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String production at the level of effective field theory
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Pair creation of strings in time-dependent backgrounds is studied from an effective field theory viewpoint,
and some possible cosmological applications are discussed. Simple estimates suggest that excited strings may
have played a significant role in preheating, if the string tension as measured in the four-dimensional Einstein
frame falls a couple of orders of magnitude below the four-dimensional Planck scale.
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[. INTRODUCTION spacetime equations of motion are already encoded in the
conditions for conformal invariance on the worldsheet, and
In curing the nonrenormalizability of gravity, string We seem to be missing some aspects of string dynamics
theory introduces a large number of heavy states: the excitéghich give rise to the weakly curved spacetime we observe.
states of a string. The number of these states increaséksWe can quantize strings in a particular background, then
roughly as an exponential of their energy, in contrast to fielgz(t) will be determined, and it will include contributions
theories, where the number of states rises as a power of t?m the momentum of the string and its excitation state. In
energy. This exponential increase is often described as &€ following treatment, we will simply assume that the
Hagedorn density of states. The extra states in string theorSPECrUM is known, and that it includes the familiar Hage-
are conventionally assumed to lie near the Planck scale. Ouy. m density of states. We are !nterested In es_tabhsh_mg con-
grasp of the nonperturbative dynamics of string theory is fa itions under which the total string production is finteith-

from complete, but one well-motivated conjecture is that in—OUt invoking a cutoff on the Hagedorn spectiurand in
PIete, ) estimating the total rate of string production when it is domi-

teractions vastly reduce the degrees of freedom of the theorMated by highly excited strings. For this reason, we take

so that the number of available states scales “holographia)(t)z to be large.

cally” as the area of a system rather than its volume. Disen- "1q speak meaningfully about string pair production, it is
tangling this “more is less” paradox, elucidating the true necessary at least to have an asymptotic “out” region where
degrees of freedom of string theory in a nonperturbative rey, s slowly varying, in the sense that time derivativeseof
gime, and reconciling the renormalization group with holog-are much smaller than the power @fwith the same dimen-
raphy may all be necessary steps before we can give a fullgion. When there is such a region, one can compare the in-
satisfactory string theoretic account of the very early uni-finite order out adiabatic vacuum to the actual quantum state
verse. We are a long way from achieving this, but certainlyto determine occupation numbers for a given string state.
there is ample reason to believe that theories with extendeWhat the actual quantum state is can be subtle, but if there is
objects are needed to properly formulate quantum gravityan asymptotic “in” region where again is slowly varying,

and that such theories often have a Hagedorn density afne can follow the standard approach of letting the actual
states over an energy range encompassing a great magyantum state correspond to the in vacuum. Let us consider
states. Armed with no more than this, we would like to en-this optimal situation first and further assume thains from
quire what the possible consequences are for cosmology—im® to +. . ) )
particular, for situations where the massive states may be Two widespread analytical techniques for extracting ap-
produced through the usual ambiguity of the vacuum state iRroximate pair production rates from E(l) are steepest

backgrounds with time evolution. We will start with an over- d&scent contours, applicable when particle occupation num-
; d?ers are small, and parametric resonance, applicable when
estimating occupation numbers. Then we will move on to a2(1)? is an oscillatory function of time. We will be mainly
possible application to the theory of preheating Interested in the former and will develop it in Sec. II. We will
In regimes of parameter space where a spacétime descrigich 9've an application to the theory of preheating in Sec.

tion aives a aood aporoximation of string dvnamics. the on- I, where conventionally one needs parametric resonance to
9 9 ppre X g oy ' understand the physics—but, as we shall see, the steepest
shell constraint for a given string state boils down to a sec

. . . S descent method is still suitable for discussing production of
ond order ordinary differential equation in time: excited string states. The conclusion will be that there is a
. 5 plausible regime of parameters where strings of some type

X+ o(t)x=0, @ played a significant roll in preheating, but that overproduc-
tion of superheavy dark matter is a potential problem.

where x(t) is the wave function for the state in question.  After this work was complete, | learned ¢1], which
This is also the equation for a mode of a scalar field, possiblyverlaps significantly with the methodology developed in
rescaled by some time-dependent factor to eliminatexthe Sec. II.
term. The functionw(t) must be determined for any given
background and string state. Quantizing strings in a general——
spacetime background is fraught with difficulties because the | thank E. Martinec for bringing this paper to my attention.
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Il. THE STEEPEST DESCENT METHOD

. Niot™ f da.| B|%e='T. (6)
The steepest descent method is based on early wdrk]by

and has been developed by various authors. Our treatment

will to an extent parallel that of3]. The key assumption is ][n s-brane dﬁca)(with ww_rcleplacec:] b¥“’0’ as gxplaineld in
that the occupation numbég|? for a given mode is always footnote 3, the exponential growth of states is exactly can-

much less than 1. Heres is a Bogliubov coefficient for C€led by exponential suppression @fat largew, leaving a
comparing the in and out vacésetting power law behavior that may or may not converge, depend-

ing on the dimensiof7,5,6]. Our estimates will focus on the
t exponential behavior in more generic circumstances.
if du w(u))

A useful bookkeeping device for exploring the high-
energy properties of Ed1l) is to rescald—t/o, whereo is
a dimensionless constant. A naive expectation, which will
n B(1) exr{thdUw(u) ) turn out to be close enough to the truth in some interesting
V2w(t) ' cases, is that the on-shell condition for highly excited string
states is given by the rescaled equation
with the requirementa(t)|?2—|B(t)|?>=1, one may recast
Eq. (1) as X+ olw(t)?x=0, (7)

t)= a(t) e
x(t)= 2o Xp—

. 1) Ot with o set equal to the excitation lev&l, and with w re-
a(t)= Zex;{ 2i J du w((t))),@(t), maining nearly the same for different string states. More pre-
cisely, the assumption is thatithout any rescaling of time,
t highly excited string states have~ o with o= N andw
2i f du w((t))) a(t). (3 nearly independent of the string state. Then &yis correct,
with w— w, though for a reason orthogonal to time rescal-

Using B(t)<1 anda(t)~1, one quickly arrives at the gen- INg. Granting such a setup, the total number of strings pro-

. »
B(1)= 5~ exp-

eral formula forg= B(«): duced is
% ’ t ® —
,8~J’ dt%exr{—ZiJ du w(u)). (4) Ntot~f do|B(0)|?e”='TH,
Assuming that spacetime is weakly curved in the out region, 3(0)~fw dti_exr{ —ZiUJtdua(u)) ®
that|g;;|— 1 there, and thab approaches some constant —x 20 '

for any given string state, the density of string states rises -

roughly ase®='T1, whereTy, is the Hagedorn temperatute, In Eq. (8), w../Ty is a fixed number, independent of the
string state. Certainly, Eq8) has been arrived at through a

1 series of assumptions that are far from self-evident. How-
=7 ) ever, it has some nice consequences that we believe are more
27T\/CY CL/6 . — i\ 2 e e . . .

general. First of allw(t)© must be infinitely differentiable on

the real axis in order to avoid producing an infinite number

for closed strings, where the string tensionris 1/(27a’ .
9 g (2ma’) of strings. The same arguments used[&) to show that

and c, is the central charge of the transverse degrees 4 . ) .
freedom €, =12 for the type Il superstringassumed here occup(itﬁ? numbers in the adiabatic vacuum of oflscale
- -n
to be the same in the holomorphic and antiholomorphic sec3S® can be "?‘dapt?‘d to ?hO.W t_hﬁlscales ag for
tors. This exponential behavior is modified by a power Iawlirgeza when there is a discontinuity in thn;h derivative of
that depends on the string theory in question as well as off(t)"- Probably it is also necessary fai(t)“ to be analytic
the dimensionality of noncompact spacetime. Assumyglg o' realt—we will have more to say about this point later. It
can be approximated by some functionef , the total num- is intriguing that analyticity is also characteristic of the sta-

ber of strings produced may be very roughly estimated to ngtical mechgnic_:s of system; with a finite number of degrees
gsp y y rougnly of freedom, hinting once again that the number of degrees of

freedom for gravitationally coupled strings is finite.
To evaluate the expression f@in Eqg. (4), a technique

In the standard analogy to one-dimensional scattering, wher . .
9y g Based on contour integration and steepest descent was devel-

time is mapped to position and E@l) is regarded as a time- . A . . :
independent Schidinger equation with potentiat- w?(t), B is qped in[3]. At qust in simple circumstances, the sm_gulan—
roughly the reflection amplitude. t|es.of the outer integrand are poles agd branch points, oc-

SUnusual circumstances might invalidate this description of theCUrming in the complex plane where(t)°=0 or «. These
Hagedorn density, for instance the boundary operatf4 i that singularities are distributed symmetrically on either side of
gives a given open string state a mass that grows exponentially witthe real axis because(t)? is real valued for real arguments.
time. In this particular circumstance.. in the discussion above Singularities arising from simple zeros eft)? were treated
could be replaced by = w, evaluated at the time-symmetric point in detail in [3], and through a steepest descent method the
of the full s-brane solution. following estimate was obtained:
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i r t, satisfy Eq.(1) with t replaced byn and w?=k?+m?a2.*
B*gFJXP(—Zij dtw(t))exr{—ZiJ dtw(t)), Assuming that the metric in Eq13) is the string frame
o ' 9 metric, and that the curvature is substringy, the mass spec-
trum is approximately given byn>=N/a’, whereN is the
o . - level® For highly excited string states, neglectikis a good
wheret, =r—iu is the location of a zero o (t)” in the  ghroximation, though not a uniform oneaf ) becomes

lower half plane, and and w are real. If there are §evera| arbitrarily small in the far past. Let us assume tbgty)
zeros, one gets a sum of terms of the type appearing on ﬂ}fpproaches nonzero constant valuas,. or a., as 77—

right hand side of Ec_(.9).Assuming that one zero dominates, + ,, The scaling analysis above is appropriate, viity)
we may roughly estimate =a(n)/\a'. Assuming that a single zerg, =r—iu of
a(7)? dominates, the conditiofiL2) for there to be a finite

2 . .
an
|ﬁ|2~(§) o~ THo(r) (10 number of strings created is
1
<Th. (14)
The factor of# in the exponent arises from approximating mpa(r)

Rew(t) along the line between andt, by an elliptical arc o . .
: . Specializing further, let us consider one of the classic exactly
which passes through zerotgtand has its apex at A better
solvable problenfs

estimate may be obtained if more information is available for
the functionw(t)2. With the estimatg10) in hand, we can a(7)2=A+Btant(p7). (15)
return to Eq.(8) and obtain

The exact result leads to exponentially suppressed particle
w — = production for large masses:
NtotN do eo‘[—ﬂ',udw(r)-*—wJC /TH]_ (11)

| |2 S|nr?[ﬁ(ww_w—m)/2p] Ne—Zwa),m/P

T Sin( 7. /p)sin(7w_../p)

Evidently, this converges provided the exponent is negative.
If we wished to compute the total energy of the strings cre- —a27c0_glp

. ; . e , (16
ated, it would alter only the power law prefactor in the inte-

grand of Eq.(11), and the criterion for convergence would \nere w(7)=Vk?+a(7)?m? and v, are the limits of
still be that the exponent is negative. o(7) in the far past and future, and the approximate equality
We derived Eq(11) on the understanding thigy| 1 as  holds good in the limit where ., p. The zero ofa(#)? in
t—oe. If this is not so, but there is still an appropriate the |ower half plane closest to the real axis ig,
asymptotic out region, then we need only replaee by  — _j7/2p+ (1/2p)log[(A—B)/(A+B)], so from Eq.(10) we
\/§§5m (defined as a limjt Then the integral in Eq(11) obtain
would converge if
_ |B|2~e C12mre-—=/r  where Clzg\/l-‘r B/A. (17)
Qo o
a(r) - TH- (12 -
M Because &B/A<1, we havew/4<c,;<w/+8, indicating
fairly good agreement with the exact res(erfect agree-
The left hand side acts in some rough sense like a temperaent would bec;=1). A criterion of the form(12) or (14)
ture for the background in question. Similar results can bemerges immediately from estimating the total number of
established for singularities @¥(t)? in the complext plane:  strings produced from Eqél1) and (16), only with a factor
the result is some coefficient other thanin Eq. (12). We  of ¢, multiplying the left hand side. Thus we conclude from
will encounter such an alteration of Ed.2) at the end of this  this example that the steepest descent method gives a reason-
section. able approximation of the criterion for finiteness of the num-
The type of result expressed in Ed.2) provides a good ber of strings produced.
intuitive argument, albeit slightly circular, for whp(t)?
should be analytic on the real line: zeros and singularities of ———
o(t)? in the complex plane have to be far enough away from “pifferent choices of the parametérin the terméx2R that con-
the real axis for Eq(12) to be satisfied. So the radius of trols the coupling to the Ricci scalar result in finite shifts«if. As
convergence ob(t)? is finite everywhere on the real line. long as¢ does not grow too quickly as one goes to more highly
As an interesting class of examples, considek=a0  excited states, it should not affect the analysis at the level we are
Friedmann-Robertson-WalkéFRW) cosmology: working at.
SNeither the zero point nor the normalization Kfquite agrees
with the conventional definition of the excitation level in type I
string theory. This minor discrepancy is of no consequence as long
as we correctly keep track of the normalizationTgf.
The modes of a conformally coupled scalar with mass  ®This treatment is similar to the one 8].

ds?=a(79)?(—d7?+dx?). (13
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Let us conclude this section with a background that in-(12) should still apply, wherew is roughly the closest ap-
cludes de Sitter space in a certain limit, but has well-defineghroach of the singular region to the real axis.
in and out regions away from this limit. The geometry is
defined by Eq(13) with
Ill. STRINGS AND PREHEATING

a(7)2=A+B—"

T (18) A widely studied application of particle creation in cos-

V7t 1p mology is the theory of preheatingee, for example,10—

12]), whereby coherent fluctuations of the inflat¢raround

its minimum lead to an oscillating mass term for another

bosonic fieldy through a term in the action proportional to

¢2x?. The resulting variation im(t)? can set up a paramet-

ric resonance, which produces exponentially growing par-

ticle occupation numbers foy. The variation ofw(t)? can-

2 not be expected to be perfectly periodic, since the universe is
L A : e T

ds’~ — (—d7?+d%®) where L=+ /_2 (199  expanding and there may be significant deviations from pure
7 2 quadratic behavior in the inflaton potential in the region

where the inflaton oscillates. This limits the amplification

that parametric resonance can provide. One must then ask

under what conditions parametric resonance is “efficient,”

that an appreciable fraction of the energy stored in the |ana-

ton oscillations will be converted tg particles via preheat-

ing. Oversimplifying a little, the answer is that the masgof

must vary by a large factor: the maximum mass in each cycle

of oscillation must be many times greater than the minimum

whereA, B, andp are constants. h>B>0, this background
is qualitatively similar to Eq(15), but in the limit whereA

=B>0, the metric interpolates between the 0 patch of
dS, in the far past and flat space in the far future. To be
precise, forA=B and »<—p, we have

Although the background defined by Edq43) and (18) is
not motivated by string theory considerations, it might be
interesting as a simple “regulation” of de Sitter space: one
can for example define a8 matrix for A>B>0 and then
take the limitA—B to investigate aspects of quantum field
theory in de Sitter space.

The singularity ofa(#)? in the lower half plane closest to
the real axis is a branch cut startingsgt=—i/p. [There is

also a zero aty= — (i/p)(AlVAZ—B?), but this is always mass. In such a situation, there is a “broad resonaft#|,

further from the real axis, and it disappears altogether in thgnd a va_rlety of compll|ca_tgd effects like back rea ction and
A=B limit.] The condition(14) becomesT < Ty, where rescattering become significant. [@2], more precise ana-
s ' lytic criteria were developed to decide whether a resonance

is efficient. Let us explore how the criteria for efficient ex-
= (200  traction of energy from the inflaton oscillations might be
mra(r)  aA altered due to the presence of a Hagedorn density of states.
Occupation numbers of excited string states should be
As remarked earliefT is an effective temperature for the small even if strings do participate significantly in preheat-
spacetime. Interestingly, the estimd®9) does not depend ing. The reason is that resonances become exponentially nar-
on B at all—although, clearlyB must control a prefactor on row, and the rate of growth of occupation numbers within a
the total number of strings produced that vanishesBas resonance becomes exponentially slow, as one increases the
—A. In this limit, T4 as estimated in Eq20) differs byv2  tree-level mass. There can still be a large total number of
from the temperature of the de Sitter horizon in the far paststrings produced because of the competing exponential
which is Tys=1/(27L) with L as defined in Eq(19). The  growth of the density of states. To distinguish approximately
discrepancy is entirely due to the crudeness of estimating thehere the competing exponentials have equal “strength,” it
integral in the second factor of E(P) using an elliptical arc  is sufficient to work with|8|2<1 for all individual string
passing through zero: evaluating that integral exactly¥or modes, except perhaps for those that are massless at tree
=B changes the estimatg@0) so thatT = T4g exactly. level. Our plan of attack, then, is to use the methods devel-
It is tempting to interpret the divergence in E®) that oped in Sec. Il to study production of the massive excited
arises when Eq(10) is violated as dual to the development states.
of an open string tachyon stretched in the complex plane It is very plausible that the effective string tension, as
between the singularity poirt, and its complex conjugate measured in the four-dimensional Einstein frame, varies as
t,. Such an interpretation has been offered in time-the inflaton varies. Let us as usual assune=0 FRW cos-

dependent backgrounds resulting from well-defined stringynology. When the string frame metric is weakly curved, the
constructiong6], and the idea of D-branes in imaginary time SPectrum is given approximately byyw?= glk?+m?
has been further developed [ifi]. =g&k?+N/a’, where as usudll is the excitation level. The

In general, one should consider the possibility that thefour- dlmenS|onaI Einstein metric is related to the four-
singularities ofw(t) [or, more precisely, of the integrand in dimensional part of the string metric by a conformal trans-
Eqg. (8)] in the complext plane are not pointlike or even formation: dsf“feV‘P/'\"F’IAdsitr where Mp,, is the four-
branch cuts, but cover finite regions of the plane. This couldlimensional Planck massgp is a canonically normalized
happen, for instance, if we replaced #ey)? in Eq.(15) by  scalar which is some combination of the dilation and the
a continuous sum over different values®fA criterion like  volume of the internal manifold, ang/ is some constant,

1

Ts=
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presumablyO(1) in generic compactificatiorlsWe may ad-  states. Including these effects will make the first oscillation
just the zero point ofp so thate=0 at the minimum around produce more strings than any of the subsequent ones. To be
which one oscillates during reheating. Evidenthlzw?  more precise: the zeros af(t)?= o?w(t)? as given in Eq.
=gitk®+e"¥MriuN/a’. Using the usual ansatals;. (22 are
— 2+ 2432 H ) o L
dt“+a(t)<dx-, we end up with orn i o+

t, =——F—1I —_ 2
2 124112 ()M N o0 T Ogaq—w,’ (25)
w(t)*=ka(t)*+e” P'A?. (21)
but we are going to assume that=t, ,=r—iu makes the

Now, ¢ is not necessarily the inflaton: there are many scalardiggest contribution to string production. In order for the
in four dimensions that specify the size and shape of théormal expressioii8) to converge, Eq12) must be satisfied,
internal manifold. But it seems safe to assume, at least oWhich is to say

grounds of genericity, that there is some overlap betwgen
and the inflatonp. If ¢ oscillates with frequency) between
slowly varying extremesp,in and ¢may, then we may ap-
proximate(21) by

[
DN ue 2 log it T 8- N2 (26)
o(Np=glog—o=>""3

The right hand side is a quantity of order unity. We should

0wl +w? wi-w? regard it as uncertain by at least a factor of 2, given that Eq.
o(t)?= 5+ —cosit, (22) is only a rough guess fan(t)2, and the factor of is
only approximate, as the analysis of the exampl®)
N showed.
w? =k2a(t)?+e?¢min/Mpi4 — (22) If the bound(26) is satisfied with room to spare, then the

highly excited string states are hardly produced at all. Con-

N versely, if it is violated, a huge number of excited string
w2+ =K2a(t)2+ er¢madMpia — states are produced, rendered finite, if need be, by a cutoff on

ed the Hagedorn spectrum. A cutoff at an energylimits the
, L i L number of strings produced to something li T+, which
Neglecting derivatives c_;f slowly varying qugntltlt_as like g very large ifA is considerably higher thah, . So it seems
andw.., the wave function of a given bosonic string mode, jj ey ‘that the string production is more likely to be limited
suitably scaled by some time-dependent factor, safisfie§y the available energy in the coherent inflaton oscillations.
Mathieu's equation Thus a violation of Eq(26) is very likely to mean that ex-

2 cited string states will play a vital role in preheating, in the
— +A—2q coS 2))(:0 (23 sense that a significant fraction of the energy in the inflaton
dz* oscillations goes into excited strings. We obtained &)
from a single oscillation of the inflaton. Further oscillations
of the inflaton are then presumably rapidly damped, and even
2 if a finite number of zeros ab(t)? contribute significantly to

(24 the total string production, the result will probably be to
change only a prefactor in the expression for the total num-
ber of strings produced: Eq26), which comes from the
exponent of Eq(11), is less likely to be affected.

with z=Qt/2 andA andq specified by

For (A,g) in special regions of the plane, solutions to EXf)
exist whose average value grows withse*?, wherev is the
imaginary part of the so-called Floquet exponent. These so-
lutions are a manifestation of parametric resonance, but Wes e mi .
will not need them for the reasons reviewed above. Our es. /¢ Might worry that parametric res‘;“‘i‘”c.e_ could alter [26).

timates will be based wholly on the steepest descent methosﬁl%t the. way that occupation numbe}@ bs'ghn'f'cag“y.lar.gf].er thf‘n
which should be reliable becaukg|?> has to be small near ) arise in parametric resonance is by havjag® significantly

. . S larger than 1, so that the approximatiaiit)~1 that led to Eq(4)
the boundary <_)f the region where string production is impor-,is This is related to having exponential growgt~e" 2 of
tant for reheating.

. _ . . certain mode functions. Occupation humbers of order unity for ex-
After the usual “rescaling’w—ow, we find ourselves i (jteq string states should result in a huge divergence in the total
the situation described in Eqé7)—(12). In Egs.(22—(24),  number of strings produced. Exponentially suppressed occupation
we have neglected the damping of the inflaton oscillationsyumbers for highly excited strings mean that the approximations
due to expansion and to dissipation of energy into the stringhat led to Eq.(26) should be valid. One can try to test this self-
consistent reasoning further by adapting the estimatgl®fto a
Hagedorn spectrum of bosonic states. The resultd b, /dt
The expressiondsﬁE=eW’MPMdﬁtr is imprecise because the ~[*do 1(o)e” ™, wherew(o) is the Floquet exponent for a string
combination of scalars in the exponent may not be an eigenvectatate at levelo?, as determined by thé and q appearing in a
of the scalar kinetic operator in the four-dimensional Einsteinrescaled version of Eq24). This expression leads to agreement
frame. But the oversimplification will not matter in the subsequentwith Eq. (26) up to factors of order unity, but it is hard to evaluate
treatment. those factors.
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Neglecting the logarithm in Eq(26) as well as various moderately smalfl.Since the total energy that can go into the
factors of order unity leads to the approximate convergencstrings is finite in preheating, but scales as an exponential of
condition the typical energy of the string modes produced, it might be

that total energy provides a process-dependent cutoff that is
often lower thanA.
(2) Heaviness of fundamental strings: in conventional sce-
\/Zz Minfiatons (27) narios, the square root of the string tension is roughly five
orders of magnitude larger than the inflaton mass{ GeV
as compared to ¥ GeV, roughly speaking In order to
violate Eq.(27) without making the inflaton mass much big-

wherer_ is the minimum string tension as measured in four- o . )
T g ger than it is usually assumed to be, the string coupling needs

ilr\r/]ﬂli\llmzl QEilsnfct)imhrratwgzgztoaoxgsze;fitlssrr:?nailxl])m to become very small during the inflaton oscillations—or,
7 Wi gnly ) . . " more precisely, the four-dimensional Planck scale, which
The criterion for there to be copious string production due to.jas as

coherent oscillations of the inflaton is that the inequal®y)

should be violated. This happens in a considerably broader

regime of parameters than the regime that appears in the Mpy 4~ (VoI CY3) Y29  ta’ 72, (28
standard analysis of preheating. In the standard analysis, in

order for the resonance to be “efficient,” the minimum mass ) o )
of the additional scalag must be many times smaller than Must attain values much larger thanja/. This is not in-

the inflaton mass, so that during many oscillations of theconceivable, but it does seem contrived. It has been pointed

inflaton, the parameters of the Mathieu equation fall in thePUt t© me[14] that an inflaton mass during preheating sub-

: stantially larger than 8 GeV might be arranged in string
range 2)<A<2q+bg for some congtarh) of o.rd.er unity. theory. This lies outside the scope of the current investiga-
In contrast, for us, the analogous region of efficient preheatt-ion

NG 1S 2q<_A<2xq for_somex>1_. Of_ course, from a pl_,lrely (3) Production of superheavy stable particles: Unless the
quantum field theoretlc_ standpoint, it may seem contrlyed fo_'&ompactification manifold is simply connectédr unless
the_ masses of an entire Hagedorn spe_ctrum to _oscnlate iBpen strings can propagate throughout ten-dimensional
unison—but that is where the perspective of string theongpacetimg there will be stable states corresponding to
makes natural things that otherwise would seem very speciatrings wound around noncontractible cycles. Such states can
Three potential problems with the idea that strings coulthave fractional electric chardd5], and they would be very
have played a significant role in preheating are as follows, imeavy, with massn~¢/«’, where ¢ is the length of the
increasing order of seriousness. First, the Hagedorn spectrufbncontractible cycle. The trouble is that there is a Hagedorn
might be cut off at a sufficiently low scale to invalidate the spectrum of excited strings with any given winding number,
above analysis. Second, the fundamental string tension @nd it is not clear that their production is suppressed strongly
supposed to be near the Planck scale, much higher than tymnough compared to strings with no nontrivial topology
cal values for the inflaton mass, so despite the considerationvghich can decay into string modes that are massless at the
of the previous paragraph, it may still seem quite unnaturairee level. Excited string states with winding number would
to have(27) violated. And third, superheavy stable particlesrelax to stable, superheavy particles. The bounds on the den-
could be produced in unacceptable numbers, some of thefity of such particles are stringent because they would con-

with fractional charge. Let us examine these issues mor#ibute to dark matter density. Tracing back the upper bound
closely. on dark matter density today to the epoch of preheating leads

to the conclusion that superheavy stable particles should
) ) comprise a very small fraction of the total energy at that
(1) Cutoff on the spectrum:. Slnce we believe that thetime—perhaps on the order of 18 [3].
number of degrees of freedom is thinned out dramatically by e can estimate how rapidly such particles would be cre-
interactions at high energies, we should introduce some engted as follows. The energy of states with nontrivial winding
ergy cutoff A and keep only those states with energy lesss
thanA. If A is only slightly above the string scale\i¢’, of
course all of our arguments collapse, and E). is not a
good way at all to estimate the number of string quanta cre- %It is argued in[13] that gravitational self-interaction of strings
ated. But, in fact, there is reason to think thAat 1/\/?: for compresses the spectrum and makes the density of states rise faster
example, as noted ifil3], the typical size of a string is than in the free theory, until at some high scale string states might
greater than the ten-dimensional Schwarzschild radius assg€ in one-to-one correspondence with the microstates of black
ciated with its total mass untN~1/g§, whereN is the ex- holes. Such a supere>.<ponent|al increase |n.the numper of states one
L . . . can actually produce in the way we have discussed in this paper is
citation level andyg is the string coupling. It would be con-

. . . disastrous, since almost no background will have a finite total num-
sistent with the spirit of holography to put at about the ber of quanta produced. Presumably this is where a total reorgani-

energy scale of strings at this high excitation leval:  zation of concepts is needed, perhaps with holography playing a
~1/(\Ja’ g3y, which is indeed a fairly high scaledf; is even  central role.
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w2= wg+ m2, (29 IV. NONPERTURBATIVELY CONSTRUCTED STRINGS

Points 2 and 3 from the end of the previous section may
wherewg is the energy of a string state with no winding, but incline us to doubt that excited strings can plausibly have

with the same momenta in the noncompact dimensions an%nythlng to do with preheating: on the one hand, they are

at the same excitation level. The density of the states ng)robably too heavy 1o be_ produced in S|gn_|f|cant numbers,
. . and on the other hand, if they are, there is a tendency to
winding should be roughly the same, as a functiomgf as '
. ; - . overproduce superheavy stable particles.
the density of states without windiftg Thus the calculations Strings in four dimensions arising from branes wrapped
leading up to Eq(11) can be adapted to an approximate ) . o
. : on cycles of an internal manifold offer the possibility of ame-
treatment of productlon of heavy charged particles by erIaCI_iorai/ing the problems described above. FI;egardin);; problem
ing the density of states 2, the key point is that strings coming from wrapped branes
become tensionless at special points in the moduli space
o R which are a finite distance from generic points and typically
e/ T ——=e"" " ™/Th, (30)  occur at real codimension 2. Regarding problem 3, the help-
w=—m ful feature is that degenerating cycles can occur in an iso-
lated nearly singular region of the internal manifold, so that

If production of highly excited string states dominates, ther’© Stateé with nontrivial topology is ever light. We will ex-
roughly an equal number are produced with winding as withland on these points somewhat in the following paragraphs

and in the process do another simple estimate of string pro-
out, simply because/w?—m?~w for these highly excited  j,ction. P P gp

strings._Prefactors_ on the. dengity _of states might suppress the First to see that wrapped branes must be included on an
production of strings with winding by a few orders of ¢qyal footing with other states in the spectrum, recall, for
magnitude—but suppression by a factor of 10seems dif- example, the duality between the heterotic stringTdrand
ficult. This |s_the reIevan'F factor_because we are operating ogy theory on K3, where when cycles of the K3 shrink,
the assumption that excited strings do suck out a S'gn'f'ca%rapped M2-branes become light and provide the W bosons

fraction of the energy of the coherent oscillations of the in-5¢ ennanced gauge symmetry that can be seen by other
flaton field. Naturally, if this assumption is lifted, there is N0 ,aans on the heterotic side6,17.

pressing problem with overproduction of superheavy stable Arbitrarily light strings can arise in various waya8—

H 1
particles. _ _ o _ 21]. A typical situation is for the effective tension in four
The considerably more stringent limits on fractionally §imensions to be

charged particles have not been invoked in the discussion of

the previous two paragraphs because it is not clear to me that ) Mpi 4

fractionally charged particles are a universal aspect of string Ter~Mle| with M~ Os (31)
models with nontrivial topology in the extra dimensions.

) ) where ¢ is a canonically normalized complex scalar field.
.In the analy5|s .followmg Eq(30), we have assumed that 14 precise dependence Mf on g, may depend on details,
string production is not somehow limited to modes less eny t some inverse dependence anis to be expected from
ergetic thanf/a’. Intuitively speaking, the point is that the gi5te5 that descend from string solitons. Let us consider D3-
spectrum pf strings with winding defines the same 'Femperabranes wrapped on a shrinkiig§ within a Calabi-Yau mani-
ture (despite the presence of a gags the strings without 15,4 a5 4 definite example. The complex scajdn this case
winding. We have also neglected the annihilation of stringsg proportional tof (J,+iB,). The real part of this integral

wound in one direction with strings wound in the other. < iha volume of thes?, and the imaginary part is an axion

Some estimates of the cross section might be made, byf,,qe associated instanton is a fundamental string wrapping
annihilation processes do not seem likely to generate a SURRe S2.12 The action includes the standard Dirac-Born-Infeld
pression factor anywhere close to #0. Thus we regard (DBI) term

the overproduction of winding states as a major peril if

highly excited strings are assumed to play any role at all in 4
preheating. S=—p3| d"éNVG,,+B,,+ . (32

Integrating this on thes? and usingrpz~ 1/(a’?gs) gives

This is easily seen to be so in the case of a circle compactificaln® Nambu-Goto action for a string extended in other direc-
tion when there is a winding number but no Kaluza-Klein momen-tions, with a tension given by E¢31). The overall normal-
tum. | doubt the Calabi-Yau case would be much different, but lization of the tension definitely depends on more data than
have not carried out the computations explicitly.

Hn fact, if we assume that the minimum string tens{as mea-
sured in the four-dimensional Einstein franis about an order of 2There are well-understood worldsheet instanton corrections to
magnitude higher than the inflaton mass, then the fagtdi(") the metric on the Kahler moduli space which we will be neglecting.
suppressing string productidef. Eq. (10)] can be arranged to be These singularities are logarithmic and do not change the fact that
around 107, This might suggest a new twist on the idea of string- the point at which wrapped D3-branes become tensionless is at a
motivated superheavy dark matter. finite distance from generic points. They may slightly alter &4).
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we have specified so féfor instance, the total volume of the m, ,..... Recalling that the minimum tension isq_
Calabi-Yau manifolgl but Eq.(31) should be right up to  ~M)|¢,|, we can summarize the convergence criterion as fol-
factors of order unity provided one is not in a peculiar cornengws:

of the moduli spacésuch as a Calabi-Yau manifold which is

many times larger than the fundamental string gcale . VM %3 73%27
An $? can indeed degenerate at a finite distance in moduli Iso(p=—7—"=Wo
space in a Calabi-Yau compactification and in an isolated ¢ ¢
part of the Calabi-Yau manifold. A famous example is the Tgﬁﬁ_ Tefi— | °
resolved conifold22-24. It is also possible for degenerate MM “104< M2 ) (34)
spheres to arise along a two-dimensional locus within the P14 inflaton Pl4
Calabi-Yau manifold: this locus might be a Riemann surfacg, equivalently,
of nontrivial topology, which resurrects the potential hazard
of overproduction of superheavy stable particles. 1
At least in certain circumstances, it is clear that nonper- V Teff,— = X)M P4

turbatively constructed strings have the same Hagedorn be-
havior as fundamental strings. The cleanest evidence comg@fere we have assumedv~10M pia and Mifaon
from NSb5-branes, where for many coincident branes, the_ 195\ oi4. The estimates leading to E(134) are inevita-
Hagedorn temperature of the fractional instanton strings i§,|y fairly crude as long as we have not specified what the
exactly _the HaV\_/king temperature for the near-e>_(tremal SUinflaton is and how much it overlaps with the scaiacon-
pergravity solution[25]; and from noncommutative open yqling the effective string tension. The result in H84) is
strings, where the effective string tension of open strings isainer different from Eqs(26) and (27). Intuitively, this is
lowered by applying an electric field, and the Hagedorn bepecause the harmonic dependence that led taZ8y.is the
havior is simple to understanfl26]. In both casesTy  smoothest interpolation between a given maximum and mini-
~ 7e. We will assume that this relation continues to hold, mum in a specified time interval, whereas E83), though
and that the arguments that led to &6). still apply. still analytic, implies almost a discontinuity in the first de-
Assume now that the scalgrhas some overlap with the rjyvative of w(t)2.
dilaton, and that it is undergoing coherent oscillations just Evidently, the nonperturbatively constructed strings do
after the end of inflation. It is unnatural to suppose that not have to dip very far below the Planck scale in order to
passes exactly through zero, but it might reasonably be agjolate the convergence criteridB4). As before, the expo-
sumed to pass near zero in the complex plane. Perhaps ngential nature of the divergence then would seem likely to be
ively, we will assume tha is nearly constant whilgg| is  efficient in sucking energy out of the coherent motion of the
small. Letp, be the closest approach etto the origin. Then  inflaton. More precisely, it would be efficient in sucking out

the effective string tension varies with time like this: the energy from the coherent motion @fwhich is probably
) SRR not the only component of the inflaton. This might be mod-
Tei™~M| @0+ ot|= M V| @o| >+ (| ¢[1)?. (33)  eled in a Hartree approximation by a damping term for the

. o ) ] ) evolution of one scalar which acts only near a certain value
Proceeding in the same spirit as in the previous sections, Wgf that scalar, while other scalars, coupled to the first by

suppose that modes of the string in four dimensions have . . :
dispersion relationship(t)?>=k?+ N7, whereN is some- %:ms in the potential, are damped only by the usudis3

thing like the level, and we are not trying to keep track of the
expansion of the universe during the brief moment when the

effective string tension becomes small. The Hagedorn tem- V. CONCLUSIONS
perature isTy~ \7e. The frequencieso(t) (and also the The convergence criterion on the total number of strings

Hagedorn temperaturare slowly varying in the far future produced, which we have variously stated as E#), (26),

and the far past, in the sense that derivatives of these quagn( (34), amounts to the statement that in the appropriate
tities are much less than the appropriate power of the undifstring frame, where the string tension is by definition con-
ferentiated quantities. So asymptotic in and out vacua can b&ant, curvatures are substringy—only it is crucial that not
defined, at least in the approximation where we neglect whagnly are the second derivatives of the string metric bounded
happens when the scalar rolls out of the realm of validity ofhy the string scale, but all derivatives are bounded in an
Eq. (31), and particle production can be estimated in theappropriate way to ensure a uniform radius of convergence,
same way that led to Eq10). If we definew(t)=7ei(t),  of order the string length, for the time-varying energies of
then the result is that an integral of the type found in@d)  string modes. In the context of preheating, a violation of this
converges provided a criterion similar (26) holds. Drop-  bound on curvatures, either for fundamental strings or for
pirg various factors of order unity, that convergence criterionstrings constructed as wrapped branes, has the simple inter-
is w(r)u=1. The solution tore(t)=0 in the lower half of  pretation that the production of highly excited string states
the complex plane i, =r —iu=—i|¢o|/|¢|. Thus the con- efficiently drains the energy of coherent inflaton oscillations.
vergence criterion is/M|¢o|/|¢|=1. We can roughly esti- This is somewhat in analogy with the standard theory of
mate ¢~ M p| 4Minsiaton, ON the assumption that the coherentpreheating, but copious string production occurs in a larger
oscillations of ¢ are of amplitudeMp, 4, and of frequency region of parametergas measured in théA,g) plane of pa-
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rameters for Mathieu functiohsUnfortunately, it is not par- wrapped on a holomorphic curve hits &g boundary, then
ticularly clear to me what distinctive experimental signatureshe light strings can wrap cycles of the holomorphic curve
should be_ expectedi if highly ex_cited stringg played a signifi{which is a Riemann surface embedded in the Calabi-Yau
cant role in preheating. The strings decay into states that ai@anifold), unless that curve is topologically &f. And if
massless at the tree level, and presumably these can thefe two boundaries collide, then the light strings can wrap on
thermalize. However, if excited strings states are created ifhe Calabi-Yau manifold, unless the Calabi-Yau is simply
appreciable numbers, it seems that stable superheavy palsnnected, which would considerably reduce the particle-
ticles are likely to be overproduced, if they exist in the St””gphenomenological appeal of the setup.

spectrum. This problem can be avoided by considering |+ yoes not help to assume that the strings are light only
strings in four dimensions that arise as branes wrapped ORr a brief instant of time. In fact, according (84), largeré

cycles of an internal manifold—cycles which shrink to pro- (meaning a briefer collisioncauses more string production,

duce a pointlike singularity on that manifold. N . . . .
The tension of such nonperturbatively constructed stringyOt less: it is then easier to violate the inequality(4).

vanishes at certain points in moduli space, and near such The reason that it is easy to offer the plausible interpreta-
points the dependence of the tension on canonically normation of draining energy from coherent inflaton oscillations
ized scalars may reasonably be assumed to b&3y.This  when strings are copiously produced just after inflation is
dependence leads to a convergence crite(® which is  that a significant fraction of the energy is kinetielating to
considerably more restrictive than the one derived in EqSihe time derivative of the inflation A much thornier ques-

(26) and(27) assuming harmonic dependence—meaning thafion js what happens if a string becomes lighter than the
the minimum tension does not have to be as low, assumingppie scale during slow-roll inflation, when most of the

the dependencgl), in order to violate the convergence cri-
teria and produce a large number of excited strings. In fac
as we see in Eq34), the effective string tension needs to dip tion to the string scale, and that there could be a fixed point

only a couple of orders of magnitude below the four- of forward time evolution where a string tension is vanishin
dimensional Planck scale in order to have copious string pro- 9 9

duction, with otherwise rather standard assumptions abodt! the same time that the expansion of the universe is slowing

the amplitude and frequency of inflaton oscillations just after® somet'hlng I,es,s fas't than ex.ponentlal. An observation that
the end of inflation. tells against this idea is that string production should result in

In summary, it is quite plausible that excited strijgeob- & New source of posi'Five energy density, and, unlik_e the case
ably of nonperturbative origirplay a role in postinflationary ~©Of preheating, there is no obvious way to suck this energy
cosmology. away from the scalar potential energy. Granting the Fried-

A much studied scenario in which light strings appear isman equatiord?=p/(3M3, ), it is hard to see what mecha-
ekpyrosig 27,28, in which either an M5-brane wrapped on a nism due to light strings will drivep and thereforéd to zero.
holomorphic cycle of a Calabi-Yau manifold collides with Perhaps this question must wait on some treatment more
the Eg boundary of spacetime constructed 29], or the two  firmly based on the first principles of string theory.

Eg boundaries collide with one another. In the first case, Indeed, an objection that could be raised to the entire
M2-branes stretched between the M5-brane and the bounénterprise of this paper is that' corrections to the space-
ary behave as strings that become light at the moment afme equations of motion become significant when curva-
collision. In the second case, M2-branes stretched betweefires are at the string scale, so it is not clear that we have
the two Eg boundaries become light, and they become preadequately addressed classical effects before delving into the
cisely the perturbat'lve_heterotlc strings in thg limit where thequantum effect of particle creation. There are at least three
two boundaries coincide. The results of this paper bear opgas0ns to continue thinking about string creation in general
ekpyrosis in two ways. backgroundst1) Nonperturbative strings do not have a well-

understood connection to spacetime equations of mot®n;

(1) We have noted in Sec. IV a natural way of avoiding orworldsheet techniques have not so far provided a particularly
‘regulating” the collision: one simply needs to assume a|arge class of well-understood time-dependent backgrounds;
nonzero value for the pseudoscalar superpartner of the regd) pecause copious string creation occurs, in some heuristic
scalar controlling the distance between the branesionge at the same orderdn as corrections to the classical
boundaries. In the case of colliding boundaries, this pse“dQs'pacetime equations, string production probably does have

scalar is just the axion arising from the Neveu-Schviyz i ; ;
i . . . g . y portant role to play in our understanding of general
field of the heterotic string with both indices in four dimen- time-dependent backgrounds.

sions. If this axion exists in the spectrum, it is in fact unnatu- L , .

o . . et us end with some open questions.
ral to suppose that it is zero during ekpyrosis.

(2) If ekpyrosis does occur, presumably in a “regulated” Our estimates for string production were fairly crude in

way as explained in the previous point, then estimates of thplaces, starting with the neglect of power law corrections to
creation of light strings proceed in parallel to our calcula-the exponential growth in the density of states, and including
tions in Sec. IV. If excited strings are produced during ekpy-also the neglect of various factors of order unity that enter
rosis, the problem of overproducing stable superheavy painto the exponential behavior in E@ll). Is it possible to
ticles seems likely to recur. Specifically, if an M5-brane give more precise estimates?

energy is stored in the scalar potential. | have speculated
telsewhere{30] that light strings might limit the rate of infla-
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Can one give an explicit string theory construction ofis likely to be generated? Is the scenario plausibly consistent
time-dependent backgrounds in which highly excited stringwith existing bounds?
states are produced? This is surely complicated by the fact
that back reaction from such strings is likely to be important.

Might the CP violation that results from turning on an
axion to “get around” a point of tensionless strings be of
interest in baryogenesis? | thank J. McGreevy for reminding me of the origin of the

If highly excited strings are produced when inflation is heterotic string axion, H. Verlinde for discussions regarding
over or nearly over, is there some definite effect on the spedight strings and ekpyrosis, and C. Callan, D. Freedman, S.
trum of fluctuations? How do decay products of highly ex-Shenker, and P. Steinhardt for other useful discussions. | am
cited strings thermalize? particularly grateful to G. Dvali for discussions on various

If we assume that the end of inflation involves oscillationspossible effects of light strings on cosmology. This work was
in a complex moduli space with tensionless strings on somsupported in part by the Department of Energy under Grant
real codimension 2 loci, how much isocurvature perturbatiorNo. DE-FG02-91ER40671.

We hope to return to some of these questions in the future.
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