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Time evolution of tunneling in a thermal medium: Environment-driven excited tunneling

Sh. Matsumoto and M. Yoshimura
Institute for Cosmic Ray Research, University of Tokyo, Kashiwa-no-ha 5-1-5 Kashiwa, Chiba 277-8582, Japan

~Received 29 July 2003; published 18 June 2004!

Time evolution of tunneling phenomena proceeding in a thermal medium is studied using a standard model
of environmental interaction. A semiclassical probability formula for the particle motion in a metastable state
of a one-dimensional system put in a thermal medium is combined with the formula of the quantum penetration
factor through a potential barrier to derive the tunneling rate in the medium. The effect of environment, its
influence on time evolution in particular, is clarified in our real-time formalism. A nonlinear resonance effect
is shown to enhance the tunneling rate at finite times of order 2/h, with h the friction coefficient unlessh is
too small. In the linear approximation this effect has relevance to the parametric resonance. This effect
enhances the possibility of early termination of the cosmological phase transition much prior to the typical
Hubble time.
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I. INTRODUCTION

Tunneling phenomena, when they occur in isolation,
genuinely a quantum effect. But when they occur in so
surrounding medium, the important question arises as
whether the tunneling rate is enhanced or suppressed b
environmental effect. There are already many works on
subject@1#, and most past works deal with a system in eq
librium as a whole. A Euclidean technique, such as
bounce solution@2#, is often used in this context@3–8#. We
would like to examine this problem by working in the rea
time formalism@9#. We find it more illuminating to use the
real-time description instead of the Euclidean method m
employed in the literature. An advantage of the real-ti
description is the possibility of identifying an enhanced tu
neling rate at a finite time of dynamical evolution of th
tunneling@10#. Our preliminary application to tunneling phe
nomena are given in Refs.@10–12#.

Our approach is based on the separation of a subsy
from the thermal environmental, and integrating out the
vironmental degrees of freedom. This method is best su
to a ~by itself! nonequilibrium system which is immersed
a larger thermal equilibrium state. The detailed properties
the environment and its interaction form with the subsyst
are expected to be insensitive to the behavior of the s
system in question. We use the standard model of envi
ment consisting of an infinite number of harmonic oscillato
@3,9#. In this picture the dissipation seen in the behavior
the subsystem is due to our ignorance of the huge envi
mental degrees of freedom. Although the subsystem itse
an open system having an interaction with the environm
the entire system including the environment obeys quan
mechanical laws in the closed system.

We work out consequences of the formalism for a sim
subsystem in one dimension; a tunneling potential sys
with one local minimum. The most interesting result th
comes out in this study is the resonance enhanced tunn
@10#. Our result demonstrates that the enhancement occu
a time scale of order 1/h, with h the friction coefficient. The
enhanced tunneling probability goes withh ash21.5, at least
in the range of friction 0.001vp,h,0.02vp according to
0556-2821/2004/69~12!/123514~13!/$22.50 69 1235
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our numerical analysis in the present work. Herevp is the
curvature at the potential well. We offer an interpretation
the resonance enhancement due to an energy flow into
system from the environment. Furthermore, the enhan
tunneling rate is related to the parametric resonance. We
this enhanced tunneling ‘‘environment-driven excited tunn
ing’’ ~EET!. The popular Euclidean approach cannot d
with the finite time behavior of tunneling, hence it miss
this resonance enhancement at finite times.

Our method, with a certain extension, should be ap
cable to field theory models. In the future we hope to inv
tigate applications to cosmology, in which one may deal w
the electroweak first order phase transition relevant to ba
genesis@13#. An important question here is the time scale
tunneling. If the usual Hubble time scale that gives rise to
potential ~or more properly the free energy! change~hence
regarded in the conventional picture as the termination of
first order phase transition!, is replaced by a shorter tunne
ing time scale of order 1/h, the conventional picture of the
first order phase transition may drastically change. For
stance, bubbles of the true vacuum may be formed by
resonance enhanced tunneling prior to the potential cha
Since this process is stochastic, it may enhance the ou
equilibrium condition necessary for baryogenesis@14,15#.
The bubble formation via EET may also resurrect the
scenario of grand unified theory~GUT! phase transition@16#
which was once discarded due to the graceful exit prob
@17#.

The rest of this paper is organized as follows. In Sec
our setup is shown and the environmental model and
tunneling rate formula are explained. For simplicity, we e
amine the environmental effect for a simple tunneling syst
described by a one-dimensional potential. In Sec. III we
rive equations needed for numerical calculations, and so
analytical results are given. The semiclassical approxima
is then introduced and the crucial simplification, the line
approximation of the environment variable, is further work
out. This approximation, used while the particle in the on
dimensional potential is in the metastable region, determi
how the particle is excited in the potential well due to t
environment interaction. In Sec. IV a detailed numeric
©2004 The American Physical Society14-1
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analysis in the metastable region is presented, taking a
crete example of the potential. It is shown that excitation
higher levels proceeds via the parametric resonance effe
the linear approximation. A numerical analysis is then p
sented, quantitatively demonstrating the effect of EET. In
final section an application to cosmological baryogenesi
briefly discussed. In the Appendix we explain the renorm
ization effect along with the Langevin equation and the fr
tion coefficient along with the relevant formulas in the sta
dard model of particle physics, which may be applicable
discussions of the electroweak baryogenesis in the stan
model.

II. ENVIRONMENT MODEL AND TUNNELING RATE
FORMULA

We consider as the first step of our investigation the s
plest, yet most basic problem of this kind, a one-dimensio
system described by the potentialV(q). The potentialV(q),
as illustrated in Fig. 1, is assumed to have some local m
mum atq50 with V(0)50, which is separated at the barri
top q5qB (.0) from a global minimum, which we take in
the present work to be atq5` such that there is no reflec
tion from the wall at the far right.

This system is put in a thermal medium which acts as
environment. The environment has infinitely many, contin
ously distributed harmonic oscillators given by their coor
natesQ(v). Its coupling to the tunneling system is given b
a bilinear form@3,9#. The total Hamiltonian is

H tot5
q̇2

2
1V~q!1qE

vc

`

dvc~v!Q~v!

1E
vc

`

dvS Q̇~v!2

2
1

v2

2
Q~v!2D . ~1!

The frequency-dependent coupling strength isc(v) and vc
is some threshold frequency. One may imagine a general
case in which the subsystem variableq is the order paramete
for the first order phase transition in cosmology, the hom
geneous Higgs field, and the environment oscillatorQ(v) is
a collection of various forms of matter fields coupled to t
Higgs field.

In considering our problem of tunneling in a thermal m
dium we assume that the effects of thermal environment

FIG. 1. A typical potential for tunneling in a one-dimension

system. Curvature parametersṽR at the bottom of the potential,vR

at the top of the potential, along with the barrier heightVh and the
barrier width, characterize a global structure of the potential.
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most important in the time period when the particle in
one-dimensional system remains in the metastable pote
well. Thus, we anticipate that at tunneling the simple qu
tum mechanical formula may directly be used. Our ba
formula for the tunneling rate is

G~ t !5
vp

2p (
n50

`

Wn~ t !uT~En!u2. ~2!

Herevp is the physical frequency of the potential well, aft
taking into account the renormalization of the potential c
vature at the bottom (q50) due to the interaction with the
environment. A detailed explanation of the renormalization
given in Appendix Sec. 1. The factorvp/2p in the right-hand
side is a 1/period for the periodic motion in the left potent
well. The complete set of statesun& that appear in Eq.~2! is
defined by introducing harmonic oscillator states with
spect to the reference frequencyvp . The quantityWn(t) is
the occupation probability of the energy (En) eigenstate at
the potential region left to the barrier top, anduT(En)u2 is the
time-independent penetration factor for the potentialV(q).

Energy eigenstates are special among pure quantum s
since they time evolve only with phase factors. Thus, if o
takes for the projectionun&^nu, the energy eigenstateun& of
the total Hamiltonian, the density matrix does not chan
with time. On the other hand, if one takes the energy eig
state of the subsystem Hamiltonian, then the density ma
changes solely due to the environment interaction. It is t
best to use a pure eigenstate of, or its superposition of,
subsystem Hamiltonian when one wishes to determine h
the tunneling rate is modified in the thermal medium.

The formula~2! is intuitively understandable and is als
used in many papers and textbooks@4,18,19#. The time de-
pendence ofWn(t) comes from the interaction with the en
vironment. In a sufficient time, an arbitrary initial tunnelin
state is expected to be thermalized due to the interaction
the environment. For instance, the initial ground state at
local potential bottom goes as

Wn~0!5dn0→Wn~`!5
e2bEn

(
n

e2bEn

. ~3!

Here T5b21 is the temperature of the environment. W
shall derive this limiting formula at the end of Sec. III.
fundamental paper by Affleck@4# uses the form~2! of the
tunneling probability, using the equilibrium formula fo
Wn(`)

G th5
vp

2p (
n50

`
e2bEn

(
n

e2bEn

uT~En!u2. ~4!

Reference@4# also compares this method with an imaginar
time calculation, obtaining the same result~4!.

Our formula~2! is a generalization of the equilibrium for
mula ~4! to finite times. Ideally, the formula~2!, under ap-
4-2
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propriate circumstances, should be derived from the r
time formalism of Feynman and Vernon@9#, which has been
unsuccessful so far.

A comment on the potentialV(q) might now be useful.
We do not include temperature-dependent corrections in
potential due to the environmental interaction. They au
matically arise in our formalism as coupling-@c(v)# depen-
dent terms, when one solves the system of Eq.~1! com-
pletely. In approximation~2! the temperature-depende
correction to the potential is ignored, which is justified for
sufficiently low temperature. Alternatively, as a phenome
logical approach one could include temperature-depen
terms in the potential such as Eq.~A8! of Appendix Sec. 2
valid in the standard particle physics model, if one carefu
avoids the double counting problem which might arise fro
the interaction term.

We now show the basic strategy for calculating the ti
dependence of the occupation probabilityWn(t). This part
of the calculation is an ideal problem to apply the Feynm
Vernon real-time formalism to. By using this formalism w
can calculate the density matrix or the Wigner function o
small system immersed in a huge thermal environment.

We start with the density matrix for the total~tunneling
system1environment! system. The density matrix that de
scribes the entire quantum-mechanical system obeys
equation of motion

i\
]r

]t
5@H tot ,r~ t !#. ~5!

For the time being, we explicitly write the Planck constant\.
In the configuration space this density matrix is given by
matrix elements

r~q,q8;Q~v!,Q8~v!;t !5^q,Q~v!ur~ t !uq8,Q8~v!&.
~6!

Its Fourier transform with respect to relative coordinatesq
2q8,Q(v)2Q8(v) is called the Wigner function and is de
noted byf W :

f W@q,p;Q~v!,P~v!;t#

[E
2`

` dj

2p)
v

dX~v!

2p
expF2 i jp2 i E dvX~v!P~v!G

3r@q1j/2,q2j/2;Q~v!1X~v!/2,Q~v!

2X~v!/2;t#. ~7!

Reduction to the subsystem by integrating out envir
ment variablesQ(v) is an essential part of the Feynma
Vernon formalism. We thus define the reduced density ma
of the tunneling system by

r (R)~q,q8;t ![E )
v

dQ~v!dQ8~v!d @Q~v!

2Q8~v!#•r@q,q8;Q~v!,Q8~v!;t#. ~8!
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The fact that there is a delta functiond @Q(v)2Q8(v)# for
the environment variable reflects our understanding that
does not observe the environment. A similar reduction
made to the Wigner function, to get the reduced Wign
function

f W
(R)~q,p;t ![E )

v
dP~v!dQ~v! f W@q,p;Q~v!,P~v!;t#

5E
2`

` dj

2p
e2 i jpr (R)~q1j/2,q2j/2;t !. ~9!

A detailed calculation of the reduced Wigner function
given in Sec. III.

The reduced density matrix and reduced Wigner funct
all have quantum and statistical information about the sm
system immersed in a huge environment. Thus the occu
tion probability can be calculated by performing projecti
onto the energy eigenstate of the tunneling system on the
side of the potential barrier

Wn~ t !5^Enur (R)~ t !uEn&

5E dqdq8wEn
~q!wEn

* ~q8!r (R)~q,q8;t !

5E dqdq8dpwEn
~q!wEn

* ~q8!eip(q82q)

3 f W
(R)S q1q8

2
,p;t D , ~10!

wherewEn
(q) is the wave function of eigenenergyEn . Our

basic idea is to limit application of this formula to the le
region of the metastable state.

The reduction to the subsystem here is in spirit opposite
that common in the effective field theory approach; integ
tion over heavy degrees of freedom is performed. Wha
integrated out in the present case is the majority of const
ents which are taken invariant under frequent thermaliz
interaction.

III. SEMICLASSICAL REDUCED WIGNER FUNCTION
AND OCCUPATION PROBABILITY

A. Semiclassical reduced Wigner function

It is easy to show from the master equation~5! that the
Wigner function of the total system defined in Eq.~7! obeys

] f W

]t
52p

] f W

]q
1

1

i\ H VS q1
i\

2

]

]pD2VS q2
i\

2

]

]pD J f W

2E dvH P~v!
] f W

]Q~v!
1v2Q~v!

] f W

]P~v!

1c~v!S q
]

]P~v!
1Q~v!

]

]pD f WJ . ~11!
4-3
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We concentrate on the equation at the potential region le
the barrier top, in which\→0 may be used, resulting in
limit. Then we have in Eq.~11!

1

i\ H VS q1
i\

2

]

]pD2VS q2
i\

2

]

]pD J→ dV

dq

]

]p
. ~12!

The resulting equation for the Wigner function is identical
the classical Liouville equation familiar in classical statistic
mechanics. It has an obvious formal solution

f W@q,p;Q~v!,P~v!;t#

5E dqidpiE )
v

dQi~v!dPi~v!

3 f W
( i )@qi ,pi ;Qi~v!,Pi~v!#d~q2qcl!d~p2pcl!

3)
v

d @Q~v!2Qcl~v!#d @P~v!2Pcl~v!#,

~13!

whereqcl ,Qcl(v), etc., are the solution of equation of mo
tions for the Hamiltonian~1! taken as the classical equatio
with the specified initial condition written in terms o
qi ,pi ,Qi(v),Pi(v):

d2q

dt2
1

dV

dq
52E

vc

`

dvc~v!Q~v!,

d2Q~v!

dt2
1v2Q~v!52c~v!q. ~14!

We consider the circumstance under which the tunne
system is initially in a state uncorrelated to the rest of
environment and the environment is taken to be a ther
state of the temperatureT5b21. We do not specify the de
tailed form of the initial Wigner function of the tunnelin
system for the time being. Thus we take the form of t
initial Wigner function of a factorized form

f W
( i )@qi ,pi ,Qi~v!,Pi~v!#

5 f W,q
( i ) ~qi ,pi !)

v
f W,Q

( i ) @Qi~v!,Pi~v!#, ~15!

f W,Q
( i ) @Qi~v!,Pi~v!#

5
1

p
tanh

bv

2
expF2tanh

bv

2 S vQi
2~v!1

Pi
2~v!

v D G
to get the reduced Wigner function after the environm
Q(v),P(v) integration,

f W
(R)~q,p;t !5E dqidpi f W,q

( i ) ~qi ,pi !K~q,p,qi ,pi ;t !,

~16!
12351
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K~q,p,qi ,pi ;t !5E )
v

dQi~v!dPi~v! f W,Q
( i ) ~Qi ,Pi !

3d~q2qcl!d~p2pcl!. ~17!

The quantityqcl and pcl are now solutions of the Langevi
equation

d2q

dt2
1

dV

dq
12E

0

t

dsa I~ t2s!q~s!5FQ~ t !, ~18!

a I~ t ![2E
vc

`

dvr ~v!sin~vt !, with r ~v!5
c2~v!

2v
,

FQ~ t !52E
vc

`

dvc~v!S Qi~v!cos~vt !1Pi~v!
sin~vt !

v D ,

~19!

which is obtained from the equation of motion~14! by elimi-
nating the environment variableQ(v) from the second equa
tion @20#.

An often used model is the local, Ohmic model@22,23#
taking

r ~v!5
hv

p
~20!

with vc50. Then the Langevin equation takes the we
known local form

q̈1V8~q!1hq̇5FQ~ t !. ~21!

Here the overdot means the time derivative and the pr
indicates the derivative with respect to its argument. T
expected friction termh(dq/dt) and the fluctuation term
FQ(t) are realized in the above equation through the int
action between the tunneling system and the environm
We use this local Ohmic model in the rest of our paper.

The solution of the Langevin equation is regarded a
function of initial valuesqcl(qi ,pi ,Qi ,Pi ;t). The problem
of great interest is how further one can practically simpl
the kernel functionK introduced in Eq.~16!.

In many situations one is interested in the tunneling pr
ability when the environment temperature is low enough.
low temperatures ofT!, a typical frequency or curvature
scalevs of the potentialV, one has

vs
AQi

2~v!,APi
2~v!5O@AT#!Avs. ~22!

Here an overbar denotes the thermal average. In the e
troweak and GUT phase transitions this corresponds tT
!mH ~Higgs mass!. Expansion of qcl in terms of
Qi(v),Pi(v) and its truncation to linear terms is then jus
fied. Thus, we use

qcl.qcl
(0)1E dv$Qi~v!qcl

(Q)~v!1Pi~v!qcl
(P)~v!%,

~23!
4-4
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valid to the first order ofQi(v),Pi(v). The zeroth order
term isqcl

(0) obeying

q̈cl
(0)1V8~qcl

(0)!1hq̇cl
(0)50, ~24!

with the initial condition qcl
(0)(t50)5qi , q̇cl

(0)(t50)5pi .
On the other hand, the coefficient functions of the first or
termsqcl

(Q)(v),qcl
(P)(v) can be written by the complex func

tion z(v,t) asz(v,t)5qcl
(Q)(v,t)1 ivqcl

(P)(v,t) and ż(v,t)
5pcl

(Q)(v,t)1 ivpcl
(P)(v,t). Thenz(v,t) obeys the inhomo-

geneous linear equation

z̈~v,t !1V9~qcl
(0)!z~v,t !1h ż~v,s!52c~v!eivt, ~25!

with the initial conditionz(v,t50)5 ż(v,t50)50. A simi-
lar expansion forpcl usingpcl

(0) ,pcl
(Q)(v),pcl

(P)(v) also holds.
With Eq. ~23! and the Gaussian initial Wigner functio

~15! one can perform integrations for kernelK in Eq. ~16!
analytically. The result of this integral leads to an integ
transform@12# of the Wigner functionf W

( i ) ~initial! → f W
(R)

~final! using the following form of the kernel function:

K~q,p,qi ,pi ;t !

5
AdetJ

2p
expF2

1

2
~q2qcl

(0) ,p2pcl
(0)!J S q2qcl

(0)

p2pcl
(0)D G ,

~26!

where the matrix elements ofJ i j
215I i j are given by

I 11~ t !5
1

2E0

`

dv coth
bv

2

1

v
uz~v,t !u2, ~27!

I 22~ t !5
1

2E0

`

dv coth
bv

2

1

v
uż~v,t !u2, ~28!

I 12~ t !5
1

2E0

`

dv coth
bv

2

1

v
Re@z~v,t !ż* ~v,t !#5

İ 11

2
.

~29!

The physical picture underlying the formula for the int
gral transform~16! along with Eq.~26!, should be evident;
the probability at a phase space point (q,p) is dominated by
the semiclassical trajectoryqcl

(0) @where the environmenta
effect of dissipation is included in its determination by t
third term of Eq.~24!# reaching (q,p) from an initial point
(qi ,pi) whose contribution is weighed by the probabilityf W

( i )

given initially. The contributing trajectory is broadened b
the environmental interaction with the width factorAI i j . The
quantity I 11 given by Eq. ~27!, for instance, is equal to
(q2qcl

(0))2, an environmental driven fluctuation under th
stochastic forceFQ(t).

We note that in the exactly solvable model of the inver
harmonic oscillator potential, the identical form of the int
gral transform~26! was derived@11# without resort to the
semiclassical approximation. The explicit form of the clas
12351
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cal and fluctuation functions (qcl
(0)), and z(v,t) is given

there, which is valid beyond the Ohmic approximation.
A convenient form of the fluctuation formula is derive

by separating the zero-temperature result along w
cothbv/25112/(ebv21) in Eqs.~27!–~29!. We denote the
temperature-dependent part of the fluctuation byI i j

(T) . The
zero-temperature partI i j

(0) must be renormalized. After per
forming renormalization the zero-temperature part is
proximated by the result of the harmonic approximation e
plained in the next paragraph. The renormalized fluctuat
is then well approximated using the physical curvaturevp .
We shall use the same notationI i j for the renormalized fluc-
tuation in the rest of our paper.

B. Harmonic approximation

It would be instructive to discuss the harmonic appro
mation taking the potentialV(q) in Eqs.~23! and ~25! as

V~q!.
vp

2

2
q2, ~30!

where the physical curvature is given byvp5AṽR
22h2/4 in

the local Ohmic model.~The derivation of the relation be
tween the physical curvaturevp and the renormalized curva
turevR is shown in Appendix Sec. 1.! Then the zeroth orde
term qcl

(0)(t) andz(v,t) are obtained analytically, and give
by

qcl
(0)5u~ t !qi1v~ t !pi , ~31!

u~ t !5S cosvpt1
h

2vp
sinvpt De2ht/2,

v~ t !5
sinvpt

vp
e2ht/2, ~32!

z~v,t !5
c~v!

v22ṽR
22 ivh

@eivt2u~ t !2 ivv~ t !#. ~33!

The functionz(v,t) has a Breit-Wigner form for a smallh.
In particular, the infinite time (t→`) limit of the fluctuation
has

I 11~`!5E
0

`

dv coth
bv

2

r ~v!

~v22ṽR
2 !21h2v2

. ~34!

The friction h appears as the resonance width in this f
mula. The real part of the pole position in a frequency in
gral such as Eq.~34!, vp[Re ~pole position!, is vp

5AṽR
22h2/4 as expected.

The harmonic approximation is excellent at late times,
will be demonstrated explicitly later, but at early and inte
mediate times nonlinear resonance effects are importan
discussed in Ref.@10#. The nonlinear effect will be taken into
account in the discussion of the finite time behavior of t
tunneling rate.
4-5
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C. Occupation probability

We now discuss how to obtain the occupation probabi
Wn(t) from the reduced Wigner function by using Eq.~10!.
From Eqs.~16! and ~26!, explicit p integration of Eq.~10!
gives

WE~ t !5E dqdq8
dqidpi

2p
wE~q!wE* ~q8!

f W
( i )~qi ,pi !

A2pI 11

3expH 2
1

2I 11
S q1q8

2
2qcl

(0)~ t ! D 2

2
detI

2I 11
~q2q8!2

1 i ~q82q!Fpcl
(0)~ t !1

I 12

I 11
S q1q8

2
2qcl

(0)~ t ! D G J .

~35!

Unless the energy eigenstate near the barrier top is im
tant for the computation of the tunneling rate, one may
proximate the wave functionwE(q) in the left region toq
5qB by that of the harmonic oscillator at the potential bo
tomq50. The wave functionwE(q) is thus approximated by
using the Hermite polynomialHn as

wE~q!5S Avp

Ap2nn!
D 1/2

Hn~Avpq!e2vpq2/2, ~36!
n
r-
-

.
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-
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whereE5nvp . It is convenient to use the generating fun
tion

W~ t,z![ (
n50

`

Wn~ t !zn ~37!

for computing the projected probabilityWn(t). With the help
of the Mehler formula@26# for the Hermite polynomial

(
n50

`
~z/2!n

n!
Hn~x!Hn~y!

5~12z2!21/2expF2xyz2~x21y2!z2

12z2 G , ~38!

one has Gaussian integrals forq andq8 in Eq. ~10!, resulting
in

W~ t,z!5E dqidpi

f W
( i )~qi ,pi !

AdetÃ

3expF2
12z

2 detÃ
~qcl

(0) ,pcl
(0)!ÃS qcl

(0)

pcl
(0)D G ,
Ã5S ~12z!~ I 222vp/2!1vp 2~12z!I 12

2~12z!I 12 ~12z!@ I 1121/~2vp!#11/vp
D . ~39!
ur

ble

tor
QuantitiesI i j are to be computed at finite timet. The impor-
tant constraint of the probability conservation(n50

` Wn(t)
51 is automatically satisfied due toW(t,1)51. For a pre-
cise computation, one expands this generating function
powers ofz, and identifies the projected probabilityWn(t)
by Eq. ~37!.

Let us discuss the infinite time limit of the occupatio
probabilityWn(`). The harmonic approximation for the ke
nel functionK is excellent in this limit, as stated in the pre
vious section. Then the fluctuationsI i j are independent of the
initial conditions ofqi , pi , as exemplified by Eq.~34!. On
the other hand, solutions of the homogeneous equation~24!,
qcl

(0) and pcl
(0) , are identically zero due to the friction term

Thus the integration of initial variablesqi ,pi in Eq. ~39!
becomes trivial and can be solved analytically. The resul
occupation probability is

Wn~`!5~12e2bv!e2nbv1O~h!, ~40!

the thermal one up to the orderh. We note that the sub
system thermalizes at the infinite time despite that it w
initially an arbitrary initial state, hence a nonequilibriu
state. This proves that the infinite time limit coincides w
the thermal limitG(`)5G th .
to

nt

s

IV. NUMERICAL ANALYSIS AND RELEVANCE
OF PARAMETRIC RESONANCE

We first specify a particular model of the potential for o
numerical calculation. The potential we take~illustrated in
Fig. 2! is given by

V~x!5
ṽR

2

2
x21gṽR

3x4 ~x,xb!,

5Vh ~xb,x,xf !,
~41!

52V~`! ~xf,x!.

The two parametersVh andxb are related byV(xb
2)5Vh for

our choice of a particular quartic potential in the metasta
well. We consider for definiteness,g50.01, Vh55vp(vp

5AṽR
22h2/4) for the parameters of Eq.~41!. We use the

friction h in the range of 0.001vp,h,0.02vp and the tem-
perature of the environment in the range of 0.1vp,T
,vp . We setxf2xb50.5vp in this calculation.

The initial Wigner function of the systemf W
( i )(qi ,pi) is

taken to be that of the ground state of the harmonic oscilla
at the potential bottom. It is given by
4-6
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f W
( i )~qi ,pi !5

1

p
expF2vpqi

22
pi

2

vp
G . ~42!

The effect of the nonlinear term, the quadratic termgṽR
3 x4,

is clarified by a comparison to the harmonic approximati
because the term is absent in the approximation.

A. Relevance of the parametric resonance

We point out that a relation of the semiclassical Wign
function to the parametric resonance, as briefly mentione
Ref. @10#. The presence of anharmonic terms is inevitable
any realistic tunneling potential. This introduces a nontriv
oscillating term in the coefficient functionV9(qcl

(0)) of the
fluctuation equation~25!, thus giving a differential equation
akin to the Mathiew equation. Depending on whether or
the relevant parameters fall into the instability band of t
Mathiew-type equation, the fluctuation may indefinitely i
crease in the zero friction limit@24#. What happens is more
subtle; the parameters fall right on the boundary of stabi
and instability bands. We shall show this by taking an e
ample of the tunneling potential~42!.

We now consider Eq.~25! of the fluctuationz(v,t), using
the potential of Eq.~41!,

V9~qcl
(0)!5ṽR

2112gṽR
3~qcl

(0)!2. ~43!

We first take the zero friction limith50 and consider the
homogeneous equation of the fluctuationzh(t),

z̈h~ t !1@h12u~qcl
(0)!2#zh~ t !50, q̈cl

(0)1V8~qcl
(0)!50,

~44!

where

h5ṽR
2 , u56gṽR

3 ~g50.01!. ~45!

The second equation in Eq.~44! gives a periodic solution for
qcl

(0) . A notable feature of the homogeneous equation~44! in
the h50 limit is that qcl

(0) appearing in the coefficient func
tion is periodic, hence it gives rise to solutionszh(t) either of
the Bloch wave type or of the parametric resonance t
@24#. Despite the definite values ofh andu in Eq. ~45!, we
regard (h,u) as free parameters to thoroughly investigate
stable-unstable band structures, because that would m
definitely clarify the relation between the band structure a
the relevant parameter of this model.

FIG. 2. The tunneling potential used in the numerical calcu
tion.
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In a relevant region of 0,h,5ṽR
2 , 0,u,2ṽR

3 , which
includes the model parameter~46!, we numerically checked
the time evolution of the homogeneous solution of Eq.~44!.
We observed the power-law increase of the fluctuation in
model parameter~46!. Indefinite increase of the fluctuatio
z(v,t) as time increases implies that the assumed param
lies either within the unstable band or on the boundary
tween the bands. The linear risez(v,t)}t, as indicated by
our numerical analysis, suggests that the parameter is on
boundary.

The result of the band structure is given in Fig. 3, and
relevant parameter Eq.~45! ~corresponding to the crosse
point! is just on the boundary between the stable and fi
unstable band. This is consistent with the linear rise, a
expected in the case of the exact Mathiew function on
boundary @25#. For this numerical calculation we had t
choose an initial condition forqcl

(0) . We took several condi-
tions for investigating band structures, and we always
tained the same result of the linear power-law increase.

We next consider effects of the frictionh. The inclusion
of the friction gives a modification of Eq.~44! to

z̈~ t !1@h12u~qcl
(0)!2#z~ t !1h ż~ t !50,

q̈cl
(0)1V8~qcl

(0)!1hq̇cl
(0)50. ~46!

The effect of the friction termh ż(t) is studied by changing
the variablez(t) to y(t)[z(t)eht/2. Then the equation for
y(t) becomes

ÿ1@~h2h2/4!12u~qcl
(0)!2#y50. ~47!

When the effect of friction for the behavior of the zero
order qcl

(0) is small,qcl
(0) is nearly periodic and the equatio

for y is nearly of the parametric resonance type. In this c
then, the behavior ofz(t)5y(t)e2ht/2 is rather simple; it is a
product of the linearly rising function@y(t);t# and the ex-
ponentially decreasing function (e2ht/2). The rate of the ex-
ponential decrease ish/2, hence this product function has
maximum at a time around 2/h. This seems essentially wha
we observe in the numerical computation forz(v,t).

With the presence of friction, the functiony approaches
the behavior of simple harmonic oscillator as time increa
sinceqcl

(0)→0 by friction. This means, as seen in Fig. 4, th
the linear increase ofy is saturated at the time of order 2/h.

-

FIG. 3. Band structure for the relevant fluctuation. The shad
areas correspond to the instability band. The first band is enla
separately~the left figure!, where the crossed point corresponds
our model relation~46!.
4-7



q

e

i

s
t

r
e

e

ti

he

en-
pre-
ere

en-
es.
. If

l
ten-

g a
tem
y
eso-
ergy
he
nce
tial

re
rgy
The

the
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The net effect of the friction in the second equation of E
~46! is simply the minor change of a coefficient ofA/h,
whereA is close to 1.7.

The effect of the presence of the inhomogeneous term
Eq. ~25! is as follows. This term acts as an external forc
and gives a resonance effect when the frequencyv is close
to the inherent frequency of the system. We illustrate th
point. In Fig. 5 the v dependence ofvpuz(v,t)u2

1uż(v,t)u2/vp at a particular time is shown, and one observe
in addition to the simple resonance, higher modes due to
nonlinear effect. Without a strong resonance effect such
this one, the fluctuationz(v,t) is very small, since we have
the initial conditionz(v,0)505 ż(v,0). Thus, the environ-
ment acts here as a force of the resonant kick from ze
amplitude, which then makes it possible for the paramet
resonance effect to work, typically very important for larg
amplitude oscillation. In Fig. 5~a!, the growth of the first
(v;vp) and second (v;3vp) modes is shown. Other
higher modes~third, fourth, . . . ! are also amplified in the
same manner as in the second mode case att;360vp

21 . On
the other hand, these higher modes disappear at late tim
and only the first mode remains, as seen in Fig. 5~b!.

B. Numerical results of physical quantities

We now discuss the behavior of the frequency integrat
fluctuation I (t) in Eqs. ~27!–~29!. The increase of the fluc-
tuation due to the parametric resonance gives an interes
time evolution ofI. In Fig. 6~a!, the time evolution of the
quantity vpI 11

(T)1I 22
(T)/vp is shown for a few values of the

FIG. 4. Time evolution of the functiony(t), a solution of Eq.
~47!. The amplitude of the functiony(t) with the friction h
50.005vp is depicted.

FIG. 5. Examples of thev dependence ofz(v,t). The quantity

vpuz(v,t)u21uż(v,t)u2/vp at both~a! early and~b! late times are
shown. The unit of time isvp

21 .
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friction h. This function depends on the initial valueqi ,pi ,
for which we took a typical value in the ground state at t
potential minimum.

What is the physical picture behind the resonance
hancement? We would like to present a suggestive inter
tation. We first derive a relation between the fluctuation h
and the subsystem energy defined by

^Hsys&[K p2

2
1

vp
2

2
q2L , ~48!

where^A(q,p)& means*dqdp f(R)(q,p)A(q,p). By making
the approximation onqcl andpcl , namely, taking up to linear
terms of the initial environment value as used in Eq.~23!,
this equation is reduced to

^Hsys&5~T50 part!1
1

2E0

`dpidqi

2p
f W

( i )~qi ,pi !

3$I 22
(T)~qi ,pi ;t !1vp

2I 11
(T)~qi ,pi ;t !%. ~49!

Thus, the temperature-dependent part of the subsystem
ergy is given by the fluctuation averaged over initial valu
In short, the subsystem energy is driven by the fluctuation
initial values for^qcl

2 (0)& and ^pcl
2 (0)& are small~in the vp

51 unit!, the zero-temperature part (T50) part is close to
0.5vp ~zero-point fluctuation of the system!. In Fig. 6~b! the
quantity Hsys2(T50 part) is shown, taking as the initia
state the ground state of the harmonic oscillator at the po
tial bottom.

The time at which the maximum ofHsys occurs is 1.7/h,
which is the same as that of the fluctuation, thus indicatin
close correlation between the fluctuation and our subsys
energy^Hsys&. The implication to the occupation probabilit
and the tunneling rate seems obvious; the parametric r
nance we observe here enhances excitation to higher en
states at the potential region left of the barrier top in t
quantum-mechanical terminology. This would then enha
the tunneling rate from the metastable state of the poten
well.

In Fig. 7, a few examples of the projected probability a
shown. It is clearly observed that excitation to higher ene
levels is correlated to an evacuation of the ground state.
infinite time limit of Wn(`) coincides with the result of the
harmonic approximation as is expected. We note that

FIG. 6. Time evolution of~a! the fluctuationvpI 11
(T)1I 22

(T)/vp

and ~b! the subsystem energŷHsys& (T50 part). A temperature
T50.5vp is taken with four cases of the frictionh ~in the unit of
vp).
4-8
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TIME EVOLUTION OF TUNNELING IN A THERMAL . . . PHYSICAL REVIEW D 69, 123514 ~2004!
subsystem thermalizes at infinite time despite the fact tha
was initially in the ground state of a harmonic oscillato
hence it is in a nonequilibrium state.

We now clarify the relation between the subsystem ener
Hsys and the occupation probabilityWn(t)

(
n50

`

EnWn~ t !5^Hsys&, ~50!

where ^Hsys& is calculated by Eq.~49!. This relation was
numerically checked, as might be expected. We have no a
lytic proof of this relation, although there is no doubt on th
correctness of this relation.

In computing the tunneling rateG(t) by using Eq.~2! we
have to calculate the penetration coefficientuT(En)u2, and
we used the simple quantum-mechanical formula

uT~E!u2'expF22E
q1(E)

q2(E)

dxA2~V~x!2E!Gu~Vh2E!

1u~E2Vh!, ~51!

whereqi(E) are turning points separating the subbarrier r
gion.

In Fig. 8~a! the tunneling rateG(t) is shown for a few
values of the friction. The tunneling rate is observed to b
come maximal at the timet;1.7/h.

A salient feature, and the most important result of th
present work, is that the tunneling rate is enhanced aroun

FIG. 7. Time evolution of the projected probability for ground
second excited, and forth excited states. The case ofT50.5vp and
h50.005vp is depicted. For comparison the result in the harmon
approximation is shown.

FIG. 8. ~a! Time evolution of the tunneling rateG(t). A tem-
peratureT50.5vp is taken with four cases of the frictionh. ~b!
Ratio of the maximal tunneling rate att;O(2/h) to G(`) ~a tra-
ditional one! is depicted as a contour map in theh-T plane.
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time of order 2/h, which is caused by nonlinear resonan
effects. The enhanced tunneling rate att'O(2/h) is clearly
related to the power-law rise of the fluctuationsI i i , as ob-
served in our previous paper@10# and as already explained
The maximal enhancement factor for the tunneling rate
plotted in Fig. 8~b!, relative to the thermal tunneling rat
@thus the rate is given byG(`)]. A large enhancement is
obtained for smallh and smallT values. The maximal tun-
neling rate goes ash21.5 at fixedT unlessh is too small.

At first sight one might think that the maximal tunnelin
rate goes to infinity if we take theh→ 0 limit. Our result is
valid for a range of (0.001,h) in our numerical calculation.
Our approximation used in Eq.~23! breaks down when we
take a very smallh. In this approximation we expand th
solution of the Langevin equation by the environment va
ablesQi(v), Pi(v). The subleading term proportional t
Qi(v) or Pi(v) exhibits the parametric resonance. The
fect of the parametric resonance is, however, suppresse
the friction term. If the frictionh is very small, this suppres
sion is not enough, giving a bad convergence of the exp
sion in Eq.~23!.

We confirmed that the expansion has good convergenc
the range of our numerical calculation 0.002,h,0.02.
Therefore, our final form of the tunneling rate is not to
applied to a very smallh. Fortunately, many cases of pra
tical interest are in the range of our numerical calculation,
example, the case of electroweak symmetry breaking in
standard model shown in the Appendix. If we are forced
take the formalh→0 limit, a decoupling of the tunneling
system and environment occurs, becauseh is nothing but the
coupling strength between the system and the environm
In this limit the tunneling rate becomes time independent a
the simple QM tunneling rate is obtained. Thus, there is
peculiarity of theh→0 limit.

We may summarize what happens, in the following w
The nonlinear resonance inherent to the tunneling poten
excites higher modes that have larger tunneling probabilit
This effect is, however, terminated by the friction caused
an environmental interaction, which is the origin of the fin
decrease of the tunneling rate at large times.

We finally study the correlation between the tunneli
rateG(t) and the tunneling system energyHsys(t) at a quan-
titative level. In order to evaluate the correlation quanti
tively, we define the correlation coefficientr used in statis-
tics:

r 5
^GHsys&2^G&^Hsys&

^G&^Hsys&
, ^A&[

1

time
E

0

time

dtA~ t !.

~52!

The correlation coefficientr was numerically calculated an
we obtained results that can be summarized byr 50.99;1 in
the parameter region of temperature and friction 0.2<T/vp
<1.0 and 0.001<h/vp<0.02. This proves the correlatio
between the two quantities.

We next turn to the discussion of the survival probabili
the probability that the metastable state remains in the s
initial state. This quantityP(t) is defined by

c

4-9
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Ṗ~ t !52G~ t !P~ t !, P~0!51,

⇒ P~ t !5expF2E
0

t

dt8G~ t8!G .
~53!

In Fig. 9~a! the survival probability is depicted along with
the result of the harmonic approximation of the potentia
bottom. The effect of EET is unquestionable.

A traditional definition of the lifetimet trad which many
authors use ist trad5G21(`), while in the case of time de-
pendent tunneling one may effectively usetLT given by the
e-holding time

P~ tLT!5e21. ~54!

In Fig. 9~b! a contour plot oftLT /t trad is shown in the param-
eter (h,T) space. For small values ofh andT a substantial
reduction of the lifetimetLT is observed, which means an
early termination of the tunneling. We hope that we hav
convinced the reader of the power and the usefulness of EE
even though our idea is supported by a detailed numeric
analysis which is necessarily limited to special cases.

V. DISCUSSION

There may be many applications of the environmen
driven excited tunneling~EET! presented in this paper. We
shall only mention two possible applications to cosmolog
an enhancement mechanism of electroweak baryogene
and a possible resurrection of the old inflationary scenario
the GUT phase transition. Furthermore in the present discu
sion we shall focus on one aspect of the baryogenesis co
dition; the out-of-equilibrium condition@14,15#. Needless to
say, there will be many problems to solve in an actual app
cation of these ideas to realistic models.

Electroweak baryogenesis is expected to occur if the ele
troweak phase transition is strong first order. The first ord
phase transition usually proceeds via the bubble formatio
Inside the bubble the true electroweak broken phase is re
ized in which the baryon number is effectively conserved
On the other hand, outside the bubble the universe remains
the high-temperature symmetric phase in which the bary

FIG. 9. ~a! Time evolution of the survival probabilityP(t). The
case ofT50.5vp andh50.005vp is depicted. For comparison the
result in the harmonic approximation is shown.~b! Ratio of the
lifetime as defined in Eq.~54! to the traditional one is depicted as a
contour map in theh-T plane.
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number is not conserved via sphaleron related proce
@27#. This mismatch inside and outside the bubble gives r
to the possibility of electroweak baryogenesis, although
tails of a promising mechanism are yet to be worked o
Thus, the strong first order of the phase transition has b
considered to be a requisite for the out-of equilibrium co
dition necessary for baryogenesis.

In an ordinary circumstance, namely, in the stand
model, the strong first order phase transition requires a sm
Higgs mass, which is inconsistent with observation. Alo
with the smallCP violation effect of Kobayashi-Maskawa
theory, this excludes@28# the possibility@29# of the standard
model as a viable model for baryogenesis. Thus, a m
complicated model such as two Higgs doublet model ne
to be invoked for electroweak baryogenesis. Regardles
whether an extended Higgs model is needed, we would
to point out that the environment-driven excited tunneli
~EET! found in this paper has a chance of enhancing
out-of equilibrium condition necessary for baryogenesis.

Although not much discussed in the literature, there is
important factor to consider for the out-of equilibrium co
dition. This is the factorGtH , whereG is the nucleation rate
of the bubble andtH51/H is the Hubble time. In the usua
scenario of the first order phase transition the effectiven
of electroweak baryogenesis is in proportion to this quant
The nucleation rateG in the usual estimate without EET i
exponentially suppressed by the potential barrier, and
factor GtH is much less than 1, which means that the fi
order phase transition is never completed by a merge
nucleated bubbles. Under this circumstance it is expec
that the phase transition is terminated by proceeding to
appearance of the local minimum of the symmetric phase
that the condition for the first order phase transition is n
met. The effectiveness of the out-of equilibrium condition
then reduced by a factor proportional to the quantityGtH .

On the other hand, with the aid of EET, the factorGt may
become of order unity at some finite time, and the ph
transition may be completed much prior to the Hubble tim
as discussed in previous sections. One should check the
time scale 2/h which is roughly the time at the maximum fo
the tunneling rate in comparison to the Hubble time. T
factor Gt thus may become of order unity att;2/h. In this
case there is no reduction factor similar toGtH .

We shall check the numerical relation between two tim
scalestH and 2/h. The size of the frictionh in the standard
model is of the order of the Higgs massmH times some
power of coupling factors, while the Hubble rate is given

H51/tH5A4p2

45
N

T2

mpl

, N5106.75. ~55!

The calculation, as summarized in the Appendix, indica
that

h.
yt

2

32p
vptanhS vp

4TD ,

vp
25V9~0!.0.23~T22mH

2 20.04v2!, ~56!
4-10
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TIME EVOLUTION OF TUNNELING IN A THERMAL . . . PHYSICAL REVIEW D 69, 123514 ~2004!
whereyt is the top Yukawa coupling andV(f) is the effec-
tive potential of the standard model at finite temperatu
with v the vacuum expectation value of the Higgs fie
Thus, the Hubble rate is much smaller thanh by the inverse
Planck factor sincemH /mPl!yt

2 .
One may expect that even in the case of weak first or

phase transition the quantum tunneling enhanced by E
may give rise to a sufficient condition for the out-of equili
rium in the early phase of the phase transition. Much rema
to be seen in this regard.

Another interesting effect of EET concerns the resurr
tion of the old inflationary scenario of the GUT phase tra
sition @16#. The old inflationary scenario was once reject
because the bubble formation proceeds too slowly, he
leaving a very inhomogeneous universe@17#. The essential
reason for this problem, called the graceful exit problem
that the exponentially suppressed tunneling rate is too s
so the bubbles of the true vacuum do not merge sufficie
to give rise to a homogeneous universe which the inflati
ary scenario intends to derive. Our mechanism of enhan
tunneling may help this situation. The problem must, ho
ever, be addressed quantitatively; one has to obtain an e
termination of the first order phase transition to prom
merger of bubbles, yet one also has to obtain sufficient
flation to solve the intended problems. We leave this qua
tative study for the future.
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APPENDIX

1. Renormalization effect

We explain the renormalization effect to the potent
V(q) along with the Langevin equation~18!. We rewrite the
equation with the counter term adopted in Ref.@3#, explicitly,

d2q

dt2
1

dV

dq
12E

0

t

dsa I~ t2s!q~s!2q~ t !E dvc~v!2

5FQ~ t !. ~A1!

The third term on the left-hand side is the counter term a
ing from the interaction with environment. In the loc
Ohmic model, the kernel functiona I becomes@22,23#

a I~t!5hd8~t!12d~t!E dv
h

p
. ~A2!

The second term on the right-hand side is interpreted a
potential renormalization or a mass renormalization in
field theory analogy, since by changing the bare freque
parameter to the renormalizedvR

2 , the termdv2q is can-
celled by the counterterm in the potential.

We now discuss the relation between the renormali
curvatureṽR(vR) at the potential bottom~barrier top! and
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the physical curvaturevp(vB) here. We first illustrate this
for the curvature at the barrier top. In the vicinity of th
barrier top, the renormalized potential is given byV(q).
2vR

2(q2qB)2/21Vh1counterterms (vR.0 by definition).
The physical curvaturevB ~the tachyon mass in the fiel
theory analogy, which is defined by a positive value! shifted
by the environment is determined as a pole position of
Green’s function̂ 0uT@q(t)q(0)#u0& at the barrier top, thus
as a solution for the isolated pole of the following equatio

vB
22vR

21E
vc

`

dv
2vB

2r ~v!

v~vB
21v2!

50. ~A3!

In many past works, the renormalized curvaturevR was
used as a reference curvature to evaluate the environm
effect. Due to the positivity ofr (v), one hasvB

2,vR
2 in

general. A consequence of this is that the potential barrie
further suppressed by usingvB instead of taking the renor
malized curvaturevR as the reference point. It is instructiv
to give an example. In the Ohmic model of Eq.~20! the
explicit form of the physical curvaturevB is given by

vB5AvR
21

h2

4
2

h

2
. ~A4!

The relation between the renormalized and the physical
vature at the local minimum of the potential is obtained
the same way, to give in the Ohmic model

vp5AṽR
22

h2

4
. ~A5!

2. Effective potential and critical temperature

We shall first give the finite temperature effective pote
tial of the standard model at one-loop order, assuming
the Higgs boson mass is much smaller than other part
masses of the standard model such as the top quark, the
boson, thusmH!mt ,mZ ,mW . This is taken as a necessa
condition for the first order phase transition. This conditio
however, is not met in reality. Nevertheless, we take this c
as an important illustration for more complicated cases.

The zero-temperature part of the effective potential@30# is

V0~f!5
mH

2

8v2
~f22v2!212Bv2f22

3

2
Bf41Bf4logS f2

v2 D ,

B5
3

64p2v4
~2mW

4 1mz
224mt

2!.20.005, ~A6!

wherev5246 GeV is the vacuum expectation value~VEV!
of the Higgs field, andma is the mass of a particle speciesa.
The finite temperature effect is then given by the free ene
@31#
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VT~f!5
T4

2p2 F6I BS mWf

vT D13I BS mzf

vT D26I FS mtf

vT D G ,
I B,F~a2!5E

0

`

drr 2log@17exp~2Ar 21a2!#. ~A7!

The Higgs contribution has been neglected, due to the
sumption ofmH! masses of other particles.

According to Ref. @31#, we may make the high
temperature expansion of the effective potential withT!v,
to get

V~f!5V0~f!1VT~f!.D~T22T0
2!f22ETf31

l~T!

4
f4,

~A8!

where the dimensionless coefficients are given by

D5
2mW

2 1mz
212mt

2

8v2
.0.2,

E5
2mW

3 1mz
3

4pv3
.0.01,

T0
25

mH
2 28Bv2

4D
.1.25@mH

2 1~50 GeV!2#, ~A9!

l~T!5
mH

2

2v2
2

3

16p2v4 S 2mW
4 log

mW
2

aBT2
1mz

4log
mz

2

aBT2

24mt
4log

mt
2

aFT2D .

Here aB52 log 4p22g.3.91, aF52 logp22g.1.14. The
critical temperature is computed from these, to give

Tc
25

T0
2

12E2/@l~T!D#
.

T0
2

12~8 GeV/mH!2
. ~A10!

At the value of Tc two local minima coincide, whileT0
indicates where the symmetric phase ofw50 disappears as
the local minimum. It is thus important to note that the co
dition Tc.T0 for the first order phase transition is met.

3. Friction coefficient in the standard model

The friction coefficienth is computed using the metho
of Refs. @32,33#. According to Ref.@33#, it is possible to
identify the two-body bilinear operator of standard mod
fields as the environment variableQ(v). The most dominant
contribution to the frictionh comes from the top loop dia
gram where the top-Yukawa coupling is of the for
ytf t̄ t/A2. Thus, the Langevin equation of motion for th
zero-mode Higgs fieldf0 becomes
12351
s-

-

l

f̈01V8~f0!12E
0

t

ds Im a~ t2s!f0~s!5F~ t !,

~A11!

^$F~ t !,F~s!%&env5Rea~ t2s!, ~A12!

a~x0!5
yt

2

2 E d3x^ t̄ t~x! t̄ t~0!&env5E dv
r H~v!

ebv21
eivx0.

~A13!

The real-time Green’s function̂t̄ t(x) t̄ t(0)&env can be ob-
tained by the analytic continuation of the imaginary-tim
Green’s function @21#, and it is easy to calculate th
imaginary-time Green’s function by using the Matsubara f
malism. The necessary spectral weightr H(v) is given by

r H~v!5
yt

2

2 E d3p

~2p!3

v2

4p2
d~v22p!~122np!,

~A14!

where p5upW u is the momentum magnitude andnp5(ebp

11)21, assuming that the top quark is massless in the s
metric phase aroundT'T0.

In the vicinity of the false vacuum, namely,w'0, the
behavior of the zero-mode Higgs field exhibits exponentia
dumped oscillation. The solution of the homogeneous ze
mode Higgs field equation~A11! is approximately obtained
by

f0~ t !.2E
0

`

dv
r H~v!sin~vt !

~v22vp
2!1p2r H

2 ~v!

.2E
0

`

dv
r H~vp!sin~vt !

~v22vp
2!1p2r H

2 ~vp!

5sin~vpt !expS 2
pr H~vp!

2vp

t D , ~A15!

where vp is the curvature of the false vacuum@vp
2

5V9(0)#, and the friction coefficient in this case is com
puted from Eq.~A14!. The result is

h5
p

vp
r ~vp!5

yt
2

32p
vptanh

bvp

4
. ~A16!
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