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Energy-momentum tensor of cosmological fluctuations during inflation
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We study the renormalized energy-momentum tensor~EMT! of cosmological scalar fluctuations during the
slow-rollover regime for chaotic inflation with a quadratic potential and find that it is characterized by a
negative energy density which grows during slow rollover. We also approach the back-reaction problem as a
second-order calculation in perturbation theory, finding no evidence that the back reaction of cosmological
fluctuations is a gauge artifact. In agreement with the results for the EMT, the average expansion rate is
decreased by the back reaction of cosmological fluctuations.
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I. INTRODUCTION

After the latest cosmic microwave background~CMB!
data@1,2#, inflation ~see@3,4# for a textbook review! seems
the most promising theory in explaining the large scale str
ture of the Universe. According to inflation, the large sc
structure of the Universe exhibits the fingerprint of quant
fluctuations amplified during the accelerated era@5#. On
modeling inflation and its transition to the standard big ba
cosmology the constraints on the amplitude and spectrum
CMB fluctuations become constraints on the physics of
flation. All this modeling depends on the linear treatment
cosmological perturbations. Within the framework of infl
tionary cosmology, on using the most recent data, we
therefore close to measuring the details of the spectrum
fluctuations, while not having a definite idea on the ene
content of these fluctuations and how they back react on
inflationary expansion responsible for their amplification.

Although cosmological linear perturbation theory duri
inflation is almost a textbook subject, the understanding
non-linear effects is still at the forefront of research. T
non-linearity and gauge invariance of general relativity
tenacious obstacles both at technical and interpretational
els; nonetheless, the gauge issue has been solved to h
orders in perturbation theory@6,7#. Further, many interesting
effects are appreciable only beyond linear order. From
theoretical point of view the back reaction of gravitation
fluctuations on the geometry is one of the most interes
issues@8#. Within the inflationary context, this problem ha
been tackled by Abramo, Brandenberger and Mukha
@7,9#. The intringuing result that the energy-momentum te
sor ~EMT! of fluctuations may slow down inflation@7,9# has
subsequently generated renewed interest in the subjec
back reaction@10–12#. The final answer to the physical sig
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nificance of this back-reaction effect is still under deba
@10–12#. The problem of gravitational back reaction fo
black holes has also been tackled for gravitational wa
@13#. More recently these non-linear effects have also dra
attention in connection with observations, since non-lin
cosmological perturbations introduce non-Gaussian sig
tures in the power spectrum@14,15#.

The aim of this paper is to compute the renormaliz
EMT of cosmological fluctuations during inflation, accordin
to the adiabatic regularization scheme@16# also used in our
previous paper@17#. The model considered here is the slo
rollover regime of inflation driven by a massive inflaton, b
we believe that the results obtained here also hold for o
inflationary models. We find that the averaged~with respect
to the adiabatic vacuum! renormalized EMT of cosmologica
fluctuations during slow rollover is characterized by a ne
tive energy density and a de Sitter–like equation of st
~this result was found for long-wavelength modes in@7,9#!.
In a naive approach this would lead us to think that the EM
of cosmological fluctuations slows down inflation. We al
evaluate the back reaction on the geometry in a system
way by proceeding self-consistently to second order in p
turbation theory. In order to do this we give a systema
treatment of second-order perturbation theory for single s
lar field driven inflation~see also@15,18,19# for the second-
order formalism!. The gauge used for scalar perturbations
this paper is the uniform curvature gauge@20# ~UCG! gener-
alized to second order. In the UCG the spatial sections
not perturbed by scalar fluctuations. We believe that t
gauge is more convenient for our problem than the m
frequently used longitudinal gauge.

In this paper we focus on the EMT of scalar cosmologi
perturbations. This is indeed the relevant effect since ve
perturbations decay and gravitational waves are describe
an EMT which is equivalent to a massless field@21#, whose
main effect is non-leading with respect to scalar fluctuatio
~see however@8# for the two-loop calculation!. The calcula-
tion of the EMT of gravitational waves will be the subject
a separate publication@22#.

The plan of the paper is as follow. In Sec. II we prese
©2004 The American Physical Society08-1
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the linear cosmological perturbations in the UCG. In Sec.
we extend the UCG to second order and we give express
for the Einstein and the energy-momentum tensors. In S
IV we present and illustrate the use of the Einstein equati
to second order. In Secs. V and VII we give the approxim
solutions for first and second order fluctuations, respectiv
using the renormalized values computed in Sec. VI. We
cuss the back reaction on the geometry in Sec. VIII and
give our conclusions in Sec. IX. In the three appendixes
~A! compare our analytical approximation with the WK
method,~B! exhibit the fourth order adiabatic expansion a
~C! compare some of our results with those obtained i
different gauge.

II. LINEAR PERTURBATIONS IN THE UNIFORM
CURVATURE GAUGE

We consider inflation in a flat universe driven by a cla
sical minimally coupled scalar field with a general potent
V(f). The action is

S[E d4xL5E d4xA2gF R

16pG
2

1

2
gmn]mf]nf2V~f!G

~1!

whereL is the Lagrangian density.
Let us now study the fluctuations of the scalar fieldw(t,x)

around its homogeneous classical1 value f(t) and include
metric perturbations. For the homogeneous case we hav

f̈13Hḟ1Vf50

H25
8pG

3
F ḟ2

2
1VG ~2!

where H5ȧ/a is the Hubble parameter anda is the scale
factor.

The scalar perturbations around a flat Robertson-Wa
metric are

ds252~112a!dt22ab ,idtdxi

1a2@d i j ~122c!12g ,i j #dxidxj , ~3!

where the symbol ‘‘,i ’’ denotes the derivative with respect t
the spatial coordinates. We choose to work in the unifo
curvature gauge:

ds252~112a!dt22ab ,idtdxi1a2d i j dxidxj . ~4!

We note that this choice fixes uniquely the gauge, just as
more frequently used longitudinal gauge~for a review of
cosmological perturbations in this gauge see@25#!. This can
be seen by settinge052c/H, e5g, whereem5(e0,e ,i) is
an infinitesimal coordinate transformation (xm→xm1em). In

1For a quantum treatment of the homogeneous inflaton
@23,24#.
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order to see the connection with the more known longitu
nal gauge we write the metric@25# in that gauge,

ds252~112F!dt21a2~122C!d i j dxidxj , ~5!

and note that the transformation between the two gauges
be obtained through a time reparametrizatione052ab/2,
e50:

F52a1
d

dt S a

2
b D , C52

aH

2
b. ~6!

Let us now derive the equation of motion in the unifor
curvature gauge~see also@20#2!. The scalar field fluctuations
obey the following equation of motion:

ẅ13Hẇ2
1

a2
¹2w1Vffw

52af̈1ḟS ȧ16Ha2
1

2a
¹2b D

5ȧḟ22aVf2
ḟ

2a
¹2b, ~7!

where an overdot denotes a derivative with respect to
time t. Starting from the Einstein equations,Gn

m58pGTn
m ,

in order to obtain an equation forw only one needs the
energy and momentum constraints in their lineariz
version—i.e. theG0

0 andGi
0 linear equations:

H

a
¹2b58pG~ḟẇ1Vfw12Va!

58pG
ḟ2

H

d

dt S H

ḟ
w D , ~8!

a ,i54pG
ḟ

H
w ,i . ~9!

Because of the absence of anisotropic stress, we also
ḃ12Hb52a/a ~this relation replaces the equalityF5C in
the longitudinal gauge! @20#. On substituting these two latte
equations in Eq.~7! one obtains

ẅ13Hẇ2
1

a2
¹2w1FVff12

Ḣ

H S 3H2
Ḣ

H
12

f̈

ḟ
D Gw50.

~10!

It is important to note that the effective potential for th
fluctuations can be rewritten as

e 2We observe that the equations in@20# are for a metric perturba-
tion which hasg0i5ab, i and notg0i5ab, i /2 as is stated there.
8-2
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Vff12
Ḣ

H S 3H2
Ḣ

H
12

f̈

ḟ
D 5Vff26H2S e2

1

3
e21

ė

3H
D ,

~11!

where we have introduced the~positive! slow-rollover pa-
rametere[2Ḣ/H2. This means that the self-consistent i
clusion of gravitational fluctuations changes the effective
tential for the field fluctuations. In particular, gravitation
fluctuations generally decrease the effective mass to firs
der in e.

Equation~10! is generally seen written in conformal time
The Fourier transform modes ofv5aw satisfy

vk91S k22
z9

z D vk50, z5a
ḟ

H
, ~12!

where a prime denotes a derivative with respect to the c
formal time h, dh5dt/a. On comparing the last equatio
with Eq. ~12! of @26# it is immediate to see thatw satisfies
the same equation as the Mukhanov variableQ. Therefore,
the uniform curvature gauge has the advantage of sing
out the true dynamical degrees of freedom~the matter ones!,
even if it has the disadvantage of being non-diagonal in
metric perturbations.

III. BEYOND LINEAR ORDER

To second order we consider a metric having the coe
cients
12350
-

r-

n-

g

e

-

g0052122a22a (2)

g0i52
a

2
~b ,i1b ,i

(2)!

gi j 5a2Fd i j 1
1

2
~] ix j

(2)1] jx i
(2)1hi j

(2)!G . ~13!

The above metric is the extension of the uniform curvat
gauge to second order:a (2) andb (2) are scalar perturbation
to second order. To second order, scalar, vector and te
perturbations do not evolve independently as is the cas
first order. For this reason we take into account second o
vector and tensor perturbations, represented by the di
genceless vectorx j

(2) and by the transverse and traceless t
sor hi j

(2) , respectively. In the above we have omitted fi
vector perturbations~which die away kinematically! and ten-
sor perturbations~which satisfy the usual equationḧ13Hḣ
2¹2h/a250). With this approximation we are neglectin
the EMT of vector and tensor perturbations, and their cor
lations with the scalar perturbations. We finally note that
choice in Eq.~13! ~including vector and tensor metric ele
ments to first order! fixes the gauge completely to secon
order.

The Einstein tensor expanded to second order is
G0
05G0

0(0)1dG0
0(1)1dG0

0(2)523H22
H

a
¹2b16H2a2

H

a
¹2b (2)16H2a (2)212H2a2

1
3

4
H2u¹W bu21

H

a
~¹W a•¹W b12a¹2b!1

1

8a2
@b ,i j b

,i j 2~¹2b!2#, ~14!

Gi
05Gi

0(0)1dGi
0(1)1dGi

0(2)522Ha ,i22Ha ,i
(2)18Haa ,i2

1

2a
Ha ,i¹

2b1
1

2a
¹W a•¹W b ,i2

H

2
¹W b ,i•¹W b2

1

4
¹2ẋ i

(2) , ~15!

Gj
i 5Gj

i (0)1dGj
i (1)1dGj

i (2)

5d j
i H 2~3H212Ḣ !12a~3H212Ḣ !12Hȧ1

1

a2
¹2a2

H

a
¹2b2

1

2a
¹2ḃ12a (2)~3H212Ḣ !12Hȧ (2)1

1

a2
¹2a (2)

2
H

a
¹2b (2)2

1

2a
¹2ḃ (2)1

H

a
¹W a•¹W b1

H

2
¹W b•¹W ḃ1S 1

4
u¹W bu224a2D ~3H212Ḣ !28Haȧ1S ȧ

2a
12

H

a
a D¹2b

2
2

a2
a¹2a1

a

a
¹2ḃ2

1

a2
u¹W au21

1

8a2
@b ,,mb ,,m2~¹2b!2#J 1H 1

2a
ḃ , j

,i 1
H

a
b , j

,i 2
1

a2
a , j

,i 1
1

2a
ḃ , j

(2),i1
H

a
b , j

(2),i2
1

a2
a , j

(2),i

1
1

a2
a ,ia , j2

H

a
b ,ia , j1

2

a2
aa , j

,i 2
2

a
Hab , j

,i 2
1

2a
ȧb , j

,i 2
1

a
aḃ , j

,i 1
1

4a2
~¹2bb , j

,i 2b ,k
,i b , j

,k!1
3

4
H~ ẋ j

(2),i1ẋ , j
(2)i1ḣ j

(2)i !

1
1

4
~ ẍ j

(2),i1ẍ , j
(2)i1ḧ j

(2)i !2
1

4a2
¹2hj

(2)iJ . ~16!
8-3
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To second order the scalar field is expanded as

f~ t,x!5f~ t !1w~ t,x!1w (2)~ t,x!. ~17!

The EMT of inflaton fluctuations

Tn
m5]mf]nf1dn

mL ~18!

to second order is

T0
05T0

0(0)1dT0
0(1)1dT0

0(2)

52F1

2
ḟ21V~f!G1ḟ2a2ḟẇ2Vfw1ḟ2a (2)2ḟw (2)˙ 2Vfw (2)2

1

2
ẇ22

1

2a2
u¹W wu2

2
1

2
Vffw222ḟ2a212ḟaẇ1

1

8
ḟ2u¹W bu2, ~19!

Ti
05Ti

0(0)1dTi
0(1)1dTi

0(2)52ḟw ,i2ḟw ,i
(2)2ẇw ,i12ḟaw ,i , ~20!

Tj
i 5Tj

i (0)1dTii
(1)1dTii

(2)

5F1

2
ḟ22VGd j

i 1@ḟẇ2ḟ2a2Vfw#d j
i 1F ḟẇ (2)2ḟ2a (2)2Vfw (2)

1
1

2 S ẇ224ḟaẇ2
1

4
ḟ2u¹W bu214ḟ2a21

1

a
ḟ¹W w•¹W b2

1

a2
u¹W wu22V,ffw2D Gd j

i 1
1

a2
w ,iw , j2

ḟ

2a
b ,iw , j . ~21!
o
e
m
om

a-
s

n in
he

d
is
IV. EQUATIONS TO SECOND ORDER

In this section we exhibit the second order equations c
responding to Eqs.~8!, ~9!, ~10!, using, when convenient, th
homogeneous and first order equations. We first give the
mentum constraint to second order, which is obtained fr
the expressions given in the Eqs.~15! and ~20!:

a ,i
(2)1

1

8H
¹2ẋ i

254pG
ḟ

H
w ,i

(2)1Si ~22!

wherex i are vector metric perturbations and

Si5
4pG

H
~ ẇ22ḟa!w ,i14aa ,i2

1

4aH
~a ,i¹

2b2a , jb ,i j !

2
1

4
b , jb ,i j . ~23!

The termSi can be written as] is1v i ; further,

a (2)54pG
ḟ

H
w (2)1s ~24!

where
12350
r-

o-

s[24pGew212a22
1

8
u¹W bu21

1

¹2 F4pG

H
¹W •~ ẇ¹W w!

1
1

4aH
~a ,k jb ,k j2a ,k

,kb , j
, j !G ~25!

contains the quadratic contribution of first order perturb
tions. We note thats includes non-local spatial contribution
which nevertheless to leading order ine and for long wave-
length have an ordinary behavior on large scales. One ca
fact approximate in such a limit, for the isotropic case, t
first term in the second line of Eq.~25! as (2pG)/Hwẇ. On
combining Eqs.~14!, ~19!, the energy constraint to secon
order, upon using Eq.~24! and the lower order constraints,
given by

H

a
¹2b (2)58pG

ḟ2

H

d

dt S H

ḟ
w (2)D 2Q116pGVs, ~26!

whereQ is defined as

Q512H2a22
3

4
H2u¹W bu22

H

a
~a ,ib

,i12a¹2b!

2
1

8a2
@b ,i j b

,i j 2~¹2b!2#28pGF1

2
ẇ21

1

2a2
u¹W wu2

1
1

Vffw212ḟ2a222ḟaẇ2
1

ḟ2u¹W bu2G . ~27!

2 8

8-4
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We observe that Eq.~26! for b (2) is reminiscent of a universe
filled with two components, with the termQ216pGVs
playing the role of a non-adiabatic pressure term@25#, upon
comparing with the first order equation~8!. From this anal-
ogy one may guess that the terms on the right hand sid
Eq. ~26! should approximatively cancel. Explicit calculation
confirm this property.

The equation of motion for the scalar field to second
der, after using all the previous constraints, is given by

ẅ (2)13Hẇ (2)2
1

a2
¹2w (2)

1FVff12
Ḣ

H S 3H2
Ḣ

H
12

f̈

ḟ
D Gw (2)5D, ~28!

with an homogeneous part which is the same as found@see
Eq. ~10!# for the first order fluctuations and an inhomog
neous termD which is purely quadratic in terms of the firs
order fluctuations. In particular one obtains

D5R1ḟ ṡ22Vfs1
ḟ

2H
~Q216pGVs! ~29!

and

R52
1

2
Vfffw222ḟaȧ1ȧẇ1

2

a2
a¹2w22Vffaw

1
ḟ

2a
a ,ib

,i2
1

4
Vfu¹W bu21

1

a2
a ,iw

,i2
H

a
b ,iw

,i

2
1

2a
ẇ¹2b1

ḟ

4
b ,i ḃ

,i2
1

2a
w ,i ḃ

,i2
1

a
b ,i ẇ

,i . ~30!

We have therefore obtained the perturbative equation
the scalar field fluctuations to second order, which is a no
result.

V. APPROXIMATE SOLUTION FOR LINEAR
PERTURBATION

The equation for the Mukhanov variable~12! does not
have an exact solution, except for the known case of
exponential potential@27#. Approximate schemes to obtai
the long wavelength solution, such as the slow-rollover te
nique @28#, exist. Any approximation must agree with th
solution to Eq.~12! with k50:

v uk505Cz1DzE dt

az2
~31!

whereC andD are constants@when the first term in Eq.~31!

dominates; the curvature perturbationz5Hw/ḟ is constant
to leading order#. For small wavelengths (k;0) C and D
include thek dependence of the modes. However, in orde
perform an adiabatic regularization, we not only need
solution for smallk, but for the whole spectrum. The slo
12350
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rollover approximation applied to Eq.~12! leads to a Besse
function whose infrared limit agrees with Eq.~31! only on
freezing a spurious time dependence of the Bessel solutio
the value on horizon crossing. This problem is the same
was encountered in@17# on trying to extend the approximat
solution for the inflaton fluctuations in a rigid space-time
fields with different mass. Therefore, the slow rollover pa
digm is not useful in order to obtain an approximate solut
over the wholek spectrum.

In order to consider the slow rollover of massive chao
inflation we take Ḣ.2m2/3, Ḧ.0 and neglect terms
O(Ḣ2/H4) @17#. During slow rollover the equation forw is
then

ẅk13Hẇk1F k2

a2
1m216ḢGwk50. ~32!

On comparing with the fluctuations in a rigid spacetime co
sidered in@17#, we see that the gauge-invariant fluctuatio
in Eq. ~10! have a negative mass sinceḢ.2m2/3: this is
due to the proper inclusion of gravitational fluctuations. Th
result is true for many inflationary models and it is related
the red spectrum of the curvature perturbations.

In order to have an approximate solution for the wholek
spectrum we proceed in analogy with@17# and we choose,
for largek,

wk5
1

a3/2S pl

4H D 1/2

Hn
(1)~lj! ~33!

wherej5k/(aH) and

l512
Ḣ

H2
511e

n5
3

2
2

1

3

m2

H2
23

Ḣ

H2
5

3

2
1

2

3

m2

H2
5

3

2
12e. ~34!

We note thatn for the gauge-invariant fluctuations differ
from the corresponding quantity for inflaton fluctuations
rigid space-times@17#.

The reason the procedure followed in@17# does not suc-
ceed in producing an approximate solution, valid over
whole range ofk, is the dependence ofn on H. In fact,
among the terms which are apparentlyO(Ḣ2/H4), the term

;ḢH2
]n

]H
ln z ~35!

leads to a term which is of orderO(Ḣ/H2),

;OS Ḣ2

H4D F ln
k

H
1

1

2 S H0
22H2

Ḣ
D G , ~36!

making the approximation not valid for smallk and at large
times. For this reason we consider Eq.~33! only as an ap-
proximation for modes which are still inside the Hubble r
8-5
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dius. We also note that the solution for the ultraviolet regi
in Eq. ~33! is the same as that of the slow-rollover appro
mation, although hereḢ.const and note.const.

On considering the infrared limit for the gauge-invaria
fluctuations in Eq.~31! we know thatwk;O(1/H), since
ḟ;const. Fork<aH we must to replace the solution in Eq
~33! in order to reproduce the correct behavior in the infra
by

wk5
1

a3/2S pl

4H D 1/2S H~ tk!

H~ t ! D 2

H3/2
(1)~lj!, ~37!

wheretk is a time related to the instant for which the modek
crosses the Hubble radius. We leave the details of estima
the timetk to Appendix A and give the Hubble parameter f
this time value:

H~ tk!5H0A112
Ḣ0

H0
2

log
l0k

H0n0
. ~38!

We note that we have a nearly scale invariant spectrum
to the dependence ontk .

We also note that the amplitude of the curvature pertur
tions, zk5Hwk /ḟ, associated with the solution in Eq.~37!,
need not obey the observational constraints (k3/2uzku
;1025). The reason is that the spectrum is red tilted and
are considering modes which could have exited the Hub
radius much earlier than the ones relevant for observati
Only if the duration of inflation is minimal in order to solv
the horizon problem do the curvature perturbations ass
ated with Eq.~37! satisfy the observational constraints.

Cosmological fluctuations are canonically quantized
usual and we shall consider the vacuum defined by Eqs.~33!
and ~37!:

ŵ~ t,x!5
1

~2p!3 (
k

@wk~ t !eik•xb̂k1wk* ~ t !e2 ik•xb̂k
†#

~39!

where theb̂k are time-independent Heisenberg operators

VI. ADIABATIC SUBTRACTION

We now compute the integrals obtained on taking the
pectation values of the relevant operators. The strateg
slightly different from that of our previous calculation@17#
since the mode function is obtained by matching two
proximate solutions. Therefore we split the integral:

E
,

1`

dk→E
,

naH/l

dk1E
naH/l

1`

dk ~40!

where,5CH0 is an infrared cutoff related to the beginnin
of inflation3 @29,30# and k5naH/l is the turning point of
the Bessel function in Eq.~33!. We substitute the infrared

3See also@17# for numerical considerations on the initial states
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solution ~37! in the first integral and the ultraviolet solutio
~33! in the second integral. For the ultraviolet part we e
ploy, as in the previous article@17#, dimensional regulariza-
tion using ad dimensional space measure. Subsequently
adiabatic subtraction is performed in order to obtain
renormalized quantities.

From our previous calculation we know that the leadi
contributions come from terms which contain^w2&, while
terms such aŝ¹mw¹mw& are more ultraviolet and therefor
non-leading. By the symbol̂•••& we denote the averag
over the quantum state defined by Eqs.~33! and ~37!. It is
important to note that the standard fourth order adiab
subtraction is sufficient to regularize the EMT of cosmolo
cal fluctuations as well. In fact, the terms which apparen
would not be regularized by a fourth order expansion@see
the termb ,i j b

,i j 2(¹2b)2 in the G0
0 equation~14!, for in-

stance# vanish on averaging over an homogeneous state
an example of the calculations we exhibit the details of
calculation of^w2&REN.

The ultraviolet and infrared integrals are respectively

^w2&UV5
\

16p2
H2H A1B

m2

H2
1C

H2

m2
2S 21

2

3

m2

H2D
3S 1

2p1/2D d23S n
aH

l D d23

GS 1

2
2

d

2D J 1O~d23!,

~41!

^w2& IR5
\

4p2

1

l2 S H0

H~ t ! D
4

H2
1

6e0
H S 122e0log

l l

Hn D 3

2~122e0loga!3J , ~42!

wheree052Ḣ/H0
2, A, B andC are constants with a compli

cated dependence on hypergeometric functions and we
taken, for the calculation of Eq.~42!, l0 /H0n0.l/Hn as is
done for the case of thetk derivation in Appendix A. At the
end of inflation loga→1/(2e0) which is the inverse of the
slow-rollover perturbation parameter. Therefore, in the ab
expression, in order to be as accurate as possible toward
end of inflation we have included all the leading logarithm
terms which are multiplied by the small parametere0. The
adiabatic fourth order is~see Appendix B and@17#!:

^w2& (4)5
\

16p2
H2H 127

45
2

43

90

m2

H2
1

29

15

H2

m2
2S 21

2

3

m2

H2D
3S 1

2p1/2D d23

~am!d23GS 1

2
2

d

2D1OS 1

a3D J
1O~d23!, ~43!

and the resulting renormalized quantity is
8-6
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^w2&REN5 lim
d→3

~^w2& IR1^w2&UV2^w2& (4)!

5
\

4p2

1

l2 S H0

H~ t ! D
4

H2
1

6e0
H S 122e0log

l l

Hn D 3

2~122e0loga!3J 1
\

16p2
H2H A1B

m2

H2

1C
H2

m2
24S 11

1

3

m2

H2D lnS nH

lmD2
127

45
1

43

90

m2

H2

2
29

15

H2

m2
1OS 1

a3D J . ~44!

The leading behavior of the renormalized correlator at
beginning of inflation, which actually originates in the infr
red region, grows with loga:

^w2&REN;
\

4p2
H2S H0

H D 4

ln a. ~45!

Its time derivative is

d

dt
^w2&REN;

\

4p2

H0
4

H
12eH^w2&REN

5
\

4p2

H0
4

H
1

2

3

m2

H
^w2&REN. ~46!

We note that this result is very different from the de Sit
result (H constant in time ande50) since the second term
on the right hand side may dominate for large times.

The above result in Eq.~45! is reminiscent4 of the usual
Hartree-Fock term formulas for stochastic inflation@31# @see
Eq. ~5! of @32##:

d

dt
^w2&REN5

\

4p2
H322

m2

3H
^w2&REN. ~47!

However, Eqs.~46! and ~47! differ not only in the driving
terms, but in particular in the mass term: in our result ther
a negative mass term, whereas in the stochastic approa
rigid de Sitter space time there is a positive mass term.
result ~46! is completely consistent with Eq.~32! where the
gravitational terms change the sign of the mass term in
evolution equation for the fluctuations. The difference
therefore due to the inclusion of gravitational fluctuatio
which are not properly taken into account in stochastic in
tion.

At the end of inflation, for the characteristic time scale
slow rolloverdt;3H0 /m2, the correlator in the expressio
in Eq. ~44! saturates to

4We note that this resemblance holds on only retaining the lin
terms in loga.
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^w2&REN
MAX;

\

4p2
H2S H0

H D 4 1

6e0
5

\

8p2

H0
6

H2

1

m2
. ~48!

It is instructive to also computêwẇ&REN and^ẇ2&REN by the
same method, using the approximate relation for the infra
modesẇk.2(Ḣ/H)wk . The final result@omitting all the
steps in Eqs.~41!, ~42!, ~43!, ~44!# is

H^wẇ&REN5H^wẇ& IR1
\

16p2
H4FD1E

m2

H2

1
8

3

m2

H2
lnS nH

lmD141
4

9

m2

H2
1OS 1

a3D G ,

~49!

^ẇ2&REN5^ẇ2& IR1
\

16p2
H4FF1G

m2

H2
12

m2

H2
lnS nH

lmD1
61

60

2
27

10

m2

H2
1OS 1

a3D G , ~50!

whereD, E, F andG may be written in terms of generalize
hypergeometric functions and for the infrared contributi
one has5

^wẇ& IR.He^w2& IR, ~51!

^ẇ2& IR.H2e2^w2& IR. ~52!

VII. APPROXIMATE SOLUTION FOR SECOND ORDER
SCALAR PERTURBATIONS

An approximate solution for the leading quantities to se
ond order can be obtained for large scales where the infra
modes dominate. Let us considerw (2) which satisfies Eq.
~28!. On neglecting termsO(Ḧ/H3,Ḣ2/H4) and the second
order derivative we obtain

3Hẇ (2)2m2w (2).2Vf

m2

6H2

w2

Mpl
2

, ~53!

which can be rewritten, on also using the homogene
equation of motion for the inflaton, as

3
d

dt
~Hw (2)!.ḟ

m2

2H

w2

Mpl
2

. ~54!

Let us note that we use the notationMpl
2 51/(8pG) for the

~reduced! Planck mass definition. In the same approximati
the energy constraint is

ar

5More precisely, one may obtain the infrared contribution fro

the behavior of the Mukhanov variable,̂wẇ& IR.@He1Ḧ/

(2Ḣ)#^w2& IR, where the second term is of orderO(e2).
8-7
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2a (2)~3H21Ḣ !.26
Ḣ

Mpl
2

w21
1

Mpl
2 F2ḟẇ (2)2Vfw (2)

2
1

2
Vffw2G . ~55!

The expression we want iŝw (2)&, which is averaged ove
the initial vacuum state, and can be obtained by using
leading contribution in Eq.~45! to the quadratic correlator o
the first order fluctuationŝw2&REN. We obtain, directly from
the last equation,

^w (2)&.
\

24p2
ḟ

H0
2m2

Mpl
2 e0

2 F 1

4H3
1

1

2HH0
2

ln
H

M G ~56!

whereM is a constant with the dimensions of a mass. It
also convenient to exhibit a slightly different form, which
of course equivalent in the largea limit at the end of inflation
since the infrared contributions are then a maximum.

Sinceḟ is almost constant, one may also obtain, from E
~54!,

^w (2)&MAX .
ḟ

4HMpl
2 ^w2&REN

MAX . ~57!

It is also useful to write the contribution tôa (2)& which we
shall later use to study the back-reaction effects on so
scalar observables. One obtains, for its leading behavior

^a (2)&MAX .
ḟ

2HMpl
2 ^w (2)&MAX 2

3

4

1

Mpl
2

Ḣ

H2
^w2&REN

MAX

.
e

Mpl
2 ^w2&REN

MAX . ~58!

VIII. APPROACHES TO THE BACK REACTION

One may follow different approaches in order to study
back-reaction effects due to cosmological fluctuations. In
following we shall consider two methods in order to tack
this issue.

One consists of considering only the first order pertur
tions, then imposing to first order the energy and momen
constraints and finally defining an effective EMT by inclu
ing all the quadratic terms present in the Einstein equatio
Subsequently one averages everything over the quan
vacuum and first order quantities disappear. One finds
the effective EMT which appears in the averaged Einst
equations is modified by the back reaction. The results
tained in Secs. II, V and VI are sufficient for this purpos
However, one still has to study how any observable avera
over the quantum vacuum is then affected.

A second approach is related to the standard perturba
analysis of the Einstein equations up to second order. In
case we impose the energy and momentum constraints
study the inflaton equation of motion perturbatively up
second order. One does not define any modified EMT
12350
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directly studies in this framework any observable averag
over the quantum vacuum. In order to pursue this appro
results given in Secs. III, IV and VII are also necessary.

A. Energy-momentum tensor of cosmological fluctuations

By the EMT of cosmological fluctuations we mean th
second order part both of the scalar field EMTand of the
Einstein tensor which is quadratic in first order fluctuation

tn
m[Tn

m quadratic2Mpl
2 Gn

m quadratic. ~59!

This method of considering the EMT of gravitational flu
tuations is treated in textbooks@33# and has also been prev
ously used in@7,9,13#. In this scheme one considers th
modified Einstein equationsMpl

2 Gn
m(0)5Tn

m(0)1^tn
m& which

therefore include back-reaction effects.
Let us consider the EMT of cosmological fluctuations a

eraged over the state annihilated by the operatorb̂ defined in
Eq. ~39!.

For a generic potential the leading terms in the ene
density are

^t0
0&;2

Vff

2
^w2&112H2Mpl

2 ^a2&

52
Vff

2
^w2&26Ḣ^w2&. ~60!

It is important to note that the second term on the rig
hand side is in generalpositiveand larger than the first dur-
ing inflation. This second term is the contribution of metr
perturbations. On using the slow-rollover parameterse and
h ([Mpl

2 Vff /V) we can rewrite the leading terms in Eq
~60! during slow rollover as

^t0
0&[2«;2

Vff

2
^w2&S 124

e

h D . ~61!

Analogously the average pressure is

^t j
i &[pd j

i ;d j
i S 2

Vff

2
^w2&112H2Mpl

2 ^a2& D;2«d j
i .

~62!

We now restrict the analysis to a quadratic potential w
h.e. On using Eq.~45! the leading behavior for the initia
time of the energy and pressure density is

«REN;2pREN;2
3

2
m2^w2&REN;2

3\

8p2
m2H2S H0

H D 4

ln a

52
9\

8p2
eH0

4ln a. ~63!

Further, on using Eq.~48!, we have the maximum value

«REN
MAX;2pREN

MAX;2
3\

16p2

H0
6

H2
. ~64!
8-8
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We then obtain that for

H0;~16p2/\!1/6H2/3Mpl
1/3 ~65!

the EMT tensor of cosmological fluctuations cannot be
glected with respect to the energy content of the homo
neous classical inflaton.

As a final remark we note that the amplitude and tim
dependence of the EMT depends on the approximation u
for linear perturbations. The slightly different results in t
amplitude of the EMT with respect to@7,9# are explained in
Appendix C.

B. Back reaction on the geometry

In the perturbative approach to the Einstein equations
back-reaction effect is analyzed by evaluating perturbativ
quantities which characterize the geometry.

The expansion scalar is defined as

Q5¹mum, ~66!

whereum is a four-vector field defining the comoving fram
The four-vector is normalized,umum521. To second order
the four vector is

u0512a1
3

2
a22a (2), ui5

b ,i1b (2),i

a
~67!

and the expansion scalar reads

Q5Q (0)1Q (1)1Q (2)

53H23Ha1
1

a
¹2b23Ha (2)1

1

a
¹2b (2)1

9

2
Ha2

1
1

a
¹W a•¹W b1

1

4
¹W b•¹W ḃ. ~68!

The leading terms, once we average, are

^Q&5Q (0)1^Q (2)&

53HS 11
3

2
^a2&2^a (2)& D

.3HS 12e
^w2&MAX

4Mpl
2 D ~69!

where the results given in Eqs.~45! and~58! have been used
together with the relationsa5ḟ/(2HMpl

2 )w and ḟ2

522ḢMpl
2 , in order to calculate the only two non

negligible second order contributions. We note that by le
ing terms we mean the first corrections ine which are also
leading in loga, thus essentially including the infrared co
tribution present in the renormalized quantities, as alre
discussed. We observe that the result in Eq.~69! is com-
pletely consistent with the considerations on the EMT ma
in the previous subsection. When the magnitude of the E
of cosmological fluctuations is of the same order as tha
the background̂Q& changes significantly.
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The result in Eq.~69! is in contrast with@12#, where a
vanishing result was obtained for the back reaction on
expansion ratêQ& and where only first order classical pe
turbations are considered. We note that also in our ga
choice Q is related to the Einstein tensor for long wav
lengths and leading order ine,

Q.3HS 12a2a (2)1
3

2
a2D.A23G0

0, ~70!

and therefore the result in Eq.~69! could also be obtained by
expandingA224pGT0

0 to second order and averaging ov
the quantum vacuum. The difference with respect to@12#
may be due to the absence of second order fluctuation
@12# and/or to a peculiarity of inflation driven by a quadrat
potential.

We now consider another geometric scalar observa
which is associated with the rate of change of the expans
scalar: i.e.,

V5un¹n¹mum. ~71!

Its expansion up to second order is given by

V5V (0)1V (1)1V (2)

53Ḣ26Ḣa23Hȧ2
H

a
¹2b1

1

a
¹2ḃ26Ḣa (2)23Hȧ (2)

2
H

a
¹2b (2)1

1

a
¹2ḃ (2)112Ḣa2112Haȧ

24
H

a
¹W a•¹W b1

H

a
a¹2b2

1

a
a¹2ḃ1

1

4

d

dt
~¹W b•¹W ḃ !

1
1

a

d

dt
~¹W a•¹W b!1

1

a2
¹W b•¹W ~¹2b!. ~72!

For the homogeneous caseQ53H and thereforeV

53Ḣ. During slow rollover for a massive inflatonḢ
(.2m2/3) is constant in time, and therefore is a gaug
invariant quantity up to second order@6,34#.

The leading terms, once we average, are

^V&5V (0)1^V (2)&

53Ḣ26Ḣ^a (2)&23H^ȧ (2)&112Ḣ^a2&112H^aȧ&

.3Ḣ@11F~e, loga!# ~73!

where F(e, loga).eF1(H)1e2logaF2(H)1••• . Therefore
one observes that in this case the leading corrections to o
e which come from the infrared region cancel, while the
were present in̂ Q&. Let us again note that at the end
inflation driven by a massive inflaton loga.1/(2e0) so that
any loga correction effectively reduces the perturbative o
der in powers ofe of the correction.

The result on̂ V& should be interpreted with care sinc
we are not able to go to higher order self-consistently wit
our approximation. We also note that this vanishing res
8-9
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may also be a peculiarity of inflation driven by a quadra
potential. In any case the rate of change of the Hubble
rameter can also be studied more carefully at the backgro
level, without considering any back reaction. Including t
first non-trivial corrections one finds

Ḣ.2
m2

3 S 12
1

9

m2

H2D . ~74!

To conclude this section we stress that in both the res
~63! and ~69! the corrections to the background value
which grow with time, areO(e). In the de Sitter limit (e
50) these corrections vanish, consistently with the abse
of physical scalar perturbations to first order for a unive
driven by a cosmological constant.

IX. DISCUSSION AND CONCLUSIONS

The renormalized EMT of cosmological fluctuations du
ing inflation with a quadratic potential is studied. With r
spect to our previous work@17# we have self-consistently
taken into account the gravitational fluctuations accompa
ing the scalar field fluctuations.

We find that the renormalized EMT of cosmological flu
tuations during slow rollover carries negative energy den
and has a de Sitter–like equation of state to leading or
The negative sign for the renormalized energy density is
to the inclusion of gravitational fluctuations~see also@7,9#
for the same claim regarding long-wavelength modes! and
did not appear in the previous calculation in rigid space-ti
@17#. This effect is generally true for single field inflationa
models withe.h/4, as is seen from Eq.~61!.

The back-reaction problem was also treated up to sec
order in perturbation theory. For this purpose we exten
the UCG gauge beyond linear order by taking into acco
vector and tensor perturbations to second order. The in
sion of vector and tensor perturbations to second orde
important in order to obtain the correct equations for
second order scalar perturbations. We derived the equa
for the second order scalar field fluctuations and approxi
tively solved the system of second order equations for sin
field inflation during slow rollover. We computed the expa
sion rateQ and its coordinate invariant derivativeV to sec-
ond order, and we found that the expansion rate is decre
by the EMT of cosmological fluctuations, whileV is not
affected to leading order. A non-vanishing correction forV
will probably appear in the next order.

We do not find evidence that the back reaction of cosm
logical fluctuations is a gauge artifact as is claimed in@10#.
The second order corrections to the local expansion ratQ
are non-vanishing and are computed to lowest order in
~69!. We note that the back reaction of cosmological sca
fluctuations vanishes in the de Sitter limit (e50), as it
should. SinceQ is not a gauge-invariant quantity in th
model under consideration@6,34#, we also computedQ in
the gauge wherein the inflaton is a clock: such a check
done by a completely new calculation~illustrated in Appen-
dix C! in order to also study the transformation properties
the metric elements. We confirm that back reaction is
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O(e) effect, but its time behavior is different~there is no
loga enhancement from the infrared region! because of the
differing times in the two frames. In this new gauge calcu
tions are also more involved since a higher accuracy in
solution for the Mukhanov variable would be required.

It is interesting to note that the inclusion of gravitation
fluctuations systematically contributes negatively. To first
der gravitational fluctuations contribute negatively to the
fective mass for the fluctuations, and to second order ca
negative energy density. The self-consistent inclusion
gravity also changes the stochastic picture in an inflation
background.

The approach we have used is mean field theory o
curved space-time. The procedure of averaging over a qu
tum state with a cutoff related to the patch which underg
inflation can be seen as a spatial average over the par
horizon. This average is completely different from the av
age over the Hubble region during inflation used in the s
chastic approach@31# and in which gravitational fluctuation
were neglected. We think that the differences between
results of stochastic inflation and those found here are
just due to a different coarse graining, but are also due to
inclusion of gravitational fluctuations. We think that the r
lation between these two different approaches should be
ther investigated.
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APPENDIX A: COMPARISON WITH WKB METHODS

In this appendix we show how the procedure used in t
paper to match solutions which are good approximations
different ranges ofk space includes the recent application
the WKB method in the context of cosmological perturb
tions @35,36#. In this paper we have chosen a Bessel form
Eq. ~33! for modes which are still inside the Hubble radiu
The scaled equation (ck5a3/2wk) associated with Eq.~32! is
given by

c̈k1F S k

aHn8
D 2

21GH2n82ck50, ~A1!

where n85n/l. The turning point of this equation is ob
tained for

a~ t !5
k

H~ t !n8~ t !
. ~A2!

So, for our calculation, we can neglect the weak time dep
dence on the right side of Eq.~A2! with respect the expo-
nential dependence on the left side and obtain the follow
result for the turning point:
8-10
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tk.2
H0

Ḣ0
S 12A112

Ḣ0

H0
2

log
l0k

H0n0
D .

1

H0
log

l0k

H0n0
.

~A3!

The solution near the turning point of Eq.~32!, on using the
WKB method, is given by

wk5
1

a3/2
@B1Ai „ak

1/3~ t2tk!…1B2Bi„ak
1/3~ t2tk!…#.

~A4!

Around the turning point we can consider the following a
proximate expression@37# in Eq. ~33!:

Hn
(1)~x!5

w

A3
ei [p/61n(w2w3/32arctanw)]H1/3

(1)S n

3
w3D1OS 1

n D
~A5!

or

Hn
(1)~x!'S 2

n D 1/3

ein(w2w3/32arctanw)H Ai F2S n

2D 2/3

w2G
2 i BiF2S n

2D 2/3

w2G J , ~A6!

wherew5(1/n)Ax22n2. We have checked numerically tha
the above approximations are remarkably good. The A
functions are precisely the functions used to match the W
solution, Eq.~A4!, inside and outside the Hubble radius@36#.
In particular around the turning point the match is specifi
by

2S n~ tk!

2 D 2/3

w2'ak
1/3~ t2tk!. ~A7!

Therefore, by choosing a Bessel form inside the Hubble
dius one already has the correct form in the vicinity of t
turning point. This cannot be achieved with the WKB a
proximation, since the WKB solution is singular in corr
spondence of the turning point.

APPENDIX B: THE FOURTH ORDER ADIABATIC
EXPANSION

In order to remove the divergences which appear in
integrated quantities as poles in theG functions, we shall
employ the method ofadiabatic subtraction@38#. Such a
method consists of replacing our functions with an expans
in powers of derivatives of the logarithm of the scale fact
This expansion coincides with the adiabatic expansion in
duced by Lewis in@39# for a time dependent oscillator.

Usually it is more convenient to formulate the adiaba
expansion by using the modulus of mode functionsxk

5uwk /A2u and the conformal timeh @38# (dh5dt/a). We
follow this procedure and write an expansion in derivativ
with respect to the conformal time~denoted by a prime! for
xk . We then go back to cosmic time and insert the expans
in the expectation values we wish to compute. Adiabatic
12350
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pansions in cosmic time and conformal time lead to equi
lent results, because of the explicit covariance under t
reparametrization@40#.

The variablexk satisfies the Pinney equation

ẍk13Hẋk1F k2

a2
1m216ḢGxk5

1

a6xk
3

. ~B1!

Following @17# we rewrite Eq.~B1! in conformal time in the
following way:

~axk!91Vk
2~axk!5

1

~axk!
3

~B2!

where

Vk
25k21m2a22

1

6
a2R̃ ~B3!

and R̃ is

R̃5R236Ḣ ~B4!

with R56a9/a3 the Ricci curvature. From Eqs.~B2!, ~B3!,
~B4! one obtains the expansion forxk up to the fourth adia-
batic order:

xk
(4)5

1

a

1

Vk
1/2S 12

1

4
e21

5

32
e2

22
1

4
e4D ~B5!

whereVk is defined in Eq.~B3! ande2 ,e4 are given by

e252
1

2

Vk9

Vk
3

1
3

4

Vk8
2

Vk
4

e45
1

4

Vk8

Vk
3

e282
1

4

1

Vk
2
e29 . ~B6!

The solution in Eq.~B5! must be expanded again sinceR̃
is of adiabatic order 2. Thereforexk

(4) is

xk(4)5
1

c1/2

1

Sk
1/2H 11

1

4
c

R̃

6

1

Sk
2

1
5

32
c2

R̃2

36

1

Sk
4

1
1

16

1

Sk
4 Fc9S m22

R̃

6
D 22c8

R̃8

6
2c

R̃9

6
G

2
5

64

1

Sk
6 Fc82m422c82m2

R̃

6
22c8m2c

R̃8

6
G

1
9

64

1

Sk
6

c
R̃

6
c9m22

65

256

1

Sk
8

c
R̃

6
c82m4

1
5

e2*
2 2

1
e4* J ~B7!
32 4
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wherec5a2 and

Sk5~k21a2m2!1/2

e2* 52
1

2

Sk9

Sk
3

1
3

4

S
k

82

Sk
4

e4* 5
1

4

Sk8

Sk
3

e282
1

4

1

Sk
2
e29 . ~B8!

APPENDIX C: COMPARISON WITH CALCULATIONS IN
DIFFERENT GAUGES

In @7,9# a different procedure was followed. The calcul
tion was performed in the Newtonian gauge@see Eq.~5!# and
the regularization of the metric perturbation^F2& was con-
sidered. We can compare our results by using the rela
between field fluctuationsw in the uniform curvature gaug
and field fluctuationswN in the Newtonian gauge:

w5wN1
ḟ

H
F. ~C1!

Assuming thatḞ in negligible on large scales, we obta
@25#

w.
ḟ

H S e21

e DF, ~C2!

which, on using the approximation used in@7,9,25#, leads to

wk.
ḟ

H S e21

e D k23/2
m

2A6Mpl
F12

log@k/~aH!#

11 log@aend/a#G ,
~C3!

where aend is the scale factor at the end of inflation. Th
approximation for the gauge-invariant field fluctuations
different from our Eq.~37!.

After this paper appeared in the electronic form, it w
suggested that corrections to^Q& should disappear in the
gauge wherein the inflaton is a clock, homogeneous in sp
Let us note that the inflaton can work as a clock only whe
is not oscillating, as is the case in the slow-rollover regim

In order to check this claim we performed a new calcu
tion, since the gauge where the inflaton is homogeneou
different to the one used in this paper. The gauge in wh
the inflaton is unperturbed is described by a metric with th
scalar degrees of freedom and, again, this is a choice w
fixes the gauge completely because of the presence o
scalar field. As before we do not pay attention to the vec
and tensor degrees of freedom and therefore we conside
following second order line element depending only on th
scalars:

ds252~112ã12ã (2)!d t̃22a~ b̃ ,i1b̃ ,i
(2)!d t̃dx̃i

1a2@d i j ~122c̃22c̃ (2)!#dx̃idx̃j , ~C4!
12350
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where we have takenã( t̃ )5a( t̃ ), since in the perturbative
approacha( t̃ ) andã( t̃ ) satisfy the same equation int and t̃ ,
respectively~however the scale factor is not observable
the case under consideration!. We expect thatc̃ will satisfy a
dynamical equation of motion in this gauge.

Instead of solving the system in this gauge, we find so
tions for the metric perturbations in Eq.~C4! by using its
gauge relation with the metric in Eq.~13!. An infinitesimal
coordinate transformation up to second order@6#,

xm→ x̃m5xm1e (1)
m 1

1

2
~e (1),n

m e (1)
n 1e (2)

m ! ~C5!

~where e (1) and e (2) are the coordinate changes to first
second order, respectively!, induces the most generic chang
in a geometric objectT5T(0)1T(1)1T(2):

T(1)→T̃(1)5T(1)2Le(1)
T(0) ~C6!

T(2)→T̃(2)5T(2)2Le(1)
T(1)1

1

2
~Le(1)

2 T02Le(2)
T0!.

~C7!

The time reparametrization which relates the two gauges
be found by imposing that the field perturbation be zero
first and second order in the metric~C4!. According to Eqs.
~C6!, ~C7! the field transforms as

w→w̃5w2e (1)
0 ḟ ~C8!

w (2)→w̃ (2)5w (2)2e (1)
0 ẇ1

1

2
@e (1)

0 ~e (1)
0 ḟ ! .2e (2)

0 ḟ#,

~C9!

which leads to

e (1)
0 5

w

ḟ
5

z

H
~C10!

e (2)
0 5

2

ḟ
w (2)2

1

ḟ2
wẇ.2

zż

H2
2

1

2

Ḧ

ḢH2
z2,

~C11!

where we have used the gauge invariant curvature pertu
tion z5Hw/ḟ, which is constant on large scales and t
expression in Eq.~57!. From the above we understand th
we need a large time reparametrization in order to keep
scalar field homogeneous in space.

The above transformation, up to second order, is not
one required since it would lead to the presence of a sc
second order contribution in the traceless part of the me
which depends on a quadratic form in] ib and ] ie (1)

0 . In
order to destroy this contribution a scalar second order tra
formation in the spatial part of the coordinates is also
quired,e (2)

i 5] ie (2)
s , while still havinge (1)

i 50. We find
8-12
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e (2)
s 5

1

2a
be (1)

0 2
1

2a2
~e (1)

0 !21
3

2

] i] j

~¹2!2 F 1

a2
e (1)

0 Di j e (1)
0

2
1

2a
~e (1)

0 Di j b1bDi j e (1)
0 !G , ~C12!

whereDi j 5] i] j21/3¹2d i j .
On using the gauge transformation~C6! we have the fol-

lowing relation for the metric fluctuations to first order:

ã5a2 ė (1)
0 , b̃5b2

2

a
e (1)

0 , c̃5He (1)
0 . ~C13!

On solving for the metric fluctuations in the UCG gaug
using Eqs.~8!, ~9! we have

a5ez,
¹2b

a
52eż, ~C14!

whereas in the unperturbed scalar field gauge we have

ã52
ż

H
,

¹2b̃

a
52eż22

¹2z

aH
, c̃5z. ~C15!

From the last relations we see that the cost of keeping
scalar field homogeneous in space is to squeeze a large
tuation in the metric, i.e.c̃. In the UCG gauge metric fluc
tuations are suppressed with respect toz, i.e. O(eż,ez),
whereas in the gauge~C4! they are not. To second order w
have

ã (2)5a (2)2e (1)
0 ȧ22aė (1)

0 2
ė (2)

0

2
1

1

2
e (1)

0 ë (1)
0 1 ė (1)

02

5a (2)22e2z22
ė (2)

0

2
1

1

2

Ḧ

H3
z21

ż2

H2
1

1

2

zz̈

H2
,

~C16!

where, from Eq.~58!, one hasa (2).2e2z2. Moreover, we
find for b (2) a transformation such that

b̃ (2)5b (2)2
1

a
e (2)

0 1aė (2)
s 1

1

2a

d

dt
~e (1)

0 !21
] i

¹2 F2

a
] ie (1)

0 ė (1)
0

2e (1)
0 ] i ḃ2He (1)

0 ] ib2 ė (1)
0 ] ib2

4

a
a] ie (1)

0 G . ~C17!

Let us remember that we chose not to exhibit in detail
vector and tensor degrees of freedom, but it is straight
ward to do so. It is suffices to say that to destroy the poss
vector degrees of freedom arising ing̃0i , a non-vanishing
vector component in the coordinate transformation to sec
order,e (2)

' i , has to be introduced, but this does not affect

scalars to second order,ã (2), b̃ (2) and c̃ (2).
Finally, for this last scalar we find
12350
,

e
uc-

e
r-
le

d
e

c̃ (2)5
H

2
e (2)

0 2
H

2
e (1)

0 ė (1)
0 2

e (1)
02

2
~Ḣ12H2!1

1

6a2
] ie (1)

0 ] ie (1)
0

2
1

6a
] ib] ie (1)

0 1
1

6
¹2e (2)

s

5
H

2
e (2)

0 2z22
1

2H
zż1

1

6a2
] ie (1)

0 ] ie (1)
0 2

1

6a
] ib] ie (1)

0

1
1

6
¹2e (2)

s . ~C18!

We are now ready to compute the expansion rateQ̃,
which is a gauge dependent observable, in the unpertu
~uniform! field gauge~UFG!, while neglecting vector and
tensor contributions and only keeping terms up to sec
order:

Q̃53H̃23H̃ã1
1

a
¹̃2b̃23c̃823H̃ã (2)1

1

a
¹̃2b̃ (2)23c̃ (2)8

1
9

2
H̃ã213ãc̃826c̃c̃81

1

a
¹̃W ã•¹̃W b̃2

3

a
¹̃W b̃•¹̃W c̃

1
1

4
¹̃W b̃•¹̃W b̃8. ~C19!

Let us observe that the prime denotes the derivative w
respect tot̃ , and the relation between the two time deriv
tives may be written as

]

] t̃
5F12

ż

H
2ez1S 2

1

2
e22

1

4

Ḧ2

Ḣ2H2

1
1

4ḢH2

d3

dt3
~H !D z21S e

H
1

1

2

Ḧ

ḢH2D zż1
1

H2
ż2G ]

]t

2
1

2
] i ė (2)

s ]

]xi
. ~C20!

Clearly the two time derivatives coincide on acting on se
ond order terms if one does not go beyond such an appr
mation; however, one must exercise care for terms of low
order on going from one description to the other.

Further the difference between the spatial derivatives
given by

]

] x̃i
5

]

]xi
2] ie (1)

0 ]

]t
~C21!

which, however, is not important since we shall neglect s
tial derivatives.

One may wish to write the corrections to the unperturb
Q̃53H̃ in the x̃ frame, while expressing the corrections
terms of the already known quantities~in the x frame!. For
this case one must be careful in analyzing to second orde
fourth term of the above expression,23]c̃/] t̃ .
8-13
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To leading order, on averaging and neglecting terms w
spatial derivatives, we have

^Q̃&53H̃F12^ã (2)&1
3

2
^ã2&1

1

H̃
^ã ċ̃&2

1

H̃
^ċ̃ (2)&

2
2

H̃
^c̃ ċ̃&2

1

H̃
K ]t

] t̃
ċ̃L G

.3H̃F11
e

H
^zż&1

1

H2
^ż2&2

1

4

Ḧ

H3
^z2&G

53H̃F11
1

2M pl
2 S 2

1

H
^wẇ&2

1

Ḣ
^ẇ2&

1O~e2^w2&!D G53H̃F11
1

2M pl
2

O~e,e2^w2&!G ,

~C22!

where on going from the first to the second line the ter
O(zż) cancel. The infrared contributions to the terms in t
last two lines vanish, leading to corrections to the expans
rate in the UFG gauge of orderO(e), which are of the same
order as the neglected gradient terms. The corrections to
expansion rate in the two frames are therefore of the s
order in the slow-roll parameters.

If we choose to rewrite the averaged expression forQ̃ in
y

s

e

e

12350
h

s

n

he
e

terms oft, starting from Eq.~C19!6 and using the relation in
Eq. ~C20! ~omitting negligible spatial derivatives! to also
computeH̃( t̃ )5H(t)]t/] t̃ , one finds

^Q̃&53HS 12e
^w2&

4Mpl
2 D , ~C23!

which is completely consistent with our result in Eq.~69!
and with the fact thatQ is a scalar~but not gauge invariant!,
which, therefore, transforms according to

Q̃~ x̃m!5Q~xm!. ~C24!

We have then checked that the back reaction of sc
cosmological fluctuations isO(e) in the expansion rate: suc
a correction indeed vanishes in the de Sitter limit, whe
scalar perturbations are absent. One may find a suit
gauge—for instance the UFG, which is valid only durin
slow rollover—in which the back reaction does not grow
time ~because of cancellations of the infrared pieces!. How-
ever, such a gauge seems inconvenient since the inflaton
not be used as a clock in the subsequent stage of cohe
oscillations. We feel that it is more proper to ask what t
time behavior of the back reaction is in a frame which can
regularly continued rather than the opposite. Indeed, one
the advantages of the UCG is the possibility of continui
the calculation through the oscillatory phase of the infla
@41#, which is not easy to do in the UFG. It would be inte
esting to check if the same conclusions are obtained for
non-local quantity used in@42#.

6Since the term23H̃ã also has to be taken in to account. Non
theless, one finds that such a term is, again, negligible and tha
leading result can be obtained starting directly from Eq.~C22!.
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