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Tracking solutions in tachyon cosmology
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We perform a thorough phase-plane analysis of the flow defined by the equations of motion of a FRW
Universe filled with a tachyonic fluid plus a barotropic one. The tachyon potential is assumed to be of inverse
square form, thus allowing for a two-dimensional autonomous system of equations. The Friedmann constraint,
combined with a convenient choice of coordinates, renders the physical state compact. We find the fixed-point
solutions, and discuss whether or not they represent attractors. The way the two fluids contribute at late times
to the fractional energy density depends on how fast the barotropic fluid redshifts. If it does it fast enough, the
tachyonic fluid takes over at late times, but if the opposite happens, the situation will not be completely
dominated by the barotropic fluid; instead there will be a residual non-negligible contribution from the tachyon
subject to restrictions coming from nucleosynthesis.
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[. INTRODUCTION the system is to remain autonomous.
Earlier results concerning the combination of a self-

A phase of accelerated inflation in the early stages of oumnteracting tachyor and a barotropic fluid were obtained in
Universe is favored by first-year Wilkinson Microwave An- Ref. [6], where potentials of the foriveT™ with 0<«
isotropy Probg WMAP) data[1]. Thus, it seems inflation is <2 were studied. On the contrary, here we precisely address
here to stay as the dominant paradigm for structure formatheVeT ™2 case(see also Ref.13] for tachyonic fluids com-
tion. The quest for a string theory motivated explanation ofbined with quantum mattgrThe presence of the fluid brings
cosmological inflation has resulted in the emergence of thé the crucial consequence of the appearance of fixed-point
proposal of inflation driven by a tachyon field. The ideasolutions in which the two fluids redshift at the same rate
strongly relies on the possibility of describing tachyon con-(tracking behaviof9]), so that there is some sort of equilib-
densates in terms of perfect fluids within string theof@s  rium. Tracking solutions are particularly interesting because
A plethora of papers studying cosmological consequences d¢heir dynamical effects mimic a decaying cosmological con-
such fluids have appeared since, some in the framework ¢ftant(see Refs[10,11,14 for seminal referencesNow, the
general relativity3—6], some others in the brane-world sce- fine-tuning problems posed by a cosmological constant
nario[7,8]. would be waived precisely because of the independence on

As happens with standard scalar fields, one’s favorite inthe initial conditions. Nevertheless, the contribution of such
flationary behavior is tailored bgd hocchoices of the initial ~ relics to the fractional energy density are bounded by nucleo-
conditions and the shape of the potential, but it is importansynthesis.
to investigate up to what extent the features of the model On top of those interesting features, tracking solutions act
depend on those choices. One way to address that problema$ attractors at large, which means that the system does not
to consider tachyon field dynamics, because for a given pocare which the initial conditions are.
tential such an analysis will provide us with constraints on In Sec. Il we study the phase plane, find its fixed points
the initial conditions. and characterize them. In Sec. Il we discuss the cosmologi-

The stability of tachyonic inflation against changes in ini- cal consequences of the attractor solutions: in Sec. Il A we
tial conditions has been studied for an exponential potentiatonsider tachyon dominated solutions, whereas in Sec. 11l B
[5] and for the inverse power-law potent{d]. Exact solu- We discuss the tracking ones. Finally, in Sec. IV we outline
tions for a purely tachyonic matter content with an inverseour main conclusions and future prospects.
square potential are know8], but no solutions exist for
cases which combine tachyonic and barotropic fluids, so a Il. PHASE PLANE
dynamical systems approach may be relevant. Interestingly,

the inverse square potential plays the same role for tachyon 1€ evolution equations for a flakk¢0) Friedmann-
fields as the exponential potentf2ll] does for standard sca- Robertson-WalketFRW) cosmological model filled with a

lar fields[9—12). On the one hand, those are the potentiald@chyon fieldT evolving in a potentiaV/(T) and a barotropic

that give power-law solutions. On the other hand, only thosd@€rfect fluid with equation of state,=(y—1)p, are
potentials allow constructing a two-dimensional autonomous

2
system[10] using the evolution equations, whereas for any ol = VT n 1)
other potential the number of dimensions will be higher if [1—T2 YPy:
* H . H - V!T
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pyt+3yHp,=0, (3)

which are, in turn, subject to the Friedmann constraint

3H?= +p,. (4

V1-T2

Here and throughout overdots denote differentiation with re- C_
spect to cosmic timg H=a/a is the Hubble parameter, and

a is the synchronous scale factor.

One can also define an energy dengityand a pressure
pt for the tachyon, so that it can be thought of as a perfect

fluid. We have then

v
1-T2

pT= 5)

pr=—VV1-T2 (6)

If we use loga® as independent variable instead of the
cosmological time, for any time dependent functfone get

f

As usual, we also introduce convenient variables:

x=T, (8)
v

y= EYER 9

= %. (10)
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FIG. 1. Phase space and fixed points.

The physical constraint¥>0 andp,>0 set limits on the
dependent variables: 1<x<1, y>0 and x?>+y?<1. In
consequence, the phase plane is restricted to the upper half of
the unit disk centered at the origin, as depicted in Fig. 1. For
convenience we will also include the whole segmerit
<x=1, y=0 in our phase plane.

In addition, one can define a barotropic index for the
tachyon fluid:

pTtp
Y=o, (16)
pT

and, providedV#0, one getsy;=T>2.
The fixed points X*,y*) are given by the conditions

x'(x*,y*)=0, (17)
y'(x*,y*)=0. (18)

Depending on the values of and 8 there may be up to five
fixed points O, A+, P, andQ) and up to six heteroclinic
orbits that connect pairs of fixed points{, C., M.).

In order to analyze the stability of fixed pointg*(y™)
one studies the linearized dynamical system obtained by ex-

Let us concentrate now on the inverse square potentiglanding Eqs(11)—(12) about the fixed pointésee, e.g., Ref.
V=BT <. The evolution of the model is described by the[16]). Then one tries solutions in the formx,§)=(b,c)eM

dynamical system
X' =(x2=1)(x—ay), (12)
y' =y[x(x—ay) +z(y=x)],

(12

z'=2(z-1)(y—x?), (13
along with the constraint
y

+z=1, 14

e (14

in the linear approximation, and finds that the characteristic
exponent\ and the constant vectob(c) must be respec-
tively an eigenvalue and an eigenvector of the matrix

ox" ox’
ax ay
1
[?yl ay/ ( 9)
X ay

(xy)=(x*.y*)

Clearly if both characteristic exponents have negafpasi-
tive) real parts, solutions near the fixed point will converge
towards(move away fromit: the fixed point is asymptoti-
cally stable(unstable. In both cases, if the characteristic

which renders the phase space two dimensional so that wexponents are real, nearby solutions enter or exit the fixed
may speak of phase plane. For the sake of simplicity, we arpoint in the direction of the eigenvector with the eigenvalue

using the following definition:

4
=35>0 (15)

of maximum real part: the fixed point is a node. If the char-
acteristic exponents are complex conjugates the solutions
near the fixed point move along spirals: the fixed point is a
spiral point. If the signs of the two characteristic exponents
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FIG. 2. Phase space far=1.5 andy=1.2. FIG. 3. Phase space far=1.5 andy=0.3.

are different, the fixed point is an unstable saddle: most sgnanifold correspond to the characteristic exponkept2
lutions will move away from it, but, apart from the fixed and orbitsC. to \,=y/2. The fixed pointP at (x,y)
point itself, there is a set of initial conditions which lead to = (Vays,y;), with

solutions converging towards the fixed point: the stable

manifold, which is tangent at the fixed point to the stable B Vol +4—a
space of eigenvectors corresponding to the negative charac- Y1= 2 ' (22)

teristic exponents. There is also a set of points in the solu-

tions that exit from the fixed point: the unstable manifold, always admits the ard3.. as the orbits in its stable manifold
which is tangent at the fixed point to the unstable space oforresponding to the characteristic exponenf=—1
eigenvectors corresponding to the positive characteristic ex+ yy,/2<0, while the second exponentis=ay;—v. In
ponent. consequenceR is an asymptotically stable node fer> vy,

The fixed pointO located at the originX,y) =(0,0) cor- =4y, in which case the phase space looks as depicted in
responds taz=1 and is an unstable saddlexcept in the Fig. 2: P is a global attractor, nearly all solutions end there.
very particular case in whicly=0, which will be discussed  \Wheny= v, a bifurcation arises® turns into an unstable
below). The orbitsL .. in the stable manifold correspond to saddle and at the same time there appears a new attegctor
the characteristic exponeit=—1 while the exponent for which moves fromP to O along an arc of the parabola

the unstable space ls,= y/2. . ~ (x,y)=(/7.vla) asy decreases frony, to 0 (see Fig. 1
The fractional densities of the two fluids are respectivelyThe characteristic exponents are

defined as

a(y—2)+ V16ay2\1— y+ a?(4— 20y+17y?)
A:

_ Py _ 4a ’
Q,= 3 Z, (20 (23
so thatRa<0 for all 0< y<y,, Q is always asymptotically
PT y stable and is a nodgspiral poin} when the argument of the
= F: T2 (21) square root is positivénegative (see Table )L A particular

case is shown in Fig. 3.

In the limit case in whichy=0, fixed pointsQ and O
The fixed pointsA . located at k,y)=(=*=1,0) correspond to coincide and are the attractor in the system, as depicted in
z=0, and are unstable nodes. The orhits in the unstable Fig. 4.

TABLE |. The properties of the critical points.

Name X y Existence Stability Ot b2
(0] 0 0 All y andB Unstable saddle foy+0 0 Undefined
Stable node fory=0

Al 1 0 All y andB Unstable node 1 1
A_ -1 0 All y andB Unstable node 1 1

P Jay, 2 All yandpg Stable node foy <<y, 1 ayq

Unstable saddle foy= vy,
Q Jy Y y<v1 Stable node Y ¥
« ayl—vy
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"}/:O 1 Y a=1.5 Y

axll—y'

Qr=1-0,= (28)

P so that the energy density of the tachyon and of the fluid
scale exactly as the same power of the scale factor, namely
p,xpreca” 23, For that reason, according to the definition
by Liddle and Scherrdi9], these solutions display a tracking
-1 1 behavior. Now, as in the case of the tachyon dominated so-
A I_ 0=9 Ly A lutions the expansion factor obeys a power lawt?®, and
inflation will proceed if y<min{2/3,ay4}.

FIG. 4. Phase space for=1.5 andy=0. Nevertheless, apart from the considerations above, there
exist restrictions on the values af (or 8) that come from
observations. Using standard nucleosynthesis and the ob-
served abundances of primordial nuclides, the strong con-

Now we turn our attention to the effective equation for thestraint that the fractional energy density of scalar matter can-
tachyon fluid in the attractor solutions, so that we can discusgot exceed 0.05 at temperatures near 1 MeV waglsgt If

C_ Cy

IIl. COSMOLOGICAL FEATURES OF THE ATTRACTOR
SOLUTIONS

in broad terms what sort of evolution they give rise to. we restrict the discussion to tracking inflationary solutions
(y<2/3), and set thaf)+<<0.05, we see thatr>23.09 is
A. Tachyon dominated solutions required. Such a bound, though, can be evaded if the solution

begins its history away from the tracking solution and in a
region where)+<<1 (close toO), and only reache® in the
course of the evolution. In addition, one must take into ac-
count that our tracking solution requires<1, which is a
condition known to be noncompatible with the equation of
state of the Universe at epochs from redshifts of order ten
yr=ay: (24 billion to nearly the preserjtL8].

The attractor solutionsx(y) = (\/ay;,y;) depict a situa-
tion in which the energy density of the fluid vanishes, so it
will be referred to as the tachyon dominated solution. It is
straightforward to see that it corresponds to

and
IV. CONCLUSIONS
T: \ ay1t+T0, (25)

The evolution equations of a spatially flat FRW Universe
with T, an arbitrary integration constant. For the scale factofcontaining a barotropic fluid plus a tachydh with an
a we can set inverse-square potentialV(T)=8T"2 define a two-
dimensional flow. The evolution of such models has been
acct?drT, (26) investigated by studying the orbits of that flow in the physi-
cal state, which is in this case a subset of the Euclidean
where the value of an integration constant has been fixed gjfane. The Friedmann constraint, combined with a careful
that lim_,a=0. choice of coordinates, renders this subset compact.
The solution will be inflationary ifpr+3pr<0, and in We have shown that the energy density of the tachyon
terms of the tachyon field such condition is equivalent to dominates at late times for>a(\a?+4— a)/2, wherey is
the barotropic index of the fluid and=4/38. In contrast,

L, 2 for y<a(yJa?+4—a)/2, the barotropic fluid does not
T <§’ (27) dominate completely and the contribution of tachyonic en-

ergy density to the total one is not negligible. Nucleosynthe-
which holds provided3=>2/1/3. sis imposes, then, tight bounds on the admissible values of

Recently, tachyonic inflation has been cast in dqui5{ @, but such restrictions can be relaxed if the locus of the

potentials have been found which seem to circumvent théegion wherel;<1 (close toO), and only reache in the -
problem[7]. course of the evolution. Note also that our tracking solution

will only exist if y<<1, but the barotropic index of the Uni-
verse does not satisfy that constraint betweerl0'° and z
~1[18].

We move on now to the most interesting case, which is Finally, a possible generalization of this work would be
represented by the attractor solutions withx,\) considering generalized tachyon cosmologies like those pre-
=(\y,7/a). They satisfy sented in Ref[19].

B. Tracking solutions
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