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Chaotic scalar fields as models for dark energy
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We consider stochastically quantized self-interacting scalar fields as suitable models to generate dark energy
in the Universe. Second quantization effects lead to new and unexpected phenomena if the self-interaction
strength is strong. The stochastically quantized dynamics can degenerate to a chaotic dynamics conjugated to
a Bernoulli shift in fictitious time, and the right amount of vacuum energy density can be generated without
fine-tuning. It is numerically observed that the scalar field dynamics distinguishes fundamental parameters such
as the electroweak and strong coupling constants as corresponding to local minima in the dark energy land-
scape. Chaotic fields can offer possible solutions to the cosmological coincidence problem, as well as to the
problem of uniqueness of vacua.

DOI: 10.1103/PhysRevD.69.123515 PACS nuni®er98.80—k, 03.70:+k, 05.45.Jn

I. INTRODUCTION Universe, whereas the matter energy density decreases with
a3, wherea(t) is the scale factor in the Robertson-Walker
There is by now convincing observational evidence thaimetric. It looks like a very strange coincidence that right now
the Universe is currently in a phase of accelerated expansione live at an epoch where the vacuum energy density and
[1,2]. The favored explanation for this behavior is the exis-matter density have the same order of magnitude, if during
tence of vacuum energy or, in a more general setting, of darkhe evolution of the Universe one is constant and the other
energy. The observations suggest that the Universe currentbhe decreases agt) 3.
consist of approximately 73% dark energy, 23% dark matter, To this list one may add yet another fundamental problem
and 4% ordinary mattef3]. The nature and origin of the which we may call the uniqueness problem.
dominating dark energy component are not understood, and (3) The uniqueness problerBtring theory allows for an
many different models co-exist. The simplest models associenormous amount of possible vacua after compactification.
ate dark energy with the vacuum energy of some unknowrn each of these states the fundamental constants of nature
self-interacting scalar field, whose potential energy yields aan take on different possible values. But what is the mecha-
cosmological constanit4]. In quintessence models slowly nism that selects out of these infinitely many possibilities the
evolving scalar fields with a nontrivial equation of state arephysically relevant vacuum state, with its associated funda-
considered5]. String theory also yields possible candidatesmental constants that give rise to a Universe of the type we
of scalar fields that might generate dark energy, in the fornknow (that ultimately even enabled the development of fife
of runaway dilatons and moduli field$]. Various exotic  Relating the answer purely to an anthropic principle seems
forms of matter such as phantom matftéf and Born-Infeld  unsatisfactory.
quantum condensat¢8] are currently being discussed. For  In this paper we consider a new model for dark energy
some superstring cosmology ideas related to small cosmavhich, as compared to other models, is rather conservative.
logical constants, see al$8]. It just associates dark energy with self-interacting scalar
When trying to formulate a suitable model for dark en-fields corresponding to @* theory, which is second quan-
ergy, at least two unsolved fundamental problems arise.  tized. However, the fundamental difference from previous
(1) The cosmological constant probleMlhy is the ob- approaches is that these fields are very strofglher than
served vacuum energy density so small, as compared to typiveakly) self-interacting, and that 2nd quantization effects
cal predictions of particle physics models? From electrowealplay an important role. We will use as the relevant method to
symmetry breaking via the Higgs mechanism one obtains guantize the scalar fields the stochastic quantization method
vacuum energy density prediction that is too large by a factomtroduced by Parisi and W.0]. In the fictitious time vari-
10°° as compared to the currently observed value. Spontaneble of this approach, the fields will turn out to perform rapid
ous symmetry breaking in grand unified theory models isdeterministic chaotic oscillations, due to the fact that we con-
even worse, it yields a discrepancy by a factor of'10 sider not a weakly but a very strongly self-interacting field.
(2) The cosmological coincidence probleihy is the  This chaotic behavior is a new effect not present in any clas-
order of magnitude of the currently observed vacuum energgical treatment. It is generally well known that chaos plays
density the same as that of the matter density? A true cosm@n important role in general relativityl1], quantum field
logical constant stays constant during the expansion of ththeorie§12—14), and string theoriegl5]. The main result of
our consideration is that the chaotic field theories considered
naturally generate a small cosmological constant and have
*Permanent address: School of Mathematical Sciences, Quedghe scope to offer simultaneous solutions to the cosmological
Mary, University of London, Mile End Road, London E1 4NS, U.K. coincidence and uniqueness problems.
Electronic  address:  c.beck@gmul.ac.uk;  URL:  http://  Our physical interpretation is to associate the chaotic be-
www.maths.gmul.ac.ukf beck havior of the scalar fields with tiny vacuum fluctuations
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which are allowed within the bounds set by the uncertaintycuss spontaneous symmetry breaking phenomena for the
relation, due to the finite age of the Universe. This interprechaotic fields.

tation naturally leads to the right amount of dark energy den-

sity being generated, and fine-tuning can be avoided. The I1l. STOCHASTIC QUANTIZATION OF STRONGLY

chaotic fields(presently have a classical equation of state SELF-INTERACTING SCALAR FIELDS

close tow=—1, and can thus account for the accelerated . . . L
expansion of the Universe. However, during the early evolu- Let us consider a s_elf-mteractlng scalar fiafdin the_ :

. . ' - . Robertson-Walker metric. For a complete theory describing
tion of the Universe they behave in a different way: They

factivel K radiati d Thi il hel all quantum mechanical fluctuations we need to second-
effectively track radiation and matter. This property will nelp 4 antize it. This can be done via stochastic quantization. In
to avoid the cosmological coincidence problem.

- - - ) the Parisi-Wu approach of stochastic quantization one con-
The chaotic model also contains an interesting symmetrygers 5 stochastic differential equation evolving in a ficti-

between gravitational and gauge couplings. In our model thgoys time variables, the drift term being given by the clas-
role of a metric for the 5th coordinaténe fictitious time is  sjcal field equatiorf10]. Quantum mechanical expectations
taken over by dimensionless coupling constants which argorrespond to expectations with respect to the generated sto-
given by the ratio of the fictious time lattice constant andchastic processes in the limit-o. The fictitious times is
physical time lattice constant squaréabth lattice constants different from the physical time; it is just a helpful fifth

can still go to zero, just their ratio is fixedThese coupling coordinate to do the 2nd quantization. Neglecting spatial gra-
constants do not occur in any classical treatment but are emlients the fielde is a function of physical time and ficti-
tirely a consequence of our second quantized treatment. TH®us times. The 2nd quantized equation of motion is
vacuum energy generated depends on these couplings in a

pon-trivial way. The physical significange of our model is igo=£,'o+3H<'p+V’(<p)+L(s,t), 1)
illustrated by the fact that we numerically observe the Js

vacuum energy to have local minima for coupling constants . . .
that numerica?lz/ coincide with running electrO\?veagk couplingWhereH is the Hubble parametel, is the potential under

strengths, evaluated at the known fermionic mass scales, %)n&deratlon and(s,t) is Gaussian white noisej corre-

. . ated in boths andt. For e.g. a numerical simulation we may
well as running strong coupling constants evaluated at th%iscretize Eq(1) using

known bosonic mass scales. This numerical observation, pre-

viously reported irf14], is now embedded into a cosmologi- s=nr, 2)
cal context. The role of the chaotic fields in the Universe can
be understood in the sense that they are responsible for fixing t=i4, 3

and stabilizing fundamental parameters as local minima in ) ) . o . .
the dark energy landscape. This is somewhat similar to th@heren andi are integersy is a fictitious time lattice con-
role the dilaton field plays in string theory after supersym-Stant, andé is a physical time lattice constant. The con-
metry breaking. tinuum limit requirest—0, 6—0, but we will Iate_r argue
Our numerical discovery of local minima that coincide that it makes physical sense to keep small but f|n|te_ lattice
with known standard model coupling constants makes it vengonstants of the order of the Planck length. We obtain
unlikely that there are different Universes with different fun- i i
damental parameters. In fact, the numerical results provide #n+1~ %n _
strong evidence that there is a unique vacuum state of the T
Universe that possesses minimum vacuum energy precisely ,
for the known set of standard model parameters. +V'(¢p)+ noise. (4)
This paper is organized as follows. In Sec. Il we show__ | . . )
how a second-quantized scalar field dynamics can degeneral8is €an be written as the following recurrence relation for
to a chaotic dynamics in fictitious time. Our main example isthe field en:
a chaotice? theory leading to 3rd order Tschebyscheff maps,

1 S H
§(¢:1+1_2(P|r1+¢|r1 D+35(eh—en )

Lo A : . . Hr .
which is dealt with in Sec. Ill. In Sec. IV we present a L =(1—a) iy T 43— (ol — 'Y
physical interpretation of the chaotic dynamics using the un- ena=( 1 (en 3 (&n = en
certainty relation, which in a natural way fixes the order of o
magnitude of the vacuum energy density to be generated. + E(qoin“ﬁL o1+ 7 noise, (5)

Section V deals with the energy, pressure and classical equa-

tion of state of the chaotic fields. In Sec. VI we consider the . . . L

Einstein equations associated with our model and discuss v()ihere a dimensionless coupling constanis introduced as
possible way to avoid the cosmological coincidence prob-

lem. Section VIl yields a prediction for the current ratio of a::2_7-‘
matter energy density and dark energy density to the critical 52

energy density. In Sec. VIl we describe how local minima of ,
the dark energy landscape generated by the chaotic fields ciie also introduce a dimensionless field variableby writ-

fix the fundamental parameters. Finally, in Sec. IX we dis-ing ¢;,=®,Pmax, Wherep,ax is some(so fap arbitrary en-

6
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ergy scale. The above scalar field dynamics is equivalent to a lll. CHAOTIC ¢* THEORY
spatially extended dynamical systdim coupled map lattice

[16]) of the form An interesting observation is the following one. The lat-

tice constantr of fictitious time should be small, in order to
3 approximate the continuum theory, which is ordinary quan-
Ol =(1—a)T(P))+ E|_| Sa(d—d 1) tum field theory. Ifr is small one naively expects the map
given by Eq.(8) to be close to the identity for finite forces
a . V', since 7V'/pmax 1S small. What about, however, very
+ E(CID',1+1+ ®~Y+ 7 noise, (7)  strong forces/’ due to very strongly self-interacting fields?
If pmax/ 7 is of the same order of magnitude ®$ then a
nontrivial mapT can arise. In particular, this map may even
exhibit chaotic behavior.
As a distinguished example of @* theory generating
V' (Pra®)- ®) strongest possible chaotic behavior, let us consider the map

where the local map is given by

-
T(@)=0+ Pmad1l—a)
, Dy =T 5(Py)=—4D7+3P, (15
Here the prime means
on the interval® e[ —1,1]. T_5 is the negative third-order
g 1 9 9 Tschebyscheff map, a standard example of a map exhibiting
90 Prax D ©) strongly chaotic behavior. It is conjugated to a Bernoulli
shift, thus generating the strongest possible stochastic behav-
Note that a symmetric diffusively coupled map lattice of theior possible for a smooth low-dimensional deterministic dy-
form namical system. The corresponding potential is given by

! =(1—a)T(<Di)+E(<D”1+CI>"1)+7-~noise Vo _lrap 1, " i 16
n+1 n 2 n n _3(p)= T ¢ > ¢ const, (16)
(10) max

. . . . or, in terms of the dimensionless fieddl,
is obtained ifH <1, equivalent to

1-«
S<H™ L, (11) V_s(@)= Tpﬁqa)g((I)z—CD“)vLconst. (17

meaning that the physical time lattice constants much Apparently, starting from this potential we obtain by second
smaller than the age of the Universe. In this case the term pp Y 9 b y

proportional toH in Eq. (7) can be neglected. The local map quantization ‘?‘T'eldp. that rapidly flqctuates n f|c,tt|t.|9us time
gn some finite interval, provided that initiallyeg

T depends on the potential under consideration. Since we' = The small noise term in Eq10) can be
restrict ourselves to real scalar fields T is a 1-dimensional €[~ Pmax:Pmaxl- ! L n ;
map. neglected as compared to the deterministic chaotic fluctua-
The main result of our consideration is that iteration of at'onS of the field. . .
Of physical relevance are the expectations of suitable ob-

coupled map lattice of the forif10) with a given maprl has . : . :
phygical mganing: It meansmth)at one %s consigering theservables with respect to the ergodic chaotic dynamics. For

second-quantized dynamics of a self-interacting real scala‘?.xample’ t_he expectatiqiv_s(¢)) of .the potentlal IS & pos-
field ¢ with a forceV’ given by sible candidate for vacuum energy in our Universe. One ob-

tains

, l1-a
Vi(g)=——

¢ _
e+ DmaxT(mJ]- (12) (V_s(@))= 1Tap§qa*(<q>2>—<q>4>)+const. (18)

Integration yields

l-« 1 ) 10
V(‘P):T _E(P +pmaxf deT p

ma

For uncoupled Tschebyscheff maps=0), expectations of
any observablé can be evaluated as the ergodic average

+ const. 1
(13 (A)= J71A<<b>du<<b>, (19

In terms of the dimensionless fiefbl this can be written as . . . . .
with the natural invariant measure being given by

V(p)= e (——1c1>2+qu>T(q>))+ t do
const.
T pmax 2 d (I)

(14) N
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(see any textbook on chaotic dynamics, €1g]). This mea- The vacuum energy generated by the chaotic fields is in-
sure describes the probability distribution of the iterates unversely proportional ta [see Eq(28)]. Strict equivalence of
der long-term iteration. From E¢20) one obtaing®?)=3 the stochastic quantization method with quantum field theory
and(®%=%; thus requires the continuum limit— 0. In this limit Eq.(28) can
still generate a finite amount of vacuum energy, provided
both 7—0 and phax—0 such that the rati(przna)jr stays
finite. In fact, many of the results presented in this paper
_ ) N depend only on the ratipﬁqagr and not on the individual
Alternat|v_ely, v3ve may con3|der 'Fhe posmye .Tschebyscheﬁva|ues attributed to- and pyay.
map T5(®)=40°—3d. This basically exhibits the same  rrom the viewpoint of ordinary quantum field theory, the
dynamics asl 5, up to a sign. Repeating the same calcula-jjmit 7.0 andp,,,,— 0 means that one formally considers a
tion we obtain potential V(@)= u’@?+\¢* for which both potential pa-
rametersu’~ 1 and \~ 7 p,.2, diverge[see Eq.(22)];
Va(g)= ]'__a‘ —2¢%+ 2i¢4] +const (22) moreover the fieldy lives on an infinitely small support
T [ = Pmax:Pmax]- Clearly, this is a very singular type of quan-
tum field theory, which in principle can also be studied by
and other means than stochastic quantization, although perturba-
1w tion theor_y will not be applicaple. The _adv_antgge of our for-
V(@)= ——p2(—2d2+d%)+const. (23 mulation in terms of stochastic quantization is that for the
T dimensionless chaotically evolving fieftl the potential re-
mains finite[see, e.g., Eq23)]. If there is no fictitious time,
then the parameter enters in the form of thdsingula)
1— potential parametera®~ 7~ * and\~ 7~ !p;.2,. In the next
(V3(g))= Tpﬁm( —2(®%)+(d%)+const, (24)  section we will argue that on physical grounds it makes sense
to consider very small but finite.

1 Phax
(V_3(p))= 3 T+const. (21

max

For the expectation of the vacuum energy one gets

which for «=0 reduces to
) IV. REPRODUCING THE CURRENTLY MEASURED

p DARK ENERGY DENSITY
Ma* + const. (25)

5
(Va(e))=— 8 7

To obtain quantitative statements on the dark energy den-

Symmetry considerations betwedh ; and T5 suggest to sity as generated by some chaotically evolving figldet us

take the additive constant const as fix the free parameters and p,,,x by some physical argu-
ments. Let us start with the parameter It is the lattice
l-a , 1 constant of fictitious times and has dimension GeV. Or-
CONSE= + —— Phax; (P). (260 dinary stochastic quantization based on Gaussian white noise
requires the continuum limit— 0. But since quantum field
In this case one obtains the fully symmetric equation theory runs into difficulties at the Planck scate, and is

expected to be replaced by a more advanced theory at this
scale, it is most reasonable to take the small but finite value

_ lra, 3 52 4
<Vi3((P)>_i pmax[_i«b >+<CD >}1 (27)

T

T~mpP. (29
which for a—0 reduces to
Next, consider the parametgy, .. It has dimension GeV
_ §) 28) and describes the maximum energy scale of our rapidly fluc-
8/ tuating scalar fieldsp, which take on values on the finite
interval [ — Pmax:Pmaxl- A natural value ofp,, follows if
The simplest model for dark energy in the Universe, asne associates the rapidly fluctuating chaotic fiepjswith
generated by a chaotig® theory, would be to identify yacuum fluctuations that are allowed due to the uncertainty
gpﬁ]agrsz, the constant vacuum energy density corre-relation
sponding to a classical cosmological constantwhich stays
constant during the expansion of the Universe. This is cer- AEAt=0(%). (30
tainly a possible simple model. On the other hand, such an
approach would solve neither the cosmological constant nofaking At~t of the order of the age of the Universe, a cor-
the cosmological coincidence problem. For this reason weesponding energy uncertaintyk arises. ThisAE is very
will turn to a more advanced model in the following sections,large for a very young Universe, and then decreases to ex-
which will naturally produce the right amount of vacuum tremely small values for the current age of the Universe of
energy density in the Universe. about 13.7 Gyr. Any finite ageof the Universe implies that
Before proceeding to this model, let us provide some genspontaneous vacuum fluctuations with energies of oider
eral comments on the physical meaning of the parameter ~t~* can occur. It is physically plausible to identify these

2
Pmax

T

(Vas(@))==
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energy fluctuationg\E with the rapidly fluctuating chaotic which is consistent witlk~ 1. If the observed dark energy in
fields gozpmaxdbin, since bothAE and ¢ live on a finite  the Universe is produced by our chaotic theory, then the
interval, and both fluctuate in an unpredictable way. The unmeasured data imply

certainty relation(30) together withAt~t implies (in units

wherefi=c=1) xk=1.10=0.10. (37
1 Once again, this estimate is based on concrete model as-
Pmax™ T (31) sumptions. In general, we do not know the precise values of

the proportionality constants in Eq29) and(31); moreover
In this way the energy scalg,,,, occurring in the chaotic we do not know how many d|fferent_chaot|c fields may con-
tribute to the dark energy of the Universe.

field theories is most naturally identified with the inverse age Of course. the actual broperties of the chaotic dark ener
of the Universe. However, note that this quantum mechanical ' prop 9y

interpretation in terms of vacuum fluctuations requireha- component depend on the cIassqu equation of state of the
. . ] chaotic fields, which will be dealt with in the next section.
otic map T, since some regularly evolving,, cannot be

associated with fluctuations at all.

It is remarkable that by taking E¢29) and Eq.(31) to- V. ENERGY DENSITY, PRESSURE, AND EQUATION OF
gether, the right amount of vacuum energy follows without STATE
any fine-tuning. One has for generic chaotic maps The kinetic energy term of our chaotic fields is given by
2
Pmax 2 2 10 \?

(V(e)) . Hmp,, (32 Tkinzz ? (38)

sincet " 1~H. Moreover, Discretized with lattice constant we obtain for the expec-
tation of Ty,
, 87G 1
H= 3 Pc~ m_gpc (33 1 pﬁ]ax ) -
Pl (Tkin) = 2 52 (Py— @, )2>
where p. denotes the critical density of a flat Universe and
szg,z is the gravitational constant. Combining E§32) Pﬁqax 1 2 a1
and (33) one obtains = 5“((‘1’ )= (PP, ).
(39
(V(@)~pe. (34

In particular, fora— 0 the expectation of kinetic energy van-
as required and confirmed by current astronomical observashes, and a Universe mainly filled with such a field is
tions. Our simple physical interpretation, namely to interpretyacuum energy dominated.
the chaotic fluctuations as vacuum fluctuations allowed due |n general, the expectation of the total energy denity
to the finite age of the Universe, thus yields the right order ofs given by
magnitude of dark energy density.

In general, Eq(34) yields only order of magnitude esti- (p)=(Tyin) +{V) (40)
mates. Nevertheless, it is instructive to work out some con-
crete numbers, based on simple model assumptions. For eand the expectation of the pressure by
ample, we may assume that the entire vacuum energy of the
Universe is due to one chaotic field described\hy;. The (PY={(Tyin) — (V). (42)
current age of the Universe t5=(13.7+0.2) Gyr=(4.32
+0.06)x 10'" s [3]. Using an uncertainty relation of the For the mapT_; one obtains
form AEAt=#4/2 we get pya=1/(2ty)=(7.62+=0.08)

X 10" %% GeV. Choosingr= kmp, wherex is some dimen- P2 ax[ @ ) Co
sionless number o®(1), we get (p)= - §(<q> )—(Pr®y )+ (1-a)
3 Phax 3 02— (@
(V(e)=5— =(3.19+0.05 X 10 47k ! GeV*. X[ (PP |1, (42
(39
Phax| @ i
The current observational estimate of dark energy density in (p)=— [5((‘32)—(‘1’%‘1’% N—(1-a)
the Universe i3]
3
25— (2.9+0.3 X107 GeV, (36) X §<q>2>_<q>4>)], (43)
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08 I —

04 I —

02 —

FIG. 1. Classical equation of
state w=(p)/(p) of the chaotic
field ¢ as a function of the cou-

pling a.

04 | .
-0.6 | .

-0.8 —

_1 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
]

where the additive constant of the self-interacting potential idluctuate rapidly in both physical and fictitious time, these
fixed by the symmetry consideration of Sec. Ill. The abovefluctuations are averaged away when doing the quantum me-
equations yield the equation of state chanical expectations. Thus the classical picture that arises
out of this 2nd quantized rapidly fluctuating model is a very
W (p) homogeneous field.
(p)

The expectations in Eq$42), (43) are easily numerically
calculated by long-term iterating the coupled map lattice for
which varies as a function of the couplirgin a nontrivial ~ random initial conditions and averaging over iafindn. We
way. used lattices of size 10000 with periodic boundary condi-
For =0, the equation of state of our fieldsws=—1, tions. The result for the equation of staté«) is displayed
since the expectation of kinetic energy vaniska expec- in Fig. 1. For smalle, w grows approximately in a linear
tations should be interpreted as quantum mechanical expewray. It monotonically increases fromv=—1 for =0 to
tations with respect to second quantizajidfor smalla, w  w=+1 for a=1, up to a wiggle atv~0.12. Figure 2 shows
is close to—1. It should be clear that although our fields the correspondingclassical energy density and pressure of

(44)

14 T T T T T T T

T T
‘energy’ ———
‘pressure’ -------

12 —

0.8

0.6
FIG. 2. Expectation of energy
and pressure of the chaotic field as

0.4 -
o a function of the couplingy.

02 e E

02 - .

0.4 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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the field. To account for the currently observed dark energy In the following, we want to restrict ourselves to a simple
in the Universe, most chaotic fields must have a coupling scenario where the coupling is small and where there is
smaller than about 0.04. Largerare ruled out by the obser- energy conservation of quantum mechanical expectations in

vations providing evidence fon<<—0.78[3]. full agreement with the Friedmann equations. Two interest-
ing possibilities arise in this context:
V1. EINSTEIN EQUATIONS (@ _A symmetri.c. phasef the Universe, w_here both _the
AND DYNAMICAL EVOLUTION negative and positive Tschebyscheff dynamics are active. In

this case the vacuum energigs, :=(V_5(¢)) and p;f
Let us now consider the Einstein equations for a homoge:=(v_ ,(¢)) cancel to zero:
neous and isotropic Universe that consists of three different

components: matter, radiation, and chaotic fields. These three Pe=pyt+ p;f =0 (49
components are labeled by the indiceg, ¢, respectively.
One has [a consequence of ER7)]. Since the total vacuum energy

p, is zero, there is no statement from the Einst@inFried-

a\? 8 manr equations on the time evolution of the absolute value
H2= 2 :gfn'G(p(P-f-pm'f' ) (45  |p,|. We are free to postulate the validity of E§2)
2 2
+ p Mp
a4 gl =[(Vas(@))|~ =~ — (50)
a:_§7TG(p<p+3p<p+pm+pr+3pr)- T t

(46)  for arbitrary couplingse.

(b) An asymmetric phasef the Universe, where only the
negative Tschebyscheff dynamits ; is active (or where it
dominates as compared 10 3). In this case one has

Here p; denotes théclassical energy density of component
j, andp; the pressure. For simpler notation we omit the ex-
pectation valueg- - - ). The equation of state of each com-
ponent isw;=p;/p;. As is well known, one has for matter p,>0. (51)
w,,= 0, for radiationw, = 1/3, whereas the equation of state
w,, of the chaotic fieldsp depends on the coupling (see If there is a chaotic field with coupling constastthat does
Fig. 1. not interact with other fields then energy conservation im-
The Einstein(or Friedmanhequations are usually supple- plies

ment_ed_ by the assumption of conservation of energy for each _aswy) 52
specieg, P '

- wherew,=w,(«) is the equation of state as displayed in
pi==3H(p;*p)). (47 Fig. 1. Note that chaotic fields witl,~0 (a~0.25) behave
. . _ . ._similar as dark matter, whereas chaotic fields with~ —1
These equations can be derived from the Einstein equatio $~0) act like a cosmological constafitee alsd18)).
under the assumption lof adiabatic expansion, i.e. one as- We now show that Eq(50), derived from the uncertainty
sumes that no entropy IS produced. L relation, naturally leads to tracking behavior of the vacuum
For a Universe dominated by a specjewith constant g0y density. Suppose the Universe surrounding the cha-
equation of statev;=p;/p; Eq. (47) leads to otic fields is dominated by a species with equation of state

pj~a‘3(1+‘”i). (48) w>—1 (typically matter or radiation then

a(t)~ 2B W] =2 g =31+ w), (53)
We obtain the well-known result that for mattgg,~a 2,
for radiationp,~a 4, whereas for true classical vacuum en- Putting this into Eq(50) we obtain
ergy (a cosmological constant) with w=—1 one has no
dependence oa at all, p, = const. lpg|=1(Vas(@))|~a 3w, (54)

For the chaotic fields, energy conservation is a non-trivial ) ) ) .
issue, for the following reasondi) These fields model I-€ the vacuum energy densny associated Wlth_ the chaotic
vacuum fluctuations, and vacuum fluctuations by definitionfields decaysn the same wayvith a as the density of the
do not conserve energgii) The chaotic field dynamicdike ~ dominating species. _ .
any chaotic dynamigsconstantly produces entropy in ficti- ~ Equation(54) can help to naturally avoid the cosmologi-
tious time, whereas the Friedmann equati¢centaining no ~ cal coincidence problem. Consider e.g. the following sce-
fictitious time describe an adiabatic expansion of the Uni-nario. Initially (say, shortly after inflationwe may have a
verse. (i) The coupling constant and hence the equation Symmetric phase wheig~|p[>pp. Herep, denotes the
of state of the chaotic field may change in tinfiz) There ~ vacuum energy density of the negative Tschebyscheff map,
may be an entire spectrum of chaotic fields with differentwhich is canceled by the vacuum energy dengify=—p,
couplingse that can interact with each othév) The chaotic  of the positive Tschebyscheff map. Thﬁﬁﬂ first decays
fields may interact with dark matter. approximately as~ 4, since the Universe is radiation domi-

123515-7



CHRISTIAN BECK PHYSICAL REVIEW D69, 123515(2004

nated. At some stage we arrive;at~|pj|~pm, and from  whereT is the temperature and(T) is the number of rela-
then on matter dominates over radiation, so that from then otivistic particle degrees of freedom. There is also a relation
|p; | decays approximately @ °. During the late-time evo- between time and temperature, namely

lution of the Universe|p_| will always stay of the same

order of magnitude agy,, since bothp_| andp,, decay as {= 90  mp (59
a 3. In spite of this, for small enough couplingsthe cha- 32m3N(T) T2

otic fields have a classical equation of state closento

=—1, and can thus produce the accelerated expansion of tHutting Eq.(59) into Eq. (57) one obtains

Universe via Eq(46), provided there is symmetry breaking

betweelnT+3 andT_3 at some late §tage of thg evplution pf oo =i7T3EN(T)T4=Zpr _ (60)
the Universe. A concrete mechanism for this will be dis- ¢ 30 « K

cussed in Sec. IX. : . . o
What is our physical interpretation of the chaotic fields in TS equation once again shows that it is reasonable to as-

the Universe? Fom=0, it can be rigorously proved that SUme thatp, and p, have the same order of magnitude.
rescaled deterministic chaotic Tschebyscheff maps can beincep, decays in the same way as, Eq. (60) is valid
used to generate spatio-temporal Gaussian white noise ondilring the entire radiation dominated epoch. Finallyfalls
larger scald12,13. In other words, on fictitious time scales below py, and from then on we have

7'> 7 and physical time scale§' > § the chaotic noise just

looks like ordinary Gaussian white noise. We may thus po~ Zp ) (61)
couple the chaotic fieldg to ordinary standard model fields ¢ k"

in order to second quantize the standard model fields, i.e. use ) B o

the chaotic fields as a source of quantization noise. This i§fter symmetry breaking we have, = p,~const. This im-
the basic idea of the so-called chaotic quantization approadhlies a prediction fo€),:=p,/p. at the present time, namely
[12]. The chaotic fields are well embedded in this way and
since they are just playing the role of quantization noise, we O = ~
do not expect them to have any disturbing influence on, say, ¢ petpmtpr Lltmlk’
baryogenesis and similar processes in the early Universe. In ) )
this interpretation vacuum energy just arises out of the ex0€dlectingp, at the present epoch and assuming that the

pectation of a classical potential that generates quantizatiopyMMetry breaking took place rather recently. In Sec. IV we
noise. saw that the currently observed dark energy density is best

fitted by the value«=1.10+0.10. Equatior(62) yields with
this value the prediction

Po 7l K

(62

VII. PREDICTION OF Q,AND Q,

Our approach allows for the prediction of the order of 0,~0.74, Qy=0.26, 63

magnitude of cosmological parameters suchgs=p,/pc  which is consistent with observatiofi]. Again, due to the
and Qn=pn/p. at the present time. Let us start from the reasons that were already mentioned at the end of Sec. IV,

uncertainty relation in the form Eq. (63) should be regarded only as an order-of-magnitude
estimate.
h
AEAL= E’ (59 VIII. FIXING FUNDAMENTAL PARAMETERS

We have seen that chaotic fields can generate the right
amount of vacuum energy and have the scope to avoid the
cosmological constant and coincidence problem. We now

1 (56) show that they also offer solutions to the problem of unique-

which implies

Pmax=2¢ - ness of vacua.
First, let us slightly generalize the chaotic field dynamics
Choosing the time scale= km? we get fora~0 (10 to

q)ir1+l:(1_ a’)T(q)ln)+0‘%[Tb((p'n_1)+'|’b(q)ln+l)]
(64)

. 3 Pmax_ 3 Mp 1
pe=(V-sle))=75 r:axz3—27t—2- (57)

(we neglect the small noise tefnThe caser=+1 is called
S diffusive coupling,” the caseoc= —1 “anti-diffusive cou-
pling.” Chaotic fields withb=1 are said to be of type A
) [TY(®)=:T(P)], chaotic fields witho=0 to be of type B
o :W—N(T)T“ (58) [TO(®)=:d]. In[14] the chaotic fields were called “chaotic
30 ' strings,” but this is only a different name for the same dy-

During the radiation dominated period of the Universe on
has for the energy density of radiation
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namics. Our derivation in Sec. Il leads to chaotic fields of Bcoupling constanix that appears in the standard model of
type with diffusive coupling, but from a dynamical systemselectroweak and strong interactions, there is a corresponding
point of view all 4 degrees of freedonb€0,1,0==*1) chaotic field that is just coupled with thig. The Universe
exist and are of relevance. As shown in detai[14], there  then tries to reach a state of minimum vacuum energy by
are two different types of vacuum energies for the chaotiadjusting its free parameters in such a way that the chaotic
fields, namely fields reach a state of minimum vacuum energy.

(1) the self-energy While at first sight this may look like a purely theoretical

concept, there is numerical evidence that this principle is

P2 ax/ 3 ) . indeed physically realized. As an example, Fig. 3 shows the
V(a)‘:T §<q’ )—(®%) (65 self-energyV(«) of our chaotic fields of type A with diffu-
sive coupling in the low-coupling region. We observe that
and V(a) has local minima at
(2) the interaction energy
a;=0.0002462), (67)
p2 o
W(a) =5 (D Pp"). (66) a,=0.001021), (69)
Equation(65) actually represents the self-energy of the map a;=0.002201) (69
T_5; the self-energy of the map., ; has opposite sign and
cancels the self-energy af_3 in the symmetric phase. (a; and az are actually small local minima on top of the

Basically, the self-energy is the expectation of the potentil|).
tial that generates the chaotic dynamics in fictitious time, and On the other hand, in the standard model of electroweak
the interaction energy is the expectation of the potential thaihteractions the weak coupling constant is given by
generates the diffusive coupling in physical time. One may
also define a total vacuum energy a$*(a):=V(a) (T3— Qsirfoy)?
+aW(a), where the— sign corresponds to diffusive and Qweak= Qel™ - 5, — 5 -
the + sign to anti-diffusive coupling. All additive constants Sift oS Oy
are fixed by the postulate of invariance of the theory under ) ) )
global and local, transformation§13]. In other words, we Here Q is the electric charge of the particl®QE —1 for
allow for the existence of a symmetric phase. For smahie ~ €léctrons,Q=2/3 for u-like quarks, Q=—1/3 for d-like
interaction energy can be neglected as compared to the sefi4@rks, and Ty is the third component of the isospiT{
energy; moreover, the type-A and type-B forms are observed © Ior right-handed particlesl;=—3 for e andd,, Ts
to have the same self-energy in this limit. =+3 for v andu,). Consider right-handed fermiorg.
The central hypothesis of this paper is a symmetry beWith sir’é,=5=0.2318(as experimentally measuréti9])
tween standard model coupling constants and the chaot&nd the running electric coupling(E) taken at energy
field couplingsa. We assume that for any dimensionlessscaleE=3m; we obtain from Eq(70) the numerical values

(70

123515-9



CHRISTIAN BECK PHYSICAL REVIEW D69, 123515(2004

aa,'zak(3md):0-000246y (71  terpreting the coupling constaat of our second-quantized
chaotic fieldse as a running gauge coupling. We are free to
identify a=217/6° with a gauge coupling, since the occur-
rence of a ratio of lattice constantsaand 5 is a new effect in
our 2nd quantized discretized theory, and there is no theory
afviak(Sme):0.00ZZO. (73 of this dimensionless number so far, which represents a kind
of metric for the 5th coordinaté&he fictitious time. So we
There is an amazing numerical coincidence between the loc&re indeed free to make the hypothesis éatincides with
minimaa, ,a,,a3 of V() and the weak coupling constants & running gauge coupling. By doing so, we implicitly con-
of fr=Ug,Cr,er, respectively. struct a symmetry between gauge couplings and gravitational
Now regard the fine structure constany, and the Wein-  couplings, since usually the strength of the kinetic term in
berg ang|e Sﬁﬂ/\/ asa priori free parametersl Suppose thesethe action of a field is determined by the metriC, i.e. gravita-
parameters change to slightly different values. Then immetional effects, whereas here it is fixed by standard model
diately this would produce larger vacuum energya), couplmg strengths. The chaotic fields appear to select out of
since we get out of the local minima. The system is expecteéhe infinitely many vacua allowed by string theory the unique
to be driven back to the local minima, and the fundamentaground state that corresponds to the known coupling con-
parameters are stabilized in this way, provided the Universétants of the Universe. All free parameters are fixed in the
is in an asymmetric phase. sense that if the fundamental parar_net@masses, coupling
The above example is only one example of a large numconstants, and mixing anglesad different values, larger
ber of numerical coincidences observed[18,14 an exten- Vacuum energy would arise.
sive numerical investigation of self-energies, interaction en-
ergies, and total vacuum energies was performed for the
above chaotic field theories. A large number of amazing nu-
merical coincidences was foutd.hese results are described
in detail in[13,14]; here we summarize only the main re-  Chaotic scalar fields not only allow for a simple mecha-
sults. nism to produce dark energy, they also yield a simple mecha-
(1) The smallest(stable zeros of the interaction energy nism to cancel unwanted dark energy. If we assume that both
W(«) coincide with running electroweak coupling constants,the positive and negative Tschebyscheff dynamics are physi-
evaluated at energies given by the smallest fermionic massally realized, the corresponding vacuum energies precisely
scales. Type A describeb quarks and electrons interacting cancel for symmetry reasofisee Eq.(28)]. This symmetry
electrically, type B u quarks and neutrinos interacting is aZ, symmetry which is not there for ordinary smoothly
weakly. evolving scalar fieldgwhere opposite potentials lead to un-
(2) Local minima of the self-energy(«) coincide with  stable or ill-defined behaviprOn the other hand, if only the
running weak coupling constants of right-handed fermionsnegative Tschebyscheff field dynamics is active, or if it
evaluated at the lightest fermionic mass scales. dominates, then positive dark energy arises. This positive
(3) Local minima of the total vacuum enerdgy* () oc-  dark energy can drive inflation, fix standard model param-
cur at running strong coupling constants evaluated at theters as local minima in the dark energy landscape, and gen-
lightest baryonic energy scales. erate late-time acceleration. It is therefore desirable to con-
(4) Local minima of the total vacuum enerdy («) oc-  struct a theory that allows foiZ, symmetry breaking
cur at running strong couplings evaluated at the lightest mebetween positive and negative Tschebyscheff maps.
sonic energy scales. Itis clear that in order to fix fundamental parameters with
In [13,14 chaotic fields corresponding to 2nd order the methods described in the previous section, we must have
Tschebyscheff maps were also investigafeee the Appen- a brokenZ, symmetry at some stage of the evolution of the
dix), and the following numerical coincidences were found: Universe. Indeed, the minimum requirement we need is at
(1) The smallest(stablg zeros of W(«) coincide with  least one very early stage of broken symmetry, in order to
running strong coupling constants evaluated at the smallegirst-time fixthe fundamental parameters to the values which
bosonic mass scales. Type A describes\Whboson, type B make the Universe work, and another late-time asymptotic
the Higgs boson. state of broken symmetry, in order stabilizethe parameters
(2) Local minima of the self-energy(«) coincide with  to their known values so that they cannot drift away to other
Yukawa and gravitational couplings evaluated at the fermivalues. It is natural to identify the first phase of broken sym-
onic mass scales. metry with the inflationary phag@1], and the other phase of
For more details, sefe3,14]. broken symmetry with the late-time state of the Universe. In
All these numerically observed coincidences are not exbetween, we may allow for a symmetric state, which has the
plainable as a random coincidence. Rather, they suggest iadvantage that nucleosynthesis is not spoilt.

aR _(3m,)=0.001013, (72

wea

IX. SPONTANEOUS SYMMETRY BREAKING AND
CANCELLATION OF UNWANTED VACUUM ENERGY

For the ¢* theory the relevant energy scale is alwdys 3m; . 2The abundance of light elements is correctly predicted by stan-
The factor of 3 can be related to the index of the Tschebyscheftlard big bang nucleosynthesis but is spoilt if there is too much dark
polynomial considerefl13]. energy [22]. The measured cosmic microwave background also
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As a concrete simple model, consider a scalar field were already pre-fixed during inflation. This gives physical
which takes on the value=0 in the symmetric phase and sense to the role of late-time dark energy in the Universe.

the valuesoc=*1 in the phase where th&, symmetry is Late-time symmetry breaking could be physically under-

spontaneously broken. The total potential describing the chastood as follows. Suppose the negative Tschebyscheff dy-

otic field dynamics is given by namics(which generates positive vacuum engrgyalways
uniformly distributed in space. It is a property of empty

l1-0o 1+o space-time. At a very early stage, the corresponding vacuum

Vie, 0, @)= 2 Vog(®_)+ 2 Vis(Py), energy was strong and may have driven inflation. Then mat-
(74)  ter and radiation are created. Assume that the matter and

radiation particles are second quantized by chaotic noise

where generated by the positive Tschebyscheff napich gener-
2 ates negative vacuum enejgyfhen, as soon as sufficiently
V_y(®_)= pmax(q)z_q)4+ E(CDZ)) (75) much matter and radia}tion have been created aqd quantized,
T 2 the two vacuum energi€¥/ , 3) and{V _3) can preciselyor

. ) ) ] ~almos} cancel, as long as matter and radiation are uniformly
is the potentlal generating the negative Tschebyscheff fieldistributed in space. Inflation may stop in this way and we
dynamics and obtain a symmetric phase of the Universe after inflation. But
2 at a late stage of the evolution of the Universe matter clumps
Voo(®,)= Pmax —2¢i+‘pi+ E(CDZQ) (76) into gala?(ies. Sin_ce ?he ne_gative vacuum energy is generated
2 by chaotic quantization noise for each particle it follows the

T

) . ) . spatial distribution of matter. The positive vacuum energy
the one generating the positive Tschebyscheff field dynamicgmains uniformly distributed. Hence after structure forma-
in fictitious time (@~0). In the symmetric phaser=0) We  tjon there is no longer any spatially uniform cancellation of
obtain from Eq.(74) vacuum energy. Empty space has an excess of positive

_ vacuum energy, galaxies are spatial regions with an excess of
(V(e,®_.®.))=0, 77 negative vacuum energy due to quantization néiise nega-
tive vacuum energy in the galaxy can be partially compen-
sated by positive kinetic terms that arise out of spatial inho-
panaX 3 mogenities in the galajyIn this physical interpretation the
(M(o,®_ ,CI>+)>=<V3(CI>))=T<§<CI>2)—<CI>4))>O, late-time symmetry breaking is related to structure forma-

(78) tion.

whereas in a broken phase with= —1 we obtain

where we have relabelel = ®.

We assume that the symmetry is first spontaneously bro-
ken to o= —1 at the onset of inflation. A large amount of = We have presented a new model for dark energy in the
positive vacuum energy is generated via Ef), since at Universe. This model is based on a rather conservative ap-
this stage the Universe is very young apgla,~t *~H. proach, the assumption of the existence of second quantized
The chaotic fields can help to drive inflation, and fundamenself-interacting scalar fields described by4theory. How-
tal parameters are pre-fixed as local minima in the dark enever, the main difference is that these fields are strongly self-
ergy landscape. interacting, rather than weakly. When doing 2nd quantization

Then, there is a symmetric phase witl-0. The consid- using the Parisi-Wu approach, rapidly fluctuating chaotic
eration of Sec. VII applies but the dark energy is suppressefields arise. The expectation of the underlying potentials
for symmetry reasons. Big bang nucleosynthesis and galaxyields the currently observed dark energy density.
formation can go ahead without any problems. Note that dur- The advantage of this new chaotic model is that many of
ing the symmetric epoch the fundamental parameters are rthe questions raised in the introduction seem to have natural
longer stabilized as local minima in the dark energy land-solutions. The cosmological constant problem is avoided; in
scape. They can drift to slightly different values. This is con-our model the right order of magnitude of vacuum energy is
sistent with the experimental findings of a varying fine struc-naturally produced if we interpret the chaotic dynamics in
ture constanf25]. terms of vacuum fluctuations allowed by the uncertainty re-

Finally, there is late-time symmetry breaking dc=—1. lation, for a given finite age of the Universe. The cosmologi-
This phase is necessary because otherwise the fundamental coincidence problem is also avoided, since in our model
parameters would keep on drifting to different values. By thethe generated dark energy is no longer constant, but thins out
late-time symmetry breaking, the parameters are finallyith the expansion of the Universe in the same way as the
forced back and stabilized at their equilibrium values, whichenergy density of the dominating specigsatter or radia-

tion). In spite of that, theclassical equation of state of the
chaotic component is close 8= —1, and can account for

seems to indicate little or no dark energy at the time of last scatterthe accelerated expansion of the Universe, provided there is
ing [23]. Galaxy formation is disturbed as well if there is too much late-time symmetry breaking. The chaotic fields are physi-
dark energy[24]. cally interpreted in terms of vacuum fluctuations. As such

X. CONCLUSION
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they can temporarily violate energy conservation, but quan©Of physical relevance are the expectations of these poten-

tum mechanical expectations are fully compatible with thetials, formed with respect to the ergodic dynamics. Since

Friedmann equations. negative and positive Tschebyscheff maps generate essen-
The physical relevance of our model is emphasized by théally the same dynamics, up to a sign, any physically rel-

observation of a large number of numerical coincidences besvant expectation should also be the sameTipand T _y,

tween local minima in the dark energy landscape and runup to a possible sign. For al, this symmetry condition fixes

ning standard model coupling constants evaluated at ththe additive constant to be

known fermionic and bosonic mass scales. It thus appears

that chaotic fields have the potential to fix and stabilize fun- l1—-a 1

damental parameters and to select the physically relevant COﬂSt=+—§<(pz>. (AB6)

vacuum state out of infinitely many possibilities. T

With this choice one obtains the following formulas for the

self-energy which are fully symmetric under the transforma-
| am very grateful to Dr. E. Komatsu for useful discus- tion N— —N:
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APPENDIX: GENERAL TSCHEBYSCHEFF MAPS
Our approach can be easily generalized to Tschebyscheff _ l-al 2 3\
maps of arbitrary ordeiN. One hasT,(®)=®, T,(P) (V=a(e)) 3p (%)= Pmad ) |
=20%2-1, TH(P)=4D3-3d, generally Ty(P) (A8)

=cos(Narccospb) with ® e[ —1,1]. A Tschebyscheff map
of orderN is conjugated to a Bernoulli shift &f symbols, it 1- 3 1
is ergodic and mixing foN=2. It exhibits the strongest (Vag(@))== (__<(p2>+2_<¢,4>>_
possible chaotic behavior that is possible for a 1D smooth T 2 max
map, characterized by a minimum skeleton of higher-order (A9)
correlationg 20].

It is useful to consider both positive and negative TscheWritten in terms of the dimensionless field variable
byscheff maps and to define = @/ Ppmax this is

T N(P):=—Tn(DP). (A1) 1-a 1
(Va1(@)) = =—Phaz (P?), (A10)
The behavior off _y under iteration is identical to that af

up to a sign, the trajectory af_ differs by a constant sign

(N even or an alternating signN odd) from that of Ty . l-a , (2
Equation (13) implies that the mapdy correspond to (Vaa(e))= + Pmax §<‘I’ )—(P) ],
potentialsVy given by (A11)
\Y} ((p)zl_—a —Ecp2+p fd(pT ( + const l1-a , 3 4
N T 2 max N max . <Vi3(‘P)>:iTpma —§<CI) >+<CI) > :
(A2) (A12)

In particular, one obtains fak=*+1,=2,+3 i i
For Tschebyscheff maps of arbitrary ordéone obtains

1-a 1 ) 1 )
Vii(p)=—— ~ 59 5| +const, (A3) 1-a 1
T ViN(‘P):Tpmax —EQ)Zif cog N arccosb)dd
l1-af 1, 2 (A13)
Via(e)= — 59 E ®°~ Pmax®
T 2 3pmax
1-a ) ) 1
+ const, (A4) = % Pmax | g Tha(P)
1-«a 1 3 1 _
ViS((P):T —§¢21(—§<p2+2—<p4) N_lTN,l(d)) + const (A14)
max
+ const. (A5) and
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1-a
27

1
<VtN(<P)>:(i1)N prznax[m<TN+1(‘D)>

1
—m<TN_1(®))+C . (A15)
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For uncoupled Tschebyscheff maps wjt|=2, any ex-
pectation of an observable(®) is given by Eqs(19) and
(20). For a#0 the invariant density changes in a nontrivial
way, but expectations can still be easily calculated numeri-
cally by long-time iteration of the coupled map lattice.

[1] A.G. Riesset al,, Astron. J.116, 1009 (1998; S. Perlmutter
et al, Astrophys. J517, 565 (1999; J.L. Tonry et al, ibid.
594, 1 (2003.

[2] N.W. Halversoret al.,, Astrophys. J568 38(2002; C.B. Net-
terfield et al,, ibid. 571, 604 (2002.

[3] D.N. Spergekt al, Astrophys. J., Suppl. Set48 175(2003;
C.L. Bennettet al, ibid. 148 1 (2003; G. Brumfiel, Nature
(London 422, 108 (2003.

[4] S. Weinberg, Rev. Mod. Phy61, 1(1989; S. Carroll, Living
Rev. Relativ.4, 1 (2003; S. Weinberg, inMarina del Rey

2000: Sources and Detection of Dark Matter and Dark Energy

in the Universe edited by D.B. Cline(Springer, New York,
2001, pp. 18-26, astro-ph/0005265; U.
hep-ph/0203252; T. Padmanabhan, Phys. R8®0 235
(2003.

[5] P.J.E. Peebles and B. Ratra, Astrophys. J. L8R5 L17
(1988; C. Wetterich, Nucl. PhysB312 668 (1988; M.S.
Turner and M. White, Phys. Rev. B6, 4439 (1997); J.A.
Frieman and |. Wagabid. 57, 4642(1998; R.R. Caldwell, R.
Dave, and P.J. Steinhardt, Phys. Rev. L8@, 1582 (1998;
P.J.E. Peebles and A. Vilenkin, Phys. Rev. 39, 063505
(1999.

[6] M. Gasperini, F. Piazza, and G. Veneziano, Phys. Re@5D
023508(2002; S. Dimopoulous, Phys. Lett. B73 13(2003;
R.H. Brandenberger, APCTP BuB, 3 (2000.

[7] R.R. Caldwell, Phys. Lett. B45 23(2002; S.M. Carroll, M.
Hoffmann, and M. Trodden, Phys. Rev.@8, 023509(2003;
J. Hao and X Li,bid. 68, 083514(2003.

[8] J. Polchinski, String Theory (Cambridge University Press,
Cambridge, England, 1998A.A. Tseytlin, in The Many Faces
of the Underworld edited by M. ShifmanWorld Scientific,

Singapore, 2000 pp. 417-452; E. Elizalde, J.E. Lidsey, S.

Nojiri, and S.D. Odintsov, Phys. Lett. B74, 1 (2003.

Ellwanger,

[11] N.J. Cornish and J. Levin, Class. Quantum Gr20, 2649
(2003; X. Wu and T. Huang, Phys. Lett. 313 77 (2003; R.
Easther and K. Maeda, Class. Quantum Gi#y.1637(1999;
R.O. Ramos, Phys. Rev. 84, 123510(200).

[12] T.S. Bira S.G. Matinyan, and B. Mier, Chaos and Gauge
Field Theory (World Scientific, Singapore, 1994C. Beck,
Nonlinearity 8, 423 (1995; R.O. Ramos and F.A.R. Navarro,
Phys. Rev. D62, 085016(2000; T.S. Birg, B. Milller, and S.G.
Matinyan, hep-th/0301131; C. Beck, hep-th/0305173.

[13] C. Beck,Spatio-Temporal Chaos and Vacuum Fluctuations of
Quantized Fields(World Scientific, Singapore, 2092sum-
mary at hep-th/0207081.

[14] C. Beck, Physica 171, 72 (2002.

[15] T. Damour, M. Henneaux, B. Julia, and H. Nicolai, Phys. Lett.
B 509, 323(200J); I. Kogan and D. Polyakov, Phys. At. Nucl.
66, 2062 (2003; B.L. Julia, in Les Houches 2001: Gravity,
Gauge Theory and Stringedited by M. Douglas, F. David, C.
Bachas, A. Bilal, and N. NekrasoiSpringer-Verlag, Berlin,
2003, pp. 575-586, hep-th/0209170.

[16] K. Kaneko, Prog. Theor. Phy§2, 480 (1984; R. Kapral,
Phys. Rev. A31, 3868(1985; C. Beck, Phys. Lett. 48 386
(1998; C.P. Dettmann, Physica D72 88 (2002.

[17] C. Beck and F. Schigl, Thermodynamics of Chaotic Systems
(Cambridge University Press, Cambridge, England, 1993

[18] T. Padmanabhan and T. Roy Choudhury, Phys. Rew66D
081301R) (2002.

[19] K. Hagiwaraet al, Phys. Rev. D66, 010001(2002.

[20] C. Beck, Nonlinearityt, 1131(1991); A. Hilgers and C. Beck,
Physica D156, 1 (200).

[21] A. Guth, Phys. Rev. 23, 347 (1981); A.D. Linde, Particle
Physics and Inflationary Cosmolog@ilarwood, Chur, Switzer-
land, 1990.

[9] T. Banks and W. Fischler, astro-ph/0307459; T. Banks,[22] M. Yahiro et al,, Phys. Rev. D65, 063502(2002; J.P. Kneller

hep-th/0007146; R. Bousso and J. Polchinski, J. High Energy

Phys. 06, 006 (2000; S. Mukohyama and L. Randall,
hep-th/0306108.

[10] G. Parisi and Y. Wu, Sci. Sin24, 483 (1981); Stochastic
Quantization edited by P.H. Damgaard and H. ffl (World
Scientific, Singapore, 1988

and G. Steigmanipid. 67, 063501(2003.

[23] R.R. Caldwellet al, Astrophys. J. Lett591, L75 (2003; E.
Komatsu(private communication

[24] S. Weinberg, Phys. Rev. Le9, 2607 (1987).

[25] J.K. Webbet al, Phys. Rev. Lett82, 884 (1999; 87, 091301

(2001.

123515-13



