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We investigate cosmologies where dark mat@eM) is coupled to dark energyDE), through N-body
simulations. The dark-dark coupling introduces two novel effects in particle dynaf)i€ particle masses
vary with time; (i) gravity between DM particles is ruled by a const&t, greater than Newton'’s consta@t
holding in other two-body interactions. Hence, DM particle dynamics violates the equivalence principle and, as
a consequence, baryons and DM particle distributions develop a large scale bias. Here we focus on DE models
with Ratra-PeeblesRP) potentials. The dark-dark coupling is set in a parametric range compatible with
background and linear dynamics. We find that nonlinear dynamics puts additional constraints on the coupling
parameter. They mostly arise from cluster density profiles that we find to yield higher concentrations in coupled
RP models, with respect tancoupledl dynamical DE cosmologies. Such an enhancement, although being a
strong effect in some coupling parameter range, leads to acceptable observables for a significant range of
values of the coupling parameter. We also analyze the expected chesgsrfunctiorand the DM-baryon bias
in nonlinear conditions, finding them compatible with data. With the above restrictions, coupled DE models
with a RP potential are therefore consistent with cosmological nonlinear observables. As a general conclusion,
we confirm that cosmologies with a suitable dark-dark coupling are viable theories.
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I. INTRODUCTION The conceptual contiguity between DM and dynamical
DE suggests that they may not be disjoint entities. If so, one
The nature of dark enerdpE) is one of the main puzzles could hopefully ease the cosmic coincidence problem, i.e.,
of cosmology. DE was first required by supernova tyla¢  that DM and DE densities, after being different by orders of
(SNIa) data[1], but with aflat universe withQ),,=0.3, h magnitude for most of cosmic history, approach equal values
=0.7, andQ,h?=0.02, is also favored by cosmic micro- only in today’s Universe. The simplest way to deal with this
wave backgroundCMB) and large scale structu(eSS) ob-  idea amounts to admitting an interaction between DM and
servationg 2] (Q,, are matter and baryon density param- DE [6]. The coupling introduces an extra attractive force on
eters;h is the Hubble parameter in units of 100 km/s/Mpc DM particles, but not on baryons; this scalar gravity there-
DE could be a false vacuum; from the expression of itsfore violates the equivalence principle, but for the DM com-
stress-energy tensoF,~=Ag,, (A is a positive constant ponent only, which is not directly observable. We shall refer
andg,,, is the metric tensgr one immediately appreciates to these models, wher_e DM and dynamical DE interact, as
that its pressure and energy densipy£ andppg) have the coupled DE models. Different models were also proposed
ratiow=— 1. A false vacuum, however, requires severe finethat introduce a direct link between DM and DE, invoking a
tuning at the end of the electroweékW) transition. Other-  Unified model(e.g., [7]) or condensation mechanisr8].

wise, DE could be a scalar field self-interacting through a Such models will not be considered here. In a number of
potentialV( ). Then papers[3,4,9,14Q, it has been shown that, besides being ac-

ceptable at a particle level, all cosmological data, predictable
poe= 2824 V(B), pog= 28— V() ) vr:/]lér(;lglsa. linear theory, can be suitably fitted by coupled DE
An open question, then, concerns the emergence of non-
(here the overdots indicate differentiation with respect to thainear structures in these models and how easy it is to fit
conformal timer anda is the scale factor, so that the back- observed LSS data with predictable features. In this work we
ground metric readds’=a’[ —d7*+ §;;dxdx], i,j=1,3).  deal with this problem by usind\-body simulations of
However, if the kinetic componenp,(¢)=$?/2a®> ap- coupled DE models for DE self-interacting through a Ratra-
proaches the potential componérte), ppe vanishes and PeeblegRP) potential[11]:
the scalar fieldp behaves as CDMcold dark matter This
happens, e.g., in the well known case of axion DM. But, V() =A% ¢ (2
even for lowerp,, if 1/2<p,/V<1, itis —1/3<w<0 and
the model, at most, approaches an open CDM behavior. Th@nce the exponent and the DE density paramet@pg are
relevant domain is attained whep/V<1/2, although keep- fixed, the energy scald is set. This self-interaction allows
ing a state parametev>—1. Then¢ approaches a CDM w<—1/3, if A is sufficiently low.
with a cosmological constani\(CDM) behavior and is cur- Let us outline here that our nonlinear treatment sets pre-
rently dubbeddynamicalDE [3-5]. cise constraints on coupled DE parameters. A wide parameter
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TABLE |. Simulation details.

Box size No. of Mass resolution Force resolution

Model @ B (h~*Mpc) particles (h~*Mg) (h~Ykpe)
RP, 0.143 0.05 80 128 2.0x10% 5

RP, 0.143 0.10 80 128 2.0x10% 5

RP; 0.143 0.15 80 128 2.0x 10 5

RP, 0.143 0.2 80 128 2.0x10% 1.2

RP; 0.143 0.25 80 128 2.0x 10% 1.2

RP; 2.0 0.15 80 128 2.0x 10 5

ACDM 0 0 80 128 2.0x 10 5

space however remains whe_re, apparently, these models fibm the stress-energy tensﬁg,;b*“”) (for CDM, baryons,
LSS data as well as those witancoupled dynamical DE.  radiation, and DE, respectively; radiation includes neutri-

Coupled DE with a RP potential, however, allows no im-nog. General covariance requires that the sty of these
provement of such a fit. The above motivations for coupledioyr tensors satisfies thentinuity equation

DE [12], however, remain and, altogether, the nonlinear test
is successfully passed and is useful to better define the al- T4 =0, 3)
lowed parameter space. ’

N-body simulations of models witfuncoupled dynami-  and, although this is true if all tensors satisfy it separately,
cal DE were recently performdd3-15. Here we follow the  such a requirement is not necessary; e.g., when we deal with
same pattern g44] and use the prograaRrT [16] providing,  fluctuations before hydrogen recombination, only the sum of
first of all, a fair dependence of the matter density parametethe baryon and e.m. radiation tensors satisfies it. In a similar
O, on the scale factoa. To our knowledge, this is the first way, if DE and DM interact, we can have that
time an N-body simulation with species-dependent scalar
gravity has been carried out. Our conclusions are based on 167G
simulations of a variety of models with different RP slopes T = TﬁT(C)fﬁ;w 4
and coupling parametefs. Let us list them here. First of all,
we test twoa slopes 0.143 and 2. The latter value ap-
proaches the greatest value for which agreement with CMB TO # — | Z—8T .,
observations is grantg@]. This is the range of RP models ’
which are most distant from theCDM. We also explored a © i
wide set of8 couplings, ranging from 0.05 to 0.25. All simu- (N€reT™ is the trace of the CDM stress-energy tensand
lations were performed starting from the same random numthe sum of DM and DE satisfies E(B). No analogous in-
bers and, for the sake of comparison, we also runGDM teLactlon shpuld involve bfaryons, for which we assume that
simulation starting from such random numbers. The othed ", =0; in fact, experimental and observational con-
parameters were set to values chosen in agreement with retraints restrict a hypothetical DE-baryon coupling £g
cent CMB experiment§2]: Q:h?=0.15, Q,h?=0.01, h  <0.01[18]; also radiation cannot be involved, as the trace of
=0.7[€. is the(cold) DM density parametér All models its stress-energy tensor vanishes because of its equation of
are normalized so thatg=0.75 today, to match both CMB state.
data and the observed cluster abunddidg Further details The particular form of the coupling}) reduces to Brans-
on the simulation performed are listed in Table I. Dicke scalar gravity upon a conformal transformatisee,

For all these models we also run a high-resolutione g.,[12,18-20), generating terms of the forf(¢,R) in
simulation of a single halo, with a mass resolution ofthe so-called Jordan frame Lagrangian. In this frame one can
2.5x10°h~'M, and a force resolution of 2 kpc. ~  generate species-dependent interactions by coupling matter

In the next section we discuss the linear and postlineafo metrics with suitably defined conformal factors. Couplings
aspects of coupled DE, explaining, in particular, h@w(a)  of the above form are expected in any low-energy limit of a
is qbtalned and used. In Sec. Il we focus on the Newton'arﬁnultidimensional Lagrangian, where the dilaton plays the
regime for coupled DE models and describe the differentole of the scalar field. Models based on such limits have
gravitation of baryons and DM. In Sec. IV, we implement heen presented in the literatusee, e.g21]). A scalar cou-

these prescriptions in the numerical code, so explaining Whaijing is therefore an expected feature of any extension of
further modificationsArRT needs to deal with coupled DE. Ejnstein’s gravity.

Section V is then devoted to illustrating the results while, in  The explicit expression of the continuity equations is
Sec. VI, we draw our conclusions.

b+ 2Hp+a?V ,=167G/3Ba’p;, 5
Il. BACKGROUND EXPANSION IN MODELS ¢ ¢ 34 pape ©
WITH PLED DARK ENERGY : :

cou © pe+3Hpe=—162GI3Bpch,  (6)
Quite in general, energy density and pressure, for each ]
component, in models with dynamical DE, are obtainable pp+3Hp,=0, @)
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FIG. 1. Left panel: density parameters for radiation, baryons, DM, and DE. Just after radiation equivalence, a DE plateau occurs, due to
the dark-dark coupling. In the text this plateau is denominate@tMDE stage. Right panel: evolution of the state paramettar different
values of3.

p,+4Hp,=0. (8) her_e the subscripd indicates \_/alue at the presentl timg,
while we takea,=1. Meanwhile, the baryon density grows
asa 3, as usual.

In the next section we shall see that these behaviors
strongly affect the fluctuation growth, even in the Newtonian
regime. Figure 1left pane) shows the different trends of the
density parameters for two different values of the coupling
parameterB. The three stages of the background evolution
are clearly visible. For the sake of completeness we also
report in Fig. 1(right panel the a dependence of the state
parameterw for different value of 3. Notice that, for RP
'models with a lowa, the value of the state parameter has
"been quite close te-1, since a redshift-3—-4.

Throughout these stages, however, according to the Fried-
an equations, the following relation holfis3]:

Here H=al/a is the conformal Hubble parameter. The di-
mensionless constam®? can be seen as the ratio of the
DE-DM interaction with respect to gravity6,18]. In these
models, afterequivalence the world passes through three
different expansion regimes, denominat@éd matter domi-
nated expansiom)-(MDE), (ii) the tracking phasg5], and
(iii ) a final global attractor.

Immediately after equivalence, the world enteis-&DE
stage(seg[6]), not far from the matter dominated expansion
although one should not neglect a small correction, propo
tional to B, due to the kinetic termp,(#). V(¢), instead, is
negligible and, accordingly, the correction is independent OFn
the potential shape. By solving the Friedmann equation we
find that

Qo6+ 487, 9) da_ 1D

i.e., that the scale factor grows more slowly than in a purerherefore, once tha dependence of the baryon density pa-
MDE (in Sec. VB, we shall see that, on the contrary, therameter is given, all derivatives with respect to time can be
perturbation growth is enhanced during this slag®uring  easily converted into derivatives with respect to the scale

the ¢-MDE stage V(¢) gradually increases and, eventually, factor. This relation will be used in the implementation of the
approaches and exceegg(¢); then the world enters the art program.

tracking phasewhose details depend on the potential shape;
for most potentials, this phase ends up iglabal attractor,
when the DE density overwhelms DM and any other densi-  !ll. DYNAMICS IN THE NEWTONIAN REGIME

ties.l h ion hi h i Let us now consider density fluctuations and discuss their
Along the expansion history, the scaling @f (DM den- o\ 1ytion. First of all, the conformal metric must be modified

sity) is modified with respect to the uncoupled case and readg, tae into account the local gravitational fields and, in the
absence of anisotropic stresses, reads

_Poc - T676Tp(4 - 00). (10

Pe™ 33 ds?=a?[— (1+2®)d 72+ (1—2P)dxdx'],
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& being the gravitational potential. Let us uae=loga as - H
H

the independent variable, instead of Differentiation with
respect tox will be indicated by a prime. Attention must be
paid not to confuse this with the exponent in the RP po-  =BQ(5+2d). (19
tential expression. As usual, fluctuations are expanded in
Fourier components; let us then consider a component ofhese expressions have been simplified by using the vari-
wave numbek and definex = H/k. ables X?=87Gp,(¢)a’/3H? (kinetic density parameter

Baryons and CDM will be considered as fluids; fluctua-and Y2=87GV(¢)a®/3H? (potential density parameterit
tions will then be characterized by density fluctuations follows that, if the DE kinetic(or potentia) energy density

gives a substantial contribution to the expansion souxce,
P=8peplpep (12  (orY)is O(1).
In the Newtonian limit, however, we also neglect the de-

(c,b stand for CDM and baryopsand velocity fieldsy? rivatives of ¢, averaging out the rapid oscillations gfand

=dx; /dr, from which we build the scalar variables the potential termf,Y?¢; this actually requires thaih
<(f,Y) ! [recall thatY is O(1)]. Furthermore, in Eq(19),

c,b the metric potentiad, which is proportional to\?, can also

o+ O N 20— 12X+ A4DX+2Y%(fp— D)

k. S0
6%P=i % (13 be neglected. Accordingly, E417) becomes
3
Scalar field fluctuations&¢) will then be described by the O=— EAZ(QbﬁbJrQC&C), (20)

variable
which is the usual Poisson equation, while EtR) simpli-

| 3 fies into
¢=\1,5% (14

In dealing with fluctuation evolution well after recombina-
tion, we shall neglect the radiation component. In the same waysee[10]), we obtain the continuity equa-

Taking into account density inhomogeneities, E§)  tions
yields the dependence 6f® and 6>° on the scale factoa.

N 20=B05". (21

The Friedmann equation will then be used to obtain the de-, , H' 3 4 , 3 4
pendence on time. We shall omit here the general form ofgC = -1+ W_Z'BX *t3 1+ §B Q5%+ Eﬂba '
these equation&see[10]), and will write them in the New- (22
tonian limit, i.e., for small scale$in comparison with the

horizon scale~H 1) and small velocities(with respect ) ) H'\ 3 )

to c). 8=—=5" 1+W +§(966C+Qb5), (23

The former condition tells us to consider the lowest-order
terms in\; in this limit, the gravitational potential satisfies
equations that can be written in a simpler form by defining
the functionf(¢) according to

and the Euler equations

Cr c H' 3 4 2 3 b
6% == 0°| 1+ = —2BX | = 5| 1+ 387 |08~ 50,5",

H 2
V<¢>=Aexp[ \/$f<¢>¢}, (15) 24

!

1+H
H

3 b
— 5(Qe8+ Q). (25)

as well as the functions 6°' = —¢°

¢ﬂ+f fo—_ [ 3 ﬂJrfz_ (16) From the latter equations, we can derive the acceleration of a
d¢p 167Gd¢p U single nonrelativistic CDM or baryon particlgnassm, ),

assuming that it lies in the empty space, at distané®m

notice that this is no restriction on the potential shape. Theithe origin, where either a CDM particle of mabs; or a
baryon particle of masMl,, is set.

fl:

3 In fact, owing to Eq.(10), normalizing the scalar field so
¢=- E)\Z(Qbab+ﬂcéc+ 6Xp+2Xo' —2Y?f1¢), that its present valug,=0, and assuming that the density
of the particle is much larger than the background density,
(17) f th icle i hil han the back d densi
we get
D'=3Xep— P, 18 ‘
¢ (18 o go P Pe_ 8rGe VIBTEREAN _5(0)
while the scalar field satisfies the equation ¢ Perit 3H?%a ’
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— Baryon particles, instead, safely follow geodesics, al-
Pv,~ P 87GS(0 ' . )
0, 8°= b _°or © , though feeling that CDM particle masses are varying.
Perit 3H?%a Let us conclude this section by summarizing its specific

findings. (i) The mass assigned to CDM patrticles does vary
4 being the Dirac distribution. Then, recalling that the diver-i, time, peingm,=m,e™ 167¢/36¢  while baryon particles

b_ pc, - : ’ . .
genceViv{""= 6°*H, and using the ordinar§not conformal  keep a constant mas§i) When interacting between them-

time variable, instead of, Eq.(24) yields selves, CDM particles feel an effective gravitational constant
G*=G(1+4pB2%3); any other particle-particle interaction
) 47G* M e V167CI3B4 5(0) occurs with the ordinary Newtonian interaction constant
Vof=—H(1-2B8X)Viui—
a2 IV. METHODS

47GM,5(0) Particle mass va_riations and Qifferent int'eraction constants
- (26) ought to be taken into account in performifgbody simu-

a? lations. They will be based on the adaptive refinement tree

code (ART) [16] which has been suitably modified to deal
where the overdots indicate differentiation with respect towith coupled DE models. TherT code starts with a uniform
ordinary time, grid, which covers the whole computational box. This grid
defines the lowedizeroth level of resolution of the simula-
4 tion. The standard particle-mesh algorithms are used to com-
1+ §,BZ) (27) pute density and gravitational potential on the zero-level
mesh. TheaRT code reaches high force resolution by refining
all high-density regions using an automated refinement algo-
andH=d log &/dt. , , o rithm. The refinements are recursive: the refined regions can
We can integrate this equation, taking into account thaksq he refined, each subsequent refinement mesh of different
th_e _acceleratlon is radial, as the attracting particle lies at th?esolution, size, and geometry covering regions of interests.
origin. It will then be Because each individual cubic cell can be refined, the shape
) of the refinement mesh can be arbitrary and can match effec-
3 : d(x%v) 5 tively the geometry of the region of interest.
f d XV'V:47TJ dx dx =4mX, The criterion for refinement is the local density of par-
ticles: if the number of particles in a mesh c@lb estimated
by the cloud-in-cell methgdexceeds the level afy, esh, the
cell is split(“refined” ) into eight cells of the next refinement
level. The refinement threshold depends on the refinement
level. For the zero level it i8esp= 2. FoOr the higher level
it is set tonhesi=4. The code uses the expansion parameter

G*=G

v being the modulus of th&adia) acceleration(in the sec-
ond termx=x|). Accordingly, for a CDM particle, the de-
sired expression of the radial acceleration reads

. . G*Mce V167Gl G M, a as the variable time. During the integration, spatial refine-
ve=—(1-2BX)Hv"-n— 5 B ment is accompanied by temporal refinement; namely, each
r r 29) level of refinement is integrated with its own time step

Aa,=Aa,/2', whereAa,=3x10" 2 is the global time step
of the zeroth refinement level. This variable time stepping is

(n is a unit vector in the radial direction;=ax), which has verv important for th . f the results. As the for
various peculiarities and ought to be suitably commented on €Ty 1mporiant for he accuracy of the resufts. As the force

To this end it is important to compare it with the radial ac- resolutio_n Increases, more steps are needed to integrate the
trajectories accurately. Extensive tests of the code and com-

celeration parison with other numericadll-body codes can be found in
Te-ca 22].
—V167G/3B¢ [ . . o e
b= Hw.n— GMee _ GM, (29) Let us now describe the three main modifications we
r2 r2 made to handle coupled DE. The first step amounts to dis-

tinguishing between baryons and DM patrticles, which feel
of a baryon particle. In the expressié28), notice first the diffe(ent gravitational forcc—_zs. Ther_efore, t_he potential on the
velocity term. This is a peculiar acceleration that exists everdid is to be calculated twice, to fix the different forces that
in the absence of particles displaying their attraction; itst"€ Paryons and DM particles feel. All particles act on bary-
presence means that CDM is not expanding in a comoving"S through_the usual gravitational con_st@atwhlch als_o
way, due to the extra gravity it feels. Accordingly, its par- ets the action of baryons on DM particles. DM patrticles,

ticles do not follow geodesics, because their mass changes {iSt€ad; agt on DM pazrticles through a different interaction
time, and their ordinarynot comoving linear momentum ~ constantG* =G(1+4p%/3). The gravitational force is then

obeys the equation computed through the usual fast Fourier transform FFT ap-
proach.
G* M e T67GT3B6 The second step amounts to taking into account that the
: ® CM, ffecti f DM particles is ti ing. Aside f
Pe=— — ) effective mass o particles is time varying. Aside from

2 2

r r

the acceleration due to gravitation, each DM particle will

123516-5
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therefore undergo an extra acceleratighX2 In addition to 1073 g T ———
these two changes, peculiar to coupled DE models, we ough
to take into account the right relation betwearandt, as

L1 1111n

——a=0.143
shown in Eq.(11), wherex(a)=dt/da is given. By solving
the background equations, in a suitable file we proyi¢e) - ----a=2.0 .
for =200 scale factor values; , which we then interpolate.
-4 — —Jenkins 01

The models listed in Table | were first simulated in a = 10
80h~ ! Mpc box. We then selected the same halo in all simu- &
lations and magnified it. The low-resolution simulation, per- ",
formed with a force resolution of ¥6*Mpc and a mass ¢
resolution ~2x 10"~ *M,, allowed us to evaluate the <
halo mass function. The high-resolution simulation, per- A
formed with a force resolution o£1.2h~*kpc and a mass <
resolution of 2.54 10°h~ M, magnified a sphere with a
radius of %1~ Mpc, centered on the halo, allowing us to
compare halo profiles down to a radiesssh ™t kpc. \

In addition to the above points, we could also test the
nonlinear evolution of théias between the amplitudes of 10-6 Ll e N
inhomogeneities in baryons and DM. This bias is one of the 1013 1014
most peculiar features of coupled DE models and we shall M /M
describe how nonlinearity modifies it. @

10-%

T
~
1

FIG. 2. Mass function at=0 for «=2 anda=0.143. Fora
V. RESULTS =0.143 we report three curves, for different valuesBofThey are
) all practically indistinguishable and are well fitted by the approxi-
A. Mass function mation of[24].

We identify halos in simulations by using a Spherical

Overdensity(SO) algorithm, which we shall now describe in function of the scale factca.
more detail. As a first step, candidate halos are located by a As a consequence of these dynamical equatiéhdevel-
Friend of Friend(FOP procedure, with linking lengtin  ops a bias with respect @, due to the extra gravity felt by
=UXd (d is the average particle separaficand keeping DM. At the present epoch, this bias, found in the linear
groups with more thail; particles U andNs fixed below.  theory, is well fitted by the following empirical expression:
We then perform two operationsi) we find the pointC,y
where the gravitational potential, due to the group of particle,

has a minimum{ii) we determine the radius of a sphere,

centered irCy,, where the density contrast4s, (we use the

virial density contrast found in the absence of dark-dark cou-

pling [13,23)). Taking all particles withirr we again perform

the operationgi) and(ii). The procedure is iterated until we

converge onto a stable particle set. The set is discarded if, &

some stage, we have fewer thip particles. If a particle is <

a potential member of two groups it is assigned to the more<

massive one. In this work we us¢=0.2 and takeN; so as

to have a mass threshold %00h 1M, . 300
Figure 2 shows the mass function for isolated halos for

models with different values of and 8. Let us recall that 1200+ b4t e e

the simulations have the same initial phases and the sam

value 0g=0.75. Thus, the differences between models are  ggg

due only to different couplings ow(t). Remarkably, atz )

=0 the mass functions are practically indistinguishable: a< 600

mass function has no “memory” of the past evolution. The

mass function obtained in this way is well fitted by the ap-

proximation provided by[24] for ACDM models (long

dashed line in Fig. 2

b % ! 30
(@B)= 8 1+0.015B+2.182 (39

1200 T vt | 1 T ] T T ] T T 7 T T

1

900

600

\

300

o
Q
V]
©
N
]
o]
(@]
@
—

B. Linear and nonlinear bias a

From Egs.(22),(23), the linear evolution of the density FIG. 3. DM and baryon linear perturbation growth for two dif-
perturbations can be easily worked dut some cases this ferent values of3. The dependence amis weak and could not be
can be done analyticallj19]). In Fig. 3 we shows®? as a  appreciated in this plot.
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FIG. 4. Linear bias as a function @ for three values ofx. L _
Notice the very weak dependence @n L -
. A B s L
Both this expression and Fig. 4 show that the tiatepends 0.1 0.5 1 5
on B, while its dependence on is very weak. Using the k (h/Mpc)

high-resolution clusters we can test the behavior of the bias
in the highly nonlinear regime. To do so, we define the inte- FIG. 6. Power spectra for DM and baryon particles evaluated
grated biadB as from the simulations averaging over 60 random observers. The in-
R . crease of the bias at small scales appears clearly.

Pp(<I)—pp Pc

,‘)b .Pc(<f)—;>c’ nificantly enhances the expected bias; however, at large

scales, we recover the theoretical linear value, as provided by

where p.(<r) and p,(<r) are calculated inside a radius Eq. (30).
from the halo center and we use a caret to denote average The scale dependence of bias can also be appreciated
densities. In order to avoid problems with force resolution,from Fig. 6, where power spectra for baryons and DM,
the central zoner(<10h~1kpc) of the halo is not used. In worked out from simulations &=0, are shown.
Fig. 5 we showB(<r) for the same halo, in cosmologies
characterized by different coupling parametgrkeeping all

B(<r)=

other parameters equal. Figure 5 shows that nonlinearity sig- C. Density profiles
Let us recall again that all simulations are started from the
1 ' ' - - same random numbers. Therefore, it comes as no surprise
" ] that they yield similar world pictures. In theCDM simula-
0.9 - . tion, we selected a halo whoseirial radius r,
= =812h lkpc encloses a mas#l,=6.45< 10" M.
v 08 Similar halos, located in the same place, are set in all other
0 models considered. We then run new simulations of all mod-

0.7 els in Table I, magnifying the region centered on this halo.

To do so, short waves were first added to the initial pertur-
bation spectrum in all simulations.

In ACDM, the halo profile is accurately fitted by a
Navarro-Frenk-WhitéNFW) expressior]25,26:

=025 «=0.143 1

= p(r) _ o
% i | Per  (rlrg(1+r/rg)?
0.7 _
06 i =015 «=0.143 ] with a scale radius,=0.24% "~ * Mpc (herep, is the critical
’ . | . | , | , density ands* is a parameter which sets the halo density
1 2 3 4 contras}.
R (Mpc h-1) When the same halo is magnified in coupled DE models,

we find model dependent behaviors toward the halo center.
FIG. 5. Behavior of the integrated bi&for 8=0.15 and for ~ The essential restrictions to coupled DE models, arising from
B=0.25. Notice thaB tends to the predicted linear biégdashed the nonlinear treatment, derive from these behaviors. How-
horizontal line$ at large scales. ever, in spite of such model dependence in the central areas,
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FIG. 7. DM density profile for four different coupling values FIG. 8. Scale radius of a NFW profile as a function of the
and for ACDM. coupling parameteg.

the outer parts of the halo®¢-100h~* Mpc) show discrep-  graw separate density profiles. They are shown in Fig. 9, for
ancies that, from 100 *kpc to 700 *kpc, never exceed o different coupled DE modelaipper panél No apparent
~10%. _ _ discrepancy between DM and baryon profiles can be seen:
Let us now discuss the substantial model dependencgey overlap fairly well, once we rescale them taking into
found in the central regionrR<10Ch™* kpc). It was already  account the different values @@, and Q. (Fig. 9, lower
known that halos are denser in dynamical DE thah ®DM ane).
[14], although the density enhancement is fairly small ancf In Fig. 10 we compare profiles of the same halo, with two
hardly exceeds-40%. Higher density means smallef.  different values ofa (2.0 and 0.148 but with the same

The coupled DE simulations we performed show that thegoupling (3=0.15). The profiles overlap very well both for
dark-dark coupling tends to enhance this effect. In Fig. 7 we

overlap the profiles of the DM components of all our models,

starting fromA CDM (lower curve, up to a RP model with 108 | —
coupling parameteB=0.25 (upper curveé The values of 107 b - B=1025 4
change from=0.25""1Mpc (ACDM) to =0.022h~ ! Mpc . 10 b ——-$=015 3
(8=0.25). The dependence of on 8 is plotted in Fig. 8. a 105 3 E
In order to make sure that this effect was not related to >
some peculiarity of the halo selected, we magnified two 10‘? L
other halos of a simulation witl8=0.25. Here we found 1000 ¢ E
even lower values for the scale radius (0.010% ! Mpc 100 £ 2
and 0.0108~* Mpc, respectively. 10 —+—++HH—+—++HHH— - ———]
As a matter of fact, the profiles found f@=0.25 or 0.2 10 g 1
can be fitted by a single power law: 10" f= 0.15 3
5 10°F = E
p(r)och NGRS \\\\ 2
Pecr Lot ;— \\\ -;
C ~ 4
in the whole dynamical range, i.e., from=1.0h~!Mpc 1?325_ \\\ 3
down tor =0.005% ! Mpc (resolution limiy, with a value of N
y=-230. _ 'S0t 0.01 0.1 1
An analysis of Fig. 8 shows that only fg8 as low as R (Mpc h-1)

=0.1 doesr attain half the value for thd CDM. Accord-
ingly, we may consider viable coupled RP models only with  FiG. 9. Upper panel: DM and baryon density profilesspec-
p<0.1. tively, upper curve and lower curyefor =0.15 and for 8
Simulations distinguish baryons from DM particles, as al-=0.25. Lower panel: once rescaled taking into account the different
ready discussed in the bias subsection. This allows us tealuesQ, and()., there is no discrepancy between DM and bary-
ons.
123516-8
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It should also be recalled that the RP potential considered
here is characterized by very low values. The scale factor
dependence of the state parametefor such values of, is
shown in Fig. 1 and approachesl already at redshifts
~3-4. As far as the state parameter is concerned, therefore,
these models are quite close to th€ DM and, in a sense,
could be considered a variant AfCDMSs, for which DE is
coupled to DM.

In spite of the lack of improvement for what concerns
slopes,N-body simulations lead to really significant results.
First of all, the parameter space for coupled DE models is
restricted to couplinggs<0.1, but leaving wide room for
significant couplings. Apart from the question of profiles, the
halo mass function has been tested and found consistent with
other DE models and with observations. Its evolution has
been predicted and can be tested against future data. From
this point of view, therefore, coupled DE passed the nonlin-
10 Lo il T N , ear test.

0.001 0.01 0.1 1 PerformingN-body simulations was also important to test
R (Mpc h-l) the evolution of the bias between baryon and DM fluctua-
tions, which is one of the main characteristics of coupled DE

FIG. 10. DM and baryon density profiles fat=2 and @  models at the linear level. Here we showed that the bias still
=0.143(here 8=0.15). exists, and actually increases, in the nonlinear structures, and

_ we studied its evolution. These results are open to an accu-

DM particles(upper curvesand for baryonslower curves. o comparison with data which will be deepened elsewhere.
We conclude that the slope of the profiles depends very Let us conclude these comments, however, with a further
weakly ona. observation. Coupled DE apparently leads to higher halo
concentrations essentially because of the evolution of the

VI. CONCLUSIONS mass of DM particles and of the coupling constant between

After finding that coupled DE models are consistent withthem- In the simulations we run, such mass depends on time
those observables whose behavior can be predicted at tf¢'d gradually decreases, as is predicted by coupled DE theo-
linear level[3,4,10, a test of their nonlinear behavior had to 'ies at the Newtonian approximation level. Accordingly, each
be carried out. An optimistic hope was that coupled DE modPM particle mass was greater than today, in the past. Its
els helped to solve some of the long standing contradictiongravity was therefore stronger. This is the reason why, al-
between observations and theoretical or numerical predighough normalizing all models to the samg at z=0, we
tions (e.g.,[27]). In particular, one could hope to find halo produce more concentrated halos: the forces which bound
profiles whose shape is not NFWf this is still a problem  them were stronger in the past than today.
with a slope distribution closer to the observed ones for low- After appreciating this point, one can tentatively propose
surface-brightness galaxi¢28,29 and spiral galaxie§30]. a way out for the halo concentration problem: a coupled DE
From this point of view, coupled DE with a RP potential model leading to DM particle masses which increase in time.
leads to modest results. Very high coupling levels, instead of his increase should also be fast enough to beat the higher
producing a flatter core, yield profiles still farther from ob- gravity constant binding DM particles. This takes us back to
servations. In all cases, the problem with the concentratiothe selection of a suitable self-interaction potentigi®),
distribution is not solved, just as when having recourse tavhich has no immediate obvious solution. This problem will
models with(uncoupled dynamical DE. therefore be studied more deeply in future work.
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