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Reconstructing the dark energy equation of state with varying alpha
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The possibility of reconstructing the dark energy equation of state from variations in the fine structure
constant is investigated for a class of models where the quintessence field is nonminimally coupled to the
electromagnetic field. For given classes of couplings and quintessence interaction potentials, it is typically
found that variations in alpha would need to be measured to within an accuracy of at3eH3t 5to obtain
a reconstructed equation of state with less than a twenty percent deviation from the true equation of state
between redshifts 0 and 3. In this case, it is argued that the sign of the first derivative of the equation of state
can be uncovered from the reconstruction, thus providing unique information on how the Universe developed
into its present dark energy dominated phase independent of high redshift surveys. Such information would
complement future observations anticipated from the Supernova Acceleration Probe.
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[. INTRODUCTION whereF ,, is the electromagnetic field strength aBg(¢)
represents the gauge kinetic function that parametrizes the

Some recent observations of a number of quasar absorgoupling between the scalar and vector degrees of freedom.
tion lines indicate that the fine structure constamt, Lw represents the Lagrangian density for the ordinary matter
=e?/fic, was smaller than its present value kya/o  fields and we assume this sector to be dominated by a baro-
— — 1075 at redshifts in the range~1-3[1,2]. (See, how- tropic pressureless fluid. .
ever, Refs[3,4] for an independent analysis that does not The action(1) is characterized in terms of two undeter-
support such a large variation in) Since this redshift range Mined functions—the gauge kinetic function and the self-
coincides with the epoch when the Universe underwent ipteraction potential. In gene_ral, thege Would_be determined
transition from matter domination to dark energy dominationPy the nature of the underlying particle physics theory. For
[5,6], it is of interest to consider the possibility that this €xa@mple, a generic exponential coupling of the type given in
change in the effective fine structure constant arises as &d-(3) was introduced by Bekensteji6]. Exponential cou-
direct result of a non-trivial gauge coupling between the darkings between form fields and scalar fields also arise generi-
energy and the electromagnetic field strenfiia-19 (see cally in compactifications of string or M theory to four di-
also[20-29). mensions, .where_ the scalar field parametrizes the vo!ume of

In this paper we consider classes of models where thie extra dimensiongSee, e.g., Ref37] for a recent review
dark energy in the Universe is identified as a slowly varying,o" the theoretical motivation of varying fundamental con-
self-interacting, neutral scalar “quintessence” figp—33  Stants)

(see also the review84,35)) that is minimally coupled to The gauge kinetic function specifies the value of the ef-
Einstein gravity but non-minimally coupled to the electro- fective fine structure constant such that=aq/Bg(¢),
magnetic field. The action is given by where a subscript “0” denotes the present-day value. The

potential of the field is related to the dark energy equation of

1 .y . state,w,=p,/p,, Wherep,= $%12—V(¢) represents the
S=- 2.2 d"xy—gR+ f d™XV=0(Lyt Lyt Lyr), pressure of the fieldy,,= ¢%/2+ V() is the energy density
(1) and an overdot denotes differentiation with respect to cosmic
time.
whereR is the Ricci curvature scalar of the metdg,,, g A number of different approaches may be adopted when

fitting models of the form(1) to the data. In principle, the
functions {V(¢),Bg(¢)} would be determined within the
context of a unified theory of the fundamental interactions,
1 such as string or M theory. In this case, a direct approach
Ly=5"pd, d—V(), 2) would be to determine the region of parameter space consis-
2 tent with observations once these two functions have been
, ) , , specified. This approach was effectively followed recently by
where V(¢) is the self-interaction potential of the scalar Parkinson, Bassett and Barrgid5], who calculated the best
field, ¢. The interaction term between the scalar field and thg;; parameters of a model for which the exact form of the
electromagnetic field is determined by gauge kinetic function and the dark energy equation of state
were assumed priori.
[oo=— EB ($)F , FH 3) We adopt an alternative approach in the present work by
S S considering whether the quintessence potential or the gauge

=deyg,,, K258wm;2 andmp is the Planck mass. The La-
grangian density for the quintessence field is
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kinetic function can beeconstructedlirectly from observa- redshiftz=0.14. As discussed in Rg#0], these bounds can
tional data involving variations in the fine structure constantbe evaded through the existence of a form factor in the cou-
and the dark energy equation of state. For a gwér) and  pling ¢ with respect to the photon momentum. Such a form
Aala=(a—ag)lay, there always exists @8g(¢) that factor can result in changes inat the level of atomic phys-
would fit the data. Thus, a sufficiently accurate empiricalics without leading to observable effects on nuclear phenom-
determination of the equation of state, together with the evoena. Moreover, it has been shown for a particular model in
lution of «, would allow the gauge kinetic function to be Ref.[25], that if dark energy collapses along with dark mat-
reconstructed. ter this would naturally lead to a significant difference be-
On the other hand, if the gauge kinetic function alone istween the value of the fine structure constant in our galaxy
specifieda priori (through either theoretical or phenomeno- and the one in the background. For these reasons, we decide
logical considerations w(z) and Aa/a may no longer be to explore also the models that do not satisfy the Oklo and
viewed as independent variables, since they share a commameteorites bounds at low redshifts.
origin through the rolling of the quintessence field. In effect,
a consistency re_lation exists_ beftween these two quantiti_es IIl. RECONSTRUCTING THE EQUATION OF STATE:
and an observational determination of one would constrain IN PRINCIPLE
the other. This implies that the study of the absorption lines
in quasar spectra can in principle yield additional informa- To proceed we consider a spatially homogeneous quintes-
tion on variations in the dark energy equation of st@ed sence field propagating in the spatially flat Friedmann-
the corresponding quintessence potejtighis is important, Robertson-Walker universe. We assume that the contribution
given that a determination of the redshift dependence of thef the electromagnetic degrees of freedom to the total energy
dark energy equation of state directly from the luminositydensity of the Universe is negligible and consequently that
distance relations is difficult—the latter is determined by athe cosmic dynamics is determined by the scalar field and a
double integral over the former and this can severely restridbackground pressureless fluidorresponding to dark and
the available information on the equation of state that can beisible matte). It then follows that the cosmic dynamics is

extracted from observatiori88,39. determined by the Einstein equation
In this paper, we consider a linear dependence of the
gauge kinetic function on the scalar field: K2
HH'=— = (pu+H?¢'?), ©)
Br(¢)=1—{x(d— o), 4

where ¢ is a constant. This dependence may be viewed agnd scalar field equation

arising from a Taylor expansion of a generic gauge kinetic . 2 .2

function and is expected to be valid for a wide class of mod- py=—3H', @
els whenk(¢— ¢g)<1 is satisfied over the range of red- ) ) )

shifts relevant to observations=~0-4. It then follows that Subject to the Friedmann constraint

the effective fine structure constant depends on the value of )

the quintessence field such that14,4 K
! e H2=" (ou 0., ®
Aa  a—ag 5
@  a =ix($= o). ® where a prime denotes differentiation with respectNo

. ] . =Ina, H=a/a is the Hubble expansion parameter, the mat-
Assuming that the mass of the scalar field effectively van+gr density is given by =peQuo/a® and p, denotes the
ishes, tests of the equivalence principle imply that the parampresent value of the critical energy density. The term

eter,Z, is bounded by¢| <10 _ [9]. Bounds on variations in (dBe(¢)/d¢ F,,,F*") containing the derivative of the
the fine structure constant arise from the Oklo natural nucleagauge kinetic function was neglected in Ed) as its statis-
reactor (Aa/a| <10 " at redshiftz=0.14[41,42), and the  tical average over the present Hubble radius is zero for pho-
meteorite constraint |[Aa/a|<107° at redshift z=0.45 tons[9].
[43]). _ _ - Only two of the equation&)—(8) are independent and the
For consistency, neither the constraint arising from thecosmic dynamics is fully determined once the functional
Oklo natural nuclear reactor nor the meteorite constrainform of the quintessence potenti¥l( ), has been specified.
were considered in this work, although it is generally ex-The nature of the potential determines how the field evolves
pected that significant variations should be observed up to & time and the corresponding variations in the fine structure
redshift of order Unlty n qulntessence models. However, th%onstant are then determined by m Moreover, the equa-
model in Fig. 3 below naturally satisfies the former bound atjon of state is defined in terms of the field’s kinetic and
potential energies:

'However one should emphasize that the analysis performed in ¢2—2V(¢)
Ref. [55] for the Oklo natural reactor suggests a largerthan w=-— "~ 9
today's withAa/a=4.5x 1078, d>+2V(p)
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and its dependence on redshift also follows given the form of " (k)2

the potential. w' =2(1+w)—+3w| 1+w— ) (14
The principle idea of the inversion procedure is that varia- ¢’ 3

tions in the fine structure constant may be employed within , L )

the context of this class of models to deduce changes in th¥nere w’=—(dw/dz)/a. An infinite hierarchy of expres-

kinetic energy of the scalar field at higher redshifts. Equa_sions relating thath derivative of the equation of state to the

tions (6), (7) may then be employed to determine the corre-(n+1)th derivative of the field could be derived. Each rep-

sponding changes in the field's energy density, or equiva[esents a consistency relation between the equation of state

lently, its potential, and hence the equation of state from qu_ind variations in the fine structure constant once the gauge

(9). This procedure is analogous to that employed in analyskinetic function has been specified. _ _
ing the classical dynamics of a particke,moving in a one- We now illustrate the above reconstruction procedure with

dimensional potential well. The form of the well determines @ SPecific example where(¢— ¢o) =AN for some constant
the particle’s motion, and this can be represented as a trajed- N this case, the integrals in EqL1) can be evaluated

tory in the phase space parametrized(lay}. Equivalently, 2 avtcally:

the corresponding potential can be reconstructed once the Q A2 22
appropriate trajectory has been specified. U:<ﬂ+ )e—sz_( )e‘3’\', (15)
We now develop the inversion procedure. Substituting Eq. Qvo  A2-3 A2-3

(8) into Eq. (7) yields a differential equation for the evolu- 5 ) _
tion of the energy density of the scalar field: whereX =30 40(1+Wwp). The equation of state is then de-
duced by substituting Eq15) into Eq. (12):

o'=—(kd")(o+a?), (10 \2 Q) 1
2 Mo 2
w(N)=(\“—-3) 3——Q—eX|c{()\ —3)N]}
where we have defined=p,/po{2pmo. The general solution Wo 2240
to Eq. (10) can be expressed in terms of quadratures with (16)
respect to the kinetic energy of the quintessence field:  Eina)ly the quintessence potential can be reconstructed by
" " noting thatV(N)=Q0pe0— ¢'?H?/2 and employing the
U(N)=exp—(f dN(K¢’)2) Uo—J dN(k ¢’ )2 Friedmann equatiofB). We find that
0 0
V:Ae—3Kzf>/)\_Be—)\Kd)’ (17)
N
12
X exp—| 3N+ fo dN(x¢") ) ' (1) \where the mass scalésandB are positive definite and given
by
where the integration constant, is defined such that(N 2
=0)=0u=0,4/Q _1 A SN
0™ 2%g072EMo0- . . . A= ——pomee™ 0", (18
The dark energy equation of state is given in general by 23—)\?
w=—1—(Ino)'/3 and substitution of E¢(10) implies that
16—\? o
B=3 ﬁpoﬂqsowoe 0, (19

2 1

W(N)=—1+ (K(g ) (14—?) (12
ag

respectively. In the above example, it was assumed implicitly

Hence, the equation of state can be reconstructed once tieat the gauge kinetic function was such that the cosmologi-
redshift dependence of the first derivative of the field hasal variation of Aa/a corresponded to a variation in the
been determined. It is important to emphasize that only thécalar field of the formp=N. The form of BL(¢) was not
first derivative needs to be measured. If the gauge kineti€Pecified.

function is known, this dependence can be inferred directly

from variations in the fine structure constant. Ill. RECONSTRUCTING THE EQUATION OF STATE:

It follows from the definitiong?=p,,+p,, that the equa- IN'PRACTICE

tion of state(12) can also be expressed in the form In this section we consider the reconstruction of three

2 dark energy equations of state by employing the method out-

(k¢") (13) lined in the previous section for a gauge kinetic function

30, given by Eq.(4). The scalar field potentials have been inves-

tigated previously within the context of viable quintessence

where () ;= K2p¢/(3H2). Differentiating Eq.(13) with re-  models[14,44—48. The reconstructions are shown in Figs.
spect to scale and substituting E¢®), (7) and(8) then im-  1-3. These examples correspond to three different possible
plies that the first derivativérunning of the equation of evolutions forw(z), namely, those cases where it increases,
state can be expressed directly in terms of first two derivadecreases or oscillates with increasing redshift. The second
tives of the scalar field: and third examples are particularly important as they cannot

=—1+
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z

FIG. 1. Dashed line: evolution of the equation of state of the FIG. 3. Dashed line: evolution of the equation of state of the
scalar field ¢ with potential V(¢)=Voexd(x$)%2]/ ' deter-  scalar fieldp with potential V=« %e A% (k¢p— C)?+B] deter-
mined from numerical integration of the field equati¢rd]. Solid mined from numerical integration of the field equations, whare
lines: evolution of the reconstructed equation of state for different=8.5 andB=0.93/A% [14,46|. Solid lines: evolution of the recon-
possible values of the present-day equation of g&#e the text for  structed equation of state for different possible values of the
detailg. The functiong(N) was fitted as a polynomial of degree 3 present-day equation of staisee the text for detailsThe function
to a set of points normally distributed with a standard deviation ofg(N) was fitted as a polynomial of degree 5 to a set of points
1x10°7. normally distributed with a standard deviation ok80 ’.

be reproduced with the parametrization employed in Refwas achieved by specifying the functional form of the quin-
[15], since in that work the equation of state is always in-téssence potential and numerically integrating the field equa-
creasing with increasing redshift. For the models studied ifions (6)—(8) to determine the redshift dependence of both
the present work, we have verified thaté— ¢g)<1 over the equation of state and the quintessence field. The latter

the appropriate range of redshifts, and this is consistent Witﬂeterr:::nes th?. correspon?inghvarki)ationsdrfrgf)m dE\(/l\} (E"[)h
the interpretation of Eq4) as a lowest-order Taylor expan- once the coupling parametd, has been specified. We then

sion of a generic gauge kinetic function. Let us now describ enerated the simulated data set, W'th assomajted error pgrs,
: or Aal/a based on the exact numerical solution. Specifi-
the reconstruction process. . . .
cally, the data points are equally spaced in the redshift range
ze[0.2,4] at intervals of 0.2 and are normally distributed
with mean{ (¢ — ¢g). In each example, the value gfwas
In testing the reconstruction procedure, it is necessary tehosen so that the variations ifw(¢— ¢o) resulted in
first generate simulated data sets for the variations.ifthis ~ changes in the fine structure constant of the orfe# o
~10°, as observed in the present quasi stellar ol@&0O
data[2].

A. Generating simulated data

B. Fitting the data

The reconstruction can then proceed by fitting the gener-
ated data points to a polynomial function

Aa )
Q(N)=7:91N+92N +oee, (20)

whereg; are constants. The result of these fits is shown in
Fig. 4. Equationg5) and (20) map the variations inx as
measured by QSO observations onto the corresponding
0 1 2 3 4 variations in the scalar field for a given value of the coupling
z constant{. The degree of the polynomi&0) employed in

FIG. 2. Dashed line: evolution of the equation of state of thet€ fitting differs for the three cases because the underlying
scalar fieldg with potential V() = Vo[ exp(50¢#) + exp(0.8¢4)] equations of state exhibit different levels of complexity. For
determined from numerical integration of the field equatipts.  the class of models we have studied we found that a polyno-
Solid lines: evolution of the reconstructed equation of state for dif-mial of degree three provides generally a good fit to the
ferent possible values of the present-day equation of ¢seethe generated data. However, for models with an oscillating
text for detail. The functiong(N) was fitted as a polynomial of equation of state, one needs to increase the degree of the
degree 3 to a set of points normally distributed with a standargdolynomial in order to obtain both a successful reconstruc-
deviation of 510", tion and a reduceg? of order unity.
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state to take a range of possible valueg, More specifi-
cally, in Figs. 1 and 2, the present value of the equation of
state was chosen to bg=w,+ (—0.1,0,0.1) wherev, rep-
resents the correct value as deduced from the numerical in-
tegration. In Fig. 3, on the other hand, the present value was
chosen to bavy=w,+ (1+wy)(0.9,0-0.95), respectively,
when moving downward in the figure.

It follows from Eg. (21) that, whenw~ —1, a small un-

. certainty in the value ofv, can lead to a large uncertainty in

! the value of the coupling constat and consequently to
distinct possible evolutions for the corresponding equation of
state. A typical case ofv~—1 arises when the scalar field
undergoes oscillations about the minimum of its potential.
On the other hand, an expression equivalent to(E4). for

the form of Be(¢) adopted in this paper is given by

g/ZQM 2 1 gr/
= — W+t =——1.
w’ Q¢ 3QM g’

o
N
N
o
o -
N
o
N N
IS

. . 2 (22)
FIG. 4. Evolution ofAa/a for the three quintessence models

studied in this work. The error bars represent the maximum uncer-

tainty allowed in order to obtain a reliable reconstruction of theyt fg|lows, therefore, that in such cases a more accurate esti-
equation of state with no more than 20% deviation from that denate of the magnitude of can be made if information on
i“\?ed fror;;z ) t?le n;Amerlcalb '“tsgrat'f':/' @ V(¢)  the present-day value of the first derivative of the equation of
; oexg[{(;(@) []43, © V[— ]L4 ,,QKL E‘@ §+(I)3[exp(hSO<q5A)\ state is also available. We note that the quarditydz is an
=gX5r)(aﬁd g):]o 93A2C[14;é‘ T(;e Iar[(g(irror)bar i]n’ tvr\:eefrieures observable parameter believed to be within reach of future

) ; o arg 9 Snla observations from the Supernova Acceleration Probe
represent a typical current uncertainty A/« from QSO obser- (SNAP) [48]
vations of §(A a/a)~3.5x106, '

(Aala) We must note, however, that if was known on funda-

mental particle physics grounds, the full reconstruction of the

. o ] equation of state could be achieved without any need to nor-
The first and second derivatives of the field are related tongjize it to an independent result.

g such that¢'=g'/{x and ¢"=g"/{k, respectively. In
practice, therefore, the numerical value of the coupling pa-
rameter must be estimated empirically since the reconstruc-
tion via Egs.(11) and(12) requires the scale dependence of
the quintessence field to be known. Substituting (26) into
Eq. (13) implies that

C. Estimating ¢

D. Reconstruction results

The results of the reconstructions are illustrated in Figs.
1-3, where Eq(21) has been employed to estimate the value

of the couplingZ for the different choices ofv, by substi-

2 tuting w—w, andg’ —g,. In each case, the dashed line in
(21)  the figures represents the exact numerical solution of the
equations of motion when ,,=0.7. The corresponding

. ) ) solid lines illustrate the reconstructed evolution for the dif-
and it follows from Eq(21) that a numerical estimate for the ~ . . .
fgrent values ofv, considered. An uncertainty in the present

coupling may be deduced given the present-day values of th . - i
quintessence field’s energy density and the equation of sta%’ealue of the equation of state @iv,~0.1 is expected from

W,, together with the variatiorg) , in the fine structure con- the SNAP data. Hence, the lines withy=wo = 0.1 (in Figs.
stant, as determined from QSO observations. For exampld, @nd 2 define the error band on the evolutionwfarising
given the typical values 4~0.7, —w,~0.6-0.99, and fr'orn the uncertainty we W|]I have ono. I_t is worth empha-
g(r)~1077_1075’ we find that/~10~7—10"%, in accordance sizing that SNAP will provide data within the range o_f red-
with the values obtained in Rg#0], where specific quintes- S_h'fts betvv_een 0 an_d 1.'7' Wher_eas the QSO dat;(mqrrln-
sence models were studied. This range of valugsisfcom- ciple) provide us W|th_ information on the equation of state
patible with bounds arising from tests of the equivalenceOUt toa ”?dSh'ft. as.hlgh =4 . .
principle which demandz| <1073 [9]. When mvestlgatmg_ the sen5|_t|V|_ty of the reconstructlon
However, one source of uncertainty in the reconstructiorProcedure on errors in the variations of we typically
procedure is the uncertainty in the present-day value of théound that in order to obtain a reconstructiov(z), with no
equation of statew,. The latest measurements constrain thismore than a 20% deviation from the true equation of state,
parameter within the range 1.38<w,< —0.82 at the 95% W(2), i.e.,
confidence level, assuming a constant equation of plate
This uncertainty generates an uncertainty in the value of the
coupling ¢ and, in view of this, we allowed the equation of

éz—i—g
T 30,(1+w)’

w(z)—w(z)

WD) <0.2

(23
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(for VVO:WO)i one requires an observational determination Ofequivalent analyses for the pOtentialS considered in Sec. Il
Aala to within an accuracy ofit least~5x 107 between over different regions of parameter space, as well as for other
redshifts 0 and 3. Figure 4 shows how small the error bars ofilintessence potentials, and have arrived at similar conclu-
data points should be in order to obtain a reliable reconstrucsions.

tion at this order. This is an order of magnitude smaller than Any information that can be extracted directly from ob-
the expected sensitivity of the High Accuracy Radial Veloc-servations on whether the equation of state increases or de-

ity Planet Searcher spectrograpbA a/«)~10° [49]. creases with redshift is of importance. For example, if the
equation of state increases with redskiife. w moves away

from —1), this implies that the field is slowing down as we
approach the present day. On the other hand, the kinetic en-

Cosmological observations including high redshift sur-ergy of the field is growing as the universe expandsvif
veys of type la supernovae and the anisotropy power speclecreases with increasing redshift. This latter behavior could
trum of the cosmic microwave background indicate that thecorrespond, for example, to a creeping quintessence scenario
present-day value of the dark energy equation of state iE33], where the field has overshot the attractor value and has
bounded by—1.38<wy,<—0.82 at the 95% confidence Started to move only very recently. Thus, information on the
level, assuming a constant equation of stpd&]. Such first derivative of the equation of state provides us with
bounds would be weakened for a wider class of modelginique insight into how the universe underwent the transition
where the equation of state is allowed to vary, but at preserftom matter domination to dark energy domination.
there are only very weak observational constraints on the For the general class of models defined by Egs.and
“running” of the equation of stategw/dz= —aw’ [50], and  (5), the qualitative behavior of the equation of state can be
it is not yet possible to distinguish such models from a cosdeduced directly from Eq21) without the need to solve Eq.
mological constant. In this paper, we have investigated thé10) if it is observed thag’? increases with redshift. Since
possibility that further information on the redshift depen-EQg.(21) is valid over all scales an , is a decreasing func-
dence of the equation of state can be deduced independentipn of redshift, it necessarily follows that the equation of
of high redshift surveys through observed variations in thestate must have been larger in the past and this case would
fine structure constant. In principle, the reconstruction of théherefore rule out the possibility of a creeping quintessence
equation of state is possible if the form of the gauge kineticscenario. On the other hand, for the case whgréis a
function that couples the scalar and electromagnetic fields igecreasing variable, we must proceed to solve (&6) di-
known. The advantage of a reconstruction of this type is thatectly in order to gain further insight.
it yields information on the equation of state at redshifts Finally, we outline a complementary approach that may
significantly higher than the limited range accessible toallow the equation of state and its derivatives to be deduced
SNAP (corresponding t@<1.7). at a specific redshift. This approach corresponds to a pertur-

The primary question addressed in the present paper ative reconstruction of the equation of state. It follows from
how much information one could acquire am(z) from  Egs.(14) and(5) that the first derivative of the equation of
variations in the fine structure constant alone. In a full reconstate at a given redshift can be directly determined if the
struction, one would employ all the data available, from bothcorresponding values dfw,g’,g"} are known. Higher de-
supernovae surveys and measurementd ef«, and per- rivatives can also be constrained if sufficient information on
form a full cross analysis between the different data setsthe corresponding derivatives of the fitting functig(iN) is
However, one must also establish what can be learned froravailable. Assuming that the necessary constraints on the de-
each data set independently. Indeed, this is a necessary afidatives could be determined from QSO observations, the
crucial step in the program we have outlined, precisely beone remaining free parameter would be the equation of state,
causew(z) and Aa/a are not independent as they share aor equivalently from Eq(13), the density of the dark energy.
common origin through the quintessence potential. As a reThis parameter could in turn be deduced from the Friedmann
sult, information on variations in the equation of state deterequation(8) if the Hubble parameteH(z), were known and
mined separately from supernova survésee, e.g[51-54)  this could be found from the luminosity distanag,:
and quasar survey@s presented aboyshould be consis-
tent. Establishing an inconsistency would indicate that a re-
liable reconstruction could not be achieved and, furthermore, 1 d
would immediately rule out this class of models, namely the H™(2)= dz
form of Be(¢), as a mechanism for correlating dark energy
and variations in.

Figures 1-3 indicate that the reconstructions do yield inq¢ yould be interesting to explore this possibility further.
formation on whether the running of the equation of state is
positive or negative, at least out to a redshift3. Although
the error in the normalization ofi, implies that the uncer-
tainties in the magnitude of the reconstructed first derivative
may be large, the qualitative shape of the equation of state N.J.N. is supported by the Particle Physics and As-
can be deduced, provided variationsanare determined to tronomy Research CoundiPPARQ. We thank C. Martins
within an accuracy of %10’ or better. We have performed and M. Pospelov for helpful comments and suggestions.

IV. DISCUSSION

dp

1+z/)° (24
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