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We study the role that tachyon fields may play in cosmology as compared to the well-established use of
minimally coupled scalar fields. We first elaborate on a kind of correspondence existing between tachyons and
minimally coupled scalar fields; corresponding theories give rise to the same cosmological evolution for a
particular choice of the initial conditions but not for any other. This leads us to study a specific one-parameter
family of tachyonic models based on a perfect fluid mixed with a positive cosmological constant. For positive
values of the parameter, one needs to modify Sen’s action and use thes process of resolution of singularities.
The physics described by this model is dramatically different and much richer than that of the corresponding
scalar field. For particular choices of the initial conditions, the universe, which does mimic for a long time a de
Sitter–like expansion, ends up in a finite time in a special type of singularity that we call abig brake. This
singularity is characterized by an infinite deceleration.
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I. INTRODUCTION

The recently discovered cosmic acceleration@1–3# has
put forward the problem of unraveling the nature of the
called dark energy responsible for such a phenomenon~for a
review, see@4,5#!. The crucial feature of the dark energ
which ensures an accelerated expansion of the univers
that it breaks the strong energy condition.

The tachyon field arising in the context of string theo
@6–9# provides one example of matter which does the j
The tachyon has been intensively studied during the past
years also in application to cosmology@10–30#; in this case
one usually takes Sen’s effective action@6# for granted and
studies its cosmological consequences without worry
about the string-theoretical origin of the action itself. W
take this attitude in the present paper.

However, it would be reasonable, before considering c
crete tachyon cosmological models, to answer a simple q
tion: is the tachyon field of real interest for cosmology?
deed, it is well known that for isotropic cosmologic
models, for a given dependence of the cosmological rad
on time it is always possible to construct a potential fo
minimally coupled scalar field~in brief, scalar field! model,
which would reproduce this cosmological evolution~see,
e.g.,@31#!, provided rather general reasonable conditions
satisfied. Since a similar statement holds also for cosmol
cal models with tachyons, one can find some kind of cor
spondence between minimally coupled scalar field mod
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and tachyon ones describing the same cosmological ev
tion @14#. Therefore, a natural question arises: does it m
sense at all to study tachyon cosmological models in plac
the traditional scalar field models?

In our opinion, the point is that the correspondence
tween tachyon and scalar field cosmological models i
rather limited one and amounts to the existence of ‘‘cor
sponding’’ solutions of the models, obtained by imposi
certain special initial conditions. If one moves away fro
these conditions, the dynamics of the tachyon model
become more complicated and very different from that of
scalar field cousin.

In this paper, we consider some examples of scalar
tachyon field isotropic cosmological models having coin
dent exact solutions. All the exact solutions considered h
actually arise as solutions of some isotropic perfect fluid c
mological models.

Some of the tachyon and scalar field potentials that
consider here are well known in the literature and are wid
used as quintessential models. We will introduce also a n
~at least to our knowledge! tachyon model that is based o
the cosmic evolution driven by the mixture of a cosmologic
constant and of a fluid with equation of statep5k«, with
21,k<1 (« andp denote as usual the energy density a
the pressure, respectively!. The corresponding tachyon po
tential V(T) is represented by a rather cumbersome trigo
metric function of the tachyon field. When the parameterk is
positive, the potential becomes imaginary passing thro
©2004 The American Physical Society12-1
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zero for finite values of the tachyon fieldT. Thus, it might
seem that these features would kill the model; on the c
trary, using the methods of the qualitative theory of ordina
differential equations, it is possible to extract from the mo
a dynamics which is perfectly meaningful also for positivek.
We find that this dynamics is quite rich. In particular, wh
the value of the parameterk is positive, the model possess
two types of trajectories: trajectories describing an etern
expanding universe and those hitting a cosmological sin
larity of a special type that we have chosen to call abig
brake. Thus, starting with a simple perfect fluid model a
trying to reproduce its cosmological evolution in scalar fie
and tachyon models, we arrive at a relatively simple sca
field potential with a correspondingly simple dynamics a
at a complicated tachyon potential. The latter provides
with a model having a very interesting dynamics giving r
to very different cosmological evolutions and opening in tu
opportunities for some nontrivial speculations about the
ture of the universe.

The structure of the paper is as follows. In the seco
section we study the problem of the correspondence betw
tachyon and scalar field cosmological models, and we g
some examples in the third section. In the fourth section
suggest a way to go beyond the limitations of tachyo
models, and we make use of this idea in the fifth and si
sections, where we study the dynamics and the cosmolog
a particular~toy! tachyon model introduced in Sec. III. In th
last section we conclude our paper with some speculat
on the future evolution of the universe arising from t
analysis of our model.

II. THE CORRESPONDENCE

We consider a flat Friedmann cosmological modelds2

5dt22a2(t)dl2 of a universe filled with some perfect flui
and suppose that the cosmological evolutiona5a(t) is
given; the Friedmann equation

ȧ2

a2
5« ~1!

provides the dependence«5«(t) of the energy density of the
fluid on the cosmic time~we have set 8pG/351 for conve-
nience!. Then, the equation for energy conservation

«̇523
ȧ

a
~«1p! ~2!

fixes the pressurep5p(t); therefore, an equation of stat
p5p(«) can in principle be written describing the uniqu
fluid model compatible with the given cosmic evolutio
~provided that«̇Þ0).

Now, let us suppose that the matter content of the unive
is modeled by a homogeneous tachyon fieldT(t) described
by Sen’s Lagrangian density@6,7#,

L52V~T!A12Ṫ2. ~3!
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The energy momentum tensor is diagonal and the co
sponding field-dependent energy density and pressure
given by

«5
V~T!

A12Ṫ2
, ~4!

p52V~T!A12Ṫ2, ~5!

while the field equation for the tachyon is written as follow

T̈

12Ṫ2
1

3ȧṪ

a
1

V,T

V
50. ~6!

One can try and find a potentialV(T) so that, for certain
suitably chosen initial conditions on the tachyon field, t
scale factor of the universe is precisely the givena(t). A
similar construction can be attempted for a minima
coupled scalar field, described by the Lagrangian density

L5
1

2
ẇ22U~w!. ~7!

A given cosmological evolutiona5a(t) can therefore be
used to establish a sort of correspondence between the
potentialsV(T) andU(w) ~see also@14#!.

Let us see in some detail how this works and what
sought correspondence really means. It is often more pra
cal to use the scale factora to parametrize the cosmic time
this can be done providedȧÞ0. From Eqs.~4! and ~5!, it
follows that

Ṫ25
p1«

«
. ~8!

By using Eqs.~1! and~2!, the latter equation can be rewritte
as follows:

T85
1

a
A~«1p!

«2
5

1

a
A2«8a

3«2
, ~9!

where a prime denotes the derivative with respect toa. Once
a(t) and therefore«(a) is specified@see Eq.~1!#, Eq.~9! can
be integrated to give

T5F~a!5Eadx

x
A2«8~x!x

3«2~x!
~10!

~an arbitrary additive integration constant is hidden in t
unspecified integration limit!. By inverting Eq. ~10!, a
5F21(T), and making use of the relation

V5A2«p5A~«2a6!8

6a5
, ~11!

the shape of the required tachyon potentialV5V(a)
5V@F21(T)# can be found.
2-2
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TACHYONS, SCALAR FIELDS, AND COSMOLOGY PHYSICAL REVIEW D69, 123512 ~2004!
For the minimally coupled scalar field, we have simil
formulas. The analogs of Eqs.~4! and~5! for the scalar field
are

«5 1
2 ẇ21U~w!, ~12!

p5 1
2 ẇ22U~w!. ~13!

From these we get

w85
1

a
A~«1p!

«
5

1

a
A2«8a

3«
~14!

and

U5
1

2
~«2p!5

~«a6!8

6a5
. ~15!

Integration of Eq.~14! gives

w5F~a!5Eadx

x
A2«8~x!x

3«~x!
~16!

and, as before,U5U(a)5U@F21(w)#. The formulas above
establish a kind of correspondence between the potentiaU
andV in the sense that the cosmologies resulting from s
potentials admit the given cosmological evolutiona5a(t)
for suitably chosen initial conditions on the fields. Howev
it has to be stressed that for arbitrary initial conditions on
fields, the cosmological evolutions~within the corresponding
models! may be drastically different. Furthermore, changi
the initial conditions, say, for a minimally coupled scal
field theory, one gets different cosmological evolutio
which, in turn, can be reproduced in entirely differe
tachyon theories and vice versa. Thus, any scalar field po
tial has a whole~one-parameter! family of corresponding
tachyon potentials, and the same is true the other w
around.

We can learn something more by expressing the fieldT
and w and the potentialsV(T) and U(w) in terms of the
Hubble variableh5ȧ/a. Since

ḣ52 3
2 ~«1p! ~17!

one has easily that

Ṫ25
«1p

«
52

2ḣ

3h2
, V~T!5Ah2~ 2

3 ḣ1h2!, ~18!

and that

ẇ25«1p52 2
3 ḣ, U~w!5h21 1

3 ḣ. ~19!

Equations~18! and ~19! call for the condition«1p>0, or
equivalentlyḣ<0. For the tachyon model, Eq.~18! requires
the additional condition

ḣ>2 3
2 h2, ~20!
12351
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which is equivalent to asking for a negative pressurep<0. It
seems, therefore, that tachyonic models are more restric
than minimally coupled scalar fields in their potential to d
scribe cosmological evolutions. We will see in an exam
that this seemingly negative conclusion can be overcome
pleasant surprises may arise.

III. EXAMPLES

We now illustrate the above considerations by means
some explicitly solvable examples. In these examples we
sume, as usual, that the initial moment of time,t50, corre-
sponds to the cosmological singularity. All these examp
are based on simple models of perfect fluids as specified
their equations of state.

~i! The starting point of the first example is a model of t
universe filled with a perfect fluid with equation of statep
5k«, with 21,k<1; the Hubble variable of this model i
given by

h~ t !5
2

3~11k!t
. ~21!

A minimally coupled scalar field theory that produces t
same evolutionh(t) for suitably chosen initial conditions ca
be based on one of the following scalar potentials, which
obtained by the procedure outlined in the previous sectio

U6~w!5
2

9

12k

~11k!2
e63A11k(w2w0); ~22!

the limiting casek51 gives a minimally coupled massles
field. For k.1, the potential becomes negative, reflecti
the fact that the velocity of sound is bigger than the speed
light.

Both choices of sign in the exponent are acceptable
the normalization of the potentials can be chosen arbitra
~the constantw0); then the exact solutions of the field equ
tions providing the prescribed cosmological evolution~21!
are, respectively, the following:

w6~ t !57
2

3A11k
ln t1w0 . ~23!

The theories are obviously connected by the symmetry
erationw2w0→2(w2w0), which exchanges the potentia
and the corresponding solutions.

To construct a tachyonic field theory, we have to restr
our attention to the casep,0, i.e., k,0. Following the
same procedure, we get a tachyon field model, based on
potential

V~T!5
4

9

A2k

~11k!

1

~T2T0!2
. ~24!

There are again two exact solutions of the field equati
~21!, which now do coexist within the same model,

T6~ t !56A11kt1T0 . ~25!
2-3
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This tachyonic model has been studied in@13,14#, where also
the correspondence with a minimally coupled scalar fi
theory with exponential potential was noticed. There exis
vast literature on the latter~see, e.g.,@32–41#!.

~ii ! Now we add a positive cosmological constant to t
previous model, i.e., we consider the mixture

p15k«1 , 21,k<1, pL52«L52L, L.0.
~26!

This is the same as one fluid with state equation

p5k«2~11k!L. ~27!

The evolution of the Hubble variable is now given by

h~ t !5AL coth
3AL~11k!t

2
. ~28!

The corresponding minimally coupled scalar field theory
based on the following potential:

U~w!5LS 11
12k

2
sinh2

3A11k~w2w0!

2 D . ~29!

There are two exact solutions of the field equations rep
ducing the given cosmic evolution~28!,

w6~ t !56
2

3A11k
ln tanh

3AL~11k!t

4
1w0 . ~30!

To find the tachyonic model, we observe first of all that
have the restrictionp,0 satisfied it is sufficient to require
that 21,k<0; this condition is also necessary if one d
mands thatp,0 during all the stages of the cosmologic
evolution and for any choice of the initial conditions in th
tachyonic model. With this condition we obtain the followin
more complicated tachyon potential:

V~T!5
L

sin2@ 3
2 AL~11k!~T2T0!#

3A12~11k!cos2@ 3
2 AL~11k!~T2T0!#.

~31!

Still, the corresponding exact solutions can be found and
given by

T~ t !56
2

3AL~11k!
arctan sinh

3AL~11k!t

2
1T0 .

~32!
12351
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For k.0, there are values of the tachyon field for which t
potential~31! becomes imaginary passing through zero.

WhenL tends to zero, one expects to recover the mo
studied in the first example. This is indeed the case for
tachyonic field.

As for the scalar potential~29!, the situation is a bit
trickier: the correct limit can be obtained only by letting th
constantw0 vary with L as follows:

w025w016
1

3A11k
ln

L~12k!

2
, ~33!

where the subscripts 1 and 2 refer to the corresponding
amples. This is because the theory has a symmetry whic
lost in the limit.

Notice that the scalar field potential~29! is well-defined at
21,k<1 and the model possesses the exact solution~30!
which corresponds to the cosmological evolution~28!. The
dynamics of the universe within the tachyonic models~24!
and ~31! will be studied in detail in the next sections fo
general initial conditions. We shall show that both mod
can be extended to the interval 0,k<1, actually making
them richer than the corresponding scalar minimally coup
theories.

~iii ! In the third example, we consider a perfect flu
whose equation of state is as follows:

«1p5g«l, 0,g,1, l.1. ~34!

In this case the Hubble variable is

h~ t !5~ 3
2 g~2l21!t !1/(122l). ~35!

The scalar potential has the form

U~w!5S 3Ag~l21!~w2w0!

2 D 22/(l21)

2
g

2 S 3Ag~l21!~w2w0!

2 D 22l/(l21)

. ~36!

The exact solutions are

w~ t !56Ag
122l

12l S 3

2
g~2l21!t D (12l)/(122l)

1w0 .

~37!

The tachyon potential is
The tachyon potential is

V~T!a5AS 3Agl~T2T0!

2
D 24/l

2gS 3Agl~T2T0!

2
D 2[2(11l)]/l

, ~38!
2-4
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with the following exact solutions:

T~ t !56Ag
2l21

l S 3

2
g~2l21!t D 2l/(122l)

1T0 .

~39!

The scalar field model with the potential~36! was studied in
@37# while the corresponding tachyon model with the pote
tial ~38! was discussed in@13,14#.

~iv! In our last example, we consider the Chaplygin g
described by the following equation of state:

p52
A

«
, A.0. ~40!

In this example, the evolutionh(t) is given only implicitly
@42# by the formula

t5
1

6A1/4S ln
h1A1/4

h2A1/4
22 arctan

h

A1/4
1p D . ~41!

However, as shown in@42#, the scalar potential can be reco
structed using the known explicit dependence of« on a, and
one gets

U~w!5
1

2
AAS cosh 3~w2w0!1

1

cosh 3~w2w0! D . ~42!

The corresponding field configuration is also given impl
itly,

w~ t !57
1

3
arccoshS S h2~ t !1

ḣ~ t !

3
D

AA

1
AS h2~ t !1

ḣ~ t0!

3
D 2

A
21D 1w0 . ~43!

Similarly, using the dependence of« on a, one can recon-
struct the tachyon potential,

V~T!5AA5const. ~44!

It is easy to see@15# that the tachyon model with a consta
potential is exactly equivalent to the Chaplygin gas mod
Indeed, in the case of a constant tachyon potential, the r
tion between the tachyon energy density~4! and the pressure
~5! is just that of the Chaplygin gas~40!, where p«
52V2(T)52A. The Chaplygin gas cosmological mod
was introduced in@42# and further developed in@43–46# and
many other papers. Comparison with observational data
also been extensively performed@47#.

IV. TRANSGRESSING THE BOUNDARIES

We now take a step back and consider the problem
finding a tachyonic field theory admitting the same cosm
evolution as the one produced by perfect fluid with equat
12351
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of statep5k«, where nowk.0. As we have stated, it is
impossible to reproduce this dynamics using Sen’s tachyo
action ~3!. One way out is to introduce a new field theo
based on a Born-Infeld type action with Lagrangian

L5W~T!AṪ221. ~45!

In this new field theory, the energy and pressure are given

«5
W~T!

AṪ221
~46!

and

p5W~T!AṪ221. ~47!

The pressure~if well defined! is now positive. On the othe
side, the equation of motion for this field has exactly t
same form~6! as was derived by Sen’s action.

Following the procedure described in Sec. II, now appl
to the Lagrangian~45!, one gets the following potential cor
responding to the equation of statep5k« ~with k.0):

W~T!5
4

9

Ak

~11k!

1

T2
. ~48!

The exact solution of the field equations that reproduces
dynamics of the perfect fluid is

T~ t !5A11kt ~49!

~we restrict our attention to the region of the phase sp
whereT>0 and Ṫ>1). There are two other obvious solu
tions for this model, corresponding to other choices of
initial conditions; they also give rise to linearly growin
fields: T(t)5t andT(t)5A11(1/k)t.

We would like to point out an interesting fact: the La
grangian~45!, which, together with the explicit form~48! of
the potential, describes the field theory corresponding t
positive value ofk, is actually the same as Sen’s Lagrangi
~3! with the potential~24! itself considered for positivek.
Indeed, it is true, on the one hand, that in this case the
tential ~24! becomes imaginary. However, this can be co
pensated for by considering the kinetic term in the region
2Ṫ2,0 so that the action as a whole remains real. It can
reinterpreted as the product of two real terms,

L52V~T!A12Ṫ25~A21!2V~T!A12Ṫ2

5W~T!AṪ221. ~50!

This model is introduced here as a pedagogical introduc
to the model with the potential~31!, which we discuss in
detail in the following section. The properties of the prese
model can be recovered in the limitL→0 and we will not
comment further on it.
2-5
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V. DYNAMICS OF THE TOY TACHYONIC MODEL

We now provide the analysis of the dynamics of the
chyonic model based on the potential~31!. In this case, Eq.
~6! is equivalent to the following system of two first-ord
differential equations:

Ṫ5s, ~51!

ṡ523AV~12s2!3/4s2~12s2!
V,T

V
, ~52!

where using the Friedmann equation~1! we have expresse
the Hubble variableh as a function of the variablesT ands.
The model has the following two exact solutions~we take
T050 without loss of generality!:

T1~ t !5
2

3AL~11k!
arctan sinh

3~11k!ALt

2
, 0,t,`,

~53!

T2~ t !5
2

3AL~11k!
S p2arctan sinh

3~11k!ALt

2 D
0,t,`. ~54!

By inserting Eq.~31! into Eq. ~52! and by eliminating the
time, we obtain an equation for the phase-space trajecto
s5s(T),

ds

dT
52

3~12s2!AL

sin
3AL~11k!T

2

3S 12~k11!cos2
3AL~11k!T

2

12s2
D 1/4

2
3AL~11k!

2

12s2

s
cotS 3AL~11k!T

2
D

3

~k11!cos2
3AL~11k!T

2
1~k21!

12~k11!cos2
3AL~11k!T

2

. ~55!

In the phase plane (T,s), the solutions~53!, ~54! correspond
to arcs of the curves ~see Figs. 1, 2, and 4!,

s5A11k cos
3AL~11k!T

2
. ~56!

The behavior of the cosmological radius for both solutio
~53! and ~54! is the following:
12351
-

es

s

a~ t !5a0S sinh
3AL~11k!t

2 D 2/[3(11k)]

. ~57!

As expected, we get back the cosmological evolution~28!
determined by the equation of state~27! which was the start-
ing point for constructing the potential~31!. To study the
cosmological evolutions corresponding to all possible init
conditions, we need to distinguish two different cases. Wh
the parameterk<0, there are no surprises and the associa
cosmology is essentially driven by that of the exact so
tions, while whenk is positive the model seems at first to b
ill-defined. We will again have to go beyond the model its
and ‘‘transgress the boundaries’’ to see what its poss
meaning can be.

In the first case when21,k<0 the potential~31! is
well-defined for

0,T,
2p

3AL~11k!
, ~58!

while the dynamics guarantees that

21,s,1. ~59!

The system has only one critical point, namely

s050, T05
p

3AL~11k!
. ~60!

The eigenvalues of the linearized system in the neighb
hood of this point are

l1,252 3
2 AL~16k!. ~61!

Both of them are real and negative. Thus, this special poin
an attractive node. It corresponds to a de Sitter expan
with a Hubble parameter,

H05AL. ~62!

The set of integral curves of~55! is symmetric under re-
flection with respect to the critical point~60!: any given in-
tegral curve and its node~n! reflected one describe the sam
cosmological evolution. The curves corresponds to the ei
genvaluel152 3

2 AL(11k), whose absolute value is th
smallest of the two. It acts as a separatrix for the integ
curves. Almost all curves approaching the node~60! end up
there with the same tangent ass. The only exception is a
second separatrixs8, which corresponds to the eigenvalu
l252 3

2 AL(12k). The curves8 separates the bundlef 8 of
the curves which do not intersect the axiss50 from the
bundlef of those which do~see Fig. 1!. The boundary of the
rectangle defined by Eqs.~58! and ~59! describes a cosmo
logical singularity. Indeed, the scalar curvature for a fl
Friedmann universe is

R56~ ḣ12h2!. ~63!

Since from Eqs.~1!, ~2!, ~4!, and~5! one has that
2-6
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ḣ52 3
2 h2s2, ~64!

by substituting into Eq.~63! it follows that

R53h2~423s2!5
3V~T!~423s2!

A12s2
. ~65!

Thus the scalar curvatureR tends to infinity when approach
ing the boundary of the rectangle~with the exception of the
corners, which will be treated separately!.

All integral curves end up in the node; let us see how th
behave close to the boundary and begin with a right ne
borhood ofT50. There, Eq.~55! takes the form

ds

dT
'

2~12s2!

sT S 12
~2k!1/4s

A11k~12s2!1/4D 5
F~s!

T
. ~66!

If s,A11k, then ṡ→1` asT→0. Therefore, the integra
curves ats,A11k, which get close to theT50 axis, rise
almost vertically, climbing leftwards fors,0 and rightwards
for s.0 until they get close tos, at which point they reach
a maximum and thereafter approach the de Sitter node~60!
~see Fig. 1!. These are the curves of bundlef. If A11k,s

,1, then ṡ→2` as T→0. Therefore, the correspondin
curves ats.A11k which get close to theT50 axis drop
almost vertically until they get close tos, at which point
h

l

12351
y
-

they also approach the de Sitter node. These are the curv
bundle f 8. On the separatrixs one attains the poin
(0,A11k) where ṡ50. Symmetric considerations apply t
then-reflected curves, i.e., those which lie to the right of t
separatrixs8.

But where do all the curves originate from? We first sho
that apart froms, none of them can touch any point of thes
axis. Indeed, let us consider a point (T,s) close to thes axis.
Equation~66! can be integrated backwards to give

T~s!5T0~s0!expE
s0

s dx

F~x!
. ~67!

This equation shows that, ifF(s0)Þ0, it is impossible to
realize the conditionT0(s0)50 and therefore touch thes
50 axis on a given trajectory. The roots of the equati
F(s0)50 ares5A11k,61. A closely similar reasoning ex
cludes the point (0,1). The point (0,21) can also be ex-
cluded since we should haveṪ>0 in the neighborhood of
such a point; buts is negative, and this contradicts the equ
tion Ṫ5s. We are therefore left with the point (0,A11k),
where the exact solutions originates.

Let us examine now the upper boundary of Fig. 1. In
small neighborhood of the point (T* ,1) @whereT* is in the
domain~58!#, Eq. ~55! can be replaced by the following ap
proximate equation:
ds

dT
52

3@2~12s!#3/4ALS 12~11k!cos2
3AL~11k!T*

2
D 1/4

sin
3AL~11k!T*

2

. ~68!
n
ne.

lera-

l

This equation is not Lipschitzian. The upper integral is t
trivial solution s51 while the lower integral is

s→H 51 for T,T*
'12C~T* !~T2T* !4 for T>T* ,

~69!

where

C~T* !5
81

32

L2S 12~11k!cos2
3AL~11k!T*

2 D
sin4

3AL~11k!T*
2

. ~70!

The intermediate solutions stay constant ats51 for a while
and then leave thes51 line at a valueT** .T* . Therefore,
from each point (T* ,1) there originates only one integra
curve behaving as Eq.~69!. In particular, the separatrixs8
originates at a point (Ts8,1) ~the value ofTs8 being un-
known!.
e The condition of cosmic acceleration is

2ä

a
52~«13p!.0. ~71!

For the tachyon cosmological model, using formulas~4! and
~5! this condition can be reexpressed as

s2, 2
3 . ~72!

Therefore, ifk<2 1
3 all cosmological evolutions undergo a

initial phase of deceleration followed by an accelerating o
On the other hand, ifk.2 1

3 all evolutions whose originating
point T* is larger than a critical value~which depends onk)
have two epochs of deceleration and two epochs of acce
tion. This happens in particular in the limiting case whenk
50, as shown in Fig. 2.

We consider now the case 0,k,1. Equation~31! shows
that the potentialV(T) is well defined only in the interva
(T3 ,T4), where
2-7
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FIG. 1. Potential and phase portrait fork,0 ~herek520.36). The horizontal liness56A2/3 separate the central region where t
expansion of the Universe is accelerated from the two external regions where it decelerates.
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T35
2

3A~11k!L
arccos

1

A11k
,

T45
2

3A~11k!L
S p2arccos

1

A11k
D . ~73!

Together with the condition21,s,1, Eq.~73! defines the
rectangle where we study the model at first. There are n
three fixed points. One of them is the attractive de Si
node~60!, whereas the other two are saddles correspond
to the maxima of the potential at coordinates

T15
2

3A~11k!L
arccosA12k

11k
,

T25
2

3A~11k!L
S p2arccosA12k

11kD ~74!

(s50). They give rise to an unstable de Sitter regime w
Hubble parameter

H15A~11k!L

2Ak
.H0 . ~75!

We first analyze the behavior of the trajectories in t
vicinity of the line T5T3 and setT5T31T̃, with T̃ small
and positive andsÞ61. With these conditions the model
described by the approximate equation

ṡ'2
12s2

2T̃
, ~76!

which implies that the trajectories passing close to
boundaryT5T3 drop steeply down without crossing it. Th
‘‘physical’’ reason for this behavior is the vanishing of th
12351
w
r
g

e

potential atT5T3 ~to our knowledge this is a novel featur
of our model!; indeed, the structure of the tachyonic actio
implies that the ‘‘force’’ is proportional to the logarithmi
derivative of the potential, and this is infinite atT5T3. The
impossibility of crossingT5T3 remains true also withou
coupling the tachyon to gravity. On the other hand, in co
trast with the situation encountered before, the geometr
regular atT5T3: the vertical boundaries of the rectangle a
not curvature singularities, because the potential does
diverge there. Actually, the curvature scalarR vanishes there
because of the vanishing of the potential~see Fig. 3!.

Instead, the horizontal sides are still singular. The sit
tion is exactly as before and there is one integral curve wh
originates at (T* ,1), whose behavior is again given by Eq
~69!, ~70!. Now, however, due to the positivity of the param
eterk, the non-negative functionCk(T* ) vanishes atT5T3
and atT5T4, is maximal atT5T1 and atT5T2, and has a
positive local minimum atT5T0.

Now consider the behavior of the trajectories in the up
left vertex of the rectangleP5(T3,1). Settings512 s̃ and
T5T31T̃, with T̃ and s̃ small but not zero, from Eq.~55!
we get the approximate equation

ds̃

dT̃
2

s̃

T̃
5As̃3/4T̃1/4, ~77!

whereA535/423/4L5/8(11k)5/8k23/8. The general solution is

s̃5
1

256
~AT̃1B!4T̃, ~78!

where B is an arbitrary constant. WhenBÞ0, the leading
behavior is

s̃5DT̃, D.0. ~79!
2-8
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FIG. 2. Potential and phase portrait fork50. Sincek.2
1
3 , there are trajectories which undergo two epochs of deceleration and

epochs of acceleration.
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This means that there are trajectories which gush out f
the pointP in all possible directions, except of course ver
cally ~see Fig. 4!. If B50, Eq. ~78! becomes

s̃5
A4

256
T̃5. ~80!

This equation describes the leading behavior of a curvr
which separates the trajectories of type~79! from those origi-
nating at the points (T* ,1). We point out thatP is a cosmo-
logical singularity for the curver ~which therefore originates
at P), whereas it is regular for the curves~79!. Indeed, we
see from Eq.~1! that whenT̃→0, h2 behaves as 1/T̃2 along
r, while it is finite along trajectories~79!.

Now consider the upper right vertexQ5(T4,1). By set-
ting as befores512 s̃ and T5T42T̃, we get the approxi-
mate equation

ds̃

dT̃
2

s̃

T̃
52As̃3/4T̃1/4, ~81!

whereA is the same as above. The general solution is

s̃5 1
256 ~2AT̃1B!4T̃, ~82!

whereB is an arbitrary positive constant. Therefore, the t
jectories enter pointQ along all possible directions excep
vertically and horizontally. We now classify the behavior
the trajectories in the interior of the rectangle. First note t
there are five distinguished trajectories~separatrices!: s,
which connectsP with the node;t, which connectsP with
the saddle (T1,0); j, which is the curve which enters th
saddle (T2,0) from above@we are unable to say whetherj
originates at some point (T* ,1) or if it belongs to the family
~79!, or if it coincides with the curver defined by Eq.~80!:
for this reason we have not tried to draw curver in Fig. 4#;
c, which originates from the saddle (T1,0) and enters the
12351
m

-

t

node with tangent defined by the eigenvaluel252 3
2 AL(1

2k) @see Eq.~61!#; and finally x, which connects (T2,0)
with Q ~see Fig. 4!. Each of these separatrices has its o
n-reflected counterpart~denoted by the same symbol!.

Corresponding to the separatricess, t, j, c, andx one
can distinguish four bundles of qualitatively different traje
tories.~i! The bundlef I of trajectories limited byt, c, and
s: they originate fromP and enter the node alongc and
from above.~ii ! The bundle f II of trajectories limited by
s, j, andc: they enter the node alongc from below. ~iii !
The bundlef III of trajectories limited byj, x, and the hori-
zontal lines51; they stream intoQ. ~iv! The bundlef IV of
the curves which are limited byt, x, and the vertical line
T5T3: they gush out ofP and stream intoQ8.

Now we have to face a problem that we have not m
tioned so far. The question is the following: it takes a fin
proper time for the fields~and the universe! to get from any-

FIG. 3. Potential fork.0 ~herek50.44).
2-9
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where to the cornerQ or Q8 on a trajectory of bundlef III or
of bundlef IV. But these corners are not critical points of t
dynamical system and, furthermore, the universe does
experience any singularity by getting there along these
jectories. Similar remarks apply to the past of the trajecto
originating from P and P8. If the model could not be ex
tended to follow these trajectories outside the rectan
where it has been originally defined, it would be usele
However, we now show that this extension is actually p
sible. Indeed, one can see by inspection that the field e
tions are well defined also inside the four semi-infinite str
defined by the following inequalities: 0,T,T3, with s.1
or s,21; T4,T,2p/@3AL(11k)#, with s.1 or s,
21. Then, following the strategy sketched in Sec. IV, w
introduce a ‘‘new’’ Lagrangian,

L5W~T!AṪ221, ~83!

where the ‘‘new’’ potential is given by

W~T!5L

A~k11!cos2
3AL~11k!T

2
21

sin2
3AL~11k!T

2

. ~84!

The ‘‘new’’ Lagrangian itself comes out of Sen’s action@Eqs.
~3!,~31!# by the previous trick,

V~T!→W~T!5 iV~T!, ~85!

A12Ṫ2→ iA12Ṫ25AṪ221, ~86!

i.e., both the ‘‘old’’ kinetic term and the potential becom
imaginary but their product remains real. It follows from th
dynamics~55! that the expressions under the square roo
the potential and the kinetic term change sign simu
neously. In other words, in the phase diagram no trajec
can cross any side of the rectangle. Thus, all the quant

FIG. 4. Phase portrait evolution fork.0 (k50.44).
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characterizing the model stay real during the dynamical e
lution. White regions in the phase diagram, where the
grangian and other quantities would become imaginary,
forbidden. The product~83!, which amounts exactly to the
‘‘old’’ Lagrangian, can be interpreted in terms of the ‘‘new
kinetic term and potential that are both real. This make
clear why the ‘‘new’’ Lagrangian gives rise to field equatio
in the above four strips, which are the same as in the inte
of the rectangle. At first glance, one might have the impr
sion that there is a freedom of choice of sign for the n
Lagrangian~83!, or, in other words, that one may choos
opposite signs in Eqs.~85!, ~86!. However, this is not so: the
choice of sign in Eq.~83! is determined by the requiremen
of continuity of the Einstein~Friedmann! equations when
passing from the rectangle to the stripes. As anticipated
Sec. IV, both the energy density and the pressure are pos
in the considered strips.

However, there is an important difference between
present situation and the one described in Sec. IV. Here
are dealing with one single model (k is fixed!. One is com-
pelled to make the extension of the model and, contrary
theL50 case, the two different ‘‘phases’’~i.e., negative and
positive pressure! are found within the same model, at di
ferent stages of the cosmic evolution~one phase in the rect
angle, the other in the strips!. In the following, we give the
precise mathematical meaning of this extension. This op
the way to the study of a new class of tachyon field theor

We start by describing the behavior of the trajectories
the lower left strip~see Fig. 4!. SinceṪ,21, the evolution
along any given trajectory will lead us in a finite amount
time to either hit the vertical lineT50 or to approach a
vertical asymptoteT5TB , with 0<TB,T3. The first alter-
native does not take place, whereas all values ofTB in the
indicated range are allowed, with the exception ofTB50.
Indeed, in the vicinity ofT50, Eq.~55! takes the following
form:

ds

dT
5

2~s221!3/4k1/4

A11kT
2

2~s221!

sT
. ~87!

Now, assume there is ans0,21 such that limT→0s(T)
5s0. Then, the analogue of Eq.~67! gives a contradiction:
the functionF(s) cannot vanish since the right-hand side
Eq. ~87! is positive.

The leading behavior of the solutions of Eq.~87! for T
→0, s→2`, is given by

usu1/2'
1

k1/4

A11k
lnS T

TB
D , ~88!

whereTB is an arbitrary positive constant. It follows that th
line T50 is not an asymptote for any trajectory, but
course there are trajectories whose asymptote is as clos
we like to the lineT50.

Therefore, the trajectories inside the considered strip
be parametrized by the valueTB of the coordinate of their
vertical asymptote. We now discuss how they behave in
2-10
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neighborhood ofs521. As before, we can divide the tra
jectories inside the strip into three families according to th
leading behavior,

s'211E~T2T3!, E.0, ~89!

s'211
A4

256
~T2T3!5, ~90!

s'211C~T* !~T2T* !4, 0,T* ,T3 .
~91!

Trajectories of type~89! fan out from pointQ8 into the strip
at all possible angles. Trajectories of type~91! can be
thought of as originating from (T* ,21). Note that, just as
before, the functionC(T* ) approaches~minus! infinity as
T* →0. It approaches zero asT* →T3. Curve~90! separates
the families~89! and ~91!. The coordinateTB of the asymp-
tote is an increasing function ofT* . As T* →T3, it attains a
value characterizing the asymptote of curve~90!, beyond
which it becomes an increasing function ofE.

Let us go back to physics and consider the behavior of
cosmological radiusa(t) when the tachyon fieldT(t) tends
to TB along the solution of the field equations. The Frie
mann equation implies thath2→0 and thatḣ→2` @see Eq.
~64!#. Therefore, the scalar curvature~63! diverges and the
universe reaches a cosmological singularity in a finite tim

This is an unusual type of singularity which we callbig

brake. Indeed, sinceä/a5ḣ1h2, in a big brake we have tha

ä→2`,

ȧ→0,

a→aB,`. ~92!

In other words, the evolution of the universe comes t
screeching halt in a finite amount of time and its ultima
scale depends on the final valueTB of the tachyon field.

We now turn to the behavior of the trajectories in t
upper left strip. In the vicinity ofT50, the equation for the
trajectories takes the form~87!. The coefficient ofT21 van-
ishes at the values

s51, A11k, A11
1

k
. ~93!

As explained earlier, it is only at these values ofs that the
trajectories can leave the lineT50. In addition, an analysis
similar to the one performed earlier shows that the only
jectory starting at (0,1) is the lines51, and that the only
trajectory starting at (0,A11k) is the curves. All other
trajectories start from„0,A11(1/k)…. Equation~87! shows
that as T→0, the derivativeds/dT approaches2` for
A11k,s,A(11k)/k, whereas it approaches1` for 1
,s,A11k and s.A(11k)/k ~see Fig. 4!. To study the
behavior in the neighborhood of„0,A(11k)/k…, we sets
5A@(11k)/k#1 s̃ with s̃ small. In the approximate equatio
12351
ir

e
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for s̃(T), it is necessary, besides the leading term, to keep
term proportional toT. Thus we get

ds̃

dT
5

2~12k!

11k

s̃

T
2

9L

8
A11k

k S k13

k DT. ~94!

The general solution of this equation is

s̃5S D2
9L~11k!3/2~k13!

32k5/2
T4k/(11k)D T[2(12k)]/(11k),

~95!

whereD is an arbitrary constant. IfDÞ0, we have the lead-
ing behavior

s'A11
1

k
1DT[2(12k)]/(11k). ~96!

Therefore, ifk, 1
3 the trajectories start from„0,A11(1/k)…

with horizontal tangent, whereas they start with vertical ta
gent whenk. 1

3 . If k5 1
3 , they are born with any possibl

tangent. WhenD50, we must go to the next order,

s'A11
1

k
2

9L~11k!3/2~k13!

32k5/2
T2. ~97!

This curve acts as a separatrix for the curves having pos
and negativeD, respectively. Regarding the curves of th
strip which lie belows, they depart from (T* ,1) and behave
in the neighborhood of this point as

s512C~T* !~T2T* !4, 0,T* ,T3 , ~98!

where the functionC(T* ) is the same as in Eq.~91!. Re-
garding the behavior of the trajectories in the neighborho
of T5T3, a simple analysis shows that they stream intoP at
all possible angles~except vertically and horizontally!. These
properties show that each curve of type~96! with positiveD
attains a maximum somewhere betweenT50 and T5T3
whose height is an increasing function ofD which tends to
infinity as D→1`.

So far, we have analyzed the behavior of the trajecto
in two distinct regions: the rectangle and the four strip
Now, it has to be noted that the trajectories in the rectan
which leaveP ~or P8) at all possible angles in the ope
interval (0,p/2) and the trajectories which enterQ8 ~or Q),
again at all possible angles, are incomplete, since the ver
of the rectangle are not cosmological singularities for th
curves. The same is true for the trajectories in the str
which enterP ~or P8) and leaveQ ~or Q8). This circum-
stance, and the fact that the equation of motion forT is the
same in the rectangle and in the strips, indicates that it m
be possible to extend and complete the above set of tra
tories by continuation through the vertices of the rectang
Precisely, the trajectories enteringP ~or P8) from the upper
left ~or lower right! strip shall be continued into the trajec
tories entering into the rectangle fromP ~or P8). Similar
remarks apply to the cornersQ and Q8. The uniqueness o
this continuation procedure can be proved by applying
2-11
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s-process method of resolution of singularities~see, e.g.,
@48#!. This amounts to blowing up~unfolding! the vertices of
the rectangle by transition to suitable projective coordina
the use of which removes the degeneracy of the vector fi
at these points. We do not give the mathematical details

VI. COSMOLOGY

The rich mathematical structure that we have exhibited
the previous section gives rise to the possibility that c
mologies that have very different features coexist within
same model. In this sense tachyonic models are richer
the ‘‘corresponding’’ standard scalar field models.

We now characterize all the evolutions in our model th
are portrayed in Fig. 4. We start from the trajectories ori
nating from the cosmological singularity„0,A11(1/k)… and
which are characterized in the neighborhood of the latter
formula ~96! with the parameterD positive and very large
One such trajectory, as soon as it leaves the singularity, r
steeply upwards until it attains some maximum valu
Henceforth it turns steeply downwards, enters the rectan
at P at some small anglea with the vertical axisT5T3, and
moves towardsQ8. Upon reaching this point it enters th
lower left strip and eventually ends up in a finite timetB in a
big brake corresponding to some field valueTB very close to
T3 ~inf tB50).

As D decreases, the height of the maximum decrea
accordingly,a andtB increase, andTB decreases. Eventually
at some critical valueDc of the parameterD, the trajectory
degenerates inside the rectangle with the separatricest andx
entering and, respectively, leaving the saddle point (T1,0).
The curves for whichD.Dc belong to the bundlef IV. For
D,Dc we get the bundlef I. These trajectories correspond
evolutions which are asymptotically de Sitter with a Hubb
parameterH05AL. The upper bound ofD for the curves of
bundle f I is Dc and corresponds to the separatrixt and c.
This means that a tiny difference in the initial conditions w
result in dramatically different evolutions: one universe go
into an accelerating expansion of the de Sitter type and
other ends with a big brake. This should not be confu
with a chaotic behavior: the two evolutions are almost ind
tinguishable for a very long time and then suddenly dive
from each other. AsD approaches2` we end up with the
separatrix s originating at the cosmological singularit
(0,A11k).

Proceeding further, we encounter those evolutions wh
start at (T* ,1), T* ,T3. In the neighborhood of the startin
point they behave according to Eq.~98!, then enter the rect
angle throughP passing above the curves from below. In
the limit T* 5T3 we obtain the trajectoryr. As T* increases
further beyondT3 the curves detach themselves from t
axis s51 according to Eq.~98! now with T3,T* ,T4. At
some critical valueT

*
c of T* ,0,T

*
c ,T4, the trajectory de-

generates into the separatricesj,c, and x. The curves for
which 0,T* ,T

*
c form the family f II and they asymptoti-

cally arrive at the de Sitter node (T0,0) from below the axis
s50. Those for whichT

*
c ,T* ,T4 form the family f III ;

they enter the upper right strip throughQ and eventually end
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up in finite time in a big brake. Finally, the trajectories th
detach themselves from the axiss51 at T* >T4 bend again
upwards and they form another bundle that we denote byf V.
They also end up in a big brake.

The evolutions corresponding to the trajectories of
different bundles can also be studied in terms of the qua
tive behavior of the Hubble parameterh(t) as a function of
time ~see Fig. 5!. In our model, using Eqs.~1!, ~31!, and~84!
we get

h~ t !5
AL

sinS 3AL~11k!

2
T~ t !D

3U12~11k!cos2S 3AL~11k!

2
T~ t !D

12s2~ t !
U 1/4

.

~99!

Since ḣ52 3
2 h2s2, h(t) is positive and strictly decreas

ing, except at those values oft for which s(t)50.
Close to the initial singularity, the trajectories can be

vided into two classes depending on the singular point fr
which each of them starts: the class~A! of trajectories origi-
nating at the point„0,A(11k)/k… and the class~B! of trajec-
tories which start from the points (T* ,1). The two classes
are separated by the curves. The leading behavior ofh(t) in
the neighborhood of the singularity att50 for the trajecto-
ries of class~A! is

h~ t !5
2k

3~11k!

1

t
2

Dk

3 S 11k

k D (123k)/[2(11k)]

3t (123k)/(11k)1••• for DÞ0, ~100!

FIG. 5. Time evolution of the Hubble parameterh(t).
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h~ t !5
2k

3~11k!

1

t
2

k222k19

32k
Lt1••• for D50.

~101!

For trajectories of class~B! the leading behavior is universa
~it does not depend onk),

h~ t !5
2

3t
1•••. ~102!

To study the behavior ofh(t) at later times, one needs t
examine each bundlef separately, which, in turn, require
first plotting h(t) for the different separatricess, t, j, c,
andx.

We have from Eq.~57! that h(t) for the separatrixs is
given by

hs~ t !5AL cothS 3AL~11k!t

2 D . ~103!

In particular, in the neighborhood oft50,

hs~ t !5
2

3~11k!

1

t
1

L~11k!

2
t1••• ~104!

to be compared with Eqs.~100!, ~101!, and ~102!. Further-
more, hs(t) is strictly decreasing and, ast→`, it ap-
proaches a stable de Sitter expansion with Hubble param
AL.

Regarding the unstable cosmological evolutionht(t), for
small t we have

ht~ t !5
2k

3~11k!

1

t
2

Dck

3 S 11k

k D (123k)/[2(11k)]

3t (123k)/(11k)1••• ~105!

and limt→`ht(t)5H1 @see Fig. 5 and Eq.~75!#. Qualita-
tively, ht(t) behaves similarly tohs(t) but the asymptotic
value of the Hubble parameter is higher. As for the separa
c, the corresponding cosmological evolution is unstable
nonsingular: the Hubble parameter decreases steadily
an unstable de Sitter regimehc(2`)5H1 at large negative
times to a stable onehc(`)5AL at large positive times
hj(t) andht(t) have qualitatively similar behaviors at larg
times while they are different at small times. Finally,hx(t)
decreases steadily from an unstable asymptotic de S
value hx(2`)5H1 at large negative times to the final b
brake singularityhx(tB)50, with ḣx(tB)52`, for some
suitabletB .

For a trajectory of bundlef I which lies close to the sepra
tricest andc, h(t) behaves according to Eq.~100! close to
the initial singularity, with D,Dc (Dc2D) small. Then
h(t) decreases steadily and remains close toht(t) for a very
long time during whichs ~and henceḣ) gets close to zero
Therefore, in this regime the evolution simulates
12351
ter

ix
d
m

er

asymptotic de Sitter expansion with Hubble parameter cl
to the valueH1. Eventually, however,s starts increasing
again and the graph ofh(t) bends downwards away from
ht(t) and approaches asymptotically the stable de Sitter
gime with Hubble parameterAL. Instead, for a trajectory o
bundle f I which lies very close tos, the behavior~100! of
h(t) at small times is characterized by a value of the cons
D which is negative and very large; the graph ofh(t) parts
only slightly from the graph ofhs(t) and the asymptotic
valueAL is approached much earlier. Other elements of I

display behaviors which are intermediate between those
scribed above. The time dependence ofh for the trajectories
of bundlef II is qualitatively similar to the one relative to th
curves of f I, the differences being the following: the sma
time behavior is given by Eq.~102!, and for each trajectory
of f II there is a valuet0 of t ~which depends on the particula
trajectory! for which s(t0)50 so thatḣ(t0)50.

Now consider a curve of bundlef III which lies very close
to the separatricesj and x. For such a curveh(t) remains
very close tohj(t) for a very long time,s(t) decreases,
getting close to zero, and the evolution simulates again
asymptotic de Sitter expansion with Hubble parameter. Ho
ever, eventuallys(t) starts increasing indefinitely, and in
finite ~though long! time the cosmology ends up in a bi
brake. Moving to curves that are farther and farther aw
from j and x, the valueT* of T at the initial singularity
moves to the right towards the value 2p/@3AL(11k)#, h(t)
decreases more and more steeply, and the big brake timtB
tends to zero~when T* gets larger thanT4 the trajectories
switch from bundlef III to bundlef V).

Like those of bundlesf III and f V, the evolutions of bundle
f IV likewise give rise to a big brake and the behavior ofh(t)
is qualitatively similar in the two cases. However, contrary
what happens for bundlesf III and f V, for each trajectory of
bundle f IV there is a timet5t0 ~which depends on the par
ticular trajectory and spans the whole open half-line! for
which s(t0)50 and henceḣ(t0)50. Therefore, even though
the big brake time can get as close to zero as one likes for
curves of type IV@for such curves,tB is a decreasing func
tion of the parameterD in Eq. ~100!, with limD→Dc

tB(D)

5` and limD→`tB(D)50] and henceh(t) may decrease to
zero very steeply, there is always some intermediate tim
which h(t) is momentarily stationary. Note that, as one c
see from Fig. 5, there is nothing peculiar in the behavior
h(t) at the times when vertices of the rectangle are cross

The possibility of cosmological singularities characteriz
by the divergence of the second time derivative of the c
mological scale factor has also been considered in@49# in the
brane cosmology context.

We conclude this section by another simple example
cosmology sharing this property. Let us consider the
Friedmann universe filled with a perfect fluid with a sta
equation similar to Eq.~40!,

p5
A

«
, ~106!

where A is positive. We can call this fluid the ‘‘anti-
2-13
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Chaplygin gas.’’ This equation of state arises in the study
the so-called wiggly strings@50,51#. The dependence of th
energy density on the cosmological radius is given by

«5AB

a6
2A, ~107!

whereB is a positive constant. At the beginning of the co
mological evolution«;AB/a3, as in the dust-dominate
case. Now there is a maximal value possible for the cos
logical scale

aF5S B

AD 1/6

~108!

that is attained in a finite cosmic timetF . The behavior of
a(t) in the vicinity of the maximum is the following:

a~ t !'aF2C~ tF2t !4/3, C5227/335/3~AB!1/6.
~109!

Since ȧ(tF)50 while ä(tF)52`, we are back into a big
brake cosmological singularity.

Thus, a big brake singularity can be found in an elem
tary cosmological model~though based on an exotic fluid!.
The difference with the tachyonic model is that in the lat
there are evolutions culminating in a big brake which coex
with other evolutions giving rise to an infinite accelerat
expansion. These two types of evolutions correspond to
ferent classes of initial conditions.

It may be worth mentioning that also fork.0 one can
construct a scalar field model; indeed the potential displa
in Eq. ~29! is not restricted tok,0. But this model has a
much poorer dynamics: all the trajectories tend to the
Sitter attractive node point.

VII. FINAL CONSIDERATIONS: FATE OF THE UNIVERSE

The study of the fate or the future of the universe is rat
popular nowadays@52–79#, and, as was predicted more tha
20 years ago by Dyson@52#, ‘‘eschatology’’ has now become
part of the cosmological studies. These studies include
course also biological aspects of and the fate of conscio
ness in the different cosmological scenarios~see, for ex-
ample,@52,61,80#!, but our goal is much more modest an
we shall concentrate on the purely geometrical facet of
topic.

There are three mainly studied possible scenarios for
future of the universe, intensively discussed in the literatu
an infinite expansion, an expansion followed by a contract
ending in a ‘‘big crunch,’’ and an infinitely bouncing or re
cycling universe.

The present set of observational data seems to favor
first scenario: the data are quite compatible with a flat u
verse with a positive cosmological constant.

On the other hand, a negative value of the cosmolog
constant fits better with string theory~see, e.g.@22,62,63#!.
The presence of a small negative cosmological cons
could be made compatible with the present-day cosmic
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celeration, provided there are some fields or types of ma
responsible for this acceleration. However, in this context
cosmological radius sooner or later will start decreasing
the expansion will be followed by a contraction which wou
normally lead the universe to a cosmological singularity
the big crunch type.

The third scenario of an infinitely bouncing or recyclin
universe appears to many to be very attractive becaus
opens an opportunity to escape the ‘‘frying’’ in the b
crunch and the ‘‘freezing’’ in the infinite expansion case.
this scenario, during the process of contraction there will
two opportunities: collapse or bounce with subsequent
pansion. The choice of one of these opportunities depend
the initial conditions and this dependence has usually a c
otic character@71,74–77#.

Furthermore, one can show@63# that for every model of
dark energy describing an eternally expanding universe
can construct many closely related models which desc
the present stage of acceleration of the universe followed
its global collapse. However, these models correspondin
eternally expanding and collapsing universes are differ
and have different values of their basic parameters.

One interesting feature of our toy tachyon model is th
the first and the second scenario coexist in its context.
pending on initial conditions, some correspond to eternal
pansions of the universe which approach asymptoticall
pure de Sitter regime, while others end their evolution at
cosmological singularity.

The second distinguishing feature of this model is that
singularity at which the universe ends its evolution is no
standard big crunch singularity. Instead, it corresponds t
finite nonzero cosmological radius at which the Hubble p
rameter is finite and the deceleration parameter is infinite
has a positive sign. We have called this fate the ‘‘big brak
The prospect of hitting the cosmological singularity duri
expansion has been also discussed in Ref.@57#, where the
singularity corresponds to an infinite value of the Hubb
variable and the cosmological radius. This scenario is kno
as ‘‘big rip’’ or ‘‘phantom cosmology’’ ~see, e.g.@65,67–
69#!.

The third distinguishing aspect of our model is the fa
that the regions of the phase space corresponding to diffe
types of trajectories are well separated and the dependen
the cosmology on the choice of initial conditions is qu
regular~nonchaotic!. A remark is in order here: the chaoticit
of the classical dynamics hinders the application of the W
approximation and, hence, undermines the basis of the
jority of results of quantum cosmology@76#. In our model,
quantum-cosmological schemes of the traditional type@81–
84# can be attempted. The corresponding wave funct
should describe a probability distribution over different in
tial conditions for the classical evolution of the universe. T
quantum evolution of the universe in our toy model might
expressed in the language of the many-worlds interpreta
of quantum mechanics@85,86#. In this framework one can
say that the wave function of the universe describes
quantum birth of the universe and subsequently the proc
2-14
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of the so-called ‘‘classicalization’’~see, e.g., Ref.@87#!. Dur-
ing this process, the wave function splits into differe
branches or Everett worlds corresponding to different p
sible classical histories of the universe. The peculiarity of
toy model consists in the fact that some of these branc
describe eternally expanding universes while other branc
correspond to universes which end their evolution hitting
cosmological singularity.
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