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Coupled dark energy: Parameter constraints fromN-body simulations
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We investigate cosmologies where dark matter~DM! is coupled to dark energy~DE!, through N-body
simulations. The dark-dark coupling introduces two novel effects in particle dynamics:~i! DM particle masses
vary with time;~ii ! gravity between DM particles is ruled by a constantG* , greater than Newton’s constantG,
holding in other two-body interactions. Hence, DM particle dynamics violates the equivalence principle and, as
a consequence, baryons and DM particle distributions develop a large scale bias. Here we focus on DE models
with Ratra-Peebles~RP! potentials. The dark-dark coupling is set in a parametric range compatible with
background and linear dynamics. We find that nonlinear dynamics puts additional constraints on the coupling
parameter. They mostly arise from cluster density profiles that we find to yield higher concentrations in coupled
RP models, with respect to~uncoupled! dynamical DE cosmologies. Such an enhancement, although being a
strong effect in some coupling parameter range, leads to acceptable observables for a significant range of
values of the coupling parameter. We also analyze the expected clustermass functionand the DM-baryon bias
in nonlinear conditions, finding them compatible with data. With the above restrictions, coupled DE models
with a RP potential are therefore consistent with cosmological nonlinear observables. As a general conclusion,
we confirm that cosmologies with a suitable dark-dark coupling are viable theories.
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I. INTRODUCTION

The nature of dark energy~DE! is one of the main puzzle
of cosmology. DE was first required by supernova type~Ia!
~SNIa! data @1#, but with a flat universe withVm.0.3, h
.0.7, andVbh2.0.02, is also favored by cosmic micro
wave background~CMB! and large scale structure~LSS! ob-
servations@2# (Vm,b are matter and baryon density param
eters;h is the Hubble parameter in units of 100 km/s/Mpc!.

DE could be a false vacuum; from the expression of
stress-energy tensor,Tmn

(DE)5Lgmn (L is a positive constan
and gmn is the metric tensor!, one immediately appreciate
that its pressure and energy density (pDE andrDE) have the
ratio w521. A false vacuum, however, requires severe fin
tuning at the end of the electroweak~EW! transition. Other-
wise, DE could be a scalar fieldf self-interacting through a
potentialV(f). Then

rDE5ḟ2/2a21V~f!, pDE5ḟ2/2a22V~f! ~1!

~here the overdots indicate differentiation with respect to
conformal timet anda is the scale factor, so that the bac
ground metric readsds25a2@2dt21d i j dxidxj #, i , j 51,3).
However, if the kinetic componentrk(f)[ḟ2/2a2 ap-
proaches the potential componentV(f), pDE vanishes and
the scalar fieldf behaves as CDM~cold dark matter!. This
happens, e.g., in the well known case of axion DM. B
even for lowerrk , if 1/2,rk /V,1, it is 21/3,w,0 and
the model, at most, approaches an open CDM behavior.
relevant domain is attained whenrk /V!1/2, although keep-
ing a state parameterw.21. Thenf approaches a CDM
with a cosmological constant (LCDM) behavior and is cur-
rently dubbeddynamicalDE @3–5#.
0556-2821/2004/69~12!/123516~10!/$22.50 69 1235
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The conceptual contiguity between DM and dynamic
DE suggests that they may not be disjoint entities. If so, o
could hopefully ease the cosmic coincidence problem,
that DM and DE densities, after being different by orders
magnitude for most of cosmic history, approach equal val
only in today’s Universe. The simplest way to deal with th
idea amounts to admitting an interaction between DM a
DE @6#. The coupling introduces an extra attractive force
DM particles, but not on baryons; this scalar gravity the
fore violates the equivalence principle, but for the DM com
ponent only, which is not directly observable. We shall re
to these models, where DM and dynamical DE interact,
coupledDE models. Different models were also propos
that introduce a direct link between DM and DE, invoking
unified model~e.g., @7#! or condensation mechanisms@8#.
Such models will not be considered here. In a number
papers@3,4,9,10#, it has been shown that, besides being
ceptable at a particle level, all cosmological data, predicta
within a linear theory, can be suitably fitted by coupled D
models.

An open question, then, concerns the emergence of n
linear structures in these models and how easy it is to
observed LSS data with predictable features. In this work
deal with this problem by usingN-body simulations of
coupled DE models for DE self-interacting through a Rat
Peebles~RP! potential@11#:

V~f!5L41a/fa. ~2!

Once the exponenta and the DE density parameterVDE are
fixed, the energy scaleL is set. This self-interaction allows
w!21/3, if L is sufficiently low.

Let us outline here that our nonlinear treatment sets p
cise constraints on coupled DE parameters. A wide param
©2004 The American Physical Society16-1
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TABLE I. Simulation details.

Model a b
Box size

(h21 Mpc)
No. of

particles
Mass resolution

(h21M ()
Force resolution

(h21 kpc)

RP1 0.143 0.05 80 1283 2.031010 5
RP2 0.143 0.10 80 1283 2.031010 5
RP3 0.143 0.15 80 1283 2.031010 5
RP4 0.143 0.2 80 1283 2.031010 1.2
RP5 0.143 0.25 80 1283 2.031010 1.2
RP6 2.0 0.15 80 1283 2.031010 5
LCDM 0 0 80 1283 2.031010 5
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space however remains where, apparently, these mode
LSS data as well as those with~uncoupled! dynamical DE.
Coupled DE with a RP potential, however, allows no im
provement of such a fit. The above motivations for coup
DE @12#, however, remain and, altogether, the nonlinear
is successfully passed and is useful to better define the
lowed parameter space.

N-body simulations of models with~uncoupled! dynami-
cal DE were recently performed@13–15#. Here we follow the
same pattern as@14# and use the programART @16# providing,
first of all, a fair dependence of the matter density param
Vm on the scale factora. To our knowledge, this is the firs
time an N-body simulation with species-dependent sca
gravity has been carried out. Our conclusions are based
simulations of a variety of models with different RP slopesa
and coupling parametersb. Let us list them here. First of all
we test two a slopes 0.143 and 2. The latter value a
proaches the greatest value for which agreement with C
observations is granted@3#. This is the range of RP model
which are most distant from theLCDM. We also explored a
wide set ofb couplings, ranging from 0.05 to 0.25. All simu
lations were performed starting from the same random n
bers and, for the sake of comparison, we also run aLCDM
simulation starting from such random numbers. The ot
parameters were set to values chosen in agreement wit
cent CMB experiments@2#: Vch

250.15, Vbh250.01, h
50.7 @Vc is the ~cold! DM density parameter#. All models
are normalized so thats850.75 today, to match both CMB
data and the observed cluster abundance@17#. Further details
on the simulation performed are listed in Table I.

For all these models we also run a high-resolut
simulation of a single halo, with a mass resolution
2.53109h21M ( and a force resolution of 1.2h21 kpc.

In the next section we discuss the linear and postlin
aspects of coupled DE, explaining, in particular, howVm(a)
is obtained and used. In Sec. III we focus on the Newton
regime for coupled DE models and describe the differ
gravitation of baryons and DM. In Sec. IV, we impleme
these prescriptions in the numerical code, so explaining w
further modificationsART needs to deal with coupled DE
Section V is then devoted to illustrating the results while,
Sec. VI, we draw our conclusions.

II. BACKGROUND EXPANSION IN MODELS
WITH COUPLED DARK ENERGY

Quite in general, energy density and pressure, for e
component, in models with dynamical DE, are obtaina
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from the stress-energy tensorsTmn
(c,b,r ,f) ~for CDM, baryons,

radiation, and DE, respectively; radiation includes neu
nos!. General covariance requires that the sumTmn of these
four tensors satisfies thecontinuity equation

Tn;m
m 50, ~3!

and, although this is true if all tensors satisfy it separate
such a requirement is not necessary; e.g., when we deal
fluctuations before hydrogen recombination, only the sum
the baryon and e.m. radiation tensors satisfies it. In a sim
way, if DE and DM interact, we can have that

T n;m
(f) m 5A16pG

3
bT(c)f ;n , ~4!

T n;m
(c) m 52A16pG

3
bT(c)f ;n

~hereT(c) is the trace of the CDM stress-energy tensor!, and
the sum of DM and DE satisfies Eq.~3!. No analogous in-
teraction should involve baryons, for which we assume t
T n;m

(b) m 50; in fact, experimental and observational co
straints restrict a hypothetical DE-baryon coupling tobb
,0.01@18#; also radiation cannot be involved, as the trace
its stress-energy tensor vanishes because of its equatio
state.

The particular form of the coupling~4! reduces to Brans-
Dicke scalar gravity upon a conformal transformation~see,
e.g., @12,18–20#!, generating terms of the formf (f,R) in
the so-called Jordan frame Lagrangian. In this frame one
generate species-dependent interactions by coupling m
to metrics with suitably defined conformal factors. Couplin
of the above form are expected in any low-energy limit o
multidimensional Lagrangian, where the dilaton plays t
role of the scalar field. Models based on such limits ha
been presented in the literature~see, e.g.,@21#!. A scalar cou-
pling is therefore an expected feature of any extension
Einstein’s gravity.

The explicit expression of the continuity equations is

f̈12Hḟ1a2V,f5A16pG/3ba2rc , ~5!

ṙc13Hrc52A16pG/3brcḟ, ~6!

ṙb13Hrb50, ~7!
6-2
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FIG. 1. Left panel: density parameters for radiation, baryons, DM, and DE. Just after radiation equivalence, a DE plateau occu
the dark-dark coupling. In the text this plateau is denominated thef-MDE stage. Right panel: evolution of the state parameterw for different
values ofb.
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ṙ r14Hr r50. ~8!

Here H5ȧ/a is the conformal Hubble parameter. The d
mensionless constantb2 can be seen as the ratio of th
DE-DM interaction with respect to gravity@6,18#. In these
models, afterequivalence, the world passes through thre
different expansion regimes, denominated~i! matter domi-
nated expansionf-~MDE!, ~ii ! the tracking phase@5#, and
~iii ! a final global attractor.

Immediately after equivalence, the world enters af-MDE
stage~see@6#!, not far from the matter dominated expansio
although one should not neglect a small correction, prop
tional tob, due to the kinetic termrk(f). V(f), instead, is
negligible and, accordingly, the correction is independen
the potential shape. By solving the Friedmann equation
find that

a}t4/(614b2), ~9!

i.e., that the scale factor grows more slowly than in a p
MDE ~in Sec. V B, we shall see that, on the contrary, t
perturbation growth is enhanced during this stage!. During
thef-MDE stage,V(f) gradually increases and, eventual
approaches and exceedsrk(f); then the world enters the
tracking phase, whose details depend on the potential sha
for most potentials, this phase ends up in aglobal attractor,
when the DE density overwhelms DM and any other den
ties.

Along the expansion history, the scaling ofrc ~DM den-
sity! is modified with respect to the uncoupled case and re

rc5
roc

a3
e2A16pG/3b(f2f0); ~10!
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here the subscripto indicates value at the present timeto ,
while we takeao51. Meanwhile, the baryon density grow
asa23, as usual.

In the next section we shall see that these behav
strongly affect the fluctuation growth, even in the Newtoni
regime. Figure 1~left panel! shows the different trends of th
density parameters for two different values of the coupl
parameterb. The three stages of the background evoluti
are clearly visible. For the sake of completeness we a
report in Fig. 1~right panel! the a dependence of the stat
parameterw for different value ofb. Notice that, for RP
models with a lowa, the value of the state parameter h
been quite close to21, since a redshift;3 –4.

Throughout these stages, however, according to the Fr
man equations, the following relation holds@13#:

dt

da
[x~a!5Ho

21AaVb~a!

Vb~ao!
. ~11!

Therefore, once thea dependence of the baryon density p
rameter is given, all derivatives with respect to time can
easily converted into derivatives with respect to the sc
factor. This relation will be used in the implementation of t
ART program.

III. DYNAMICS IN THE NEWTONIAN REGIME

Let us now consider density fluctuations and discuss th
evolution. First of all, the conformal metric must be modifie
to take into account the local gravitational fields and, in t
absence of anisotropic stresses, reads

ds25a2@2~112F!dt21~122F!dxidxj #,
6-3
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F being the gravitational potential. Let us usea5 loga as
the independent variable, instead oft. Differentiation with
respect toa will be indicated by a prime. Attention must b
paid not to confuse thisa with the exponent in the RP po
tential expression. As usual, fluctuations are expanded
Fourier components; let us then consider a componen
wave numberk and definel5H/k.

Baryons and CDM will be considered as fluids; fluctu
tions will then be characterized by density fluctuations

dc,b5drc,b /rc,b ~12!

(c,b stand for CDM and baryons! and velocity fieldsv i
c,b

[dxi /dt, from which we build the scalar variables

uc,b5 i
kiv

c,b
i

H . ~13!

Scalar field fluctuations (df) will then be described by the
variable

w5A 3

4pG
df. ~14!

In dealing with fluctuation evolution well after recombin
tion, we shall neglect the radiation component.

Taking into account density inhomogeneities, Eq.~3!
yields the dependence ofdc,b anduc,b on the scale factora.
The Friedmann equation will then be used to obtain the
pendence on time. We shall omit here the general form
these equations~see@10#!, and will write them in the New-
tonian limit, i.e., for small scales~in comparison with the
horizon scale;H21) and small velocities~with respect
to c).

The former condition tells us to consider the lowest-ord
terms inl; in this limit, the gravitational potential satisfie
equations that can be written in a simpler form by defin
the functionf (f) according to

V~f!5A expFA16pG

3
f ~f!fG , ~15!

as well as the functions

f 15f
d f

df
1 f , f 252A 3

16pG

d f1

df
1 f 1

2 ; ~16!

notice that this is no restriction on the potential shape. T

F52
3

2
l2~Vbdb1Vcd

c16Xw12Xw822Y2f 1w!,

~17!

F853Xw2F, ~18!

while the scalar field satisfies the equation
12351
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H8

H Dw81l22w212Xw14FX12Y2~ f 2w2 f 1F!

5bVc~dc12F!. ~19!

These expressions have been simplified by using the v
ables X258pGrk(f)a2/3H2 ~kinetic density parameter!
and Y258pGV(f)a2/3H2 ~potential density parameter!. It
follows that, if the DE kinetic~or potential! energy density
gives a substantial contribution to the expansion sourceX
~or Y) is O(1).

In the Newtonian limit, however, we also neglect the d
rivatives ofw, averaging out the rapid oscillations ofw and
the potential termf 2Y2w; this actually requires thatl
!( f 2Y)21 @recall thatY is O(1)]. Furthermore, in Eq.~19!,
the metric potentialF, which is proportional tol2, can also
be neglected. Accordingly, Eq.~17! becomes

F52
3

2
l2~Vbdb1Vcd

c!, ~20!

which is the usual Poisson equation, while Eq.~19! simpli-
fies into

l22w.bVcd
c. ~21!

In the same way~see@10#!, we obtain the continuity equa
tions

dc952dc8S 11
H8

H 22bXD1
3

2 S 11
4

3
b2DVcd

c1
3

2
Vbdb,

~22!

db952db8S 11
H8

H D1
3

2
~Vcd

c1Vbdb!, ~23!

and the Euler equations

uc852ucS 11
H8

H 22bXD2
3

2 S 11
4

3
b2DVcd

c2
3

2
Vbdb,

~24!

ub852ubS 11
H8

H D2
3

2
~Vcd

c1Vbdb!. ~25!

From the latter equations, we can derive the acceleration
single nonrelativistic CDM or baryon particle~massmc,b),
assuming that it lies in the empty space, at distancer from
the origin, where either a CDM particle of massMc or a
baryon particle of massMb is set.

In fact, owing to Eq.~10!, normalizing the scalar field so
that its present valuefo50, and assuming that the densi
of the particle is much larger than the background dens
we get

Vcd
c5

rMc
2rc

rcrit
5

8pGe2A16pG/3bfMcd~0!

3H2a
,

6-4
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Vbdb5
rMb

2rb

rcrit
5

8pGd~0!

3H2a
,

d being the Dirac distribution. Then, recalling that the dive
gence¹iv i

c,b5uc,bH, and using the ordinary~not conformal!
time variable, instead ofa, Eq. ~24! yields

¹iv i
ċ52H~122bX!¹iv i

c2
4pG* Mce

2A16pG/3bfd~0!

a2

2
4pGMbd~0!

a2
, ~26!

where the overdots indicate differentiation with respect
ordinary time,

G* 5GS 11
4

3
b2D ~27!

andH5d loga/dt.
We can integrate this equation, taking into account t

the acceleration is radial, as the attracting particle lies at
origin. It will then be

E d3x“• v̇54pE dx
d~x2v̇ !

dx
54px2v̇,

v̇ being the modulus of the~radial! acceleration~in the sec-
ond termx5uxu). Accordingly, for a CDM particle, the de
sired expression of the radial acceleration reads

v̇c52~122bX!Hvc
•n2

G* Mce
2A16pG/3bf

r 2
2

GMb

r 2

~28!

(n is a unit vector in the radial direction;r 5ax), which has
various peculiarities and ought to be suitably commented
To this end it is important to compare it with the radial a
celeration

v̇b52Hvb
•n2

GMce
2A16pG/3bf

r 2
2

GMb

r 2
~29!

of a baryon particle. In the expression~28!, notice first the
velocity term. This is a peculiar acceleration that exists e
in the absence of particles displaying their attraction;
presence means that CDM is not expanding in a comov
way, due to the extra gravity it feels. Accordingly, its pa
ticles do not follow geodesics, because their mass chang
time, and their ordinary~not comoving! linear momentum
obeys the equation

pċ52
G* Mce

2A16pG/3bf

r 2
2

GMb

r 2
.
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Baryon particles, instead, safely follow geodesics,
though feeling that CDM particle masses are varying.

Let us conclude this section by summarizing its spec
findings.~i! The mass assigned to CDM particles does v
in time, beingmc5moe2A16pG/3bf, while baryon particles
keep a constant mass.~ii ! When interacting between them
selves, CDM particles feel an effective gravitational const
G* 5G(114b2/3); any other particle-particle interactio
occurs with the ordinary Newtonian interaction constantG.

IV. METHODS

Particle mass variations and different interaction consta
ought to be taken into account in performingN-body simu-
lations. They will be based on the adaptive refinement t
code ~ART! @16# which has been suitably modified to de
with coupled DE models. TheART code starts with a uniform
grid, which covers the whole computational box. This g
defines the lowest~zeroth! level of resolution of the simula-
tion. The standard particle-mesh algorithms are used to c
pute density and gravitational potential on the zero-le
mesh. TheART code reaches high force resolution by refini
all high-density regions using an automated refinement a
rithm. The refinements are recursive: the refined regions
also be refined, each subsequent refinement mesh of diffe
resolution, size, and geometry covering regions of intere
Because each individual cubic cell can be refined, the sh
of the refinement mesh can be arbitrary and can match ef
tively the geometry of the region of interest.

The criterion for refinement is the local density of pa
ticles: if the number of particles in a mesh cell~as estimated
by the cloud-in-cell method! exceeds the level ofnthresh, the
cell is split ~‘‘refined’’ ! into eight cells of the next refinemen
level. The refinement threshold depends on the refinem
level. For the zero level it isnthresh52. For the higher level
it is set tonthresh54. The code uses the expansion parame
a as the variable time. During the integration, spatial refin
ment is accompanied by temporal refinement; namely, e
level of refinementl is integrated with its own time step
Dal5Dao/2l , whereDao5331023 is the global time step
of the zeroth refinement level. This variable time stepping
very important for the accuracy of the results. As the for
resolution increases, more steps are needed to integrat
trajectories accurately. Extensive tests of the code and c
parison with other numericalN-body codes can be found i
@22#.

Let us now describe the three main modifications
made to handle coupled DE. The first step amounts to
tinguishing between baryons and DM particles, which fe
different gravitational forces. Therefore, the potential on
grid is to be calculated twice, to fix the different forces th
the baryons and DM particles feel. All particles act on ba
ons through the usual gravitational constantG, which also
sets the action of baryons on DM particles. DM particle
instead, act on DM particles through a different interacti
constantG* 5G(114b2/3). The gravitational force is then
computed through the usual fast Fourier transform FFT
proach.

The second step amounts to taking into account that
effective mass of DM particles is time varying. Aside fro
the acceleration due to gravitation, each DM particle w
6-5
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therefore undergo an extra acceleration 2bX. In addition to
these two changes, peculiar to coupled DE models, we o
to take into account the right relation betweena and t, as
shown in Eq.~11!, wherex(a)5dt/da is given. By solving
the background equations, in a suitable file we providex(a)
for .200 scale factor valuesai , which we then interpolate

The models listed in Table I were first simulated in
80h21 Mpc box. We then selected the same halo in all sim
lations and magnified it. The low-resolution simulation, p
formed with a force resolution of 15h21 Mpc and a mass
resolution .231010h21M ( , allowed us to evaluate th
halo mass function. The high-resolution simulation, p
formed with a force resolution of.1.2h21 kpc and a mass
resolution of 2.543109h21M ( , magnified a sphere with a
radius of 5h21 Mpc, centered on the halo, allowing us
compare halo profiles down to a radius.5h21 kpc.

In addition to the above points, we could also test
nonlinear evolution of thebias between the amplitudes o
inhomogeneities in baryons and DM. This bias is one of
most peculiar features of coupled DE models and we s
describe how nonlinearity modifies it.

V. RESULTS

A. Mass function

We identify halos in simulations by using a Spheric
Overdensity~SO! algorithm, which we shall now describe i
more detail. As a first step, candidate halos are located
Friend of Friend~FOF! procedure, with linking lengthl
5U3d (d is the average particle separation! and keeping
groups with more thanNf particles (U andNf fixed below!.
We then perform two operations:~i! we find the pointCW
where the gravitational potential, due to the group of partic
has a minimum;~ii ! we determine the radiusr̄ of a sphere,
centered inCW , where the density contrast isDv ~we use the
virial density contrast found in the absence of dark-dark c
pling @13,23#!. Taking all particles withinr̄ we again perform
the operations~i! and~ii !. The procedure is iterated until w
converge onto a stable particle set. The set is discarded
some stage, we have fewer thanNf particles. If a particle is
a potential member of two groups it is assigned to the m
massive one. In this work we useU50.2 and takeNf so as
to have a mass threshold 5.031012h21 M ( .

Figure 2 shows the mass function for isolated halos
models with different values ofa and b. Let us recall that
the simulations have the same initial phases and the s
value s850.75. Thus, the differences between models
due only to different couplings orw(t). Remarkably, atz
50 the mass functions are practically indistinguishable
mass function has no ‘‘memory’’ of the past evolution. T
mass function obtained in this way is well fitted by the a
proximation provided by@24# for LCDM models ~long
dashed line in Fig. 2!.

B. Linear and nonlinear bias

From Eqs.~22!,~23!, the linear evolution of the densit
perturbations can be easily worked out~in some cases this
can be done analytically@19#!. In Fig. 3 we showdc,b as a
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As a consequence of these dynamical equations,dc devel-

ops a bias with respect todb, due to the extra gravity felt by
DM. At the present epoch, this bias, found in the line
theory, is well fitted by the following empirical expression

b~a,b!5
do

b

do
c

5
1

110.015ab12.1b2
. ~30!

FIG. 2. Mass function atz50 for a52 anda50.143. Fora
50.143 we report three curves, for different values ofb. They are
all practically indistinguishable and are well fitted by the appro
mation of @24#.

FIG. 3. DM and baryon linear perturbation growth for two di
ferent values ofb. The dependence ona is weak and could not be
appreciated in this plot.
6-6
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Both this expression and Fig. 4 show that the biasb depends
on b, while its dependence ona is very weak. Using the
high-resolution clusters we can test the behavior of the b
in the highly nonlinear regime. To do so, we define the in
grated biasB as

B~,r !5
rb~,r !2 r̂b

r̂b

•

r̂c

rc~,r !2 r̂c

,

whererc(,r ) and rb(,r ) are calculated inside a radiusr
from the halo center and we use a caret to denote ave
densities. In order to avoid problems with force resolutio
the central zone (r ,10h21 kpc) of the halo is not used. In
Fig. 5 we showB(,r ) for the same halo, in cosmologie
characterized by different coupling parametersb, keeping all
other parameters equal. Figure 5 shows that nonlinearity

FIG. 4. Linear bias as a function ofb for three values ofa.
Notice the very weak dependence ona.

FIG. 5. Behavior of the integrated biasB for b50.15 and for
b50.25. Notice thatB tends to the predicted linear bias~dashed
horizontal lines! at large scales.
12351
s
-

ge
,

g-

nificantly enhances the expected bias; however, at la
scales, we recover the theoretical linear value, as provide
Eq. ~30!.

The scale dependence of bias can also be apprec
from Fig. 6, where power spectra for baryons and D
worked out from simulations atz50, are shown.

C. Density profiles

Let us recall again that all simulations are started from
same random numbers. Therefore, it comes as no surp
that they yield similar world pictures. In theLCDM simula-
tion, we selected a halo whosevirial radius r v
5812h21 kpc encloses a massM v56.4531013h21M ( .
Similar halos, located in the same place, are set in all o
models considered. We then run new simulations of all m
els in Table I, magnifying the region centered on this ha
To do so, short waves were first added to the initial pert
bation spectrum in all simulations.

In LCDM, the halo profile is accurately fitted by
Navarro-Frenk-White~NFW! expression@25,26#:

r~r !

rcr
5

d*

~r /r s!~11r /r s!
2

with a scale radiusr s50.249h21 Mpc ~herercr is the critical
density andd* is a parameter which sets the halo dens
contrast!.

When the same halo is magnified in coupled DE mode
we find model dependent behaviors toward the halo cen
The essential restrictions to coupled DE models, arising fr
the nonlinear treatment, derive from these behaviors. H
ever, in spite of such model dependence in the central ar

FIG. 6. Power spectra for DM and baryon particles evalua
from the simulations averaging over 60 random observers. The
crease of the bias at small scales appears clearly.
6-7
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the outer parts of the halos (R.100h21 Mpc) show discrep-
ancies that, from 100h21 kpc to 700h21 kpc, never exceed
;10%.

Let us now discuss the substantial model depende
found in the central region (R,100h21 kpc). It was already
known that halos are denser in dynamical DE than inLCDM
@14#, although the density enhancement is fairly small a
hardly exceeds;40%. Higher density means smallerr s .
The coupled DE simulations we performed show that
dark-dark coupling tends to enhance this effect. In Fig. 7
overlap the profiles of the DM components of all our mode
starting fromLCDM ~lower curve!, up to a RP model with
coupling parameterb50.25 ~upper curve!. The values ofr s
change from.0.25h21 Mpc (LCDM) to .0.022h21 Mpc
(b50.25). The dependence ofr s on b is plotted in Fig. 8.

In order to make sure that this effect was not related
some peculiarity of the halo selected, we magnified t
other halos of a simulation withb50.25. Here we found
even lower values for the scale radiusr s (0.0105h21 Mpc
and 0.0103h21 Mpc, respectively!.

As a matter of fact, the profiles found forb50.25 or 0.2
can be fitted by a single power law:

r~r !

rcr
}r g

in the whole dynamical range, i.e., fromr 51.0h21 Mpc
down tor 50.005h21 Mpc ~resolution limit!, with a value of
g.22.30.

An analysis of Fig. 8 shows that only forb as low as
.0.1 doesr s attain half the value for theLCDM. Accord-
ingly, we may consider viable coupled RP models only w
b,0.1.

Simulations distinguish baryons from DM particles, as
ready discussed in the bias subsection. This allows u

FIG. 7. DM density profile for four different coupling value
and forLCDM.
12351
ce

d

e
e
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to

draw separate density profiles. They are shown in Fig. 9,
two different coupled DE models~upper panel!. No apparent
discrepancy between DM and baryon profiles can be se
they overlap fairly well, once we rescale them taking in
account the different values ofVb and Vc ~Fig. 9, lower
panel!.

In Fig. 10 we compare profiles of the same halo, with tw
different values ofa ~2.0 and 0.143!, but with the same
coupling (b50.15). The profiles overlap very well both fo

FIG. 8. Scale radius of a NFW profile as a function of t
coupling parameterb.

FIG. 9. Upper panel: DM and baryon density profiles~respec-
tively, upper curve and lower curve! for b50.15 and for b
50.25. Lower panel: once rescaled taking into account the diffe
valuesVb andVc , there is no discrepancy between DM and ba
ons.
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DM particles~upper curves! and for baryons~lower curves!.
We conclude that the slope of the profiles depends v
weakly ona.

VI. CONCLUSIONS

After finding that coupled DE models are consistent w
those observables whose behavior can be predicted a
linear level@3,4,10#, a test of their nonlinear behavior had
be carried out. An optimistic hope was that coupled DE m
els helped to solve some of the long standing contradicti
between observations and theoretical or numerical pre
tions ~e.g., @27#!. In particular, one could hope to find ha
profiles whose shape is not NFW~if this is still a problem!
with a slope distribution closer to the observed ones for lo
surface-brightness galaxies@28,29# and spiral galaxies@30#.
From this point of view, coupled DE with a RP potenti
leads to modest results. Very high coupling levels, instea
producing a flatter core, yield profiles still farther from o
servations. In all cases, the problem with the concentra
distribution is not solved, just as when having recourse
models with~uncoupled! dynamical DE.

FIG. 10. DM and baryon density profiles fora52 and a
50.143~hereb50.15).
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It should also be recalled that the RP potential conside
here is characterized by very lowa values. The scale facto
dependence of the state parameterw, for such values ofa, is
shown in Fig. 1 and approaches21 already at redshifts
;3 –4. As far as the state parameter is concerned, there
these models are quite close to theLCDM and, in a sense
could be considered a variant ofLCDMs, for which DE is
coupled to DM.

In spite of the lack of improvement for what concer
slopes,N-body simulations lead to really significant result
First of all, the parameter space for coupled DE models
restricted to couplingsb,0.1, but leaving wide room for
significant couplings. Apart from the question of profiles, t
halo mass function has been tested and found consistent
other DE models and with observations. Its evolution h
been predicted and can be tested against future data. F
this point of view, therefore, coupled DE passed the non
ear test.

PerformingN-body simulations was also important to te
the evolution of the bias between baryon and DM fluctu
tions, which is one of the main characteristics of coupled
models at the linear level. Here we showed that the bias
exists, and actually increases, in the nonlinear structures,
we studied its evolution. These results are open to an a
rate comparison with data which will be deepened elsewh

Let us conclude these comments, however, with a furt
observation. Coupled DE apparently leads to higher h
concentrations essentially because of the evolution of
mass of DM particles and of the coupling constant betwe
them. In the simulations we run, such mass depends on
and gradually decreases, as is predicted by coupled DE t
ries at the Newtonian approximation level. Accordingly, ea
DM particle mass was greater than today, in the past.
gravity was therefore stronger. This is the reason why,
though normalizing all models to the sames8 at z50, we
produce more concentrated halos: the forces which bo
them were stronger in the past than today.

After appreciating this point, one can tentatively propo
a way out for the halo concentration problem: a coupled
model leading to DM particle masses which increase in tim
This increase should also be fast enough to beat the hi
gravity constant binding DM particles. This takes us back
the selection of a suitable self-interaction potentialV(f),
which has no immediate obvious solution. This problem w
therefore be studied more deeply in future work.
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@23# R. Mainini, A.V. Macciò, and S. Bonometto, New Astron.8,
173M ~2003!.

@24# A. Jenkinset al., Mon. Not. R. Astron. Soc.321, 372 ~2001!.
@25# J.F. Navarro, C.S. Frenk, and S.D.M. White, Mon. Not.

Astron. Soc.283, L72 ~1996!.
@26# J.F. Navarro, C.S. Frenk, and S.D.M. White, Astrophys. J.490,

493 ~1997!.
@27# B. Moore, Nature~London! 370, 629 ~1994!.
@28# W.J.G. de Blok and S.S. McGaugh, Mon. Not. R. Astron. S

290, 533 ~1997!.
@29# R.A. Swaters, B. Madore, F. van den Bosch, and M. Balce

Astrophys. J.583, 732 ~2003!.
@30# A. Borriello and P. Salucci, Mon. Not. R. Astron. Soc.323,

285 ~2001!.
6-10


