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Time evolution of tunneling in a thermal medium: Environment-driven excited tunneling
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Time evolution of tunneling phenomena proceeding in a thermal medium is studied using a standard model
of environmental interaction. A semiclassical probability formula for the particle motion in a metastable state
of a one-dimensional system put in a thermal medium is combined with the formula of the quantum penetration
factor through a potential barrier to derive the tunneling rate in the medium. The effect of environment, its
influence on time evolution in particular, is clarified in our real-time formalism. A nonlinear resonance effect
is shown to enhance the tunneling rate at finite times of order ®ith » the friction coefficient unlesg is
too small. In the linear approximation this effect has relevance to the parametric resonance. This effect
enhances the possibility of early termination of the cosmological phase transition much prior to the typical

Hubble time.
DOI: 10.1103/PhysRevD.69.123514 PACS nuni§er98.80.Cq
[. INTRODUCTION our numerical analysis in the present work. Herg s the

curvature at the potential well. We offer an interpretation of

Tunneling phenomena, when they occur in isolation, arghe resonance enhancement due to an energy flow into the
genuinely a quantum effect. But when they occur in somesystem from the environment. Furthermore, the enhanced
surrounding medium, the important question arises as ttunneling rate is related to the parametric resonance. We call
whether the tunneling rate is enhanced or suppressed by thieis enhanced tunneling “environment-driven excited tunnel-
environmental effect. There are already many works on thisng” (EET). The popular Euclidean approach cannot deal
subject[1], and most past works deal with a system in equi-with the finite time behavior of tunneling, hence it misses
librium as a whole. A Euclidean technique, such as thehis resonance enhancement at finite times.
bounce solutiori2], is often used in this contex8—8]. We Our method, with a certain extension, should be appli-
would like to examine this problem by working in the real- cable to field theory models. In the future we hope to inves-
time formalism[9]. We find it more illuminating to use the tigate applications to cosmology, in which one may deal with
real-time description instead of the Euclidean method muclthe electroweak first order phase transition relevant to baryo-
employed in the literature. An advantage of the real-timegenesi§13]. An important question here is the time scale of
description is the possibility of identifying an enhanced tun-tunneling. If the usual Hubble time scale that gives rise to the
neling rate at a finite time of dynamical evolution of the potential(or more properly the free energghange(hence
tunneling[10]. Our preliminary application to tunneling phe- regarded in the conventional picture as the termination of the
nomena are given in Refg10-12. first order phase transitipnis replaced by a shorter tunnel-

Our approach is based on the separation of a subsysteimg time scale of order %/, the conventional picture of the
from the thermal environmental, and integrating out the enfirst order phase transition may drastically change. For in-
vironmental degrees of freedom. This method is best suitedtance, bubbles of the true vacuum may be formed by the
to a (by itself) nonequilibrium system which is immersed in resonance enhanced tunneling prior to the potential change.
a larger thermal equilibrium state. The detailed properties ofince this process is stochastic, it may enhance the out-of-
the environment and its interaction form with the subsystermequilibrium condition necessary for baryogenegl€,15.
are expected to be insensitive to the behavior of the subfhe bubble formation via EET may also resurrect the old
system in question. We use the standard model of envirorscenario of grand unified theof&UT) phase transitiofi16]
ment consisting of an infinite number of harmonic oscillatorswhich was once discarded due to the graceful exit problem
[3,9]. In this picture the dissipation seen in the behavior off 17].
the subsystem is due to our ignorance of the huge environ- The rest of this paper is organized as follows. In Sec. Il
mental degrees of freedom. Although the subsystem itself isur setup is shown and the environmental model and the
an open system having an interaction with the environmentunneling rate formula are explained. For simplicity, we ex-
the entire system including the environment obeys quanturamine the environmental effect for a simple tunneling system
mechanical laws in the closed system. described by a one-dimensional potential. In Sec. Il we de-

We work out consequences of the formalism for a simplerive equations needed for numerical calculations, and some
subsystem in one dimension; a tunneling potential systeranalytical results are given. The semiclassical approximation
with one local minimum. The most interesting result thatis then introduced and the crucial simplification, the linear
comes out in this study is the resonance enhanced tunnelirgpproximation of the environment variable, is further worked
[10]. Our result demonstrates that the enhancement occurs atit. This approximation, used while the particle in the one-
a time scale of order %, with » the friction coefficient. The dimensional potential is in the metastable region, determines
enhanced tunneling probability goes wifhas»~ 1%, atleast how the particle is excited in the potential well due to the
in the range of friction 0.00&,< 7»<0.02w, according to environment interaction. In Sec. IV a detailed numerical
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most important in the time period when the particle in a

one-dimensional system remains in the metastable potential
well. Thus, we anticipate that at tunneling the simple quan-
tum mechanical formula may directly be used. Our basic
formula for the tunneling rate is

w o]
I(t)=5- 2 WaO[T(E)I” @
n:
FIG. 1. A typical potential for tunneling in a one-dimensional

system. Curvature parametesg at the bottom of the potentiahg ~ Herew,, is the physical frequency of the potential well, after
at the top of the potential, along with the barrier heightand the  taking into account the renormalization of the potential cur-
barrier width, characterize a global structure of the potential. vature at the bottomg=0) due to the interaction with the
environment. A detailed explanation of the renormalization is
analysis in the metastable region is presented, taking a cogjiven in Appendix Sec. 1. The factar,/27 in the right-hand
crete example of the potential. It is shown that excitation toside is a 1/period for the periodic motion in the left potential
higher levels proceeds via the parametric resonance effect ifell. The complete set of statés) that appear in Eq2) is
the linear approximation. A numerical analysis is then preefined by introducing harmonic oscillator states with re-
sented, quantitatively demonstrating the effect of EET. In thespect to the reference frequeney . The quantityW,(t) is
final section an application to cosmological baryogenesis ighe occupation probability of the energi,() eigenstate at
briefly discussed. In the Appendix we explain the renormalthe potential region left to the barrier top, aifdE,)|? is the
ization effect along with the Langevin equation and the fric-tjme-independent penetration factor for the potendiéd).
tion coefficient along with the relevant formulas in the stan-  Energy eigenstates are special among pure quantum states
dard model of particle physics, which may be applicable tsjnce they time evolve only with phase factors. Thus, if one
discussions of the electroweak baryogenesis in the standaggyes for the projectiomn)(n|, the energy eigenstata) of

model. the total Hamiltonian, the density matrix does not change
with time. On the other hand, if one takes the energy eigen-

Il. ENVIRONMENT MODEL AND TUNNELING RATE state of the subsystem Hamiltonian, then the density matrix
FORMULA changes solely due to the environment interaction. It is thus

. i ) L . best to use a pure eigenstate of, or its superposition of, the
We consider as the first step of our investigation the Simy,psystem Hamiltonian when one wishes to determine how
plest, yet most basic problem of this kind, a one-dimensionaghe tnneling rate is modified in the thermal medium.

system described by the potenfigq). The potentiaM(q),  The formula(2) is intuitively understandable and is also
as illustrated in Fig. 1, is assumed to have some local miniyseq in many papers and textbodks18,19. The time de-
mum atq=0 with V(0)=0, which is separated at the barrier hangence oiV,(t) comes from the interaction with the en-
topq=qg (>0) from a global minimum, which we take in yironment. In a sufficient time, an arbitrary initial tunneling
the present work to be &= such that there is no reflec- giate is expected to be thermalized due to the interaction with

tion from the wall at the far right. _ _ the environment. For instance, the initial ground state at the
This system is put in a thermal medium which acts as arjgcg) potential bottom goes as

environment. The environment has infinitely many, continu-

ously distributed harmonic oscillators given by their coordi- e BEn
natesQ(w). Its coupling to the tunneling system is given by Wi(0)= 80— Wy(®)= . 3
a bilinear form[3,9]. The total Hamiltonian is S e #En
n
¢ -
Htot:?—i'v(q)"_QJ dwc(w)Q(w) Here T=8"! is the temperature of the environment. We
ve shall derive this limiting formula at the end of Sec. Ill. A
w Ow)? o2 fundamental paper by Affleckd] uses the form2) of the
+f dw( + —Q(w)z). (1)  tunneling probability, using the equilibrium formula for
® 2 2
¢ Wh(%)
The frequency-dependent coupling strengtle(i®) and w. o = e~ BEn
is some threshold frequency. One may imagine a generalized Fth=—p —|T(Ep)|2 (4)
case in which the subsystem varialss the order parameter 27 =0 E e~ BEn
for the first order phase transition in cosmology, the homo- n

geneous Higgs field, and the environment oscill&dw) is
a collection of various forms of matter fields coupled to theReferencd4] also compares this method with an imaginary-
Higgs field. time calculation, obtaining the same reg}.

In considering our problem of tunneling in a thermal me-  Our formula(2) is a generalization of the equilibrium for-
dium we assume that the effects of thermal environment areula (4) to finite times. Ideally, the formulé2), under ap-
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propriate circumstances, should be derived from the realThe fact that there is a delta functidh Q(w) — Q' (w)] for

time formalism of Feynman and Vern¢f], which has been the environment variable reflects our understanding that one

unsuccessful so far. does not observe the environment. A similar reduction is
A comment on the potentid¥(gq) might now be useful. made to the Wigner function, to get the reduced Wigner

We do not include temperature-dependent corrections in thiinction

potential due to the environmental interaction. They auto-

matically arise in our formalism as couplifg{w)] depen-

dent terms, when one solves the system of Bg.com- f\(/s)(q,p;t)ff [T dP(0)dQ(w)fuld.p;Q(w),P(w);t]

pletely. In approximation(2) the temperature-dependent ©

correction to the potential is ignored, which is justified for a

sufficiently low temperature. Alternatively, as a phenomeno- o d§

logical approach one could include temperature-dependent :L

terms in the potential such as E#\8) of Appendix Sec. 2

valid in the standard particle physics model, if one carefully

avoids the double counting problem which might arise fromA detailed calculation of the reduced Wigner function is

the interaction term. given in Sec. Ill. . . .
We now show the basic strategy for calculating the time The reduced density matrix and reduced Wigner function

dependence of the occupation probability,(t). This part all have quantum and statistical information about the small

of the calculation is an ideal problem to apply the Feynman: system immersed in a huge environment. Thus the occupa-
Vernon real-time formalism to. By using this formalism we tion probability can be calculated by performing projection

can calculate the density matrix or the Wigner function of a2t the energy eigenstate of the tunneling system on the left
small system immersed in a huge thermal environment. S'de of the potential barrier
We start with the density matrix for the toté&unneling

“16P (R g+ £2,0— £12:1). 9

002’77

system+environment system. The density matrix that de- Wia(t)=(Eqlp®(1)|En)
scribes the entire quantum-mechanical system obeys the
equation of motion = f dadd’ ee (D¢ (0o (a.q'i)
hi— =[Houp(D)]. (5) - f dadq/dpee, ()t (q')eP@ 0
For the time being, we explicitly write the Planck constant % f(R)( q+q’ 't) (10)
In the configuration space this density matrix is given by its w 2 )

matrix elements

wherecpEn(q) is the wave function of eigenenerdgy, . Our

p(9,0";Q(@),Q"(@);t)=(a,Q(w)|p(1)]a",Q"(w)). basic idea is to limit application of this formula to the left
©6) region of the metastable state.
The reduction to the subsystem here is in spirit opposite to
that common in the effective field theory approach; integra-
tion over heavy degrees of freedom is performed. What is

Its Fourier transform with respect to relative coordinates
—q',Q(w)—Q’'(w) is called the Wigner function and is de-

noted byfyy: integrated out in the present case is the majority of constitu-
ents which are taken invariant under frequent thermalizing
fwld,p;Q(w),P(w);t] interaction.
B H dX(w) -
)27k —igp—i | doX(w)P(w) IIl. SEMICLASSICAL REDUCED WIGNER FUNCTION
AND OCCUPATION PROBABILITY
X +&12,0—€&12; +X(w)/2, . . ) .
pla+é/2q-&/2:Q(w) (@)2Q(w) A. Semiclassical reduced Wigner function
—X(w)/2;t]. (7

It is easy to show from the master equati@) that the

Wigner function of the total system defined in Ed@) obeys
Reduction to the subsystem by integrating out environ-
ih o v i o "
Viat 3 ap ?% w

ment variablesQ(w) is an essential part of the Feynman- dfyy afW 1 [
of the tunneling system by
dw{ P 2
- “’[ ) 30+ 3o

Vernon formalism. We thus define the reduced density matrix 3 = ~P 54 a9 |ﬁ
(o) a3pr +Q(w) 251 } ap
! ’. ! . C . .
~Q'(@)]p[0,0":Q(w),Q" (w)t]. (®) N ATP(w) T gp )W

p“*)(q,q';nzf TT dQ(w)dQ’ ()5 [Q(w)

123514-3



SH. MATSUMOTO AND M. YOSHIMURA PHYSICAL REVIEW D69, 123514 (2004

We concentrate on the equation at the potential region left of ()
the barrier top, in whicti—0 may be used, resulting in a K(Q,p.qi,p it)ZJ IT dQi(w)dPi(w)f{)o(Q;.P)
limit. Then we have in Eq(11) ¢

, X 8(d—0er) (P~ Pel)- (17)
1 in d ih o dVv ¢
in via+ 7% - ) % d_q % 12 The quantityqy and py are now solutions of the Langevin
equation
The resulting equation for the Wigner function is identical to &
the classical Liouville equation familiar in classical statistical q
mechanics. It has an obvious formal solution dt2 qe " _+2J dse(t=)a(s)=Fo(b), (18)
fW[qlqu(w)1P(w)at] 0 CZ(w)
a,(t)E—f dor(w)sinwt), with r(w)= P
- | dadp, [ TT doiw)dp(w) "
. Ir‘(wt)
X £00a;,piQi(@),Pi(0)]18(d—0e) 8(p—Pa) Fo(t)=- J doc(w)| Qi(w)cogwt)+ Pi(w)
(19

X 1) w)— )]0 [P(w)—Pgy(w)],
1;[ [Qlw)=Qa(@)]2 [Plw)=Polw)] which is obtained from the equation of moti¢t) by elimi-
(13) nating the environment variab{@(») from the second equa-
tion [20].

whereq,,Qq(®), etc., are the solution of equation of mo- An often used model is the local, Ohmic modgR,23

tions for the Hamlltonlar(l) taken as the classical equation @king
with the specified initial condition written in terms of

0;,Pi , Qi(@),Pi(w): r(w)=ﬂ (20)
a
d2q dV
f doc(0)Q(w), with w.=0. Then the Langevin equation takes the well-
dt2 known local form
d2Q(w) g+ V' (a)+ 70=Fq(t). (21
>— +t0*Q(w)=—c(w)q. (14
dt Here the overdot means the time derivative and the prime

indicates the derivative with respect to its argument. The
We consider the circumstance under which the tunnelingxpected friction termyp(dg/dt) and the fluctuation term
System is |n|t|aIIy in a state uncorrelated to the rest of thq: (t) are realized in the above equaﬂon through the inter-
environment and the envwonment is taken to be a thermalction between the tunneling system and the environment.
state of the temperatuie=8"". We do not specify the de- e use this local Ohmic model in the rest of our paper.
tailed form of the initial ngner function of the tunneling The solution of the Langevin equation is regarded as a
system for the time being. Thus we take the form of thefunction of initial valuesqy(q;,p;,Q;,P;;t). The problem

initial Wigner function of a factorized form of great interest is how further one can practically simplify
4 the kernel functiorK introduced in Eq(16).
f8[ai.pi . Qi(®),Pi(w)] In many situations one is interested in the tunneling prob-
ability when the environment temperature is low enough. At
:f\(liv)q(qi ll f\(/iv)Q[Qi(w%pi(w)], (15  low temperatures off <, a typical frequency or curvature
' w ’ scalewg of the potentialV, one has

3ol Qi(®),Pi(w)] 0 NQX ), VPA(w)=0O[ VT]< Vo (22

1 Bw

=—tanh—ex;{—tanh’8—(wQ (0)+ Pi(w )) Here an overbar denotes the thermal average. In the elec-
T 2

troweak and GUT phase transitions this correspondg to
<my (Higgs mass Expansion of gy in terms of
to get the reduced Wigner function after the environmeniQ,(w),P;(w) and its truncation to linear terms is then justi-
Q(w),P(w) integration, fied. Thus, we use

f$’(q,p;t)=f daidp; ) q(di,pK(a,p.g; .pist), Qa=d )+f do{Qi(@)a{P () + Pi(w)a ()},
(16) (23
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valid to the first order ofQ;(w),Pi(w). The zeroth order cal and fluctuation functionsgf?), and z(w,t) is given
term 'Sq(o) obeying there, which is valid beyond the Ohmic approximation.

A convenient form of the fluctuation formula is derived
by separating the zero-temperature result along with
cothBw/2=1+2/(e#*—1) in Egs.(27)—(29). We denote the
with the initial conditionq{’(t=0)=gq;, qP(t=0)=p;.  temperature- dependent part of the fluctuation!fy. The
On the other hand, the coefficient functions of the first orderzero-temperature parf must be renormalized. After per-
termsq{?(w),q" () can be written by the complex func- forming renormalization the zero- temperature part is ap-
tion z(w,t) asz(w, t) 09 (w,t) +iwq(w,t) andz(w,t)  Proximated by the result of the harmonic approximation ex-
_pC?)(w t)+|wp(c (w,t). Thenz(w,t) obeys the inhomo- _pIamed in the next_paragraph. The renormahzed fluctuation
geneous linear equation is then well approximated using the physical cu.rvatug,e
We shall use the same notatigp for the renormalized fluc-
tuation in the rest of our paper.

g+ V' (@) +malP=0, (24

2(@,0)+V"(q)2(@,1) + n2(w,5)=—c(w)e', (25)
with the initial conditionz(w,t=0)=2(w, t=0)=0. Asimi- B. Harmonic approximation
lar expansion fop,, usingpY ,p{?(w),p(w) also holds. It would be instructive to discuss the harmonic approxi-
With Eg. (23) and the Gaussian initial Wigner function mation taking the potentia¥(q) in Egs.(23) and(25) as

(15 one can perform integrations for kerni€lin Eq. (16) )

analytically. The result of this integral leads to an integral V( ):ﬁ 2 (30
transform[12] of the Wigner functionf{) (initial) — (% 9=>
(final) using the following form of the kernel function: _
where the physical curvature is given by,= sz_ 7°l4 in
K(9,p,q;,pi;t) the local Ohmic model(The derivation of the relation be-
— (0) tween the physical curvatuee, and the renormalized curva-
- detjexﬁ{ _ E(q_q(o) p—p ))j( 47 e ) ture wg is shown in Appendix Sec. IThen the zeroth order
2m 2 o o p—pt term q{"’(t) andz(w,t) are obtained analytically, and given
(26 Y
(0)_
where the matrix elements ojf li; are given by do” = UG Fo(t)p;, (3D
1 © 1 _ n : -t/
| a(t) = —f do coth™? L z(w )2 27 u(t)=| coswpt + 5 - sinw,t e "%
2)o 2 w p
sinw,t
|22(t)—§f0 dwCOthT ;|Z(w,t)| , (28 b
c(w) - .
Z(w,t)= [e'“'—u(t)—iwv(t)]. (33

2_72

1= Bw 1 - I _
|12(t)=§f0 dwCOthT ;RQTZ(w,t)Z (w,t)]=7 W —wr—lwy

29 The functionz(w,t) has a Breit-Wigner form for a smad).

The physical picture underlying the formula for the inte- In particular, the infinite timet(—c<°) limit of the fluctuation

gral transform(16) along with Eq.(26), should be evident;
the probability at a phase space poigt) is dominated by
the semiclassical trajectorg’

third term of Eq.(24)] reaching (1,p) from an initial point
(g; ,pi) whose contribution is weighed by the probabilf()'f

[where the environmental
effect of dissipation is included in its determination by the

has

5 Bw rw)
Ill(oo): 0 d(l) COth?

(34)
(w?— )2+7] w?

The friction » appears as the resonance width in this for-

given initially. The contributing trajectory is broadened by mula. The real part of the pole position in a frequency inte-
the environmental interaction with the width factcﬁ- . The gral such as Eq.34), w,=Re (pole position,
quantity 144 given by Eq.(27), for instance, is equal to :w/}j)g_ 7?14 as expected.
(q—qcz?j)z, an environmental driven fluctuation under the The harmonic approximation is excellent at late times, as
stochastic force=(t). will be demonstrated explicitly later, but at early and inter-
We note that in the exactly solvable model of the invertedmediate times nonlinear resonance effects are important as
harmonic oscillator potential, the identical form of the inte- discussed in Ref10]. The nonlinear effect will be taken into
gral transform(26) was derived[11] without resort to the account in the discussion of the finite time behavior of the
semiclassical approximation. The explicit form of the classi-tunneling rate.

IS wp
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C. Occupation probability whereE=nw,. It is convenient to use the generating func-
We now discuss how to obtain the occupation probability!on
W, (t) from the reduced Wigner function by using EGO).

From Eqgs.(16) and (26), explicit p integration of Eq.(10)

0

gives W(J[’Z)Enzo Wh(0)Z" 37
o [onse S5 et LI e e ekt pobvi(), e e
Xexp{—%ﬂ(%q—qé?)(t))z—glii(q—q’)z ni)%Hn(x)Hn(y)
+ila’ —q){ PP+ 2 %q’—qé?)(t))” - ~( 1_22)—1/2exp[ zxyz_l(xzjyz)zzl, @9
—Z

(39

Unless the energy eigenstate near the barrier top is impoRN€ has Gaussian integrals fpandq’ in Eq. (10), resulting
tant for the computation of the tunneling rate, one may ap!"
proximate the wave functiogg(q) in the left region toq _
=g by that of the harmonic oscillator at the potential bot- fW(Qi Pi)
tomg=0. The wave functiorpg(q) is thus approximated by W(t,z):f dodp—F—
using the Hermite polynomidfi, as VdetA

— (0)
\/w—p 1/2 , 1—z . o~ ql§
= Ho(Vopme “®2, (36 xexg — —— (a4 ,pP)A ,
®e(q) (\/EZ”H! n( \/_pQ) (36) > defh ¢l Pel (C(IJ)
|
~ (1—2)(|22—wp/2)+wp _(1_Z)|12 (39)
B —(1-2)ly, (1-2)[1 13— U2wp) ]+ L,/
|
Quantitiesl;; are to be computed at finite timeThe impor- IV. NUMERICAL ANALYSIS AND RELEVANCE
tant constraint of the probability conservatiatj,_ WV, (t) OF PARAMETRIC RESONANCE

=1 is automatically satisfied due ¥/(t,1)=1. For a pre-
cise computation, one expands this generating function tQy
powers ofz, and identifies the projected probabiliy,(t)

We first specify a particular model of the potential for our
merical calculation. The potential we taki#ustrated in
Fig. 2) is given by

by Eq. (37).
Let us discuss the infinite time limit of the occupation w? 5
probability W, (). The harmonic approximation for the ker- V(X)= 7x2+ gng“ (X<Xp),
nel functionK is excellent in this limit, as stated in the pre-
vious section. Then the fluctuatiohs are independent of the =V, (Xp<X<X;)
initial conditions ofq;, p;, as exemplified by Eq.34). On ' (41)
the other hand, solutions of the homogeneous equé®idn
a9\ and p?, are identically zero due to the friction term. =— V() (X <X).

Thus the integration of initial variableg;,p; in Eq. (39)
becomes trivial and can be solved analytically. The resulta
occupation probability is

nFhe two parameters), andxy are related by/(x,, ) =V, for

our choice of a particular quartic potential in the metastable

well. We consider for definitenesg,=0.01, V,=5w,(w,
Wa()=(1—e F)e "+ 0(7), (400 =\ wi— 7%4) for the parameters of Eq41). We use the

friction 7 in the range of 0.00&,< 7<0.02w, and the tem-

the thermal one up to the order. We note that the sub- perature of the environment in the range of @,¥T

system thermalizes at the infinite time despite that it was<w,. We setx;—Xx,=0.5w, in this calculation.

initially an arbitrary initial state, hence a nonequilibrium  The initial Wigner function of the systerﬁf,'\,)(qi .pi) IS

state. This proves that the infinite time limit coincides with taken to be that of the ground state of the harmonic oscillator

the thermal limitl" () =T"y,. at the potential bottom. It is given by
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14
w

2

,_,& Ist band |
0

0 1 2
B (xR )

(¥ox)y

Xe  X; FIG. 3. Band structure for the relevant fluctuation. The shaded
A areas correspond to the instability band. The first band is enlarged

separately(the left figure, where the crossed point corresponds to
FIG. 2. The tunneling potential used in the numerical calcula-gur model relation(46).

tion.

In a relevant region of &h<5w3%, 0<<2w3, Which
(42) includes the model parametet6), we numerically checked
the time evolution of the homogeneous solution of Egf).
_ We observed the power-law increase of the fluctuation in the
The effect of the nonlinear term, the quadratic tagag x*,  model paramete(46). Indefinite increase of the fluctuation
is clarified by a comparison to the harmonic approximationz(w,t) as time increases implies that the assumed parameter

) 1 p
fW(Qiipi):;eXF{ wpdf— —|.

@p

because the term is absent in the approximation. lies either within the unstable band or on the boundary be-
tween the bands. The linear rigéw,t)«t, as indicated by
A. Relevance of the parametric resonance our numerical analysis, suggests that the parameter is on the
boundary.

We point out that a relation of the semiclassical Wigner L N
P g The result of the band structure is given in Fig. 3, and the

function to the parametric resonance, as briefly mentioned in | i ter Eq45) ( ding 1o th q
Ref.[10]. The presence of anharmonic terms is inevitable jnclevant parameter d corresponding 1o the crosse

any realistic tunneling potential. This introduces a nontrivialpo'nt) Is just on th_e l_aounda_ry betwgen the _stable_and f|rs_t
oscillating term in the coefficient function” (q |)) of the unstable band. This is consistent with the linear rise, as is
C

expected in the case of the exact Mathiew function on the

fluctuation equatior{25), thus giving a differential equation oundary[25]. For this numerical calculation we had to
akin to the Mathiew equation. Depending on whether or noP y (0) :
the relevant parameters fall into the instability band of thlsChoose an initial condition foqy” . We took several condi-
Mathiew-type equation, the fluctuation may indefinitely in- thns for investigating band st_ructures, and we always ob-
crease in the zero friction lim{t24]. What happens is more tained the same.result of the linear poyver-law Increase.
subtle; the parameters fall right on the boundary of stability of VrYe fnext consider effec(:jt? of the frf|cé|024The inclusion
and instability bands. We shall show this by taking an ex- the friction gives a modification of Ed44) to
ample of the tunneling potentig2). . _

We now consider Eq25) of the fluctuatiorz(w,t), using 2(t)+[h+20(q)?1z(t) + 72(1)=0,
the potential of Eq(41),

1O+ v () + g 0=0 46
V'(q) =03+ 12903 g2 43 eV (0") + e 40
We first take the zero friction limity=0 and consider the The effect of the friction termyz(t) is studied by changing
homogeneous equation of the fluctuatigyt), the variablez(t) to y(t)=z(t)e”?. Then the equation for
y(t) becomes
Zp(t)+[h+260(a$)21zp(t)=0, q+V' () =0,
“4 y+I(h—7%14)+26(q$)ly=0. (47)

where
When the effect of friction for the behavior of the zeroth

h=w%, 6=6gwi (g=0.0D. (45  orderqy is small,q is nearly periodic and the equation
for y is nearly of the parametric resonance type. In this case

The second equation in E¢14) gives a periodic solution for  then, the behavior af(t) =y(t)e~ 72 is rather simple; itis a
qcl) A notable feature of the homogeneous equatit) in product of the linearly rising functiopy(t)~t] and the ex-
the =0 limit is that g’ appearing in the coefficient func- ponentially decreasing functiore{ 7/). The rate of the ex-
tion is periodic, hence it gives rise to solutiangt) either of ~ ponential decrease i§/2, hence this product function has a
the Bloch wave type or of the parametric resonance typénaximum at a time around #/ This seems essentially what
[24]. Despite the definite values dfand @ in Eq. (45, we  we observe in the numerical computation i, t).
regard 0, #) as free parameters to thoroughly investigate the With the presence of friction, the functionapproaches
stable-unstable band structures, because that would motee behavior of simple harmonic oscillator as time increases
definitely clarify the relation between the band structure an<$|nceq(°)—>0 by friction. This means, as seen in Fig. 4, that
the relevant parameter of this model. the linear increase of is saturated at the time of order:2/

123514-7



SH. MATSUMOTO AND M. YOSHIMURA PHYSICAL REVIEW D69, 123514 (2004

2
5 //—’r UJPI(J’%» I(Z-l;/wp <Hsys.>' (T=0part)
10
3 1 A ! S
-1 74 X -
! 0 F 10° 10° 10°
0 600 1200 Time (units of ®p ) Time (units of wp )
Time (units of @) ) (@ (b)

FIG. 4. Time evolution of the functiog(t), a solution of Eq. FIG. 6. Time evolution of(a) the fluctuationw,l {P+15)/w,
(47). The amplitude of the functiory(t) with the friction » and (b) th_e subsystc_em energiHg 9 (T=0 |_oa_rt). A tempergture
=0.005w,, is depicted. T=0.5w, is taken with four cases of the friction (in the unit of

wp).

The net effect of the friction in the second equation of Eq. = . ) o
(46) is simply the minor change of a coefficient 8f », friction #. This function depends on the initial valgg,p;,
whereA is close to 1.7. for which we took a typical value in the ground state at the

The effect of the presence of the inhomogeneous term iROtential minimum. . .
Eq. (25) is as follows. This term acts as an external force, What is the physical picture behind the resonance en-
and gives a resonance effect when the frequandyg close hancement? We would like to present a suggestive interpre-
to the inherent frequency of the system. We illustrate thid@tion. We first derive a relation between the fluctuation here
point. In Fig. 5 the » dependence ofw,|z(w,t)|? and the subsystem energy defined by

+|i(w,t)|2/wp at a particular time is shown, and one observes, p2 w2
in addition to the simple resonance, higher modes due to the (Hsy5>5<7+ 7pq2> , (48
nonlinear effect. Without a strong resonance effect such as

this one, the fluctuation(w,t) is very small, since we have where(A(q,p)) meansfdqdp®(q,p)A(q,p). By making
the initial conditionz(w,0)=0=2(w,0). Thus, the environ-  the approximation on andp,, namely, taking up to linear

ment acts here as a force of the resonant kick from zer@erms of the initial environment value as used in E2),
amplitude, which then makes it possible for the parametrighis equation is reduced to

resonance effect to work, typically very important for large

amplitude oscillation. In Fig. &), the growth of the first o 1 (=dpdg; 0

(0~wp) and second ¢~3w,) modes is shown. Other (Hgyo=(T=0 paf‘“zfo?fw(qiypi)

higher modeqthird, fourth ...) are also amplified in the

same manner as in the second mode case 860w, *. On {8 pi+ w3l P(api}. (49

the other hand, these higher modes disappear at late times,

and only the first mode remains, as seen in Fit).5 Thus, the temperature-dependent part of the subsystem en-

ergy is given by the fluctuation averaged over initial values.
In short, the subsystem energy is driven by the fluctuation. If
initial values for(g3(0)) and(p3(0)) are small(in the w,

We now discuss the behavior of the frequency integrated=1 unit), the zero-temperature part €0) part is close to
fluctuation! (t) in Egs.(27)—(29). The increase of the fluc- 0.5w, (zero-point fluctuation of the systgmin Fig. 6b) the
tuation due to the parametric resonance gives an interestirguantity Hg — (T=0 part) is shown, taking as the initial
time evolution ofl. In Fig. 6(a), the time evolution of the state the ground state of the harmonic oscillator at the poten-
quantity w7 +159/w, is shown for a few values of the tial bottom.

The time at which the maximum &1, occurs is 1.74,
which is the same as that of the fluctuation, thus indicating a
close correlation between the fluctuation and our subsystem
energy(Hs,9. The implication to the occupation probability
and the tunneling rate seems obvious; the parametric reso-
nance we observe here enhances excitation to higher energy
states at the potential region left of the barrier top in the
guantum-mechanical terminology. This would then enhance

B. Numerical results of physical quantities

10°

10° : ‘=22000 i the tunneling rate from the metastable state of the potential
o (units of ©p) o (units of @p ) well. ) ) -
(@) (b) In Fig. 7, a few examples of the projected probability are

shown. It is clearly observed that excitation to higher energy

FIG. 5. Examples of the dependence daf(w,t). The quantity  levels is correlated to an evacuation of the ground state. The
wy|2(w,1)|?+]2(w,t)|% w, at both(a) early and(b) late times are  infinite time limit of 1V,() coincides with the result of the

shown. The unit of time isogl. harmonic approximation as is expected. We note that the
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armonic

1000
Time (units of oy )

2000

FIG. 7. Time evolution of the projected probability for ground,
second excited, and forth excited states. The case=d3.5w, and

7=0.00%0,, is depicted. For comparison the result in the harmonic

approximation is shown.

subsystem thermalizes at infinite time despite the fact that
was initially in the ground state of a harmonic oscillator,
hence it is in a nonequilibrium state.

We now clarify the relation between the subsystem energf

Hsysand the occupation probability,(t)
2 EVn(D)=(Hqy2, (50

where (Hgg is calculated by Eq(49). This relation was

numerically checked, as might be expected. We have no an
lytic proof of this relation, although there is no doubt on the

correctness of this relation.

In computing the tunneling raté(t) by using Eq.(2) we
have to calculate the penetration coeffici¢h(E,)|?, and
we used the simple quantum-mechanical formula

|T(E)|2meX[{ — Zqu(i)dX\/Z(V(X) —E)|6(V,—E)
qy(E

+60(E—Vy), (51
whereq;(E) are turning points separating the subbarrier re
gion.

In Fig. 8@ the tunneling ratd’(t) is shown for a few

values of the friction. The tunneling rate is observed to be

come maximal at the time~1.7/x.

A salient feature, and the most important result of the =™ level
present work, is that the tunneling rate is enhanced around Jative level.

T 1

\ 1086 4 2 i

L 20 {0.8

[ 40 T
L 60 {0.6

3 w 104

10 10° 10 0.001 1 0.01
Time (units of 0)‘,1 )
@) (b)

FIG. 8. (a) Time evolution of the tunneling ratE(t). A tem-
peratureT=0.5w, is taken with four cases of the frictiop. (b)
Ratio of the maximal tunneling rate &t O(2/7) to I'(«) (a tra-
ditional ong is depicted as a contour map in theT plane.
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time of order 2#;, which is caused by nonlinear resonance
effects. The enhanced tunneling rateg&O(2/#) is clearly
related to the power-law rise of the fluctuations, as ob-
served in our previous papgt0] and as already explained.
The maximal enhancement factor for the tunneling rate is
plotted in Fig. &b), relative to the thermal tunneling rate
[thus the rate is given by'(«)]. A large enhancement is
obtained for smally and smallT values. The maximal tun-
neling rate goes ag ™ 1° at fixed T unlessy is too small.

At first sight one might think that the maximal tunneling
rate goes to infinity if we take th@— 0 limit. Our result is
valid for a range of (0.004& ») in our numerical calculation.
Our approximation used in Eq23) breaks down when we
take a very smallp. In this approximation we expand the
ﬁolution of the Langevin equation by the environment vari-
ablesQ;(w), Pij(w). The subleading term proportional to
Qi(w) or P;(w) exhibits the parametric resonance. The ef-

ct of the parametric resonance is, however, suppressed by
he friction term. If the friction is very small, this suppres-
sion is not enough, giving a bad convergence of the expan-
sion in Eq.(23).

We confirmed that the expansion has good convergence in
the range of our numerical calculation 0.80%<0.02.
Therefore, our final form of the tunneling rate is not to be
applied to a very small. Fortunately, many cases of prac-
fcal interest are in the range of our numerical calculation, for
example, the case of electroweak symmetry breaking in the
standard model shown in the Appendix. If we are forced to
take the formalp—0 limit, a decoupling of the tunneling
system and environment occurs, becaygse nothing but the
coupling strength between the system and the environment.
In this limit the tunneling rate becomes time independent and
the simple QM tunneling rate is obtained. Thus, there is no
peculiarity of thep—0 limit.

We may summarize what happens, in the following way.
The nonlinear resonance inherent to the tunneling potential
_excites higher modes that have larger tunneling probabilities.
This effect is, however, terminated by the friction caused by
an environmental interaction, which is the origin of the final
decrease of the tunneling rate at large times.

We finally study the correlation between the tunneling
rateI’(t) and the tunneling system energly, (t) at a quan-

j In order to evaluate the correlation quantita-
tively, we define the correlation coefficientused in statis-
tics:

time

1
, (A)=—
< > timeJo

_ <rHsys>_<F><Hsys>

(T)(Hay dtA(t).

(52

The correlation coefficient was numerically calculated and
we obtained results that can be summarized$Y.99~1 in
the parameter region of temperature and friction<0l2w,
=<1.0 and 0.00% 7/w,=<0.02. This proves the correlation
between the two quantities.

We next turn to the discussion of the survival probability,
the probability that the metastable state remains in the same
initial state. This quantityP(t) is defined by
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1

. number is not conserved via sphaleron related processes
0.8 . 1 [27]. This mismatch inside and outside the bubble gives rise
i ; 086 4 2 ] Qo )
06l \EET effect [ a0 los to.the possmlllty 'of electrowgak baryogenesis, although de-
™40 ’ - tails of a promising mechanism are yet to be worked out.
04 60 106 Thus, the strong first order of the phase transition has been
0.2 : w considered to be a requisite for the out-of equilibrium con-
0 dition necessary for baryogenesis.

0 400 800 1200 1600 2000 0.001 qn 00 In an ordinary circumstance, namely, in the standard

Time (units of @} ) . e .
@) (b) m'odel, the strong flrgt qrder phase tra_nsmon requires a small
Higgs mass, which is inconsistent with observation. Along
FIG. 9. (a) Time evolution of the survival probabilitp(t). The ~ With the smallCP violation effect of Kobayashi-Maskawa
case ofT=0.50, and =0.005v, is depicted. For comparison the theory, this excludef28] the possibility[29] of the standard
result in the harmonic approximation is showi) Ratio of the ~model as a viable model for baryogenesis. Thus, a more
lifetime as defined in Eq(54) to the traditional one is depicted as a complicated model such as two Higgs doublet model needs

contour map in they-T plane. to be invoked for electroweak baryogenesis. Regardless of
whether an extended Higgs model is needed, we would like
P(t)=—F(t)P(t), P(0)=1, to point out that the environment-driven excited tunneling

(EET) found in this paper has a chance of enhancing the
¢ out-of equilibrium condition necessary for baryogenesis.
= P(t)=ex;{ —f dt’'T'(t")]. Although not much discussed in the literature, there is an
0 important factor to consider for the out-of equilibrium con-
(53 dition. This is the factof'ty, wherel is the nucleation rate
of the bubble and,;=1/H is the Hubble time. In the usual
scenario of the first order phase transition the effectiveness
of electroweak baryogenesis is in proportion to this quantity.
The nucleation raté’ in the usual estimate without EET is
exponentially suppressed by the potential barrier, and the
factor I'ty is much less than 1, which means that the first
order phase transition is never completed by a merger of
nucleated bubbles. Under this circumstance it is expected
(54) that the phase transition is terminated by proceeding to dis-
appearance of the local minimum of the symmetric phase so
that the condition for the first order phase transition is not
met. The effectiveness of the out-of equilibrium condition is

In Fig. 9a) the survival probability is depicted along with
the result of the harmonic approximation of the potential
bottom. The effect of EET is unquestionable.

A traditional definition of the lifetimet,,q which many
authors use isy,q=1"1(), while in the case of time de-
pendent tunneling one may effectively use given by the
e-holding time

P(tLT) = e_l.

In Fig. 9(b) a contour plot oft; 1 /t;.qis shown in the param-

eter (»,T) space. For small values of andT a substantial h duced by a f onal o th i
reduction of the lifetimet,; is observed, which means an then reduced by a factor proportional to the quarkity, .

early termination of the tunneling. We hope that we have ©On the other hand, with the aid of EET, the factdrmay

convinced the reader of the power and the usefulness of EEPECOMe of order unity at some finite time, and the phase

even though our idea is supported by a detailed numericd[@nsition may be completed much prior to the Hubble time,
analysis which is necessarily limited to special cases. as discussed in previous sections. One should check the new

time scale 2 which is roughly the time at the maximum for
the tunneling rate in comparison to the Hubble time. The
factorI't thus may become of order unity &t 2/%. In this

There may be many applications of the environmentcase there is no reduction factor similarlto, .
driven excited tunnelingEET) presented in this paper. We  We shall check the numerical relation between two time
shall only mention two possible applications to cosmology,scalesty and 2k. The size of the frictiony in the standard
an enhancement mechanism of electroweak baryogenediRodel is of the order of the Higgs mass, times some
and a possible resurrection of the old inflationary scenario opower of coupling factors, while the Hubble rate is given by
the GUT phase transition. Furthermore in the present discus-

V. DISCUSSION

sion we shall focus on one aspect of the baryogenesis con- Am?  T?
dition; the out-of-equilibrium conditiofi14,15. Needless to H=1ty= 4—5N m_ N=106.75. (59
say, there will be many problems to solve in an actual appli- Pl

cation of these ideas to realistic models.
Electroweak baryogenesis is expected to occur if the ele
troweak phase transition is strong first order. The first order
phase transition usually proceeds via the bubble formation. y2 ©
Inside the bubble the true electroweak broken phase is real- 7= —twptanl-(—p),
ized in which the baryon number is effectively conserved. 32m adl
On the other hand, outside the bubble the universe remains in 5 , 5
the high-temperature symmetric phase in which the baryon wp=V"(0)=0.2X(T*—m;—0.04°), (56)

The calculation, as summarized in the Appendix, indicates
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wherey is the top Yukawa coupling and(¢) is the effec-  the physical curvature,(wg) here. We first illustrate this
tive potential of the standard model at finite temperaturefor the curvature at the barrier top. In the vicinity of the
with v the vacuum expectation value of the Higgs field. barrier top, the renormalized potential is given Yyq) =
Thus, the Hubble rate is much smaller tharby the inverse  — w3(q—qg)?/2+ V,,+ counterterms x>0 by definition).
Planck factor sincen, /mp<y?. The physical curvaturevg (the tachyon mass in the field
One may expect that even in the case of weak first ordetheory analogy, which is defined by a positive valskifted
phase transition the quantum tunneling enhanced by EEBy the environment is determined as a pole position of the
may give rise to a sufficient condition for the out-of equilib- Green’s function(0| T[q(t)q(0)]|0) at the barrier top, thus
rium in the early phase of the phase transition. Much remainas a solution for the isolated pole of the following equation:
to be seen in this regard.
Another interesting effect of EET concerns the resurrec- " 2021 (o)
tion of the old inflationary scenario of the GUT phase tran- wé—w?ﬁf do—02 " _. (A3)
sition [16]. The old inflationary scenario was once rejected w¢ w(wé+ )
because the bubble formation proceeds too slowly, hence
leaving a very inhomogeneous univelsd]. The essential In many past works, the renormalized curvaturg was
reason for this problem, called the graceful exit problem, isysed as a reference curvature to evaluate the environmental
that the exponentially suppressed tunneling rate is too smadffect. Due to the positivity of (»), one hasw3<w3 in
so the bubbles of the true vacuum do not merge sufficientigeneral. A consequence of this is that the potential barrier is
to give rise to a homogeneous universe which the inflationfyther suppressed by usingg instead of taking the renor-

ary scenario intends to derive. Our mechanism of enhanceghajized curvatureoy, as the reference point. It is instructive
tunneling may help this situation. The problem must, how-to give an example. In the Ohmic model of EQO) the

ever, be addressed quantitatively; one has to obtain an earlyjicit form of the physical curvatureg is given by
termination of the first order phase transition to promote

merger of bubbles, yet one also has to obtain sufficient in- 5
flation to solve the intended problems. We leave this quanti- _ o M

: wg= \/ o+ ———. (A4)
tative study for the future. B R4 2
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APPENDIX @p= \ @RT (A5)
1. Renormalization effect
We explain the renormalization effect to the potential 2. Effective potential and critical temperature

V(q) along with the Langevin equatigii8). We rewrite the

equation with the counter term adopted in R, explicitly, We shall first give the finite temperature effective poten-

tial of the standard model at one-loop order, assuming that

2 dv . the Higgs boson mass is much smaller than other particle
a9 +— +2] dsQI(t_s)q(s)_q(t)f doc(w)? masses of the standard model such as the top quark, the weak
dz  dqg 0 boson, thusmy<m,,m;,my,. This is taken as a necessary

condition for the first order phase transition. This condition,
=Fq(D). (A1) however, is not met in reality. Nevertheless, we take this case

The third t the left-hand side is th ter t ._as an important illustration for more complicated cases.
e third term on the lefi-nand side 1S the counter term ars- - o zero-temperature part of the effective poteri8] is

ing from the interaction with environment. In the local

Ohmic model, the kernel functioa, becomeg22,23 2 3 2
_Me o, o0 242 4 4 ¢
Vo(¢)—8 7 (97— v+ 2Bv "~ 5By "+ B log| — |
1% v
a|(7):775/(7)+25(7)f dw%. (A2)

The second term on the right-hand side is interpreted asa pg= _——

potential renormalization or a mass renormalization in the 64m2vt

field theory analogy, since by changing the bare frequency

parameter to the renormalizedk, the termdw’q is can-  wherey =246 GeV is the vacuum expectation vayEV)

celled by the counterterm in the potential. of the Higgs field, andn, is the mass of a particle specias
We now discuss the relation between the renormalizedhe finite temperature effect is then given by the free energy

curvaturewgr(wg) at the potential bottontbarrier top and  [31]

(2my,+m2—4m?)=—0.005, (AB)
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. t
M) sl F( mt¢> ¢0+V’(¢O)+2J0dslm a(t—s)do(s)=F(1),

T4
vT<¢>=2—[6IB(n;—WT¢)+3IB

2 vT T ] (AL
IB,F(az):J’0 drrilogl1¥exp(—\r2+a?)]. (A7)
({F(1),F(s)})env=Rea(t—s), (A12)
The Higgs contribution has been neglected, due to the as-
sumption ofmy<< masses of other particles. 5
According to Ref. [31], we may make the high- Y s B rn(w)
temperature expansion of the effective potential Witv, a(Xo) = 2 d*x(tt(x)tt(0))env= d“’egw_lel o
to get (A13)
2 2 2 3 )\(T) 4
V(#)=Vo($)+V1(¢)=D(T"~To) "~ ETS*+ ——¢", _ R
(A8) The real-time Green’s functioftt(x)tt(0))en, can be ob-

tained by the analytic continuation of the imaginary-time
Green’s function[21], and it is easy to calculate the

where the dimensionless coefficients are given by ) . X . X
imaginary-time Green’s function by using the Matsubara for-

Zm\zNJr m§+2mt2 malism. The necessary spectral weigh{w) is given by
D=———=0.2,
8v?
4 ()ytzj TP Sw-2p)(1-2n,)
2my+m Nilw)=—+ S olw—2p)(l—2ny),
= LZO_O]_, 2 (27)° 4p? P
Ap3 (A14)
, M;—8Bv? ) ,
To=——p —=128my+(50 Gev7], (A9)  \where p=|p| is the momentum magnitude amg,= (P
+1)~1, assuming that the top quark is massless in the sym-
m2 3 m2 2 metric phase around~T,.
H W z ..
AMT)=—— 2m3v|09—+m§|09 In the vicinity of the false vacuum, namely~0, the
2v?  16m%v* agT? agT? behavior of the zero-mode Higgs field exhibits exponentially
5 dumped oscillation. The solution of the homogeneous zero-
amlog m ) mode Higgs field equatiofA1l) is approximately obtained
t arT2) by
Here ag=2 log 4r—2y=3.91, ar=2 logm—2y=1.14. The _
critical temperature is computed from these, to give * rp(w)sin(wt)
bo()=2 ] do—————>
0 (w —wp)+7'r ro(w)
2 0 0
c= 5 = 5. (A10)
1-E/[N(T)D] 1-(8 GeVimy)
o ry(wp)sin(wt)
At the value of T, two local minima coincide, whileT = f ® 2 .
indicates where the symmetric phasegof 0 disappears as 0 (0~ wp)+mri(wp)
the local minimum. It is thus important to note that the con- (o)
. . . . 7T H w
dition T.>T, for the first order phase transition is met. =sin(wpt)exp( _ p t), (A15)
w
p

3. Friction coefficient in the standard model

The friction coefficienty is computed using the method . 2
of Refs.[32,33. According to Ref.[33], it is possible to Whe”re wp is the C?”Yat“fe O.f .the ,fa's?‘ vacuu-rﬁ‘wp
identify the two-body bilinear operator of standard model=V"(0)], and the friction coefficient in this case is com-
fields as the environment variab@ ). The most dominant Puted from Eq(A14). The result is
contribution to the frictiony comes from the top loop dia-
gram where the top-Yukawa coupling is of the form

— 2
y;étt/\/2. Thus, the Langevin equation of motion for the 7;=1r(w ):y_tw tanhﬂwp (A16)
zero-mode Higgs fieldsy becomes wp P32 P 4 -
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