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String production at the level of effective field theory

Steven S. Gubser
Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA
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Pair creation of strings in time-dependent backgrounds is studied from an effective field theory viewpoint,
and some possible cosmological applications are discussed. Simple estimates suggest that excited strings may
have played a significant role in preheating, if the string tension as measured in the four-dimensional Einstein
frame falls a couple of orders of magnitude below the four-dimensional Planck scale.
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I. INTRODUCTION

In curing the nonrenormalizability of gravity, strin
theory introduces a large number of heavy states: the exc
states of a string. The number of these states incre
roughly as an exponential of their energy, in contrast to fi
theories, where the number of states rises as a power o
energy. This exponential increase is often described a
Hagedorn density of states. The extra states in string the
are conventionally assumed to lie near the Planck scale.
grasp of the nonperturbative dynamics of string theory is
from complete, but one well-motivated conjecture is that
teractions vastly reduce the degrees of freedom of the the
so that the number of available states scales ‘‘hologra
cally’’ as the area of a system rather than its volume. Dis
tangling this ‘‘more is less’’ paradox, elucidating the tru
degrees of freedom of string theory in a nonperturbative
gime, and reconciling the renormalization group with holo
raphy may all be necessary steps before we can give a
satisfactory string theoretic account of the very early u
verse. We are a long way from achieving this, but certai
there is ample reason to believe that theories with exten
objects are needed to properly formulate quantum grav
and that such theories often have a Hagedorn densit
states over an energy range encompassing a great m
states. Armed with no more than this, we would like to e
quire what the possible consequences are for cosmology
particular, for situations where the massive states may
produced through the usual ambiguity of the vacuum stat
backgrounds with time evolution. We will start with an ove
view of pair production and the steepest descent method
estimating occupation numbers. Then we will move on t
possible application to the theory of preheating.

In regimes of parameter space where a spacetime des
tion gives a good approximation of string dynamics, the o
shell constraint for a given string state boils down to a s
ond order ordinary differential equation in time:

ẍ1v~ t !2x50, ~1!

where x(t) is the wave function for the state in questio
This is also the equation for a mode of a scalar field, poss
rescaled by some time-dependent factor to eliminate thẋ
term. The functionv(t) must be determined for any give
background and string state. Quantizing strings in a gen
spacetime background is fraught with difficulties because
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ed
es
d
he
a

ry
ur
r
-
ry,
i-
-

-
-
lly
-
y
ed
y,
of
ny

-
in
e

in

or
a

ip-
-
-

ly

al
e

spacetime equations of motion are already encoded in
conditions for conformal invariance on the worldsheet, a
we seem to be missing some aspects of string dynam
which give rise to the weakly curved spacetime we obser
If we can quantize strings in a particular background, th
v(t) will be determined, and it will include contribution
from the momentum of the string and its excitation state.
the following treatment, we will simply assume that th
spectrum is known, and that it includes the familiar Hag
dorn density of states. We are interested in establishing c
ditions under which the total string production is finite~with-
out invoking a cutoff on the Hagedorn spectrum!, and in
estimating the total rate of string production when it is dom
nated by highly excited strings. For this reason, we ta
v(t)2 to be large.

To speak meaningfully about string pair production, it
necessary at least to have an asymptotic ‘‘out’’ region wh
v is slowly varying, in the sense that time derivatives ofv
are much smaller than the power ofv with the same dimen-
sion. When there is such a region, one can compare the
finite order out adiabatic vacuum to the actual quantum s
to determine occupation numbers for a given string sta
What the actual quantum state is can be subtle, but if ther
an asymptotic ‘‘in’’ region where againv is slowly varying,
one can follow the standard approach of letting the act
quantum state correspond to the in vacuum. Let us cons
this optimal situation first and further assume thatt runs from
2` to 1`.

Two widespread analytical techniques for extracting a
proximate pair production rates from Eq.~1! are steepes
descent contours, applicable when particle occupation n
bers are small, and parametric resonance, applicable w
v(t)2 is an oscillatory function of time. We will be mainly
interested in the former and will develop it in Sec. II. We w
then give an application to the theory of preheating in S
III, where conventionally one needs parametric resonanc
understand the physics—but, as we shall see, the stee
descent method is still suitable for discussing production
excited string states. The conclusion will be that there i
plausible regime of parameters where strings of some t
played a significant roll in preheating, but that overprodu
tion of superheavy dark matter is a potential problem.

After this work was complete, I learned of@1#,1 which
overlaps significantly with the methodology developed
Sec. II.

1I thank E. Martinec for bringing this paper to my attention.
©2004 The American Physical Society07-1
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II. THE STEEPEST DESCENT METHOD

The steepest descent method is based on early work b@2#
and has been developed by various authors. Our treatm
will to an extent parallel that of@3#. The key assumption is
that the occupation numberubu2 for a given mode is always
much less than 1. Here,b is a Bogliubov coefficient for
comparing the in and out vacua.2 Setting

x~ t !5
a~ t !

A2v~ t !
exp2S i E t

du v~u! D
1

b~ t !

A2v~ t !
expS i E t

du v~u! D , ~2!

with the requirementua(t)u22ub(t)u251, one may recas
Eq. ~1! as

ȧ~ t !5
v̇

2v
expS 2i E t

du v„~ t !…Db~ t !,

ḃ~ t !5
v̇

2v
exp2S 2i E t

du v„~ t !…Da~ t !. ~3!

Using b(t)!1 anda(t)'1, one quickly arrives at the gen
eral formula forb5b(`):

b'E
2`

`

dt
v̇

2v
expS 22i E t

du v~u! D . ~4!

Assuming that spacetime is weakly curved in the out regi
that ugttu→1 there, and thatv approaches some constantv`

for any given string state, the density of string states ri
roughly asev` /TH, whereTH is the Hagedorn temperature3

TH5
1

2pAa8c'/6
~5!

for closed strings, where the string tension ist51/(2pa8)
and c' is the central charge of the transverse degrees
freedom (c'512 for the type II superstring!, assumed here
to be the same in the holomorphic and antiholomorphic s
tors. This exponential behavior is modified by a power l
that depends on the string theory in question as well as
the dimensionality of noncompact spacetime. Assumingubu2

can be approximated by some function ofv` , the total num-
ber of strings produced may be very roughly estimated to

2In the standard analogy to one-dimensional scattering, wh
time is mapped to position and Eq.~1! is regarded as a time
independent Schro¨dinger equation with potential2v2(t), b is
roughly the reflection amplitude.

3Unusual circumstances might invalidate this description of
Hagedorn density, for instance the boundary operator in@4–6# that
gives a given open string state a mass that grows exponentially
time. In this particular circumstance,v` in the discussion above
could be replaced byv5v0 evaluated at the time-symmetric poin
of the full s-brane solution.
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Ntot;E`

dv`ubu2ev` /TH. ~6!

In s-brane decay~with v` replaced byv0 , as explained in
footnote 3!, the exponential growth of states is exactly ca
celed by exponential suppression ofb at largev, leaving a
power law behavior that may or may not converge, depe
ing on the dimension@7,5,6#. Our estimates will focus on the
exponential behavior in more generic circumstances.

A useful bookkeeping device for exploring the hig
energy properties of Eq.~1! is to rescalet→t/s, wheres is
a dimensionless constant. A naive expectation, which w
turn out to be close enough to the truth in some interes
cases, is that the on-shell condition for highly excited str
states is given by the rescaled equation

ẍ1s2v~ t !2x50, ~7!

with s2 set equal to the excitation levelN, and withv re-
maining nearly the same for different string states. More p
cisely, the assumption is thatwithout any rescaling of time,
highly excited string states havev'sv̄ with s5AN andv̄
nearly independent of the string state. Then Eq.~7! is correct,
with v→v̄, though for a reason orthogonal to time resc
ing. Granting such a setup, the total number of strings p
duced is

Ntot;E`

dsub~s!u2esv̄` /TH,

b~s!'E
2`

`

dt
vG

2v̄
expS 22isE t

du v̄~u! D . ~8!

In Eq. ~8!, v̄` /TH is a fixed number, independent of th
string state. Certainly, Eq.~8! has been arrived at through
series of assumptions that are far from self-evident. Ho
ever, it has some nice consequences that we believe are
general. First of all,v̄(t)2 must be infinitely differentiable on
the real axis in order to avoid producing an infinite numb
of strings. The same arguments used in@8# to show that
occupation numbers in the adiabatic vacuum of orderA scale
asv2(A11) can be adapted to show thatb scales ass2n for
larges when there is a discontinuity in thenth derivative of
v̄(t)2. Probably it is also necessary forv̄(t)2 to be analytic
for real t—we will have more to say about this point later.
is intriguing that analyticity is also characteristic of the s
tistical mechanics of systems with a finite number of degr
of freedom, hinting once again that the number of degree
freedom for gravitationally coupled strings is finite.

To evaluate the expression forb in Eq. ~4!, a technique
based on contour integration and steepest descent was d
oped in@3#. At least in simple circumstances, the singula
ties of the outer integrand are poles and branch points,
curring in the complex plane wherev(t)250 or `. These
singularities are distributed symmetrically on either side
the real axis becausev(t)2 is real valued for real arguments
Singularities arising from simple zeros ofv(t)2 were treated
in detail in @3#, and through a steepest descent method
following estimate was obtained:
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b'
ip

3
expS 22i E

2`

r

dt v~ t ! D expS 22i E
r

t
* dt v~ t ! D ,

~9!

where t* 5r 2 im is the location of a zero ofv(t)2 in the
lower half plane, andr and m are real. If there are severa
zeros, one gets a sum of terms of the type appearing on
right hand side of Eq.~9!. Assuming that one zero dominate
we may roughly estimate

ubu2'S p

3 D 2

e2pmv~r !. ~10!

The factor ofp in the exponent arises from approximatin
Rev(t) along the line betweenr and t* by an elliptical arc
which passes through zero att* and has its apex atr. A better
estimate may be obtained if more information is available
the functionv(t)2. With the estimate~10! in hand, we can
return to Eq.~8! and obtain

Ntot;E`

ds es@2pmv̄~r !1v̄` /TH#. ~11!

Evidently, this converges provided the exponent is negat
If we wished to compute the total energy of the strings c
ated, it would alter only the power law prefactor in the int
grand of Eq.~11!, and the criterion for convergence wou
still be that the exponent is negative.

We derived Eq.~11! on the understanding thatugttu→1 as
t→`. If this is not so, but there is still an appropria
asymptotic out region, then we need only replacev̄` by
Ag`

ttv̄` ~defined as a limit!. Then the integral in Eq.~11!
would converge if

Ag`
ttv̄`

pmv̄~r !
,TH . ~12!

The left hand side acts in some rough sense like a temp
ture for the background in question. Similar results can
established for singularities ofv̄(t)2 in the complext plane:
the result is some coefficient other thanp in Eq. ~12!. We
will encounter such an alteration of Eq.~12! at the end of this
section.

The type of result expressed in Eq.~12! provides a good
intuitive argument, albeit slightly circular, for whyv̄(t)2

should be analytic on the real line: zeros and singularities
v̄(t)2 in the complex plane have to be far enough away fr
the real axis for Eq.~12! to be satisfied. So the radius o
convergence ofv̄(t)2 is finite everywhere on the real line.

As an interesting class of examples, consider ak50
Friedmann-Robertson-Walker~FRW! cosmology:

ds25a~h!2~2dh21dxW2!. ~13!

The modes of a conformally coupled scalar with massm
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satisfy Eq. ~1! with t replaced byh and v25k21m2a2.4

Assuming that the metric in Eq.~13! is the string frame
metric, and that the curvature is substringy, the mass s
trum is approximately given bym25N/a8, whereN is the
level.5 For highly excited string states, neglectingk is a good
approximation, though not a uniform one ifa(h) becomes
arbitrarily small in the far past. Let us assume thata(h)
approaches nonzero constant values,a2` or a` , as h→
6`. The scaling analysis above is appropriate, withv̄(h)
5a(h)/Aa8. Assuming that a single zeroh* 5r 2 im of
a(h)2 dominates, the condition~12! for there to be a finite
number of strings created is

1

pma~r !
,TH . ~14!

Specializing further, let us consider one of the classic exa
solvable problems6

a~h!25A1B tanh~rh!. ~15!

The exact result leads to exponentially suppressed par
production for large masses:

ubu25
sinh2@p~v`2v2`!/2r#

sinh~pv` /r!sinh~pv2` /r!
'e22pv2` /r

5e22psv̄2` /r, ~16!

where v(h)5Ak21a(h)2m2 and v7` are the limits of
v~h! in the far past and future, and the approximate equa
holds good in the limit wherev6`@r. The zero ofa(h)2 in
the lower half plane closest to the real axis ish*
52 ip/2r1(1/2r)log@(A2B)/(A1B)#, so from Eq.~10! we
obtain

ubu2'e2c12psv̄2` /r where c15
p

4
A11B/A. ~17!

Because 0<B/A<1, we havep/4<c1,p/A8, indicating
fairly good agreement with the exact result~perfect agree-
ment would bec151). A criterion of the form~12! or ~14!
emerges immediately from estimating the total number
strings produced from Eqs.~11! and~16!, only with a factor
of c1 multiplying the left hand side. Thus we conclude fro
this example that the steepest descent method gives a re
able approximation of the criterion for finiteness of the nu
ber of strings produced.

4Different choices of the parameterj in the termjx2R that con-
trols the coupling to the Ricci scalar result in finite shifts inv2. As
long asj does not grow too quickly as one goes to more high
excited states, it should not affect the analysis at the level we
working at.

5Neither the zero point nor the normalization ofN quite agrees
with the conventional definition of the excitation level in type
string theory. This minor discrepancy is of no consequence as
as we correctly keep track of the normalization ofTH .

6This treatment is similar to the one in@3#.
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Let us conclude this section with a background that
cludes de Sitter space in a certain limit, but has well-defin
in and out regions away from this limit. The geometry
defined by Eq.~13! with

a~h!25A1B
h

Ah211/r2
, ~18!

whereA, B, andr are constants. IfA.B.0, this background
is qualitatively similar to Eq.~15!, but in the limit whereA
5B.0, the metric interpolates between thek50 patch of
dS4 in the far past and flat space in the far future. To
precise, forA5B andh!2r, we have

ds2'
L2

h2 ~2dh21dxW2! where L5A A

2r2. ~19!

Although the background defined by Eqs.~13! and ~18! is
not motivated by string theory considerations, it might
interesting as a simple ‘‘regulation’’ of de Sitter space: o
can for example define anS matrix for A.B.0 and then
take the limitA→B to investigate aspects of quantum fie
theory in de Sitter space.

The singularity ofa(h)2 in the lower half plane closest t
the real axis is a branch cut starting ath* 52 i /r. @There is
also a zero ath52( i /r)(A/AA22B2), but this is always
further from the real axis, and it disappears altogether in
A5B limit.# The condition~14! becomesTs,TH , where

Ts5
1

pma~r !
5

r

pAA
. ~20!

As remarked earlier,Ts is an effective temperature for th
spacetime. Interestingly, the estimate~20! does not depend
on B at all—although, clearly,B must control a prefactor on
the total number of strings produced that vanishes aB
→A. In this limit, Ts as estimated in Eq.~20! differs by&
from the temperature of the de Sitter horizon in the far pa
which is TdS51/(2pL) with L as defined in Eq.~19!. The
discrepancy is entirely due to the crudeness of estimating
integral in the second factor of Eq.~9! using an elliptical arc
passing through zero: evaluating that integral exactly foA
5B changes the estimate~20! so thatTs5TdS exactly.

It is tempting to interpret the divergence in Eq.~6! that
arises when Eq.~10! is violated as dual to the developme
of an open string tachyon stretched in the complex pl
between the singularity pointt* and its complex conjugate
t̄ * . Such an interpretation has been offered in tim
dependent backgrounds resulting from well-defined strin
constructions@6#, and the idea of D-branes in imaginary tim
has been further developed in@9#.

In general, one should consider the possibility that
singularities ofv̄(t) @or, more precisely, of the integrand i
Eq. ~8!# in the complext plane are not pointlike or eve
branch cuts, but cover finite regions of the plane. This co
happen, for instance, if we replaced thea(h)2 in Eq. ~15! by
a continuous sum over different values ofr. A criterion like
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~12! should still apply, wherem is roughly the closest ap
proach of the singular region to the real axis.

III. STRINGS AND PREHEATING

A widely studied application of particle creation in co
mology is the theory of preheating~see, for example,@10–
12#!, whereby coherent fluctuations of the inflatonf around
its minimum lead to an oscillating mass term for anoth
bosonic fieldx through a term in the action proportional t
f2x2. The resulting variation inv(t)2 can set up a paramet
ric resonance, which produces exponentially growing p
ticle occupation numbers forx. The variation ofv(t)2 can-
not be expected to be perfectly periodic, since the univers
expanding and there may be significant deviations from p
quadratic behavior in the inflaton potential in the regi
where the inflaton oscillates. This limits the amplificatio
that parametric resonance can provide. One must then
under what conditions parametric resonance is ‘‘efficient,’’
that an appreciable fraction of the energy stored in the in
ton oscillations will be converted tox particles via preheat-
ing. Oversimplifying a little, the answer is that the mass ox
must vary by a large factor: the maximum mass in each cy
of oscillation must be many times greater than the minim
mass. In such a situation, there is a ‘‘broad resonance’’@11#,
and a variety of complicated effects like back reaction a
rescattering become significant. In@12#, more precise ana
lytic criteria were developed to decide whether a resona
is efficient. Let us explore how the criteria for efficient e
traction of energy from the inflaton oscillations might b
altered due to the presence of a Hagedorn density of sta

Occupation numbers of excited string states should
small even if strings do participate significantly in prehe
ing. The reason is that resonances become exponentially
row, and the rate of growth of occupation numbers within
resonance becomes exponentially slow, as one increase
tree-level mass. There can still be a large total number
strings produced because of the competing exponen
growth of the density of states. To distinguish approximat
where the competing exponentials have equal ‘‘strength,
is sufficient to work withubu2!1 for all individual string
modes, except perhaps for those that are massless at
level. Our plan of attack, then, is to use the methods de
oped in Sec. II to study production of the massive exci
states.

It is very plausible that the effective string tension,
measured in the four-dimensional Einstein frame, varies
the inflaton varies. Let us as usual assume ak50 FRW cos-
mology. When the string frame metric is weakly curved, t
spectrum is given approximately bygstr

tt v25gstr
xxk21m2

5gstr
xxk21N/a8, where as usualN is the excitation level. The

four-dimensional Einstein metric is related to the fou
dimensional part of the string metric by a conformal tran
formation: ds4E

2 5egw/MPl,4dsstr
2 where MPl,4 is the four-

dimensional Planck mass,w is a canonically normalized
scalar which is some combination of the dilation and t
volume of the internal manifold, andg is some constant
7-4
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presumablyO(1) in generic compactifications.7 We may ad-
just the zero point ofw so thatw50 at the minimum around
which one oscillates during reheating. Evidently,g4E

tt v2

5g4E
xx k21egw/MPl,4N/a8. Using the usual ansatzds4E

2

52dt21a(t)2dxW2, we end up with

v~ t !25k2a~ t !21egw~ t !/MPl,4
N

a8
. ~21!

Now, w is not necessarily the inflaton: there are many scal
in four dimensions that specify the size and shape of
internal manifold. But it seems safe to assume, at leas
grounds of genericity, that there is some overlap betweew
and the inflatonf. If f oscillates with frequencyV between
slowly varying extremeswmin and wmax, then we may ap-
proximate~21! by

v~ t !25
v1

2 1v2
2

2
1

v1
2 2v2

2

2
cosVt,

v2
2 5k2a~ t !21egwmin /MPl,4

N

a8
, ~22!

v1
2 5k2a~ t !21egwmax/MPl,4

N

a8
.

Neglecting derivatives of slowly varying quantities likeV
andv6 , the wave function of a given bosonic string mod
suitably scaled by some time-dependent factor, satis
Mathieu’s equation

S d2

dz2 1A22q cos 2zDx50 ~23!

with z5Vt/2 andA andq specified by

A62q5A65S v6

2V D 2

. ~24!

For ~A,q! in special regions of the plane, solutions to Eq.~23!
exist whose average value grows withz asenz, wheren is the
imaginary part of the so-called Floquet exponent. These
lutions are a manifestation of parametric resonance, but
will not need them for the reasons reviewed above. Our
timates will be based wholly on the steepest descent met
which should be reliable becauseubu2 has to be small nea
the boundary of the region where string production is imp
tant for reheating.

After the usual ‘‘rescaling’’v→sv̄, we find ourselves in
the situation described in Eqs.~7!–~12!. In Eqs. ~22!–~24!,
we have neglected the damping of the inflaton oscillatio
due to expansion and to dissipation of energy into the st

7The expressionds4E
2 5egw/MPl,4dsstr

2 is imprecise because th
combination of scalars in the exponent may not be an eigenve
of the scalar kinetic operator in the four-dimensional Einst
frame. But the oversimplification will not matter in the subsequ
treatment.
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states. Including these effects will make the first oscillati
produce more strings than any of the subsequent ones. T
more precise: the zeros ofv(t)25s2v̄(t)2 as given in Eq.
~22! are

t
* ,n
6 5

2pn

V
6

i

V
log

v̄11v̄2

v̄12v̄2
, ~25!

but we are going to assume thatt* 5t
* ,0
2 5r 2 im makes the

biggest contribution to string production. In order for th
formal expression~8! to converge, Eq.~12! must be satisfied,
which is to say

v̄~r !m5
v̄2

V
log

v̄11v̄2

v̄12v̄2
.

Ag`
ttv̄`

pTH
. ~26!

The right hand side is a quantity of order unity. We shou
regard it as uncertain by at least a factor of 2, given that
~22! is only a rough guess forv(t)2, and the factor of 1/p is
only approximate, as the analysis of the example~15!
showed.

If the bound~26! is satisfied with room to spare, then th
highly excited string states are hardly produced at all. C
versely, if it is violated, a huge number of excited strin
states are produced, rendered finite, if need be, by a cuto
the Hagedorn spectrum. A cutoff at an energyL limits the
number of strings produced to something likeeL/TH, which
is very large ifL is considerably higher thanTH . So it seems
likely that the string production is more likely to be limite
by the available energy in the coherent inflaton oscillatio
Thus a violation of Eq.~26! is very likely to mean that ex-
cited string states will play a vital role in preheating, in th
sense that a significant fraction of the energy in the infla
oscillations goes into excited strings. We obtained Eq.~26!
from a single oscillation of the inflaton. Further oscillation
of the inflaton are then presumably rapidly damped, and e
if a finite number of zeros ofv(t)2 contribute significantly to
the total string production, the result will probably be
change only a prefactor in the expression for the total nu
ber of strings produced: Eq.~26!, which comes from the
exponent of Eq.~11!, is less likely to be affected.8

or

t

8We might worry that parametric resonance could alter Eq.~26!.
But the way that occupation numbersubu2 significantly larger than
~10! arise in parametric resonance is by havinguau2 significantly
larger than 1, so that the approximationa(t)'1 that led to Eq.~4!
fails. This is related to having exponential growthenz'enVt/2 of
certain mode functions. Occupation numbers of order unity for
cited string states should result in a huge divergence in the t
number of strings produced. Exponentially suppressed occupa
numbers for highly excited strings mean that the approximati
that led to Eq.~26! should be valid. One can try to test this se
consistent reasoning further by adapting the estimate of@12# to a
Hagedorn spectrum of bosonic states. The result isdNtot /dt
;*`ds n(s)esv̄/TH, wheren~s! is the Floquet exponent for a strin
state at levels2, as determined by theA and q appearing in a
rescaled version of Eq.~24!. This expression leads to agreeme
with Eq. ~26! up to factors of order unity, but it is hard to evalua
those factors.
7-5



nc

ur

.
t

d
t

s,
ss
n
th
th

a

fo
e
or
ci
ul
,
tru
e

n
ty
io
r

es
he
o

he
b
e
s

re

ss

-

e
l of
be

at is

ce-
ve

-
eds

or,
ich

ted
b-

ga-

the

nal
to
can

orn
er,
gly

gy
t the
ld

den-
on-
nd
ads
uld
at

re-
ng

s
faster
ight
lack
s one
er is
m-
ani-
g a

STEVEN S. GUBSER PHYSICAL REVIEW D69, 123507 ~2004!
Neglecting the logarithm in Eq.~26! as well as various
factors of order unity leads to the approximate converge
condition

At2*minflaton, ~27!

wheret2 is the minimum string tension as measured in fo
dimensional Einstein frame.~The point here is thatv̄2

}At2 while V is roughly the inflaton mass at its minimum!
The criterion for there to be copious string production due
coherent oscillations of the inflaton is that the inequality~27!
should be violated. This happens in a considerably broa
regime of parameters than the regime that appears in
standard analysis of preheating. In the standard analysi
order for the resonance to be ‘‘efficient,’’ the minimum ma
of the additional scalarx must be many times smaller tha
the inflaton mass, so that during many oscillations of
inflaton, the parameters of the Mathieu equation fall in
range 2q,A,2q1Abq for some constantb of order unity.
In contrast, for us, the analogous region of efficient prehe
ing is 2q,A,2xq for somex.1. Of course, from a purely
quantum field theoretic standpoint, it may seem contrived
the masses of an entire Hagedorn spectrum to oscillat
unison—but that is where the perspective of string the
makes natural things that otherwise would seem very spe

Three potential problems with the idea that strings co
have played a significant role in preheating are as follows
increasing order of seriousness. First, the Hagedorn spec
might be cut off at a sufficiently low scale to invalidate th
above analysis. Second, the fundamental string tensio
supposed to be near the Planck scale, much higher than
cal values for the inflaton mass, so despite the considerat
of the previous paragraph, it may still seem quite unnatu
to have~27! violated. And third, superheavy stable particl
could be produced in unacceptable numbers, some of t
with fractional charge. Let us examine these issues m
closely.

~1! Cutoff on the spectrum: Since we believe that t
number of degrees of freedom is thinned out dramatically
interactions at high energies, we should introduce some
ergy cutoff L and keep only those states with energy le
thanL. If L is only slightly above the string scale 1/Aa8, of
course all of our arguments collapse, and Eq.~6! is not a
good way at all to estimate the number of string quanta c
ated. But, in fact, there is reason to think thatL@1/Aa8: for
example, as noted in@13#, the typical size of a string is
greater than the ten-dimensional Schwarzschild radius a
ciated with its total mass untilN;1/gs

8, whereN is the ex-
citation level andgs is the string coupling. It would be con
sistent with the spirit of holography to putL at about the
energy scale of strings at this high excitation level:L
;1/(Aa8gs

4), which is indeed a fairly high scale ifgs is even
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moderately small.9 Since the total energy that can go into th
strings is finite in preheating, but scales as an exponentia
the typical energy of the string modes produced, it might
that total energy provides a process-dependent cutoff th
often lower thanL.

~2! Heaviness of fundamental strings: in conventional s
narios, the square root of the string tension is roughly fi
orders of magnitude larger than the inflaton mass (1018 GeV
as compared to 1013 GeV, roughly speaking!. In order to
violate Eq.~27! without making the inflaton mass much big
ger than it is usually assumed to be, the string coupling ne
to become very small during the inflaton oscillations—
more precisely, the four-dimensional Planck scale, wh
scales as

MPl,4;~Vol CY3!1/2gs
21a822, ~28!

must attain values much larger than 1/Aa8. This is not in-
conceivable, but it does seem contrived. It has been poin
out to me@14# that an inflaton mass during preheating su
stantially larger than 1013 GeV might be arranged in string
theory. This lies outside the scope of the current investi
tion.

~3! Production of superheavy stable particles: Unless
compactification manifold is simply connected~or unless
open strings can propagate throughout ten-dimensio
spacetime!, there will be stable states corresponding
strings wound around noncontractible cycles. Such states
have fractional electric charge@15#, and they would be very
heavy, with massm;,/a8, where , is the length of the
noncontractible cycle. The trouble is that there is a Haged
spectrum of excited strings with any given winding numb
and it is not clear that their production is suppressed stron
enough compared to strings with no nontrivial topolo
which can decay into string modes that are massless a
tree level. Excited string states with winding number wou
relax to stable, superheavy particles. The bounds on the
sity of such particles are stringent because they would c
tribute to dark matter density. Tracing back the upper bou
on dark matter density today to the epoch of preheating le
to the conclusion that superheavy stable particles sho
comprise a very small fraction of the total energy at th
time—perhaps on the order of 10217 @3#.

We can estimate how rapidly such particles would be c
ated as follows. The energy of states with nontrivial windi
is

9It is argued in@13# that gravitational self-interaction of string
compresses the spectrum and makes the density of states rise
than in the free theory, until at some high scale string states m
be in one-to-one correspondence with the microstates of b
holes. Such a superexponential increase in the number of state
can actually produce in the way we have discussed in this pap
disastrous, since almost no background will have a finite total nu
ber of quanta produced. Presumably this is where a total reorg
zation of concepts is needed, perhaps with holography playin
central role.
7-6
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STRING PRODUCTION AT THE LEVEL OF EFFECTIVE . . . PHYSICAL REVIEW D 69, 123507 ~2004!
v25v0
21m2, ~29!

wherev0
2 is the energy of a string state with no winding, b

with the same momenta in the noncompact dimensions
at the same excitation level. The density of the states w
winding should be roughly the same, as a function ofv0 , as
the density of states without winding.10 Thus the calculations
leading up to Eq.~11! can be adapted to an approxima
treatment of production of heavy charged particles by rep
ing the density of states

ev/TH→ v

Av22m2
eAv22m2/TH. ~30!

If production of highly excited string states dominates, th
roughly an equal number are produced with winding as w

out, simply becauseAv22m2'v for these highly excited
strings. Prefactors on the density of states might suppres
production of strings with winding by a few orders o
magnitude—but suppression by a factor of 10217 seems dif-
ficult. This is the relevant factor because we are operating
the assumption that excited strings do suck out a signific
fraction of the energy of the coherent oscillations of the
flaton field. Naturally, if this assumption is lifted, there is n
pressing problem with overproduction of superheavy sta
particles.11

The considerably more stringent limits on fractiona
charged particles have not been invoked in the discussio
the previous two paragraphs because it is not clear to me
fractionally charged particles are a universal aspect of st
models with nontrivial topology in the extra dimensions.

In the analysis following Eq.~30!, we have assumed tha
string production is not somehow limited to modes less
ergetic than,/a8. Intuitively speaking, the point is that th
spectrum of strings with winding defines the same tempe
ture ~despite the presence of a gap! as the strings withou
winding. We have also neglected the annihilation of strin
wound in one direction with strings wound in the othe
Some estimates of the cross section might be made,
annihilation processes do not seem likely to generate a
pression factor anywhere close to 10217. Thus we regard
the overproduction of winding states as a major peril
highly excited strings are assumed to play any role at al
preheating.

10This is easily seen to be so in the case of a circle compactifi
tion when there is a winding number but no Kaluza-Klein mome
tum. I doubt the Calabi-Yau case would be much different, bu
have not carried out the computations explicitly.

11In fact, if we assume that the minimum string tension~as mea-
sured in the four-dimensional Einstein frame! is about an order of
magnitude higher than the inflaton mass, then the factore2pmv(r )

suppressing string production@cf. Eq. ~10!# can be arranged to b
around 10217. This might suggest a new twist on the idea of strin
motivated superheavy dark matter.
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IV. NONPERTURBATIVELY CONSTRUCTED STRINGS

Points 2 and 3 from the end of the previous section m
incline us to doubt that excited strings can plausibly ha
anything to do with preheating: on the one hand, they
probably too heavy to be produced in significant numbe
and on the other hand, if they are, there is a tendency
overproduce superheavy stable particles.

Strings in four dimensions arising from branes wrapp
on cycles of an internal manifold offer the possibility of am
liorating the problems described above. Regarding prob
2, the key point is that strings coming from wrapped bran
become tensionless at special points in the moduli sp
which are a finite distance from generic points and typica
occur at real codimension 2. Regarding problem 3, the h
ful feature is that degenerating cycles can occur in an
lated nearly singular region of the internal manifold, so th
no state with nontrivial topology is ever light. We will ex
pand on these points somewhat in the following paragra
and in the process do another simple estimate of string
duction.

First, to see that wrapped branes must be included on
equal footing with other states in the spectrum, recall,
example, the duality between the heterotic string onT3 and
M theory on K3, where when cycles of the K3 shrin
wrapped M2-branes become light and provide the W bos
of enhanced gauge symmetry that can be seen by o
means on the heterotic side@16,17#.

Arbitrarily light strings can arise in various ways@18–
21#. A typical situation is for the effective tension in fou
dimensions to be

teff'M uwu with M;
MPl,4

gs
, ~31!

where w is a canonically normalized complex scalar fiel
The precise dependence ofM on gs may depend on details
but some inverse dependence ongs is to be expected from
states that descend from string solitons. Let us consider
branes wrapped on a shrinkingS2 within a Calabi-Yau mani-
fold as a definite example. The complex scalarw in this case
is proportional to*S2(J21 iB2). The real part of this integra
is the volume of theS2, and the imaginary part is an axio
whose associated instanton is a fundamental string wrap
the S2.12 The action includes the standard Dirac-Born-Infe
~DBI! term,

S52tD3E d4jAGmn1Bmn1¯ . ~32!

Integrating this on theS2 and usingtD3;1/(a82gs) gives
the Nambu-Goto action for a string extended in other dir
tions, with a tension given by Eq.~31!. The overall normal-
ization of the tension definitely depends on more data t

a-
-
I

12There are well-understood worldsheet instanton correction
the metric on the Kahler moduli space which we will be neglectin
These singularities are logarithmic and do not change the fact
the point at which wrapped D3-branes become tensionless is
finite distance from generic points. They may slightly alter Eq.~31!.
7-7
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STEVEN S. GUBSER PHYSICAL REVIEW D69, 123507 ~2004!
we have specified so far~for instance, the total volume of th
Calabi-Yau manifold!, but Eq. ~31! should be right up to
factors of order unity provided one is not in a peculiar corn
of the moduli space~such as a Calabi-Yau manifold which
many times larger than the fundamental string scale!.

An S2 can indeed degenerate at a finite distance in mo
space in a Calabi-Yau compactification and in an isola
part of the Calabi-Yau manifold. A famous example is t
resolved conifold@22–24#. It is also possible for degenera
spheres to arise along a two-dimensional locus within
Calabi-Yau manifold: this locus might be a Riemann surfa
of nontrivial topology, which resurrects the potential haza
of overproduction of superheavy stable particles.

At least in certain circumstances, it is clear that nonp
turbatively constructed strings have the same Hagedorn
havior as fundamental strings. The cleanest evidence co
from NS5-branes, where for many coincident branes,
Hagedorn temperature of the fractional instanton string
exactly the Hawking temperature for the near-extremal
pergravity solution@25#; and from noncommutative ope
strings, where the effective string tension of open string
lowered by applying an electric field, and the Hagedorn
havior is simple to understand@26#. In both cases,TH

;Ateff. We will assume that this relation continues to ho
and that the arguments that led to Eq.~6! still apply.

Assume now that the scalarw has some overlap with th
dilaton, and that it is undergoing coherent oscillations j
after the end of inflation. It is unnatural to suppose thaw
passes exactly through zero, but it might reasonably be
sumed to pass near zero in the complex plane. Perhap
ively, we will assume thatẇ is nearly constant whileuwu is
small. Letw0 be the closest approach ofw to the origin. Then
the effective string tension varies with time like this:

teff'M uw01ẇtu5MAuw0u21~ uẇut !2. ~33!

Proceeding in the same spirit as in the previous sections
suppose that modes of the string in four dimensions hav
dispersion relationshipv(t)25k21Nteff , whereN is some-
thing like the level, and we are not trying to keep track of t
expansion of the universe during the brief moment when
effective string tension becomes small. The Hagedorn t
perature isTH;Ateff. The frequenciesv(t) ~and also the
Hagedorn temperature! are slowly varying in the far future
and the far past, in the sense that derivatives of these q
tities are much less than the appropriate power of the un
ferentiated quantities. So asymptotic in and out vacua ca
defined, at least in the approximation where we neglect w
happens when the scalar rolls out of the realm of validity
Eq. ~31!, and particle production can be estimated in t
same way that led to Eq.~10!. If we definev̄(t)5Ateff(t),
then the result is that an integral of the type found in Eq.~11!
converges provided a criterion similar to~26! holds. Drop-
ping various factors of order unity, that convergence criter
is v̄(r )m*1. The solution toteff(t)50 in the lower half of
the complex plane ist* [r 2 im52 i uw0u/uẇu. Thus the con-
vergence criterion isAM uw0u3/uẇu*1. We can roughly esti-
mate ẇ;MPl,4minflaton, on the assumption that the cohere
oscillations ofw are of amplitudeMPl,4 and of frequency
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minflaton. Recalling that the minimum tension isteff,2
'Muw0u, we can summarize the convergence criterion as
lows:

1&v̄~r !m5
AMw0

3

ẇ
5

teff,2
3/2

M ẇ

;
teff,2

3/2

MMPl,4minflaton
;104S teff,2

MPl,4
2 D 3/2

~34!

or equivalently,

Ateff,2*
1

20
MPl,4,

where we have assumedM;10MPl,4 and minflaton
;1025MPl,4. The estimates leading to Eq.~34! are inevita-
bly fairly crude as long as we have not specified what
inflaton is and how much it overlaps with the scalarw con-
trolling the effective string tension. The result in Eq.~34! is
rather different from Eqs.~26! and ~27!. Intuitively, this is
because the harmonic dependence that led to Eq.~26! is the
smoothest interpolation between a given maximum and m
mum in a specified time interval, whereas Eq.~33!, though
still analytic, implies almost a discontinuity in the first de
rivative of v(t)2.

Evidently, the nonperturbatively constructed strings
not have to dip very far below the Planck scale in order
violate the convergence criterion~34!. As before, the expo-
nential nature of the divergence then would seem likely to
efficient in sucking energy out of the coherent motion of t
inflaton. More precisely, it would be efficient in sucking o
the energy from the coherent motion ofw, which is probably
not the only component of the inflaton. This might be mo
eled in a Hartree approximation by a damping term for
evolution of one scalar which acts only near a certain va
of that scalar, while other scalars, coupled to the first
terms in the potential, are damped only by the usual 3Hḟ
term.

V. CONCLUSIONS

The convergence criterion on the total number of strin
produced, which we have variously stated as Eqs.~12!, ~26!,
and ~34!, amounts to the statement that in the appropri
string frame, where the string tension is by definition co
stant, curvatures are substringy—only it is crucial that n
only are the second derivatives of the string metric boun
by the string scale, but all derivatives are bounded in
appropriate way to ensure a uniform radius of convergen
of order the string length, for the time-varying energies
string modes. In the context of preheating, a violation of t
bound on curvatures, either for fundamental strings or
strings constructed as wrapped branes, has the simple i
pretation that the production of highly excited string sta
efficiently drains the energy of coherent inflaton oscillation
This is somewhat in analogy with the standard theory
preheating, but copious string production occurs in a lar
region of parameters@as measured in the~A,q! plane of pa-
7-8
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STRING PRODUCTION AT THE LEVEL OF EFFECTIVE . . . PHYSICAL REVIEW D 69, 123507 ~2004!
rameters for Mathieu functions#. Unfortunately, it is not par-
ticularly clear to me what distinctive experimental signatu
should be expected if highly excited strings played a sign
cant role in preheating. The strings decay into states tha
massless at the tree level, and presumably these can
thermalize. However, if excited strings states are create
appreciable numbers, it seems that stable superheavy
ticles are likely to be overproduced, if they exist in the stri
spectrum. This problem can be avoided by consider
strings in four dimensions that arise as branes wrapped
cycles of an internal manifold—cycles which shrink to pr
duce a pointlike singularity on that manifold.

The tension of such nonperturbatively constructed stri
vanishes at certain points in moduli space, and near s
points the dependence of the tension on canonically norm
ized scalars may reasonably be assumed to be Eq.~31!. This
dependence leads to a convergence criterion~34! which is
considerably more restrictive than the one derived in E
~26! and~27! assuming harmonic dependence—meaning
the minimum tension does not have to be as low, assum
the dependence~31!, in order to violate the convergence cr
teria and produce a large number of excited strings. In f
as we see in Eq.~34!, the effective string tension needs to d
only a couple of orders of magnitude below the fou
dimensional Planck scale in order to have copious string p
duction, with otherwise rather standard assumptions ab
the amplitude and frequency of inflaton oscillations just af
the end of inflation.

In summary, it is quite plausible that excited strings~prob-
ably of nonperturbative origin! play a role in postinflationary
cosmology.

A much studied scenario in which light strings appear
ekpyrosis@27,28#, in which either an M5-brane wrapped on
holomorphic cycle of a Calabi-Yau manifold collides wi
theE8 boundary of spacetime constructed in@29#, or the two
E8 boundaries collide with one another. In the first ca
M2-branes stretched between the M5-brane and the bo
ary behave as strings that become light at the momen
collision. In the second case, M2-branes stretched betw
the two E8 boundaries become light, and they become p
cisely the perturbative heterotic strings in the limit where
two boundaries coincide. The results of this paper bear
ekpyrosis in two ways.

~1! We have noted in Sec. IV a natural way of avoiding
‘‘regulating’’ the collision: one simply needs to assume
nonzero value for the pseudoscalar superpartner of the
scalar controlling the distance between the bran
boundaries. In the case of colliding boundaries, this pseu
scalar is just the axion arising from the Neveu-SchwarzBmn

field of the heterotic string with both indices in four dime
sions. If this axion exists in the spectrum, it is in fact unna
ral to suppose that it is zero during ekpyrosis.

~2! If ekpyrosis does occur, presumably in a ‘‘regulate
way as explained in the previous point, then estimates of
creation of light strings proceed in parallel to our calcu
tions in Sec. IV. If excited strings are produced during ekp
rosis, the problem of overproducing stable superheavy
ticles seems likely to recur. Specifically, if an M5-bra
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wrapped on a holomorphic curve hits anE8 boundary, then
the light strings can wrap cycles of the holomorphic cur
~which is a Riemann surface embedded in the Calabi-Y
manifold!, unless that curve is topologically anS2. And if
the two boundaries collide, then the light strings can wrap
the Calabi-Yau manifold, unless the Calabi-Yau is simp
connected, which would considerably reduce the partic
phenomenological appeal of the setup.

It does not help to assume that the strings are light o
for a brief instant of time. In fact, according to~34!, largerẇ
~meaning a briefer collision! causes more string production
not less: it is then easier to violate the inequality in~34!.

The reason that it is easy to offer the plausible interpre
tion of draining energy from coherent inflaton oscillatio
when strings are copiously produced just after inflation
that a significant fraction of the energy is kinetic~relating to
the time derivative of the inflation!. A much thornier ques-
tion is what happens if a string becomes lighter than
Hubble scale during slow-roll inflation, when most of th
energy is stored in the scalar potential. I have specula
elsewhere@30# that light strings might limit the rate of infla
tion to the string scale, and that there could be a fixed po
of forward time evolution where a string tension is vanishi
at the same time that the expansion of the universe is slow
to something less fast than exponential. An observation
tells against this idea is that string production should resul
a new source of positive energy density, and, unlike the c
of preheating, there is no obvious way to suck this ene
away from the scalar potential energy. Granting the Fri
man equationH25r/(3MPl,4

2 ), it is hard to see what mecha
nism due to light strings will driver and thereforeH to zero.
Perhaps this question must wait on some treatment m
firmly based on the first principles of string theory.

Indeed, an objection that could be raised to the en
enterprise of this paper is thata8 corrections to the space
time equations of motion become significant when cur
tures are at the string scale, so it is not clear that we h
adequately addressed classical effects before delving into
quantum effect of particle creation. There are at least th
reasons to continue thinking about string creation in gen
backgrounds:~1! Nonperturbative strings do not have a we
understood connection to spacetime equations of motion~2!
worldsheet techniques have not so far provided a particul
large class of well-understood time-dependent backgrou
~3! because copious string creation occurs, in some heur
sense, at the same order ina8 as corrections to the classica
spacetime equations, string production probably does h
an important role to play in our understanding of gene
time-dependent backgrounds.

Let us end with some open questions.

Our estimates for string production were fairly crude
places, starting with the neglect of power law corrections
the exponential growth in the density of states, and includ
also the neglect of various factors of order unity that en
into the exponential behavior in Eq.~11!. Is it possible to
give more precise estimates?
7-9
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Can one give an explicit string theory construction
time-dependent backgrounds in which highly excited str
states are produced? This is surely complicated by the
that back reaction from such strings is likely to be importa

Might the CP violation that results from turning on a
axion to ‘‘get around’’ a point of tensionless strings be
interest in baryogenesis?

If highly excited strings are produced when inflation
over or nearly over, is there some definite effect on the sp
trum of fluctuations? How do decay products of highly e
cited strings thermalize?

If we assume that the end of inflation involves oscillatio
in a complex moduli space with tensionless strings on so
real codimension 2 loci, how much isocurvature perturbat
s.

m

d

2
s

D

tt
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is likely to be generated? Is the scenario plausibly consis
with existing bounds?

We hope to return to some of these questions in the fut
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