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Off-equilibrium dynamics of the primordial perturbations in the inflationary universe:
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Using theO(N) model as an example, we investigate the self-interaction effects of inflaton on the dynamics
of the primordial perturbations. When taking interactions into account, it is essential to employ a self-consistent
off-equilibrium formalism to study the evolution of the inflationary background field and its fluctuations with
back-reaction effects. Within the Hartree factorization scheme, we show th@{ e model has at least two
observable remains left behind by the off-equilibrium processes: the running spectral index of primordial
density perturbations and the correlations between perturbation modes in phase space. We find that the running
of the spectral index is fully determined by the rate of the energy transfer from the inflationary background
field to its fluctuations via particle creation processes as well as the dynamics of the background field itself.
Furthermore, the amplitude of the field fluctuations turns out to be scale dependent due to the off-equilibrium
evolution. As a consequence, the scale dependence of fluctuations yields a correlation between the phase-space
modes of energy density perturbations, while the one-point function of the fluctuations in each Hartree mode
is still Gaussian. More importantly, the mode-mode correlation of the primordial perturbations depends upon
the dynamics of the self-interacti@s well asthe initial conditions of the inflation. Hence, we propose that the
running spectral index and the correlation between phase-space modes would be two observable fossils to
probe the epoch of inflation, even beyond.
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I. INTRODUCTION With slow-roll conditions, the derivative of the spectral index
dn(k)/dInk turns out to be very small or even negligible
In the inflationary scenario, the primordial perturbationssuch than(k) = (d In Pz (k)/d Ink)+1=1 is roughlyk inde-

of the Universe originate from vacuum fluctuations of thependenf1].
scalar fields), the inflaton ¢, driving the inflation. If the However thek dependence, or the running of the spectral
dynamics of the fluctuations is approximated by a singleindex, revealed by the recently released Wilkinson Micro-
massless free field during the inflationary epqch, the powegave Anisotropy ProbéWMAP) data can be as large as
spectrum of curvature perturbations for a Fourier mkdan dn(k)/d In k=(d/d In k)%In P (k)= —0.055 to—0.077 [2].
be obtained as Hence, the origin of the primordial perturbations cannot be
2 solely accommodated with the quantum fluctuations of a
PR(k)={(.ﬂ)(i , (1) single free field. In a slow-roll inflation, one haldInk
)\ 2m K aH =AM)d/dt=—(1/18aG)[V'(#)/V(p)](d/dg), and there-

fore the derivative of the power spectruad In k)"In P (k)
where the inflationary scale factaa=expHt) and the will no longer be negligible for the second order=2) as
Hubble parameteH =/87GV/3 are determined by the po- long as the third or higher derivatives of the inflaton poten-
tential of the inflaton field/( ). The first factoH/¢ on the  tial become substantial. To fit in with the running of the
right-hand side of Eq(1) comes from the evolution of the Spectral index, models beyond the single scalar field with
background inflaton fieldp—i.e., the expectation value of quadratic potentiaM(¢) have been proposed accordingly
the quantum scalar field. Meanwhile, the second fadt@r  [3]. In this context, the running index of the perturbation
is specified by the variance of the classigafield fluctua- power spectrum is considered as an essential feature due to
tions, 8¢, at a few Hubble times after horizon crossing. the interactions or the self-interactions of the inflagn

It should be pointed out here that in deriving the deriva-
tive of the power spectrur(l), the tree level of the effective

*Electronic address: leewl@phys.sinica.edu.tw potentialVV(¢) is implicitly involved. However, when quan-
TElectronic address: charng@phys.sinica.edu.tw tum fluctuations arising from the interactions of the inflaton
*Electronic address: dslee@mail.ndhu.edu.tw become important, this approach may be problematic. In par-
$Electronic address: fanglz@physics.arizona.edu ticular, the one-loop effective potential will turn complex
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within the region where the background fieltl is con-  As an inflaton, theN components of the field generally are

strained byV"($) <0 [4]. The imaginary part of the effec- represented ad=(o,7), where 7 representN—1 scalar

tive potential would inevitably lead to a dynamically un- fields. The cosmic inflation is characterized by the state in
stable state[5]. This so-called “Spinodal instability” will which the componentr has a Spatia”y homogeneous expec-
allow long-wavelength fluctuations to grow nonperturba-tation; i.e., ¢ can be decomposed into a background plus

tively [6]. As such, the ternH/27 in Eq. (1) is no longer  flyctuations around the background as
valid when the inflaton suffers from spinodal instabilities.

Therefore, the primordial perturbations must be dealt with a(x,1)=Np(t) + x(x,1), 4
consistently with a different method to account for the am-
plification of vacuum fluctuations in the presence of spinodawith the expectation vaIuQU(x,t)):\/NQS(t) and, thus,
instabilities. (x(x,t))=0. During the inflationary epoch, the background
This motivates us to study the self-interaction effects ofspace-time can be described by a spatially flat Friedmann-
the inflaton on the dynamics of primordial perturbationsRobertson-Walker metric
within a context of the self-consistent off-equilibrium for- o
malism. We will use théD(N) model of inflation as an ex- ds’=g,,,dx“dx’=dt’—a*(t) ;dxdx, ®)
ample. WherN=1, it reduces to the popular¢* inflation-
ary model which is disfavored by the WMAP. However, the
O(N) model with spontaneously broken symmetry is still a
viable model in quantum field theory and off-equilibrium
statistical mechanic§7]. It has been extensively used in
modeling the quantum off-equilibrium processes in the early H2(t) =
Universe, as well as the chiral phase transition in relativistic
heavy ion collisions, etd.8]. In particular, the dynamics of
quantum fluctuations of th@(N) model in the largeN limit where My, is the Planck mass. We have assumed that the
has been developed with a Hartree-type factorizatéyhq], effects of quantum fluctuations on the dynamics of the
which can be generalized for the finikesituation. In this  Hubble parameter can be ignored as we will justify this as-
paper, we will focus on searching for the possible observablsumption later.
imprints caused by the off-equilibrium evolution of inflation-  During inflation, the expectation value of the scalar field
ary primordial perturbations. ¢(t) undergoes an off-equilibrium evolution from the initial
The paper is organized as follows. In Sec. I, we brieflystate ¢(t)~0 where V"(4)<0. Accordingly, the mass
describe theO(N) model of inflation and introduce the self- square of the long-wavelength fluctuation modes will be
consistent, nonperturbative, and renormalized solutions taegative, which leads to the nonperturbative growth of fluc-
the nonlinear evolution of the background inflaton field astuations. Therefore, a nonperturbative framework is neces-
well as its quantum fluctuations within the Hartree approxi-sary for taking account of the growth of fluctuations, espe-
mation. Section Ill analyzes the dynamics of quantum flucially in computing the power spectrum of perturbations
tuations undergoing a quantum-to-classical transition and thiater. We will employ the method of Hartree factorization,
statistical properties of the corresponding classical primorwhich approximates the potentid(¢#) with an effective
dial perturbations. The spectral index along with the runningquadratic potential while keepindN finite [8,10]. The
of the perturbation power spectrum will be calculated in SecHartree-factorized Lagrangian is
IV. Section V then discusses the correlation of primordial

where the scale factaa=expHt) with the expansion rate

H=8mGp/3 determined by the mean of energy density of
the inflaton field as

7N

Mp)

)

1., N 2m2>2
§¢> (t)+§ ¢ (t)—T

8
3

perturbations in phase space and its detection. Finally, we _ R YNE , 1 -, 1o 5
summarize our findings and give conclusions in Sec. VI. L= | d*xa’(t) E(&MX) + 5(‘9»”) n EMx(t)X
1 2 -2 ’
ll. O(N) INFLATION —EMw(t)ﬂ' —xV'(t)|, (7

A. Model and the Hartree factorization

Consider the dynamics of an inflation driven by a fidid where

of the O(N) vector model with spontaneous symmetry
breaking. The action is defined by

S:f d4x£=J’ d*x\—g

V(1) = N{(t) +3H (1) +[MZ =N () ]$(D)}. (8)

1 The time-dependent effective masddg(t) and M ,(t) are
Eg””a#d)-ayd)—V((I)-CD)}, obtained as

) , 3\ 3\ N 1),
M) = —m?+ == g2 + 55 ()0 +5 | 1= 5 [ WA,
whereV(®- ®) is a self-interaction potential given by

(PA)(1),
9

1+1
N

V(@D x((b szZ)Z Mi(t):—m2+%¢2(t)+%<xzm)+%
@)= | eo- )

8N @
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where(y?) is defined by(72)=(N—1)(4?). Finally, to close these equations self-consistently, the

The Hartree approximation we adopt here is equivalent té€rms(x*)(t) and(y?)(t) in the mass squardd. (9)] can
the Hartree-Fock approximation in the general Cornwall-be determined by the mode functions as
Jackiw-Tomboulis(CJT) formalism[8]. By the requirement
of a Hartree approximation, the one-loop corrections of the 5 d3k 5
quantum field two-point Green’s functions are canceled by X >(t):f @lf%k(m ’
the introduced “mass counterterm.” For the case of filte
however, the M corrections in the Hartree factorization do
not include the contributions from the collision effects of the (P2 (1)= f
same order of M [11]. Nevertheless, the factorization
method provides a reliable resummation scheme that allows
us to treat the growth of quantum fluctuations driven by spin-Obviously, fluctuationgx?)(t) and(y*)(t) are created from
odal instabilities self-consistently. the self-consistent background stat€t) during inflation.

The equation of motion of the background fiebdcan be ~ The nonlinearity, or the self-interaction, is in fact encoded in
directly obtained from the ternyV’(t) in the Lagrangian the self-consistent solutions to Eq40)—(13).

[Eqg. (7)]. By means of the tadpole conditiafy(x,t))=0
and Eq.(8), we have B. Renormalization and nonequilibrium equations of motion

d3k

ﬁ“mk(tﬂz- (13

Before proceeding further, one needs to understand the
(1) +3H (1) +[M)2((t) —Ngp?(1)]p(t)=0. (100  issue of renormalization regarding the divergences associated
with the loop integrals. The divergences can be determined
otr’om the large loop momentum behavior of the mode func-
tions, which can be found from the WKB-type solutions to
Eqg. (12) [10]. It turns out that the self-consistent loop inte-
grals in Eqg.(13) contain both quadratic and logarithmic di-

To see how the quantum effects influence the dynamics
the background field, it is critical to solve the background
field ¢(t) self-consistently by including the fluctuations

2 2 ; _ 2
{x -?é?ma:jn?rfed/ d>(r:zirlr':igzeomﬁzsﬂ32?5;53”'[%;%)(5“2,\"9 decom.Vergences. To get the self-consistent renormalized equations,
Y } . ) T one has to subtract the divergences from both the bare mass
posex(t) and 7(t) in the Fourier basis. In the Heisenberg 5nd the coupling constant. However, for a weak coupng

picture, one has <10 in atypical inflation model, the logarithmic subtrac-
tions can be neglected. Thus, the mass renormalization can
d3k be simplified as
X(th):f ——xkt)
8m , L, N2\ 1 A2
mg=m +§ 1+N ﬁ;, (14)

d3k T ogx ik-x
:f _3[bkf)(,k(t)+b—kf)(,—k(t)]e )

8w with a negligible renormalization for the coupling constant.
As a result, it leads to the renormalized masbesg and

d3k M, r Which are given by
71'i(X,'[)Zf Fﬂ'i(kvt)
a

3\ 3\
M R(1) = —mg+—-¢%(0) + S5 (xR

o’k T ik-x
B ﬁ[aikf”'k(t)+ai—kfw,—k(t)]e ,

1) 5
1‘“ (¥ )R(1),

+ J—
(1) 2
wherea;, by anda;,, b, are the creation and annihilation M7 g(t)=—mg+ §¢ (t)+m(x Yr(t)
operators which obey the commutation relatitﬁa@,a;rk,]
=8 Suus T 1=68.u, i A 1
5|,J.5k,k and[by,b,,]= 6y . The equations of the mode T —)<</f2>re(t), (15)
functionsf (t) andf (t) can be found from the Heisen- 2 N
berg field equations given by
where
d? d k2 3 ?
— +3H - +—=+M2(1) |f,(1)=0, 2 = [* 4K . L A
dtz dt a2 X X’k <X >R(t)_ 87T3|f/\/,k(t)| 87T2 az’
d? d kK . 2t—fAd3kf N 1 A? 16
@+3Ha+¥+'\/‘w(t) k(1) =0. (12) (P )r(t)= ﬁ' k(D] 82 2 (16)
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Hereafter, we will drop the subscrif®, as the integrals of the density matrix in the coordinate representation becomes
mode functions are always in terms of the renormalizedhe wave function times its complex conjugate given by
guantities.

K),x(K),t
I1l. CLASSICAL FLUCTUATIONS OF THE INFLATON l_k[ P(X( ) X( ) )

A. Quantum decoherence

=13 WLx(k), ] x(k),t]

The quantum-to-classical transition of the quantum fluc-
tuations during the inflation can be investigated by the _
Schralinger wave function approack2,13. The Hamil- 10 x(K) x(—K)+ x (k) x(—k)
tonian describing the evolution of quantum wave functions =11 Mdtexp - 2/f, (D)2
of the fluctuations can be obtained from Ed). In general, xk
the developments of different fluctuation modes are sepa-
rable due to the quadratic feature of the Hartree-factorized X[1=i2F, ()]} (23
Hamiltonian. Let us first consider a mo#eof the y field. In
the Schrdinger picture, the initialtime ty) vacuum state is

The density matrix for each modecan be decomposed into

specified by diagonal and off-diagonal elements as follows:
bilte)s=0, (17 _
i pLX(K)+ 8(k) x(K)— 8(K),t]
for all k. At time t, the evolved Schidinger statelt)g is
given by )
= Nihexp = ———{|x(K|

U(t.to)bU 1t to)|t)s=0, (18 | xk“”
whereU(t,to)=exp—(i/ﬁ)f{oH(t)dt. In the coordinate rep- —iZFX,k(t)[;(k)5(—k)+;(—k)5(k)]+|5(k)|2} )
resentation, the conjugate momentum can be written as
I1(k)=—ihdldx(—k), and thus Eq(18) reduces to (24)

1 d One can immediately recognize tHat (t) is the phase of
x(K) =ty (t)&x(—k) Wx(k),t]=0, (19 the off-diagonal elements. A quantum-to-classical transition
is implied if the following condition is satisfied:

where
Fox(t)>1. (25
V()= 2[1_2i|:Xk(t)], (20) Similarly for mode =, the condition of the quantum-to-
2|f (V)] ’ classical transition is given by
3 3
a’(t) d a’(t) d
FrD=—= g7l fOI% (21) Frr(t)=—— glfau®*>1. (26)

and[ x(k),t]=(x(k)|t)s is the wave function for the field Hence, the quantum-to-classical transition is determined by
x(K). The solution to the equation can be obtained straightthe behavior of the time dependence of the mode functions
forwardly as foe(t) andf ().
To solve Eq.(12), we consider the early stage of inflation
W x(k),t] when fluctuations have not grown significantly yet in the
presence of spinodal instabilities while the Hubble parameter
= N¥2(t)ex F{ _ %Vk(t)|x(k)|2) remains constant. In this stage, the maddeét) andM .(t)
can be approximated by m in Eq. (15). Thus, both mode
equationg12) can be written as

d? d k2

[ —— 2 =
d2+3Hdt+a2 m2|f,(t)=0. (27)

Nt — £ O )
(t)ex p( TR

(22

where N&’z(t) is the normalization coefficient. The wave The general solution can be expressed as a combination of
function of the quantum fluctuations is then the direct prodthe Hankel functionH (k/aH) and the Neumann function
uct of the wave functions for ak modes of they field.  N,(k/aH) with v=/(9/4)+ (m/H)?. In particular, for fluc-
Notice that for an initial vacuum state which is a pure statefuations in the superhorizon regime wh&r€aH, the grow-

it will remain a pure state under unitary evolution. Therefore,ing mode solution leads to
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=fo(k)elr~32Ht (289  With the mode functionsf, (t) derived self-consistently
from Egs. (11), (14), and (15), Eq. (33) describes the dy-
where (k) depends on the initial conditions of the mode namical evolution of the mean value of the stochastic fields
functions as we seép=0. ApparentlyF(t)>1 is valid after  ,(k.t) in the superhorizon regime. Obviously, the stationary
severale-foldings of inflation when the modes become su-solution to the probability distribution functioPDP of
perhorizon sized. variablesy(k,t) can be obtained from Eq30).
In contrast to the usual second-order evolution equation

B. Equations of classical fluctuations for the field x(k,t), Eq. (33 is a diffusion-type equation
Using the density matrix, one can find the Wigner func-Which typically occurs during the overdamped process of
tion from harmonic oscillators. To accommodate the overdamped be-
havior of the mean f|eld((k,t) into the mode equations, the
(i1h) o (K) 8(K) equations for the mode function, Eq42), at superhorizon
W(X(k) k)= f ( )e ' scales can be further approximated by
(k) 5(k)
pl X(0) = == x(K)+ ==t € vzl =0 3
Ha+ Zt)+MX(t) wk(D)=0. (34)
_ |f)(,k(t)|2
=P[|x(k)[]| Nyexg — — As a consequence, E(3) reduces to
— k() — dy(k,t) K2 b=
7 (k) — ——— BTN x(K) D (29) 3H + +M2(t) |x(k,t)=0. (35
AT dt a%t) "
where As expected, these equations are the classical Euler-
2 _ Lagrange field equations for the superhorizon modes of fluc-
BrIvik) 1= 1 I tuationsy(k,t) in the overdamped regime.
[Ix(kl1= 2| X 2| Following the same procedure, we can obtain a similar
Ity k(D] Aty k()] : proce
o equation for the fluctuating fieler(k,t) as
Since the Wigner function in Eq29) is definite positive, it dr, (k,t) K2
can be interpreted as a distribution function in the phase 3H Idt, 5 +Mf,(t) mi(k,t)=0. (36)
space of stochastic field perturbations. as(t)

For the perturbation modes just crossing out the horizon,
the dynamics of the classical fluctuations can be described by
the Wigner function in the limit ofA—0 while keeping o ) ) _
7|, (7)|2 fixed. In fact, the tern|f  ,(7)|? basically mea- The statistical properties of the classical fluctuation on
sures the variance of the field fluctuatioEsk) and will modek can be characterized by the PDF given by E34):

grow nonperturbatively due to the spinodal instabilities. As a

C. PDF of classical fluctuations

1 12 7 77-2(k)
result, the Wigner function becomes P[|mi(K)|]= (—) exg — '—1
7T|f‘rrk(t)|2 |fﬂ'k(t)|2
= — — (1)
W(x(k),m(k),t)= P[Ix(k)l]é( T (K) = II‘XT)IZX( ) 112 2K
X,k
SRR [ B L T
3D 7|t k(D)2 L k(D]?
The delta function in the above expression yields the equa- (37)
tions of motion for the classical fluctuations at superhorizon
scales: Apparently, the PDFs of the classical perturbation modes
mi(k) and x(k,t) are Gaussian with variancgs, ,(t)|* and
- () — | k(t)|?, respectively, under the Hartree approximation. It
7 (K1) — P Y(k,t)=0. (320  implies that

|f)( k( )|2
_ .— Mk, D) =0, (" (k1)) =0,
In terms of the classical fluctuatiop(k,t), Eg. (32) can be

rewritten as
XKDy =(2n=1)1 (x*(k,t))",

dy(k,t) 1/d )
dt "(dt'”“xk“)') k=0. (33 (m2(k,t)) = (2n— )1 (2K, D), (39

123522-5
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dependent. Suck dependence of variances eventually leads — =

wheren=1,2,... .However, the variances generally &e s 1
N (1‘ N)

1., 1 a1 o 5

N : _ _ 205 ((V9D = 3m Y
to nontrivial correlations between fluctuation modes which a
will be scrutinized later. N N N 1

In summary, after a quantum-to—class_lcal treLsmon, the +Z¢2<¢2>+ m<x2><¢,2>+ §(1+ N)<¢2>2}
dynamics of the classical stochastic fielgék,t), m(k,t)
must be based on Eq85) and(36) with the evolution of the 1
self-consistent mode functions. The corresponding PDF of +—
the perturbations is governed by E§7). In fact, by adding N
a noise term to the right-hand side of both E@%) and(36),
they become Langevin-like equations which are capable of + l( 1— £)<¢2><X2>+3_)‘<X2>2
describing the stochastic properties of perturbations. Thus, 4 N 8N
the noise correlations can be determined by the variances of,
the PDFs. For the case of a single free inflaton, the dynamic‘é"th [10]

1 . 1 1 3\
§<X2>+ E((VX)Z)—Em%(ZH 7052()(2)

: (40

of the superhorizon-sized fluctuations is governed by a a3k 4
Langevin equatiofl3], which is obtained by coarse graining (P ()= f 1 (D)2~ | — —
the degrees of freedom of all subhorizon mo@&4]. Ac- (2m)?® " 82 a
cording to the results we obtained here, the coarse-grained ) )
Langevin equation approach is effective not only for the situ- +— — | M(t)— B i Za_)
ation of a free scalar inflaton field, but also for models with 8m? a? X 6 a?/]

a self-interaction such as tl@(N) inflation.

Moreover, it should be pointed out that E¢84) and(35) s . 5
and their counterparts for the fluctuatimgk,t) field are not (x >(t):f wlfx,k(t)l
closed if considering only the classical fluctuations or the
superhorizon modes. By virtue dfiZ(t) and M%(t), the
subhorizon modes also contribute towards these diffusion-
type equations. This feature is anticipated because of the
inevitable coupling between all wavelength modes under a (41)
substantial self-interaction. Thus, the renormalized mass-

3

1 A4+ 1 A?
872 a* 8x2 a?

-2
Mz(t)—E+2a—
s 6 a2

squared terms play critical roles as phenomenological poten((vw)zxt) _ J d’k IF (D)2

tials. Consequently, Eq$34) and(35) and their counterparts (21)3 mk

for the 7(k,t) field provide a possible scheme to study the

interactions of the inflaton by comparing the phenomenologi- 1 A% A? 5 R
cal potentials given by data fitting with the predictka!li(t) lgn2 a2 842 M3 (1) = 5

andM?2(t). This characteristic is the main result of this pa-

per. 3
We now turn our attention to the cosmological implica- ((VX)2>(t)=f 2 )3k2|fx,k(t)|2
tions from the off-equilibrium dynamics of th®(N) infla- 7

tionary model in the next section. 1 A% 1A% R)
- = —=-=—=[M2t)—- =], (42)
8w a? 8?2 ® 6
IV. POWER SPECTRUM OF PRIMORDIAL where the Ricci scalaR=6(a?%/a+a/a)=12H2. Similar to
PERTURBATIONS the renormalization of Eq16), we have ignored logarithmic
. ) subtractions in the renormalization of the above equations.
A. Mass density perturbations The term summing up the energy density and the pressure,
The power spectrum of primordial perturbations is de-p+P. in Eq.(39) can be obtained by
scribed byP(k)=(|8|?) where the mass density perturba- p 1 1
tions are determined by the gauge invariant quanfif] PP _ o i | Y N 2
e Bl K et (R
5= 2P (39)
k= : 1 . 1
+
PP l-an [0+ (%) | (43

Apparently, the first termp? in Eq. (43) comes from the
The mass density fluctuatiofp originates from the field background inflaton field. The other terms, however, are con-
fluctuations; and y given by tributions from the fluctuations.

123522-6
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FIG. 1. The evolution oh=H/m, (VX/2)$/m, (\/2m?)(y?), FIG. 2. Mode functli)dfmk(t)| vs k (in units of m) att=40,
and ()\/2m2)<)(2), respectively, v& (in units of m—l) for initial 55, 70 (in units of m™*) under the same initial conditions and

conditionsH(0)=2m, $(0)~0, éz)(O):O, Mi(O):Mf,(O):mz parameters as in Fig. 1 for the caseNof 4.

with A=10"1*in the case oN=4. . .
rameter remains approximately a constam&=2 at t

B. Numerical examples <60m~ 1, but drops_dramatic_:ally_after>70m*1. Appar-
) o i ently, t<70m~! specifies the inflationary epoch.

We present numerical examples in this section to demon- i has been pointed out earlier that we treat the dynamics
strate the self-interaction _effec'g of thg(t) field upon the  of the Hubble parameted (t) classically without any quan-
power spectrum. To begin with, we need to find self-yym correction involved in Eq(6). It turns out that the back-
consistent solutions to the background figicand the mode  4round field does follow its classical equation of motion as
functions f, ,(t) and f, (t) from Egs.(10) and (12). We  the quantum corrections in EL0) give rise to a small
assumeg(0)~0 and ¢(0)=0 for the background field at &p/p~10"* in our case. Thus, when the semiclassical Ein-
the onset of inflation. The initialtE0) conditions of the  stein equations are employed for a truly self-consistent ap-
mode functions can be specified as effective free massivproach, it yields a similar solution df as shown ir{10].
scalar fields in an expanding universe: Figure 1 also shows tha(t)=(?)(t)=(x?)(t)=0 dur-

ing the first stage of inflationt<40m™?, in the spinodal

1 _ K2+ M2(0) regime where the initially positive/l)z( and M,ZT, turn nega-
fX,k(0)=ﬁ, fok(0)=—i TX tive quickly. The spinodal instabilities become important
V2[k*+M1(0)] eventually and lead to a significant growth of bdt?)(t)
and(x?)(t) starting att=55m"1. As expected, these prop-
1 _ K2+ MZ2(0) erties are not sensitive to the choice of the initial effective
k(0 =, (0= \/——5——  massesM(0) andMZ2(0). It canalso be seen from the
V2[k*+M7(0)] 2 mode function|f . (t)|* shown in Fig. 2.
(44 Evidently, the mode function undergoes a substantial in-

B P 2 crease in the period of 5 1<t<70m~?, but varies much
whgre we have sal(0)=1 ano!MX(O), M7(0) are the ef- g vor aftert=70m—1. This is owing to the predomination
fective mass squared of the field componeptand =, re-

) of the criterionM2 <0 in the spinodal region awned dur-
spectively. The values d#12(0) andM?(0) can be zero or a renonii, =% | Sp! reglons spaw ur

ing the sl Ili f the infl . he other h h
positive number, which depends on the details of the onset ing the slow rolling of the inflaton. On the other hand, the

inflation. Althoudh thi . v i decisi pinodal condition is only weakly satisfied over a span of
inflation. Although this uncertainty really is not decisive to ;41— gom=1 where the background starts a rapid
the evolution of the mode functiorfs, (t) and f \(t), it

. \ . falling into the valley of the inflaton potential. Therefore, the
turns out to become crucial for correlating the fluctuations a%rocess of spinodal instability terminates at titgajiven by
we will see later.

Figure 1 plots the expansion rai€t) of the Universe, the Y A
self-consistent solution to the background fieift), and the M2(te)= —m?+ Ecﬁz(te) +m(X2>(te)
fluctuations(?)(t), (x?)(t) where the parameters are taken
to be A\=10"'% N=4, andH(0)=2m, M%(0)=M?2(0) A 1),
=m?>0. The value foH(0) is determined from the energy +§( 1+ N) (§°)(te)=0. (45
density of the inflaton field given by E@6). During infla-
tion, the energy density of the inflaton is dominated by thatlt renderst,=(70-80m™1.
of the potential energy which leads t?(0)=(H/m)? The sharp decline oh signifies the end of inflation.
~NmP/M2\~O(1) for N~O(1), \~10 ** and the infla- Therefore, the number of total inflationagyfoldings is N,
ton massm~10* GeV. As a consequence, the Hubble pa-~Ht=2mt~140. The perturbation just about to enter the
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i . i i FIG. 4. Spectral inder(k) and its runningdn(k)/d Ink vs Ink
FIG. 3'_ The _power spe_ctrum of prlmqrq!al de”S'_tY perturbatlons(k in units ofm) with the same initial conditions and parameters as
vs Ink (k in units of m) with the same initial conditions and pa- in Fig. 1 for the case oN=4

rameters as in Fig. 1 for the caseN=4, 20, ando respectively.

V. THE CORRELATION OF PRIMORDIAL

present Hubble horizon should be transgressing the horizon PERTURBATIONS

in the inflationary era around=tg=40m~1, some 60
efolds before the end of inflation. We find that most of A. Correlation function and initial condition of classical field
energy density of the backgrouwfstate is transferred to the fluctuations
fluctuations(?) via the production ofr modes during the The equal-time two-point correlation functions of fluctua-
inflationary epoch. Sinc#12(t,)=0, theserr modes are in  tions have been extensively used to study applications of the
fact the massless Goldstone modes of the broken syn®(N) model to the off-equilibrium chiral phase transition in
metry phase. The Goldstone theorem is satisfiedelativistic heavy ion collisions where the coupling constant
dynamically. is of order 1[15]. The correlation caused by the off-
Using the numerical solutions, we calculate the powerequilibrium process is generic, because the evolution of fluc-
spectrum of primordial perturbations. The result is shown intuations is typically with respect to a time-dependent back-
Fig. 3, in whichN is taken to be 4, 20, and. TheN depen- ground. In our case, the mode functions of fluctuations
dence of the power spectrum is trivial. We find that thef, ,(t) andf, .(t) are not trivial plane waves; they depend
power is generallyk independent for modek which cross  rather on the dynamics of interaction or of self-interaction.
the horizon wheri<<55m~1. While the energy transfer from Hence, it would be interesting to search for the correlations
the background field to the fluctuations driven by the spin-of the primordial perturbations.
odal instability leads to a swift increase{g#?), the inflaton By means of Eq(11), the two-point correlation functions
field at later times rolls down the potential hill which also of the fluctuations are given by

results in an increase @f. This in turn renders the gradual i -
decrease in power for shorter-wavelength modes crossing out X Ox(x',1))

of the Hubble horizon at>55m"? as the increase o
dominates.

The spectral indexi(k) —1=dP(k)/dInk and itsk de-
pendencealn(k)/d Ink are given in Fig. 4. The value oif(k)
varies from unity at the larger scales akin110 to about
n<1 at the smaller scale askr-110. This leads to an index
runningdn(k)/d In k<0 in the wavelength range correspond-
ing to the horizon-crossing times during<8mt<70. Once
again, the physical reason for the running of the spectral
index is due to the energy transfer from the inflationary back-
ground field to the fluctuations as well as the evolution of the
inflaton field. Although one may refer this energy transfer to
the third- or even higher-order derivative of the effective
potential V" (¢) of the inflaton, the index running shown in
Fig. 4 can only be obtained through a proper off-equilibrium
dynamics, but not by the classical effective potential ap-
proach.

d’k ,
:f (277)3elk‘(x_X)|fx,k(t)|2

A
=— = | kdksink|x—x'|[f (1)|2,
2w2|x—x’|J | (V)]

(m(x,H (X', 1)

d3k ,
= G el

1 A
=—f kaksink|x—x'||f (D)2
27| x—x'|
(46
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FIG. 5. Mode function|f, (t)|? vs k(m) att=40, 55, 70 in FIG. 6. (m(x,t)m(x',t)) vs r=|x—x'| with initial conditions
units of m~*. All parameters are specified the same as in Fig. 2 2(0)=m? (lower line) and zero(upper ling for modes crossing
except the initial conditions, Eq$44), whereM?%(0)=MZ2(0)=0  the horizon at=40m L. The separation is in units ofm~1.
are assumed.

. ) ,  relation function depends sensitively on the initial conditions
where we have considered that the dynamicsfofu(t)|*  of the inflaton fluctuations. To illustrate this feature, we plot
and|f, ((t)|* is isotropic ink space. _ in Fig. 6 the correlation functioném(x,t) 7(x’,t)) obtained
_ It can be seen from Eq$46) that both correlation func- by two different initial conditionsM f,(0)>0 and Mi(O)
tions (x(x,t) x(x',t)) and (mri(x,t) mi(x',t)) over large spa-  _g \ve see that the respective behavioréofx,t) w(x',t))
tial distances|x—x'| are sensitive to the long-wavelength 4 scalesr = |x—x'| larger than 0.5 (which equals the

behavior of|f, (t)|* and |f . (t)| 2. However, the infrared 1,701 distance H) are quite distinguishable. WitW?2
behavior of the mode functions during the early stage of the g

) ) o -~ =0 initially, the correlation function scales as a power law:
inflation are actually governed by the initial conditions of the

fluctuations as shown in ER8). For instance, if we take the <7Ti(x,t),n,i(x/’t)>oc|x_x/|*1.8. (49)
initial valuesM?2(0)=M?(0)=m? in Eq. (44), then one can

show that with Eq(28) the correlations decay exponentially On the other hand, the correlation function clearly possesses
as exp—(mx—x'[)}=exp{—(Hx—x'|/2)} when we setH  an exponential falloff with distance when the initial condi-
=2m to mimic the constant expansion rate during the infla-tjon is taken to beM2(0)>0. This example shows that the
tion. Hence, the correlation between the inflationary perturinitia| conditions can be recalled from the tail of the correla-
bation modes is negligible if the spatial distance between th@on function of classical perturbations despite the fact that
modes is larger than a horizon sizé|x—x'|>H™"  the original quantum fluctuations for those superhorizon

=0.5m"*. On the other hand, if the initial conditions for the modes have gone through a quantum-to-classical transition
mode functions are chosen B (0)=M?2(0)=0, then the  during off-equilibrium evolution.

solution to the mode function can be approximated by

3\2 B. Detection of the two-point space-scale correlation

vt 5 The primordial density perturbations are governed by
| (t)|?= ————e?[v~(32)IHt, (47)  fluctuations of the fieldg and ;. Thus, the field correlation
k functions ( x(x,t) x(x',t)) and {;(x,t) m;(x’,t)) will inevi-
tably lead to a correlation of the primordial density perturba-
tion ( 8(x,t) 8(x’,t)). When perturbations of scakecross the
horizon at a timet, the equal-time two-point correlation
, , function between X,t) and (x’,t) will yield a correlation
(XD x(X ’t)>2<”(x't)77(x ’t)>o< 1 between two space-scale modesk) and (' k) via the
(x? (m?) (Ha|x—x’|)2' mapping formulak=a(t)H [Eqg. (39)]. The density contrast
(49 o(X) represents the fluctuations in total energy density at the
spatial pointx with a scalek.
This correlation clearly covers a spatial range much larger Obviously, one cannot measure the densétgergy per-
than the horizon sizel 2. turbations precisely on a scale and at a spatial poink
The numerical solutions dff . (t)|? with the vanishing  simultaneously. The essence &f(x) is as follows. When a
initial mass terms are plotted in Fig. 5. Obviously the modeperturbation crosses the horizon at the séateaH, the po-
functions given in Fig. 5 have shown very different infrared sition of the perturbation has an uncertainty typically given
behavior from those in Fig. 2, where we have talkefJ(O) by the size of the horizon—i.eAx=(aH) . By virtue of
= Mi(O)zmz. However, we expect that the tail of the cor- the uncertainty relatiodxAk=2s, the scale of the pertur-

This function is singular as B/whenk—0. For such infra-
red behavior of the mode function, we have

123522-9
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(52

1.
tJ:ﬁ jln2+In

bation thus lies within the band frork—(1/2)Ak to k  where the timet is taken to bet; specified by the relation
+(1/2)Ak where Ak=aH. Therefore,8,(x) describes the 2m2//L=k=aH. Sincea= exp(Ht) one has

by the spatial range from to x+ Ax and by the scale range

from k to k+Ak. The volume of this phase-space cell is

governs the correlation between two perturbation modes loThus, Eg.(51) can be used to determine the correlations
calized within the cells centering ax,k) and (x’,k) in the  between fluctuations at different spatial poihtndl’, both
(D) x(x', 1)y and {7 (x,t)7w(x",1)), it is indispensable to the inflationary epoch. o
decompose the mass density perturbations into xHe For example, in the case of a free scalar figldith mass
(DWT) is designed to do such a space-sd¢akk] decompo-

sition [16].

perturbation in a phase-space cellk) with a size confined 5
o
characterized bAx- Ak=27. Consequently 5, (x) 5 (x"))
phase (x-k) space. In order to unveil the effects of crossing out of the Hubble horizon at the same ttmauring
modes in phase space. The discrete wavelet transforfi, the DWT mode-mode correlations can be expressed as
In the formulation of DWT, there are two sets of spatially <X . )= f
jIX,

3

: : ; 9y k) g (k)
localized bases given by the scaling functidp$)s and the (277)32(K2+ m2) 12 Il IS
wavelet functionsj,l),,; both are characterized by the indi-
cesj andl. For a 1D sample with spatial sizg the index
j=0,1,2 ... stands for a scale frork; to k;+ Ak; in which R .
kj= 272)/L and Akj=2m2/L. The indexI=01,...,2 (XG1Xij0) = J (2n )32(|<2 2)1,2¢f|(k)¢,~,.,(k)-

—1 denotes the Iocat|on of the spatial point W|tmrh/2J
<x<L(I+1)/2. These bases are complete, and they satisfy
the orthogonal relatiog§,l’|j,1)s= 6 and(j’,l"]j,l

=58,,/6 ,,g.] For 3D sa\rITg1§Ies|,Jth>eS DWT bas(:‘elzvéJ are“gi\/)(;vn byS|nce¢J (k) is I(])callzed atk=2m2//L and ¢f(k) '52 non-
the direct product of the 1D bases. Thus, a density fié)d zero at k<2m2/L, one can apprOX|matekf+m )

can be decomposed into the phase-space mqgdesaé ;:;]th (I)ff t:]gsicﬁ-lﬁjsare greater than the Compton wave-

(53

3

dk ..

8,1=i8)= | d*a(x)¢;,(x)= 3(K) b (K), ~ ~ S L
o f o j (2m)3 8 <xj,|xj,|f>:mf Ak (k)9 (K) =0 if 1#17,

- d3k .

5j,IEW<ij|5>:j d3X5(X)l/’j,|(X):f (277)35(k)$j,|(k).

1 31, 3 * : ’
(50) <xj,|xj-,|r>22—fd ki (k) (k)=0 if 1#17,

(27)%2m

. - . (54
where ¢j,|(X)f<X|Jv|>Sa di(K)=(klj.Ds, .2
=(x[j,l)w, and ¢&; (k)=(k|j,l),; i.e., they are the scaling where the orthogonality of the DWT bases with respect to
functions and wavelet functions in either theepresentation the indiced,l’ has been applied. Similar results hold for the

or thek representation, respectively. field 7;,; . Hence, for the free field case the DWT modes are
Subsequently, the two-point correlation functions in Eg.not correlated and, therefore, the correlation function
(46) can be rewritten in terms of the DWT bases as (8k(X) 5k (x")) is trivial, as long as the scale under consider-
ation is larger than the Compton wavelength of the scalar
field.
-~ d3k o~ . However, for the self-interactin@(N) model the DWT
<Xj,lXj,l'>:f (ZT)3|fx,k(t)| i a(K) iy (K), mode-mode correlationgEq. (51)] are generally nonzero.

Accordingly, the two-point space-scale correlation
. (6k(X) 8 (x")) may become nontrivial and initial condition
_ d>k f 23 (K* (K dependent. Using Eq&39)—(43), it is straightforward to cal-
O (277)3| xk Dy (k) ) (K), culate the normalized two-point space-scale correlation func-
tion defined ag 88,/ )/(57)).
43K As a numerical example, the normalized two-point space-
<’7~Ti'j I;,i_j vy= f If . k(t)|2,:/,j I(k){!,,*l/(k), scale correlations of density perturbations under different ini-
T (2m)3 ' I tial conditions are plotted in Fig. 7, in which the parameters
are taken to bed=2m andL=2m". From Eq.(52), one

d3k R R has
(i) = f (ZT)3|fw,k(t)|2¢j,|(k)¢f|r(k),
(51) t,~(0.35+0.23m " *. (55)
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Fig. 7. That is, the space-scale correlation of density pertur-
bations in the model wittM2>0 initially does not experi-
ence a significant evolution during the first fevfoldings of

the inflationary expansion, while the correlation in the model

<8,

LN VR TR O |

with initial MfT=0 does. Therefore, thedependence of the
mode-mode correlation is practical to test the dynamical pre-
dictions about the evolutiont{ dependengeof the primor-

dial perturbations. Since the resolution of DWT basically can
be refined as required by the problem at hand, one is capable
] of exploring the physics of the very early Universe by means
of mode-mode correlations in phase space.
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T VI. CONCLUSION

Using theO(N) model as an example, we have investi-
FIG. 7. The normalized mode-mode correlation functions Ofgated the Self_interacting effects on the primordia' perturba_
density fields in phase space are plotted against the separdtion  tjons using a self-consistent off-equilibrium approach. It is
units of m™*) of two perturbation modes with respect to various nawn that most information of the dynamics and initial con-
sc'alesj under two diflferent sets of initial conditions. The parameter yitions of the system will be lost during the nonequilibrium
L is taken to be & evolution. The nonequilibrium evolution can only be probed
] ) ) via the observable remains produced from such a process. In
Thus for j=4-6 shown in Fig. 7, we havet; s paper, we have shown that the off-equilibrium evolution

2(1'53_2'339"71 which corresponds to the number of 4t cosmological inflation may have two such observable “re-
e-foldings Ht;=3.3-4.7. Since the inflation under consider- y3jns.”

. _ _ 71 . . . . ) ) ) .
ation lasts fromt=0 to aboutt=70m"", the correlations in The first one is the running spectral index of primordial

Fig. 7 actually probe the inflaton dynamics at the begi””i”%erturbations induced by the scale dependence due to the
of inflation. With M2(0)=M2(0)=m?>0, the space-scale self-interaction of the inflaton. We found that the running
correlation function approaches zero drastically as the disspectral index depends essentially on the rate of particle cre-
tancer between the two modes increases, while the correlagtion and the energy transfer from the background to the
tion deviates from zero and lasts for a long range for perturinflaton fluctuations as well as the evolution of the back-
bations withM%=MZ2 =0 initially. ground field. It is a signature of the energy transferring dy-
Figure 8 plots the same correlations as in Fig. 7 but withnamics during the inflation. Although the running index of
respect tg =8,9 ort;=(2.75-3.38)n"*, which corresponds the O(N) model is small compared to current data, the nega-
to the number oé-foldings Htj=5.52-6.8. The behavior of tive running(Fig. 4) does coincide with the WMAP obser-
correlations under the initial conditiorM2(0)=MZ%(0)  vation.
=m? remains the same. However, the correlations with The second remain is the correlation function between
Mf((O):Mf,(O):O do not coincide with those shown in phase-space modes of the density perturbation. Under the
influence of the self-interaction, fluctuations created from the
[ —— 15— — T background field are no longer white noises. Although the
I —— | one-point distribution function of fluctuations in each Har-
1‘3 i tree mode is Gaussian, the power of the fluctuations is scale
05— <4 05 — - dependent, which gives rise to the correlation between the
RN VAAN, phase-space modes of the energy density perturbation. More-
over, since the dynamical evolution of the correlation de-
pends upon the initial conditions of the inflation, the mode-
mode correlation of density perturbations also provides a
window to study the dynamics of the self-interactiaswell
asthe initial conditions of the inflation. Here, we would like
to emphasize two important results. First, the initial-
condition dependence of correlation functions is irrelevant to
the number of fields in action. Second, the inflationary den-
sity perturbations after the superhorizon evolution are not
fluctuations of the thermal equilibrium state. Therefore, the
dependence of the correlation function upon the initial con-
ditions does not contradict with the reheating of the Uni-
FIG. 8. The space-scale correlations as a function @i units ~ verse, which is generally produced by interactions between
of m™1) under two sets of initial conditions as those in Fig. 7 are ¢ and other fields. Thus, we may expect that the nontrivial
plotted with respect to finer scal¢s-8, 9. mode-mode correlation in phase space is detectable via a
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DWT analysis on the cosmic microwave backgrou@iB) ous effective potentials would be questionable if the interac-
temperature map or other observations of the large-scaléon or self-interaction of the inflaton is substantial.
structure relevant to the density perturbatiphg].

Although theO(N) model is just an example to illuminate
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