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Weakly interacting massive particle diffusion in the solar system including
solar depletion and its effect on Earth capture rates
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Weakly interacting massive particles~WIMPs! can be captured by the Earth, where they eventually sink to
the core, annihilate, and produce, e.g., neutrinos that can be searched for with neutrino telescopes. The Earth
is believed to capture WIMPs not dominantly from the Milky Way halo directly, but instead from a distribution
of WIMPs that have diffused around in the solar system due to gravitational interactions with the planets in the
solar system. Recently, doubts have been raised about the lifetime of these WIMP orbits due to solar capture.
We investigate this issue here by detailed numerical simulations. Compared to earlier estimates, we find that
the WIMP velocity distribution is significantly suppressed below about 70 km/s, which results in a suppression
of the capture rates mainly for heavier WIMPs~above;100 GeV). At 1 TeV and above the reduction is
almost a factor of 10. We apply these results to the case where the WIMP is a supersymmetric neutralino and
find that, within the minimal supersymmetric standard model, the annihilation rates and thus the neutrino fluxes
are reduced even more than the capture rates. At high masses~above;1 TeV), the suppression is almost two
orders of magnitude. This suppression will make the detection of neutrinos from heavy WIMP annihilations in
the Earth much harder compared to earlier estimates.

DOI: 10.1103/PhysRevD.69.123505 PACS number~s!: 95.35.1d, 12.60.Jv, 96.35.Cp
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I. INTRODUCTION

There is mounting evidence that a major fraction of t
matter in the Universe is dark. The Wilkinson Microwav
Anisotropy Probe~WMAP! experiment gives as a best fi
value that@1# VCDMh250.11360.009, whereVCDM is the
relic density of cold dark matter in units of the critical de
sity and h is the Hubble parameter in units o
100 km s21 Mpc21. One of the main candidates for the da
matter is a weakly interacting massive particle~WIMP!, of
which the supersymmetric neutralino is a favorite candida
There are many ongoing efforts trying to find these d
matter particles, either via direct detection or via indire
detection by detecting their annihilation products.

One of the proposed search strategies is to search f
flux of high-energy neutrinos from the center of the Ea
@2#. This idea goes back to Press and Spergel in 1985@3#,
who calculated the capture rate of heavy particles by the S
For the Earth, the idea is that WIMPs can scatter of
nucleus in the Earth, lose enough energy to be gravitation
trapped, eventually sink to the core due to subsequent s
ters, annihilate, and produce neutrinos. For purely kinem
cal reasons, the capture rate in the Earth depends strong
the mass and the velocity distribution of the WIMPs. T
heavier the WIMP is, the lower the velocity needs to be
facilitate capture. In 1987, Gould@4# refined the calculations
of Press and Spergel for the Earth and derived exact form
for the capture rates. In 1998, Gould@5# pointed out that
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since the Earth is in the gravitational potential of the Sun,
WIMPs will have gained velocity when they reach the Ea
and hence capture of heavy WIMPs would be very small
that paper, he also analyzed the two possible forms of s
tering:gravitational scatteringandweak scattering. Gravita-
tional scattering is elastic and can only change the direc
of the orbit, whereas weak scattering is inelastic and can l
to capture of WIMPs. Following the traditions of O¨ pik @6#,
equations for the time scales of the various scattering p
cesses were derived.

In 1991, Gould@7# took these ideas further and realize
that due to gravitational interactions with the other plan
~mainly Jupiter, Venus, and Earth!, WIMPs will diffuse in the
solar system both between different bound orbits, but a
between unbound and bound orbits. Gould showed that
net result of this is that the velocity distribution at the Ea
will effectively be the same as if the Earth was in free spa
~this basically follows from Liouville’s theorem!. This ap-
proximation is widely used today where one further assum
that the halo velocity distribution is Gaussian~i.e., a
Maxwell-Boltzmann distribution!.

In 1999, the calculations took an unexpected turn, wh
Gould and Alam @8# interpreted asteroid simulations o
Farinellaet al. @9#. Farinellaet al. @9# made simulations of
about 50 near Earth asteroids~NEAs! that had been ejecte
from the asteroid belt. They found that about a third of the
have lifetimes of less than two million years. After that tim
they are either thrown into the sun or thrown out of the so
system. If this typical lifetime also applies to WIMPs, th
would significantly reduce the number of WIMPs bound
the solar system, as this time scale is shorter than the typ
diffusion time scales@7#. This was pointed out by Gould an
Alam @8# where they concluded that this in turn would r
©2004 The American Physical Society05-1
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duce the expected capture and annihilation rates in the E
and thus reduce the neutrino fluxes. Gould and Alam inv
tigated two scenarios: anultraconservativescenario where
all bound WIMPs are depleted and aconservativescenario
where all bound WIMPs that do not have Jupiter-cross
orbits are depleted. In the ultraconservative view solar de
tion is assumed to be so efficient that no bound WIMPs ex
whereas in the conservative view, Jupiter is assumed to
faster at diffusing WIMPs into the solar system than so
depletion is at throwing them into the Sun. Both of the
views significantly reduce the neutrino fluxes from the Ea
for heavier WIMPs. In particular they found that in the co
servative and ultraconservative view, capture can only oc
for WIMPs lighter than about 630 GeV and 325 GeV, resp
tively. The basic results of Farinellaet al. were later con-
firmed by Gladmanet al. @10# and Migliorini et al. @11#.

The question to ask, though, is if the results of Farine
et al. @9# can really be applied to all Earth-crossing WIM
orbits. The orbits of asteroids ejected from the asteroid
are, after all, rather special as they typically arise from re
nances. It is thus not necessarily so that these results app
all bound WIMPs. For WIMPs, the truth probably lies som
where between the conservative view and the usual ‘‘fr
space’’ approximation in Ref.@7#. The aim of this paper is to
investigate the effects of solar capture on the distribution
WIMPs in the solar system and the implication this has
expected neutrino fluxes from the Earth. We will do this
numerical simulations of WIMPs in the solar system and
reanalyzing the process of WIMP diffusion in the solar s
tem. Finally, we will apply our results to the case where
WIMP is the neutralino, which arises naturally in minim
supersymmetric extensions of the standard model~MSSM!.

The layout of this paper is as follows. In Sec. II we w
go through our assumed halo model and the role of diffus
in more detail. In Sec. III we will go through the formalism
for the diffusion caused by one planet and in Sec. IV we a
the new ingredient, solar depletion. In Sec. V we present
numerical treatment of the diffusion problem. All of this wi
be put together with the dominant planets for diffusion
Sec. VI where our main results on the velocity distribution
the Earth are presented. In the remaining sections we
investigate how this affects the capture and annihilation ra
in the Earth and will present results on the expec
neutrino-induced muon fluxes in MSSM models in Sec. V
Finally, we will conclude in Sec. IX.

II. THE GALACTIC HALO MODEL
AND CUTOFF MASSES

A. The galactic halo model

In order to make the calculations concrete, we use
Maxwell-Boltzmann model@12#, where the local velocity
distribution of WIMPs is Gaussian in the inertial frame of t
Galaxy. At the location of the Sun the distribution is

f v~v !d3v5
e2v2/v0

p3/2v0
3
d3v, ~1!

wherev05A 2
3 v̄ with v̄ being the three-dimensional velocit
12350
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dispersion. We will here use the standard value ofv̄
5270 km/s corresponding tov05220 km/s. The distribution
is normalized such that

E f v~v !4pv2dv51. ~2!

The velocity distribution can be Galileo transformed in
the frame of the Sun:f s(s), where s5v1vSun, and vSun
5220 km/s, and averaged over all angles. In this spe
case of a Gaussian distribution the transformation can
done in closed form@4#. As Gould has pointed out, the ang
between the rotation axis of the solar system and that of
galaxy is about 60°, which makes the velocity distributi
very close to spherically symmetric,if one considers aver-
ages over a galactic year'200 million years@5#. The dis-
tribution used is mirror symmetric in the galactic plan
which means that the time of the average need only be
million years.

The symbolFs(s) will be used to denote the phase spa
number density

Fs~s!5
rx

Mx
f s~s!, ~3!

whereMx is the WIMP mass, andrx is the WIMP mass per
unit volume in the halo. When the particles of this distrib
tion pass through the solar system, the velocities are boo
and focused by the gravitational potential. At the location
the Earth, the solar system escape velocity isA2v %

'42 km/s, where we have used the speed of the Earth,v %

.29.8 km/s. Therefore the velocity at the location of t
Earth,w, is, according to conservation of energy,

w25s212v %

2 . ~4!

When a spherically symmetric distribution such asFs(s)
is focused by a Coulomb potential such as that of the S
the following statement holds@5#:

Fw~w!4pw2dw

w
5

Fs~s!4ps2ds

s
. ~5!

This can be understood as Liouville’s theorem for the sph
cally averaged phase space density, since

ds

dw
5

w

s
⇒Fw~w!5Fs~s!. ~6!

Since the velocityw of the halo particles is always at lea
equal to the escape velocity, there will be a hole in veloc
space so that

Fw~w!50 when w,A2v % . ~7!

This is important since capture by the Earth is very sensi
to Fw(w) at low velocities.
5-2



e
ic

d
a
ity

he
s
p

v
es
ic

he
5.0

her.
n

in
and
nly
t be

he
that
its

ig. 1
a

he

t
nes
-

ties
er-

a-
er.

y

lid
oc
m
li
y

tic

WEAKLY INTERACTING MASSIVE PARTICLE . . . PHYSICAL REVIEW D 69, 123505 ~2004!
The distributionFw(w) can now be used to calculate th
distribution as seen from the moving Earth where the part
velocity is u5w1v% :

Fu~u!5Fw~w!5Fw~uÀvŠ!. ~8!

This means that thehole is shifted, so that it is centere
around2v% . This is visualized by Fig. 1, which displays
two dimensional slice of the three dimensional veloc
space.

B. Cutoff masses when low velocity WIMPs are missing

In the absence of WIMPs gravitationally bound to t
solar system, the capture by the Earth is totally suppres
for WIMP masses larger than a critical value. A particle a
proaching the Earth with velocityu at infinity will need to be
scattered off an atom to a velocity less than the escape
locity, vesc, to be captured. Assuming iron to be the heavi
relevant element of the Earth, this means that the part
must have a velocity less than

ucut52
AMxMFe

Mx2MFe
vesc ~9!

to be capturable. Solving for the WIMP massMx gives

Mx,cut5MFe

u212vesc~vesc1Au21vesc
2 !

u2
, ~10!

FIG. 1. The ecliptic (f5p/2) slice of the particle velocity
spacein the frame of the Earth. The dotted curves show the velocit
relative to the Earth and the indicated angleu is the angle of the
particle with respect to the direction of Earth’s motion. The anglef
determines in which angle we cut the velocity sphere.f50 is the
north pole of the solar system andf5p/2 ~as shown here! is the
slice radially outward from the Earth. The region inside the so
semicircle represents bound orbits. Its radius is the escape vel
from the Solar system at the location of the Earth, but in the fra
of the Sun. In the same way, the region outside the dash-dotted
~an almost perfect semicircle! corresponds to particles that ma
reach Jupiter. By repeated close encounters with the Earth, par
may diffuse along the dotted circles~actually spheres! of constant
velocity only, keepingu constant, but allowing changes inu andf,
as explained in the text.
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whereu is the speed~at infinity! of the approaching particle
in the frame of the Earth andMx,cut is the highest allowed
mass of the particle if it is to be captured by the Earth. T
escape velocity varies from 11.2 km/s at the surface to 1
km/s at the center of the Earth~see Sec. VII A for more
information about the Earth model we use!, and capture is
thus easiest at the center where the escape velocity is hig
Usingvesc515.0 km/s, we plot in Fig. 2 the relation betwee
ucut and the cutoff mass,Mx,cut.

With Eq. ~10!, we can now relate to the cutoff masses
the conservative and ultraconservative views by Gould
Alam @8#. In the ultraconservative view, we assume that o
unbound halo particles are captured. Halo particles canno
slower than ucut5(A221)v % .12.3 km/s at, and in the
frame of, the Earth~this is also seen in Fig. 1!. This gives a
cutoff mass of about 410 GeV over which capture by t
Earth is impossible. In the conservative view, we assume
Jupiter-crossing orbits are filled. This means that all orb
outside the dot-dashed curve and the dashed curve in F
are filled. The lowest velocity WIMP at the Earth that is on
Jupiter-crossing orbit is in the lower right-hand end of t
dot-dashed curve and it has a velocity ofucut

5v %@A2/(12r % /r ")21#.8.8 km/s~and is moving in the
same direction as the Earth!. r ".5.2r % is the radius of the
Jupiter orbit. This value ofucut gives a cutoff mass of abou
712 GeV. These cutoff masses agree roughly with the o
by Gould and Alam@8# ~325 GeV and 630 GeV, respec
tively!. The differences are due to different escape veloci
used and an approximation in their treatment of Jupit
crossing orbits@31#.

If, on the other hand, the solar system is full of gravit
tionally bound dark matter, the velocities can be much low
As the lowest allowed velocity of the WIMPsucut tends to
zero, the mass limitMx,cut goes to infinity.

ity
e
ne

les

FIG. 2. Cutoff velocityvcut against WIMP massM. Only com-
binations ofM and vcut to the left of the line are kinematically
allowed ~in the sense that they can lead to capture by the Earth!.
5-3
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III. GRAVITATIONAL DIFFUSION IN
THE ONE-PLANET CASE

A particle in close encounter with a planet, for instan
the Earth, may get gravitationally scattered into a new dir
tion and a new velocityas seen from the frame of the Su.
However, by conservation of energy, the speedu with respect
to the frame of the planetis unchanged. This means that
particle at a particular place in velocity space may, by
peated close encounters with the Earth, diffuse to any lo
tion on the sphere of constant velocity~with respect to the
Earth!, and nowhere else.

The location of a particle at such a sphere can be spec
by the angles at which it passes the Earth. The angleu is
measured between the forward direction of the Earth and
velocity vector of the particle, andf is the angle of rotation
around the forward direction of the Earth, withf50 at the
north pole of the solar system. Figure 1 illustrates h
spheres~and circles! of constantu cross the limit of where
particles have bound and unbound orbits. This correspo
to the possibility of gravitational capture and ejection fro
the solar system.

A single planet can diffuse particles along spheres of c
stant velocity only. In this section, we will investigate th
gravitational diffusion caused by one planet, and will ta
the Earth as an example. We will here develop tools
detailed investigation of the bound orbit phase space den
taking the effects of solar depletion into account. We assu
that when a particle is in Earth-crossing orbit~perihelion less
than the Earth orbit radiusR% and aphelion greater tha
R% ), long range interactions with other planets are less
portant, and can be ignored. This is not a problem, as w
Sec. VI add the effects of other planets~apart from possible
resonances!. We will in this section closely follow Gould@7#,
with some small modifications.

A. The probability of planet collisions

We are interested in calculating the rate at which WIM
with Earth-crossing orbits come into close encounter w
the Earth. This will be used to estimate how the Earth affe
the WIMP distribution. A close encounter is an event we
the particle’s impact parameter is smaller than or equa
some valuebmax(u).

Let’s imagine the Earth as being spread out on a flat r
of inner radiusR, outer radiusR1 l , and thicknessh, as in
Fig. 3. Now consider a particle with perihelion less than
planet orbit radiusR and aphelion greater thanR. Such par-
ticles will be said to have Earth-crossing orbits. This is m
tivated by the fact that due to the precession of perihelion
such orbit ellipses will eventually intersect the Earth rin
The small angle the perihelion sweeps out, as the orbit
lipse enters and leaves the ring, is given by

Dj'tanDj5
l

R
utanQ1u, ~11!

whereQ1 is the intersection angle between the WIMP ellip
and the plane perpendicular to the location vector of
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Earth R. Since this happens four times during each peri
lion revolution, the mean probability for such a WIMP t
intersect the ring of the Earth during each WIMP yearTx is

^pTx
&5

4Dj

2p
. ~12!

The probability for the WIMP to come into close encount
with the Earth is thereforepTx

times the cross sections of
such an event, divided by the area over which the Earth
distributed. However, the length of the path that is inside
Earth ring during each encounter is}ucosQ2u21, whereQ2 is
the angle between the axis of the ecliptic andu is the veloc-
ity of the WIMP as seen from Earth@5#. The probability for
a reaction with cross sections can now be calculated,

p~s!

T%

5
1

ucosQ2u
s

2pRl

4l

2pR
utanQ1u

1

Tx
, ~13!

where we have divided byT% to get the probability per unit
time. The WIMP year can be written in terms ofu(u,f,u)
@5#, the velocity of the particle in the frame of the Earth,

Tx5S 122
u

v %

cosu2
u2

v %

2 D 23/2

T% , ~14!

andQ1(u) andQ2(u) can be expressed inu, u, andf:

cosQ15R̂• v̂x5
R•~u1vŠ!

Ruu1vŠu

5
u sinu sinf

~u21v %

2 12uv %cosu!1/2
,

~15!

cosQ25sinu cosf5
u•~v% 3R!

uv %R
,

~16!

FIG. 3. The angle of perihelion precessionDj, as the orbit
enters and leaves the disk of the Earth. In this example, the plan
the orbit is nearly perpendicular to the ecliptic plane.
5-4
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cotQ15
u

v %

sinu sinf

@112~u/v % !cosu1~u2/v %

2 !~12sin2u sin2f!#1/2
. ~17!

By substituting and rearranging we conclude that the yearly reaction probability for an event with cross sections is given by

p~s,u!

T%

5
3

2

s

pR2

v %

u
g~u!21, ~18!

where

g~u!5
3

2

p sin2uusinf cosfu~122u/v %cosu2u2/v %

2 !23/2

@112~u/v % !cosu1~u2/v %

2 !~12sin2u sin2f!#1/2
. ~19!
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Equation~19! was first derived by Gould@5# in a very similar
way. Among other things, he used it to calculate the ‘‘typic
time scales’’ at which particles diffuse between different v
locity space regions in the absence of solar depletion. I
also used for calculating the probability of weak scattering
WIMPs at the Earth.

The equations above are derived under some~geometri-
cal! approximations with the aim of getting the correct sc
tering probabilities on average. There are, however, a
pathological cases where the geometrical model used a
breaks down. This happens whenf50, f5p/2, u50, and
u5p, in which case the probabilities above are unphysic
Since this only happens for these few special cases we
artificially solve this by adding a small angle~of about 1°) to
u andf when close to these regions. Note that in princip
the problems could be resolved, by makingDj a function of
the full set of orbit parameters, but this is unnecessarily co
plicated for our purposes. For the interested reader, we r
to a detailed investigation of the mathematical properties
g as presented in Refs.@5# and @7#. To test our solution of
adding a small angle in these pathological cases, we h
investigated the effect of further increasing the small an
added and conclude that the actual value chosen is not
portant for the final results. This is reasonable, since orbit
the vicinity of these critical regions are quickly deflected in
other orbits anyway.

B. Gravitational scattering on a planet

Now that we have learned how to calculate the probabi
for particles to come into close encounter with a giv
planet, it is time to apply this to gravitational diffusion. F
the Earth, we were mainly interested in those particles cro
ing the sphere of 1 A.U. during each revolution, since th
have a chance of hitting the Earth~and possibly be weakly
captured to it! within each perihelion precession revolutio

The gravitational scattering probability is dependent
the angular distance between the velocities before and
scattering,u and u8, such that small deflections are mo
common. The angle can be related to the impact parametb,

d~b!5p22 arctan
bu2

MG
, ~20!
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as well as

d~ û8,û!5arccos~ û8•û!, ~21!

where the caret denotes unit vectors. The scattering a
above is the one given by Rutherford scattering~see, e.g.,
Ref. @13#!. Gould used an approximate formula when der
ing the typical time scales@4#: d(b)5R%vesc

2 /(bu2). The
two differ at very small impact parameters, and we use
full expression in our calculations.

As mentioned before, scattering can only change the
rection and not the velocity, and we are therefore deal
with random walk on spheres of constantu. The directionh
of the scattering is evenly distributed, as seen in Fig.
where the scattering setup is shown. The arc length is fi
by d(b), but the scatteringdirection is evenly distributed.

The cross section for scattering betweend andd1dd is
ds52pbdb, so the yearly probability for scattering in thi
range is@using Eq.~18!#

dp~u,b!

dbT%

5
3

2

2pb

pR2

v %

u
g~u!21. ~22!

This can be rewritten in terms of the scattering an
d(û8,û),

FIG. 4. Scattering off the Earth in velocity space. A fixed impa
parameter fixesd, but h is evenly distributed.
5-5
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dp„u,b~d!…

ddT%

52
3

2

2p

pR2

v %

u
g~u!21

~M %G!2

u4

3
cos@d~ û8,û!/2#

2 sin3@d~ û8,û!/2#
~23!

since

b5
M %G

u2
cot

d

2
,

db

dd
52

M %G

u2

1

2 sin2~d/2!
. ~24!

The right-hand side of Eq.~23! may look like a negative
probability density, but this is artificial since integratio
should be done for decreasingd ’s. We integrate Eq.~23!
analytically and use that expression whenever numerical
ues of the scattering probability tod1Dd are needed.

To get a feeling for the significance of the diffusion, w
solve Eq.~23! to obtain the typical time scales for scatterin
a given angle to occur. As an example, we look at the ti
scales for which the probability of scattering withd5p/2
6p/64 is 10%. This is illustrated in Fig. 5.

C. The bound orbit density and orbit capture from the halo

Let us now definethe bound orbit density n(u) to be the
number of bound particleorbits per infinitesimal velocity
and solid angle on the velocity sphere. The orbit density
thus free from information about the particle location alo
its elliptical orbit. The total number of bound particle orbi
in a thin shell of radiusu is

dN5duu2E E
V5bound orbits

dVn~u!. ~25!

We will now divide each velocity sphere into cells~that can
at this point be viewed as infinitesimally small!. The number

FIG. 5. ~Color online!. An example of the time scales of partic
scattering. The color bar indicates the time for which there is a 1
probability of scattering an angled5p/26p/64, depending on the
present location of the particle. In general, time scales are short
lower velocities. By repeated close encounters with the Earth,
ticles may diffuse along the dotted circles~actually spheres! of con-
stant velocity only, keepingu constant, but allowing for changes i
u andf. The figure shows thef575° slice of the particle velocity
space only.
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of particles scattered between two locations on a spher
constant velocity in a given time must be an integral over
source celli and the destination cellj,

dNji

dt
5E E

aPV i

E E
bPV j

dP~b,a!

dt
n~a!.

In our case, the destination space is conveniently spanne
the scattering anglesd and h. The density of bound orbits
scattered from celli to cell j evolves with time as

dnji

dt
5E E

V i

dVE E
K j

dd
dh

2p

dp~u,d!

ddT%

n~u!, ~26!

where K j is defined to be the region ind-h space corre-
sponding to scattering from thei to the j cell. The scattering
probability to the@d,d1Dd# band is evenly distributed ove
all cells in that region. Numerically this is implemented
loop overd as measured from the center of the source c
The probability is then distributed over all discrete ce
whose centers are inside the current band.

Note that we here consider the movement of particle
bits, as opposed to the particles themselves. When we
interested in the actual particle densities, we have to con
from orbit to particle densities.

The equations derived above apply only to particles wh
are already gravitationally bound to the solar system.
now turn to the calculation of thebound orbit density
capture rate; Dnj f /T% from the distribution of free
particles. We will use the local phase space dens
F f(u)@particles/(m3 m/s)#.

Consider the distribution of particlesF f(u) passing the
Earth with impact parameterb. The number of particles scat
tered an angled(b6db/2) in a given period of timeT is

~27!

According to Eq.~20! they are scattered at an angled(b).
Using the relations~24! we conclude that thebound orbit
densityat the cellj will evolve with time as

dnj f

dt
5E E

V free

dVE E
K j

dd
dh

2p

3S 22pu
~M %G!2

u4

cos~d/2!

2 sin3~d/2!
F f~u!D , ~28!

caused by gravitational scattering from the halo. We n
have equations for gravitational diffusion as well as capt
to the solar system.

D. Relating the phase space densityF „u…
and the bound orbit density n„u…

The ideas of the preceding section can be used to w
down an expression for the phase space density, which

at
r-
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WEAKLY INTERACTING MASSIVE PARTICLE . . . PHYSICAL REVIEW D 69, 123505 ~2004!
need for the weak capture calculations. The relation betw
the phase space densityF(u) and thebound orbit density;
n(u) is derived as follows.

For a given orbit in the population of bound orbits, we u
Eq. ~18! to calculate the number of orbits that will pa
trough an areas each year. We now consider a volume dV in
space with base areas and heighth such thath is parallel to
u. A particle passing through the area will spend a timeh/u
in the volume. This means that the fraction of the WIMP ye
spent in the volume in case of an encounter is

h

uTx
.

The fraction of orbits passing throughs each WIMP year is

p~s,u!

T%

Tx .

Therefore, sinceF(u) is the number of particles perdu3dV,
the relation betweenF(u) andn(u) is

F~u!dV5n~u!
h

uTx

p~s,u!

T%

Tx ~29!

or

F~u!dV5n~u!h
p~s,u!

uT%

5n~u!
3

2

dV

pR2

v %

u2
g~u!21.

~30!

IV. SOLAR DEPLETION OF BOUND ORBITS

In the preceding section, we investigated the evolution
the bound orbit densities due to scatterings from other bo
orbits and from free orbits. One main piece remains to
studied, and that is the effects of solar depletion, i.e., h
much of the bound WIMPs are actually captured by the S
thus reducing their density in the solar system.

We have done this by numerically calculating the act
motion for different WIMP orbits in the solar system over 4
million years. As a measure of the quality of the numeri
methods, we have also calculated the fates of the 47 aste
studied by Farinellaet al. @9#, as presented in the Appendi

A. The numerical methods and conditions

We have numerically integrated the orbits of about 20
particles in typical Earth-crossing orbits in order to estim
the solar depletion. The particles were spread out on
bound velocity space with random initial positions on t
Earth’s orbit. We have mainly used theMERCURY package
@14# by Chambers for the integration. It has the most imp
tant numerical algorithms, such as Everhart’s 15th or
Radao@15# algorithm with Gauss-Radao spacings, and
equally well-known Bulirsch-Stoer@16# algorithm. Both are
variable step size algorithms dedicated to many body pr
lems, and are commonly used in asteroid research for p
lems similar to ours. The package also includes a set of s
plectic algorithms, which have been used for some tests
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looking at some test orbits, we found that the symplec
algorithms~at least as implemented in theMERCURY pack-
age! were slower and less accurate for our setup. The te
symplectic algorithms were ‘‘MVS: mixed-variable symple
tic’’ @17# as well as ‘‘hybrid symplectic/Bulirsch-Stoer’’@14#.

The calculations included the test particles, the Sun,
Earth, Jupiter, and Venus. Other planets were not include
they are believed to be subdominant. The Bulirsch-Stoer
gorithm was used to calculate the orbits of all test particl
as well as the planets, during a time of 49 million years. T
took about 35 000 CPU hours, on a variety of Linux a
Alpha machines. A wide range of different accuracy para
eters was used, from 10214 to 1028, to evaluate the role this
plays. The numerical representation of the real numbers
its the benefit of going past about 10212. The final choice of
10210 is a balance between time and accuracy. A recent p
lication @18# in the subject of numerical simulations of
special set of Jupiter-crossing asteroids came to a sim
conclusion. When using the Bulirsch-Stoer algorithm f
their calculations, Ipatov and Mather found accuracy para
eters in the range 1029–1028 to give statistically similar
results as 10212. In the comparisons carried out, this ga
results very similar to those with higher accuracy paramet
The comparison with the Radao algorithm gave qualitativ
similar, however, not identical results with a similar calcu
tion speed. In some occasions, however, the Radao algor
gave a higher solar depletion for particles with very hi
velocity ~relative to the Earth!, u*50 km/s. This is not of
much concern for our purposes though as we are ma
interested in much lower velocities for Earth capture to
efficient.

For ordinary asteroid calculations, a point mass appro
mation combined with collision detection is sufficient. O
case is a little more delicate since WIMPs may pass thro
the planets. To handle this, the gravitational routines w
modified to use the real gravitational potentials inside
planets.

For Jupiter and Earth, we used ‘‘true’’ mass distributio
@19,20#. For Venus we rescaled the mass distribution of
Earth and removed the liquid iron core@32#. Other planets
included in tests where assumed to be homogeneous.
improvement allows the particles to pass through the plan
without being infinitely scattered by a point mass, maki
the calculations more realistic and numerically stable. F
completeness, it would be interesting to add more planet
the simulations, but it is unfeasible to do as it slows down
calculations too much. We also believe that we have inclu
the most important planets in our simulations.

B. The results of the numerical simulations

The solar depletion was mainly calculated for particles
eight planes ofu space, with thef values 0, 15, 30, 45, 60
75, 90, and230 degrees~the f5230° plane was used to
investigate the expected radial mirror symmetry of the
sults!. Our solar depletion results are not as bad as Go
feared@8#; Most of the particles survived two million years
Nevertheless, solar capture is too large to be ignored. Fig
6 show thef575° plane, and the times after which th
5-7
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JOHAN LUNDBERG AND JOAKIM EDSJÖ PHYSICAL REVIEW D 69, 123505 ~2004!
particles hit the Sun. We note that ejection is much m
common at Jupiter-crossing orbits. This is in complian
with the fact that, according to the scattering model us
here, the probability of scattering for such orbits is high. T
fact that there is a large region at250 km/s where there ar
no ejections or Sun captures, is in agreement with the qu
tative results by Gould, presented in his 1991 paper@7# ~see
his Fig. 3, where he assumes that the filling times are ab
the same as the time of ejection!. Apart from the calculations
shown here, some extra calculations were carried out
relative velocities lower than 15 km/s. The results of tho
calculations were incorporated and used in the same wa
the others.

Another important, however, simple result is that the
seems to exist a mirror symmetry in the in-out directio
This is expected, since particles may hit the Earth both on
way out and on the way back on its perihelion revolutio
Considering Fig. 3, it is evident that this is equivalent to
symmetry in the sign off claimed by Gould, that thef and
2f cases are identical.

The particle orbits were evenly distributed in veloci
space, but we solve the diffusion equations on sphere
constantu; hence we interpolate our results. From our n
merical simulations we then extract the depletion frequen
i.e., the expected depletion probability per given time. Sin
the form of the actual distribution, of which the results of t
numerical calculations are samples, is unknown, the m
reasonable way to estimate the depletion probability per
time is

FIG. 6. ~Color online!. The time for ejection~blue/dark gray!
and capture in the Sun~yellow/light gray! of a set of test particles
Each bin represents only one particle, so the statistical error is h
However, this figure is typical for all angles, except that the plat
of fast solar depletion at large ‘‘backward’’ velocities are rais
whenf approaches 90°. Some particles survived in the solar
tem for the whole of the simulation. Those particles are mar
with black dots. It is easy to see that there is a small region
230 km/s where the solar depletion occurs directly. This is
surprising, since this region corresponds to particles with very
velocity in the frame of the Sun. The plateau of direct solar captur
extends further in the special case off590° ~not shown! which
allows extremely elliptic, or radial orbits.~The plane of start posi-
tions is then parallel to the ecliptic plane.!
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Figure 7 shows the logarithm of 1/f , interpolated onto a
sphere of constantu, namelyu540 km/s.

V. THE EVOLUTION EQUATIONS FOR ONE PLANET

In the previous sections we have presented the ana
expressions for the scattering of bound orbits to other bo
orbits, Eq.~26!, as well as capture from free to bound orbi
Eq. ~28!. We have also, by numerical simulations, estima
the rate at which orbits are sent into the Sun and thus c
tured. We are primarily interested in how the bound or
density evolves with time, and will here write down the d
namic equations in a form suitable for numerical work.

A. The dynamic equations of the bound orbit density

The bound orbit density develops in time in the followin
way:

du u2
dnj

dt
5du u2F (

i Pbound
S dnji

dt
2

dni j

dt D
1 (

f Punbound
S dnj f

dt
2

dnf j

dt D2
dns j

dt G , ~32!

wherenj is the number of orbits in the small cell@33# j of the
sphere. The sum overi is the flow from and to the othe
bound cells. Thenj f and ns j terms are representing captu
from unbound orbits and capture of bound orbits by the S
while thenf j term represents the ejection of bound particl

h.
u

s-
d
t
t

FIG. 7. ~Color online!. The solar depletion at theu540 km/s
sphere. The color bar indicates the logarithm of the typical dep
tion time 1/f Sun. The region to the right are the free orbits, fo
which the solar depletion is irrelevant. At a ‘‘backward’’ velocity o
30 km/s, the Sun depletion is greater, in agreement with the pr
ous figures of this section. In understanding this figure, it may h
to take a look at theu540 km/s line of Fig. 1, which correspond
to the central horizontal (f590°) plane of this figure.
5-8
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WEAKLY INTERACTING MASSIVE PARTICLE . . . PHYSICAL REVIEW D 69, 123505 ~2004!
We will now reformulate Eq.~32! in matrix form suitable
for numerical calculations. Let us first define our state v
tors,

X5S Ns

ni

F f
D , ~33!

whereNs is the number of particles captured by the Sun,ni
is the bound orbit density, andF f is the velocity number
density of free~unbound! orbits. We can then write the evo
lution of the state vector during a time stepDt as

X~ t01Dt !5T~Dt !X~ t0!,

with

T~Dt !5S 1 Psc 0

0 11Pbb~12Psc!2Psc Pbf

0 0 1 D , ~34!

where the matricesP can be regarded as transition probab
ties ~for the given time intervalDt). Psc contains the prob-
ability of solar capture, extracted from the numerical sim
lations in Sec. IV, whereasPbb and Pbf describes the
development of bound orbits and the capture of free orb
respectively. The relevant quantities for the latter are read
from Eqs.~26! and ~28!. The last row is a little bit special
One may propose that bound WIMPs scattered to unbo
orbits should give a contribution in the second column. Ho
ever, such particles will not meet the Earth again, so
lowest part of the matrix should only do the job of keepi
the unbound phase space density constant.

B. The bound orbit density at arbitrary times

Equation~34! describes the evolution of the state vectorX
during a time stepDt. We can write the time developmen
operator that takes us to any timet as

U~ t ![@T~Dt !# t/Dt, X~ t01t !5U~ t !X~ t0!. ~35!

The exponentiation ofT can be done either by diagonalizin
T, or ~for applicable timest) by repeatingly quadratingT.
We have calculated and diagonalizedT’s with a variety of
different cell configurations. A simple polar grid is a goo

FIG. 8. The discretization of space was made using triang
The number of cells on the displayed triangles are 512, 1280,
2048, of which the last one was used in our final calculations.
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first choice, but it has a large spread in shape and area o
cells, which means that valuable memory and calculat
time is wasted. Therefore, we have used cells with the sh
of spherical triangles, built from icosahedrons or octah
drons, as shown in Fig. 8. The cells of the body were s
cessively divided in four nearly identical spherical triangle
until the right number of cells were reached. The veloc
space of each planet was built up of about 65 spheres,
ally with 2048 cells each, which means a total of abo
130 000 discrete cells for each planet.

If the octahedron is used as a starting object, it is poss
to rotate the sphere to obtain mirror symmetry in the in-o
~radial in the solar system! and up-down directions. Since th
problems to solve possess the same symmetries, this red
the size of the state vectors by a factor of four, and the ti
evolution operators by a factor of 16.

Great efforts have been put in verifying the consistency
the time evolution operator. As a simple example, the pr
ability for a particle to end upanywhereis unity. Making use
of the mirror symmetry of the equations, it has been poss
to calculate and diagonalizeP’s with up to some 108 ele-
ments. We have also checked the robustness of our resu
the number of cells varies. If one uses too few cells, o
would expect that the effect of diffusion is underestimated
small-angle deflections~smaller than the cell size! are then
artificially suppressed. At velocities above 8 km/s, our resu
do not change significantly when going from 1024 to 20
cells. Below 8 km/s, however, the resulting WIMP density
somewhat larger in our simulation with 2048 cells than
our simulation with 1024 cells. This would indicate that th
density at these low velocities could go up somewhat if
used even more cells. However, it is not possible to incre
the number of cells further, as it is only feasible to perfo
these simulations when the full velocity space can be ma
tained in the computer memory simultaneously. It is also
reasonable to perform this part of the calculation more ac
rately than other parts, like the solar capture discussed in
preceding section.

We have now set up a framework for diffusion from on
planet. We have done this following the scheme set up
Gould@7#, with some small modifications and improvemen
Our main goal has been to make it possible to include
effects of solar depletion, and hence we have formulated
diffusion problem in a form suitable for numerical work
where the inclusion of solar capture is easily done.

VI. THE VELOCITY DISTRIBUTION AT THE EARTH:
COMBINING THE EFFECTS OF JUPITER, VENUS,

AND THE EARTH

We have so far considered the diffusion caused by
planet at a time and the effect of solar capture. We are n
ready to include more than one planet in our treatment
Sec. III, where we investigated the diffusion effects caus
by one planet, we saw that one planet can only change
direction and not the velocity of a WIMP. However, WIMP
that have different directions but the same velocity at o
planet will not only have different directions, but also diffe
ent velocities at another planet. Hence, the main effec

s.
nd
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JOHAN LUNDBERG AND JOAKIM EDSJÖ PHYSICAL REVIEW D 69, 123505 ~2004!
including more planets in the diffusion is to diffuse particl
also to different velocities. We thus have a mechanism
populate a larger part of the phase space at Earth, and
process is hence very important, especially for heav
WIMPs. We will here include the diffusion effects of Venu
the Earth, and Jupiter as these are the planets dominatin
diffusion mechanism@7#.

A. Transformation of coordinates and bound orbit density
when changing planets

The velocity and angles in a planet-based coordinate
tem at a planet with orbit radiusa and velocityv can be
converted to the coordinates of another planet via the ene
angular momentum, and inclination. This is not enough
the specification of the exact location of the particles, but
are only interested in the shape and orientation of theorbits,

E5
1

2 S u212uv cosu1v222
M (G

a D , ~36!

L5a~v1u cosu!, ~37!

tani 5
u sinu cosf

v1u cosu
. ~38!

The inverse transformation is

u252S E2L
v
a

1
1

2
v21

M (G

a D , ~39!

cosu5
1

u S L

a
2v D , ~40!

cosf5
L tani

auA12cos2u
. ~41!

As an example, we will transform the various densities,
seen in the frame of the Earth to the corresponding quant
at Venus.

The change of frame consists of two Galileo transform
tions, as well as the journey of the particles in the poten
force of the Sun. Since the first is just a change of origin
the six-dimensional phase space, the change of frame o
Liouville’s theorem,

F/~u/!5F %~uŠ!. ~42!

Using Eq.~30!, the orbit densities at the two locations ca
now be related as

n/~u/!5n%„uŠ~u/!…J% /~u/!, ~43!

where
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J% /~u/!5
v %

v/
S R/u/

R%u%~u/! D
2 g/~u/!

g %„u%~u/!…
~44!

is the Jacobian.
Using these transformations, it is possible to investig

how a sphere of constant velocity at a specific planet w
look when the particles pass the Earth. Figure 9 is an
ample of this.

The arcs of constant velocityin the frame of Venusare
shown to indicate the directions of diffusion caused by t
planet. Since the lines of constant velocity at Venus cross
u% 512.3 km/s line, Venus may diffuse particles into the im
portantu% ,12.3 km/s region.

B. Solving the many body diffusion problem

Consider a point in velocity space, in the frame of t
Earth, and in the Jupiter-crossing orbit. At this point, the
bound orbit densityn(u) takes on a valuenA at a given time
t0. Call this density, transformed into a specific point in t
reference frame of JupiternB . Now, after a short period o
time, from now on calledstep size, the Earth may have in-
creased~or decreased! nA by an amountdnA , and Jupiter
may have increased~or decreased! nB by dnB . SincenA and
nB are really a measurement of the same density, and t
are two processes~interactions with the two planets! affect-
ing the differences, the orbit densities after the time step
given by

nA→nA85nA1dnA1JdnB ,

nB→nB85nB1dnB1J21dnA , ~45!

whereJ is the Jacobian for the transformation. Note that t
step size introduced above is the step size after which tr

FIG. 9. Thef575° slice of the particle velocity space at th
frame of the Earth. The solid arcs represent particles in Ven
crossing orbits, and their speedat the location and in the frame o
Venus. Since the arcs are part of spheres of constant velocity
Venus, they show the possible directions of diffusion caused
Venus. The region outside the solidu'9 km/s line is populated by
the combined effect of Jupiter and the Earth. The diffusion effec
Venus is needed for particles to reach the region between the 9
and 2.5 km/s lines.
5-10



e
s

t
ac
n
n
e

ke
ila

re
la
ut
e
an
ea
na

th
W
su
n

a-

be
e
it

on
oi
th

k
th
ly

t i
re

ry
o
u
te

rm
s
h
a
n
es
t
v

ach
d to

is
is

size
av-

on,
that
s of
: 16

is
as

er is
ith

th-
lu-
if-
her
r’s
n-
we
ets
the
an
for

tive
t
iew
e is

n
cus
the
in

n
hat
ew
lso

s so

ime
ity

f-
all

us-
act

WEAKLY INTERACTING MASSIVE PARTICLE . . . PHYSICAL REVIEW D 69, 123505 ~2004!
fer of densities between planets occur. For the diffusion
fects of the individual planets during this step size, we u
much smaller time steps.

In order to transfer the orbit densities from one planet
another in a numerically reasonable way, all cells at e
planet are matched to the correct cells on the other pla
Since there is not a one to one correspondence betwee
cells of different planets, we need to interpolate betwe
cells. We use a linear interpolation, but have also chec
that a simpler nearest neighbor interpolation gives sim
~but more noisy! results.

The velocity spaces of all pairs of involved planets we
tessellated in order to create the matrix of linear interpo
tion. This means that each cell was identified to constit
the corners of to up to six octahedrons. All transform
points were identified to belong to a single octahedron,
the location of the transformed point was given as a lin
combination of the octahedron corners. This linear combi
tion was then used as interpolation for the densities.

C. Numerical issues

In the preceding section, our scheme for taking care of
diffusion effects of more than one planet was outlined.
will here discuss the measures we have taken to make
that our numerical implementation is stable and does
introduce numerical artifacts.

In order to further improve the stability of the interpol
tion between the planet cells, the orbit densitiesn are never
interpolated directly. Instead, all interpolations are done
tween phase space densitiesF, and then converted to th
n-space of the respective planets. The phase space densF
is a slowly changing function, whilen is not. This is so since
among other things, the roughness ofg, Eq.~19!, is included
in n, but removed again whenF is calculated.

At any time, the densities at the two planets must be c
sistent with each other so that a density at a particular p
in one frame matches that of the point transformed to
other planet, as described by Eq.~43!. Small interpolation
errors can build up with time, though, and we need to ta
care of this potential problem. To force the densities at
two planets,nA andnB , to be consistent, they were regular
averaged, taking the Jacobians into account.

From an analytical point of view, this is not needed, bu
turns out to be a good way of making the algorithm mo
numerically robust. We have verified that in the limit of ve
small step sizes, the unaveraged results approach the
with averaging even in this region, but averaging allows
to get better accuracy and stability even with longer s
sizes. In the steep region belowu57 km/s, averaging is
needed though to keep the stability.

A related issue is that even though the Jacobian dete
nant of Eq.~44! is mathematically valid, linear interpolation
do not ensure conservation of mass. This means that w
repeatingly transferring density information between a p
of planets, one cannot be sure that the interpolation does
in error, introduce or remove mass from the system. Th
artificial ‘‘sources’’ or ‘‘sinks’’ need to be removed. While i
is not possible to do this on a cell by cell basis, we ha
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investigated the total mass transferred to and from e
planet and used this to renormalize the mass transferre
ensure mass conservation. In equilibrium, the correction
quite small; under one percent, but when a distribution
built up, the error can be larger than that.

The results are also well behaved with respect to step
as well as shape of the velocity space and frequency of
eraging. This indicates that our numerical implementati
with the stability measures outlined above, is stable and
the possible errors are under control. The resulting figure
the preceding section show the results of a small step size
thousand years.

D. Investigation of Jupiter-crossing orbits

It turns out that the density of Jupiter-crossing orbits
independent of the diffusion effects of the Earth as well
those of Venus. This is expected, since the mass of Jupit
so much larger, and the scattering probability increases w
the planet mass squared@see Eq.~23!#.

To investigate this, we have numerically solved the Ear
Jupiter diffusion system in two ways: calculating the evo
tion with Jupiter alone, as well as solving the two-body d
fusion problem with the methods described above. In eit
case, it takes only a couple of million years for Jupite
Earth-crossing orbits to come into equilibrium with the u
bound orbits. This means that for Jupiter-crossing orbits
can safely neglect the diffusion effects of the other plan
and let Jupiter fill these orbits alone. It also turns out that
diffusion of Jupiter-crossing orbits is so much faster th
solar depletion, and we can thus ignore solar depletion
these kind of orbits.

We can then already now see that the ultraconserva
view in Gould and Alam@8# is too pessimistic and that a
least as many bound WIMPs as in the conservative v
remains in the solar system. We will next see what the fat
for bound orbits further inside the solar system.

E. Investigation of the Earth-Venus-Jupiter system

Inspired by the preceding section, we will from now o
keep the density of Jupiter-crossing orbits constant and fo
on the combined diffusion effects caused by Venus and
Earth. The locking of the Jupiter-crossing orbits is done
the same way as for the free orbits@see Eq.~34!#, with the
forced insertion of an identity matrix in the time evolutio
operator. As mentioned above, this is justified by the fact t
diffusion of Jupiter-crossing orbits is so fast that we can vi
these orbits as constantly being filled from the halo. We a
change the interpolations between the Earth and Venu
that Jupiter-crossing orbits are excluded~as they are filled by
Jupiter!.

Before going through the results, let us spend some t
going through the diffusion processes in the low veloc
region ~as seen from the Earth!. Figure 9 is a close view of
the space of low-velocity orbits. If we ignore the filling e
fects of Jupiter, the Earth would have to diffuse WIMPs
the way from the unbound orbits, starting at theu
512.3 km/s sphere. They could eventually reach the Ven
crossing orbits to the left of the figure. Venus could then
5-11
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JOHAN LUNDBERG AND JOAKIM EDSJÖ PHYSICAL REVIEW D 69, 123505 ~2004!
to diffuse the particles alongits spheres of constant velocity
It is evident from the figure that the combined effect of t
Earth and Venus could possibly populate all orbits outs
the u52.5 km/s line. By numerical simulation of the Eart
Venus system alone, it turns out that solar depletion is
strong that gravitational diffusion can only make a sm
contribution to the particle density below 12.3 km/s. This
no big surprise, since comparing the scattering times in
5 and the solar depletion times of Fig. 6, we see that s
depletion is indeed very strong.

If we instead use the knowledge about the density of
piter crossing orbits, the situation is very different. The Ea
can scatter particles directly from the bound Jupiter cross
orbits, starting atu'8.8 km/s, as opposed to 12.3 km/s f
free orbits. Furthermore the time scale of scattering, as w
as the angular path the WIMPs have to travel is mu
shorter, especially in the low velocity region. Hence, so
depletion will not be as effective when we include Jupiter,
the time scales for diffusion are more comparable to the s
depletion time scales.

In our full calculations, we will~as mentioned above!
keep Jupiter-crossing orbits fixed and include Venus and
Earth in the diffusion process. The calculations start wit
solar system empty of dark matter, five billion years ago. T
step size~that is, how often the diffusion effects are added
the other planet! was usually some hundred thousand yea
The first ten million years were typically calculated usi
smaller step sizes, such as 10 thousand years. The den
converge to their final values within a time of 500 millio
years. An example of the resulting phase space density
sphere of constant velocity is given in Fig. 10. It is importa
to remember that the free distribution was averaged ov
period of 100 million years. After such a time, the bou
densities take on their final values within about 25%, wh
is an indication that the results might vary slightly during t
galactic~half! year. In practice, this has little effect, since th
typical time scales for equilibrium~see Sec. VII B! between
capture and annihilation in the Earth are much longer t
that and will average out these small variations over the
lactic ~half! year.

The resulting velocity distributions for the slowly movin
particles are shown in Fig. 11. The ultraconservative a
conservative curves represent the contributions from
bound and unbound plus Jupiter-crossing orbits, respectiv
For these, we again see the cutoff velocities of 12.3 km/s
8.8 km/s as explained in Sec. II B. The result of our f
simulation, but ignoring solar depletion altogether, is a
shown. It follows the Gaussian down to about 2.5 km
where it drops to zero. This is in perfect agreement with
results of Gould@7#, and we can see this agreement as a
that our numerical routines are performing as they sho
Our full numerical routines without solar depletion is a n
merical implementation of Gould’s analytical argumen
about diffusion in the solar system and our results sho
thus ~as they do! agree in this case. We also show our ra
numerical result, which is the outcome of our full simulatio
with solar depletion included. It is significantly lower tha
the Gaussian estimate in this low-velocity region, but not
low as the conservative~or ultraconservative! view. The gen-
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eral argument above that the time scales of solar deple
and diffusion are not too different and that some WIM
should remain thus turns out to be valid. Hence, solar de
tion kills some of the WIMPs at low velocities, but not a
many as one could have feared. Also shown in the figur
our best estimate of the velocity distribution, which is t
same as our raw numerical result, but modified at low

FIG. 10. ~Color online!. The final phase space distribution at th
u530 km/s sphere. In understanding this figure, it may help to t
a look at theu530 km/s line of Fig. 1, which corresponds to th
central horizontal plane of this figure. The large red region to
right corresponds to unbound orbits. To the left~backwards 30
km/s! the phase space density is very low, as expected from
results of the solar depletion calculations. The leftmost part of
large red area corresponds to Jupiter crossing orbits, which are fi
with the same density as the unbound orbits.

FIG. 11. ~Color online!. The radial velocity distribution of Earth
crossing dark matter at the Earth. The curves labeledconservative
and ultraconservativeare the contributions from unbound, as we
as unbound plus Jupiter crossing orbits, respectively. The d
dotted curve displays the result of ignoring solar depletion. The b
solid line represents our best estimate, including the effect of
eccentricity of the Earth’s orbit. The thin line is the raw result fro
the numerical routines.
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locities ~below 2.5 km/s! to include the effect of the eccen
tricity of the Earth’s orbit, which will be explained now.

The diffusion effects included so far does not provi
means of filling the extremely slow (u,2.5 km/s) orbits.
Such processes arise when the eccentricity of the Ea
orbit is taken into account. This could be done in a w
similar to ordinary diffusion, but sinceu would no longer be
fixed even in the one-planet case, the block diagonal o
planet time evolution operator would be polluted with ne
off-diagonal blocks, making the diffusion problem muc
more complicated. However, the eccentricity of the Eart
orbit will mean that the Earth diffuses slightly differently i
different parts of its orbit. This will cause a mixing o
spheres of differentu and thus cause an effective diffusion
the û direction. The size of this effect can be estimated us
Eq. ~2.10! of Gould’s paper@21#. Evaluation shows that fo
extremely slow particle orbits, the time scales can be as
as one-tenth of those of the ordinary diffusion, while in mo
other cases they are far slower. It is therefore quite reas
able to ignore these effects in our diffusion treatment
higher velocities. For theu,5 km/s region the time scale
of u diffusion is comparable to the time scales of solar dep
tion, which makes it reasonable to assume that the ph
space density is a slowly changing function with respect tou,
which means that the sharp cutoff atu52.5 km/s is not
physical. To estimate the phase space density at these
low velocities, the mean density in theuP@2.5,5# km/s re-
gion is calculated and used as a minimum density in
whole uP@0,5# km/s region. Another approach could ha
been to relocate the already existing mass to fill up thu
,5 km/s region evenly. However, this would underestim
the density in theu.2.5 km/s region. Figure 12 compare
the raw result of the full numerical simulations, with th
new best estimate and the Gaussian. The conservative
is also shown for reference.

VII. CAPTURE AND ANNIHILATION RATES

In the preceding section, we have seen that our new e
mate of the WIMP velocity distribution is, especially at lo
velocities, considerably lower than earlier estimates base
the Gaussian approximation@5#. We will here investigate
how this new velocity distribution affects first the captu
rates of WIMPs in the Earth and second the annihilation ra
of WIMPs in the center of the Earth. In this section, we w
keep the discussion general and in Sec. VIII we will inve
tigate the effects for the neutralino as a WIMP dark ma
candidate.

A. A new estimate of the capture rates . . .

Given the velocity distribution derived in the precedin
section, we can now calculate the capture rate in the E
with this velocity distribution. We will use the full expres
sions for the capture rate as derived by Gould in Ref.@4#, but
will also compare with the usual Gaussian approximation~as
derived in Ref.@7#!, as that is what most people use to c
culate the capture rates.

The calculation of the capture rates for an arbitrary vel
ity distribution is given in Ref.@4#, we will here only briefly
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outline how the calculation is done. We divide the Earth in
shells, where the capture from elementi in each shell~per
unit shell volume! is given by@4# @Eq. ~2.8!#

dCi

dV
5E

0

umax
du

f̃ ~u!

u
wVv,i

2 ~w!, ~46!

where f̃ (u) is the velocity distribution@normalized such tha
*0

` f̃ (u)5nx , where nx is the number density of WIMPs
@34# #. The expressionVv,i

2 (w) is related to the probability
that we scatter to orbits below the escape velocity.w is the
velocity at the given shell and it is related to the velocity
infinity u and the escape velocityv by w5Au21v2. The
upper limit of integration,umax, is set to the kinematica
limit for capture to be possible. We refer the interested rea
to Appendix A of Ref.@4# for details. Included inVv,i

2 (w) is
a dependence on the scattering cross section off elemei,
for which we use the expression in Ref.@12# @Eqs.~9–25!#

s i5spAi
2 ~mxmi !

2

~mx1mi !
2

~mx1mp!2

~mxmp!2
, ~47!

where Ai is the atomic number of the element,mp is the
proton mass, andsp is the scattering cross section on pr
tons.

We now have what we need to calculate the capture r
In Eq. ~46! we integrate over the velocity for our chose
velocity distribution. We then integrate this equation over t
radius of the Earth and sum over all the different element
the Earth,

FIG. 12. ~Color online!. The phase space densityF(u) at low
velocities. The upper curve is the Gaussian distribution. The
solid curve is the outcome of our numerical simulations. The th
solid blue curve is our best estimate, where a population at
velocities~below 2.5 km/s! has been added due to the eccentric
of the Earth’s orbit~see text!. The dashed line, for comparison
shows the distribution in the conservative view where only unbou
plus Jupiter-crossing orbits are included.
5-13
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C5E
0

R%

dr(
i

dCi

dV
4pr 2. ~48!

The capture rates depend on the mass and distributio
the elements in the Earth. The most important elements
iron, silicon, magnesium, and oxygen, of which iron is by
most important for WIMP masses over 100 GeV. We use
Earth density profile as given in Ref.@20# and for the ele-
ment distribution within the Earth we use the values given
Table 2 for the mantle and Table 4 for the core from R
@22#. These values are listed in Table I.

FIG. 13. The capture rate of dark matter. This figure shows
rate at which dark matter particles are captured to the interior of
Earth, for a scattering cross section ofs510242 cm2. The
Gaussian–no solar depletion model gives the highest capture.
curves labeledultraconservativeandconservativeare the contribu-
tions from unbound, as well as unbound plus Jupiter-crossing or
respectively. For masses above 150 GeV, our new capture esti
is considerably lower than that of the Gaussian model. The pea
low WIMP mass correspond to the masses of the included elem
A dark matter halo density ofrX50.3 GeV/cm3 is assumed.

TABLE I. The composition of the Earth’s core and mantle. T
core mass fractions are from Table 4 in Ref.@22# and the mantle
mass fractions are from Table 2 in Ref.@22#.

Atomic Mass fraction
Element number Core Mantle

Oxygen, O 16 0.0 0.440
Silicon, Si 28 0.06 0.210
Magnesium, Mg 24 0.0 0.228
Iron, Fe 56 0.855 0.0626
Calcium, Ca 40 0.0 0.0253
Phosphor, P 30 0.002 0.00009
Sodium, Na 23 0.0 0.0027
Sulfur, S 32 0.019 0.00025
Nickel, Ni 59 0.052 0.00196
Aluminum, Al 27 0.0 0.0235
Chromium, Cr 52 0.009 0.0026
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Figure 13 shows the calculated capture rates, to be c
pared with that of a Gaussian distribution, with the Earth
free space. The Gaussian distribution is the one of Eq.~3! in
Sec. II A. The scattering cross section between the nucle
and the WIMPs determines the normalization only, and w
taken to be 10242 cm2 in Fig. 13. We also show the resultin
capture rates in the conservative and ultraconservative v
where the cutoffs at about 710 GeV and 410 GeV are cle
seen. These cutoff masses are higher than those give
Gould and Alam@8# as we have used the full integration ov
the Earth and not the average properties as in Ref.@8# ~see
Sec. II B for a discussion of these cutoff masses!.

It is of course interesting to compare the calculated c
ture rate with that given by the commonly used Gauss
distribution. This is done in Fig. 14, where we divide by th
capture rate in the Gaussian approximation. We clearly
that below 100 GeV, the different calculations agree
within about a factor of two. At higher masses the suppr
sion is almost an order of magnitude, but not as bad as
feared conservative or ultraconservative views.

B. . . . and theannihilation rates

We have seen that our new estimate of the capture rat
the Earth is, especially at higher masses, considerably lo
than the usual estimate based on the Gaussian approxim
@7#. Since the neutrino-induced muon rates do not direc
depend on the capture rate, but instead on the annihila
rate, we will here investigate how the annihilation rates
affected.

The evolution equation for the number of WIMPs,N, in
the Earth is given by

dN

dt
5C2CAN22CEN, ~49!

e
e

he

ts,
ate
at
ts.

FIG. 14. The ratio between the capture in various models
that of a Gaussian distribution in free space. The figure displays
quotient of the weak WIMP capture rates in the Earth in vario
models, and the capture given in the case of the commonly u
Gaussian distribution.
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where the first term is the WIMP capture, the second term
twice the annihilation rateGA5 1

2 CAN2, and the last term is
WIMP evaporation. The evaporation term can be neglec
for WIMPs heavier than about 5–10 GeV@4# and since we
are not interested in these low-mass WIMPs we can sa
drop the last term in Eq.~49!. If we solve Eq.~49! for the
annihilation rateGA we get

GA5
1

2
C tanh2

t

t
, t5

1

ACCA

, ~50!

wheret is the time scale for capture and annihilation eq
librium to occur. In the Sun, equilibrium will for many
WIMP models have occurred and the annihilation rate is
‘‘full strength,’’ GA. 1

2 C. In this case the annihilation rate
directly proportional to the capture rate. However, in t
Earth, equilibrium has often not occurred, and we will ha
the more complex relation between the capture and annih
tion rate, Eq.~50!. In the next section, we will show this fo
an explicit example, the neutralino in the minimal supersy
metric standard model~MSSM!. Before looking at specific
MSSM models, let us analyze Eq.~50! to see the genera
trends. Let us denote the capture and annihilation rates in
usual Gaussian approximation byCG andGA

G , respectively,
whereas our new estimates are denotedC andGA . Using the
fact that the constantCA is the same in both scenarios, w
can then write

GA

GA
G

5
C

CG

tanh2SA C

CG

t(

t D
tanh2S t(

t D .5
C

CG
, t(@t

S C

CGD 2

, t(!t.

~51!

Hence, if equilibrium has occurred, the annihilation rate~and
thus the neutrino-induced muon fluxes! are suppressed with
the same factor as the capture rates, but if equilibrium
not occurred, the annihilation rate is suppressed with
square of the capture rate suppression factor, i.e., the
pression is amplified.

VIII. APPLICATION TO THE SUPERSYMMETRIC
NEUTRALINO

So far, we have discussed the effects of our new estim
of the velocity distribution in general terms. We have se
that our estimate of the velocity distribution is significan
different from previous estimates at low velocities. We ha
also seen that the capture rates, especially at higher W
masses, are significantly reduced with a factorC/CG. Hence,
the annihilation rates~and the expected neutrino-induce
muon fluxes! are reduced by a factor that lies betwe
(C/CG)2 and C/CG. We now want to investigate this sup
pression factor further and analyze the effects on
neutrino-induced muon fluxes. For this we need an exp
WIMP candidate. We will here assume that the WIMP is t
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lightest neutralino, which arises as a natural dark matter c
didate in supersymmetric extensions of the standard mo
In the following section, we will briefly go through the su
persymmetric model we work in and will then continue
investigate the effects of our new velocity distribution on t
annihilation rates and the neutrino-induced muon fluxes.

A. The neutralino as a dark matter candidate

We will assume that the WIMP is the lightest neutralino
the MSSM, i.e., the lightest neutralino,x̃1

0, is defined as the
lightest mass eigenstate obtained from the superpositio
four spin-1/2 fields, theB-ino andW-ino gauge fields,B̃ and
W̃3, and two neutralCP-even Higgsinos,H̃1

0 and H̃2
0. For a

recent review of the MSSM and the neutralino as a d
matter candidate, see Ref.@23#. The parameters of our phe
nomenologically inspired MSSM model are the Higgsi
mass parameterm, the gaugino mass parameterM2, the ratio
of the Higgs vacuum expectation values tanb, the sfermion
mass scaleMq̃ , the mass of theCP-odd Higgs bosonmA ,
and the trilinear couplings for the third generation squarksAt
andAb . We have made extensive scans of these parame
and have currently about a couple of hundred thousand m
els in our model database.

For our actual calculations we use the DarkSUSY pack
@24#. We only select those models that do not violate pres
accelerator bounds. The neutralino naturally has a relic d
sity in the right range, and we will further restrict this rang
by selecting only models with a relic density in the ran
0.05<Vxh2,0.2. This range is a bit larger than the curre
best estimates@1#, but to be conservative we choose to wo
with this larger range. When calculating the relic density,
have included coannihilations between neutralinos a
charginos~coannihilations also with sfermions in the MSS
is the subject of a future publication!.

B. Neutralino capture and annihilation

We will investigate here how the annihilation rates a
affected for specific MSSM models. For our large set
MSSM models, the typical equilibrium time scalest
;1017–1023 s, i.e., longer or much longer than the age of t
solar system,t(.4.53109 years. Hence, equilibrium be
tween capture and annihilation has often not occurred in
Earth. As equilibrium has not occurred in the Earth, we c
use Eq.~50! to see how the decrease inC will affect GA .

In Fig. 15 we show, for a set of MSSM models, how th
annihilation rates are decreased. We also show the limi
cases fort(@t and t(!t. We can clearly see that for mos
models, as equilibrium has not occurred, we are close to
(C/CG)2 suppression of the annihilation rates.

C. Neutrino-induced muon fluxes from the Earth

So, given our calculated suppression of the annihilat
rates, the neutrino-induced muon fluxes will also be s
pressed by the same amount. We now ask ourselves if
suppression is too big to make the neutrino-induced m
fluxes too low to be observable in the MSSM. In Fig. 16 w
5-15
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show in the left panel the neutrino-induced muon fluxes w
the old Gaussian approximation. In the right panel, we sh
the neutrino-induced fluxes with our new estimate of
WIMP velocity distribution. We also indicate current limit
from neutrino telescopes~Baksan@26#, Macro @27#, Amanda
@28#, and Super-Kamiokande@29#! and anticipated sensitivi
ties for future neutrino telescopes like IceCube@30#. Note

FIG. 15. GA /GA
G versus the neutralino massmx . The limiting

cases fort(@t andt(!t are indicated in the figure. Most mode
have annihilation rate suppressions close to the lower curve s
equilibrium has most often not occurred in the Earth.
12350
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w
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that the IceCube limit shown here is a probably too optim
tic, but we show it as limiting case beyond which a 1 km3

neutrino telescope will not reach. For comparison, we a
indicate the current direct detection limit by the Edelwe
experiment@25#. Models that are excluded by Edelweiss a
indicated by green circles, whereas models that are not
cluded are indicated with blue crosses.

Comparing the left and the right figures, we clearly s
that there is a significant suppression of the rates above a
100 GeV, and above about 2000 GeV, the fluxes are too
to be observable even with future detectors. In the ra
between 100 GeV and 2000 GeV, where future neutrino te
scopes still have a chance to detect a signal from the Ea
the prospects for doing so are clearly diminished with o
new estimate of the fluxes, especially if one considers tha
of the observable models in that range are already exclu
by direct detection experiments. Note, however, that
comparison between direct detection and neutrino telesco
that we have done here is for a Maxwell-Boltzmann veloc
distribution. As direct detection experiments are primar
sensitive to the high velocity tail of the distribution, where
neutrino telescopes are sensitive to the low velocity tail,
correlation between the two signals need not be as larg
indicated in Fig. 16 for a more realistic distribution. Belo
100 GeV, the neutrino signal from the Earth is not reduc
much with our new velocity distribution. In this range, ne
trino telescopes are also in general more sensitive than d
detection experiments.

IX. CONCLUSIONS

We have made a new estimate of the velocity distribut
of WIMPs at the Earth due to diffusion in the solar syste

ce
ereas in
ent limits
delweiss
excluded
FIG. 16. ~Color online!. In the left panel we show the neutrino-induced muon fluxes in the standard Gaussian approximation, wh
the right panel we show the fluxes based on our new estimate of the WIMP diffusion in the solar system. We also show the curr
of a few neutrino telescopes and an optimistic estimate for the future IceCube sensitivity. The current direct detection limit by the E
experiment@25# is also shown. Models that are excluded by Edelweiss are indicated by green circles, whereas models that are not
are indicated with blue crosses.
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We have included gravitational diffusion due to the Ear
Venus, and Jupiter and depletion due to solar capture. C
pared to the standard approximation~i.e., that the solar dif-
fusion can be approximated by the Earth being in free sp
and seeing the unperturbed Gaussian halo velocity distr
tion!, our estimate is significantly lower at low velocitie
~below about 70 km/s!. The main reason for this is that sola
capture diminishes the WIMP population at these low velo
ties. If it were not for solar capture, our results would co
firm the results of Gould@7#, i.e., that the velocity distribu-
tion as seen at the Earth is close to the one in free space
diffusion effects of Jupiter, Earth, and Venus would make
distribution look Gaussian, apart from a hole in the distrib
tion below 2.5 km/s. This hole would, however, be filled d
to the eccentricity of the Earth’s orbit. However, solar ca
ture suppresses the velocity distribution by about an orde
magnitude at low velocities and this suppression propag
into a suppression of the same order of magnitude in
capture rate.

Since the annihilation rates depend on the capture ra
the annihilation rates are also suppressed. The amoun
suppression, however, depends on whether capture and
hilation are in equilibrium or not. If they are in equilibrium
the annihilation rate suppression is the same as the cap
rate suppression, but if we are not in equilibrium, the an
hilation rate suppression is equal to the capture rate supp
sion squared.

For one of the prime WIMP dark matter candidates,
neutralino in the MSSM, it turns out that these are typica
not in equilibrium, and thus the annihilation rate suppress
is equal to the capture rate suppression squared. The
result is that the annihilation rates will start being suppres
above about 100 GeV, and reaches a maximal suppressio
about 1022 at around 1 TeV. Above about 2 TeV, the e
pected fluxes are so low that future neutrino telescopes
not have enough sensitivity to see these.

Finally, a word of caution should be applied to the inte
pretation of these new results. Even if we have done wha
can to make sure that our new estimate is correct, there
still approximations done and numerical uncertainties t
need to be considered. For example, in principle one wo
like to do a full numerical simulation of the full diffusion
process with an arbitrary halo distribution as input. That
not numerically feasible to do so; instead we have relied
numerical simulations for the solar capture and on analyt
calculations and arguments for the diffusion process. Th
analytical calculations are approximations with the aim
describe the diffusion processes correctly on average.
think that these approximations are reasonable, but
should keep in mind that there are uncertainties involved
these approximations. At higher masses, above about 1
we are very sensitive to the very details of the velocity d
tribution at very low velocities~a few km/s!. We have as-
sumed that the eccentricity of the Earth’s orbit fills the ho
below 2.5 km/s. If this would not be the case, the suppr
sion for high masses would be even larger than depic
here.
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APPENDIX: COMPARISON WITH FARINELLA’S
CALCULATION OF NEAR EARTH ASTEROIDS

This appendix considers the 47 asteroids~mostly near
Earth asteroids, NEAs!, whose fates were investigated b
Farinella et al. @9#. As a test of theMERCURY integration
package@14#, we have repeated the calculations of Farine
et al. using both the Bulirsch-Stoer algorithm@16# and
fifteenth-order Radao algorithm@15#.

The actual fates of specific asteroids is of course dep
dent of the method used, and the accuracy parameters o
calculation. Even with very high accuracy, convergence c
not be expected since numerical errors propagate expo
tially in chaotic systems. The initial conditions of our calc
lations are those of the online asteroid database at U.S. N
Observatory, epoch 11-22-2002. In addition to the tim

TABLE II. The asteroids integrated by Farinellaet al.The num-
bers given are the times at which the asteroid collided with the S
or was ejected, in thousands of years. The asterisks mark aste
we have not calculated. The following asteroids survived the
two million year period, according to Farinellaet al. and our cal-
culation ~and are not included in the table!: 1972 RB, 1981 QB,
1981 QN1, 1982 TA, 1984 KB**, 1990 OA, 1990 SM, 1991 EE
1991 VC, 1992 EU, 1992 RD, 1992 SY, 1992 SZ, 1998 CC1, 19
PA, Beltrovata, Dionysus, Dorchester, Grieve, Hiltner, Krok, Olja
Poseidon, Taurinensis, Verbano, Verenia, Wisdom, Zeus.

MERCURY pack Farinellaet al.

1971 SC ** Sun 1400
1983 LC Sun 42 Sun 810
1988 NE Sun 1062 Sun 950
1988 VP4 ** Sun 1470
1989 DA Sun 369
1990 HA Sun 1985 Eject 450
1990 TG1 Eject 362 Eject 420
1990 TR Eject 1449
1991 AQ Sun 456
1991 BA Sun 120
1991 GO Sun 600
1991 SZ Sun 1860
1991 TB2 Sun 625 Sun 30
1991 VP5 ** Sun 570
1992 SY Sun 1509
6344 P-L Eject 362
Adonis Sun 1214 Sun 900
Cuno Sun 1274 Eject 640
Encke Sun 90
Hephaistos Sun 143 Sun 110
Mithra Sun 205 Sun 180
Ojato Sun 328 Sun 360
Toutatis Eject 79 Eject 640
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