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Energy-momentum tensor of cosmological fluctuations during inflation
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We study the renormalized energy-momentum terf&dT) of cosmological scalar fluctuations during the
slow-rollover regime for chaotic inflation with a quadratic potential and find that it is characterized by a
negative energy density which grows during slow rollover. We also approach the back-reaction problem as a
second-order calculation in perturbation theory, finding no evidence that the back reaction of cosmological
fluctuations is a gauge artifact. In agreement with the results for the EMT, the average expansion rate is
decreased by the back reaction of cosmological fluctuations.
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[. INTRODUCTION nificance of this back-reaction effect is still under debate
[10-12. The problem of gravitational back reaction for
After the latest cosmic microwave backgrou(@MvB) black holes has also been tackled for gravitational waves
data[1,2], inflation (see[3,4] for a textbook reviewseems [13]. More recently these non-linear effects have also drawn
the most promising theory in explaining the large scale strucattention in connection with observations, since non-linear
ture of the Universe. According to inflation, the large scalecosmological perturbations introduce non-Gaussian signa-
structure of the Universe exhibits the fingerprint of quantumtures in the power spectrufi4,15.
fluctuations amplified during the accelerated ¢8. On The aim of this paper is to compute the renormalized
modeling inflation and its transition to the standard big bangeMT of cosmological fluctuations during inflation, according
cosmology the constraints on the amplitude and spectrum ab the adiabatic regularization scheifig] also used in our
CMB fluctuations become constraints on the physics of inprevious papef17]. The model considered here is the slow
flation. All this modeling depends on the linear treatment ofrollover regime of inflation driven by a massive inflaton, but
cosmological perturbations. Within the framework of infla- we believe that the results obtained here also hold for other
tionary cosmology, on using the most recent data, we arinflationary models. We find that the averagedth respect
therefore close to measuring the details of the spectrum ab the adiabatic vacuumenormalized EMT of cosmological
fluctuations, while not having a definite idea on the energyfluctuations during slow rollover is characterized by a nega-
content of these fluctuations and how they back react on théve energy density and a de Sitter—like equation of state
inflationary expansion responsible for their amplification.  (this result was found for long-wavelength modeq 7,9]).
Although cosmological linear perturbation theory during In a naive approach this would lead us to think that the EMT
inflation is almost a textbook subject, the understanding obf cosmological fluctuations slows down inflation. We also
non-linear effects is still at the forefront of research. Theevaluate the back reaction on the geometry in a systematic
non-linearity and gauge invariance of general relativity areway by proceeding self-consistently to second order in per-
tenacious obstacles both at technical and interpretational levurbation theory. In order to do this we give a systematic
els; nonetheless, the gauge issue has been solved to highefatment of second-order perturbation theory for single sca-
orders in perturbation theof$,7]. Further, many interesting lar field driven inflation(see alsd15,18,19 for the second-
effects are appreciable only beyond linear order. From therder formalism. The gauge used for scalar perturbations in
theoretical point of view the back reaction of gravitational this paper is the uniform curvature gay@®] (UCG) gener-
fluctuations on the geometry is one of the most interestin@lized to second order. In the UCG the spatial sections are
issues[8]. Within the inflationary context, this problem has not perturbed by scalar fluctuations. We believe that this
been tackled by Abramo, Brandenberger and Mukhanogauge is more convenient for our problem than the more
[7,9]. The intringuing result that the energy-momentum ten-frequently used longitudinal gauge.
sor (EMT) of fluctuations may slow down inflatioiv,9] has In this paper we focus on the EMT of scalar cosmological
subsequently generated renewed interest in the subject pkrturbations. This is indeed the relevant effect since vector
back reactiof10-12. The final answer to the physical sig- perturbations decay and gravitational waves are described by
an EMT which is equivalent to a massless figkd], whose
main effect is non-leading with respect to scalar fluctuations

*Electronic address: finelli@bo.iasf.cnr.it (see howevef8] for the two-loop calculation The calcula-
"Electronic address: marozzi@bo.infn.it tion of the EMT of gravitational waves will be the subject of
*Electronic address: vacca@bo.infn.it a separate publicatior22].

SElectronic address: armitage@bo.infn.it The plan of the paper is as follow. In Sec. Il we present
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the linear cosmological perturbations in the UCG. In Sec. lllorder to see the connection with the more known longitudi-
we extend the UCG to second order and we give expressionsl gauge we write the metr[@5] in that gauge,

for the Einstein and the energy-momentum tensors. In Sec.

IV we present and illustrate the use of the Einstein equations ds?=—(1+2®)dt?>+a?(1— 2‘1’)5ijdxidxj, (5)

to second order. In Secs. V and VIl we give the approximate

solutions for first and second order fluctuations, respectivelyand note that the transformation between the two gauges can
using the renormalized values computed in Sec. VI. We dispe optained through a time reparametrizatidh= —ag/2,
cuss the back reaction on the geometry in Sec. VIII and we — -

give our conclusions in Sec. IX. In the three appendixes we
(A) compare our analytical approximation with the WKB
method,(B) exhibit the fourth order adiabatic expansion and d=—a+ —
(C) compare some of our results with those obtained in a
different gauge.

B aH
, W——TB- (6)

a
EB

Let us now derive the equation of motion in the uniform
curvature gaugésee alsg20]%). The scalar field fluctuations

II. LINEAR PERTURBATIONS IN THE UNIFORM obey the following equation of motion:

CURVATURE GAUGE

We consider inflation in a flat universe driven by a clas- . o1,
sical minimally coupled scalar field with a general potential et3He— = Voo+Vyue
V(¢). The action is a

R 1
SEJ d4x£:f d“xJ—_g{m—ig’”&mﬁvcb—V(qé)

oY)

. 1
= — 2
2+ | a+6Ha ZaV B

—a¢—2aV,— zivzﬁ, @)
where L is the Lagrangian density. a

Let us now study the fluctuations of the scalar field, x) o .
around its homogeneous classfcatlue #(t) and include Where an overdot denotes a derivative with respect to the

metric perturbations. For the homogeneous case we have time t. Starting from the Einstein equatiors; =87GT,,
in order to obtain an equation fap only one needs the

$+3Hp+V,=0 energy and mor(;nentumo constraints in their linearized
version—i.e. theGy andG; linear equations:

87G| ¢?
H?=——|5+V 2 H_, x
3 |12 EV B=87G(pe+V40+2Va)
whereH=a/a is the Hubble parameter aralis the scale 2 d[H
factor. :SWGFE —¢, (8)
The scalar perturbations around a flat Robertson-Walker ¢
metric are
ds’=—(1+2a)dt*—ap dtdx a,i=47TG§cp,i. 9
+a2[5ij(1—21,/;)+2y1ij]dxidxj, (3)

Because of the absence of anisotropic stress, we also have
where the symbol " denotes the derivative with respect to g+ 2Hg=2a/a (this relation replaces the equalify="¥ in
the spatial coordinates. We choose to work in the uniformne |ongitudinal gauge[20]. On substituting these two latter
curvature gauge: equations in Eq(7) one obtains

ds?=—(1+2a)dt?—ag dtdx +a?s;dx'dx. (4 1
o . . ¢+3He— = V3p+ ¢=0.
We note that this choice fixes uniquely the gauge, just as the a’ H
more frequently used longitudinal gaugir a review of (10
cosmological perturbations in this gauge $28]). This can
be seen by setting’=— y/H, e=vy, wheree*=(€’ ') is It is important to note that the effective potential for the

an infinitesimal coordinate transformatio*(—x*+e€*). In  fluctuations can be rewritten as

H H ¢
H ¢

'For a quantum treatment of the homogeneous inflaton see?We observe that the equations[®0] are for a metric perturba-
[23,24]. tion which hasgg =ag,; and notgg;=ag,;/2 as is stated there.
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H H ¢ J 1, e goo= —1-2a—2a?
(11
a
where we have introduced tHgositive) slow-rollover pa- Joi=— z(ﬁ,i+:3,(i2))

rametere= —H/H2. This means that the self-consistent in-
clusion of gravitational fluctuations changes the effective po-
tential for the field fluctuations. In particular, gravitational 1
fluctuations generally decrease the effective mass to first or- gij=a% &+ E(aiX}Z)Jr IixP+h@)|. (13
der ine.
Equation(10) is generally seen written in conformal time.

The Fourier transform modes of=a¢ satisfy The above metric is the extension of the uniform curvature

p 4’ gauge to second orde#‘?) and 8(®) are scalar perturbations
v[<'+(k2— —|v=0, z=ag, (120  to second order. To second order, scalar, vector and tensor
z

perturbations do not evolve independently as is the case in
where a prime denotes a derivative with respect to the conf—irSt order. For this reason we take into account second o_rder
formal time 7, dz=dt/a. On comparing the last equation vector and tens%) perturbations, represented by the diver-
with Eq. (12) of [26] it is immediate to see thap satisfies gencezless vectoy;™ and by the transverse and traceless ten-
the same equation as the Mukhanov varia@leTherefore, ~ SOf h{?), respectively. In the above we have omitted first
the uniform curvature gauge has the advantage of singlingector perturbationgwhich die away kinematicallyand ten-

out the true dynamical degrees of freed@he matter ongs  sor perturbationgwhich satisfy the usual equatidim-3Hh
even if it has the disadvantage of being non-diagonal in the- V2h/a?=0). With this approximation we are neglecting

metric perturbations. the EMT of vector and tensor perturbations, and their corre-
lations with the scalar perturbations. We finally note that the
[ll. BEYOND LINEAR ORDER choice in Eq.(13) (including vector and tensor metric ele-

ments to first orderfixes the gauge completely to second
To second order we consider a metric having the coeffiorder.
cients The Einstein tensor expanded to second order is

H H
Go=Go ¥+ G+ 6GH(*)= —3H?— —V2B+6H?a— V2 B2+ 6H2al? - 12H2a?

3 2@ 2 H — = 2 1 ij 2 2
+ - HAVB*+ —(Va-VB+2aVB)+ —[B,;;B"—(V°B)°], (14
4 a 8a2 ’
0_ ~0(0), s0(1), 50(2) 2) 1 2o, Yo e, He o o 1o
Gy =G+ G+ 6G = —2Ha ;—2Ha; +8Haa'i—£Ha’iV ,8+£Va-VB’i—§V,BJ~V,8—ZV xXi, (15

Gj=G{V+ 66,1+ 5G{®

. : : 1 H 1_.. : : 1
=81 —(8H?+2H)+2a(3H?*+2H) + 2Ha+ — V?a— EVZ,B— £V2B+ 2a®(3H?+2H) +2Ha?+ — V2a®
a a

—Evzﬁ@—ivzﬁ<2>+ﬂﬁa.ﬁﬁ+ﬂ€ﬁ-ﬁﬁ+ 1|V*/3|2—4012 (3H2+2H)—8Haa+ i-ﬁ-ZEa V2B
a 2a a 2 4 2a a
2 a_ . 1 _ 1 1. H 1 . 1., H .. 1
_ 2 _\v2p_ 2 Am _ 2 0\2 Ty e T T a(2)i . p(2) 0 T (2)i
azav a+t aV B a2|VCY| + 8a2['8 B.em—(V°B) ]}+{2a18,j+ aﬁ,j aza’,j"' Zaﬁ,j + a,B,j aza,j
1 H 2 1. 1 .1 o 3
tala g Blagt —aai- JHaB - aBi- aBit o (VABBI=BiB )+ ZHOGY X +hi)
+ 1(%2” +x &+ R0 — iV2h<2>‘] (16)
4\ 3| i 432 I
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To second order the scalar field is expanded as

(., x)= (1) + (1,

The EMT of inflaton fluctuations

Th=dtpd,d+ 5L

to second order is

To=ToO+ 613+ 6793

1.,
~| 542+ V()

1 . N
—§V¢¢(p2—2¢2a2+2<;ba(p+§¢2|VB|2,

TO=TO 4 sTOW 4 §TOD= — g — poP— 0+ 2

T =T+ TP+ 6T

1., I ) i
= E‘f’ —V|ojtlde— ¢ a—Vyp]o+

1 . 1.
S| P ddae— 2P|V A e+ —¢V eV

b a b Vot B 5DV,

pe?— p?a
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x) + ¢@(t,%). (17)
(18)
1., 1
@_Z,2_ T |¥,[2
2% " 5 Vol
(19
aQD,iv (20)
@_y @
1 1 b
B= Vel =Vigue®| |6+ 0l0 =52y (2D

IV. EQUATIONS TO SECOND ORDER

In this section we exhibit the second order equations cor-

responding to Eqg¥8), (9), (10), using, when convenient, the

homogeneous and first order equations. We first give the mo-
mentum constraint to second order, which is obtained from

the expressions given in the Eq45) and (20):

(2)+—V2 4weﬁ¢<2> +S (22)

wherey; are vector metric perturbations and

A7G . . 1 5 j
Si:T(§D_2¢a)(P,i+4aa,i_ m(a,iV B—alBj))
1
— ZIB’JIB,ij ] (23
The termS; can be written ag;s+v; ; further,
(2)= ¢ (2)
a —477Gﬁcp +s (24

where

A47G. .
TV-(<PV<P)

s=—4mGegp?+2a’— E|Va,3|2—|— L

contains the quadratic contribution of first order perturba-
tions. We note thas includes non-local spatial contributions
which nevertheless to leading orderdrand for long wave-
length have an ordinary behavior on large scales. One can in
fact approximate in such a limit, for the isotropic case, the
first term in the second line of ER5) as (27G)/Hee. On
combining Eqs.(14), (19), the energy constraint to second
order, upon using Eq24) and the lower order constraints, is

given by
(_ 2
¢

3 - H .
Q=12H%a®~ ZH VB>~ —(a,B'+2aV?p)

2
G‘i_

A o2g0_g —Q+167GVs (26)
a H dt

whereQ is defined as

1 1.
[IBHIBIJ_(VZB)Z] 87G 290 2+ — (P|2

2a 2

(27)

1 . T .
+5Vape’+2¢7a* = 2hag— go?VBI?.
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We observe that Eq26) for 3(?) is reminiscent of a universe rollover approximation applied to E¢12) leads to a Bessel
filled with two components, with the tern®—167GVs  function whose infrared limit agrees with E(1) only on
playing the role of a non-adiabatic pressure t¢8%], upon freezing a spurious time dependence of the Bessel solution to
comparing with the first order equati@8). From this anal- the value on horizon crossing. This problem is the same as
ogy one may guess that the terms on the right hand side afias encountered if17] on trying to extend the approximate
Eq. (26) should approximatively cancel. Explicit calculations solution for the inflaton fluctuations in a rigid space-time to
confirm this property. fields with different mass. Therefore, the slow rollover para-

The equation of motion for the scalar field to second or-digm is not useful in order to obtain an approximate solution
der, after using all the previous constraints, is given by over the wholek spectrum.

In order to consider the slow rollover of massive chaotic
inflation we take H=-m?%3, H=0 and neglect terms

O(H?/H* [17]. During slow rollover the equation fap is
then

@1 3H @ - izvz¢<2)
a

H (2)

k :
— +m*+6H @, =
a

H
3H——+2¢
H "¢

ot 3H e+ 0. (32

with an homogeneous part which is the same as fdgeé
Eq. (10)] for the first order fluctuations and an inhomoge- On comparing with the fluctuations in a rigid spacetime con-
neous termD which is purely quadratic in terms of the first sidered in[17], we see that the gauge-invariant fluctuations

order fluctuations. In particular one obtains in Eq. (10) have a negative mass sinbe=—m?2/3: this is
# due to the proper inclusion of gravitational fluctuations. This
D=R+ ¢hs— 2V¢s+ (Q—167GVs) (29) result is true for many inflationary models ar_1d it is related to
the red spectrum of the curvature perturbations.
In order to have an approximate solution for the whiole

and spectrum we proceed in analogy with7] and we choose,
1 5 for largek,
=—/|—] H®N 33
¢ . Pk a3/2 4H v ( 6) ( )
_Z i
;B V¢|Vﬁ| + @i = ZBie whereé=k/(aH) and
1 1 . H
<PV2,3+¢,3 B'= 52 @B’ = B¢ (30) A=lmrp=lte
We have therefore obtained the perturbative equation for 2 . 2
i ; A 3 1Im H 3 2m
the scalar field fluctuations to second order, which is a novel p=—— = —— 3—=-+-—==+2¢. (39

result.

We note thatv for the gauge-invariant fluctuations differs
from the corresponding quantity for inflaton fluctuations in
rigid space-time$17].

The equation for the Mukhanov variab{@2) does not The reason the procedure followed[ih7] does not suc-
have an exact solution, except for the known case of ageed in producing an approximate solution, valid over the
exponential potentia]27]. Approximate schemes to obtain whole range ofk, is the dependence af on H. In fact,
the long wavelength solution, such as the slow-rollover techamong the terms which are apparer(t}‘{(H 2IH%), the term
nigue [28], exist. Any approximation must agree with the
solution to Eq.(12) with k=0:

V. APPROXIMATE SOLUTION FOR LINEAR
PERTURBATION

~HH 2 — In ¢ (35
B dt
vk=0=Cz+Dz E (3D) leads to a term which is of ord€(H/H?),
whereC andD are constantBvhen the first term in Eq.31) ol H- HZ n k 1[H—H? 36
dominates; the curvature perturbatigr H e/ ¢ is constant H 2 H '

to leading ordef For small wavelengthsk(~0) C and D

include thek dependence of the modes. However, in order tamaking the approximation not valid for smé&land at large
perform an adiabatic regularization, we not only need thdimes. For this reason we consider Eg3) only as an ap-
solution for smallk, but for the whole spectrum. The slow proximation for modes which are still inside the Hubble ra-
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dius. We also note that the solution for the ultraviolet regimesolution (37) in the first integral and the ultraviolet solution
in Eqg. (33) is the same as that of the slow-rollover approxi- (33) in the second integral. For the ultraviolet part we em-
mation, although herél=const and not=const. ploy, as in the previous articlel 7], dimensional regulariza-
On considering the infrared limit for the gauge-invarianttion using ad dimensional space measure. Subsequently an
fluctuations in Eq.(31) we know thate,~O(1/H), since adiabatic subtraction is performed in order to obtain the

¢~ const. Folk<aH we must to replace the solution in Eq. renormalized quantities.

(33) in order to reproduce the correct behavior in the infrared Frpm our previous calculation we know that2 the Igadmg
contributions come from terms which contaip<), while

b
y terms such agV,¢V*¢) are more ultraviolet and therefore
1 [\ Y2 H(t)) 2 non-leading. By the symbq{---) we denote the average
T m) (W) H(NE), (37)  over the quantum state defined by E(@3) and (37). It is

important to note that the standard fourth order adiabatic
heret. is a ti lated to the instant f hich the mad subtraction is sufficient to regularize the EMT of cosmologi-
wheret, 1S a ime refated o the nstant for which tn€ mode .5 q,ctuations as well. In fact, the terms which apparently

crosses the Hubble radius. We leave the details of estimatir\%Ould not be regularized by a fourth order expansisee
the timet, to Appendix A and give the Hubble parameter for the term8,; 81 — (V2B)? in the GO equation(14), for in-
) ’

this time value: ! .
stancé vanish on averaging over an homogeneous state. As

v N an example of the calculations we exhibit the details of the
H(t)=Ho \/ 1+2—log—. (39  calculation of(¢?)ren. _ .

Hg Hovo The ultraviolet and infrared integrals are respectively

We note that we have a nearly scale invariant spectrum due
2 H2 2 m2
to the dependence dq. 20V H2lasg sl oM
We also note that the amplitude of the curvature perturbat? 1672 H2 ~m? 3 H2
tions, {,=H e,/ ¢, associated with the solution in E(7), 43
i inte32 1 aH\92 (1 d
need not obey the observational constrainte*4(,| A 22 g s ogd—3)
~107°). The reason is that the spectrum is red tilted and we 2 12 A 2 2 ’
are considering modes which could have exited the Hubble
radius much earlier than the ones relevant for observations. (41)
Only if the duration of inflation is minimal in order to solve
the horizon problem do the curvature perturbations associ- o1/ Ha\% 1 NBE
ated with Eq.(37) satisfy the observational constraints. <<p2 'R=—2 —2(—0) HZ—( ( 1—Zeolog—)
Cosmological fluctuations are canonically quantized as 472 \2\H() 6eo Hy
usual and we shall consider the vacuum defined by B$.
and (37): —(1—2¢glog a)3] , (42)
1

P(t,x)= ; [o(1)e™* B+ ¢f (e ™ *b]]

(2m)° whereeq=—H/H3, A, B andC are constants with a compli-
(39 cated dependence on hypergeometric functions and we have
- taken, for the calculation of Eq42), Ag/Hovo=N/Hv as is
where theb, are time-independent Heisenberg operators. gone for the case of thig derivation in Appendix A. At the
end of inflation loga—1/(2¢,) which is the inverse of the
VI. ADIABATIC SUBTRACTION slow-rollover perturbation parameter. Therefore, in the above
We now compute the integrals obtained on taking the eX_expression, in order to be as accurate as possible towards the

. .end of inflation we have included all the leading logarithmic
pectation values of the relevant operators. The strategy I8 'ms which are multiplied by the small parameégr The

slightly different from that of our previous calculatig7] . . ) . i
since the mode function is obtained by matching two ap-""d"'jlb"’ItIC fourth order issee Appendix B anf17])):

proximate solutions. Therefore we split the integral:

h 127 43m? 29H? 2 m?
+o0 vaH/\ +o0 <(P2>(4):_H2 - 4 |24
dk— dk+ dk (40 1642 45 90H2 152 3 H2
¢ ¢ vaHIN
o e . 1\ 1 d 1
where{=CHyj is an infrared cutoff related to the beginning X (am)43r(=—=|+0| =
of inflation® [29,30] and k= vaH/\ is the turning point of 2712 2 2 a’

the Bessel function in Eq33). We substitute the infrared Lod-3), 43

3See alsd17] for numerical considerations on the initial states. and the resulting renormalized quantity is
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(@ e (e )T ) I L NN
FIRENT 42\ H ) 6o 8a? HZme'
A1 Ho\* o1 3 . .
T a2 22\ A H 6eg 1-2¢ologiy It is instructive to also comput@p¢)rey and(@?)gen by the
same method, using the approximate relation for the infrared
3 oo m? modes ¢,=— (H/H) ¢,. The final resultfomitting all the
—(1-2¢gloga)”; + 167r2H A+Bm steps in Eqs(41), (42), (43), (44)] is
c 2 A 1+1m2 | vH 127+43m2 H{o)ren=H(0@) R+ h H4 D+Em_2
e 3n2)"xm) " 25 T o0 1672 H?
2 2
2012 (1 L B Luie i)
_1_5?—’— (;)] (44) 3 H2 Am 9 H2 a3/’
: : . (49
The leading behavior of the renormalized correlator at the
beginning of inflation, which actually originates in the infra- _ 4 2 2 H\ 61
red region, grows with log: (0% ren={@*)'R+ 16772H4 F+G—2+2mln()\— + %5
h Ho|*
(¢2)REN~—H2(—O Ina. (45) 27 m? 1
472 \H AT =1 (50)
102 as

Its time derivative is . . .
whereD, E, F andG may be written in terms of generalized

d % Hé hyperggometric functions and for the infrared contribution
—()ren~ — 7 +2€H( 0% ren one ha
dt 472 H
. IR:H 2 |R, 51
5 Hé+ 2 m2< ) s (¢9) €(¢%) (52)
= 0 T3 g {($)REN- :
4772 H 3 H <¢72>|R2H262<¢72>|R. (52)

We note that this result is very different from the de Sitter
result (H constant in time an@=0) since the second term
on the right hand side may dominate for large times.

VII. APPROXIMATE SOLUTION FOR SECOND ORDER
SCALAR PERTURBATIONS

The above result in E¢45) is reminiscerft of the usual An approximate solution for the leading quantities to sec-
Hartree-Fock term formulas for stochastic inflat{@1] [see  ond order can be obtained for large scales where the infrared
Eq. (5 of [32]]: modes dominate. Let us considef?) which satisfies Eq.

g " , (28). On neglecting term&®(H/H3,H2/H*) and the second
m A .
22 _ " 3t 2 order derivative we obtain
rTats >REN_47T2H 235 (# )ren- (47)
_ m2 2
2 2 (2)— _ -
However, Eqs(46) and (47) differ not only in the driving 3He@—m?p®= V¢6H2 M2’ (33
pl

terms, but in particular in the mass term: in our result there is
a negative mass term, whereas in the stochastic approach jghich can be rewritten, on also using the homogeneous
rigid de Sitter space time there is a positive mass term. Ouggyation of motion for the inflaton, as

result(46) is completely consistent with E¢32) where the

gravitational terms change the sign of the mass term in the d .m? @2
evolution equation for the fluctuations. The difference is 3&(H¢(Z)):¢ﬁ—2. (54)
therefore due to the inclusion of gravitational fluctuations Mo

which are not properly taken into account in stochastic infla- )
tion. Let us note that we use the notatlmﬁlz 1/(87G) for the

At the end of inflation, for the characteristic time scale of (reduced Planck mass definition. In the same approximation

slow rollover 8t~3H,/m?, the correlator in the expression the energy constraint is
in Eq. (44) saturates to

SMore precisely, one may obtain the infrared contribution from

“We note that this resemblance holds on only retaining the lineathe behavior of the Mukhanov variable(¢ o)'R=[He+H/
terms in loga. (2H){ ¢?)'R, where the second term is of ordéX €?).
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: o directly studies in this framework any observable averaged
2a(3H?+H)= —6—2(p [ deP—V 40 over the quantum vacuum. In order to pursue this approach
My M results given in Secs. lll, IV and VIl are also necessary.
1 . .
- vacpz}_ (55) A. Energy-momentum tensor of cosmological fluctuations

By the EMT of cosmological fluctuations we mean the
The expression we want isp?)), which is averaged over second order part both of the scalar field EMfid of the
the initial vacuum state, and can be obtained by using th&instein tensor which is quadratic in first order fluctuations:
leading contribution in Eg45) to the quadratic correlator of
the first order fluctuationép?)gey. We obtain, directly from
the last equation,

— uadratic 2 uadratic
=T Quadric_ 2 G quadiaic (59)

This method of considering the EMT of gravitational fluc-
tuations is treated in textbook83] and has also been previ-
(56) ously used in[7,9,13. In this scheme one considers the
modified Einstein equation®;G4(® =T~ (74) which
therefore include back-reaction effects.
Let us consider the EMT of cosmological fluctuations av-

eraged over the state annihilated by the operatdefined in

fo . HIM?

1 1 H
In—
247 M€

ane 2HH; M

(o@)y=

whereM is a constant with the dimensions of a mass. It is
also convenient to exhibit a slightly different form, which is
of course equivalent in the largdimit at the end of inflation Eq. (39).

since the infrared contributions are then a maximum.
For a generic potential the leading terms in the energy
Smce¢ is almost constant, one may also obtain, from Eq. density are

(54),
. V¢¢
(2)yMAX ¢ —Z (¢ 2)MAX (57) (o)~ — 2 (@?)+12H?M §I<a2>

<<P 4HM REN -

_ Voo, o eiign
It is also useful to write the contribution t@(?)) which we == (¢ 76H{eY). (60

shall later use to study the back-reaction effects on some

scalar observables. One obtains, for its leading behavior, It is important to note that the second term on the right
hand side is in generalositiveandlarger than the first dur-
ing inflation. This second term is the contribution of metric

¢ 31 H
(a@yMAX — IV P (pnymax_ Z M_ —(o?)Ren perturbations. On using the slow-rollover parameiemnd
7 (EM,2)|V¢¢/V) we can rewrite the leading terms in Eg.
6 (60) during slow rollover as
= sz)géﬁ : (59
pl

V €
<78>E—e~—%<¢2>(1—4;)- (61)
VIIl. APPROACHES TO THE BACK REACTION .
Analogously the average pressure is

One may follow different approaches in order to study the
back-reaction effects due to cosmological fluctuations. In the 4 ) 2 i
following we shall consider two methods in order to tackle (m)=psi~ 4 T<(P2>+12H2MP'<CY2>> BERCE
this issue. (62

One consists of considering only the first order perturba-
tions, then imposing to first order the energy and momentum We now restrict the analysis to a quadratic potential with
constraints and finally defining an effective EMT by includ- 7=¢. On using Eq(45) the leading behavior for the initial
ing all the quadratic terms present in the Einstein equationgime of the energy and pressure density is
Subsequently one averages everything over the quantum
vacuum and first order quantities disappear. One finds that _ S o _ o 2[ Mo
the effective EMT which appears in the averaged Einstein ®REN™ ~ Pren™ — 5 M (@%)ren~ 87 5 m°H H
equations is modified by the back reaction. The results ob-
tained in Secs. Il, V and VI are sufficient for this purpose. 9%
However, one still has to study how any observable averaged = — —26Hg|n a. (63
over the quantum vacuum is then affected. 87

A second approach is related to the standard perturbatio
analysis of the Einstein equations up to second order. In this
case we impose the energy and momentum constraints and
study the inflaton equation of motion perturbatively up to sgé,if pgéﬁ
second order. One does not define any modified EMT but

4
Ina

Igurther on using Eq48), we have the maximum value

3% HS
1672 H2'

(64)
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We then obtain that for The result in Eq.(69) is in contrast with[12], where a
o 1612 13 vanishing result was obtained for the back reaction on the
Ho~(167/%) " H "M (65  expansion raté®) and where only first order classical per-

turbations are considered. We note that also in our gauge
choice O is related to the Einstein tensor for long wave-
el'engths and leading order i

the EMT tensor of cosmological fluctuations cannot be ne
glected with respect to the energy content of the homog
neous classical inflaton.

As a final remark we note that the amplitude and time 3
dependence of the EMT depends on the approximation used O=3H|1-a—a®+ Eaz ~\/-3GY, (70)
for linear perturbations. The slightly different results in the
amplitude of the EMT with respect {@,9] are explained in

; and therefore the result in EG9) could also be obtained by
Appendix C.

expanding\/—247-rGTOrj to second order and averaging over
the quantum vacuum. The difference with respec{1@]
may be due to the absence of second order fluctuations in

In the perturbative approach to the Einstein equations anf12] and/or to a peculiarity of inflation driven by a quadratic
back-reaction effect is analyzed by evaluating perturbativelyotential.

B. Back reaction on the geometry

quantities which characterize the geometry. We now consider another geometric scalar observable
The expansion scalar is defined as which is associated with the rate of change of the expansion
scalar: i.e.,
0=V,u*, (66)
Q=u"V,V,u*. (72

whereu* is a four-vector field defining the comoving frame.
The four-vector is normalized), u“= —1. To second order |ts expansion up to second order is given by
the four vector is

0=00+00 1+ @

3 - B+ g
W=1—a+ =a?—a?, u'=& (67) . i . H 1 .. ) )
2 a =3H-6Ha—3Ha— _V?B+ _V’B—6Ha®—3Ha®
and the expansion scalar reads H 1
0=00+904+e®@ - gvzﬂ(z)+ aVZB(2)+ 12Ha?+ 12Haw
1 1 9 H H 1 1d
=3H-3Ha+ -V2-3Ha®+ -V?g@+ ~Ha? AV a-VB+ —aV2B— —aV2B+ - —(VB.V/
aVk v BT A Va Vp+ —aVp—_aV2p+ 5 o (VB-Vp)
+l€a~ﬁﬁ+i€ﬁ.ﬁﬁ (68) 1d . _ 1. -,
a 4 : o qi(Ve Ve + ;VBV(V B). (72

The leading terms, once we average, are
For the homogeneous cage=3H and thereforeQ)

(0)=00+(0®) =3H. During slow rollover for a massive inflatoi
(=—m?/3) is constant in time, and therefore is a gauge-
=3H| 1+ §<a2>_<a(2)>> invariant quantity up to second ordi,34.
2 The leading terms, once we average, are

~3H 5 (69) <Q>:Q(O)+<Q(Z)>

pl

1_6<¢2>MAX)

=3H—6H(a®)—3H(a®)+ 12H(a?)+ 12H(aa)
where the results given in Eq&l5) and(58) have been used,
together with the relationsa=¢/(2HM?2)e and ¢

=—2HM?, in order to calculate the only two non- where F(e loga)=eFy(H)+€logaF,(H)+:--. Therefore
negligible second order contributions. We note that by leadone observes that in this case the leading corrections to order
ing terms we mean the first correctionsdrnwhich are also e which come from the infrared region cancel, while these
leading in loga, thus essentially including the infrared con- were present if®). Let us again note that at the end of
tribution present in the renormalized quantities, as alreadynflation driven by a massive inflaton leg=1/(2¢,) so that
discussed. We observe that the result in Ef) is com-  any loga correction effectively reduces the perturbative or-
pletely consistent with the considerations on the EMT madeler in powers ofe of the correction.

in the previous subsection. When the magnitude of the EMT The result on{Q) should be interpreted with care since
of cosmological fluctuations is of the same order as that ofve are not able to go to higher order self-consistently within
the background®) changes significantly. our approximation. We also note that this vanishing result

~3H[1+F(e,loga)] (73
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may also be a peculiarity of inflation driven by a quadraticO(¢) effect, but its time behavior is differerithere is no
potential. In any case the rate of change of the Hubble papga enhancement from the infrared regidmecause of the
rameter can also be studied more carefully at the backgroungiffering times in the two frames. In this new gauge calcula-
level, without considering any back reaction. Including thetions are also more involved since a higher accuracy in the
first non-trivial corrections one finds solution for the Mukhanov variable would be required.

It is interesting to note that the inclusion of gravitational
fluctuations systematically contributes negatively. To first or-
der gravitational fluctuations contribute negatively to the ef-
fective mass for the fluctuations, and to second order carry

To conclude this section we stress that in both the result§egative energy density. The self-consistent inclusion of
(63) and (69) the corrections to the background values, gravity also changes the stochastic picture in an inflationary
which grow with time, areO(e). In the de Sitter limit ¢  background.

=0) these corrections vanish, consistently with the absence The approach we have used is mean field theory on a

of physical scalar perturbations to first order for a universecurved space-time. The procedure of averaging over a quan-
driven by a cosmological constant. tum state with a cutoff related to the patch which undergoes

inflation can be seen as a spatial average over the particle
horizon. This average is completely different from the aver-
age over the Hubble region during inflation used in the sto-
The renormalized EMT of cosmological fluctuations dur- chastic approacf81] and in which gravitational fluctuations
ing inflation with a quadratic potential is studied. With re- were neglected. We think that the differences between the
spect to our previous workl7] we have self-consistently results of stochastic inflation and those found here are not
taken into account the gravitational fluctuations accompanyjust due to a different coarse graining, but are also due to our
ing the scalar field fluctuations. inclusion of gravitational fluctuations. We think that the re-
We find that the renormalized EMT of cosmological fluc- lation between these two different approaches should be fur-
tuations during slow rollover carries negative energy densityher investigated.
and has a de Sitter—like equation of state to leading order.

(74

IX. DISCUSSION AND CONCLUSIONS

The negative sign for the renormalized energy density is due ACKNOWLEDGMENTS
to the inclusion of gravitational fluctuatior(see alsq7,9] ) ) ) _

did not appear in the previous calculation in rigid space-timeSuggestions on the manuscript. We also wish to thank R.

[17]. This effect is generally true for single field inflationary Abramo, R. Brandenberger, A. Linde and S. Matarrese for

models withe> 7/4, as is seen from Eq61). comments. F.F. Fhanks R. Abramo and R. Brandenberger for
The back-reaction problem was also treated up to secon@ny conversations on the back-reaction problem over the

order in perturbation theory. For this purpose we extended€Vious years and N. Bartolo and B. Losic for discussions.

the UCG gauge beyond linear order by taking into account

vector and tensor perturbations to second order. The inclu- APPENDIX A: COMPARISON WITH WKB METHODS

sion of vector and tensor perturbations to second order is In this appendix we show how the procedure used in this

important in order to obtain the correct equations for the aper to match solutions which are good approximations in
second order scalar perturbations. We derived the equatidél P 9 PP

) ; . ifferent ranges ok space includes the recent application of
for the second order scalar field fluctuations and approximag . .
) : . 'the WKB method in the context of cosmological perturba-
tively solved the system of second order equations for smgl? . .
S . . ions[35,36. In this paper we have chosen a Bessel form in
field inflation during slow rollover. We computed the expan- ! T .
) . . . : S Eq. (33) for modes which are still inside the Hubble radius.
sion rate® and its coordinate invariant derivati¥& to sec- The scaled equation = a*?¢,) associated with Eq32) is
ond order, and we found that the expansion rate is decreased q Px
affected to leading order. A non-vanishing correction §br Kk )2
will probably appear in the next order. e+ ( ) -1
We do not find evidence that the back reaction of cosmo- aHv'
logical fluctuations is a gauge artifact as is claimedif].
are non-vanishing and are computed to lowest order in Ecfained for
(69). We note that the back reaction of cosmological scalar
fluctuations vanishes in the de Sitter limie€0), as it
. - . . S a(t)

should. Since® is not a gauge-invariant quantity in the
the gauge wherein the inflaton is a clock: such a check waSo, for our calculation, we can neglect the weak time depen-
done by a completely new calculatiditiustrated in Appen- dence on the right side of EA2) with respect the expo-
dix C) in order to also study the transformation properties ofnential dependence on the left side and obtain the following
the metric elements. We confirm that back reaction is amesult for the turning point:

H2v'24,=0, (A1)

(A2)

by the EMT of cosmological fluctuations, whil@ is not given by

The second order corrections to the local expansion@ate Where v’=v/\. The turning point of this equation is ob-
CHMP()

model under consideratiof6,34], we also computed® in
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pansions in cosmic time and conformal time lead to equiva-

t=— ﬂ 1— \/1+ 2H_2 log MoK :i o Aok ) lent results, because of the explicit covariance under time
0 H5 “Horo/ Ho “Hovo reparametrizatiofi40].
(A3) The variablex, satisfies the Pinney equation
The solution near the turning point of E@®2), on using the 2
WKB method, is given by X+ 3HX, + —2+m2+ 6H [x= ——3- (B1)
a a®xy
1 : .
@kZaT,Z[BlAI (o ((t—1,))+ B,Bi(ai Xt —1)))]. Following [17] we rewrite Eq.(B1) in conformal time in the
(A4) following way:
Around the turning point we can consider the following ap- %)+ O2(ax,) = (B2)
proximate expressiof87] in Eq. (33): (axc k(ax)= (ax)?
H(l)(x): ﬂei[w/m y(ww3/3arctam)]H(1)(ZW3 10O l where
v \/§ 1/3 3 v
2 2 2,42 1 25
(A5) Or=k +ma—€aR (B3)
or
2\ 13 , p\ 23 andR is
Hsjl)(X)%(—) el v(w—w /3arctanw)(Ai[_ (E) WZ} 5 .
v R=R—36H (B4)
v 2/3
—i Bi —(—) w? ] (A6)  with R=6a"/a® the Ricci curvature. From Eq$B2), (B3),
2 (B4) one obtains the expansion fgg up to the fourth adia-
wherew= (1/v) x> v°. We have checked numerically that batic order.
the above approximations are remarkably good. The Airy 11 1 5 1
functions are precisely the functions used to match the WKB WH_—_~ (1= 2
R el : Xk 1/2 1 €+ €2 €4 (BS)
solution, Eq.(A4), inside and outside the Hubble rad{@s]. ant 4 32°° 4
In particular around the turning point the match is specified
by where(), is defined in Eq(B3) ande,, e, are given by
(t 2/3 ” 12
—( (k)) w2~ ai3(t—ty). (A7) E =_1&+§Q_k
? 207 40
Therefore, by choosing a Bessel form inside the Hubble ra-
dius one already has the correct form in the vicinity of the 10 , 11
turning point. This cannot be achieved with the WKB ap- €4= Z&fz— ZEfz- (B6)
k k

proximation, since the WKB solution is singular in corre-

spondence of the turning point. ~
P gp The solution in Eq(B5) must be expanded again sinke

. . . 4) .
APPENDIX B: THE FOURTH ORDER ADIABATIC is of adiabatic order 2. Thereforg” is

EXPANSION ~ ~
1 1 1R1 5 R*1

In order to remove the divergences which appear in the Xk(4):CT/22_1/2 1+ 26 52
integrated quantities as poles in thefunctions, we shall K

employ the method ofdiabatic subtraction[38]. Such a 11 R R R

method consists of replacing our functions with an expansion + 1652 c”( m?— E) - ZC’E - CF

in powers of derivatives of the logarithm of the scale factor. DI

This expansion coincides with the adiabatic expansion intro- ~ =,

duced by Lewis if39] for a time dependent oscillator. _ Ei o' 2m? ZCIZmZR 20’m20R—}
Usually it is more convenient to formulate the adiabatic 64 EE 6 6

expansion by using the modulus of mode functians 5 5

=|¢x/+2| and the conformal time; [38] (dn=dt/a). We 91 R, , 651 R .,

follow this procedure and write an expansion in derivatives + 6456°6° ™M 256586 ™

with respect to the conformal tim@enoted by a primefor k k

Xy - We then go back to cosmic time and insert the expansion 5 1

in the expectation values we wish to compute. Adiabatic ex- + 3—263* - 264*] (B7)
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wherec=a* and where we have takea(t)=a(t), since in the perturbative
(K2 A2m2 12 approacha(t) anda(t) satisfy the same equation frandt,
3= (k“+am?) - .
respectively(however the scale factor is not observable for

2 the case under consideratjolive expect thatr will satisfy a
130 32, dynamical equation of motion in this gauge.
€2+~ 75 E_E+ 4 E_‘k‘ Instead of solving the system in this gauge, we find solu-

tions for the metric perturbations in EC4) by using its
1 11 gauge relation with the metric in E¢13). An infinitesimal
k

€4y = € e (BB) coordinate transformation up to second Ol’[ﬂr

~ 1
XH—xt=xt+ €1yt 5 (€1),€1)T €(2) (CH
APPENDIX C: COMPARISON WITH CALCULATIONS IN 2 '

DIFFERENT GAUGES . .
(where €1y and ¢(,) are the coordinate changes to first an

In [7,9] a different procedure was followed. The calcula- second order, respectivgjyinduces the most generic change
tion was performed in the Newtonian gaugee Eq(5)]and i a geometric objecT =T+ T+ T(2):;
the regularization of the metric perturbati¢®?) was con-
sidered. We can compare our results by using the relation TO_FO_TW_, T0 (Co)
between field fluctuations in the uniform curvature gauge 1)
and field fluctuationspy in the Newtonian gauge:

1
@) F@=7@)_ L)L Z (2 —
B p T T T Ee(l)T +2 (‘Ce(l)TO EE(Z)TO).
e=ont P (CD (C7)
Assuming thatd® in negligible on large scales, we obtain The time reparametrization which relates the two gauges can
[25] be found by imposing that the field perturbation be zero to
first and second order in the metiiC4). According to Egs.
('15 e—1 (C6), (C7) the field transforms as
= —( D, (C2
H\ € - 0 -
P e=@— € (C8)

which, on using the approximation used[ih9,29, leads to

f<6_1>k3/2 m [_ log[k/(aH)]
€ 2\/§|\/|pI 1+log[aend/al

~ .1 . .
¢@— 0P = @~ o+ 5[6(()1)(6?1)05)'_ 2%,

' (C9
(C3

b= H

which leads to
where a.q is the scale factor at the end of inflation. This
approximation for the gauge-invariant field fluctuations is ¢
different from our Eq.(37). €)== o (C10
After this paper appeared in the electronic form, it was
suggested that corrections {®) should disappear in the

<6

gauge wherein the inflaton is a clock, homogeneous in space. 2 1 . & 1 H

. . 0 _~ (2)_ _ _ 2
Let us note that the inflaton can work as a clock only when it €)= 5 ¢ PP T T o &
is not oscillating, as is the case in the slow-rollover regime. ¢ ¢ H HH

In order to check this claim we performed a new calcula- (C1Y)

tion, since the gauge where the inflaton is homogeneous ish h d th . ant ¢ turb
different to the one used in this paper. The gauge in whic{/N€éreé we have used the gauge invariant curvature perturba-

the inflaton is unperturbed is described by a metric with thredion {=He/ ¢, which is constant on large scales and the
scalar degrees of freedom and, again, this is a choice whicBxpression in Eq(57). From the above we understand that
fixes the gauge completely because of the presence of thie need a large time reparametrization in order to keep the
scalar field. As before we do not pay attention to the vectogcalar field homogeneous in space. _

and tensor degrees of freedom and therefore we consider the The above transformation, up to second order, is not the
following second order line element depending only on thre€Ne required since it would lead to the presence of a scalar

scalars: second order contribution in the traceless part of the metric
which depends on a quadratic form #8 and g e?l). In
ds’=— (1+2a+2a®)dt?~a(B,+ B?)dtdx order to destroy this contribution a scalar second order trans-
' formation in the spatial part of the coordinates is also re-
+a? 5;(1—2y—2¢?)]dx d¥, (C4  quired,ez)=d'€f,, while still havinge(;,=0. We find
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1 3 40 [1 o H Ho oo € , 1
€)= 55 B~ pyell )+ vl €(1)Dij () WO= S e~ 5 ey — (H+2H ez 96(1)'9 €t
1 0 0 _ io—)l E 0 + Ev2 s
- E(e(l)DU'B—'—ﬁD'J 6(1)) y (C12) 6a B IE(l) 6 6(2)
WhereDijzo"i&j—1/3V25ij. :E 0o _ Z_L ’ i i 0 4,0 _i ins 0
On using the gauge transformatié@6) we have the fol- 2 €@ ¢t ﬁaZa €l ga? Blic
lowing relation for the metric fluctuations to first order:
1
2 . Ve (€19

a:a_.f?l), ﬂ:B_af(l), l,b:HE(()l) (C13)
We are now ready to compute the expansion r@te
On solving for the metric fluctuations in the UCG gauge,which is a gauge dependent observable, in the unperturbed

using Egs(8), (9) we have (uniform) field gauge(UFG), while neglecting vector and
tensor contributions and only keeping terms up to second
V2B : order:
a=¢€l, T=ZE§, (C19
S U B ~— 1. .~ ~
, , ©=3H-3Ha+=V?3-3y’' —3Ha@+ V252 —3y(2)
whereas in the unperturbed scalar field gauge we have “Ta B3¢ “ a A v
A v + a2+ 339 - 679 + Ve VB 9597
a=——, —L=2ef-2—, Y=¢(. (C1H pHa+3adi—byyit Va-VE= V-V
H a aH
1.-3._. ~ o~
From the last relations we see that the cost of keeping the +,VB-VB'. (C19
scalar field homogeneous in space is to squeeze a large fluc-
tuation in the metric, i.eg. In the UCG gauge metric fluc- Let us observe that the prime denotes the derivative with
tuations are suppressed with respect{toi.e. O(el,€l), respect tot, and the relation between the two time deriva-
whereas in the gauge€4) they are not. To second order we tives may be written as
have
{ 1 1 H?
‘0 —==|1-2>—el+ 2—
~ o0 @, 1 o0 it H 27 4py?
CY(Z): a(z)— Egl)a— Zaé(()l)— T + E 6?1)6?1)+ 6?%)
+ 3<H> T AL PO
. 6(2) 1R, 2 1y 4HH? dt® H 2 pHQ2 H2" | ot
22— 2H3§+E+ZH2' _

where, from Eq.(58), one hasa(®=2€?¢2. Moreover, we

Clearly the two time derivatives coincide on acting on sec-
find for B(?) a transformation such that y g

ond order terms if one does not go beyond such an approxi-
: mation; however, one must exercise care for terms of lower
1 J |2 - order on going f description to the oth
22)_ p2)_ = £.0 0 going from one description to the other.
Bo=F 6(2)+a6(2)+ 2a dt(é(l)) Vz[a&' NN Further the difference between the spatial derivatives is
given by

(C17) PR J

: . 4

0 0 0 0
—€ediB-Heqdif—enydif— Zadieq)). .
— = —Jdi€ =
&XI (9XI [ ( )(9t

(C21)

Let us remember that we chose not to exhibit in detail the

vector and tensor degrees of freedom, but it is straightforwhich, however, is not important since we shall neglect spa-
ward to do so. It is suffices to say that to destroy the possibl@al derivatives.

vector degrees of freedom arising 56. , a non-vanishing One may wish to write the corrections to the unperturbed
vector component in the coordinate transformation to secon® =3H in the'x frame, while expressing the corrections in
order, 62), has to be introduced, but this does not affect theterms of the already known quantitiéis the x frame. For
scalars to second order(?, B@ and (2. this case one must be careful in analyzing to second order the

Finally, for this last scalar we find fourth term of the above expression3dy/dt.
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To leading order, on averaging and neglecting terms withlterms oft, starting from Eq(C19° and using the relation in

spatial derivatives, we have Eq. (C20 (omitting negligible spatial derivativego also
computeH (t) =H(t)dt/dt, one finds
~ ~ ~ 3 ~ 1 ~ 1 ~ ~ <(,D2
(0)=3H|1— (@) + = (a®) + = () — = (¥?) (0)=3H|1-e—|, (C23
2 H H am3
2 .+ 1/ote which is completely consistent with our result in E§9)
- ﬁ(l/fllf)— a =y and with the fact tha® is a scala(but not gauge invariant
at - .
which, therefore, transforms according to
] ) O (x*)=0(xH). (C24)
~ € . 1 s 1H ’
=3H| 1+ {0+ m(( %Zm(g“ ) We have then checked that the back reaction of scalar

cosmological fluctuations i©(€) in the expansion rate: such
a correction indeed vanishes in the de Sitter limit, where
scalar perturbations are absent. One may find a suitable

~ 1 . 1., gauge—for instance the UFG, which is valid only during
=3H| 1+ YA qiee)— H_<‘P ) slow rollover—in which the back reaction does not grow in
Pl time (because of cancellations of the infrared pigcéw-
B 1 ever, such a gauge seems inconvenient since the inflaton can-
+0( ez(goz))) =3H| 1+ —50(e,%(¢?)) |, not be used as a clock in the subsequent stage of coherent
Mpi oscillations. We feel that it is more proper to ask what the

(C22 time behavior of the back reaction is in a frame which can be
regularly continued rather than the opposite. Indeed, one of
the advantages of the UCG is the possibility of continuing

where on going from the first to the second line the termghe calculation through the oscillatory phase of the inflaton
O(¢¢) cancel. The infrared contributions to the terms in the[i%i]r’] WP(;C(r:]hlescrlloi; ?r?s);;cr)ngocg]ngjs%ig.alrtewooblfcgnt:a%I?;(rart_he
last two lines vanish, leading to corrections to the expansioﬁon_%Cal uantity used ipa2]

rate in the UFG gauge of ord€¥(e), which are of the same q y '

order as the neglected gradient terms. The corrections to the——

expansion rate in the two frames are therefore of the SaME6gince the term- 3H @ also has to be taken in to account. None-

order in the slow-roll parameters. 5 theless, one finds that such a term is, again, negligible and that the
If we choose to rewrite the averaged expression@oin leading result can be obtained starting directly from &R2).
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