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Nonsingular FRW cosmology and nonlinear electrodynamics
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The possibility to avoid the cosmic initial singularity as a consequence of nonlinear effects on the Maxwell
eletromagnetic theory is discussed. For a flat Friedmann-Robertson-Walker~FRW! geometry we derive the
general nonsingular solution supported by a magnetic field plus a cosmic fluid and a nonvanishing vacuum
energy density. The nonsingular behavior of solutions with a time-dependentL(t) term are also examined. As
a general result, it is found that the functional dependence ofL(t) can uniquely be determined only if the
magnetic field remains constant. All these models are examples of bouncing universes which may exhibit an
inflationary dynamics driven by the nonlinear corrections of the magnetic field.
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I. INTRODUCTION

A fundamental difficulty underlying the standar
Friedmann-Robertson-Walker~FRW! cosmology is the pre-
diction of an initial singular state where all curvature inva
ants and some material quantities such as pressure, en
density, and temperature become infinite@1#. Generically,
‘‘the breakdown of the laws of physics at a singularity’’ is
clear manifestation of a mathematical inconsistency
physical incompleteness of any cosmological model. In t
way, although strongly supported by the recent observat
at low and intermediate redshifts, the present big-bang
ture with dark energy must be improved at very high re
shifts.

In order to solve such a problem several attempts ba
on many disparate mechanisms have been proposed in
literature. Some earlier approaches trying to develop a w
behaved and more complete cosmological description
clude quadratic Lagrangians and other alternative theo
for the gravitational field@2#, a creation-field cosmology@3#,
a huge vacuum energy density at very early times@4#, non-
minimal couplings@5#, nonequilibrium thermodynamic ef
fects @6#, and quantum-gravitational phenomena closely
lated to a possible spontaneous birth of the Universe@7#.

More recently, a new interesting mechanism aiming
avoiding the cosmic singularity has been discussed by
Lorenci et al. @8# through a nonlinear extension of the Ma
well electromagnetic theory. The associated Lagrangian
the resulting electrodynamics can theoretically be justifi
based on different arguments. For example, the nonlin
terms can be added to the standard Maxwell Lagrangian
imposing the existence of symmetries such as parity con
vation, gauge invariance, Lorentz invariance, etc.@9,10#, as
well as by the introduction of first-order quantum correctio
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to the Maxwell electrodynamics@11,12#. It is worth notice
that nonlinear corrections may also be important to avoid
black-hole singularity. Actually, an exact regular black-ho
solution has been recently obtained with basis on
Einstein-dual nonlinear electrodynamics as proposed
Salazar, Garcia, and Plebansky@13,14#. Note, however, that
the purpose of the present work is not to give a detai
description of the possible nonlinear theories and their ph
cal effects. Our basic aim is rather modest—we will try
gain new insights into the possibilities beyond Maxw
theory based on the simplest nonlinear electromagnetic
grangian and its connection to the cosmic singularity pr
lem.

In this concern, it has been found@8# that the primordial
singularity can be removed because the nonlinear correct
reinforce the negative pressure at the early stages of the
verse. The authors also argued that the nonsingular beha
is unaffected by the presence of other ultrarelativistic co
ponents obeying the equation of statep(ur)5r (ur)/3.

In the present work, we extend the analysis by De Lore
et al. @8# using different ingredients. We first obtain the b
havior of the scale function for a spatially flat FRW geome
(L50), thereby showing that their results is a particu
case of the general solution. It is also analyzed how t
solution is modified by the presence of aL term ~vacuum
energy density! which may be constant or a time varyin
quantity. Solutions with constant vacuum energy density a
lead to a nonsingular universe, and the same happens w
time-dependentL(t) term. However, there are singular sol
tions where the decaying vacuum supplies the energy
constant cosmological magnetic field. In this case, the t
dependence of the cosmological term can uniquely be de
mined and corresponds to a slightly modification of the m
frequent forms suggested in the literature@15–17#. The main
physical restrictions, including the time interval where t
nonlinear corrections must be important, are also discus

The paper is organized as follows. In Sec. II, we wr
down the Einstein field equations~EFE’s! for a flat FRW
geometry supported by an energy momentum derived fr
the extended~nonlinear! eletromagnetic Lagrangian. In Se
III, we generalize the solution derived in Ref.@8# which as-
©2004 The American Physical Society04-1
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sumes a vanishing cosmological term, a spatially flat geo
etry, and a time-dependent magnetic field. In Sec. IV,
obtain a new solution that takes into account the presenc
a constantL. The behavior involving a time-dependentL is
discussed in Sec. V. Finally, in the conclusion section,
summarize the basic results and also present some su
tions for future work. In what follows, Greek indices ru
from 0 to 3, Latin indices run from 1 to 3. Unlike of Ref.@8#,
we adopt the International System of Units~see the Appen-
dix on units and dimensions of Ref.@18# for further details!.

II. BASIC EQUATIONS

As is widely known, the Lagrangian density for free fiel
in the Maxwell electrodynamics may be written as

L(MAXWELL)52
1

4m0
FmnFmn52

1

4m0
F, ~1!

where Fmn is the electromagnetic field strength tensor a
m0 is the magnetic permeability. The canonical energ
momentum tensor is then given by

Tmn
(MAXWELL)5S 1

m0
D FFmaFa

n1
1

4
FgmnG . ~2!

In this work we consider the extended Lagrangian den
to the electromagnetic field,

L52
1

4m0
F1vF21hF* 2, ~3!

wherev andh are arbitrary constants,

F* [Fmn* Fmn, ~4!

and Fmn* is the dual ofFmn . As one may check, the corre
sponding energy-momentum tensor becomes

Tmn524
]L
]F

Fm
aFan1S ]L

]F*
F* 2LD gmn . ~5!

Let us now consider the above expressions in the contex
a homogeneous and isotropic FRW flat model,

ds25c2dt22a2~ t !@dr21r 2du21r 2sin2udf2#. ~6!

Naturally, electromagnetic fields may be the source of
above background only if the fields are considered in
average properties@19#. Now, applying the standard spati
averaging process we set

^Ei&50, ~7!

^Bi&50, ~8!

^EiEj&52
1

3
E2gi j , ~9!
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^BiBj&52
1

3
B2gi j , ~10!

^EiBj&50. ~11!

Equations~7!–~11! imply that

^FmaFa
m&5

2

3
S e0E21

B2

m0
DUmUn

c2
1

1

3
S e0E22

B2

m0
D gmn ,

~12!

where Um is the four velocity. Under such conditions th
average value of the energy-momentum tensor takes the
fect fluid form, namely

^Tmn&5~r1p!
UmUn

c2
2pgmn , ~13!

where the densityr and pressurep have the well-known
form

r5
1

2 S e0E21
B2

m0
D , ~14!

p5
1

3
r. ~15!

In order to analyze the modifications implied by the use
the modified Lagrangian~3!, we also assume that for th
stochastically defined electromagnetic fields only the aver
value of the squared magnetic fieldB2 survives at the very
early Universe, i.e., we use Eqs.~7!–~11! with ^E2&50. In
this concern, we remark that a homogeneous electric fiel
a plasma must give rise to an electric current of charg
particles and then rapidly decay. Indeed, unlike what happ
with the magnetic field, at present there is no basis wha
ever to presume the existence of an overall electric fie
Indeed, since the late 1960s, it has been recognized that
mological models with an overall electric field bears hard
any relation at all to reality~see for instance, Zeldovich an
Novikov @20#!. Naturally, this does not mean that the^E2&
term appearing in our stochastic approach can be negle
in comparison witĥ B2&, but one may expect that its influ
ence might be small for some special regimes, as for
ample, when the plasma may be treated with basis on
magnetohydrodynamics approximation. For a dense ioni
gas, for example, the collision frequency can be so high
the electric field and its momenta may arise only as a con
quence of the motion of the fluid, or as a result of the ext
nal charges distribution or~not ‘‘frozen in’’ ! time-varying
magnetic fields. Such a behavior may happen in the prime
plasma ~below Planck’s temperature! because the Debye
screening radius;(T/n)1/2 is very small in comparison with
the macroscopic relevant scale for nonsingular world m
els, namely, the Hubble radiuscH(t)21. Keeping these re-
marks in mind, we return to the basic equations by assum
that ^E2& has been neglected so that Eq.~13! still holds, but
the energy density and pressure now read
4-2
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r5
1

2m0
B2~128m0vB2!, ~16!

p5
1

6m0
B2~1240m0vB2!5

1

3
r2

16

3
vB4. ~17!

Note that the weak energy condition (r.0) is obeyed for

B,
1

2A2m0v
, ~18!

whereas the pressure will reach negative values only if

B.
1

2A10m0v
. ~19!

On the other hand, there is a widespread belief that
early Universe evolved through some phase transitio
thereby yielding a vacuum energy density which at presen
at least 118 orders of magnitude smaller than in the Pla
time @21#. Such a discrepancy between theoretical expe
tion ~from the modern microscopic theory of particles a
gravity! and empirical observations constitutes a fundam
tal problem in the interface uniting astrophysics, parti
physics, and cosmology, which is often called ‘‘the cosm
logical constant problem’’@21,22#. This ‘‘puzzle’’ together
with the observations of type-Ia supernovae@23# suggesting
that the cosmic bulk of energy is repulsive and appears lik
dark energy~probably of primordial origin! stimulated the
recent interest for more general models containing an e
component and accounting for the present accelerated s
of the Universe@24#. A possible class of such cosmologies
provided by phenomenological models driven by a cons
or a time-dependentL(t) term ~see, for instance, Refs.@14–
16,24–30# and references therein!. The effective time-
dependent cosmological term may be regarded as a se
fluid component with energy density,rL(t)5L(t)c4/8pG,
which transfers energy continuously to the material mediu
The conditions under which this kind of cosmology can
described by a scalar field coupled to a perfect fluid has
been discussed in the literature@24–30#. For the sake of
generality, we focus our attention to a decayingL model, but
now in the presence of the primeval magnetic field. In
background defined by Eq.~6!, the EFE read

ȧ2

a2
5

8pG

3c2
r1

L~ t !c2

3
, ~20!

ä

a
5

L~ t !c2

3
2

4pG

3c2
~r13p!, ~21!

while the energy conservation law can be written as

ṙ13
ȧ

a
~r1p!52

L̇c4

8pG
, ~22!
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where an overdot means derivative with respect to the c
mic time t. As we shall see, for a constant magnetic field it
not necessary to assume a phenomenological expressio
L(t) as usually done since it can be uniquely fixed from t
above set of equations.

Replacing Eqs.~16! and ~17! in the Einstein equations
~20!–~22! we get

ȧ2

a2
5

4pG

3c2

B2

m0
~128m0vB2!1

Lc2

3
, ~23!

ä

a
5

Lc2

3
2

4pG

3c2

B2

m0
~1224m0vB2!, ~24!

B

m0
~1216m0vB2!S Ḃ12

ȧ

a
BD 52

L̇c4

8pG
. ~25!

Inserting Eqs.~16! and ~20! into Eq. ~21! we find

aä1ȧ22
2

3
Lc2a22S 64pGv

3c2 D B4a250. ~26!

The term proportional toB4 comes from the nonlinear cor
rection in the Lagrangian. Note also that if the coupling co
stantv is zero, the standard FRW differential equation for
radiation filled universe plus a cosmologicalL term is recov-
ered. By solving any two of the above equations one m
discuss if the nonlinear terms added to the Maxwell Lagra
ian may alter the primeval singular state. In order to comp
with some previous results presented in the literature,
start our analysis by considering some interesting partic
cases.

III. NONSINGULAR MODELS WITH LÄ0

This is the case studied by De Lorenciet al. @8# where a
particular nonsingular solution was found. In what follow
the corresponding general solution is given and we also s
how to recover the quoted result. First of all, we remark t
if B is a time-dependent quantity andL remains constant
Eq. ~25! can be easily integrated to give

B~ t !5B0S a0

a D 2

, ~27!

whereB0 is a constant of integration. In this paper, the su
script 0 doesnot mean the present day value of a quantity.
only indicates its value at an arbitrary timet0 which appears
in the general solution ofa(t) as a second integration con
stant. This constantt0 was arbitrarily chosen in Ref.@8#.
Thus B05B(t0) if a05a(t0) ~in the quoted papera0 was
also normalized to unit!. We stress that the scaling solutio
~27! holds even for a nonvanishing constantL. Inserting
B(a) into Eq. ~26! one finds
4-3
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aä1ȧ22S 64pGvB0
4a0

8

3c2 D a2650. ~28!

As one may check, the general solution of the above eq
tion is

a~ t !5a0@4a0
2~ t2t0!214a0b0~ t2t0!11#1/4, ~29!

where we have defined

a0[A 4pG

3m0c2
B0 , ~30!

b0[6A128m0vB0
2. ~31!

In order to compare with the results of Ref.@8# we recast
Eq. ~29! in the form

a~ t !5a0~4a0
2t214a0g0t1d0!1/4, ~32!

with

g0[b022a0t0 , ~33!

d0[4a0t0~a0t02b0!11. ~34!

The linear term int inside the parentheses of Eq.~32! does
not appear in the solution given by the authors of Ref.@8#.
This happens because the arbitrary integration constant0
was chosen to be

t05
b0

2a0

5
1

2B0

A3m0c2~128m0vB0
2!

4pG
. ~35!

The time behavior of the magnetic field is readily obtain
from Eqs.~27! and ~32!. One finds

B~ t !5
B0

~4a0
2t214a0g0t1d0!1/2

, ~36!

with the energy density and pressure defined by Eqs.~16!
and ~17!, respectively. Note also that the Hubble parame
can be written as

H5
ȧ

a
5

a0@2a0~ t2t0!1b0#

@4a0
2~ t2t0!214a0b0~ t2t0!11#

, ~37!

which becomes fort5t0

H0[H~ t0!5a0b05B0A4pG~128m0vB0
2!

3m0c2
. ~38!

~In Ref. @8#, the notationH is used to represent the magne
field.! From Eq.~32! we see that, for larget, we recover the
classical solution for radiation dominated universes,a(t)
12350
a-

r

}t1/2. Alternatively, we observe from the relation~16! that
this solution is recovered for values oft where the magnetic
field obeys the condition

8m0vB2!1. ~39!

The most interesting feature of Eq.~32! is that the quadratic
function inside the parentheses does not have real roov
.0, being positive for anyt. Therefore the model is nonsin
gular with a(t) reaching the minimum valueamin

5a0(8m0vB0
2)1/4 at a timetmin52g0/2a05t02b0/2a0 . It

thus follows that the universe is a bouncing one: it beg
arbitrarily large att!tmin , decreases until its minimal valu
at tmin , and then begins to expand. The values of the m
netic field and energy density attmin are

B~ tmin!5
1

2A2m0v
, ~40!

r~ tmin!50. ~41!

Before we proceed further, it is worth notice that if E
~32! correctly describes the evolution of the Universe in t
distant past, it implies the existence of an inflationary e
(ä.0) on the interval

tmin2t I,t,tmin1t I , ~42!

where

t I5A3m0
2vc2

pG
. ~43!

Figure 1 shows the scale factor, the magnetic field,
energy density, and the pressure as a function of time fo
definite value ofB0 . From relations~36! and ~39! we stress
that the classical solution is recovered for times much lar
thantmin with the Universe entering in the standard radiati
phase. As shown in Fig. 1, the nonlinear corrections are
evant only for 8m0vB2*1/10 or t&tmin

13A8m0vB0
2/2a0 .

IV. NONSINGULAR MODELS FOR LÅ0

For constantL, it is easy to see that Eq.~26! becomes

aä1ȧ22
2

3
Lc2a22S 64pGvB0

4a0
8

3c2 D a2650. ~44!

Let us now search for an exact description in the prese
of a cosmological constant. By combining Eqs.~23! and~27!
for a constantL we find

Ż2516@lZ21a0
2~Z28m0vB0

2!#, ~45!

where the auxiliary scale factorZ andl term are defined by
4-4



are

s

the
for

nly

NONSINGULAR FRW COSMOLOGY AND NONLINEAR . . . PHYSICAL REVIEW D 69, 123504 ~2004!
Z[S a

a0
D 4

, ~46!

l[
Lc2

3
. ~47!

Equation~45! can be easily integrated to give

a~ t !5a0S 1

4l
D 1/4FC0e4Al(t2t0)1

D0

C0

e24Al(t2t0)22a0
2G1/4

,

~48!

where

C0[a0
212l12Al~l1a0

228a0
2m0vB0

2!, ~49!

D0[a0
2~a0

2132lm0vB0
2!. ~50!

The magnetic field is

B~ t !52B0AlFC0e4Al(t2t0)1
D0

C0

e24Al(t2t0)22a0
2G21/2

.

~51!

FIG. 1. The upper panel shows the scale factor~solid line!, the
magnetic field~dashed line!, and the classical solution~dotted line!
for (v50). The lower panel shows the energy density~solid line!
and the pressure~dashed line! for the model with L50 and

2B0A2vm050.2.
12350
It is straightforward to see that the term inside the squ
brackets of Eq.~48! is positive for all t and that the scale
factor reaches its minimum value

amin5a0F a0

2l
~Aa0

2132lm0vB0
22a0!G1/4

~52!

at

tmin5t01
1

8Al
lnS D0

C0
2D . ~53!

As in the previous case, the universe bounces attmin and, if
the solution would effectively hold neartmin , an inflationary
phase would take place for all values oft such that

C0
2x428a0

2C0x3114D0x228a0
2

D0

C0

x1
D0

2

C0
2
.0, ~54!

where

x[e4Al(t2t0). ~55!

The magnetic field attmin is

B~ tmin!5F Lm0c4

2pGSA11
8Lm0

2vc4

pG
21D G

1/2

. ~56!

From relations~39! and~51! the de Sitter classical solution i
recovered for

t!t01
1

8Al
lnS a0

4

C0
2D ~57!

and

t@t01
1

8Al
lnF ~a0

2132m0vB0
2l!2

C0
2 G . ~58!

Similarly to what happens with solution~29!, the classical
solution is recovered for times much larger thantmin . In
Figs. 2 and 3 we show the scale factor, the magnetic field,
energy density, and the pressure as a function of time,
some values ofv, L, andB0 . In analogy with the solution
~32!, we have that the nonlinear corrections are relevant o
for

8m0vB2*1/10

or

t&t01
1

8Al
lnF ~a0

21160m0vB0
2l!2

C0
2 G

1
1

8Al
lnF S 11A12

a0
2

a0
21160m0vB0

2l
D 2G .
4-5
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V. NONSINGULAR MODELS FOR A TIME-DEPENDENT L

The possible cosmological consequences of a deca
vacuum energy density orL(t) cosmologies are still unde
debate in the recent literature@14–30#. Such models may
also be described in terms of a scalar field coupled to a fl
component. Another important motivation is its connecti
with the cosmological constant problem. On gene
grounds, one may expect that a decaying vacuum en
must play an important role in the Universe evoluti
~mainly in the very early Universe! and, probably, more in-
teresting, it may indicate suggestive ways to solve theL
problem, as for instance, by describing the effective regim
that should be provided by fundamental physics. In the m
jority of the papers dealing with a time-varyingL, the de-
caying law is defineda priori, i.e., in a phenomenologica
way. The most commonly postulated decaying laws are th
in which L(t) decreases as some power either of the sc
factor a(t) or the Hubble parameterH ~see Ref.@17# for a
quick review!. Some authors have also considered sca
laws formed by a combination of both quantities@16#. As
remarked before, these proposals are in accordance bu
not explain the difference of more than 100 orders of m
nitude between the cosmological constant value at the be
ning of Universe~provided by particles physics! and its ac-
tual value estimated from cosmology. In general, the EF
imply that onceL(t) is given one may integrate them fo

FIG. 2. The upper panel shows the scale factor~solid line! and
the magnetic field~dashed line!. The lower panel shows the energ
density ~solid line! and the pressure~dashed line! for the model
with a constant nonvanishingL. The values forL andB0 are such

thatAl/a050.4 and 2B0A2vm050.2.
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obtainingB(t) anda(t). Conversely, for a given dependenc
of B(t), a unique time dependence forL(t) is readily fixed
by the field equations.

Let us first analyze phenomenological models with a c
mological term defined byL53bc22H2, whereb is a posi-
tive parameter smaller than unity@16,30#. The differential
equation driving the scale factor is readily derived by co
bining relations~16!, ~17!, ~20!, and~21!. One finds

Ḣ14~12b!H22~12b!
a0

2

12b
*
2

3F 12A12
4~12b

*
2 !

a0
2

H2G50, ~59!

whereH5ȧ/a. The constanta0 is defined by relation~30!
whereasb* is given by

b* [6A128m0v~12b!B0
2. ~60!

Now, separating the variables in Eq.~59! one finds

E
H0

H H a0
2

12b
*
2 F 12A12

4~12b
*
2 !

a0
2

H2G24H2J 21

dH

5~12b!~ t2t0!. ~61!

FIG. 3. As in Fig. 2 but forAl/a050.01 and 2B0A2vm0

50.1.
4-6
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A simple integration results,

H5
ȧ

a
5

a0@2a0~12b!~ t2t0!1b* #

@4a0
2~12b!2~ t2t0!214a0b* ~12b!~ t2t0!11#

,

~62!

and integrating again, we obtain for the scale factor

a~ t !5a0@4a0
2~12b!2~ t2t0!2

14a0~12b!b* ~ t2t0!11# [1/4(12b)] . ~63!

This solution is nonsingular forv.0, with a(t) reaching its
minimal value,amin5a0@8m0v(12b)B0

2#1/4(12b), at a time
tmin5t02b* /2a0(12b). It thus follows that the universe i
a bouncing one. It begins arbitrarily large att!tmin , de-
creases until its minimal value attmin , and then begins the
expansion phase. For completeness, the expression fo
magnetic field is

B~ t !

5
B0~12b!1/2

@4a0
2~12b!2~ t2t0!214a0~12b!b* ~ t2t0!11#1/2

,

~64!

and attmin , it is readily checked thatB(tmin)51/2A2m0v
andr(tmin)50. As one should expect, in the limitb50, all
the results above for a time-dependentL term reduce those
of L50 @see Eqs.~27!–~34!#. Before we proceed further, i
is worthwhile to notice the existence of an inflationary e
(ä.0) which depends on the value of theb parameter. For
1/2,b<1 the universe always evolves through an acce
ated expansion state. However, if 0,b,1/2, it inflates on
the intervaltmin2t I,t,tmin1t I , where

t I5A3m0
2v~12b!2c2

pG~122b!
. ~65!

In Figs. 4 and 5 we show the time dependence of the s
factor,L term, magnetic field, energy densities, and press
for some selected values ofB0 andb. The main conclusion
is that the singularity must be avoided for a generic tim
dependentL. As shown in Figs. 4 and 5, the nonlinear co
rections are relevant only for 8m0vB2*1/10 or t&tmin

13A8m0v(12b)B0
2/2a0(12b).

At this point one may ask by the inverse treatment, i.e
the singularity is avoided for a givenB(t). Such a question
is immediately answered by examining the simplest ca
namely, the one for which the magnetic field remains c
stant in the course of the evolution. This possibility is clea
allowed by the generalized energy conservation law@see Eq.
~25!#. The energy density of the magnetic field is kept co
stant because energy is continuously drained from the de
ing vacuum component to the magnetic field. Actually, if t
12350
the

r-

le
re

-

if

e,
-

-
y-

L term is maintained constant the unique solution with
constant magnetic field is the trivial one (B50). Unlike the
previous solutions, we note that there is no an analog
classical solution for constant magnetic field. Therefore
will analyze such a possibility regardless of any constraint
its domain of validity.

If B(t)5B05const, the energy conservation law yields

L~ t !5L013K0lnS a

a0
D , ~66!

whereL0[L(t0) and

K0[2
16pG

3c4

B0
2

m0
~1216m0vB0

2!. ~67!

Substituting Eq.~66! into Eq. ~23!, we get for the scale
factor

FIG. 4. The upper panel shows the scale factor~solid line!, the
magnetic field~dashed line!, and the classical solution~dotted line!
for (v50). The lower panel shows the energy density of magne
field ~solid line!, the energy density of theL term~dashed line!, and
the pressure~dotted line! for the model withL5(3b/c2)H2, b

50.4, and 2B0A2vm050.2.
4-7
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a~ t !5a0 expFK0c2

4
~ t2t0!21H0~ t2t0!G

5a0 expS K0c2

4
t21b1t1b0D , ~68!

where

H0[6AL0c2

3
1

4pG

3c2

B0
2

m0
~128m0vB0

2!, ~69!

b1[2S K0c2

2
t02H0D , and b0[t0S K0c2

4
t02H0D .

~70!

The Hubble parameter is

H~ t !5
K0c2

2
~ t2t0!1H05

K0c2

2
t1b1 , ~71!

and we haveH50 for

FIG. 5. The upper panel shows the scale factor~solid line!, the
magnetic field~dashed line!, and the classical solution~dotted line!
for (v50). The lower panel shows the energy density of magn
field ~solid line!, the energy density of theL term~dashed line!, and
the pressure~dotted line! for the model withL5(3b/c2)H2, b

50.6, and 2B0A2vm050.2.
12350
tc52
2b1

K0c2
5t02

2H0

K0c2
. ~72!

At this point, the scale factor reaches the value

a~ tc!5a0e2H0
2/K0c2

. ~73!

The behavior of the solution will depend on the sign
the constantK0 ~for K050 we get the de Sitter solution!. For

K0.0, that is, forB0.1/(4Am0v), the universe is always
accelerated (ä.0) e has a minimum size attc .

A much more interesting solution is the one correspo

ing to K0,0 @B0,1/(4Am0v)#. For this range ofB0 , a(t),

ä.0 for t,tc2A22/K0c2 and t.tc1A22/K0c2 anda(t)
has a maximum attc . It is worth notice that the time interva
Dt (NI) , prior to tc , for which the solution isnot inflationary
depends on the value ofB0 as

Dt (NI)52A2
2

K0c2
5

2

B0
A 3m0c2

8pG~1216m0vB0
2!

.

~74!

The cosmological termL dominates the dynamics of th
universe for values oft where

Lc4.8pGr. ~75!

For both models (K0.0 andK0,0), the condition~75!
is satisfied byt,t3 and t.t4 where

t35

22H0c22A16pGr

3

K0c3
~76!

and

t45

22H0c12A16pGr

3

K0c3
. ~77!

In Fig. 6, we show the scale factor and the cosmologi
term as a function of time forK0.0 and some values ofB0
andl05L0c2/3. The same quantities have also been plot
for K0,0 in Fig. 7.

Naturally, if one expects any such model to properly d
scribe the evolution of the real universe, it would be adv
able to take into account other matter fields, such as
trarelativistic matter, scalar fields, or dust. In Ref.@8#, it was
demonstrated, for the caseL50, B5B(t), that the presence
of ultrarelativistic matter with an equation of statep(ur)
5r (ur)/3 would just amount for a reparametrization of th
constantsB0 andv.

c

4-8
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At this point, we would like to stress the mathematic
consistence of the whole set of solutions derived
the present work. In general, there are three unknown fu
tions: the scale factora, the magnetic fieldB, and the
cosmological termL ~constant or time dependent!. As one
may check for each case, the number of unknown functi
and equations coincide, the unique exception is related
models containing a variableL(t) term for which the phe-
nomenological law L53bc22H2, has been considere
~see Refs.@16,18#!.

VI. CONCLUSION

We have examined whether nonlinear corrections to
Maxwell electrodynamics may avoid the cosmic singular
occurring in flat FRW universes. In brief, the answer is po
tive. We show that by discussing a large class of analyt
cosmological models under three different assumptions
the first case, the cosmologicalL term is identically zero and
the dynamics is driven by a time-dependent magnetic fi
This class generalizes the particular solution previou
found by De Lorenciet al. @8#, and confirms their statemen
concerning the avoidance of the initial singularity. In pri
ciple, since the solutions are nonsingular, they potenti
solve the horizon problem. We have also examined if
basic features of such models remain true if new ingredie

FIG. 6. The scale factor~solid line! and the cosmological term
~dashed line! for the model with constant magnetic field, time

dependent L, K0.0 (2B0A2vm051). In the upper pane
Al0/a051 and the lower panel is forAl0/a050.5.
12350
l
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are introduced in the matter content. In this concern, mod
with a constant and time-dependentL term were studied
with some detail. Again, for both cases, the universe is a
nonsingular, bouncing at a critical time when the scale fac
reaches its minimum value.

For a decaying vacuum energy density we discuss
different scenarios. In the first one, it was phenomenolo
cally described byL(t);H2 as assumed by several autho
@16,17#. These models are nonsingular and resemble the
lutions with noL. The second scenario is a rather curio
solution which describes a universe driven by a const
magnetic field. The time behavior of the cosmological te
is now uniquely determined by the EFE’s as a logarithm
the scale factor. It should be interesting to examine if su
results are maintained in the presence of other matter fie
as well as for universes with nonzero curvature.

Finally, in analogy with the cosmological case, one m
ask if nonlinear terms in the Maxwell Lagrangian may r
move the physical singularity present in a charged black h
~Reissner-Nordstrom solution!. This problem will be dis-
cussed in a forthcoming communication.
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FIG. 7. As in Fig. 4 but forK0,0 (2B0A2vm050.1). In the

upper panelAl0/a051 and the lower panel is forAl0/a050.5.
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