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Nonsingular FRW cosmology and nonlinear electrodynamics
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The possibility to avoid the cosmic initial singularity as a consequence of nonlinear effects on the Maxwell
eletromagnetic theory is discussed. For a flat Friedmann-Robertson-WBIR&) geometry we derive the
general nonsingular solution supported by a magnetic field plus a cosmic fluid and a nonvanishing vacuum
energy density. The nonsingular behavior of solutions with a time-depeAdénterm are also examined. As
a general result, it is found that the functional dependenca (@j can uniquely be determined only if the
magnetic field remains constant. All these models are examples of bouncing universes which may exhibit an
inflationary dynamics driven by the nonlinear corrections of the magnetic field.
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[. INTRODUCTION to the Maxwell electrodynamicgl1,12. It is worth notice
that nonlinear corrections may also be important to avoid the
A fundamental difficulty underlying the standard black-hole singularity. Actually, an exact regular black-hole
Friedmann-Robertson-WalkéFRW) cosmology is the pre- solution has been recently obtained with basis on the
diction of an initial singular state where all curvature invari- Einstein-dual nonlinear electrodynamics as proposed by
ants and some material quantities such as pressure, energglazar, Garcia, and Plebandis,14]. Note, however, that
density, and temperature become infinjtd. Generically, the purpose of the present work is not to give a detailed
“the breakdown of the laws of physics at a singularity” is a description of the possible nonlinear theories and their physi-
clear manifestation of a mathematical inconsistency andal effects. Our basic aim is rather modest—we will try to
physical incompleteness of any cosmological model. In thigain new insights into the possibilities beyond Maxwell
way, although strongly supported by the recent observationtheory based on the simplest nonlinear electromagnetic La-
at low and intermediate redshifts, the present big-bang picgrangian and its connection to the cosmic singularity prob-
ture with dark energy must be improved at very high red-lem.
shifts. In this concern, it has been foudl] that the primordial
In order to solve such a problem several attempts basesingularity can be removed because the nonlinear corrections
on many disparate mechanisms have been proposed in theinforce the negative pressure at the early stages of the Uni-
literature. Some earlier approaches trying to develop a welerse. The authors also argued that the nonsingular behavior
behaved and more complete cosmological description inis unaffected by the presence of other ultrarelativistic com-
clude quadratic Lagrangians and other alternative theoriegonents obeying the equation of st@ig)= pn/3.
for the gravitational field2], a creation-field cosmologj3], In the present work, we extend the analysis by De Lorenci
a huge vacuum energy density at very early tifdds non- et al. [8] using different ingredients. We first obtain the be-
minimal couplings[5], nonequilibrium thermodynamic ef- havior of the scale function for a spatially flat FRW geometry
fects[6], and quantum-gravitational phenomena closely re{A =0), thereby showing that their results is a particular
lated to a possible spontaneous birth of the Univgrde case of the general solution. It is also analyzed how this
More recently, a new interesting mechanism aiming atsolution is modified by the presence ofAaterm (vacuum
avoiding the cosmic singularity has been discussed by Denergy density which may be constant or a time varying
Lorenciet al. [8] through a nonlinear extension of the Max- quantity. Solutions with constant vacuum energy density also
well electromagnetic theory. The associated Lagrangian aniéad to a nonsingular universe, and the same happens with a
the resulting electrodynamics can theoretically be justifiedime-dependena (t) term. However, there are singular solu-
based on different arguments. For example, the nonlineaions where the decaying vacuum supplies the energy to a
terms can be added to the standard Maxwell Lagrangian bgonstant cosmological magnetic field. In this case, the time
imposing the existence of symmetries such as parity consedependence of the cosmological term can uniquely be deter-
vation, gauge invariance, Lorentz invariance, ¢8&10], as mined and corresponds to a slightly modification of the more
well as by the introduction of first-order quantum correctionsfrequent forms suggested in the literat{it®&—17. The main
physical restrictions, including the time interval where the
nonlinear corrections must be important, are also discussed.

*Electronic address: calist@dfte.ufrn.br The paper is organized as follows. In Sec. I, we write
"Electronic address: mrgm@dfte.ufrn.br down the Einstein field equation&FE’S) for a flat FRW
*Electronic address: carvalho@dfte.ufrn.br geometry supported by an energy momentum derived from
8Electronic address: the extendednonlineaj eletromagnetic Lagrangian. In Sec.
limajas@dfte.ufrn.br, limajas@astro.iag.usp.br Ill, we generalize the solution derived in R¢8] which as-
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sumes a vanishing cosmological term, a spatially flat geom- 1

etry, and a time-dependent magnetic field. In Sec. IV, we <BiBj>:_§Bzgij1 (10
obtain a new solution that takes into account the presence of

a constant\. The behavior involving a time-dependektis (E;B))=0. (12)

discussed in Sec. V. Finally, in the conclusion section, we
summarize the basic results and also present some suggesquations(7)—(11) imply that
tions for future work. In what follows, Greek indices run

from O to 3, Latin indices run from 1 to 3. Unlike of R¢8], 2 B%\U,U, 1 B2
we adopt the International System of Unitee the Appen-  (F ,,F*,)= —| €E*+ — T2 €E*——10,,,
dix on units and dimensions of R¢fL8] for further detail$. 3 Mo/ c 3 Mo 12
1
Il. BASIC EQUATIONS where U , is the four velocity. Under such conditions the

N
As is widely known, the Lagrangian density for free fields 2Verage value of the energy-momentum tensor takes the per-

in the Maxwell electrodynamics may be written as fect fluid form, namely

u,u,

o

1 1
Lmaxwery=— 57 —F*"F ,=——F, ) (Tu=(p+p) P9y (13

4o 4pg c?

where F#* is the electromagnetic field strength tensor andwhere the density and pressure have the well-known
mo is the magnetic permeability. The canonical energy-form
momentum tensor is then given by

1( E2+ e* (14)
1 1 P=751 €0 — s
TELI\:I}AXWELL):(% FWF“V”L ZFgW . ) 2 Mo
1
In this work we consider the extended Lagrangian density p= 3P (15
to the electromagnetic field,
In order to analyze the modifications implied by the use of
L:—LF+wF2+ Fx2 3) the modified Lagrangiari3), we also assume that for the
dug e stochastically defined electromagnetic fields only the average
value of the squared magnetic fighf survives at the very
wherew and » are arbitrary constants, early Universe, i.e., we use Eqg)—(11) with (E2)=0. In
this concern, we remark that a homogeneous electric field in
F*EFZVF/”, 4 a plasma must give rise to an electric current of charged

particles and then rapidly decay. Indeed, unlike what happens
and Ffw is the dual ofF,,. As one may check, the corre- with the magnetic field, at present there is no basis whatso-
sponding energy-momentum tensor becomes ever to presume the existence of an overall electric field.

Indeed, since the late 1960s, it has been recognized that cos-

oL oL mological models with an overall electric field bears hardly
Tu=—4—FF.+ F*—L|g,,. (5) any relation at all to realitysee for instance, Zeldovich and
JF JF* Novikov [20]). Naturally, this does not mean that thE?)

term appearing in our stochastic approach can be neglected
Let us now consider the above expressions in the context gf, comparison with{B2), but one may expect that its influ-
a homogeneous and isotropic FRW flat model, ence might be small for some special regimes, as for ex-
oo o T ) ample, when the plasma may be treated with basis on the
ds?=c’dt?—a*()[dr’+r?d¢*+rsifed¢?].  (6) magnetohydrodynamics approximation. For a dense ionized
o gas, for example, the collision frequency can be so high that
Naturally, electromagnetic fields may be the source of thghe glectric field and its momenta may arise only as a conse-
above background only if the fields are considered in itsy ence of the motion of the fluid, or as a result of the exter-
average propertiegl9]. Now, applying the standard spatial 5| charges distribution ofnot “frozen in”) time-varying
averaging process we set magnetic fields. Such a behavior may happen in the primeval
B plasma (below Planck’s temperaturebecause the Debye
(E)=0. @) screening radius- (T/n)¥2is very small in comparison with
the macroscopic relevant scale for nonsingular world mod-
(B))=0, ®) els, namely, the Hubble radiuH(t) ~!. Keeping these re-
marks in mind, we return to the basic equations by assuming
(EE)=— }Ezg-- 9 that(E2) has been neglected so that Et) still holds, but
- 3~ the energy density and pressure now read
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where an overdot means derivative with respect to the cos-

p= 2—52(1— 8uowB?), (16 mic timet. As we shall see, for a constant magnetic field it is
Ho not necessary to assume a phenomenological expression for
1 1 16 A(t) as usually done since it can be uniquely fixed from the
p= 6_m32(1_4oﬂow32)= 3P 3“’84' (17 above set of equations.

Replacing Eqs(16) and (17) in the Einstein equations

20—(22 t
Note that the weak energy conditiop>0) is obeyed for (20-(22) we ge

1 a’> 47G B2 , Ac?
- —= —(1-8pugqwB?)+ —, (23
B<2\/2M0w, (19 a’®  3c¢? Mo 3
whereas the pressure will reach negative values only if a Ac? 4G B2
—=— —(1—-24u,0B?), (24)
1 a 3 3c? Mo
B>— (19

2310000

On the other hand, there is a widespread belief that the
early Universe evolved through some phase transitions,
thereby yielding a vacuum energy density which at present isnserting Eqs(16) and (20) into Eq. (21) we find
at least 118 orders of magnitude smaller than in the Planck
time [21]. Such a discrepancy between theoretical expecta-
tion (from the modern microscopic theory of particles and
gravity) and empirical observations constitutes a fundamen-
tal problem in the interface uniting astrophysics, particle

physics, and cosmology, which is often called “the cOSMO-ryq term proportional t®* comes from the nonlinear cor-
Ioglcal constant problem’[Zl,ZZ. This “puzzle” together rection in the Lagrangian. Note also that if the coupling con-
with the observations of type-la supermnovae] suggesting  giant, is zero, the standard FRW differential equation for a
that the cosmic bulk of energy is repulsive and appears like g, yjation filled universe plus a cosmologicatterm is recov-
dark energy(probably of primordial origin stimulated the .4 By solving any two of the above equations one may

recent interest for more general models containing an eXUBiscuss if the nonlinear terms added to the Maxwell Lagrang-

componept and accounting for the present acceleratgd s.ta% may alter the primeval singular state. In order to compare
of the Univers¢g24]. A possible class of such cosmologies is ity some previous results presented in the literature, we

provided by phenomenological models driven by a constang,+ our analysis by considering some interesting particular
or a time-dependent (t) term (see, for instance, Refl4—

16,24-3Q and references thergin The effective time-
dependent cosmological term may be regarded as a second

fluid component with energy density, (t) = A (t)c*/87G, lll. NONSINGULAR MODELS WITH A=0
which transfers energy continuously to the material medium.
The conditions under which this kind of cosmology can be
described by a scalar field coupled to a perfect fluid has als

been dl[fcussefd in the I'Etera:.um?_?’% Formthe galkeb (;f how to recover the quoted result. First of all, we remark that
generality, we Tocus our attention to a decaymgnodel, but i g 5 o time-dependent quantity and remains constant,

now in the presence of the primeval magnetic field. In the o :
background defined by E@6), the EFE read Eq. (25 can be easily integrated to give

Ac*
- 87G’

(25

B 1— 16uwB? B+2éB =
E( uowB*) a-| -

W . 2 647Gw
aat+a’- EAczaZ— (

" )B“azzo. (26)
c

This is the case studied by De Loremtial. [8] where a
articular nonsingular solution was found. In what follows
e corresponding general solution is given and we also show

2
: a
a’? 8wmG  A(t)c? B(t)=B _0) 2
a? 3c? 3
) whereBj is a constant of integration. In this paper, the sub-
a A(t)c? 4nG script 0 doeshot mean the present day value of a quantity. It
-= - (p+3p), (21)  only indicates its value at an arbitrary timgwhich appears

2 ) ) . '
a s 3c in the general solution of(t) as a second integration con-

stant. This constant, was arbitrarily chosen in Ref8].
Thus By=B(tp) if ag=a(ty) (in the quoted papea, was
also normalized to unit We stress that the scaling solution
(27) holds even for a nonvanishing constakt Inserting
B(a) into Eqg.(26) one finds

while the energy conservation law can be written as
: +3é1 +p)= Aot 22
p a(P p)= 87G’ (22
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647G wB%a8 «t2 Alternatively, we observe from the relatiqi6) that
aa+a’— 070 a 6=0. (28 this solution is recovered for values bivhere the magnetic
3c? field obeys the condition
As one may check, the general solution of the above equa- 8uowB2<1. (39

tion is
The most interesting feature of E@2) is that the quadratic
a(t)=ag[4ad(t—to)?+4agBo(t—to) +11¥4 (29  function inside the parentheses does not have real roots
>0, being positive for any. Therefore the model is nonsin-

where we have defined gular with a(t) reaching the minimum valuean;,
= ao(sﬂong) 14 ata timetmin: - '}/O/ZCYOZIO_ Bolzao Lt
477G thus follows that the universe is a bouncing one: it begins
= >Bo. (30)  arbitrarily large at<t,;,, decreases until its minimal value
3o att.,in, and then begins to expand. The values of the mag-
netic field and energy density g}, are
Bo=*\1—8uowB?2. (32)
In order to compare with the results of RE#] we recast B(tmin) = ; (40)
Eqg. (29 in the form 2\2uqw
a(t) =ag(4agt>+4agyot+ 5o) ", (32) p(tmin) =0. (42)

with Before we proceed further, it is worth notice that if Eq.
(32 correctly describes the evolution of the Universe in the

Yo=Bo~ 2a0to, (33 distant past, it implies the existence of an inflationary era

- .
So=4aoto aoto— Bo) + 1. (34) (a>0) on the interval

The linear term int inside the parentheses of E®2) does tmin = L =<t<tmin 1, (42)
not appear in the solution given by the authors of R&f.
This happens because the arbitrary integration constan
was chosen to be

[3uiwc?
B 1 3uoC%(1—8uowBf) b= G 43

ty=—— = — . 35
24, 2B, 4G 39

t where

Figure 1 shows the scale factor, the magnetic field, the
The time behavior of the magnetic field is readily obtainedenergy density, and the pressure as a function of time for a

from Egs.(27) and(32). One finds definite value oB,. From relationg36) and(39) we stress
that the classical solution is recovered for times much larger
B, thant,,;, with the Universe entering in the standard radiation
B(t)= , (36)  phase. As shown in Fig. 1, the nonlinear corrections are rel-
(4a3t?+ dagyot+ 85) Y2 evant only for  QuewB?=1/10 or  t<tpyp,

+38uowB§/2ay.
with the energy density and pressure defined by E&S) Ho@Bol<do
and (17), respectively. Note also that the Hubble parameter

can be written as IV. NONSINGULAR MODELS FOR A#0
. For constantA, it is easy to see that E¢26) becomes
HZEZ aol 2ap(t—to) + Bo] 37
A [4ad(t—to)2+4agBo(t—to)+1] L 647G wBgal
aa+a’— —Ac’a’— — a ®=0. (49
which becomes fot=t, 3 3c

47G(1-8 B2) Let us now search for an exact description in the presence
_ _ _ i Ho@Po of a cosmological constant. By combining E¢23) and(27)
Ho=H(to) = @oBo=Bo . (39 :

340C2 for a constant\ we find

(In Ref.[8], the notatiorH is used to represent the magnetic 22=16[)\ZZ+ aS(Z—B,quBS)], (45)
field.) From Eq.(32) we see that, for large we recover the
classical solution for radiation dominated universagt) where the auxiliary scale fact@rand\ term are defined by
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FIG. 1. The upper panel shows the scale fa¢salid line), the
magnetic field dashed ling and the classical solutigmlotted ling
for (w=0). The lower panel shows the energy densiglid line)
and the pressurdédashed ling for the model withA=0 and

280\ 2w/L0:02

Z= a)’ 46
=la) (46)
A= Ac? 4
=3 @0
Equation(45) can be easily integrated to give
1 1/ D 1/4
al)=a| —| |CyetMt-t0 4 20 aWN(t—tg) _ 22|
4N Co
(48)

where

Co=a2+ 20+ 2N\ + a2 —8alu,wBd), (49
D= a2( o 2
o=ap(agt 32 uewBy). (50)

The magnetic field is

-~ D0 _ -1/2
B(t)=2BoVA| Coe? M0 —e M1 242
Co
(51)

PHYSICAL REVIEW D 69, 123504 (2004

It is straightforward to see that the term inside the square
brackets of Eq(48) is positive for allt and that the scale
factor reaches its minimum value

o 1/4
amin=4ao Z( Vag+ 32\ pnowBi— ag) (52
at
1 (D,
tmin=to+ ﬁln(c_g . (53

As in the previous case, the universe bounces,gtand, if
the solution would effectively hold ne&y,;,,, an inflationary
phase would take place for all valuesta$uch that

Do D3
Cax*—8a5Cox°+ 14D gx°— 8a5—x+ —>0, (54)
Co Cj
where
x=et(t-to), (55
The magnetic field at,;, is
A poc? 12
B(tmin) = : (56
8A,u0a)c4
27G 1+———-1
G

From relationg39) and(51) the de Sitter classical solution is
recovered for

4
1 ag
t<to+ ——=In| — (57)
8VNn |\ C3
and
1 | (ad+32uqwB3ir)?
t>to+ In (58)
8\ 2

Similarly to what happens with solutid29), the classical
solution is recovered for times much larger thgg,. In
Figs. 2 and 3 we show the scale factor, the magnetic field, the
energy density, and the pressure as a function of time, for
some values o, A, andBg. In analogy with the solution
(32), we have that the nonlinear corrections are relevant only
for

8uowB2=1/10
or
1 (ad+160uowB3\)?
t=<ty+ 8\/Xln Cg

2
1 \/ ag
+——n| |1+ \/1-———F——] |.
8V\ a2+ 160uowB2N
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max
—_

at)/a, B(t)/B_

PO 1,/ B, pO /B

=
T
2 2
PO 1, /B, pOp/ B,

-20 1 ]
-1.0 -0.5 0.0 -1.0 -0.5 0.0

ot aot

FIG. 2. The upper panel shows the scale fa¢salid line) and FIG. 3. As in Fig. 2 but for\/X/aozo.Ol and Bg\2wug
the magnetic fielddashed ling The lower panel shows the energy =0.1.
density (solid line) and the pressurédashed ling for the model
with a constant nonvanishing. The values forA andB are such obtainingB(t) anda(t). Conversely, for a given dependence

that VX ag=0.4 and By\2wpu,=0.2. of B(t), a unique time dependence fal(t) is readily fixed
by the field equations.
V. NONSINGULAR MODELS FOR ATIME-DEPENDENT A Let us first analyze phenomenological models with a cos-

, . - mological term defined by =3¢~ ?H?, whereg is a posi-
The possible cosmological consequences of a decayin 0 . . )
vacuum energy density ok(t) cosmologies are still under N pgramgtgr smaller than un|(§16,3q._The cﬁfferenual
debate in the recent literatufd4—30. Such models may eqqaﬂon dr'|vmg the scale factor is readily d?‘”Ved by com-
also be described in terms of a scalar field coupled to a quitlj)Inlng relations(16), (17), (20), and(21). One finds

component. Another important motivation is its connection )
with the cosmological constant problem. On general ) 2 o
grounds, one may expect that a decaying vacuum energy H+4(1-pH"=(1-B) 1- g2
must play an important role in the Universe evolution *
(mainly in the very early Universeand, probably, more in- 2

ing. i ndi : 4(1-B%)
teresting, it may indicate suggestive ways to solve the 2| _

) e ) . x| 1— 1-—H<"|[=0, (59

problem, as for instance, by describing the effective regimes a?

that should be provided by fundamental physics. In the ma-
jority of the papers dealing with a time-varying, the de- . . . .
caying law is defineca priori, i.e., in a phenomenological WhereH=ala. The constanty, is defined by relatiort30)
way. The most commonly postulated decaying laws are thos¥hereass, is given by

in which A(t) decreases as some power either of the scale
factor a(t) or the Hubble parameted (see Ref[17] for a By==* \/1—8;;,00)(1—,8)83. (60)
quick review. Some authors have also considered scaling

laws formed by a combination of both quantities]. As  Now, separating the variables in E&9) one finds
remarked before, these proposals are in accordance but do

not explain the difference of more than 100 orders of mag- 2 41— 32 -1
nitude between the cosmological constant value at the begin- H %o _ _ (1=5%) 2 2

) ) : ; . . 1 ——H 4H dH
ning of Universe(provided by particles physitand its ac- Ho| 1— B2 a
tual value estimated from cosmology. In general, the EFE’s * 0
imply that onceA(t) is given one may integrate them for =(1-B)(t—tp). (61

123504-6



NONSINGULAR FRW COSMOLOGY AND NONLINER . ..

A simple integration results,

a aol 2ap(1—B)(t—to) + B, ]

3 [4ad(1- B)2(t—to)*+ daoB, (1 B)(t—tg) + 1]’
62

and integrating again, we obtain for the scale factor

a(t)=ag[4aj(1—B)2(t—ty)?

+hag(1—B) B, (t—to)+1]H4AA1 (63)

This solution is nonsingular fab>0, with a(t) reaching its
minimal value,ai,=ag[ 8uow(1— B)B3]Y41 A at a time
tmin=to— B« /2aq(1— B). It thus follows that the universe is
a bouncing one. It begins arbitrarily large &a€t,,;,, de-
creases until its minimal value &t;,, and then begins the

expansion phase. For completeness, the expression for th

magnetic field is

B(t)

Bo(1-B)*

T [4ad(1- Bt to)*+ dag(1— B) By (1—to) + 112
(64)

and att,;,, it is readily checked thaB(t,i,) =1/2V2uqw
andp(tyin) =0. As one should expect, in the limi=0, all
the results above for a time-dependénterm reduce those
of A=0 [see Eqs(27)—(34)]. Before we proceed further, it

PHYSICAL REVIEW D 69, 123504 (2004

ma

at)/a,, B(t)/B__

>, p(t) /B,

PO K,/ B, p,On,/B,

|
N
T

-1.0 -0.5 0.0

a,(1-p)t

FIG. 4. The upper panel shows the scale fa¢solid ling), the
magnetic fielddashed ling and the classical solutiafotted ling
for (w=0). The lower panel shows the energy density of magnetic
field (solid line), the energy density of thé term(dashed ling and
the pressurddotted ling for the model withA =(38/c?)H?, B

is worthwhile to notice the existence of an inflationary era=0.4, and ByV2wu=0.2.

(a>0) which depends on the value of tjffeparameter. For

1/2< =<1 the universe always evolves through an accelerA term is maintained constant the unique solution with a

ated expansion state. However, i&@B<1/2, it inflates on
the intervalt,;,— t,<t<tmin+1;, where

o [3udw(1-B)7c
" 7G(1-28)

(65)

constant magnetic field is the trivial onB£0). Unlike the
previous solutions, we note that there is no an analogous
classical solution for constant magnetic field. Therefore we
will analyze such a possibility regardless of any constraint on
its domain of validity.

If B(t)=Bg=const, the energy conservation law yields

In Figs. 4 and 5 we show the time dependence of the scale

factor, A term, magnetic field, energy densities, and pressure

for some selected values Bf, and 8. The main conclusion

is that the singularity must be avoided for a generic time-
dependeni\. As shown in Figs. 4 and 5, the nonlinear cor-

rections are relevant only for ;8wB?=1/10 or t=<ty,

+3V8uow(1— B)B22ag(1- B).

At this point one may ask by the inverse treatment, i.e., if

the singularity is avoided for a givela(t). Such a question

is immediately answered by examining the simplest case,
namely, the one for which the magnetic field remains con-
stant in the course of the evolution. This possibility is clearly

allowed by the generalized energy conservation [lsee Eq.

(25)]. The energy density of the magnetic field is kept con-

a
A(t)=A0+3KoIn(—), (66)
2h)
where A y=A(ty) and
167G B3
Ko=— — (1—16uowBj). (67)

3c* Mo

stant because energy is continuously drained from the decay- Substituting Eq.(66) into Eq. (23), we get for the scale
ing vacuum component to the magnetic field. Actually, if thefactor
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—
(=]
T

1

(=)

1 .
-0.5 0.0

PO, /B, p O, /B, p) /B,

_;
o

o (1-B) t
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2B, 2Hq
te=— :to——z. (72
KqC KoC

At this point, the scale factor reaches the value

2
a(ty)= aoe*HO’KOCZ. (73

The behavior of the solution will depend on the sign of
the constank (for K,=0 we get the de Sitter solutiprFor
Ko>0, that is, forBy>1/(4\ uow), the universe is always

acceleratedd>0) e has a minimum size &t.

A much more interesting solution is the one correspond-
ing to Ky<0[By<1/(4V uow)]. For this range 0B, a(t),
a>0 fort<t,—V—2/Kyc? andt>t.+ —2/K,c? anda(t)
has a maximum &, . It is worth notice that the time interval
Aty prior tote, for which the solution isiotinflationary
depends on the value & as

) 3uoC2
AI(N|)=2 - 2= B_ 2 .
Koc® Bo VY 87G(1—-16uqwBj)

0
(74)

The cosmological termh dominates the dynamics of the
universe for values of where

FIG. 5. The upper panel shows the scale fa¢salid line), the
magnetic field dashed ling and the classical solutigflotted ling
for (w=0). The lower panel shows the energy density of magnetic
field (solid line), the energy density of th& term(dashed ling and

Ac*>87Gp. (75)

the pressurddotted ling for the model withA =(38/c?)H?, B

=0.6, and Byv2wue=0.2.

RO
a(t):aoex T(t_to) +H0(t_t0)

For both models Ky>0 andKy<0), the condition(75)
is satisfied byt<t; andt>t, where

167wGp
—2H,c—2 3

KOC2 KOC3
=a, ex;{ 7 t2+ B1t+ Bo |, (68)
and
where \/m
—2Hq,c+2 3
\/Aoc2 47G B2 ] - _ 7
Ho== + —(1-8uowByp), (69) Koc®
3 3c? Mo 0
In Fig. 6, we show the scale factor and the cosmological
Koc? KoC? term as a function of time fok,>0 and some values &,
Bi= _(Tto_ Ho|, and Bo=to Tto_ Ho | and\ o= Ac?/3. The same quantities have also been plotted
(700  for Ko<O in Fig. 7.
Naturally, if one expects any such model to properly de-
The Hubble parameter is scribe the evolution of the real universe, it would be advis-
able to take into account other matter fields, such as ul-
K-c2 K -c2 trarelativistic matter, scalar fields, or dust. In R, it was
H(t)= OT(t—t0)+ HOZOTHBl, (71  demonstrated, for the cage=0, B=B(t), that the presence

and we haved =0 for

of ultrarelativistic matter with an equation of stafg,
=pn/3 would just amount for a reparametrization of the
constantB, and w.
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a(t)/a, , A®C /e,

at)/a, , At) '/,

FIG. 6. The scale factofsolid line) and the cosmological term FIG. 7. As in Fig. 4 but forK,<0 (2BgV2wuo=0.1). In the
(dashed ling for the model with constant magnetic field, time- upper paneI\/)\—Ola(,:l and the lower panel is fO(/)\—O/a0=O.5.
dependent A, Ky>0(2ByV2wue=1). In the upper panel

VXolae=1 and the lower panel is fofo/as=0.5. are introduced in the matter content. In this concern, models

with a constant and time-dependeht term were studied
~'with some detail. Again, for both cases, the universe is also

consistence of the whole set of solutions derived Innonsingular, bouncing at a critical time when the scale factor
the present work. In general, there are three unknown func-

. - feaches its minimum value.
tions: the scale factom, the magnetic fieldB, and the For a decaving vacuum enerayv density we discuss two
cosmological termA (constant or time dependenAs one ying 9y y

may check for each case, the number of unknown functi0n§jifferent sc_enarios. In thezfirst one, it was phenomenologi-
and equations coincide, the unique exception is related t ally described byA(1)~H* as assumed by several authors

models containing a variabl&(t) term for which the phe- 6,17 These models are nonsingular and resemble the so-
nomenological lawA =38c 2H?, has been considered Iutloqs with .noA. Thg second scenario is a rather curious
(see Refs[16,18). solution which describes a universe driven by a constant
magnetic field. The time behavior of the cosmological term

is now uniquely determined by the EFE’s as a logarithm of

VI. CONCLUSION the scale factor. It should be interesting to examine if such

We have examined whether nonlinear corrections to théesults are maintained in the presence of other matter fields,
Maxwell electrodynamics may avoid the cosmic singularity®S Well as for universes with nonzero curvature.
occurring in flat FRW universes. In brief, the answer is posi- Finally, in analogy with the cosmological case, one may
tive. We show that by discussing a large class of analyticafSK if nonlinear terms in the Maxwell Lagrangian may re-
cosmological models under three different assumptions. If0Ve the physical singularity present in a charged black hole
the first case, the cosmologicklterm is identically zero and (Reissner-Nordstrom solutionThis problem will be dis-
the dynamics is driven by a time-dependent magnetic field®uSsed in a forthcoming communication.
This class generalizes the particular solution previously
found by De Lorenckt al.[8], and confirms their statement
concerning the avoidance of the initial singularity. In prin- ACKNOWLEDGMENT
ciple, since the solutions are nonsingular, they potentially
solve the horizon problem. We have also examined if the We are grateful to the CNP@razilian Research Agengy
basic features of such models remain true if new ingredientor partial financial support.

At this point, we would like to stress the mathematical
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