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Tracking solutions in tachyon cosmology
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We perform a thorough phase-plane analysis of the flow defined by the equations of motion of a FRW
Universe filled with a tachyonic fluid plus a barotropic one. The tachyon potential is assumed to be of inverse
square form, thus allowing for a two-dimensional autonomous system of equations. The Friedmann constraint,
combined with a convenient choice of coordinates, renders the physical state compact. We find the fixed-point
solutions, and discuss whether or not they represent attractors. The way the two fluids contribute at late times
to the fractional energy density depends on how fast the barotropic fluid redshifts. If it does it fast enough, the
tachyonic fluid takes over at late times, but if the opposite happens, the situation will not be completely
dominated by the barotropic fluid; instead there will be a residual non-negligible contribution from the tachyon
subject to restrictions coming from nucleosynthesis.
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I. INTRODUCTION

A phase of accelerated inflation in the early stages of
Universe is favored by first-year Wilkinson Microwave An
isotropy Probe~WMAP! data@1#. Thus, it seems inflation is
here to stay as the dominant paradigm for structure for
tion. The quest for a string theory motivated explanation
cosmological inflation has resulted in the emergence of
proposal of inflation driven by a tachyon field. The id
strongly relies on the possibility of describing tachyon co
densates in terms of perfect fluids within string theories@2#.
A plethora of papers studying cosmological consequence
such fluids have appeared since, some in the framewor
general relativity@3–6#, some others in the brane-world sc
nario @7,8#.

As happens with standard scalar fields, one’s favorite
flationary behavior is tailored byad hocchoices of the initial
conditions and the shape of the potential, but it is import
to investigate up to what extent the features of the mo
depend on those choices. One way to address that proble
to consider tachyon field dynamics, because for a given
tential such an analysis will provide us with constraints
the initial conditions.

The stability of tachyonic inflation against changes in i
tial conditions has been studied for an exponential poten
@5# and for the inverse power-law potential@6#. Exact solu-
tions for a purely tachyonic matter content with an inve
square potential are known@3#, but no solutions exist for
cases which combine tachyonic and barotropic fluids, s
dynamical systems approach may be relevant. Interestin
the inverse square potential plays the same role for tach
fields as the exponential potential@21# does for standard sca
lar fields @9–12#. On the one hand, those are the potenti
that give power-law solutions. On the other hand, only th
potentials allow constructing a two-dimensional autonom
system@10# using the evolution equations, whereas for a
other potential the number of dimensions will be higher

*Electronic address: wtpagagj@lg.ehu.es
†Electronic address: wtplasar@lg.ehu.es
0556-2821/2004/69~12!/123502~5!/$22.50 69 1235
r

a-
f
e

-

of
of

-

t
el

is
o-

al

e

a
ly,
on

s
e
s

y
f

the system is to remain autonomous.
Earlier results concerning the combination of a se

interacting tachyonT and a barotropic fluid were obtained i
Ref. @6#, where potentials of the formV}T2a with 0,a
,2 were studied. On the contrary, here we precisely add
theV}T22 case~see also Ref.@13# for tachyonic fluids com-
bined with quantum matter!. The presence of the fluid bring
in the crucial consequence of the appearance of fixed-p
solutions in which the two fluids redshift at the same ra
~tracking behavior@9#!, so that there is some sort of equilib
rium. Tracking solutions are particularly interesting becau
their dynamical effects mimic a decaying cosmological co
stant~see Refs.@10,11,14# for seminal references!. Now, the
fine-tuning problems posed by a cosmological const
would be waived precisely because of the independence
the initial conditions. Nevertheless, the contribution of su
relics to the fractional energy density are bounded by nuc
synthesis.

On top of those interesting features, tracking solutions
as attractors at large, which means that the system does
care which the initial conditions are.

In Sec. II we study the phase plane, find its fixed poi
and characterize them. In Sec. III we discuss the cosmol
cal consequences of the attractor solutions: in Sec. III A
consider tachyon dominated solutions, whereas in Sec. I
we discuss the tracking ones. Finally, in Sec. IV we outli
our main conclusions and future prospects.

II. PHASE PLANE

The evolution equations for a flat (k50) Friedmann-
Robertson-Walker~FRW! cosmological model filled with a
tachyon fieldT evolving in a potentialV(T) and a barotropic
perfect fluid with equation of statepg5(g21)rg are

22Ḣ5
VṪ2

A12Ṫ2
1grg , ~1!

T̈

12Ṫ2
13HṪ1

V,T

V
50, ~2!
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ṙg13gHrg50, ~3!

which are, in turn, subject to the Friedmann constraint

3H25
V

A12Ṫ2
1rg . ~4!

Here and throughout overdots denote differentiation with
spect to cosmic timet, H[ȧ/a is the Hubble parameter, an
a is the synchronous scale factor.

One can also define an energy densityrT and a pressure
pT for the tachyon, so that it can be thought of as a perf
fluid. We have then

rT5
V

A12Ṫ2
, ~5!

pT52VA12Ṫ2. ~6!

If we use loga3 as independent variable instead of t
cosmological time, for any time dependent functionf we get

f 85
ḟ

3H
. ~7!

As usual, we also introduce convenient variables:

x[Ṫ, ~8!

y[
V

3H2
, ~9!

z[
rg

3H2
. ~10!

Let us concentrate now on the inverse square poten
V5bT22. The evolution of the model is described by th
dynamical system

x85~x221!~x2Aay!, ~11!

y85y@x~x2Aay!1z~g2x2!#,
~12!

z85z~z21!~g2x2!, ~13!

along with the constraint

y

A12x2
1z51, ~14!

which renders the phase space two dimensional so tha
may speak of phase plane. For the sake of simplicity, we
using the following definition:

a[
4

3b
.0. ~15!
12350
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The physical constraintsV.0 andrg.0 set limits on the
dependent variables:21,x,1, y.0 and x21y2<1. In
consequence, the phase plane is restricted to the upper h
the unit disk centered at the origin, as depicted in Fig. 1.
convenience we will also include the whole segment21
<x<1, y50 in our phase plane.

In addition, one can define a barotropic index for t
tachyon fluid:

gT[
rT1pT

rT
, ~16!

and, providedVÞ0, one getsgT5Ṫ2.
The fixed points (x!,y!) are given by the conditions

x8~x* ,y* !50, ~17!

y8~x* ,y* !50. ~18!

Depending on the values ofg andb there may be up to five
fixed points (O, A6 , P, andQ) and up to six heteroclinic
orbits that connect pairs of fixed points (L6 , C6 , M 6).

In order to analyze the stability of fixed points (x!,y!)
one studies the linearized dynamical system obtained by
panding Eqs.~11!–~12! about the fixed points~see, e.g., Ref.
@16#!. Then one tries solutions in the form (x,y)5(b,c)elt

in the linear approximation, and finds that the characteri
exponentl and the constant vector (b,c) must be respec-
tively an eigenvalue and an eigenvector of the matrix

S ]x8

]x

]x8

]y

]y8

]x

]y8

]y

D
(x,y)5(x* ,y* )

. ~19!

Clearly if both characteristic exponents have negative~posi-
tive! real parts, solutions near the fixed point will conver
towards~move away from! it: the fixed point is asymptoti-
cally stable ~unstable!. In both cases, if the characterist
exponents are real, nearby solutions enter or exit the fi
point in the direction of the eigenvector with the eigenval
of maximum real part: the fixed point is a node. If the ch
acteristic exponents are complex conjugates the solut
near the fixed point move along spirals: the fixed point is
spiral point. If the signs of the two characteristic expone

FIG. 1. Phase space and fixed points.
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are different, the fixed point is an unstable saddle: most
lutions will move away from it, but, apart from the fixe
point itself, there is a set of initial conditions which lead
solutions converging towards the fixed point: the sta
manifold, which is tangent at the fixed point to the stab
space of eigenvectors corresponding to the negative cha
teristic exponents. There is also a set of points in the s
tions that exit from the fixed point: the unstable manifo
which is tangent at the fixed point to the unstable space
eigenvectors corresponding to the positive characteristic
ponent.

The fixed pointO located at the origin (x,y)5(0,0) cor-
responds toz51 and is an unstable saddle~except in the
very particular case in whichg50, which will be discussed
below!. The orbitsL6 in the stable manifold correspond t
the characteristic exponentl1521 while the exponent for
the unstable space isl25g/2.

The fractional densities of the two fluids are respectiv
defined as

Vg[
rg

3H2
5z, ~20!

VT[
rT

3H2
5

y

A12x2
. ~21!

The fixed pointsA6 located at (x,y)5(61,0) correspond to
z50, and are unstable nodes. The orbitsL6 in the unstable

FIG. 2. Phase space fora51.5 andg51.2.
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manifold correspond to the characteristic exponentl152
and orbits C6 to l25g/2. The fixed pointP at (x,y)
5(Aay1,y1), with

y1[
Aa2142a

2
, ~22!

always admits the arcsC6 as the orbits in its stable manifol
corresponding to the characteristic exponentl1521
1ay1/2,0, while the second exponent isl25ay12g. In
consequence,P is an asymptotically stable node forg.g1
[ay1, in which case the phase space looks as depicte
Fig. 2: P is a global attractor, nearly all solutions end the

Wheng5g1 a bifurcation arises:P turns into an unstable
saddle and at the same time there appears a new attractQ,
which moves fromP to O along an arc of the parabol
(x,y)5(Ag,g/a) asg decreases fromg1 to 0 ~see Fig. 1!.
The characteristic exponents are

l5
a~g22!6A16ag2A12g1a2~4220g117g2!

4a
,

~23!

so thatRa,0 for all 0<g,g1 , Q is always asymptotically
stable and is a node~spiral point! when the argument of the
square root is positive~negative! ~see Table I!. A particular
case is shown in Fig. 3.

In the limit case in whichg50, fixed pointsQ and O
coincide and are the attractor in the system, as depicte
Fig. 4.

FIG. 3. Phase space fora51.5 andg50.3.
TABLE I. The properties of the critical points.

Name x y Existence Stability VT gT

O 0 0 All g andb Unstable saddle forgÞ0 0 Undefined
Stable node forg50

A1 1 0 All g andb Unstable node 1 1
A2 21 0 All g andb Unstable node 1 1
P Aay1 y1 All g andb Stable node forg,g1 1 ay1

Unstable saddle forg>g1

Q Ag g

a
g,g1 Stable node g

aA12g
g
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III. COSMOLOGICAL FEATURES OF THE ATTRACTOR
SOLUTIONS

Now we turn our attention to the effective equation for t
tachyon fluid in the attractor solutions, so that we can disc
in broad terms what sort of evolution they give rise to.

A. Tachyon dominated solutions

The attractor solutions (x,y)5(Aay1,y1) depict a situa-
tion in which the energy density of the fluid vanishes, so
will be referred to as the tachyon dominated solution. It
straightforward to see that it corresponds to

gT5ay1 ~24!

and

T5Aay1t1T0 , ~25!

with T0 an arbitrary integration constant. For the scale fac
a we can set

a}t2/3gT, ~26!

where the value of an integration constant has been fixe
that limt→0a50.

The solution will be inflationary ifrT13pT,0, and in
terms of the tachyon field such condition is equivalent to

Ṫ2,
2

3
, ~27!

which holds providedb.2/A3.
Recently, tachyonic inflation has been cast in doubt@15#,

but it seems that the situation is not so clear cut beca
potentials have been found which seem to circumvent
problem@7#.

B. Tracking solutions

We move on now to the most interesting case, which
represented by the attractor solutions with (x,y)
5(Ag,g/a). They satisfy

FIG. 4. Phase space fora51.5 andg50.
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VT512Vg5
g

aA12g
, ~28!

so that the energy density of the tachyon and of the fl
scale exactly as the same power of the scale factor, nam
rg}rT}a22/3g. For that reason, according to the definitio
by Liddle and Scherrer@9#, these solutions display a trackin
behavior. Now, as in the case of the tachyon dominated
lutions the expansion factor obeys a power law,a}t2/3g, and
inflation will proceed ifg,min$2/3,ay1%.

Nevertheless, apart from the considerations above, th
exist restrictions on the values ofa ~or b) that come from
observations. Using standard nucleosynthesis and the
served abundances of primordial nuclides, the strong c
straint that the fractional energy density of scalar matter c
not exceed 0.05 at temperatures near 1 MeV was set@17#. If
we restrict the discussion to tracking inflationary solutio
(g,2/3), and set thatVT,0.05, we see thata.23.09 is
required. Such a bound, though, can be evaded if the solu
begins its history away from the tracking solution and in
region whereVT!1 ~close toO), and only reachesQ in the
course of the evolution. In addition, one must take into
count that our tracking solution requiresg,1, which is a
condition known to be noncompatible with the equation
state of the Universe at epochs from redshifts of order
billion to nearly the present@18#.

IV. CONCLUSIONS

The evolution equations of a spatially flat FRW Univer
containing a barotropic fluid plus a tachyonT with an
inverse-square potentialV(T)5bT22 define a two-
dimensional flow. The evolution of such models has be
investigated by studying the orbits of that flow in the phy
cal state, which is in this case a subset of the Euclid
plane. The Friedmann constraint, combined with a care
choice of coordinates, renders this subset compact.

We have shown that the energy density of the tachy
dominates at late times forg.a(Aa2142a)/2, whereg is
the barotropic index of the fluid anda54/3b. In contrast,
for g,a(Aa2142a)/2, the barotropic fluid does no
dominate completely and the contribution of tachyonic e
ergy density to the total one is not negligible. Nucleosynth
sis imposes, then, tight bounds on the admissible value
a, but such restrictions can be relaxed if the locus of
initial solution is far from that of the tracking one and in
region whereVT!1 ~close toO), and only reachesQ in the
course of the evolution. Note also that our tracking solut
will only exist if g,1, but the barotropic index of the Uni
verse does not satisfy that constraint betweenz;1010 andz
;1 @18#.

Finally, a possible generalization of this work would b
considering generalized tachyon cosmologies like those
sented in Ref.@19#.
2-4



.A
u
0
tr

ant
ov-
of

gh

TRACKING SOLUTIONS IN TACHYON COSMOLOGY PHYSICAL REVIEW D69, 123502 ~2004!
ACKNOWLEDGMENTS

We thank B. Bassett and G. Shiu for comments. J.M
and R.L. are supported by the University of the Basq
Country through research grant UPV00172.310-14456/20
J.M.A. also acknowledges support from the Spanish Minis
.

.

b-

ev

gn

12350
.
e
2.
y

of Science and Technology through research gr
BFM2000-0018. R.L. is also supported by the Basque G
ernment through grant BFI01.412, the Spanish Ministry
Science and Technology jointly with FEDER funds throu
research grant BFM2001-0988.
-
-

C.

W

@1# C.L. Bennettet al., Astrophys. J., Suppl. Ser.148, 1 ~2003!; E.
Komatsuet al., ibid. 148, 119 ~2003!; G. Hinshawet al., ibid.
148, 135 ~2003!; D.N. Spergelet al., ibid. 148, 175 ~2003!;
H.V. Peiriset al., ibid. 148, 213 ~2003!.

@2# A. Mazumdar, S. Panda, and A. Pe´rez-Lorenzana, Nucl. Phys
B614, 101 ~2001!; A. Sen, J. High Energy Phys.0204, 048
~2002!; 0207, 065 ~2002!.

@3# T. Padmanabhan, Phys. Rev. D66, 021301~2002!; A. Fein-
stein, ibid. 66, 063511~2002!.

@4# G.W. Gibbons, Phys. Lett. B537, 1 ~2002!; M. Fairbairn and
M.H.G. Tytgat,ibid. 546, 1 ~2002!; T. Padmanabhan and T.R
Choudhury, Phys. Rev. D66, 081301~R! ~2002!; M. Sami, P.
Chingangbam, and T. Qureshi,ibid. 66, 043530~2002!; J.C.
Hwang and H. Noh,ibid. 66, 084009~2002!; G. Shiu and I.
Wasserman, Phys. Lett. B541, 6 ~2002!; J.G. Hao and X.Z. Li,
Phys. Rev. D66, 087301~2002!; Y.-S. Piao, R.-G. Cai, X.
Zhang, and Y.-Z. Zhang,ibid. 66, 121301~2002!; B. Chen, M.
Li, and F.-L. Lin, J. High Energy Phys.0211, 050 ~2002!; J.S.
Bagla, H.K. Jassal, and T. Padmanabhan, Phys. Rev. D67,
063504 ~2003!; X.Z. Li and X.H. Zhai, ibid. 67, 067501
~2003!; D.A. Steer and F. Vernizzi, hep-th/0310139; G.W. Gi
bons, Class. Quantum Grav.20, S321~2003!; V. Gorini, A.Yu.
Kamenshchik, U. Moschella, and V. Pasquier, hep-th/0311111,
Phys. Rev. D~to be published!.

@5# Z.-K. Guo, Y.-S. Piao, R.-G. Cai, and Y.-Z. Zhang, Phys. R
D 68, 043508~2003!.

@6# L.R.W. Abramo and F. Finelli, Phys. Lett. B575, 165 ~2003!.
@7# S. Mukohyama, Phys. Rev. D66, 024009~2002!; M.C. Bento,

O. Bertolami, and A.A. Sen,ibid. 67, 063511~2003!.
@8# M. Sami, Mod. Phys. Lett. A18, 691 ~2003!; M.C. Bento,

N.M.C. Santos, and A.A. Sen, astro-ph/0307292; G. Calca
Phys. Rev. D69, 103508~2004!.
.

i,

@9# A.R. Liddle and R.J. Scherrer, Phys. Rev. D59, 023509
~1999!.

@10# E.J. Copeland, A.R. Liddle, and D. Wands, Phys. Rev. D57,
4686 ~1998!.

@11# E.J. Copeland, A.R. Liddle, and D. Wands, Phys. Rev. D57,
4686~1998!; A.P. Billyard, A.A. Coley, and R.J. van den Hoo
gen, ibid. 58, 123501~1998!; R.J. van den Hoogen, A.A. Co
ley, and D. Wands, Class. Quantum Grav.16, 1843~1999!; L.P.
Chimento, A.S. Jakubi, and D. Pavo´n, Phys. Rev. D62,
063508~2000!.

@12# A. Nunes and J.P. Mimoso, Phys. Lett. B488, 423 ~2000!; A.
Kehagias and G. Kofinas, gr-qc/0402059.

@13# S. Nojiri and S. Odintsov, Phys. Lett. B571, 1 ~2003!.
@14# P.J. Steinhardt, L. Wang, and I. Zlatev, Phys. Rev. D59,

123504 ~1999!; L. Amendola, ibid. 60, 043501~1999!; J.-P.
Uzan, ibid. 59, 123510~1999!.

@15# A. Frolov, L. Kofman, and A. Starobinsky, Phys. Lett. B545, 8
~2002!; L. Kofman and A. Linde, J. High Energy Phys.0207,
004 ~2002!.

@16# M. Hirsch and S. Smale,Differential Equations, Dynamical
Systems, and Linear Algebra, 2nd ed.~Academic Press, New
York, 1974!.

@17# R. Bean, S.H. Hansen, and A. Melchiorri, Phys. Rev. D64,
103508~2001!.

@18# R.R. Caldwell, M. Doran, C.M. Mueller, G. Schaefer, and
Wetterich, Astrophys. J. Lett.591, 75 ~2003!; J.P. Kneller and
G. Steigman, Phys. Rev. D67, 063501~2003!.

@19# L.P. Chimento, astro-ph/0311613, Phys. Rev. D~to be pub-
lished!.

@20# L.P. Chimento, Class. Quantum Grav.15, 965 ~1998!.
@21# The general solution to the Einstein equations for a FR

spacetime with an exponential potential was given in Ref.@20#.
2-5


