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Off-equilibrium dynamics of the primordial perturbations in the inflationary universe:
The O„N… model
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Using theO(N) model as an example, we investigate the self-interaction effects of inflaton on the dynamics
of the primordial perturbations. When taking interactions into account, it is essential to employ a self-consistent
off-equilibrium formalism to study the evolution of the inflationary background field and its fluctuations with
back-reaction effects. Within the Hartree factorization scheme, we show that theO(N) model has at least two
observable remains left behind by the off-equilibrium processes: the running spectral index of primordial
density perturbations and the correlations between perturbation modes in phase space. We find that the running
of the spectral index is fully determined by the rate of the energy transfer from the inflationary background
field to its fluctuations via particle creation processes as well as the dynamics of the background field itself.
Furthermore, the amplitude of the field fluctuations turns out to be scale dependent due to the off-equilibrium
evolution. As a consequence, the scale dependence of fluctuations yields a correlation between the phase-space
modes of energy density perturbations, while the one-point function of the fluctuations in each Hartree mode
is still Gaussian. More importantly, the mode-mode correlation of the primordial perturbations depends upon
the dynamics of the self-interactionas well asthe initial conditions of the inflation. Hence, we propose that the
running spectral index and the correlation between phase-space modes would be two observable fossils to
probe the epoch of inflation, even beyond.

DOI: 10.1103/PhysRevD.69.123522 PACS number~s!: 98.80.Cq, 04.62.1v, 98.70.Vc
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I. INTRODUCTION

In the inflationary scenario, the primordial perturbatio
of the Universe originate from vacuum fluctuations of t
scalar field~s!, the inflatonf, driving the inflation. If the
dynamics of the fluctuations is approximated by a sin
massless free field during the inflationary epoch, the po
spectrum of curvature perturbations for a Fourier modek can
be obtained as

PR~k!5F S H

ḟ
D S H

2p D G
k5aH

2

, ~1!

where the inflationary scale factora5exp(Ht) and the
Hubble parameterH5A8pGV/3 are determined by the po
tential of the inflaton fieldV(f). The first factorH/ḟ on the
right-hand side of Eq.~1! comes from the evolution of the
background inflaton fieldf—i.e., the expectation value o
the quantum scalar field. Meanwhile, the second factorH/2p
is specified by the variance of the classicalf field fluctua-
tions, dfk , at a few Hubble times after horizon crossin
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With slow-roll conditions, the derivative of the spectral inde
dn(k)/d ln k turns out to be very small or even negligib
such thatn(k)5(d ln PR(k)/d ln k)11.1 is roughlyk inde-
pendent@1#.

However thek dependence, or the running of the spect
index, revealed by the recently released Wilkinson Mic
wave Anisotropy Probe~WMAP! data can be as large a
dn(k)/d ln k5(d/d ln k)2ln PR(k).20.055 to20.077 @2#.
Hence, the origin of the primordial perturbations cannot
solely accommodated with the quantum fluctuations o
single free field. In a slow-roll inflation, one hasd/d ln k
5(1/H)d/dt52(1/8pG)@V8(f)/V(f)#(d/df), and there-
fore the derivative of the power spectrum (d/d ln k)nln PR(k)
will no longer be negligible for the second order (n52) as
long as the third or higher derivatives of the inflaton pote
tial become substantial. To fit in with the running of th
spectral index, models beyond the single scalar field w
quadratic potentialV(f) have been proposed according
@3#. In this context, the running index of the perturbatio
power spectrum is considered as an essential feature du
the interactions or the self-interactions of the inflaton~s!.

It should be pointed out here that in deriving the deriv
tive of the power spectrum~1!, the tree level of the effective
potentialV(f) is implicitly involved. However, when quan
tum fluctuations arising from the interactions of the inflat
become important, this approach may be problematic. In p
ticular, the one-loop effective potential will turn comple
©2004 The American Physical Society22-1
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within the region where the background fieldf is con-
strained byV9(f),0 @4#. The imaginary part of the effec
tive potential would inevitably lead to a dynamically u
stable state@5#. This so-called ‘‘spinodal instability’’ will
allow long-wavelength fluctuations to grow nonperturb
tively @6#. As such, the termH/2p in Eq. ~1! is no longer
valid when the inflaton suffers from spinodal instabilitie
Therefore, the primordial perturbations must be dealt w
consistently with a different method to account for the a
plification of vacuum fluctuations in the presence of spino
instabilities.

This motivates us to study the self-interaction effects
the inflaton on the dynamics of primordial perturbatio
within a context of the self-consistent off-equilibrium fo
malism. We will use theO(N) model of inflation as an ex
ample. WhenN51, it reduces to the popularlf4 inflation-
ary model which is disfavored by the WMAP. However, t
O(N) model with spontaneously broken symmetry is stil
viable model in quantum field theory and off-equilibriu
statistical mechanics@7#. It has been extensively used
modeling the quantum off-equilibrium processes in the ea
Universe, as well as the chiral phase transition in relativis
heavy ion collisions, etc.@8#. In particular, the dynamics o
quantum fluctuations of theO(N) model in the large-N limit
has been developed with a Hartree-type factorization@9,10#,
which can be generalized for the finite-N situation. In this
paper, we will focus on searching for the possible observa
imprints caused by the off-equilibrium evolution of inflation
ary primordial perturbations.

The paper is organized as follows. In Sec. II, we brie
describe theO(N) model of inflation and introduce the sel
consistent, nonperturbative, and renormalized solutions
the nonlinear evolution of the background inflaton field
well as its quantum fluctuations within the Hartree appro
mation. Section III analyzes the dynamics of quantum fl
tuations undergoing a quantum-to-classical transition and
statistical properties of the corresponding classical prim
dial perturbations. The spectral index along with the runn
of the perturbation power spectrum will be calculated in S
IV. Section V then discusses the correlation of primord
perturbations in phase space and its detection. Finally,
summarize our findings and give conclusions in Sec. VI.

II. O„N… INFLATION

A. Model and the Hartree factorization

Consider the dynamics of an inflation driven by a fieldF
of the O(N) vector model with spontaneous symmet
breaking. The action is defined by

S5E d4xL5E d4xA2gF1

2
gmn]mF•]nF2V~F•F!G ,

~2!

whereV(F•F) is a self-interaction potential given by

V~F•F!5
l

8N S F•F2
2Nm2

l D 2

. ~3!
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As an inflaton, theN components of the field generally ar
represented asF5(s,pW ), wherepW representN21 scalar
fields. The cosmic inflation is characterized by the state
which the components has a spatially homogeneous expe
tation; i.e., s can be decomposed into a background p
fluctuations around the background as

s~x,t !5ANf~ t !1x~x,t !, ~4!

with the expectation valuês(x,t)&5ANf(t) and, thus,
^x(x,t)&50. During the inflationary epoch, the backgroun
space-time can be described by a spatially flat Friedma
Robertson-Walker metric

ds25gmndxmdxn5dt22a2~ t !d i j dxidxj , ~5!

where the scale factora5exp(Ht) with the expansion rate
H5A8pGr/3 determined by the mean of energy density
the inflaton field as

H2~ t !5
8pN

3MPl
2 F1

2
ḟ2~ t !1

l

8 S f2~ t !2
2m2

l D 2G , ~6!

where MPl is the Planck mass. We have assumed that
effects of quantum fluctuations on the dynamics of t
Hubble parameter can be ignored as we will justify this
sumption later.

During inflation, the expectation value of the scalar fie
f(t) undergoes an off-equilibrium evolution from the initia
state f(t);0 where V9(f),0. Accordingly, the mass
square of the long-wavelength fluctuation modes will
negative, which leads to the nonperturbative growth of flu
tuations. Therefore, a nonperturbative framework is nec
sary for taking account of the growth of fluctuations, esp
cially in computing the power spectrum of perturbatio
later. We will employ the method of Hartree factorizatio
which approximates the potentialV(f) with an effective
quadratic potential while keepingN finite @8,10#. The
Hartree-factorized Lagrangian is

L~ t !5E d3xa3~ t !F1

2
~]mx!21

1

2
~]mpW !22

1

2
Mx

2~ t !x2

2
1

2
Mp

2 ~ t !pW 22xV8~ t !G , ~7!

where

V8~ t !5AN$f̈~ t !13Hḟ~ t !1@Mx
22lf2~ t !#f~ t !%. ~8!

The time-dependent effective massesMx(t) and Mp(t) are
obtained as

Mx
2~ t !52m21

3l

2
f2~ t !1

3l

2N
^x2&~ t !1

l

2 S 12
1

ND ^c2&~ t !,

Mp
2 ~ t !52m21

l

2
f2~ t !1

l

2N
^x2&~ t !1

l

2 S 11
1

ND ^c2&~ t !,

~9!
2-2
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where^c2& is defined bŷ pW 2&5(N21)^c2&.
The Hartree approximation we adopt here is equivalen

the Hartree-Fock approximation in the general Cornw
Jackiw-Tomboulis~CJT! formalism @8#. By the requirement
of a Hartree approximation, the one-loop corrections of
quantum field two-point Green’s functions are canceled
the introduced ‘‘mass counterterm.’’ For the case of finiteN,
however, the 1/N corrections in the Hartree factorization d
not include the contributions from the collision effects of t
same order of 1/N @11#. Nevertheless, the factorizatio
method provides a reliable resummation scheme that all
us to treat the growth of quantum fluctuations driven by sp
odal instabilities self-consistently.

The equation of motion of the background fieldf can be
directly obtained from the termxV8(t) in the Lagrangian
@Eq. ~7!#. By means of the tadpole condition̂x(x,t)&50
and Eq.~8!, we have

f̈~ t !13Hḟ~ t !1@Mx
2~ t !2lf2~ t !#f~ t !50. ~10!

To see how the quantum effects influence the dynamic
the background field, it is critical to solve the backgrou
field f(t) self-consistently by including the fluctuation
^x2&(t) and ^c2&(t) in the mass-squared termMx

2(t).
To find the dynamics of the fluctuation fields, we deco

posex(t) and pW (t) in the Fourier basis. In the Heisenbe
picture, one has

x~x,t !5E d3k

8p3
x~k,t !

5E d3k

8p3
@bk f x,k~ t !1bÀk

† f x,Àk
! ~ t !#eik•x,

p i~x,t !5E d3k

8p3
p i~k,t !

5E d3k

8p3
@aik f p,k~ t !1aiÀk

† f p,Àk
! ~ t !#eik•x,

~11!

whereaik , bk andaik
† , bk

† are the creation and annihilatio
operators which obey the commutation relations@aik ,aj k8

†
#

5d i , jdk,k8 and @bk ,bk8
†

#5dk,k8 . The equations of the mod
functions f x,k(t) and f p,k(t) can be found from the Heisen
berg field equations given by

F d2

dt2
13H

d

dt
1

k2

a2
1Mx

2~ t !G f x,k~ t !50,

F d2

dt2
13H

d

dt
1

k2

a2
1Mp

2 ~ t !G f p,k~ t !50. ~12!
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Finally, to close these equations self-consistently,
terms^x2&(t) and^c2&(t) in the mass squared@Eq. ~9!# can
be determined by the mode functions as

^x2&~ t !5E d3k

8p3
u f x,k~ t !u2,

^c2&~ t !5E d3k

8p3
u f p,k~ t !u2. ~13!

Obviously, fluctuationŝx2&(t) and^c2&(t) are created from
the self-consistent background statef(t) during inflation.
The nonlinearity, or the self-interaction, is in fact encoded
the self-consistent solutions to Eqs.~10!–~13!.

B. Renormalization and nonequilibrium equations of motion

Before proceeding further, one needs to understand
issue of renormalization regarding the divergences associ
with the loop integrals. The divergences can be determi
from the large loop momentum behavior of the mode fun
tions, which can be found from the WKB-type solutions
Eq. ~12! @10#. It turns out that the self-consistent loop int
grals in Eq.~13! contain both quadratic and logarithmic d
vergences. To get the self-consistent renormalized equat
one has to subtract the divergences from both the bare m
and the coupling constant. However, for a weak couplingl
,10214 in a typical inflation model, the logarithmic subtrac
tions can be neglected. Thus, the mass renormalization
be simplified as

mR
25m21

l

2 S 11
2

ND F2
1

8p2

L2

a2 G , ~14!

with a negligible renormalization for the coupling consta
As a result, it leads to the renormalized massesMx,R and
Mp,R which are given by

Mx,R
2 ~ t !52mR

21
3l

2
f2~ t !1

3l

2N
^x2&R~ t !

1
l

2 S 12
1

ND ^c2&R~ t !,

Mp,R
2 ~ t !52mR

21
l

2
f2~ t !1

l

2N
^x2&R~ t !

1
l

2 S 11
1

ND ^c2&R~ t !, ~15!

where

^x2&R~ t !5EL d3k

8p3
u f x,k~ t !u22

1

8p2

L2

a2
,

^c2&R~ t !5EL d3k

8p3
u f p,k~ t !u22

1

8p2

L2

a2
. ~16!
2-3
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Hereafter, we will drop the subscriptR, as the integrals of
mode functions are always in terms of the renormaliz
quantities.

III. CLASSICAL FLUCTUATIONS OF THE INFLATON

A. Quantum decoherence

The quantum-to-classical transition of the quantum fl
tuations during the inflation can be investigated by
Schrödinger wave function approach@12,13#. The Hamil-
tonian describing the evolution of quantum wave functio
of the fluctuations can be obtained from Eq.~7!. In general,
the developments of different fluctuation modes are se
rable due to the quadratic feature of the Hartree-factori
Hamiltonian. Let us first consider a modek of thex field. In
the Schro¨dinger picture, the initial~time t0) vacuum state is
specified by

bkut0&S50, ~17!

for all k. At time t, the evolved Schro¨dinger stateut&S is
given by

U~ t,t0!bkU
21~ t,t0!ut&S50, ~18!

whereU(t,t0)5exp2(i/\)*t0
t H(t)dt. In the coordinate rep-

resentation, the conjugate momentum can be written
P(k)52 i\]/]x(2k), and thus Eq.~18! reduces to

Fx~k!2\gk
21~ t !

]

]x~Àk!GC@x~k!,t#50, ~19!

where

gk~ t !5
1

2u f x,k~ t !u2
@122iF x,k~ t !#, ~20!

Fx,k~ t !5
a3~ t !

2

d

dt
u f x,k~ t !u2, ~21!

andC@x(k),t#5^x(k)ut&S is the wave function for the field
x(k). The solution to the equation can be obtained straig
forwardly as

C@x~k!,t#

5N k
1/2~ t !expS 2

1

\
gk~ t !ux~k!u2D

5N k
1/2~ t !expS 2

1

\

ux~k!u2

2u f x,k~ t !u2
@12 i2Fx,k~ t !# D ,

~22!

where N k
1/2(t) is the normalization coefficient. The wav

function of the quantum fluctuations is then the direct pro
uct of the wave functions for allk modes of thex field.
Notice that for an initial vacuum state which is a pure sta
it will remain a pure state under unitary evolution. Therefo
12352
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the density matrix in the coordinate representation beco
the wave function times its complex conjugate given by

)
k

r~x~k!,x̄~k!,t !

5)
k

C@x~k!,t#C!@ x̄~k!,t#

5)
k

Nk~ t !expH 2
x~k!x~Àk!1x̄~k!x̄~Àk!

2u f x,k~ t !u2

3@12 i2Fx,k~ t !#J . ~23!

The density matrix for each modek can be decomposed int
diagonal and off-diagonal elements as follows:

r@x~k!1d~k!,x̄~k!2d~k!,t#

5Nk~ t !expH 2
1

u f x,k~ t !u2
$ux̄~k!u2

2 i2Fx,k~ t !@ x̄~k!d~Àk!1x̄~Àk!d~k!#1ud~k!u2%J .

~24!

One can immediately recognize thatFx,k(t) is the phase of
the off-diagonal elements. A quantum-to-classical transit
is implied if the following condition is satisfied:

Fx,k~ t !@1. ~25!

Similarly for mode p, the condition of the quantum-to
classical transition is given by

Fp,k~ t !5
a3~ t !

2

d

dt
u f p,k~ t !u2@1. ~26!

Hence, the quantum-to-classical transition is determined
the behavior of the time dependence of the mode functi
f x,k(t) and f p,k(t).

To solve Eq.~12!, we consider the early stage of inflatio
when fluctuations have not grown significantly yet in t
presence of spinodal instabilities while the Hubble parame
remains constant. In this stage, the massesMx(t) andMp(t)
can be approximated by2m in Eq. ~15!. Thus, both mode
equations~12! can be written as

F d2

dt2
13H

d

dt
1

k2

a2
2m2G f k~ t !50. ~27!

The general solution can be expressed as a combinatio
the Hankel functionHn(k/aH) and the Neumann function
Nn(k/aH) with n5A(9/4)1(m/H)2. In particular, for fluc-
tuations in the superhorizon regime wherek!aH, the grow-
ing mode solution leads to
2-4
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f k. f 0~k!e(n23/2)Ht, ~28!

where f 0(k) depends on the initial conditions of the mod
functions as we sett050. Apparently,Fk(t)@1 is valid after
severale-foldings of inflation when the modes become s
perhorizon sized.

B. Equations of classical fluctuations

Using the density matrix, one can find the Wigner fun
tion from

W„x̄~k!,p̄x~k!,t…5E dS d

2p De2( i /\)p̄x(k)d(k)

3rS x̄~k!2
d~k!

2
,x̄~k!1

d~k!

2
,t D

5P@ ux̄~k!u#S NkexpF2
u f x,k~ t !u2

\ U
3p̄x~k!2

Fx,k~ t !

u f x,k~ t !u2
x̄~k!U2G D , ~29!

where

P@ ux̄~k!u#5S 1

\pu f x,k~ t !u2
D 1/2

expF2
ux̄~k!u2

\u f x,k~ t !u2G .

~30!

Since the Wigner function in Eq.~29! is definite positive, it
can be interpreted as a distribution function in the ph
space of stochastic field perturbations.

For the perturbation modes just crossing out the horiz
the dynamics of the classical fluctuations can be describe
the Wigner function in the limit of\→0 while keeping
\u f x,k(t)u2 fixed. In fact, the term\u f x,k(t)u2 basically mea-
sures the variance of the field fluctuationsx̄(k) and will
grow nonperturbatively due to the spinodal instabilities. A
result, the Wigner function becomes

W„x̄~k!,p̄x~k!,t…5P@ ux̄~k!u#dS Up̄x~k!2
Fx,k~ t !

u f x,k~ t !u2
x̄~k!U D .

~31!

The delta function in the above expression yields the eq
tions of motion for the classical fluctuations at superhoriz
scales:

p̄x~k,t !2
Fx,k~ t !

u f x,k~ t !u2
x̄~k,t !50. ~32!

In terms of the classical fluctuationx̄(k,t), Eq. ~32! can be
rewritten as

dx̄~k,t !

dt
2

1

2 S d

dt
ln u f x,k~ t !u2D x̄~k,t !50. ~33!
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With the mode functionsf x,k(t) derived self-consistently
from Eqs. ~11!, ~14!, and ~15!, Eq. ~33! describes the dy-
namical evolution of the mean value of the stochastic fie
x̄(k,t) in the superhorizon regime. Obviously, the stationa
solution to the probability distribution function~PDF! of
variablesx̄(k,t) can be obtained from Eq.~30!.

In contrast to the usual second-order evolution equa
for the field x(k,t), Eq. ~33! is a diffusion-type equation
which typically occurs during the overdamped process
harmonic oscillators. To accommodate the overdamped
havior of the mean fieldx̄(k,t) into the mode equations, th
equations for the mode function, Eqs.~12!, at superhorizon
scales can be further approximated by

F3H
d

dt
1

k2

a2~ t !
1Mx

2~ t !G f x,k~ t !50. ~34!

As a consequence, Eq.~33! reduces to

3H
dx̄~k,t !

dt
1F k2

a2~ t !
1Mx

2~ t !G x̄~k,t !50. ~35!

As expected, these equations are the classical Eu
Lagrange field equations for the superhorizon modes of fl
tuationsx(k,t) in the overdamped regime.

Following the same procedure, we can obtain a sim
equation for the fluctuating fieldp(k,t) as

3H
dp ī~k,t !

dt
1F k2

a2~ t !
1Mp

2 ~ t !Gp ī~k,t !50. ~36!

C. PDF of classical fluctuations

The statistical properties of the classical fluctuation
modek can be characterized by the PDF given by Eq.~30!:

P@ up i~k!u#5S 1

pu f p,k~ t !u2
D 1/2

expF2
p i

2~k!

u f p,k~ t !u2G ,

P@ ux~k!u#5S 1

pu f x,k~ t !u2D 1/2

expF2
x2~k!

u f x,k~ t !u2G .

~37!

Apparently, the PDFs of the classical perturbation mod
p i(k) andx(k,t) are Gaussian with variancesu f p,k(t)u2 and
u f x,k(t)u2, respectively, under the Hartree approximation.
implies that

^x2n11~k,t !&50, ^p i
2n11~k,t !&50,

^x2n~k,t !&5~2n21!!! ^x2~k,t !&n,

^p i
2n~k,t !&5~2n21!!! ^p i

2~k,t !&n, ~38!
2-5
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wheren51,2, . . . .However, the variances generally arek
dependent. Suchk dependence of variances eventually lea
to nontrivial correlations between fluctuation modes wh
will be scrutinized later.

In summary, after a quantum-to-classical transition,

dynamics of the classical stochastic fieldsx̄(k,t), p ī(k,t)
must be based on Eqs.~35! and~36! with the evolution of the
self-consistent mode functions. The corresponding PDF
the perturbations is governed by Eq.~37!. In fact, by adding
a noise term to the right-hand side of both Eqs.~35! and~36!,
they become Langevin-like equations which are capable
describing the stochastic properties of perturbations. Th
the noise correlations can be determined by the variance
the PDFs. For the case of a single free inflaton, the dynam
of the superhorizon-sized fluctuations is governed by
Langevin equation@13#, which is obtained by coarse grainin
the degrees of freedom of all subhorizon modes@14#. Ac-
cording to the results we obtained here, the coarse-gra
Langevin equation approach is effective not only for the s
ation of a free scalar inflaton field, but also for models w
a self-interaction such as theO(N) inflation.

Moreover, it should be pointed out that Eqs.~34! and~35!
and their counterparts for the fluctuatingp(k,t) field are not
closed if considering only the classical fluctuations or
superhorizon modes. By virtue ofMx

2(t) and Mp
2 (t), the

subhorizon modes also contribute towards these diffus
type equations. This feature is anticipated because of
inevitable coupling between all wavelength modes unde
substantial self-interaction. Thus, the renormalized ma
squared terms play critical roles as phenomenological po
tials. Consequently, Eqs.~34! and~35! and their counterparts
for the p(k,t) field provide a possible scheme to study t
interactions of the inflaton by comparing the phenomenolo
cal potentials given by data fitting with the predictedMx

2(t)
andMp

2 (t). This characteristic is the main result of this p
per.

We now turn our attention to the cosmological implic
tions from the off-equilibrium dynamics of theO(N) infla-
tionary model in the next section.

IV. POWER SPECTRUM OF PRIMORDIAL
PERTURBATIONS

A. Mass density perturbations

The power spectrum of primordial perturbations is d
scribed byP(k)5^udku2& where the mass density perturb
tions are determined by the gauge invariant quantity@17#

dk5
dr

r1p U
k5aH

. ~39!

The mass density fluctuationdr originates from the field
fluctuationsp i andx given by
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N
5S 12

1

ND F1

2
^ċ2&1

1

2a2
^~¹c!2&2

1

2
m2^c2&

1
l

4
f2^c2&1

l

4N
^x2&^c2&1

l

8 S 11
1

ND ^c2&2G
1

1

N F1

2
^ẋ2&1

1

2a2
^~¹x!2&2

1

2
m2^x2&1

3l

4
f2^x2&

1
l

4 S 12
1

ND ^c2&^x2&1
3l

8N
^x2&2G , ~40!

with @10#

^ċ2&~ t !5E d3k

~2p!3
u ḟ p,k~ t !u22F 1

8p2

L4

a4

1
1

8p2

L2

a2 S Mx
2~ t !2

R

6
12

ȧ2

a2D G ,

^ẋ2&~ t !5E d3k

~2p!3
u ḟ x,k~ t !u2

2F 1

8p2

L4

a4
1

1

8p2

L2

a2 S Mp
2 ~ t !2

R

6
12

ȧ2

a2D G ,

~41!

^~¹c!2&~ t !5E d3k

~2p!3
k2u f p,k~ t !u2

2F 1

8p2

L4

a2
2

L2

8p2 S Mx
2~ t !2

R

6 D G ,

^~¹x!2&~ t !5E d3k

~2p!3
k2u f x,k~ t !u2

2F 1

8p2

L4

a2
2

1L2

8p2 S Mp
2 ~ t !2

R

6 D G , ~42!

where the Ricci scalarR56(ȧ2/a1ä/a)512H2. Similar to
the renormalization of Eq.~16!, we have ignored logarithmic
subtractions in the renormalization of the above equatio
The term summing up the energy density and the press
r1p, in Eq. ~39! can be obtained by

r1p

N
5ḟ21S 12

1

ND F ^ċ2&1
1

a2
^~¹c!2&G

1
1

N F ^ẋ2&1
1

a2
^~¹x!2&G . ~43!

Apparently, the first termḟ2 in Eq. ~43! comes from the
background inflaton field. The other terms, however, are c
tributions from the fluctuations.
2-6
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B. Numerical examples

We present numerical examples in this section to dem
strate the self-interaction effect of thef(t) field upon the
power spectrum. To begin with, we need to find se
consistent solutions to the background fieldf and the mode
functions f x,k(t) and f p,k(t) from Eqs. ~10! and ~12!. We
assumef(0)'0 and ḟ(0)50 for the background field a
the onset of inflation. The initial (t50) conditions of the
mode functions can be specified as effective free mas
scalar fields in an expanding universe:

f x,k~0!5
1

A2@k21Mx
2~0!#

, ḟ x,k~0!52 iAk21Mx
2~0!

2
,

f p,k~0!5
1

A2@k21Mp
2 ~0!#

, ḟ p,k~0!52 iAk21Mp
2 ~0!

2
,

~44!

where we have seta(0)51 andMx
2(0), Mp

2 (0) are the ef-
fective mass squared of the field componentsx and p, re-
spectively. The values ofMx

2(0) andMp
2 (0) can be zero or a

positive number, which depends on the details of the onse
inflation. Although this uncertainty really is not decisive
the evolution of the mode functionsf x,k(t) and f p,k(t), it
turns out to become crucial for correlating the fluctuations
we will see later.

Figure 1 plots the expansion rateh(t) of the Universe, the
self-consistent solution to the background fieldf(t), and the
fluctuationŝ c2&(t), ^x2&(t) where the parameters are tak
to be l510214, N54, and H(0)52m, Mx

2(0)5Mp
2 (0)

.m2.0. The value forH(0) is determined from the energ
density of the inflaton field given by Eq.~6!. During infla-
tion, the energy density of the inflaton is dominated by t
of the potential energy which leads toh2(0)5(H/m)2

'Nm2/MPl
2 l'O(1) for N'O(1), l'10214, and the infla-

ton massm'1012 GeV. As a consequence, the Hubble p

FIG. 1. The evolution ofh5H/m, (Al/2)f/m, (l/2m2)^c2&,
and (l/2m2)^x2&, respectively, vst ~in units of m21) for initial

conditionsH(0)52m, f(0)'0, ḟ(0)50, Mx
2(0)5Mp

2 (0)5m2

with l510214 in the case ofN54.
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rameter remains approximately a constanth.2 at t
<60m21, but drops dramatically aftert>70m21. Appar-
ently, t<70m21 specifies the inflationary epoch.

It has been pointed out earlier that we treat the dynam
of the Hubble parameterH(t) classically without any quan
tum correction involved in Eq.~6!. It turns out that the back-
ground field does follow its classical equation of motion
the quantum corrections in Eq.~10! give rise to a small
dr/r'1024 in our case. Thus, when the semiclassical E
stein equations are employed for a truly self-consistent
proach, it yields a similar solution ofh as shown in@10#.

Figure 1 also shows thatf(t).^c2&(t).^x2&(t).0 dur-
ing the first stage of inflation,t,40m21, in the spinodal
regime where the initially positiveMx

2 and Mp
2 , turn nega-

tive quickly. The spinodal instabilities become importa
eventually and lead to a significant growth of both^c2&(t)
and ^x2&(t) starting att555m21. As expected, these prop
erties are not sensitive to the choice of the initial effect
massesMx

2(0) and Mp
2 (0). It can also be seen from the

mode functionu f p,k(t)u2 shown in Fig. 2.
Evidently, the mode function undergoes a substantial

crease in the period of 55m21,t,70m21, but varies much
slower aftert570m21. This is owing to the predomination
of the criterionMp

2 ,0 in the spinodal regions spawned du
ing the slow rolling of the inflaton. On the other hand, t
spinodal condition is only weakly satisfied over a span
70m21<t<80m21 where the backgroundf starts a rapid
falling into the valley of the inflaton potential. Therefore, th
process of spinodal instability terminates at timete given by

Mp
2 ~ te!52m21

l

2
f2~ te!1

l

2N
^x2&~ te!

1
l

2 S 11
1

ND ^c2&~ te!'0. ~45!

It renderste.(70–80)m21.
The sharp decline ofh signifies the end of inflation.

Therefore, the number of total inflationarye-foldings is Ne
'Ht52mt'140. The perturbation just about to enter t

FIG. 2. Mode functionu f p,k(t)u2 vs k ~in units of m) at t540,
55, 70 ~in units of m21) under the same initial conditions an
parameters as in Fig. 1 for the case ofN54.
2-7
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present Hubble horizon should be transgressing the hor
in the inflationary era aroundt5t60.40m21, some 60
e-folds before the end of inflation. We find that most
energy density of the backgroundf state is transferred to th
fluctuations^c2& via the production ofp modes during the
inflationary epoch. SinceMp

2 (te).0, thesep modes are in
fact the massless Goldstone modes of the broken s
metry phase. The Goldstone theorem is satisfi
dynamically.

Using the numerical solutions, we calculate the pow
spectrum of primordial perturbations. The result is shown
Fig. 3, in whichN is taken to be 4, 20, and̀. TheN depen-
dence of the power spectrum is trivial. We find that t
power is generallyk independent for modesk which cross
the horizon whent,55m21. While the energy transfer from
the background field to the fluctuations driven by the sp
odal instability leads to a swift increase in^c2&, the inflaton
field at later times rolls down the potential hill which als

results in an increase ofḟ. This in turn renders the gradua
decrease in power for shorter-wavelength modes crossing

of the Hubble horizon att.55m21 as the increase ofḟ
dominates.

The spectral indexn(k)215dP(k)/d ln k and itsk de-
pendencedn(k)/d ln k are given in Fig. 4. The value ofn(k)
varies from unity at the larger scales as lnk,110 to about
n,1 at the smaller scale as lnk.110. This leads to an inde
runningdn(k)/d ln k,0 in the wavelength range correspon
ing to the horizon-crossing times during 55,mt,70. Once
again, the physical reason for the running of the spec
index is due to the energy transfer from the inflationary ba
ground field to the fluctuations as well as the evolution of
inflaton field. Although one may refer this energy transfer
the third- or even higher-order derivative of the effecti
potentialV-(f) of the inflaton, the index running shown i
Fig. 4 can only be obtained through a proper off-equilibriu
dynamics, but not by the classical effective potential a
proach.

FIG. 3. The power spectrum of primordial density perturbatio
vs lnk (k in units of m) with the same initial conditions and pa
rameters as in Fig. 1 for the case ofN54, 20, and̀ respectively.
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V. THE CORRELATION OF PRIMORDIAL
PERTURBATIONS

A. Correlation function and initial condition of classical field
fluctuations

The equal-time two-point correlation functions of fluctu
tions have been extensively used to study applications of
O(N) model to the off-equilibrium chiral phase transition
relativistic heavy ion collisions where the coupling consta
is of order 1 @15#. The correlation caused by the of
equilibrium process is generic, because the evolution of fl
tuations is typically with respect to a time-dependent ba
ground. In our case, the mode functions of fluctuatio
f x,k(t) and f p,k(t) are not trivial plane waves; they depen
rather on the dynamics of interaction or of self-interactio
Hence, it would be interesting to search for the correlatio
of the primordial perturbations.

By means of Eq.~11!, the two-point correlation functions
of the fluctuations are given by

^x~x,t !x~x8,t !&

5E d3k

~2p!3
eik•(xÀx8)u f x,k~ t !u2

5
1

2p2uxÀx8u
EL

kdksinkuxÀx8uu f xk~ t !u2,

^p i~x,t !p i~x8,t !&

5E d3k

~2p!3
eik•(xÀx8)u f p,k~ t !u2

5
1

2p2uxÀx8u
EL

kdksinkuxÀx8uu f pk~ t !u2,

~46!

s
FIG. 4. Spectral indexn(k) and its runningdn(k)/d ln k vs lnk

(k in units ofm) with the same initial conditions and parameters
in Fig. 1 for the case ofN54.
2-8



th

th
he

ly

a
tu
th

e

ge

d
ed

r-

ns
lot

w:

ses
i-
e
la-
hat
on
ition

by

a-

t
the

en

-

.

OFF-EQUILIBRIUM DYNAMICS OF THE PRIMORDIAL . . . PHYSICAL REVIEW D 69, 123522 ~2004!
where we have considered that the dynamics ofu f p,k(t)u2

and u f x,k(t)u2 is isotropic ink space.
It can be seen from Eqs.~46! that both correlation func-

tions ^x(x,t)x(x8,t)& and ^p i(x,t)p i(x8,t)& over large spa-
tial distancesuxÀx8u are sensitive to the long-waveleng
behavior ofu f x,k(t)u2 and u f p,k(t)u2. However, the infrared
behavior of the mode functions during the early stage of
inflation are actually governed by the initial conditions of t
fluctuations as shown in Eq.~28!. For instance, if we take the
initial valuesMx

2(0)5Mp
2 (0).m2 in Eq. ~44!, then one can

show that with Eq.~28! the correlations decay exponential
as exp$2(muxÀx8u)%5exp$2(HuxÀx8u/2)% when we setH
52m to mimic the constant expansion rate during the infl
tion. Hence, the correlation between the inflationary per
bation modes is negligible if the spatial distance between
modes is larger than a horizon size,auxÀx8u.H21

50.5m21. On the other hand, if the initial conditions for th
mode functions are chosen asMx

2(0)5Mp
2 (0)50, then the

solution to the mode function can be approximated by

u f k~ t !u2.
S n1

3

2D 2

k
e2[n2(3/2)]Ht. ~47!

This function is singular as 1/k whenk→0. For such infra-
red behavior of the mode function, we have

^x~x,t !x~x8,t !&

^x2&
.

^p~x,t !p~x8,t !&

^p2&
}

1

~HauxÀx8u!2
.

~48!

This correlation clearly covers a spatial range much lar
than the horizon sizeH21.

The numerical solutions ofu f p,k(t)u2 with the vanishing
initial mass terms are plotted in Fig. 5. Obviously the mo
functions given in Fig. 5 have shown very different infrar
behavior from those in Fig. 2, where we have takenMx

2(0)
5Mp

2 (0).m2. However, we expect that the tail of the co

FIG. 5. Mode functionu f p,k(t)u2 vs k(m) at t540, 55, 70 in
units of m21. All parameters are specified the same as in Fig
except the initial conditions, Eqs.~44!, whereMx

2(0)5Mp
2 (0)50

are assumed.
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relation function depends sensitively on the initial conditio
of the inflaton fluctuations. To illustrate this feature, we p
in Fig. 6 the correlation functionŝp(x,t)p(x8,t)& obtained
by two different initial conditionsMp

2 (0).0 and Mp
2 (0)

50. We see that the respective behaviors of^p(x,t)p(x8,t)&
at scalesr 5uxÀx8u larger than 0.5m21 ~which equals the
horizon distance 1/H) are quite distinguishable. WithMp

2

50 initially, the correlation function scales as a power la

^p i~x,t !p i~x8,t !&}uxÀx8u21.8. ~49!

On the other hand, the correlation function clearly posses
an exponential falloff with distance when the initial cond
tion is taken to beMp

2 (0).0. This example shows that th
initial conditions can be recalled from the tail of the corre
tion function of classical perturbations despite the fact t
the original quantum fluctuations for those superhoriz
modes have gone through a quantum-to-classical trans
during off-equilibrium evolution.

B. Detection of the two-point space-scale correlation

The primordial density perturbations are governed
fluctuations of the fieldsx andp i . Thus, the field correlation
functions^x(x,t)x(x8,t)& and ^p i(x,t)p i(x8,t)& will inevi-
tably lead to a correlation of the primordial density perturb
tion ^d(x,t)d(x8,t)&. When perturbations of scalek cross the
horizon at a timet, the equal-time two-point correlation
function between (x,t) and (x8,t) will yield a correlation
between two space-scale modes (x,k) and (x8,k) via the
mapping formulak5a(t)H @Eq. ~39!#. The density contras
dk(x) represents the fluctuations in total energy density at
spatial pointx with a scalek.

Obviously, one cannot measure the density~energy! per-
turbations precisely on a scalek and at a spatial pointx
simultaneously. The essence ofdk(x) is as follows. When a
perturbation crosses the horizon at the scalek5aH, the po-
sition of the perturbation has an uncertainty typically giv
by the size of the horizon—i.e.,Dx5(aH)21. By virtue of
the uncertainty relationDxDk.2p, the scale of the pertur

2
FIG. 6. ^p(x,t)p(x8,t)& vs r 5uxÀx8u with initial conditions

Mp
2 (0)5m2 ~lower line! and zero~upper line! for modes crossing

the horizon att540m21. The separationr is in units ofm21.
2-9
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LEE et al. PHYSICAL REVIEW D 69, 123522 ~2004!
bation thus lies within the band fromk2(1/2)Dk to k
1(1/2)Dk where Dk.aH. Therefore,dk(x) describes the
perturbation in a phase-space cell (x,k) with a size confined
by the spatial range fromx to x1Dx and by the scale rang
from k to k1Dk. The volume of this phase-space cell
characterized byDx•Dk.2p. Consequently,̂dk(x)dk(x8)&
governs the correlation between two perturbation modes
calized within the cells centering at (x,k) and (x8,k) in the
phase ~x-k! space. In order to unveil the effects o
^x(x,t)x(x8,t)& and ^p(x,t)p(x8,t)&, it is indispensable to
decompose the mass density perturbations into thex-k
modes in phase space. The discrete wavelet transf
~DWT! is designed to do such a space-scale@x-k# decompo-
sition @16#.

In the formulation of DWT, there are two sets of spatia
localized bases given by the scaling functionsu j ,l&s and the
wavelet functionsu j ,l&w ; both are characterized by the ind
ces j and l. For a 1D sample with spatial sizeL, the index
j 50,1,2, . . . stands for a scale fromkj to kj1Dkj in which
kj52p2 j /L and Dkj52p2 j /L. The index l 50,1, . . . ,2j

21 denotes the location of the spatial point withinLl /2j

,xl,L( l 11)/2j . These bases are complete, and they sat
the orthogonal relationss^ j ,l 8u j ,l &s5d l ,l 8 andw^ j 8,l 8u j ,l &w
5d j , j 8d l ,l 8 . For 3D samples, the DWT bases are given
the direct product of the 1D bases. Thus, a density fieldud&
can be decomposed into the phase-space modes (j ,l) as

d j ,l[ s^ j ,lud&5E d3xd~x!f j ,l~x!5E d3k

~2p!3
d̂~k!f̂ j ,l~k!,

d̃ j ,l[ w^ j ,lud&5E d3xd~x!c j ,l~x!5E d3k

~2p!3
d~k!ĉ j ,l~k!,

~50!

where f j ,l(x)5^xu j ,l&s , f̂ j ,l(k)5^ku j ,l&s , c j ,l(x)
5^xu j ,l&w , and f̂ j ,l(k)5^ku j ,l&w ; i.e., they are the scaling
functions and wavelet functions in either thex representation
or thek representation, respectively.

Subsequently, the two-point correlation functions in E
~46! can be rewritten in terms of the DWT bases as

^x̃ j ,lx̃ j ,l8&5E d3k

~2p!3
u f x,k~ t !u2ĉ j ,l~k!ĉ j ,l8

* ~k!,

^x j ,lx j ,l8&5E d3k

~2p!3
u f x,k~ t !u2f̂ j ,l~k!f̂ j ,l8

* ~k!,

^p̃ i ; j ,lp̃ i ; j ,l8&5E d3k

~2p!3
u f p,k~ t !u2ĉ j ,l~k!ĉ j ,l8

* ~k!,

^p i ; j ,lp i ; j ,l8&5E d3k

~2p!3
u f p,k~ t !u2f̂ j ,l~k!f̂ j ,l8

* ~k!,

~51!
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where the timet is taken to bet j specified by the relation
2p2 j /L5k5aH. Sincea5exp(Ht), one has

t j5
1

H F j ln 21 lnS 2p

LH D G . ~52!

Thus, Eq. ~51! can be used to determine the correlatio
between fluctuations at different spatial pointsl and l8, both
crossing out of the Hubble horizon at the same timet j during
the inflationary epoch.

For example, in the case of a free scalar fieldx with mass
m, the DWT mode-mode correlations can be expressed a

^x̃ j ,lx̃ i ; j ,l8&5E d3k

~2p!32~k21m2!1/2
ĉ j ,l* ~k!ĉ j ,l8

* ~k!,

^x j ,lx i ; j ,l8&5E d3k

~2p!32~k21m2!1/2
f̂ j ,l* ~k!f̂ j ,l8

* ~k!.

~53!

Sinceĉ j ,l(k) is localized atk.2p2 j /L and f̂ j ,l* (k) is non-
zero at k<2p2 j /L, one can approximate (k21m2)21/2

'm21 if the j scales are greater than the Compton wa
length of massm. Thus,

^x̃ j ,lx̃ j ,l8&.
1

~2p!32m
E d3kĉ j ,l* ~k!ĉ j ,l8

* ~k!50 if lÞ l 8,

^x j ,lx j ,l8&.
1

~2p!32m
E d3kf̂ j ,l* ~k!f̂ j ,l8

* ~k!50 if lÞ l 8,

~54!

where the orthogonality of the DWT bases with respect
the indicesl,l8 has been applied. Similar results hold for th
field p i ; j ,l . Hence, for the free field case the DWT modes a
not correlated and, therefore, the correlation funct
^dk(x)dk(x8)& is trivial, as long as the scale under consid
ation is larger than the Compton wavelength of the sca
field.

However, for the self-interactingO(N) model the DWT
mode-mode correlations@Eq. ~51!# are generally nonzero
Accordingly, the two-point space-scale correlatio
^dk(x)dk(x8)& may become nontrivial and initial conditio
dependent. Using Eqs.~39!–~43!, it is straightforward to cal-
culate the normalized two-point space-scale correlation fu
tion defined aŝd j ,ld j ,l8&/^d j ,l

2 &.
As a numerical example, the normalized two-point spa

scale correlations of density perturbations under different
tial conditions are plotted in Fig. 7, in which the paramete
are taken to beH52m and L52m21. From Eq.~52!, one
has

t j.~0.35j 10.23!m21. ~55!
2-10
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OFF-EQUILIBRIUM DYNAMICS OF THE PRIMORDIAL . . . PHYSICAL REVIEW D 69, 123522 ~2004!
Thus for j 54 –6 shown in Fig. 7, we havet j
.(1.63–2.33)m21 which corresponds to the number
e-foldings Ht j.3.3–4.7. Since the inflation under conside
ation lasts fromt50 to aboutt570m21, the correlations in
Fig. 7 actually probe the inflaton dynamics at the beginn
of inflation. With Mx

2(0)5Mp
2 (0).m2.0, the space-scale

correlation function approaches zero drastically as the
tancer between the two modes increases, while the corr
tion deviates from zero and lasts for a long range for per
bations withMx

25Mp
2 50 initially.

Figure 8 plots the same correlations as in Fig. 7 but w
respect toj 58,9 ort j.(2.75–3.38)m21, which corresponds
to the number ofe-foldingsHt j.5.52–6.8. The behavior o
correlations under the initial conditionMx

2(0)5Mp
2 (0)

.m2 remains the same. However, the correlations w
Mx

2(0)5Mp
2 (0)50 do not coincide with those shown i

FIG. 7. The normalized mode-mode correlation functions
density fields in phase space are plotted against the separationr ~in
units of m21) of two perturbation modes with respect to vario
scalesj under two different sets of initial conditions. The parame
L is taken to be 2m21.

FIG. 8. The space-scale correlations as a function ofr ~in units
of m21) under two sets of initial conditions as those in Fig. 7 a
plotted with respect to finer scalesj 58, 9.
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Fig. 7. That is, the space-scale correlation of density per
bations in the model withMp

2 .0 initially does not experi-
ence a significant evolution during the first fewe-foldings of
the inflationary expansion, while the correlation in the mod
with initial Mp

2 50 does. Therefore, thej dependence of the
mode-mode correlation is practical to test the dynamical p
dictions about the evolution (te dependence! of the primor-
dial perturbations. Since the resolution of DWT basically c
be refined as required by the problem at hand, one is cap
of exploring the physics of the very early Universe by mea
of mode-mode correlations in phase space.

VI. CONCLUSION

Using theO(N) model as an example, we have inves
gated the self-interacting effects on the primordial pertur
tions using a self-consistent off-equilibrium approach. It
known that most information of the dynamics and initial co
ditions of the system will be lost during the nonequilibriu
evolution. The nonequilibrium evolution can only be prob
via the observable remains produced from such a proces
this paper, we have shown that the off-equilibrium evoluti
of cosmological inflation may have two such observable ‘‘
mains.’’

The first one is the running spectral index of primord
perturbations induced by the scale dependence due to
self-interaction of the inflaton. We found that the runnin
spectral index depends essentially on the rate of particle
ation and the energy transfer from the background to
inflaton fluctuations as well as the evolution of the bac
ground field. It is a signature of the energy transferring d
namics during the inflation. Although the running index
theO(N) model is small compared to current data, the ne
tive running ~Fig. 4! does coincide with the WMAP obser
vation.

The second remain is the correlation function betwe
phase-space modes of the density perturbation. Under
influence of the self-interaction, fluctuations created from
background field are no longer white noises. Although
one-point distribution function of fluctuations in each Ha
tree mode is Gaussian, the power of the fluctuations is s
dependent, which gives rise to the correlation between
phase-space modes of the energy density perturbation. M
over, since the dynamical evolution of the correlation d
pends upon the initial conditions of the inflation, the mod
mode correlation of density perturbations also provide
window to study the dynamics of the self-interactionas well
as the initial conditions of the inflation. Here, we would lik
to emphasize two important results. First, the initia
condition dependence of correlation functions is irrelevan
the number of fields in action. Second, the inflationary d
sity perturbations after the superhorizon evolution are
fluctuations of the thermal equilibrium state. Therefore,
dependence of the correlation function upon the initial co
ditions does not contradict with the reheating of the U
verse, which is generally produced by interactions betw
f and other fields. Thus, we may expect that the nontriv
mode-mode correlation in phase space is detectable v

f

r
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DWT analysis on the cosmic microwave background~CMB!
temperature map or other observations of the large-s
structure relevant to the density perturbations@18#.

Although theO(N) model is just an example to illuminat
off-equilibrium effects from the self-interaction of the infla
ton field, we believe the implication from what we hav
found in this paper is also useful to other interacting inflat
models. For instance, the scale dependence of perturba
drawn from the self-consistent off-equilibrium dynamics
generally different from that obtained by the third or high
derivative of a classical effective potential. Therefore,
running spectral index determined by the formalism of va
n-

. D

B
d

e,
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ous effective potentials would be questionable if the inter
tion or self-interaction of the inflaton is substantial.
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@7# O. Éboli, R. Jackiw, and S.-Y. Pi, Phys. Rev. D37, 3557

~1988!; M. Samiullah, O. E´boli, and S.-Y. Pi,ibid. 44, 2335
~1991!.

@8# J. Baacke, K. Heitmann, and C. Patzold, Phys. Rev. D55, 2320
~1997!; J. Baacke and K. Heitmann,ibid. 62, 105022~2000!; J.
Baacke and S. Michalski,ibid. 65, 065019~2002!; J. Baacke
and A. Heinen, Phys. Rev. D69, 083523~2004!.

@9# D. Boyanovsky, D.-S Lee, and A. Singh, Phys. Rev. D48, 800
~1993!; D. Boyanovsky, H.J. de Vega, R. Holman, D.-S Le
and A. Singh, ibid. 51, 4419 ~1995!; D. Boyanovsky, M.
D’Attanasio, H.J. de Vega, R. Holman, and D.S. Lee,ibid. 52,
6805~1995!; D. Boyanovsky, I.D. Lawrie, and D.-S. Lee,ibid.
54, 4013~1996!.

@10# D. Boyanovsky, D. Cormier, H.J. de Vega, and R. Holma
Phys. Rev. D55, 3373 ~1997!; D. Boyanovsky, D. Cormier,
H.J. deVega, R. Holman, and S.P. Kumar,ibid. 57, 2166
~1998!;

@11# S.A. Ramsey and B.L. Hu, Phys. Rev. D56, 661 ~1997!.
@12# D. Polarski and A.A. Starobinsky, Class. Quantum Grav.13,

377~1996!; J. Lesgourgues, D. Polarski, and A.A. Starobinsk
Nucl. Phys.B497, 479 ~1997!.

@13# W.L. Lee and L.Z. Fang, Europhys. Lett.56, 904 ~2001!.
@14# S.-J. Rey, Nucl. Phys.B284, 706~1987!; R. Brandenberger, R

Laflamme, and M. Mijic, Mod. Phys. Lett. A5, 2311~1990!.
@15# F. Cooper, S. Habib, Y. Kluger, and E. Mottola, Phys. Rev.

55, 6471 ~1997!; D.L. Kaiser, ibid. 59, 117901 ~1999!; H.
Hiro-Oka and H. Minakata, Phys. Rev. C64, 044902~2001!.

@16# Y. Meyer, Wavelets and Operators~Cambridge University
Press, Cambridge, England, 1992!; I. Daubechies,Ten Lectures
on Wavelets~SIAM, Philadelphia, 1992!; L. Z. Fang and R.
Thews, Wavelets in Physics~World Scientific, Singapore,
1998!.

@17# E. W. Kolb and M. S. Turner,The Early Universe~Addison-
Wesley, Reading, MA, 1990!.

@18# J. Pando, D. Valls-Gabaud, and L.Z. Fang, Phys. Rev. Lett.81,
4568 ~1998!.
2-12


