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We study the role that tachyon fields may play in cosmology as compared to the well-established use of
minimally coupled scalar fields. We first elaborate on a kind of correspondence existing between tachyons and
minimally coupled scalar fields; corresponding theories give rise to the same cosmological evolution for a
particular choice of the initial conditions but not for any other. This leads us to study a specific one-parameter
family of tachyonic models based on a perfect fluid mixed with a positive cosmological constant. For positive
values of the parameter, one needs to modify Sen’s action and usepioeess of resolution of singularities.

The physics described by this model is dramatically different and much richer than that of the corresponding
scalar field. For particular choices of the initial conditions, the universe, which does mimic for a long time a de
Sitter—like expansion, ends up in a finite time in a special type of singularity that we bail larake This
singularity is characterized by an infinite deceleration.

DOI: 10.1103/PhysRevD.69.123512 PACS nuni§er98.80.Cq, 98.80.Jk

[. INTRODUCTION and tachyon ones describing the same cosmological evolu-
tion [14]. Therefore, a natural question arises: does it make
The recently discovered cosmic acceleratjds-3] has  sense at all to study tachyon cosmological models in place of
put forward the problem of unraveling the nature of the so-the traditional scalar field models?
called dark energy responsible for such a phenoméfwra In our opinion, the point is that the correspondence be-
review, see[4,5]). The crucial feature of the dark energy tween tachyon and scalar field cosmological models is a
which ensures an accelerated expansion of the universe iather limited one and amounts to the existence of “corre-
that it breaks the strong energy condition. sponding” solutions of the models, obtained by imposing
The tachyon field arising in the context of string theory certain special initial conditions. If one moves away from
[6—9] provides one example of matter which does the jobthese conditions, the dynamics of the tachyon model can
The tachyon has been intensively studied during the past felwecome more complicated and very different from that of its
years also in application to cosmolopy0—30; in this case scalar field cousin.
one usually takes Sen'’s effective acti] for granted and In this paper, we consider some examples of scalar and
studies its cosmological consequences without worryingachyon field isotropic cosmological models having coinci-
about the string-theoretical origin of the action itself. We dent exact solutions. All the exact solutions considered here
take this attitude in the present paper. actually arise as solutions of some isotropic perfect fluid cos-
However, it would be reasonable, before considering conmological models.
crete tachyon cosmological models, to answer a simple ques- Some of the tachyon and scalar field potentials that we
tion: is the tachyon field of real interest for cosmology? In-consider here are well known in the literature and are widely
deed, it is well known that for isotropic cosmological used as quintessential models. We will introduce also a new
models, for a given dependence of the cosmological radiut least to our knowledgeaachyon model that is based on
on time it is always possible to construct a potential for athe cosmic evolution driven by the mixture of a cosmological
minimally coupled scalar fieldin brief, scalar fieldd model, constant and of a fluid with equation of stgie=ke, with
which would reproduce this cosmological evolutigeee, —1<k=<1 (¢ andp denote as usual the energy density and
e.g.,[31]), provided rather general reasonable conditions ar¢he pressure, respectivelyThe corresponding tachyon po-
satisfied. Since a similar statement holds also for cosmologitential V(T) is represented by a rather cumbersome trigono-
cal models with tachyons, one can find some kind of corremetric function of the tachyon field. When the paraméter
spondence between minimally coupled scalar field modelpositive, the potential becomes imaginary passing through
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zero for finite values of the tachyon field Thus, it might The energy momentum tensor is diagonal and the corre-
seem that these features would kill the model; on the consponding field-dependent energy density and pressure are
trary, using the methods of the qualitative theory of ordinarygiven by

differential equations, it is possible to extract from the model

a dynamics which is perfectly meaningful also for positive V(T)
We find that this dynamics is quite rich. In particular, when &= \/—2 (4)
the value of the parametéris positive, the model possesses 1-T

two types of trajectories: trajectories describing an eternally _

expanding universe and those hitting a cosmological singu- p=—-V(T)V1-T? (5)
larity of a special type that we have chosen to calbig

brake Thus, starting with a simple perfect fluid model and While the field equation for the tachyon is written as follows:
trying to reproduce its cosmological evolution in scalar field . .

and tachyon models, we arrive at a relatively simple scalar T 3aT Vi
field potential with a correspondingly simple dynamics and 1-T2 + T+ VA
at a complicated tachyon potential. The latter provides us

with a model having a very interesting dynamics giving riseOne can try and find a potenti®(T) so that, for certain
to very different cosmological evolutions and opening in turnsuitably chosen initial conditions on the tachyon field, the
opportunities for some nontrivial speculations about the fuscale factor of the universe is precisely the giva). A
ture of the universe. similar construction can be attempted for a minimally

The structure of the paper is as follows. In the seconctoupled scalar field, described by the Lagrangian density
section we study the problem of the correspondence between

tachyon and scalar field cosmological models, and we give Y

some examples in the third section. In the fourth section we L= P —U(e). @
suggest a way to go beyond the limitations of tachyonic

models, and we make use of this idea in the fifth and sixtbA given cosmological evolutiorma=a(t) can therefore be
sections, where we study the dynamics and the cosmology afsed to establish a sort of correspondence between the two
a particular(toy) tachyon model introduced in Sec. IIl. In the potentialsV(T) andU(¢) (see alsd14]).

last section we conclude our paper with some speculations Let us see in some detail how this works and what the
on the future evolution of the universe arising from the sought correspondence really means. It is often more practi-

0. (6)

analysis of our model. cal to use the scale factarto parametrize the cosmic time;
this can be done providea#0. From Egs.(4) and (5), it
Il. THE CORRESPONDENCE follows that
We consider a flat Friedmann cosmological modef ., Ppte
—dt2—a(t)dI? of a universe filled with some perfect fluid To=— ®)
and suppose that the cosmological evolutiara(t) is
given; the Friedmann equation By using Eqs(1) and(2), the latter equation can be rewritten

as follows:

'a2

— 1 + !

a2 @ T’:E\/(8 p)=l\/ °2 9
a P a 3e?

provides the dependenee= ¢(t) of the energy density of the
fluid on the cosmic timéwe have set 8G/3=1 for conve-
nience. Then, the equation for energy conservation

where a prime denotes the derivative with respeet tOnce
a(t) and therefore:(a) is specifiedsee Eq(1)], Eq.(9) can
be integrated to give

. a adx [—e'(X)X
£ a(s p) T=d(a) f « \/ 30700 (10

fixes the pressur@=p(t); therefore, an equation of state (an arbitrary additive integration constant is hidden in the
p=p(e) can in principle be written describing the unique unspecified integration limit By inverting Eg. (10), a
fluid model compatible with the given cosmic evolution =& ~(T), and making use of the relation
(provided thate #0).

Now, let us suppose that the matter content of the universe (e%a®)’
is modeled by a homogeneous tachyon fi€(d) described V=v—ep= 625
by Sen’s Lagrangian densif,7],

: 11

the shape of the required tachyon potentMkV(a)
L=—V(T)V1-T2 (3 =V[® X(T)] can be found.
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For the minimally coupled scalar field, we have similar which is equivalent to asking for a negative presquse0. It
formulas. The analogs of Eq&l) and(5) for the scalar field seems, therefore, that tachyonic models are more restrictive
are than minimally coupled scalar fields in their potential to de-

_ scribe cosmological evolutions. We will see in an example
e=3¢°+U(¢), (12 that this seemingly negative conclusion can be overcome and
pleasant surprises may arise.

p=3¢2—U(g). (13

From these we get

1. EXAMPLES

We now illustrate the above considerations by means of
1 \/(8+ p 1 \/—s’a some explicitly solvable examples. In these examples we as-
o'== =— (14  sume, as usual, that the initial moment of tie,0, corre-
a € 3¢ sponds to the cosmological singularity. All these examples
are based on simple models of perfect fluids as specified by

a

and . .
their equations of state.
1 (£a%)’ () The starting point of the first example is a model of the
U= 5(8_ p)= : (15 universe filled with a perfect fluid with equation of stgie
6a =ke, with —1<k=1; the Hubble variable of this model is
given by

Integration of Eq.(14) gives

2
B B adx [—e&’(X)X h(t):—Sl ot (22)
@—F(a)—f e \/—38()() (16) (1+Kk)t

) A minimally coupled scalar field theory that produces the
and, as before)=U(a)=U[F " “(¢)]. The formulas above same evolutiom(t) for suitably chosen initial conditions can
establish a kind of correspondence between the potetfials be based on one of the following scalar potentials, which are

andV in the sense that the cosmologies resulting from suclybtained by the procedure outlined in the previous section:
potentials admit the given cosmological evolutiara(t)

for suitably chosen initial conditions on the fields. However, 1-k

it has to be stressed that for arbitrary initial conditions on the U.(e)= 1T K02

fields, the cosmological evolutioriwithin the corresponding (1+k)

models may be drastically different. Furthermore, changingthe limiting casek=1 gives a minimally coupled massless

the initial conditions, say, for a minimally coupled scalar field. For k>1, the potential becomes negative, reflecting

field theory, one gets different cosmological evolutionSy,q ¢4 that the velocity of sound is bigger than the speed of
which, in turn, can be reproduced in entirely different; ..

tachyon theories and vice versa. Thus, any scalar field poten-

ol hol tamilv of di Both choices of sign in the exponent are acceptable and
tial has a whole(one-parametgrfamily of corresponding e hormalization of the potentials can be chosen arbitrarily
tachyon potentials, and the same is true the other wa

d Ythe constantpg); then the exact solutions of the field equa-
around. . . ) tions providing the prescribed cosmological evoluti@1)
We can learn something more by expressing the figlds

, tively, the following:
and ¢ and the potentiald/(T) and U(¢) in terms of the are, respectively, the 1oflowing
Hubble variableh=a/a. Since

2
(=T ——
h=—%(c+p) (17 3vitk

The theories are obviously connected by the symmetry op-
erationg— ¢g— — (¢ — ¢g), Which exchanges the potentials
and the corresponding solutions.

et 3\“‘1—+R(‘P*<Po); (22)

Ol N

one has easily that

.. etp 2h - - .
T2= =— " v(T)=+h%%h+h?), (18 To construct a tachyonic field theory, we have to restrict
€ 3h? (M (s ) (18 our attention to the casp<O0, i.e., k<0. Following the
same procedure, we get a tachyon field model, based on the
and that potential
2 _ 2y _h24 1y
p=e+p=—%h, U(e)=h“+ 3h. (29 4 -k 1
= ’ V(T)= (24)

9 (1+K) (T_T2"
Equations(18) and (19) call for the conditione +p=0, or ( (T To)

equivalentlyh=<0. For the tachyon model, EL8) requires  There are again two exact solutions of the field equations

the additional condition (21), which now do coexist within the same model,
h=— 2n2, (20) T.(t)== JIT+kt+T,. (25)
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This tachyonic model has been studiedi8,14], where also  For k>0, there are values of the tachyon field for which the
the correspondence with a minimally coupled scalar fieldpotential(31) becomes imaginary passing through zero.
theory with exponential potential was noticed. There exists a When A tends to zero, one expects to recover the model

vast literature on the lattdsee, e.9.[32—41)). studied in the first example. This is indeed the case for the
(i) Now we add a positive cosmological constant to thetachyonic field.
previous model, i.e., we consider the mixture As for the scalar potentia{29), the situation is a bit
trickier: the correct limit can be obtained only by letting the
pi=keq;, —1<k=s1l, pp=—e,=—A, A>0. constante, vary with A as follows:
(26)
This is the same as one fluid with state equation 1 A(1-Kk)

Poo= Po1* In , 33
02 01 3 /—1 | 2 ( )
p=ke—(1+k)A. (27)

where the subscripts 1 and 2 refer to the corresponding ex-
amples. This is because the theory has a symmetry which is

3\/K(1+ k)t lost in the limit.
h(t)=+A coth————. (28) Notice that the scalar field potenti@9) is well-defined at

—1<k=1 and the model possesses the exact soluBon
The corresponding minimally coupled scalar field theory isWhich corresponds to the cosmological evoluti@®). The

The evolution of the Hubble variable is now given by

based on the following potential: dynamics of the universe within the tachyonic modgls)
and (31) will be studied in detail in the next sections for
1-k . _3V1+k(e—¢gp) general initial conditions. We shall show that both models
Ulp)=A[1+— sink? 5 (29 can be extended to the intervakk<1, actually making

them richer than the corresponding scalar minimally coupled

There are two exact solutions of the field equations reprotheories.

ducing the given cosmic evolutio28), (iii) In the third example, we consider a perfect fluid
whose equation of state is as follows:

3VA(L+K)t
In tanh +

2
~(H)== .
(,07() 3\/m 4 ®o

To find the tachyonic model, we observe first of all that to|n, this case the Hubble variable is

have the restrictiopp<0O satisfied it is sufficient to require

that —1<k=0; this condition is also necessary if one de-

mands thatp<0 during all the stages of the cosmological h(t)=(3 y(2x - 1)t)Y(E=2Y), (395
evolution and for any choice of the initial conditions in the

tachyonic model. With this condition we obtain the following The scalar potential has the form

more complicated tachyon potential:

(30 et+p=rye, 0<y<1, A>1. (34

A U ):(N?(x—l)(cp—qoo))z’(“)
V(T)= ¢ 2
SIP[ 3 VA(L+K)(T—To)] —2M(A—1)
_z<3@(x—1><¢—¢o>) .
X\ 1= (1+K)coZ[ 2VA(1+K)(T—To)]. 2 2 '
(31) The exact solutions are
Still, the corresponding exact solutions can be found and are
given by 1-2)\ (3 (1-M)/(1-2))
o)==y T |2 7(2A =1t +¢o.
2 _3JVA(1+Kt (37)
T(t) = * —=————==arctan sinh————+Tj.
3JVA(1+K) 2
(32)  The tachyon potential is
|
The tachyon potential is
BVA(T-To) | ™™ [N (T-Tp)| BEMI
V(T)a= - 5 A — , (39
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with the following exact solutions: of statep=ke, where nowk>0. As we have stated, it is
impossible to reproduce this dynamics using Sen’s tachyonic

2 —1(3 oMY action (3). One wa i i i
_ o _ . y out is to introduce a new field theory
Tm== \/; I (2 7(2) 1)t) *To. based on a Born-Infeld type action with Lagrangian
(39
— NE
The scalar field model with the potenti@6) was studied in L=W(T)NT"—1. (45)
[37] while the corresponding tachyon model with the poten- . i .
tial (38) was discussed ifl3,14]. In this new field theory, the energy and pressure are given by
(iv) In our last example, we consider the Chaplygin gas,
described by the following equation of state: W(T) 46
e=
A T2-1
pP=—1 A>0. (40
and
In this example, the evolutioh(t) is given only implicitly
[42] by the formula p=W(T)VT2-1. (47)
t= 1 n h+Al/4_2 arcta h . (41) The pressuréif well defined is now positive. On the other
BAY4  h—Al4 Al4 ' side, the equation of motion for this field has exactly the

same form(6) as was derived by Sen’s action.
However, as shown if2], the scalar potential can be recon-  Following the procedure described in Sec. Il, now applied
structed using the known explicit dependence @n a, and  to the Lagrangiari45), one gets the following potential cor-

one gets responding to the equation of stgie-ke (with k>0):
1
' _ - - 4 Jk 1
AR A(COSM"" 0" Goshap— g 47 WD @i 12 (48)

The corresponding field configuration is also given implic-
itly, The exact solution of the field equations that reproduces the
dynamics of the perfect fluid is

o D)
(h (H+ T) T(t)=V1+kt (49)
<p(t)=1§arccos —_—
\/K (we restrict our attention to the region of the phase space
h(to) 2 whereT=0 andT=1). There are two other obvious solu-
(hz(t)+ 0 ) tions for this model, corresponding to other choices of the
n 3 1]+ (43) initial conditions; they also give rise to linearly growing
A o- fields: T(t)=t and T(t) = 1+ (1/K)t.

We would like to point out an interesting fact: the La-
Similarly, using the dependence efon a, one can recon- grangian(45), which, together with the explicit forrtd8) of

struct the tachyon potential, the potential, describes the field theory corresponding to a
positive value ok, is actually the same as Sen’s Lagrangian
V(T)=A=const. (44 (3) with the potential(24) itself considered for positivé.

. . Indeed, it is true, on the one hand, that in this case the po-
It is easy to se¢l15] that the tachyon model with a constant (antial (24) becomes imaginary. However, this can be com-

potential is exactly equivalent to the Chaplygin gas modelyensated for by considering the kinetic term in the region 1
Indeed, in the case of a constant tachyon potential, the rela- -, . :
—T4<0 so that the action as a whole remains real. It can be

tion between the tachyon energy dens#ty and the pressure .
(5) is just that of t>r/1e Chap?lzgin 3‘,3;40), whgre pe reinterpreted as the product of two real terms,

=—V%(T)=—A. The Chaplygin gas cosmological model . .
was introduced if42] and further developed i3—-46 and L=—-V(T)V1-T?=(V-1)?V(T)V1-T?
many other papers. Comparison with observational data has -
also been extensively performgdi7]. =W(T)VT?-1 (50
IV TRANSGRESSING THE BOUNDARIES This model is introduced here as a pedagogical introduction

to the model with the potential3l), which we discuss in
We now take a step back and consider the problem ofletail in the following section. The properties of the present
finding a tachyonic field theory admitting the same cosmicmodel can be recovered in the limit—0 and we will not
evolution as the one produced by perfect fluid with equatiorcomment further on it.
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V. DYNAMICS OF THE TOY TACHYONIC MODEL 2/[3(1+Kk)]

3JVA(1L+K)t
3VA(L+K)t -

sinh 5

a(t)y=ag

We now provide the analysis of the dynamics of the ta-
chyonic model based on the potentfall). In this case, Eq.

(6) is equivalent to the following system of two first-order AS expected, we get back the cosmological evolutid8
differential equations: determined by the equation of stdf¥) which was the start-

ing point for constructing the potenti#B1). To study the
T=s, (51) cosmological evolutions corresponding to all possible initial
conditions, we need to distinguish two different cases. When
Vv the parametek=<0, there are no surprises and the associated
'52_3\/0(1_32)3/43_(1_52)_1, (52)  cosmology is essentially driven by that of the exact solu-
v tions, while wherk is positive the model seems at first to be
ill-defined. We will again have to go beyond the model itself

where using the Friedmann equatii) we have expressed ang “transgress the boundaries” to see what its possible
the Hubble variablé as a function of the variableBands.  meaning can be.

The model has the following two exact solutiofwse take In the first case when-1<k<0 the potential(31) is
To=0 without loss of generality well-defined for
T,(t) 2 tansi 3L+l AL 0<t< 0<T<— 27 (58
= ————arctansin , o0, <T<—,
B3 ALK 2 3VA(1+K)
(53
while the dynamics guarantees that
2 3(1+k) VAt
T,(t)= ————| w—arctan sinM —1l<s<l (59
3VA(1+k) 2
The system has only one critical point, namely
0<t<oe. (54)
a
By inserting Eq.(31) into Eq. (52) and by eliminating the $0=0, To=—F——. (60)
time, we obtain an equation for the phase-space trajectories SVA(1+k)
s=s(T),

The eigenvalues of the linearized system in the neighbor-

hood of this point are
ds 3(1-s2) VA

aT C3VA(LFK)T N2=— $VA(1=K). (61)
sin——
2 Both of them are real and negative. Thus, this special point is
14 an attractive node. It corresponds to a de Sitter expansion
3VA(1+K)T with a Hubble parameter,
1—(k+1)cod
X Ho= VA. (62)
1-¢?

) The set of integral curves @b5) is symmetric under re-
3VA(1+k) 1-s 3VA(I+K)T flection with respect to the critical poiri60): any given in-
- co tegral curve and its nod@) reflected one describe the same

2 S 2 cosmological evolution. The curwe corresponds to the ei-
3VA(L+K)T genvalue\ ;= —/A(1+k), whose absolute value is the
(k+ 1)00§f+(k—1) smallest of the two. It acts as a separatrix for the integral
% _ (55) curves. Almost all curves approaching the n¢66) end up
3VA(L+K)T there with the same tangent as The only exception is a
1—(k+ 1)0052f second separatrix’, which corresponds to the eigenvalue

N,=—32A(1—K). The curves’ separates the bundfé of
the curves which do not intersect the asis 0 from the
bundlef of those which ddsee Fig. 1. The boundary of the
rectangle defined by Eq$58) and (59) describes a cosmo-

In the phase plan€Tl(s), the solutiong53), (54) correspond
to arcs of the curver (see Figs. 1, 2, and)4

— logical singularity. Indeed, the scalar curvature for a flat
S= 1+kcosw. (56) ~ Friedmann universe is
R=6(h+2h?). (63)

The behavior of the cosmological radius for both solutions
(53) and (54) is the following: Since from Eqgs(1), (2), (4), and(5) one has that
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3122 they also approach the de Sitter node. These are the curves of
h=—3h"s", (64) . . :
bundle f’. On the separatrixc one attains the point
by substituting into Eq(63) it follows that (0,J/1+k) wheres=0. Symmetric considerations apply to
the n-reflected curves, i.e., those which lie to the right of the

3V(T)(4-3s?) separatrixo’ .
W' But where do all the curves originate from? We first show
that apart fromo, none of them can touch any point of the

Thus the scalar curvatuRtends to infinity when approach- axis. Indeed, let us consider a poift §) close to thes axis.
ing the boundary of the rectangleith the exception of the Equation(66) can be integrated backwards to give
corners, which will be treated separately

All integral curves end up in the node; let us see how they
behave close to the boundary and begin with a right neigh-
borhood of T=0. There, Eq(55) takes the form

R=3h%(4—3s%) = (65

s dx
T(s)=T — 6
(s)=To(sp)eXp F() (67)

) 1 This equation shows that, F(sy)#0, it is impossible to
ds _21-s)(  (=k™s _FO (66  realize the conditionTy(sp)=0 and therefore touch the
daT sT Vi+k(1-s?)14 T =0 axis on a given trajectory. The roots of the equation

_ F(sg) =0 ares=1+k,=1. Aclosely similar reasoning ex-

If s<y1+Kk, thens— +« asT—0. Therefore, the integral cludes the point (0,1). The point (81) can also be ex-

curves ats<\1+k, which get close to th&=0 axis, rise  cluded since we should have=0 in the neighborhood of

almost vertically, climbing leftwards fag<<O and rightwards  such a point; bus is negative, and this contradicts the equa-

for s>0 until they get close ter, at which point they reach {ion T—s We are therefore left with the point (1 +k),
a maximum and thereafter approach the de Sitter 16Ge |\ here the exact solutioor originates.

(see Fig. 1 These are the curves of bundlelf y1+k<s Let us examine now the upper boundary of Fig. 1. In a
<1, thens——= as T—0. Therefore, the corresponding small neighborhood of the poinf(,1) [whereT, is in the
curves ats>+/1+k which get close to th@=0 axis drop domain(58)], Eq. (55) can be replaced by the following ap-
almost vertically until they get close ta, at which point  proximate equation:

3VA(L+K)T, |\ M
3[2(1-9)¥4/A 1—(1+k)co§#

ds 2
—=— . (68)
dT C3VA(L+K)T,
sin——
2
|
This equation is not Lipschitzian. The upper integral is the The condition of cosmic acceleration is
trivial solutions=1 while the lower integral is
2a
=1 for T<T, 6 - ~ ~(e+3p)=0. (72)
SUleicmom-Tt for T=T,, ©
For the tachyon cosmological model, using formui&sand
where (5) this condition can be reexpressed as
3VA(L+K)T s?<3. (72)
81A2(1—(1+k)c0§# ’
C(T,)= = . (7o)  Therefore, ifk<— 3 all cosmological evolutions undergo an
32 Sin43\//\(1+ KT, initial phase of deceleration followed by an accelerating one.
2 On the other hand, > — 3 all evolutions whose originating

point T, is larger than a critical valuevhich depends ok)
The intermediate solutions stay constansatl for a while  have two epochs of deceleration and two epochs of accelera-
and then leave the=1 line at a valuel,, >T, . Therefore, tion. This happens in particular in the limiting case when
from each point T,,1) there originates only one integral =0, as shown in Fig. 2.

curve behaving as Eq69). In particular, the separatrix’ We consider now the case<k<<1. Equation(31) shows
originates at a pointT,,1) (the value ofT, being un- that the potentiaM(T) is well defined only in the interval
known). (T3,T4), where
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FIG. 1. Potential and phase portrait for0 (herek=—0.36). The horizontal lines= = \/2/3 separate the central region where the
expansion of the Universe is accelerated from the two external regions where it decelerates.

2 1 potential atT= Ty (to our knowledge this is a novel feature
T3=—————arccos——, of our modeJ; indeed, the structure of the tachyonic action
* 3 (1A V1+k implies that the “force” is proportional to the logarithmic

derivative of the potential, and this is infinite B T5. The
B 2 1 impossibility of crossingT=T; remains true also without
T4_3\/m w—arccos\/m ' (73 coupling the tachyon to gravity. On the other hand, in con-

trast with the situation encountered before, the geometry is
Together with the conditior-1<s<1, Eq.(73) defines the regular afT =T3: the vertical boundaries of the rectangle are
rectangle where we study the model at first. There are nowot curvature singularities, because the potential does not
three fixed points. One of them is the attractive de Sittediverge there. Actually, the curvature scaRwanishes there
node(60), whereas the other two are saddles correspondingecause of the vanishing of the potentisde Fig. 3.

to the maxima of the potential at coordinates Instead, the horizontal sides are still singular. The situa-
tion is exactly as before and there is one integral curve which
- 2 1-k originates at T, ,1), whose behavior is again given by Egs.
=————arccos\/ —, e )
ENEET 1+k (69), (70). Now, however, due to the positivity of the param

eterk, the non-negative functio@(T,) vanishes af =T,
and atT=T,, is maximal afT=T,; and atT=T,, and has a

2 ( [1—k S o
T =——— | 7—arccos\ |/ —— 74 positive local minimum af =T,
2 3V(1+Kk)A 1+k (79 Now consider the behavior of the trajectories in the upper

o . . . left vertex of th tangl®=(T5,1). Settings=1—'s
(s=0). They give rise to an unstable de Sitter regime with ert vertex o . © rectang &=(T5,1). Settings s and
Hubble parameter T=T3+T, with T ands small but not zero, from Eq55)

we get the approximate equation

o=y A (75)
1~ 2\/E 0-

We first analyze the behavior of the trajectories in the

vicinity of the line T=T; and setT=T3+T, with T small  whereA=35%34A58(1 + k)88, The general solution is
and positive and# = 1. With these conditions the model is
described by the approximate equation

— A"éS/ZFl'-lM, (77)

o | a
—|1|m1
— »nl

~ 1 -
s= —(AT+B)*T, (79
1-g2 256

; (76)

s~
2T where B is an arbitrary constant. WheB+# 0, the leading
which implies that the trajectories passing close to thd’€havioris
boundaryT=Tj; drop steeply down without crossing it. The L
“physical” reason for this behavior is the vanishing of the s=DT, D>0. (79
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FIG. 2. Potential and phase portrait for=0. Sincek> — % there are trajectories which undergo two epochs of deceleration and two
epochs of acceleration.

This means that there are trajectories which gush out frommode with tangent defined by the eigenvalug= — 2 A (1
the pointP in all possible directions, except of course verti- —k) [see Eq.(61)]; and finally y, which connects T5,0)

cally (see Fig. 4. If B=0, Eq.(78) becomes with Q (see Fig. 4 Each of these separatrices has its own
4 n-reflected counterpaftenoted by the same symhol
3= A_ﬁ-s' (80) Corresponding to the separatrices 7, &, , and y one
256 can distinguish four bundles of qualitatively different trajec-

. ) ) ) . tories. (i) The bundlef' of trajectories limited byr, ¢, and
ThI.S equation descrlbe's the. leading behavior of a CUrVe - they originate fromP and enter the node along and
Whl_ch separates_ the trajectories qf ty([@0) from_those origi-  from above.(ii) The bundlef" of trajectories limited by
nating at the pointsT,,1). We point out thaP is a cosmo- o, & andy: they enter the node along from below. (iii)
logical singularity for the curve (which therefore originates The pundief" of trajectories limited by, y, and the hori-
at P), whereas it is regulzir for the curve€s9). Ingeed, We  sontal lines=1: they stream int®. (iv) The bundlef'V of
see from Eq(1) that whenT—0, h® behaves as T7 along  the curves which are limited by, y, and the vertical line

p, while it is finite along trajectorier9). T=Tj,: they gush out oP and stream int@’.

Now consider the upper right vert&d=(T,4,1). By set- Now we have to face a problem that we have not men-
ting as befores=1—s and T:T4—T, we get the approxi- tioned so far. The question is the following: it takes a finite
mate equation proper time for the fieldéand the universeto get from any-

d—f S L) (81)

dT T er
whereA is the same as above. The general solution is 1+

~_ = I I

S= 555 (—AT+B)"T, (82 M IZI IXI
whereB is an arbitrary positive constant. Therefore, the tra- G G
jectories enter poin@Q along all possible directions except =~ o} 1 I
vertically and horizontally. We now classify the behavior of N N
the trajectories in the interior of the rectangle. First note that A A
there are five distinguished trajectori¢separatrices o, R R
which connects with the node;r, which connect$ with Y Y
the saddle T;,0); & which is the curve which enters the  *
saddle {,,0) from abovelwe are unable to say whethér
originates at some poinfl(,1) or if it belongs to the family —— L T e—
(79), or if it coincides with the curve defined by Eq(80): T
for this reason we have not tried to draw cugvén Fig. 4];
¢, which originates from the saddlér{,0) and enters the FIG. 3. Potential fok>0 (herek=0.44).
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. " " " " " T characterizing the model stay real during the dynamical evo-
T j I lution. White regions in the phase diagram, where the La-
1

grangian and other quantities would become imaginary, are
forbidden. The product83), which amounts exactly to the
“old” Lagrangian, can be interpreted in terms of the “new”
kinetic term and potential that are both real. This makes it
clear why the “new” Lagrangian gives rise to field equations
- 1 in the above four strips, which are the same as in the interior
of the rectangle. At first glance, one might have the impres-
—osf ; sion that there is a freedom of choice of sign for the new
Lagrangian(83), or, in other words, that one may choose

o P opposite signs in Eq$85), (86). However, this is not so: the
sk choice of sign in Eq(83) is determined by the requirement

of continuity of the Einstein(Friedmann equations when

passing from the rectangle to the stripes. As anticipated in

b % o - . ; v . 3 Sec. |V, both the energy density and the pressure are positive
T in the considered strips.

However, there is an important difference between the
present situation and the one described in Sec. IV. Here we
, . i are dealing with one single mode (s fixed. One is com-
where to the corneQ or Q" on a trajectory of bundlé™ or  ,qjieq to make the extension of the model and, contrary to
of bundlef . But these corners are not crltlcgl points of thetheAzO case, the two different “phasegle., negative and
dynamical system and, furthermore, the universe does NQf,gjiive pressupeare found within the same model, at dif-
experience any singularity by getting there along these trag o stages of the cosmic evolutiéone phase in the rect-
jegtgrie_s. Similar remarks apply to the past of the trajectorie%ngle’ the other in the stripsin the following, we give the
originating fromP and P". If the model could not be ex-  ecise mathematical meaning of this extension. This opens
tended to follow these trajectories outside the rectangl e way to the study of a new class of tachyon field theories.

ngsvrSVSr h\zz rt:g\?vnsﬁg\?v'”tﬁg t?]iesﬂr;i?ér:;i(\;vr?ijsldagﬁjaﬁﬁ/efjss—. We start by describing the behavior of the trajectories in
sible. Indeed, one can see by inspection that the field equér—:e lower Ieft strlrt)(s_eetFlg. 4..”S||nc§T< - 1, ft.h(.at evolut|or: f
tions are well defined also inside the four semi-infinite stripsa ong any E'Ve?]. rarjwec oryIW|| Igaér_u(s) in a finite amm;]n °
defined by the following inequalities:-0T<T,, with s>1 M€ to either hit the vertical linef=0 or to approach a

or s<—1: T,<T<2m/[3JA(L+K)], with s>1 or s< vertical asymptotel =Ty, with 0=<Tg<Tj3. The first alter-

—1. Then, following the strategy sketched in Sec. IV, Weﬂ]%t;xztggiznno; :I;eaﬂﬁvigjw:vietrhe?ﬁeagx\guteigﬁ?_tge
introduce a “new” Lagrangian, 9 , ptionTgf=0.

Indeed, in the vicinity ofT=0, Eq.(55) takes the following
L=W(T)\T2-1, 8y O™

where the “new” potential is given by

=
~

FIG. 4. Phase portrait evolution fér>0 (k= 0.44).

ds  2(s’-1)¥%"* 2(s*-1)
dT V1+kT sT

+ . :
\/(k+ 1)CO§M_1 Now, assume there is ag,<—1 such that lim_os(T)
W(T)=A 2 (84) =sy. Then, the analogue of E¢67) gives a contradiction:
- NTEEEY : the functionF(s) cannot vanish since the right-hand side of
szw Eq. (87) is positive.
2 The leading behavior of the solutions of E&7) for T
—0, s——o0, is given by

(87

The “new” Lagrangian itself comes out of Sen’s actidegs.

(3),(31)] by the previous trick, 1
Bl : (88)
V(T)—W(T)=iV(T), (85) k4 n 1)
- : : Ji+k \Ts
Vi-T2iy1-T2=\T2-1, (86)

whereTyg is an arbitrary positive constant. It follows that the
i.e., both the “old” kinetic term and the potential become line T=0 is not an asymptote for any trajectory, but of
imaginary but their product remains real. It follows from the course there are trajectories whose asymptote is as close as
dynamics(55) that the expressions under the square root inwe like to the lineT=0.
the potential and the kinetic term change sign simulta- Therefore, the trajectories inside the considered strip can
neously. In other words, in the phase diagram no trajectorpe parametrized by the valug; of the coordinate of their
can cross any side of the rectangle. Thus, all the quantitiegertical asymptote. We now discuss how they behave in the
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neighborhood o= —1. As before, we can divide the tra- for’s(T), it is necessary, besides the leading term, to keep the
jectories inside the strip into three families according to theirterm proportional tor. Thus we get

leading behavior,

ds 2(1-k)s 9A [1+k(k+3
S’NV—1+E(T—T3): E>O0, (89) ﬁ:—l-l-k T_? _k _k (94)
4
S~—1+ %S(T_T3)5’ (90) The general solution of this equation is
~ 9A(1+k)¥(k+3) -
s~—1+C(T,)(T-T,)% 0<T,<Ts. S=(D— o e B L

(©1) (95)

Trajectories of typd89) fan out from pointQ’ into the strip
at all possible angles. Trajectories of tyg@l) can be
thought of as originating fromT{, ,—1). Note that, just as

before, the functionC(T,) approachesminug infinity as 1
" s~/ 1+ -+ DT V@, (96)

whereD is an arbitrary constant. D #0, we have the lead-
ing behavior

T,—0. It approaches zero d§ — T3. Curve(90) separates
the families(89) and(91). The coordinatel g of the asymp-

tote is an increa_si_ng function df, . AsT, —Tg, it attains a Therefore, ifk<1 the trajectories start fronto, ’—1+(1/k))
value characterizing the asymptote of curl@), beyond \yith horizontal tangent, whereas they start with vertical tan-
which it becomes an increasing function if _ gent whenk>2. If k=%, they are born with any possible

Let us go back to physics and consider the behavior of th?angent. WherD =0, we must go to the next order,
cosmological radiug(t) when the tachyon field(t) tends

to Tg along the solution of the field equations. The Fried- 1 9A(1+k)¥%k+3)
mann equation implies th&®— 0 and thath— — o« [see Eq. =\ It 32k52 E

(64)]. Therefore, the scalar curvatu(@3) diverges and the

universe reaches a cosmological singularity in a finite ime.1hg cyrye acts as a separatrix for the curves having positive
This is an unusual type of singularity which we cBly  5nq negativeD, respectively. Regarding the curves of the
brake Indeed, sinc@/a=h+h?, in a big brake we have that strip which lie belowe, they depart fromT, ,1) and behave
in the neighborhood of this point as

(97)

s —co,

s=1-C(T )N(T—T,)4 0<T,<Ts, (98
a—0, where the functionC(T, ) is the same as in Eq91). Re-
a—ag<. 92) garding the behavior of the trajectories in the neighborhood

of T=Tj, a simple analysis shows that they stream Rtat

In other words, the evolution of the universe comes to ! POSsible angletexcept vertically and horizontallyThese
screeching halt in a finite amount of time and its ultimatePOPerties show that each curve of t46) with posm\ieD
scale depends on the final valtig of the tachyon field. attains a maximum somevx_/here be_tweEﬁO .and T=Ts

We now turn to the behavior of the trajectories in the Whose height is an increasing function Dfwhich tends to

upper left strip. In the vicinity off =0, the equation for the infinity asD — + .

trajectories takes the fon87). The coefficient off ~* van- So far, we have analyzed the behavior of the trajectories
ishes at the values ' in two distinct regions: the rectangle and the four strips.

Now, it has to be noted that the trajectories in the rectangle
1 which leaveP (or P’) at all possible angles in the open
s=1, J1+Kk, 1+ - (93 interval (077/2) and the trajectories which enté&’ (or Q),
K again at all possible angles, are incomplete, since the vertices

As explained earlier, it is only at these valuessahat the of the rectangle are not cosmological _smgu_larltl_es for the;se
curves. The same is true for the trajectories in the strips

trajectories can leave the life=0. In addition, an analysis which enterP (or P') and leaveQ (or Q'). This circum-

similar to the one performed earlier shows that the only tra- : . )
jectory starting at (0.1) is the lins=1, and that the only stance, and the fact that the equation of motionTads the

. : . same in the rectangle and in the strips, indicates that it must
trajectory starting at (Q,1+Kk) is the curveo. All other g P

. , : be possible to extend and complete the above set of trajec-
trajectories start from0,y1+(1k)). Equation(87) shows  5jes by continuation through the vertices of the rectangle.
that asT—0, the derivativeds/dT approaches—o for

X Precisely, the trajectories enterifg(or P') from the upper
V1+k<s<y(1+k)/k, whereas it approaches= for 1 et (or lower righ strip shall be continued into the trajec-

<s<yltk ands>\(1+k)/k (see Fig. 4 To study the tories entering into the rectangle from (or P'). Similar
behavior in the neighborhood df,y(1+k)/k), we sets  remarks apply to the cornef@ andQ’. The uniqueness of
=[(1+Kk)/k]+ s with s small. In the approximate equation this continuation procedure can be proved by applying the
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o-process method of resolution of singularitiesee, e.g., h
[48]). This amounts to blowing ufunfolding the vertices of

the rectangle by transition to suitable projective coordinates,

the use of which removes the degeneracy of the vector fielc

at these points. We do not give the mathematical details.

VI. COSMOLOGY x"’

The rich mathematical structure that we have exhibited in
the previous section gives rise to the possibility that cos- g i
mologies that have very different features coexist within the
same model. In this sense tachyonic models are richer tha
the “corresponding” standard scalar field models.

We now characterize all the evolutions in our model that
are portrayed in Fig. 4. We start from the trajectories origi-
nating from the cosmological singularit@,\/1+ (1/k)) and
which are characterized in the neighborhood of the latter by
formula (96) with the parameteD positive and very large. FIG. 5. Time evolution of the Hubble parametwt).
One such trajectory, as soon as it leaves the singularity, rises
steeply upwards until it attains some maximum value.
Henceforth it turns steeply downwards, enters the rectanglg
at P at some small angle with the vertical axisT=T3, and
moves toward€Q’. Upon reaching this point it enters the
lower left strip and eventually ends up in a finite tifgein a

p in finite time in a big brake. Finally, the trajectories that
etach themselves from the asis 1 atT, =T, bend again
upwards and they form another bundle that we denot&'by
They also end up in a big brake.

: . ' The evolutions corresponding to the trajectories of the
big brake corresponding to some field valligvery close to different bundles can also be studied in terms of the qualita-

T3 (|nf tB:O) i i i
As D decreases, the height of the maximum decreasetéve behavior of the Hubble paramete(t) as a function of

accordingly,« andtg increase, and g decreases. Eventually, ;[,Ivrge (;ee Fig. 3. In our model, using Eqs1), (31), and(84)
at some critical valu® . of the parameteD, the trajectory g
degenerates inside the rectangle with the separatriaes y
entering and, respectively, leaving the saddle point,@). \/X
The curves for whictD>D., belong to the bundlé'. For h(t)=
D<D. we get the bundlé'. These trajectories correspond to [ 3VA(1+k)
evolutions which are asymptotically de Sitter with a Hubble sin TT t
parameteH = \/A. The upper bound db for the curves of
bundlef' is D, and corresponds to the separatrijand i. 3VA(1+K) 1a
This means that a tiny difference in the initial conditions will 1-(1+ k)co§( —T(t))
result in dramatically different evolutions: one universe goes >
into an accelerating expansion of the de Sitter type and the 1—s4(t)
other ends with a big brake. This should not be confused
with a chaotic behavior: the two evolutions are almost indis- (99)
tinguishable for a very long time and then suddenly diverge
from each other. AD approaches-= we end up with the . : 3 . . .
separatrix o originating at the cosmological singularity . Sinceh=—3h"s?, h(t) is pos'“v¢ and strictly decreas-
(0T 1K), ing, except at th_o_s_e va_lues bfpr which s_(t) :Q. _
. . . Close to the initial singularity, the trajectories can be di-

Proceeding further, we encounter those evolutions WthI’\l/ided into two classes depending on the singular point from

start at T, ,1), T, <Tj3. In the neighborhood of the starting

. . which each of them starts: the clags) of trajectories origi-
oint they behave according to E®8), then enter the rect- ) . —_— .
gngle thr)(/)ugrP passing ab(?ve th? gurvﬁ from below. In nating at the poin{0,y(1+k)/k) and the clasB) of trajec-

- = . ; : tories which start from the pointsT( ,1). The two classes
the limit T, = T we obtain the trajectory. As T, increases i . )
further beyondT; the curves detach themselves from the,?r:e sepahrgteﬂ bydthef f#me.-rhel Ie.?d'gggefha\t/r']or tdf(.t) Itn
axis s=1 according to Eq(98) now with T3<T, <T,. At € heighborhood ot the singularity or the trajecto-

some critical valueT; of T, ,0<T; <T,, the trajectory de- ries of class(A) is
generates into the separatricgs/, and y. The curves for

which 0<T, <T¢ form the family f"" and they asymptoti- 2k 1 Dk/1+k\@-3K/M2(1+K)]

cally arrive at the de Sitter nodd §,0) from below the axis h(t)= 3110t 3l k.

s=0. Those for whichT<T, <T, form the family f";

they enter the upper right strip throughand eventually end X t(=8k/A+K ... for D#0, (100
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2k 1 k%?—2k+9 asymptotic de Sitter expansion with Hubble parameter close
h(t)= 314k 1 3% At+-.. for D=0. to the valueH,. Eventually, howevers starts increasing
(101) again and the graph di(t) bends downwards away from
h(t) and approaches asymptotically the stable de Sitter re-
gime with Hubble parametefA . Instead, for a trajectory of
bundlef' which lies very close tar, the behavio(100) of
h(t) at small times is characterized by a value of the constant
2 D which is negative and very large; the graphhgt) parts
h(t)y==+---. (102 only slightly from the graph oth,(t) and the asymptotic
3t value A is approached much earlier. Other elements'of
display behaviors which are intermediate between those de-
To study the behavior dfi(t) at later times, one needs to scribed above. The time dependencédér the trajectories
examine each bundle separately, which, in turn, requires of pundlef" is qualitatively similar to the one relative to the
first plotting h(t) for the different separatrices, 7, £, #,  curves off', the differences being the following: the small

For trajectories of clas@) the leading behavior is universal
(it does not depend ok),

andy. time behavior is given by Eq102), and for each trajectory
~We have from Eq(57) thath(t) for the separatrixs is  of f! there is a valug, of t (which depends on the particular
given by trajectory for which s(t,) =0 so thath(to) =0.
Now consider a curve of bundé" which lies very close
h ()= \/Xcotb'< 3VA(1+K)t (103 to the separatrices and y. For such a curvéa(t) remains
o 2 ' very close toh(t) for a very long time,s(t) decreases,
getting close to zero, and the evolution simulates again an
In particular, in the neighborhood 60, asymptotic de Sitter expansion with Hubble parameter. How-
ever, eventuallys(t) starts increasing indefinitely, and in a
2 1 A(1+K) finite (though long time the cosmology ends up in a big
h,(t) t+. .- (104  brake. Moving to curves that are farther and farther away

= —+
3(1+k) t 2 from & and y, the valueT, of T at the initial singularity

) moves to the right towards the valuerg 3A (1+Kk)], h(t)
to be compared with Eq$100), (101, and(102. Further-  gecreases more and more steeply, and the big braketgme

more, h,(t) is strictlly decreasing and, as—%, it ap-  tends to zerqwhenT, gets larger thaiT, the trajectories
proaches a stable de Sitter expansion with Hubble parametg{yitch from bundlef" to bundler).

VA. . . Like those of bundle$" andf", the evolutions of bundle
Regarding the unstable cosmological evolutiot), for £V |ikewise give rise to a big brake and the behavioh(f)
smallt we have is qualitatively similar in the two cases. However, contrary to

what happens for bundled' and Y, for each trajectory of

h ()= 2k 1 Dck(1+k| 7302070 bundlef'V there is a timet=t, (which depends on the par-
()= 3(1+kt 3 | k ticular trajectory and spans the whole open halfjlifier
(130 (105 which s(tp) =0 and hencé(ty) =0. Therefore, even though

the big brake time can get as close to zero as one likes for the
) ) ) curves of type IV[for such curvestg is a decreasing func-
and lim_..h.(t)=H, [see Fig. 5 and Eq(79]. Qualita-  tjon of the parameteb in Eq. (100, with limp_p_tg(D)

tively, h.(t) behaves similarly td,(t) but the asymptotic _ . _
value of the Hubble parameter is higher. As for the separatri%VOo and lim, _..ts(D) =0] and hencéi(t) may decrease to

. ) o ero very steeply, there is always some intermediate time at
v, thg corresponding cosmological evolution is unstat_)le aNhich h(t) is momentarily stationary. Note that, as one can
nonsingular: the Hubble parameter decreases steadily frog1 i '

: i N . ee from Fig. 5, there is nothing peculiar in the behavior of
an unstable de Sitter reginie,(—c) =H at Iarg_e_ negauve h(t) at the times when vertices of the rectangle are crossed.
times to a stable oné,(~)=\A at large positive times.

h dh h litatively similar behavi | The possibility of cosmological singularities characterized
.f(t) and A1) have qua Itatively simi ar benaviors at large by the divergence of the second time derivative of the cos-
times while they are different at small times. FII’]?.HM,(t) .. mological scale factor has also been considerdd®in the
decreases steadily from an unstable asymptotic de Sitt

€ rAbIe d€ SltlYrane cosmology context.
valueh,(—=)=H, at large negative times to the final big e conclude this section by another simple example of

brake singularityh,(tg) =0, with h,(tg)=—, for some cosmology sharing this property. Let us consider the flat
suitabletg . Friedmann universe filled with a perfect fluid with a state
For a trajectory of bundlé' which lies close to the sepra- equation similar to Eq(40),
trices7 and ¢, h(t) behaves according to EGLO0) close to
the initial singularity, withD<D, (D.,—D) small. Then A
&

h(t) decreases steadily and remains closk {@) for a very p=— (106

long time during whichs (and henceﬁ) gets close to zero.
Therefore, in this regime the evolution simulates anwhere A is positive. We can call this fluid the “anti-
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Chaplygin gas.” This equation of state arises in the study oteleration, provided there are some fields or types of matter
the so-called wiggly stringg50,51. The dependence of the responsible for this acceleration. However, in this context the

energy density on the cosmological radius is given by cosmological radius sooner or later will start decreasing and
the expansion will be followed by a contraction which would
B normally lead the universe to a cosmological singularity of
=N ;—A, 107 the big crunch type.

The third scenario of an infinitely bouncing or recycling

whereB is a positive constant. At the beginning of the cos-universe appears to many to be very attractive because it
mological evolutione~ B/a®, as in the dust-dominated Opens an opportunity to escape the *frying” in the big

case. Now there is a maximal value possible for the cosmoerunch and the “freezing” in the infinite expansion case. In
logical scale this scenario, during the process of contraction there will be

two opportunities: collapse or bounce with subsequent ex-

a— E) e (108 pansion. The choice of one of these opportunities depends on
A the initial conditions and this dependence has usually a cha-
otic charactef71,74-717.
that is attained in a finite cosmic tinte . The behavior of Furthermore, one can sho3] that for every model of
a(t) in the vicinity of the maximum is the following: dark energy describing an eternally expanding universe one
a3 o 713a53 e can construct many closely related models which describe
a()~ar—C(te =)™, C=2""3"(AB)'". the present stage of acceleration of the universe followed by

(109 its global collapse. However, these models corresponding to

eternally expanding and collapsing universes are different

Sincea(ty) =0 V.Vh”e a(tF):._w’ we are back into a big and have different values of their basic parameters.
brake cosmological singularity.

Thus, a big brake singularity can be found in an elemen- One interesting feature of our toy tachyon model is that

tary cosmological modelthough based on an exotic fljid the first anq t.h.e secor?c'i scenario coexist in its context. De-
The difference with the tachyonic model is that in the latterP€nding on initial conditions, some correspond to eternal ex-
there are evolutions culminating in a big brake which coexisiP@nsions of the universe which approach asymptotically a
with other evolutions giving rise to an infinite acceleratedPure de Sitter regime, while others end their evolution at the

expansion. These two types of evolutions correspond to diftosmological singularity. - _ _
ferent classes of initial conditions. The second distinguishing feature of this model is that the

It may be worth mentioning that also fér>0 one can singularity at which the universe ends its evolution is not a
construct a scalar field model; indeed the potential displayegtandard big crunch singularity. Instead, it corresponds to a
in Eqg. (29) is not restricted tk<<0. But this model has a finite nonzero cosmological radius at which the Hubble pa-
much poorer dynamics: all the trajectories tend to the deameter is finite and the deceleration parameter is infinite and

Sitter attractive node point. has a positive sign. We have called this fate the “big brake.”
The prospect of hitting the cosmological singularity during
VII. FINAL CONSIDERATIONS: FATE OF THE UNIVERSE expansion has been also discussed in Ref], where the

] ] singularity corresponds to an infinite value of the Hubble
The study of the fate or the future of the universe is ratheg 5 riaple and the cosmological radius. This scenario is known
popular nowadayg52—79, and, as was predicted more than ;4 “big rip” or “phantom cosmology” (see, e.g[65,67—
20 years ago by Dysdib2], “eschatology” has now become a)).
part of the cqsmo!ogical studies. These studies includ.e 0? The third distinguishing aspect of our model is the fact
Egg;sfnai‘:‘lz tg%g?é%?l (i)ssprﬁgtlz ?:::Imgctehnea&aé;em fg?n;c(:_lou%at the regions of the phase space corresponding to different
ample,[52,61,8Q), but our goalgis much more n’wdest and types of trajectories are wel! separgtgq and thv'a.depe'nden.ce of
we shl’;\II c’onc,ent’rate on the purely geometrical facet of thé\he cosmology on the choice of initial conditions is quite
regular(nonchaotig. A remark is in order here: the chaoticity

topic. . . . S
There are three mainly studied possible scenarios for th@f the classical dynamics hinders the application of the WKB

future of the universe, intensively discussed in the literature2PProximation and, hence, undermines the basis of the ma-

an infinite expansion, an expansion followed by a contractiod®rity of results of quantum cosmolody6]. In our model,
ending in a “big crunch,” and an infinitely bouncing or re- quantum-cosmological schemes of the traditional -
cycling universe. 84] can be attempted. The corresponding wave function

The present set of observational data seems to favor thghould describe a probability distribution over different ini-
first scenario: the data are quite compatible with a flat unitial conditions for the classical evolution of the universe. The
verse with a positive cosmological constant. quantum evolution of the universe in our toy model might be

On the other hand, a negative value of the cosmologica¢xpressed in the language of the many-worlds interpretation
constant fits better with string theorgee, e.9[22,62,63). of quantum mechanicg85,86. In this framework one can
The presence of a small negative cosmological constarsay that the wave function of the universe describes the
could be made compatible with the present-day cosmic acguantum birth of the universe and subsequently the process
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