, as well as@37#.
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fixes a unique representative from each reparametrization
variant equivalence class of fine-grained histories;DG is the
associated Faddeev-Popov determinant. The integral is
all paths inCext that lie in the classch and pass between th
configuration space points (qA)8 and (qA)9. All possible mo-
mentum paths are integrated over. We take the multip
functional integral to be over positive valuesN>0. Other
choices, for example, both positive and negative valu
would lead to different generalized quantum theories.@Some
of the issues that arise in choosing the allowed range for
lapse are discussed in@38–41# and~@1#, Sec. VII!.# The mea-
sure for theq and p integrations is the usual Liouville
‘‘ dqdp/2p ’’ measure on phase-space paths. The integra
over momenta may be seen as a device to induce the me
on paths inCext from the Liouville measure since the range
integration over the momenta are constrained neither by
classch , the endpoints (q8,q9), or the gauge fixing delta
function. The skeletonized path integrals we envision
quite standard@30,39#, and have already been briefly d
scribed in@1#.

The decoherence functional is constructed from the c
operators~3.4! which characterize the physical histories
question, but also incorporates a theory of cosmolog
boundary conditions imposed at the ends of the histories
are the analogs of initial and final conditions in a quant
system with a fixed notion of time.

An initial or final condition is represented by a set
configuration-space wave functions together with a proba
ity for each wave function. That is the same kind of info
mation needed to specify an initial or final density matrix
ordinary quantum mechanics. The wave functions are
quired to satisfy an operator implementation of the co
straints. Thus, for homogeneous cosmological models an
tial condition is specified by a set$C i(q

A),pi8%, where each
C i(q

A) satisfies an operator form of Eq.~2.11!. We take the
obvious operator ordering10 and write

HC i~q!5F2GAB
]2

]qA]qB
1V~q!GC i~q!50. ~3.5!

Similarly a final condition is specified by a set$F j (q
A),pj9%,

where theF j (q
A) also solve the Wheeler-DeWitt equatio

~3.5!. In order to guarantee the independence of the deco
ence functional from the choice of initial surfaces0—see
below Eq.~3.8!—and for additional reasons that will be e
plained in the sequel, we require the initial solutionsC(q) of

10Most generally, the operator ordering in the Wheeler-DeW
equation obeyed by the boundary wave functions should agree
the operator ordering in the Wheeler-DeWitt equation obeyed by
full propagator, Eq.~A1!. This ordering in turn is determined by th
precise form of the measure in the functional integral~3.4! defining
the class operators. In the present instance, however, we hav
fectively circumvented this issue at the classical kinematical le
by restricting attention to an action of the form~2.9! expressed in
coordinates in which the kinetic term is independent of the mini
perspace coordinates; the operator ordering appropriate to
choice is just that of Eq.~3.5!.
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the Wheeler-DeWitt equation to decay in ‘‘spatial’’ direction
in minisuperspace~that is, on surfaces of constanta) fast
enough inb6 and f that VC'0 asa→2`. ~More pre-
cisely, we require thate24aVC is bounded; see Sec. IV C.!
The space of functions on minisuperspace with these p
erties will be denotedF(s0). Equation~3.5! is the Wheeler-
DeWitt equation for the ‘‘initial’’ and ‘‘final’’ conditions in
this minisuperspace quantum cosmology.

At this stage in the construction of the decoherence fu
tional, the specification of the minisuperspace boundary c
ditions is otherwise essentially arbitrary. Ultimately, the
boundary conditions must be supplied by a detailed phys
theoryof the cosmological boundary conditions. Referenc
@6,42# are reviews of this aspect of quantum cosmology.

Initial and final conditions are adjoined to the class ope
tor matrix elements by means of a linear product+ on the
space of solutions to Eq.~3.5!. Following @1# we shall take
for + the Wheeler-DeWitt~Klein-Gordon! product. Specifi-
cally, given a surfaces in the configuration space that i
spacelike in the metricGAB we define

F+C5 i E
s
dSAF* ~q!¹JAC~q!. ~3.6!

The inner product, so defined, is independent of the surf
used to define it so long asF andC both satisfy Eq.~3.5!. In
the coordinatesqA5(a,b1 ,b2 ,f) in which GAB5diag
(21,1,1,1) a convenient choice ofs is typically a surface of
constanta, whence

F+C5 i E
a
d3qF* ~a,qW !

]J

]a
C~a,qW !. ~3.7!

Having introduced the product+ we now define11

^F i uChuC j&5F i~q9!+^q9iChiq8&+C j~q8!. ~3.8!

This definition appears at first sight to depend on the cho
of surface on which+ is defined, but in fact it does not, s
long as the coarse grainingch does not restrict the paths o
those surfaces. This is because the class operators~3.4! for
such coarse grainings generally solve Eq.~3.5! as well asC
and F, a fact we demonstrate in the Appendix. First, ho
ever, we complete the definition of the generalized quant
theory of homogeneous minisuperspace cosmologies.

The decoherence functionalD(h8,h) is defined through

D~h8,h!5N(
i , j

pi9^F i uCh8uC j&pj8^F i uChuC j&* ,

~3.9!

t
ith
e

ef-
l

-
is

11The second+ in Eq. ~3.8! denotes the action of the operato
Ch on C. When written out using Eq.~3.6! the matrix elements of
Ch are therefore not complex conjugated. One may think
+ as roughly analogous to the ‘‘u’’ in Dirac notation.
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D. CRAIG AND J. B. HARTLE PHYSICAL REVIEW D69, 123525 ~2004!
where N is a normalizing factor determined so th
Sh8hD(h8,h)51. Specifically, ifu is the class ofall fine-
grained histories

N 215(
i j

pi9u^F i uCuuC j&u2pj8 . ~3.10!

The decoherence functional defined by Eq.~3.9! is the
direct analogue of the ‘‘canonical’’ decoherence functional
ordinary Hamiltonian quantum mechanics with initial a
final boundary conditions@1,3#, written in functional integral
form, with accommodations appropriate to the reparame
zation invariance of the present theory. It satisfies the gen
conditions required of a generalized quantum theory. I
~i! Hermitian, D(h8,h)5D(h,h8)* , ~ii ! normalized,
Shh8D(h8,h)51, ~iii ! positive on the diagonal element
D(h,h)>0, and~iv! consistent with the principle of supe
position in the sense that if$c̄h̄% is a partition of the classe
$ch% into coarser classes, then

D~ h̄8,h̄!5 (
h8Ph̄8

(
hPh̄

D~h8,h!. ~3.11!

These four conditions are enough to ensure that for set
histories that decohere according to Eq.~3.1!, the numbers
p(h) defined by Eq.~3.1! are probabilities satisfying the
most general form of the probability sum rules. By using
Eq. ~3.1! the specific form~3.9! we can assess the probabi
ties of alternative, coarse-grained, decohering histories of
model homogeneous cosmologies under discussion.

B. Evaluation of the class operators in the proper time gauge

We apply Eq.~3.1! to predictions concerning the sem
classical behavior of homogeneous minisuperspace cosm
gies in the next section. To end this section, we discuss
evaluation of the class operators~3.4! in a particularly con-
venient gauge—Eq.~3.13!—called the ‘‘proper time’’ gauge.
For suitable coarse grainings, we also briefly argue that th
matrix elements satisfy the constraint~3.5!. Because the ac
tion ~2.8! is essentially that of a relativistic particle in a p
tential, the treatment closely parallels that of the free rela
istic particle that has been given previously in~@1#, Sec. VII!.

The first step in evaluating Eq.~3.4! is to choose a
‘‘gauge’’ that fixes the reparametrization symmetry~2.10a!–
~2.10c!, the infinitesimal form of which is invariance unde
the changes@set f (t)5t1e/N]

dqA5e~ t !$qA,H%, ~3.12a!

dpA5e~ t !$pA ,H%, ~3.12b!

dN5 ė~ t !, ~3.12c!

where$,% is the Poisson bracket, ande(0)5e(1)50. A con-
venient ‘‘gauge’’ fixing function is@38,40# ~see also@1#, Sec.
VII !

G5Ṅ. ~3.13!
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The Faddeev-Popov determinant DG5detdG/de
;detd2/dt2 is in this case independent of the integrati
variables. The delta functional in Eq.~3.4! then permits only
theN5constant paths to contribute to the integral overN(t),
leaving

^q9iChiq8&5E
ch

dN>0dpdqq8
q9expS i E

0

1

dt@pAq̇A2NH# D
~3.14!

after dropping the constant factors that cancel in the de
herence functional~3.9!. Changing variables to

ds5Ndt, ~3.15!

the Gaussian functional integrals overp may be performed,
leaving simply

^q9iChiq8&5E
0

`

dN^q9NiChiq80& ~3.16!

so long as we assume the coarse graining does not restric
value of N; otherwise the range of theN integral must be
restricted appropriately as well. Here we have defined

^q9NiChiq80&

5E
ch

dqq8
q9expS i E

0

1

dtF 1

4N
GABq̇Aq̇B2NVG D

~3.17a!

5E
ch

dqq8
q9expS i E

0

N

dsF1

4
GAB

dqA

ds

dqB

ds
2VG D ,

~3.17b!

where the path integral measuredq has been renormalized i
the usual manner induced by the momentum integratio
~See the Appendix for details.! The notation on the left hand
side of Eq.~3.17a! is inspired by the observation that th
path integral in Eq.~3.17b! shares the form of that for the
propagator over a timeN of a relativistic particle in a poten
tial V. Equation~3.16! may be thought of as a ‘‘restricte
propagator’’ for the class of pathsch , as should be eviden
from the restricted functional integral~3.4!.

In general, the complexity of the minisuperspace poten
V precludes much further explicit progress in the no
perturbative evaluation of̂q9iChiq8&. It is still possible,
however, to show that the class operators satisfy the c
straint ~3.5! for coarse grainings which do not restrict12 the
values of the endpointsq8 andq9 or the value ofN. This is
done in the Appendix. Equation~3.8! is thus as claimed in-
dependent of the surfaces on which we choose to impose
boundary conditionsC andF.

12Another approach is torequire that the class operators satis
the constraints and to modify their definition appropriately@28,43–
45#. We do not expect such modifications to fundamentally aff
any of the specific results presented here, and thus defer their
sideration.
5-8
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IV. DECOHERENCE FUNCTIONAL FOR RECOLLAPSING
BIANCHI COSMOLOGIES

The general form of the decoherence functional for typ
homogeneous cosmologies is given in Eq.~3.9!. In this sec-
tion we employ some specific choices of the initial and fin
conditions appropriate toL50 closed ~Bianchi type-IX!
cosmologies to cast the decoherence functional into a s
pler and more practically useful form.

A. Initial and final conditions

As already noted, it is to be expected that the initial qu
tum conditions of the universe are fixed by sometheory of
cosmological boundary conditions. Knowledge of this theo
is not, however, required in the construction of the decoh
ence functional for cosmology. We shall, therefore, illustr
the process of prediction based on the decoherence f
tional ~3.9! with some simple choices of initial state. Th
practical significance of such predictions depends entirely
whether the chosen initial states are representative of
boundary conditions on the actual physical universe.

Most of the extant theories of the initial state of the u
verse@6,42# produce a boundary state consisting in a sin
initial wave function. We will therefore in our examples co
centrate entirely on the case of a pure initial stateC.

Recall from Sec. III A 1 that the Bianchi type-IX cosmo
logical histories have ‘‘ends’’ at which we impose bounda
conditions$C i ,pi8% and$F i ,pi9%. In order to correspond to a
conventional notion of cosmological boundary conditions
closed,L50 universes, we impose the boundary conditio
on a suitable surfaces0 of large, negativea (5a0), i.e.,
when the universe is very small. Because the wave funct
C i andF i satisfy the constraint~3.5!, it does not matter on
which surface they are imposed so long as the coarse g
ings under consideration do not involve regions of minis
perspace intersecting those surfaces, as noted above. In
sense, then, the cosmological histories ‘‘begin’’ and ‘‘end’’
small spatial volume, just as the classical histories do.~See
Fig. 1.!

Maintaining a close correspondence with ordinary qu
tum mechanics, we shall choose final boundary conditi
which are ‘‘indifferent’’ to the paths, in a sense to be ma
precise in Sec. IV C. There will then effectively be no fin
conditions at all on the cosmological histories.

As for the choice of the initial boundary conditions, w
will examine two instructive examples in the sequel. In ord
to illustrate how the present sum-over-histories construc
can predict semiclassical behavior in a suitable limit as na
rally as sum-over-histories formulations always do, as a fi
example we consider a single initial localized Wheel
DeWitt wave packetCWP which is designed to prefer a pa
ticular classical path over all others in the semiclassical lim
In a partition of the minisuperspace histories by class
paths, a steepest descents evaluation of the path integra
the class operators then reveals that the primary contribu
to the decoherence functional comes from the class ope
corresponding to the coarse-grained class of paths conta
the classical path preferred by the initial conditionCWP.
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Next, we shall turn our attention to the semiclassical p
dictions of the decoherence functional with an initial state
the more traditional WKB form. As is to be expected, und
semiclassical coarse grainings such a choice of initial s
leads to a distribution of classical trajectories with initi
value weighted according to the WKB prefactor, and init
momentum given by the gradient of the phase.

Let us now proceed with the details.

B. Branch wave functions

First, it is useful to define the ‘‘branch wave functions’

Ch~q!5^qiChuC&

[^qiChiq8&+C~q8!. ~4.1!

These may be regarded as the wave functions correspon
to the initial state, propagated by the restricted propaga
~class operator! corresponding to the physical history i
question.13

The space$Ch(q)% of branch wave functions will be de
notedB. It depends in an essential way both on the allow
space of initial wave functionsC(q), and on the allowed
coarse grainings.

For arbitrary coarse grainings, it is not immediately e
dent thatCh(q) for qPs0 must be in the spaceF(s0) of

13It may be helpful to be reminded that the ‘‘matrix’’ appearing
Eq. ~4.1! should not be complex conjugated when computing
product; cf. Footnote 11.

FIG. 1. The minisuperspace of homogeneous cosmolog
models. The timelike coordinateq05a and one spacelike coordi
nate~e.g. q15b1) are plotted. Fine grained histories are paths
this configuration space which begin and end on a surfaces0 that is
spacelike in the Wheeler-DeWitt minisuperspace metricGAB and
located at large negativea (5a0, say!, corresponding to a smal
spatial volume. The restriction to paths which begin and end ons0

corresponds to the imposition of a boundary condition that soluti
to the Wheeler-DeWitt equation vanish asa→`. The paths all

possessȧ(0).0 andȧ(1),0 ons0, i.e., ‘‘expanding’’ initial and
‘‘contracting’’ final conditions. The universe expands from a sm
to a maximum volume and then recontracts.
5-9
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D. CRAIG AND J. B. HARTLE PHYSICAL REVIEW D69, 123525 ~2004!
functions which fall off rapidly at infinity ons0, even when
the initial wave functionsC(q) are required to be inF(s0),
as we have done. However, we will take the arguments
Higuchi and Wald@10# as strongly suggestive that initia
states inF(s0), when propagated by the full propagat
^q9iCuiq8& off of s0 and then back toa→2`, indeed
remain inF(s0) when there is a scalar field present.14 For
the present, we will assume when necessary that attentio
restricted to coarse grainings for which allCh(q)PF(s0)
whenqPs0 i.e. for whichBus0

,F(s0).

C. Final indifference

Boundary conditions of ‘‘final indifference’’ should
amount, in essence, to no final boundary condition at all
the sense that the endpoints of all paths are weighted equ
The final boundary condition then effectively disappe
from the decoherence functional, just as it does in ordin
quantum mechanics.

Let us be slightly more precise about how to do this.
What we seek are a complete set of solutions to

Wheeler-DeWitt equation~3.5! which may serve to define
positive ‘‘resolution of the identity’’ in the space of branc
wave functionsB. By this we mean the following. First, not
that if we define

I~q29 ,q19!5(
i

pi9F i~q29!F i* ~q19! ~4.2!

for q19 ,q29Ps0, the decoherence functional~3.9! for the case
of a pure initial stateC may be written very simply in terms
of the branch wave functions~4.1! as

D~h,h8!5N(
i

pi9~F i+Ch!~F i+Ch8!*

5NCh8+I+Ch . ~4.3!

In order to capture the notion of ‘‘final indifference,’’ w
next split B into orthogonal sectorsB 6 on which the
Wheeler-DeWitt product+ is positive or negative definite.15

We require for final indifference that theF i be chosen so tha

14The essence of their argument is that for scalar potentials w
do not grow exponentially at infinity, the scalar potential term
Eq. ~3.5! becomes negligible asa→2` and hence the scalar mo
mentum acts as a conserved mass term in the equation of mo
This means that wave packets ‘‘lose energy’’ upon each bounce
of mixmaster’s potential walls, eventually slowing to the po
where they move more slowly than the walls recede. Wave pac
therefore should become asymptotically ‘‘free’’ asa→2` inside
the potential walls, escaping to infinity more slowly than the rec
ing walls.

15We are not familiar with an explicit procedure for performin
this split of the Bianchi type-IX minisuperspace in general.~See
however@8,11,43,46#.! Nonetheless, as argued below, since we o
need to evaluate the products appearing in Eq.~4.3! at very small
volume, the arguments of Higuchi and Wald@10# noted above sug-
gest that the construction we give when the branch wave funct
on s0 are inF(s0) is sufficient for our purposes.
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I+c656c6, ~4.4!

wherec6PB 6.
Such an identityI may be explicitly constructed by

choosing bases$F i
6% for B 6 which are orthogonal in the

inner product~3.6!,

F i
6+F j

656d i j ~4.5!

and

F i
6+F j

750. ~4.6!

Setting all thepi951, with such a basis we may constru
projection operators

I 6~q29 ,q19!5(
i

F i
6~q29!F i

6* ~q19! ~4.7!

for which

I 6~q29 ,q19!+c~q19!56c6~q29!. ~4.8!

I is then given by

I5I 11I 2 ~4.9!

so that

I+c5c12c2. ~4.10!

Explicit calculations require an explicit choice of theF i
6 .

Since we are restricting our attention to coarse graini
whose branch wave functionsCh(q) lie in F(s0), we can
implement the split of the space of branch wave functio
into B 6 by choosing the$F i

6% to be of definite frequency on
s0 with respect toa. That is, relabeling the indexi→pW ,

]

]a
FpW

6~q!57 ivpFpW
6~q!. ~4.11!

For this to be possible, it must be that the Wheeler-DeW
operatorH and]/]a commute. In fact,

F ]

]a
,HG f ~a,b6 ,f!54e4aVb~b6! f ~a,b6 ,f!

16e6aVf~f! f ~a,b6 ,f!,

~4.12!

so that]/]a andH approximately commute everywhere o
surfaces of large negativea so long as they act in the spac
of functionsF(s0) for which Vb f andVf f remain bounded.
SinceVb andVf are both bounded below, this is equivale
to the condition thatV f'0 on s0—or more precisely, that
e24aV f is bounded—whence our choice of boundary con
tions on the allowed solutions to the constraint in S
III A 3.

The explicit form of theFpW
6 is not difficult to find. It is

clear from Eq.~2.9! that ons0 there are large regions nea
the origin in qW -space for which the potentialV is totally

h

n.
ff

ts

-

y

ns
5-10



a

w

e

ia

y
he

n
rm
ia

na
-

o

-

the
of

nd
is

sical

ein

dy
-

is

ave
n-
see
ion
ral
ati-
y,
ch
e
thus
he
ave

GENERALIZED QUANTUM THEORY OF RECOLLAPSING . . . PHYSICAL REVIEW D69, 123525 ~2004!
negligible so long asVf remains bounded. In fact, it is
standard part of the lore of mixmaster cosmologies16 that
Va , the anisotropy potential for Bianchi type-IX—see belo
Eq. ~2.7!—is well-approximated asa→2` by a triangular
set of potential walls ata52(b16A3b2) and a52b1 .
Well inside these walls, we may takeV to be essentially zero
for reasonableVf .17 Near the origin of the spacelike surfac
s0, theFpW

6(q) can then be taken to have the form

FpW
6~q!5

1

A~2p!n2vp

e7 ivpaeipW •qW , ~4.13!

wherevp
25pW 2. In the asymptotic region where the potent

V is not negligible we may choose to maintaineither Eq.
~3.5! or Eq. ~4.11!, since our branch wave functions are b
design essentially zero there. Should we choose to ad
strictly to the requirement~3.5! everywhere ons0, the FpW

6

will of course be more complicated in the asymptotic regio
Practically, however, it is usually easiest to retain the fo
~4.13! everywhere. So long as we restrict attention to init
states and coarse-grainings for whichBus0

,F(s0) the dis-
tinction will be practically irrelevant and the explicit form
~4.13! can be used in calculating the decoherence functio

The basis of functions~4.13! are orthogonal in the appro
priate sense,

FpW
6+FpW 8

6
56dpW pW 8

(n) , ~4.14!

and

FpW
6+FpW 8

7
50. ~4.15!

(n is the number of ‘‘spatial’’ minisuperspace degrees
freedom—three, in the present example,b6 and f.! The
projectionsI 6 of Eq. ~4.7! may then be explicitly con-
structed as~taking ( i pi9→*dnp)

I 6~q29 ,q19!5E dnpFpW
6~q29!FpW

6* ~q19!. ~4.16!

Finally, we note that the orthonormal bases$F i
6% are also

useful to represent the initial conditionC. Indeed, solutions
to the Wheeler-DeWitt equation inF(so) may be written as

C5(
i

ci
1F i

11(
i

ci
2F i

2

5C11C2, ~4.17!

where

16References@47# are useful additions to the literature alrea
cited. The discussion in Sec. IV of@10# provides an extremely use
ful formulation for general type A Bianchi models; see also@29# for
Bianchi type-IX models.

17
Kuchař has shown@48# that this ‘‘asymptotic freedom’’ of the

gravitational potentialV is a generic feature of superspace, and
not special to homogeneous models.
12352
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ci
656F i

6+C. ~4.18!

For the particular choice of basis~4.13! for F(so), this looks
like

C~q!5E dnp$C̃1~pW !FpW
1~q!1C̃2~pW !FpW

2~q!%,

~4.19!

where

C̃6~pW !56FpW
6+C ~4.20!

on s0.

D. The Wheeler-DeWitt product and the decoherence
functional

With the resolution of the identityI in hand, we define the
positive definite Wheeler-DeWitt product • by

c•c5c+I+c

5c1+c12c2+c2.
~4.21!

In terms of this positive product,18 the decoherence func
tional may be written very simply as

D~h,h8!5NCh8•Ch , ~4.22!

whereN is (Cu•Cu)21. Equation~4.22! is the form of the
decoherence functional we will use for the remainder of
discussion. The generalization of this formula to the case
an impuresetof initial wave functions$C i ,pi8% is obvious.

E. Classical initial conditions

Because we will be interested in initial conditions a
coarse grainings which distinguish classical behavior, it
useful to discuss the conditions necessary to specify clas
solutions.

The classical equations of motion—the reduced Einst
equations—resulting from the variationdS/dq50 of the La-
grangian action appearing in Eq.~3.17a! are, in the proper
time gauge~3.13!,

18Indeed, up to technical details, we expect the choices we h
made are in their effect equivalent to employing the ‘‘Rieffel i
duced’’ inner product to construct the decoherence functional;
@28,43,44# and references therein for further discussion. Equat
~4.22!, employing the Rieffel induced product, is thus a natu
alternative definition of the decoherence functional that autom
cally incorporates a notion of ‘‘final indifference.’’ More generall
note that Eq.~4.3! defines a positive product on the space of bran
wave functions. When the$F i% constitute a complete set and all th
pi9Þ0 this is a genuine non-degenerate inner product. One may
regard the specification of ‘‘final indifference’’ as equivalent to t
problem of defining an inner product on the space of branch w
functions.
5-11
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1

2N

d2qA

dt2
52N¹AV, ~4.23!

along with the Lagrangian version of the constraintdS/dN
50:

1

4N

dqA

dt

dqA

dt
1NV50. ~4.24!

Fixing a classical solution starting ons0 therefore requires
two pieces of minisuperspace data for eachqA, subject to the
constraint~4.24!. The initial data cannot be chosen arbitrar
even ifN is regarded as an unknown to be determined by
~4.24!: for arbitrary initial data there is no guarantee th
there exists a real constantN that can satisfy the constrain

ȧ0
25qẆ 0

214N2V(q0). The initial data must be chosen so th

ȧ0
22qẆ 0

2 has the same sign asV(q0). TheN thus fixed by Eq.
~4.24! will then appear as a parameter in the classical so
tion emanating froms0 specified by the initial data (q0 ,q̇0).
~Of course, a reparametrization of the timet that preserves
the proper time gauge will yield a different value forN.!

F. Quantum initial states: Examples

We choose our first example initial stateCWP to be a
positive frequency solution to Eq.~3.5! that is localized well
within mixmaster’s potential walls on the initial surface, a
also away from regions of very largeVf . Such an initial
state will prefer a particular classical path and predict
proximately classical behavior along the corresponding c
sical solution.

CWP by assumption solves Eq.~3.5! with V'0 and is
localized near someqW 0 on s0. It may then be represented a

CWP~q!5E d3pC̃WP1~pW !FpW
1~q2q0!

5E d3p

A~2p!3

1

A2vp

e2 ivp(a2a0)

3eipW •(qW 2qW 0)C̃WP1~pW ! ~4.25!

for some C̃WP1(pW ), where of coursevp5upW u. Taking
vp

21/2C̃WP1(pW ) to be a Gaussian centered around somepW 0,
for instance, yields aCWP(q) localized ons0 about (qW 0 ,pW 0)
to the greatest extent consistent with the uncertainty p
ciple.

Alternatively, we could consider an initial state of WK
form,

CWKB~q!5A~q!eiW(q), ~4.26!

whereA(q) is in an appropriate sense slowly varying re
tive to W(q). Approximate calculations of the wave func
tions corresponding to the various proposals for the ini
condition of the universe tend to have components of
form. We also require thatA(q) be of compact support ons0
12352
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so as to ensure thatC0PF(s0), and thatW(q) be ‘‘positive
frequency’’ in the sense that]W/]a,0 on s0. ~This will
turn out to correspond to an ‘‘expanding’’ initial condition o
the paths this wave function defines.!

We will examine both of these choices in the sequel. Fi
however, we shall move on to discuss the category of coa
grainings defining approximately classical behavior that
shall consider.

V. APPROXIMATE CLASSICALITY

In this section, we apply the decoherence functio
~4.22! for L50, Bianchi type-IX cosmologies to coars
grainings which distinguish between those paths in mini
perspace which behave~semi-! classically, and those which
do not. We find that for suitable choices of the initial cond
tion C, and for a suitable class of definitions of the sem
classical coarse grainings, the universe is predicted to beh
classically with probability near one. In particular,L50 Bi-
anchi type-IX cosmologies are predicted quantu
mechanically to recollapse just as they do classically@29#.
This is satisfying, not least because of the surprising pre
tion of Wald’s @10,26# rigorous canonical quantization of Bi
anchi type-IX that closed quantum universes do not rec
lapse in a classical fashion.19 ~For another discussion o
difficulties interpreting wave functions for classically reco
tracting cosmologies, see@49#.!

We begin with a simple example to illustrate the gene
procedure we have in mind, then go on in the subsequ
sections to explore semiclassical coarse grainings and
corresponding class operators and branch wave function
greater detail.

A. Coarse graining by a single trajectory

As a particularly simple example of a semiclassical coa
graining, ask whether the model universe follows aparticu-
lar trajectory in minisuperspaceqcl . To this end introduce
the Euclidean distance on superspace and define a re
around the curve qcl—say a tube T of radius d.

19The trouble is rooted in the fact that Wald’s quantization ess
tially employs the volume of the universe~rather,a) as a ‘‘time’’
variable in the canonical quantization procedure. With this para
etrization there is no way to construct minisuperspace wave pac
which follow an approximately classical trajectory through bo
expanding and recollapsing phases. Moreover, there appears no
sible way to define an operator momentum conjugate toa ~which
corresponds physically to the expansion rate! that can have both
positive and negative eigenvalues@9#. In other words, this quanti-
zation seems to have an ‘‘arrow of time’’ that precludes the c
struction of states which follow the full course of a classical evo
tion. Instead, time appears to ‘‘freeze’’ as the universe approac
its classical maximum size@10#, in the sense that physical variable
cease to evolve.
5-12
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~See Fig. 2.20! We partition the pathsq(t) by whether they
lie entirely inT or not, labeling the corresponding classescT
andcT̄ .

It is plausible that whend is sufficiently large the path
integral in Eq.~3.17b! can be done by the stationary pha
approximation to find

^q9iCTiq8&'H D~q9,q8!eiScl(q9,q8) q8,q9PT

0 else
~5.1a!

^q9iCT̄iq8&'H D~q9,q8!eiScl(q9,q8) q8 or q9¹T

0 q8,q9PT
~5.1b!

so thatCT1CT̄5Cu as required by Eq.~3.3!, whereCu is
the full, unrestricted propagator. HereD is the usual semi-
classical prefactor andScl is the action evaluated on the cla
sical path connectingq8 to q9. ~See Sec. V C for further
details.!

20Note that strictly speaking,T must not intersects0 in order that
the coarse graining does not restrict paths on the initial surface.
was necessary in Sec. III A 3 to guarantee the independence o
decoherence functional from the choice of initial surface. We m
choose either to give up this independence for coarse-graining
this kind—not a surprising or onerous restriction for coarse gra
ings which explicitly restrict paths on the initial surface—or end t
tubeT at a volumea* larger thana0, as in the figure. Whena* is
close toa0, or more generally for systems which are not chao
we expect these approaches to be practically equivalent.

FIG. 2. Schematic representation of a coarse graining defin
classical behavior. The shaded regionT illustrated in the figure con-
sists of all configuration space fora,a* , and fora.a* , a tube
surrounding a trajectoryqcl(t) that obeys the classical equations
motion. The fine grained cosmological histories can be divided
the classcT that lie entirely insideT, and the classcT̄ that are
sometimes outside of it~possible only fora.a* ). The probability
of cT is the probability that the evolution of the universe is appro
mately the classical evolutionqcl(t) for a.a* .
12352
Now consider the special case of an initial conditi
C(q8) whose center moves alongqcl(t). Given Eq.~5.1!,

CT~q9!5^q9iCTiq8&+C~q8! ~5.2a!

'H D~q9,q8!eiScl(q9,q8)+C~q8! q9PT

0 else
~5.2b!

C T̄~q9!'0. ~5.2c!

~See Fig. 3.! Thus we expect according to Eqs.~3.1! and
~4.22! the probability forCT to be approximately 1 and th
probability for C T̄ to be approximately 0. For these spec
choices of coarse-graining and initial condition, therefo
the prediction is that the model universe ‘‘behaves semic
sically’’ over the whole of its evolution from near the bi
bang to the big crunch.

B. Coarse grainings by classical paths

The coarse graining of the previous section asks o
whether the evolution of the universe is close to aparticular
qcl(t). More generally we can ask for the probability that
evolves close toanyclassical path. In this section we discu
the corresponding coarse grainings.

Coarse grainings that can serve to distinguish class
behavior can be characterized generally according to whe
a minisuperspace trajectory is ‘‘close to’’ a classical traje
tory in some appropriate sense. Because a class
4-geometry is fixed by a solutionz(t)5„qA(t),N… to the
proper time gauge Einstein equations~4.23! and ~4.24!, we
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FIG. 3. Schematic representation of the region of support of
semiclassical branch wave functionCT(q9) corresponding to the
class of pathscT for a localized initial conditionC(q8). CT(q9) is
concentrated around the classical trajectoryqcl(t) preferred by the
initial condition.
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say thatz(t) is ‘‘approximately classical’’ when there exists
solutionzcl(t) to Einstein’s equations for which

F@z~ t !,zcl~ t !#,1, ~5.3!

whereF@•,•# is a reparametrization invariant distance fun
tional on the extended space of pathsCext . F thereby parti-
tions the space of paths into the classccl of those which
behave classically, according to the standardF, and the class
which do not,cqm . An example of such a functional is th
Euclidean distance on superspace employed above, w
can be rewritten in the form~5.3! simply by dividing
by d.

More refined coarse grainings are also possible. It is n
rally of interest to knowto whichpath~s! z(t) may be close.
Various strategies are possible; we describe one here tha
be employed in the sequel.

First, partition the classical trajectories into classesci j ,
possibly by ranges$D i8 ,D j9% of initial and final position on
s0, or by ranges of initial position and momentum$D i8 ,G j8%.
The former might be of interest when we want to make p
dictions about universes which, say, begin and end with
anisotropy; the latter, when we are more interested in co
paring universes with differing initial states.~Either way, the
classical solutions provide a natural mappi
$D i8 ,D j9%↔$D i8 ,G j8% for a givenD j9 or G j8 .! Next, for each
quantum path, compute

inf
zcl(t)

F@z~ t !,zcl~ t !#, ~5.4!

say, by minimizing with respect to the initial conditions
the classical paths. If this number is greater than one, t
z(t)Pcqm . Otherwise, collectz(t) into the same classci j as
the zcl(t) which obtains the minimum.21

A particular choice of semiclassical coarse graining
tails the selection of a particular distance functionalF. How-
ever, we expect reasonable characterizations of se
classical behavior to display a certain robustness an
consequent insensitivity to the details of the definition of
coarse graining~choice ofF) for most practical applications
Nevertheless, we can make a few general observations a
what constitutes an acceptable classical distance functi
on Cext .

21For reasonableF ’s, this should be a genuine partition of th
paths. In those rare cases for which there arezcl(t) in different ci j

which yield the same minimum, additional criteria must be selec
and applied to complete the partition. Similarly, if there are qu
tatively distinct classical paths connecting points inD i8 to D j9—in
the case where there are multiple classical paths connecting a s
pair of points, for example—then it may under some circumstan
be desirable to further partition the classci j . We shall take this as
understood without attempting to incorporate it into our notat
explicitly.
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First, F must not be such as to imply that paths obeyi
Eq. ~5.3! possess finite action. This is a consequence of
well known @50# fact that paths of finite action contribut
zero measure to functional integrals. Instead, it is the sm
but non-differentiable fluctuations about the classical stati
ary points which dominate the integral. In this sense,
coarse graining must not be ‘‘too small,’’ or in other word
must not be so refined as to exclude the essential contr
tions of the truly quantum paths in the neighborhood of
classical trajectories. In particular, coarse grainings wh
imply that paths obeying Eq.~5.3! aredifferentiableare ex-
cluded from consideration.~Since the potentialV is finite, the
action will be finite if the kinetic terms are.! This condition is
necessary in order that we can make sense of the statio
phase approximation, and in particular argue that the va
of the functional integrals are indeed well approximated
their stationary phase values when integrating only o
paths satisfying Eq.~5.3!.

This stationary-phase condition may be satisfied by
mitting as semi-classical coarse grainings those which
clude all paths nearby each classical trajectory with a m
mum Euclidean distance scale set by 1/Al, where thel are
the eigenvalues ofd2S@qcl(t)#/dqA(t8)dqB(t9).

Second, the coarse graining must not be ‘‘too large,’’
the sense that paths in the classccl of approximately classica
paths must be meaningfully distinct from those in t
complementary classcqm . The criteria applied to make thi
distinction will in general be particular to individual physic
problems in which a notion of approximate classicality is
be applied. Nonetheless, for most semi-classical consi
ations, the scale of such coarse grainings will typically be
coarser than the lower limits implied by the considerations
the previous paragraphs.

Finally, it is a generic feature of quantum mechanics t
localized states spread over time. In the absence of a sta
zation mechanism such as environmental decohere
through interaction with other degrees of freedom in a s
tem @35–37,51–53#, even a wave packet whose center fo
lows a classical trajectory may eventually spread sufficien
that its behavior is unrecognizably classical. While such s
bilization mechanisms are widespread in the real universe~as
opposed to toy models with few degrees of freedom!, the
phenomenon of wave packet spreading may be a rele
factor in determining whether a particular choice of coa
graining is meaningfully ‘‘semi-classical’’ for a given phys
cal problem.

There are, of course, many choices for the distance fu
tional F that will satisfy the general requirements laid o
above@1,36#. However, in accordance with the general e
pectation that predictions concerning semiclassical beha
will be relatively insensitive to the details of the choice ofF,
the approximate calculations given in the sequel will be s
ficiently coarse that a detailed specification will not
needed. When necessary, we will typically have in mi
something like the Euclidean distance on superspace
ployed in Sec. V A.~A more careful assessment of suitab
choices for the distance functionalF in the context of ordi-
nary quantum mechanics will be given elsewhere@54#.!
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C. Semiclassical propagator

Let us now proceed with the approximate evaluation
the class operators for the general category of semiclas
coarse grainings described above.

In the Ṅ50 ~proper time! gauge, the class operators@cf.
Eqs.~3.16!, ~3.17!# read

^q9iChiq8&5E
ch

dN>0E
ch

dqq8
q9

3expS i E
0

1

dtF 1

4N
GABq̇Aq̇B2NVG D .

~5.5!

The integral is over all paths fromq8 to q9 in the classch . It
is to be noted that, strictly speaking, the restricted propag
^q9iChiq8& need only be defined forq8 andq9 in s0 . ch ,
however, defines a~possibly empty! class of paths passin
through anyq9 in minisuperspace, and whenq9 is not ins0
the integral over these paths is what is meant by the p
integral in Eq.~5.5!. The set of points in minisuperspace f
which this class is non-empty will be denotedTh , which will
therefore be the region of support inq9 of the class operato
~5.5! in minisuperspace.

Let us begin by approximately evaluating the full prop
gator, the case in whichch in Eq. ~5.5! happens to be the
class of all pathscu from q8 to q9. A steepest descents ap
proximation to the functional integral overq gives

^q9iCuiq8&5E
0

`

dND~q9,q8;N!eiScl(q9,q8;N), ~5.6!

whereScl(q9,q8;N) is the action evaluated for the classic
path qcl(q9,q8;N)—solution to Eq.~4.23! with the given
value ofN—connectingq8 to q9, and

D22~q9,q8;N!}det
d2S@qcl~ t !#

dqA~ t8!dqB~ t9!

}detF 1

2N
GAB

d2

dt2
1N¹A¹BV~qcl!G ,

~5.7!

dropping a multiplicative factor of det@2 id(t2t8)# in the
last line that will cancel in the decoherence functional. Sim
larly, neglecting22 the N dependence ofD(q9,q8;N) in Eq.
~5.6!, the stationary phase approximation picks out the ‘‘ze
energy’’ path~s! in Eq. ~5.6! obeying the constraint Eq
~4.24!. Thus,

22Heuristically, if we exponentiate the determinant via ln detO
5tr ln O, the N dependence of the semiclassical prefac
D(q9,q8;N) is only logarithmic, as compared with that o
Scl(q9,q8;N).
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^q9iCuiq8&'D~q9,q8!eiScl(q9,q8), ~5.8!

whereN now has its classical dependenceN(q9,q8) on the
end points of the path given by substitutingqcl(q9,q8;N)
into the constraint~4.24!.23 When there is more than on
classical path connectingq8 to q9, then there will be a sum
over such paths in Eq.~5.8!.

According to the famous Van Vleck formula@55,56#,
D(q9,q8) may be evaluated as

D~q9,q8!5S 1

2p i

]2Scl~q9,q8!

]Ncl
2 D 21/2S 1

2p i\ D d/2

3Udet
]2Scl~q9,q8!

]q9]q8
U1/2

e2 inp/2, ~5.9!

whered5n11 is the number of minisuperspace degrees
freedom—4, in the present example,a,b6 , andf—andn is
the ‘‘Maslov index’’ of the pathqcl(t) @55–57#. Roughly
speaking, it counts the number of negative eigenvalues
d2S@qcl(t)#/dqA(t8)dqB(t9) evaluated along the trajector
qcl(t). The first factor arises of course from the ordina
stationary phase integral overN.

In subsequent sections we will go on to discuss the p
diction of semiclassical evolution of the universe for vario
choices of initial state. For this purpose it will be helpful
close this section with the observation that, as a consequ
of the choice of positive range for the lapseN and the bound-
ary conditions on the ends of the paths ons0 ,
D* (q9,q8)e2 iScl(q9,q8), considered as a function ofa8, is
positive frequency ina8. Recalling that the propagator i
Eq. ~3.8! or Eq.~4.1! is not complex-conjugated when form
ing the indicated products, this means th
D(q9,q8)eiScl(q9,q8) overlaps only with the positive fre
quency part of the initial wave function C.
D(q9,q8)eiScl(q9,q8) is similarly negative frequency ina9, so
that only thenegativefrequency pieces of the final bounda
conditionsF i contribute. This is to be expected, as the f
propagator given by the path integral~3.14! over all paths
and with a positive range for the lapse is in essence (i times!
the Feynman propagator for this minisuperspace theory@39#.

To see why it is true thatD* (q9,q8)e2 iScl(q9,q8) is posi-
tive frequency ina8, we shall show that its Fourier trans
form only has support for positive frequenciesv8. That is,
consider

E da8eiv8a8D* ~q9,q8!e2 iScl(q9,q8). ~5.10!

r

23Strictly speaking, it is thetime integralof Eq. ~4.24! that is the
constraint that emerges from the stationary phase approximatio
the integral overN, viz. (]/]N)S@qcl(q9,q8;N)#50. However, the
left hand side of Eq.~4.24! is the ‘‘energy integral’’ of solutions to
dS/dq50 @i.e., Eq.~4.23!#, and hence is actually constant, so th
the integral sign may be dropped.
5-15
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Again neglect thea8 dependence ofD* (q9,q8) as logarith-
mically slower than that ofScl . The largest contribution to
the integral comes from the point of stationary phase

v85
]Scl

]a8
. ~5.11!

Considering the action appearing in Eq.~5.5! as a func-
tional of classical paths, it is a straightforward matter
verify that under variations of the endpoints of those clas
cal paths

dScl5
q̇cl

A

2Ncl
dqAU

0

1

, ~5.12!

whereqcl
A (t) is the classical path joiningq85qcl(0) to q9

5qcl(1). Thus

]Scl

]a8
5

ȧcl~0!

2Ncl
. ~5.13!

As we have chosenN to be positive, andȧcl(0) is posi-
tive for all classical paths24 that begin on our boundary su
face of large negativea, we see that only a positivev8
contributes significantly to Eq. ~5.10!, so that
D* (q9,q8)e2 iScl(q9,q8) is positive frequency ina8. Similarly
D(q9,q8)e1 iScl(q9,q8) is negative frequency in a9. This
means thatD(q9,q8)e1 iScl(q9,q8) is negative frequency in
both a8 anda9. @This is a consequence of the fact that t
classical paths both begin and end on the same surfac
that ȧcl(0).0 while ȧcl(1),0 on s0. This difference can-
cels the sign difference between the endpoints that arise
the variation of the action~5.12!.# As noted, the semiclassica
class operatorD(q9,q8)e1 iScl(q9,q8) therefore couples only to
the positive frequency components of the initial state in
branch wave functions~4.1!. The branch wave functions in
turn will be negative frequency at the endpoints of the pa
on s0.

D. Semiclassical class operators

Now consider the class operators^q9iChiq8& correspond-
ing to the semiclassical coarse-grainings discussed in
V B. For the simplest partition of the fine-grained paths in
the classccl of those which behave classically according
Eq. ~5.3!, and those which do not,cqm , it is clear from the
preceding section that since the leading contribution to
~5.5! comes from the classical path connectingq8 to q9, to
leading order in the stationary phase approximation

^q9iCcliq8&'D~q9,q8!eiScl(q9,q8) ~5.14a!

24More generally, recall that in Sec. III A 1 we chose ‘‘expandin
initial and ‘‘contracting’’ final boundary conditions forall paths, not

just the classical ones, i.e., we requiredȧ(0).0 andȧ(1),0 for
all paths.
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'^q9iCuiq8& ~5.14b!

while

^q9iCqmiq8&'0. ~5.15!

@The zero on the right hand side of Eq.~5.15! and all such
subsequent formulas need only be true in the sense of a
tribution, e.g., in the case in which the propagator is suc
rapidly oscillating function that the overlap integral in Eq
~4.1! is 0 for any initial state.#

For the more refined partition defined in Sec. V B ofccl
into sub-classesci j of semiclassical paths according
ranges$D i8 ,D j9%↔$D i8 ,G j8% of initial and final positions on
s0 or the corresponding initial positions and momenta,

^q9iCi j iq8&'H ^q9iCcliq8& q8PD i8 , q9PTi j

0 else.
~5.16!

HereTi j is the region of support inq9 of the class operato
^q9iCcliq8&, as defined following Eq.~5.5!. ~See Fig. 4.!

These semiclassical results for the class operators are
ful only to the extent that the stationary phase approximat
can be trusted. Some techniques for evaluating restric
functional integrals such as Eq.~5.5! are discussed in@1#.
Further strategies for more detailed calculation of such in
grals in the context of ordinary quantum mechanics are un
investigation@58#.

FIG. 4. Schematic representation of the region of support of
semiclassical branch wave functionC i j (q9) corresponding to the
class of pathsci j . C i j (q9) is concentrated around the classic
trajectories connectingD i8 to D j9 , a representative of which is plot
ted in the figure. The contributions of each path are weighted by
value of the initial conditionC(q8) in D i8 . C i j (q9) is positive
frequency inD i8 and negative frequency inD j9 . AssumingC(q8) is
not zero inD i8 , the shaded region will be roughly the same asTi j ,
the region of support of the class operator~5.16! on minisuperspace
5-16
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E. Semiclassical branch wave functions

Given the semiclassical class operators~5.14!, ~5.15!, the
corresponding branch wave functions~4.1! can be evaluated
as follows. Consider an initial stateC(q8). Then

Ccl~q9!5^q9iCcluC& ~5.17a!

5^q9iCcliq8&+C~q8!
~5.17b!

'^q9iCuuC& ~5.17c!

i.e., Ccl(q9) is approximately simply the initial state propa
gated forward by the full propagator, while

Cqm~q9!'0. ~5.18!

Note that Eqs.~5.17!, ~5.18! are independent of any particu
lar properties of the initial stateC(q8), and are wholly a
consequence of Eqs.~5.14!, ~5.15!.

Now consider the more refined coarse-graining ofccl into
sub-classesci j of approximately classical paths. Denote t
regions of position and momentum support ofC(q8) on s0
by « andg. Then

C i j ~q9!5^q9iCi j iq8&+C~q8! ~5.19a!

'5
eùD i8ÞB,

^q9iCcluC& gùG j8ÞB,

q9PTi j

0 else
~5.19b!

with

Ccl~q9!5(
i j

C i j ~q9!. ~5.20!

Note that for this class of coarse grainings, given E
~5.17! and ~5.19! we may expect the branch wave functio
to approximately satisfy the constraint~3.5!, even though the
coarse-graining does restrict the paths on the initial surf
~see Sec. III A 3!. Indeed, according to Eq.~5.19b!, C i j (q9)
is just the initial data$D i8 ,G j8% selected by the coarse
graining and weighted by the initial stateC(q8), propagated
by the Wheeler-DeWitt propagator~5.14!. As a function on
minisuperspace it is therefore concentrated around the c
sical trajectories connectingD i8 to D j9 . ~See Fig. 4.! On s0,
when q9PD i8, C i j (q9) is essentially the part of the initia
condition with momenta inG j8 . In other words,

C i j ~q9!'E
G j8

dnpC̃1~pW !FpW
1~q9! ~5.21!

on s0 when q9PD i8 , and is approximately zero otherwis
The restriction to positive frequency is a consequence of
fact—see Sec. V C—that the semiclassical propagator~5.8!
couples only to the positive frequency part of the initial co
dition. Similarly, the semiclassical propagator is negative f
12352
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quency ina9 at the endpoints of the paths ons0, so that
C i j (q9) is negative frequency whenq9PD j9 . We will put
these observations to use in the next section.

F. Evaluation of the decoherence functional: Approximately
classical behavior

Given the branch wave functions~5.17!, ~5.19!, evalua-
tion of the decoherence functional~4.22! for the partitions
into approximately classical vs highly quantum paths
have considered is straightforward.

For the coarsest graining of paths into the clas
ccl—paths which are close tosomeclassical path—or the
remaindercqm , decoherence is automatic because there
only one nontrivial branch wave function~5.17!. Hence

pcl5D~cl,cl !

'1, ~5.22!

i.e., the universe is predicted to approximately followsome
classical trajectory—though we cannot say which one w
out a more refined coarse graining—while

pqm5D~qm,qm!

'0 ~5.23!

independent of the choice of initial state on account of E
~5.15!.25

To ask the question ofwhich trajectory the universe fol-
lows for a given choice of initial state requires the mo
refined partition ofccl into the classesci j . Because the
branch wave functions, and hence the decoherence functi
~4.22!, depend in this case more sensitively on the choice
initial state, we will discuss the examples of a localized i
tial stateCWP and an initial state of WKB formCWKB in
their turn.

25While this would seem to be a strong statement, it is mor
reflection@via Eqs.~5.14!, ~5.15!# of the fact that path integrals ar
dominated by paths close to the classical path than it is a cl
about the actual classicality of the universe’s behavior. One wo
hardly expect a universe to behave in an approximately class
fashion under all circumstances or for all choices of initial sta
Indeed, whether a state behaves in a recognizably classical fas
is in general as much a property of the initial state as it is of
characteristics of the restricted propagator. In this regard it is t
wise not to over-interpret the physical significance of the predict
as it stands, in that initial states normally thought of as hig
non-classical such as, e.g., ‘‘Schro¨dinger’s cat’’ states—
superpositions of distinct localized wave packets—lead to a sin
non-trivial branch wave functionCcl just like any other initial state
@cf. Eq. ~5.20!#. To detect the classically unusual features of su
statesrequires a more refined coarse-grainingsuch as the partition
of ccl into the classesci j . A fuller understanding of this critical
issue requires a more careful evaluation of the coarse-grained
operators and corresponding branch wave functions than we
give here@54#.
5-17
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Initial state of localized form

A localized choice of initial state such as Eq.~4.25!,
peaked about a particular set of classical initial conditio
(qW 0 ,pW 0), leads to a decoherence functional which makes
semiclassical prediction that the universe~approximately!
follows the classical path determined by the initial conditio
(qW 0 ,pW 0) as follows. In general, for a localized wave pack
CWP(q8), define as above the regions ofCWP’s position and
momentum support ons0 by « and g. Take qW 0PD I8 and
pW 0PGJ8 for some (I ,J), and assume for simplicity that« is
largely contained inD I8 and g is primarily concentrated in
GJ8 . ~Because of the uncertainty principle,« and g cannot
both be compact.! In this case, through Eq.~5.19! there will
then be only one nontrivial branch wave functionC IJ

WP(q9)
and decoherence will again be automatic, with the mo
universe consequently predicted with high probability to b
have approximately like the classical trajectories in the cl
cIJ .

To see explicitly how this comes about, consider

Ccl
WP~q9![^q9iCcluCWP&

[^q9iCcliq8&+CWP~q8!

' i E
s0

d3q8D~q9,q8!eiScl(q9,q8)
]J

]a8
CWP~q8!.

~5.24!

For CWP(q) localized aroundqW 0, it is clear that only paths
with initial points qW 8 nearqW 0 contribute significantly. Simi-
larly, inserting Eq.~4.25! and dropping a term containin
]D(q9,q8)/]a8,

Ccl
WP~q9!'E

s0

d3q8E d3p

A~2p!3

1

A2vp
H vp1

]Scl~q9,q8!

]a8
J

3D~q9,q8!eiScl(q9,q8)eipW •(qW 82qW 0)C̃WP1~pW !.

~5.25!
Again neglecting theq8 dependence ofD(q9,q8) as logarith-
mically suppressed, in the stationary phase approxima
the dominant contribution to theqW 8 integral comes when

pW '2
]Scl~q9,q8!

]qW 8
U

q85q0

. ~5.26!

The right hand side of this equation is the initial momentu
of the classical path connectingq8 to q9.26 Since our initial

26Note that the specification ofȧ(0) is implicit. To see this, note
that ]Scl /]a is not independent of]Scl /]qW : these quantities are
related by the Hamilton-Jacobi equation¹AS¹AS1V50 for
Scl—effectively the constraint~4.24! with pA5q̇A/2N52¹AS.

Therefore when Eq.~5.26! holds,ȧ is given by]S/]a through Eq.
~5.13!; N is determined by demanding consistency of the solut
with the constraint~cf. the variant of this argument we give belo
while discussing the case of an initial state of WKB form!.
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wave functions only have support on regions ofs0 in which
V'0, the Hamilton Jacobi equation forScl implies that
(]Scl /]qW )25(]Scl /]a)2. From Eq. ~5.13!, ]Scl /]a8 is
positive, so that when Eq.~5.26! holds,vp5p']Scl /]a8,
and thus

Ccl
WP~q9!'E d3p

A~2p!3
A2vpC̃WP1~pW !

3E
s0

d3q8D~q9,q8!eiScl(q9,q8)eipW •(qW 82qW 0).

~5.27!

Performing the integration overpW , we therefore see that th
branch wave function is suppressed whenC̃WP(pW ) is small
in the neighborhood of the initial momentum of the classi
path connectingq0 to q9. The choice of initial condition
CWP(q8) on s0, therefore, singles out the classical pa
specified by (qW 0 ,pW 0): Ccl

WP(q9) is peaked around the class
cal path preferred by the initial condition. Through Eq.~5.19!
it is then clear that the only nontrivial branch wave functi
for this coarse graining is theC IJ

WP(q9) corresponding to the
classcIJ which contains the classical path determined by
initial conditions (qW 0 ,pW 0):

C i j
WP~q9!'H Ccl

WP~q9! i 5I , j 5J

0 else.
~5.28!

This is merely a more refined statement of Eq.~5.2!.

Initial state of WKB form

The situation for the WKB choice of initial state~4.26! is
a little different, though familiar from conventional trea
ments of quantum cosmology.

Let us evaluate the classical branch wave function co
sponding to an initial state of the WKB form~4.26!:

Ccl
WKB~q9!5^q9iCcliq8&+CWKB~q8! ~5.29a!

5 i E
s0

dS8A$A~q8!@^q9iCcliq8&¹JA8eiW(q8)#

2^q9iChiq8&eiW(q8)¹A8A~q8!% ~5.29b!

' i E
s0

dS8AD~q9,q8!eiScl(q9,q8)A~q8!

3eiW(q8)@¹A8W~q8!2¹A8Scl~q9,q8!#. ~5.29c!

In Eq. ~5.29c! we have dropped the terms containing gra
ents of the more slowly varying termsA(q8) andD(q9,q8).
In this form, it is clear that the dominant contribution to th
integral comes when the stationary phase condition

n

5-18
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¹A8W~q8!52¹A8Scl~q9,q8! ~5.30!

is satisfied. The result is thus

Ccl
WKB~q9!'2i E

s0

dS8AD~q9,q8!A~q8!

3¹A8W~q8!eiScl(q9,q8)eiW(q8). ~5.31!

The quantity on the right hand side of Eq.~5.30! is just
the initial momentum of the classical path connectingq8 to
q9. Note that it is a statement about the complete minisup
space gradient ofScl , not merely its projection into thea
5const surfaces0. We are free to assert that contributions
the integral~5.29c! are suppressed when Eq.~5.30! does not
hold because of the independence of the branch wave f
tions on the choice of initial surface: wigglings0 around a
bit in the neighborhood ofq8, yet keepingq8 fixed on s0,
yields a family of stationarity conditions for the domina
contribution to the branch wave functions. For them all to
true, Eq.~5.30! must hold. Alternatively, note thatCWKB(q)
is a solution to the constraint~3.5!. Dropping gradients of
A(q) at lowest order, this means thatW(q) obeys the same
Hamilton-Jacobi equation as doesScl(q9,q8). Thus, with
‘‘expanding’’ initial conditions on the paths, this means th
the ‘‘time’’ component of Eq.~5.30! holds whenever the
‘‘spatial’’ part does, so that Eq.~5.30! follows from its pro-
jection intos0.

The significance of Eq.~5.30! is thatCcl
WKB(q9) is peaked

around thefamily of classical trajectories emanating fro
points q08 on s0 which have initial momentum
¹A8W(q8)uq85q

08
, with a relative weight controlled by the

WKB prefactorA(q8). This is simply becauseCcl
WKB(q9) is

suppressed when the classical path fromq8 to q9 does not
have initial momentum given by Eq.~5.30!. When the clas-
sical trajectory fromq8 to q9 has momentum¹A8W(q8), but
A(q8) is small, the integral is similarly suppressed.

Now let us consider the situation of the more refin
coarse graining (cqm ,ci j ), where the classesci j defined in
Sec. V B are the partitions of semiclassical paths accord
to ranges$D i8 ,D j9%↔$D i8 ,G j8% of initial and final positions
on s0 or the corresponding initial positions and momen
Clearly, only the classesci j containing paths with initial
pointsq8 in regions whereA(q8) is not small can have non
negligible branch wave functions. Of these, the classes c
taining the classical path emanating fromq8 with initial mo-
mentum¹A8W(q8) will possess the dominant branch wa
functions; therelativemagnitude of these branch wave fun
tions will be controlled by the WKB amplitudeA(q). These
wave functions will as before be concentrated around
corresponding classical trajectories, and are given as in
~5.19! by

C i j
WKB~q9!'5

eùD i8ÞB,

Ccl
WKB~q9! gùG j8ÞB,

q9PTi j

0 else.

~5.32!
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For these more refined coarse grainings, therefore,
have acollection of non-trivial branch wave functions, an
the decoherence functional has more to tell us. It is in p
ticular of interest to ask whether the coarse grain
(cqm ,ci j ) decoheres. For this purpose it suffices to consi
the non-negligible branch wave functions and examine th
overlap:

D~ci j ,ckl!5NCkl
WKB•C i j

WKB ~5.33a!

5N^q9iCkluCWKB&•^q9iCi j uCWKB&.
~5.33b!

The integrals in Eq.~5.33b! are to be evaluated ons0. Ac-
cording to Eq.~5.32!, C i j

WKB(q9) is peaked around the clas
sical paths in the classci j . As at least one pair of the initia
or final intervalsD8 or D9 will be disjoint on s0 ~see Fig.
4!—and even if one of the initial or final intervals coincid
the momentum support will be disjoint—we see that t
overlap integral in Eq.~5.33! will be small, and so we have
approximate decoherence of the coarse graining (cqm ,ci j ):

D~qm,i j !'0. ~5.34!

In other words, the WKB branch wave functions appro
mately decohere because they are approximately ma
scopically distinct. A higher degree of decoherence wo
require correlations with additional degrees of freedom.

We now estimate the relative probabilitiespi j
5D(ci j ,ci j ) of the various members of the family of class
cal paths preferred by the WKB initial condition. The answ
will be a precise version of the familiar heuristic rule
quantum cosmology according to which these probabilit
are given by fluxes through a spacelike surface in minisup
space.~See@28,44# for related results.!

The branch wave functionsC i j
WKB(q9) have support on

s0 essentially only inD i8 and D j9 . Recall that in Sec. IV F
we chose our initial stateCWKB(q8) to be positive frequency
in a8, and that, as noted at the end of Sec. V E,C i j

WKB(q9) is
negative frequency at the ends of the paths ons0 .
C i j

WKB(q9) is therefore positive frequency inD i8 and negative
frequency in D j9 . Further, because the currentJA

52( i /2)C* ¹JAC is conserved andC i j
WKB(q9) vanishes on

any spacelike surfaces f far to the future ofTi j ~i.e., at very
large values ofa—see Fig. 4!, integrating¹AJA50 over a
volume bounded bys0 ands f we see that

E
s0

dSAJA5E
D i8

dSAJA1E
D j9

dSAJA ~5.35a!

50 ~5.35b!

from which we learn that

C i j
WKB1+C i j

WKB11C i j
WKB2+C i j

WKB250 ~5.36!

on s0. Thus
5-19
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pi j 5NC i j
WKB•C i j

WKB ~5.37a!

5N~C i j
WKB1+C i j

WKB12C i j
WKB2+C i j

WKB2!
~5.37b!

52NC i j
WKB1+C i j

WKB1 ~5.37c!

'2Ni E
D i8

dS8AC i j
WKB* ~q8!¹JAC i j

WKB~q8!.

~5.37d!

In Eq. ~5.37d! the most obvious vestige of the effect of th
class operatorCi j is the restriction, via Eq.~5.32!, of the
domain of integration ons0 to D i8 , though the conditions on
the final positionD j9 ~equivalently, initial momentumG j8)
corresponding to the classci j are still present through Eq
~5.32!—cf. Eq. ~5.21!—and the connection~5.30!.

Inserting the semiclassical form~4.26!, dropping gradi-
ents of the slowly varying factorA, and evaluating the re
maining integral at the centerqi85(a0 ,qW i8) of the domain of
integrationD i8 on s0,

pi j '2Ni E
D i8

dS8AuAu22i¹AW ~5.38a!

'2NuA~qi8!u2¹A8W~qi8!dS i8
A

~5.38b!

when the projection of¹A8W(q8) into s0 is in G j8 , and is
zero otherwise.~A factor of 4 has been absorbed into th
normalization factorN in the second line.! If s0 is chosen to
be a surface of constanta5a0 and recalling again that th
initial state was chosen to be ‘‘positive frequency’’ so th
]W/]a8,0, Eq. ~5.38b! reduces to

pi j 'NuA~qi8!u2U ]W

]a8
~qi8!UD i8 ~5.39!

so long as]W/]qW 8(qi8)PG j8 . The factorN can be calculated
in this approximation by the requirement that the probab
ties sum to unity.

Further, it may be worth noting that in arriving at E
~5.37d! the only properties of the branch wave functions
employed were that the wave functions~i! vanish asa
→`; ~ii ! are positive frequency inD i8 ; and ~iii ! negative
frequency inD j9 . These properties derive essentially fro
the corresponding properties of the propagator, which in t
follow from our boundary conditions on the paths—name
that they begin and end ons0 with ‘‘expanding’’ initial and
‘‘contracting’’ final conditions—and did not depend on an
specific property of the WKB form of the initial state. Thu
for this class of coarse grainings we can write more gener

pi j '24NE
D i8

dSAJi jA
1 ~5.40a!

'2NJi jA
1 ~qi8!dS i8

A ~5.40b!
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ons0, whereJi jA
1 is the current constructed from the positiv

frequency part of the branch wave functionC i j for any ini-
tial state.~A factor of 4 has again been absorbed intoN in
the second line.!

We have thus recovered a version appropriate to
present formalism of the familiar@1,6,59# ‘‘ J•dS ’’ rule of
quantum cosmology according to whichJAdSA

('uAu2¹AWdSA for WKB initial states! gives the relative
probabilities of the classical trajectories passing through
ementsdSA of spacelike surfaces in minisuperspace. In o
formalism, however, that rule need only be applied on
initial surfaces0, and can be applied to initial states mo
general than just those of WKB form.

VI. CONCLUSION

We have constructed a sum-over-histories generali
quantum theory for the Bianchi type-IX cosmologies. Th
fully four-dimensional formalism allows predictions to b
made concerning sets of~reparametrization invariant! alter-
native histories of such a universe. In particular, the pred
tions of the theory are not restricted to those defined only
a moment of ‘‘time,’’ as is typical of canonical theories, an
hence are not restricted to alternatives defined only by
servables on superspace. Many questions of physical inte
are not expressible in terms of alternatives ‘‘at one mom
of time;’’ the generality of the alternatives about which it
possible to make predictions, and the naturalness with wh
the formalism accommodates them, are notable concep
advantages of this quantization scheme.

Partitions of histories of physical interest include par
tions according to whether or not the universe becomes
gular ~by, for instance, the standard discussed in Sec. I!;
partitions by ranges of values of the volume and degree
anisotropyb6 the universe has achieved a given proper ti
after the initial condition; and partitions into classes of tho
histories which are close to some classical cosmological
jectory, and those which are not. Approximate classicality
the sense of obeying the classical equations of motion, is
example of a prediction concerning an alternative that is
fined over time, not just at a single moment. For this last s
of alternatives, we showed in Sec. V that, for indifferent fin
conditions and particular choices of initial condition, th
generalized quantum theory predicts with a probability n
one that the universe behaves semiclassically, approxima
following the classical trajectory~or trajectories! preferred
by the initial condition. This is a sensible prediction, a
stands in contrast to the less intuitive predictions of so
other quantizations of Bianchi type-IX~as mentioned at the
beginning of Sec. V!.

There is much that remains to be done with this formu
tion of a quantum mechanics for cosmology. The most pre
ing issue concerns the development of techniques for m
careful evaluation of the class operators~3.14! for various
choices of coarse graining, and a correspondingly impro
understanding of the limitations of the approximations e
ployed in the present work. Application of the general fo
malism described here to a detailed analysis of specific
5-20
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amples of analytic or numerical classical solutions will th
be of interest.

Other issues include the extension of the definition of
nal boundary conditions which are ‘‘indifferent’’ to the path
to the case where the universe expands forever, thereby
abling consideration of ever-expanding models and the
culation of the probability that a Bianchi type-IX univers
with cosmological constant will ‘‘tunnel through’’ to a stat
of eternal expansion.@Once the technical issues are sort
out, defining the decoherence functional through Eq.~4.22!
using the Rieffel induced inner product is likely to be a co
structive approach to this problem.# Predictions relevant to
modern day cosmological observations and questions of
vironmental decoherence will require the inclusion of inh
mogeneous modes of matter fields and high frequency~grav-
ity wave or graviton! modes of the gravitational field.

In all cases, therules for performing the required calcu
lations are clearly defined: specify the boundary conditio
set out the partition defining the physical alternatives it
desired to study; compute the branch wave functions~4.1!
corresponding to those partitions and initial conditions, a
employ the decoherence functional~4.22! to determine
whether this set of alternatives is consistent. If it is, the
agonal elements of the decoherence functional inform u
the probabilities for those alternatives according to Eq.~3.1!.

Finally, it is perhaps worth emphasizing that the esse
of the predictive framework we have here described sho
be straightforward to generalize to quantum-gravitatio
technologies—string theory or loop quantum gravity, f
example—other than the particular path-integral formulat
we have offered.@The essential technical step lies in th
definition of the restricted propagators~3.4!.#
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APPENDIX: CLASS OPERATORS SATISFY CONSTRAINTS

This appendix is devoted to demonstrating that the c
operator matrix elementŝq9iChiq8& defined by Eq.~3.4!
satisfy an operator form of the constraints. More concret
we show that, for the kind of coarse-grainings defining cl
sicality discussed in Sec. V,

Hq9^q9iChiq8&50 ~A1!

when q9 is outside the region of configuration space whe
the paths are limited by the coarse graining and is not eq
to q8. We consider a coarse graining where the paths to
future of someq05a* are constrained to lie in a tubeT
about a particular classical path. We denote the class ope
corresponding to this particular coarse graining byCT . We
will show that Eq.~A1! holds fora,a* . That can be used
12352
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to show that the product~3.8! is independent of the choice o
initial hypersurfaces8 and final hypersurfaces9 provided
they are both in the regiona,a* . There are other coars
grainings for which Eq.~A1! holds ~see, e.g., Sec. VII in
@1#!. We focus on this one because it is relevant for clas
cality.

It is convenient to work in theṄ50 ‘‘gauge’’ of Eq.
~3.13!. The class operator matrix elements can then be w
ten in the form~3.16! with ^q9NiCTiq80& given by

^q9NiCTiq80&5E dqq8
q9eT@qA~s!#

3expS i E
0

N

dsF1

4
GAB

dqA

ds

dqB

ds
2VG D .

~A2!

Here the integral is over all paths connectingq8 to q9 and
eT@qA(s)# is the characteristic functional for the tube: This
1 for a,a* ~paths unrestricted!, 1 if the pathqA(s) lies in
the tube fora.a* , and 0 if any part lies outside it fora
.a* . Equation~A2! is just Eq.~3.17b! written in terms of
this characteristic functional.

We next show that̂ q9NiCTiq80& obeys the ‘‘Schro¨-
dinger equation’’

i
]

]N
^q9NiCTiq80&5Hq9^q9NiCTiq80&. ~A3!

The demonstration is the same as Feynman’s original d
onstration that the path integral defining the propagator
non-relativistic quantum mechanics satisfies the Schro¨dinger
equation@60#. The only novelty is the characteristic func
tional eT@qA(s)# in Eq. ~A2!. We define the path integral in
Eq. ~A2! as the limit of integrals over paths skeletonized
J11 uniformly spaced slices ofs asJ tends to infinity. Spe-
cifically, let s050, s1 ,s2 . . . , sJ5N be slices spaced bye
5N/J. Let qk

A be the value ofqA on slicek. Then,

^q9NiCTiq80&5 lim
J→`

E )
k51

J21 S )
A50

3

dqk
AD S 21

4p i e D 2

eT~qk
A!

3expH i (
k51

J

eF1

4
GABS qk

A2qk21
A

e D
3S qk

B2qk21
B

e D 2V~qk
A!G J . ~A4!

Here,eT(qA) is the characteristicfunction for the tube equal
to 1 inside the tube and zero outside fora.a* and equal to
1 for a,a* ~unrestricted!. The product of these function
on different slices make up the functionaleT@qA(s)# in Eq.
~A2!. The measure factor (21/4p i e)2 can be deduced from
the Liouville measure on phase space@1,61# recalling that
GAB5diag(21,1,1,1).

The successive integrations in Eq.~A4! evolve
^q9NiCTiq80) forward inN. Thus,
5-21
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^q9NiCTiq80&5 lim
e→0

E )
A50

3

dqJ21
A S 21

4p i e D 1/2

eT~qJ
A!

3expH i eF1

4
GABS q9A2qJ21

A

e
D

3S q9B2qJ21
B

e
D 2V~qJ

A!G J
3^qJ21N2eiCTiq80&. ~A5!

Now restrict attention toa9,a* whereeT(qJ
A)51. The in-

tegration overqJ21
A is restricted by the factoreT(qJ21

A ) in
^qJ21N2eiCTiq80&. As e→0, an increasingly narrow
range ofqJ21

A nearq9A provides the only significant contri
bution to the integral. The result is therefore no differe
from the integral without any restriction in this limit fora9
,a* . As in non-relativistic quantum mechanics~A5! im-
plies the ‘‘Schro¨dinger equation’’~A3!.

Integrating Eq.~A3! from N50 to N5` gives
o-

-

s:
re
nd

n-

o-
ic
S

12352
t

Hq9^q9iCTiq8&5 i @^q9`iCTiq80&2^q90iCTiq80&#
~A6!

for a9,a* . The first term on the right-hand side vanish
because what was a localized ‘‘wave packet’’ atN50 has
spread over all of configuration space byN5`. The second
term vanishes ifq9A Þq8A for all A. That is because for
small N5e

^q9eiCTiq80&5S 21

4p i e D 2

expF i e
1

4
GABS q9A2q8A

e D
3S q9B2q8B

e D G ~A7!

from Eq. ~A4! whena9,a* . But this is a representation o
a d-function ase→0, and we demonstrate Eq.~A1! for a9
,a* . The right hand side of Eq.~A1! vanishes whenq8
Þq9, and the class operators thus in this sense satisfy
operator form of the constraints.@More precisely, we see tha
these class operators are Green functions for the Whe
DeWitt Hamiltonian. For more on the question of when cla
operators constructed according to Eq.~3.14! satisfy con-
straints, see@28,39,41,43–45#.#
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