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ASYMFAST: A method for convolving maps with asymmetric main beams
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We describe a fast and accurate method to perform the convolution of a sky map with a general asymmetric
main beam along any given scanning strategy. The method is based on the decomposition of the beam as a sum
of circular functions, here Gaussians. It can be easily implemented and is much faster than pixel-by-pixel
convolution. In additionASYMFAST can be used to estimate the effective circularized beam transfer functions
of cosmic microwave background instruments with nonsymmetric main beam. This is shown using realistic
simulations and by comparison to analytical approximations which are available for Gaussian elliptical beams.
Finally, the application of this technique r&rcHEOPSdata is also described. Although developed within the
framework of cosmic microwave background observations, our method can be applied to other areas of
astrophysics.
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[. INTRODUCTION makes brute-force convolution particularly painful and slow
(e.g.,[8)].

With the recent increase in accuracy and angular scale Therefore, either we work in the spherical harmonic space
coverage in cosmic microwave backgrou(@MB) experi-  using a general and accurate convolution algoritlsae[9]
ments, a major objective is to include beam uncertaintiegor a fast implementation or we model the beam pattern by
when estimating cosmological parametelr and in particu- a series of easy-to-deal-with functions and compute for each
lar the asymmetry of the bea[&]. As seen by theeosmo-  a fast convolution in harmonic space.

SOMAS [3], BOOMERANG [4], MAXIMA [5], ARCHEOPS[6], The work of[9] shows how to convolvexactlytwo band-
and Wilkinson Microwave Anisotropy Prob&®/MAP) Col- limited but otherwise arbitrary functions on the sphere—
laborations[7], and anticipated for Planck, the systematicWhich can be the 4r beam pattern and the sky descriptions.
errors are dominated at smaller scalleigher multipoles¢) At €ach point on the sphere, one computes a ring of different
by the uncertainties in the reconstruction of and deconvoluconvolution results corresponding to all relative orientations
tion from the beam pattern. So the beam must be consideredPout this direction. To allow subsequent interpolation at ar-
more realistically, in particular by rejecting the assumptionsb'trary Ipcauons, It IS ;ufﬂuent to d|scret|zg each Eulgr angle
of Gaussianity and/or symmetry. This leads to a better modgescnbmg the position on the sphere in@(L) points,

elization of the beam to convolve with and a better estimawherel‘ measures the larger of the inverse of the smallest
. . o : . length scale of the sky or beam. The speed of the method
tion of its representation in the harmonic space, its transfer, . X 5
function B?ﬁ depends on the scanning strategy:(L*>) for constant-

latitude scans and i®(L*) for other strategy—even if fac-

The use of simulated sky maps takes an important part i, iz ation may be found in some cases. This method is used
the analysis of astrophysical data sets to study possible Sygsr pjanck simulations in the case of elliptical Gaussian

tematic effects and noise contributions, and also to compargegms for the polarized channdls)] and it is one of the
the data to theoretical predictions or to observations fronmost promising techniques to decrease side-lobe effects on
other instrumental setups. This is one of the most challenginghe WMAP results[11]. While it is efficient for a certain
problems in data analysis: obtaining a simple and accuratglass of observational strategigk0], it may be difficult to
model for the instrumental response. In many cases, Montignplement in the more general case of nonconstant latitude
Carlo approaches are favored as they are in general simpletanning strategidd2].
than the analytic ones. However, they need a great number of For the second method based on the modeling of the beam
simulations, which often requires too much execution timepattern, several solutions have been proposed either circular-
for the available computing facilities. A large amount of this izing the beani[13] or [14]) or assuming an elliptical Gauss-
time is spent in the convolution of the simulated data by thdan beam([15] or [16]). Here we propose an alternative
instrumental response or beam pattern. For an asymmetripethod,ASYMFAST, which easily can account for any main
beam, the convolved map at a given pointing direction on thdseam shape. In general, the main beam maps can be obtained
sky would depend both on the relative orientation of thefrom point sources such as the planets Jupiter and Seteen
beam on the sky and on the shape of the beam pattern. THi47] for a general view} 18,19 for HFI,LFI beams, andl13]
for WMAP beams$. The beam maps are then fitted with the
appropriate model from which the beam transfer function
*Electronic address: tristram@Ipsc.in2p3.fr can be computed. Moreover, the beam modelization can be
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used as input for deconvolution methods I[R€] or optimal  coefficients of the original sky map by the current approxi-
map-making iterative methods suchasPcumsa [21]. mation of the transfer functions of the Gaussian be&@s
In contrast tg 9], ASYMFAST deals only with main beams  — exf—¢(¢+ 1)02].

which are decomposed onto a sum of 2D symmetric Gauss- jii) The submaps are deprojected into timelines using the

ians a_md does _not_ take into account far_-side lobes. In th@canning strategy of the corresponding subbeam position.
following, we will simply refer to a Gaussian as a 2D sym- ;) The N timelines are stacked into a single one
metric Gaussian function. The sky is then easily convolveqNeighted by their subbeam amplitude

by each Gaussian and the resulting convolved submaps are (v) The timeline obtained this way .is projected onto the

combined into a single map which is equivalent to the sky . . .

convolved by the original asymmetric beam. This method; ky with the scanning strategy _correspondmg_to the center .cff
. . the beam pattern, and we obtain the convolution of the origi
can be used for any observational strategy and is easy 101 skv man with the fitted beam alond the scan
implement. As the goal oASYMFAST is only to deal with y map 9 :

. ) The HEALPIX [22] package is used to store mafring
main beams, we shall not directly compare the methd@pf - - .
with the method in this paper. description, to compute the decomposition of the sky map in

The use of a 4= beam is beyond the Scope AEYMFAST, spherical harmonic&@nafasj, and to reconstruct maps from

S0 ASYMFAST and the[9] method are not directly compared the am coefficients(synfast
in this paper.
We describe our approach in Sec. Il and the simulations

we used to check the accuracy and performance of the!l- BEAMS AND SCANNING STRATEGY SIMULATIONS

methpd in Sec. lll. Section IV describes the symmetric eX- The method was checked using realistic simulations of a
pansion of the beam. In Sec. V, we compare the accuracy Qfky observation performed by an instrument with asymmet-
our method with respect to t_he eIhpucaI Gaussian and. theic beam pattern and complex scanning strategy. To keep the
brute-force approach. Section VI discusses the timetime consumption reasonable within our computing capabili-
computing efficiency of the different convolution method ties without degrading the quality of the results, we have
considered. Finally, in Sec. VII, we describe a method tozhosen beams with a full width at half maximuiEWHM)
estimate the effective beam transfer function. This_techniqugetween 40 and 60 arcmin sampled by steps of 4 arcmin
has been su_ccessfull_y used for the determination of th?square beam map of 6060 pixels corresponding to>44
ARCHEOPSmMain beam in Sec. VIII. deg.

We consider two sets of simulations: a first one corre-
sponding to a quasicircular beam to which we have added
1% (simulation 1a and 10%(simulation 10 of noise, and a

ASYMFAST approaches any asymmetric beam by a lineaisecond one corresponding to an irregular beam to which we
combination of Gaussian functions centered at different lohave also added noise in the same wWsiynulations 2a and
cations within the original beam pattern. 2b). These two sets are obtained from a sum of a random

The convolution is performed separately for each Gaussaumber of elliptical Gaussians with random positions within
ian and then the convolved maps are combined into a single.4 deg around the center and random FWHMs and ampli-
map. The map convolution with the Gaussian beams is comtudes. Then, the beams are smoothedhait4 arcmin width
puted in the spherical harmonic space. This allows us tésaussian and white noise is added.
perform the convolution in a particularly non-time-  The scanning strategy is assumed to be a set of consecu-
consuming way. By contrast, the brute-force convolution bytive meridians with sampling of 3 arcmin over each meridian
an asymmetric beam needs to be performed in real space fand a lag of 3 arcmin between two meridians. This strategy is
each of the time samples so that the relative orientation ofoughly similar to the Planck observing plan. It allows an
the beam on the sky is properly taken into account for eaclefficient check of the method as, close to the equator, all

Il. METHOD

pointing direction. beams are parallel and the effect of the orientation is maxi-
The AsYMFAST method can be described in five main mum. However, close to the pole, the high number of beams
steps. in a different direction per pixel makes the effective beam

(i) The beam is decomposed into a weighted sunNof more circular. In order to save time, we keep only half a
Gaussians. The number of Gaussians is chosen by minimixiemisphere of the sky, so we use about 6.5 million data
ing residuals according to user-defined precisisee Sec. samples. The number of hits per pixel is highly variable from
V). equator to pole, ranging from 1 to about 8000 near the pole.

(ii) The initial map is oversamplédy a factor of 2 and For high-resolution instruments, such as Planck, we
convolved with each of the Gaussian functions. The sky maphould consider maps with resolution of the order of 1 arc-
is decomposed inta,, coefficients in harmonic space. min. However, this would require too much computing time
Then,N submaps are computed, each of them smoothed witfor brute-force convolution. Instead, in this paper, we con-
the corresponding Gaussian subbeam, by multiplyingathe  sider maps of the sky with a pixel size #f24 arcmin which

are stored in thedeaLPIX format (Ngge=256). We have
checked that the results obtained witsMFAST considering
We consider oversampled submaps to reduce the influence of tHewer-resolution maps with larger beams can be generalized
pixelization. to higher-resolution maps with narrower beams.
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FIG. 1. (Color online) Main results for the two sets of simulations described in Sedfifst two rows, simulations 1a and 1b; last two rows, simulations 2a and=2bm left to o
right for each row: the initial simulated beam pattddy- noise, the quadratic deviati®as a function of the number of Gaussians, the best-fit model for the beam pattern, the residtal

map after subtraction of the input noise in percent, and the histogram of the residual map including input noise. The dotted blue lines show thewuobgruiéGaussians necessary
to reproduce the initial simulated beam. The histogram of the residual map is fitted with a Gdossiad ling; the difference is shown by the line at the bottom.
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IV. SYMMETRIC GAUSSIAN EXPANSION OF THE BEAM TABLE I. Accuracy of the three methods discussed in the text

- . . (see Sec. Yfor each set of simulations.
We model the original beam pattern usiNgGaussians,

i e{1N}, of the form Beam One circular ~ One elliptical ~ ASYMFAST
simulation Gaussian Gaussian N Gaussians
1 (Xx=x)2+(y=y)?
g(Xi,Yi,oi;X,y)= SEX > (D 1a 4.444 1.187 0.73@)
2mo] 20, 1b 4.420 1.281 0.9367)
The beam is fitted with a weighted sum of tNeGaussians: ;Z ig:igi 2:222 gjég
N
b(x,y)—zl AGO Y1, a13XY) @ tion of number of Gaussians. This is generally solved by
using a smaller or larger number of Gaussians in the fit.
so we have Hl free parameters corresponding to width ( The efficiency of the fit is illustrated by the distribution of
FWHM= /8 In 2¢;), amplitude @,), and center position of the residuals, which are very close to the white noise distri-
each Gaussian(,y;). bution centered at zero with the dispersion corresponding to

The optimal value oN depends on the required precision. the level of the input noise. Note also that the reconstructed
We perform the fit using 1 to 10 Gaussiafwvehich is typi- Peams are marginally sensitive to the noise level and that the
cally enough to attain residuals of the order of the noisedpparent decomposition in three different pedkase 1b
level) and compute the quadratic deviation to the originalléads to residuals with amplitude only of the level of the

beam pattern, noise.
Once the Gaussian parameters have been estimated, map
1 M A simulations using any pointing strategy can be done quickly
S(N)=— pEl [b{i(p)—b(p)]?, (3)  and precisely.
=

wheren, represents the total number of pixelsy corre- V. ACCURACY OF THE AsYMFAST METHOD

sponds to the fitted beam witN Gaussians, and to the In this section, we compare the accuracyaefMFAST to

original beam pattern. . o _ that of other common approaches, including the modeling of
We consider now the two sets of simulatidisémulations  the heam pattern either by a single circular Gaussian or by an

1a, 1b, 2a, and escribed in Sec. lll. The fit is performed g|liptical Gaussian. We use as a reference the brute-force

using a least-squares fit in the nonlinear case following th@onyolution with the true beam pattern at each pointing di-
algorithm described i123]. Figure 1 presents the main re- rection.

simulations 1a and 1b, and the last two rows for simulationsnethods described before, a map containing 26 point sources
2a and 2b. In each case, we have plotted, from left to rightyith the same amplitudes uniformly distributed over half a
(i) the initial simulated beam patter(ii) the initial simulated  hemjisphere. The level of accuracy for each of the former
beam patternt noise; (i) the quadratic deviatiors as a  methods of convolution is estimated by computing the qua-
function of the number of Gaussiahs(the dotted line rep-  gratic deviation of the convolved map obtained for that par-
resents the number of Gaussians chosen for the final beagaylar method with respect to the convolved map obtained
pattern model (iv) the best-fit model for the beam pattern; by brute-force convolution.
(v) the residual map after subtraction of the input noise in ~ Tapje | represents the quadratic deviation for each of the
percent; andvi) the histogram of the residual map including methods as a percentage of the maximum of the original
input noise, fitted to a Gaussidaurved ling with residuals point-sources map. This quantity can be interpreted as the
to the Gaussian. percentage of spurious noise introduced by the convolution
The distribution ofS(N) is modeled by a decreasing ex- method. In the case of quasicircular beagsisnulations 1a
ponential, exp( 7N), plus a constark. The number of Gaus- and 1B, AsymrasT is 1.5 (6) times more accurate than the
siansN is chosen such thaf is the smaller value verifying  elliptical (circulan approximation. For more realistic irregu-
lar beams(simulations 2a and 2bASYMFAST is about four
S(N)—k<£ 4) (ten) times more accurate than the elliptidaiirculaﬂ ap-
T’ proach. MoreoverasyMFAST depends neither on the shape
of the beam pattern nor on the noise level.
wheret is a threshold defined by the user for the required Figure 2 shows, for the two sets of simulations considered
precision. (simulations 1a,1b on the top panel and simulations 2a,2b
Figure 1 shows that a small number of Gaussians iand the bottom panglthe histogram of the percentage of the
enough for a good fittypically fewer than 10 Gaussians give quadratic deviation residual maps for theYMFAST (solid
less than 2% residualsin some cases, the algorithm doesline), elliptical (dashed ling and circular(dotted ling ap-
not converge and therefore no data point is plotted on th@roximations. The figure confirms the results shown in Table
figure. Lack of convergence may appear for some combinal, indicating thatASYMFAST is a very good approximation to
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FIG. 2. (Color online) Histogram of the percentage of the quadratic deviation residual maps fastheasT (solid line), elliptical
(dashed ling and circular(dotted ling approximations. Top panel: simulations 1a,1b. Bottom panel: simulations 2a,2b.

both quasicircular and irregular beanmiesiduals smaller standard solution, while the circular and elliptical Gaussian
than 5%. By contrast, the elliptical approximation can only approximations are very poor for realistic beam patterns. In
be safely used in the case of quasicircular be@msiduals addition, the standard approach, which works in real space,
about 20% for simulations)2The circular approximation, as necessarily uses a beam pattern with fixed resolution. By
expected, is very poor in any cadgesiduals of the order of contrast,ASYMFAST works in the spherical harmonic space

40%). where the resolution is only limited by the pixelization of the
In conclusion, theasYMFAST results are very close to the sky map. MoreoverasyYMFAST can obtain full resolution in
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TABLE Il. Computing time, in terms of 10arbitrary CPU units  needed for the convolution &f circular Gaussians in spheri-
and including the input/output time access, for circular beam concal harmonic space. The extra computing time with respect
volution in the harmonic space using theaLPix package, and for  to the convolution ofN circular Gaussians comes from the
asymmetric beam convolution usingyMFAST and brute-force con- projection and the deprojection operations performed by
volution algorithms. We have considered a set of 1000 simulationg,gymeasT.
as described in Sec. VI. Finally, the difference in computing time betweesym-
FAST and the brute-force convolution also increases with the

_ HEALPIX ASYMFAST  Bruteforce  poam map resolution as the second method depends linearly
Nside One Gaussian Ten Gaussians Convolution on the beam map number of pixels whileYMFAST is very
256 0.127 7.40 171 marginally sensitive to it, only at the beam fit step.
512 1.02 29.1 1340
1024 8.13 203 10700 VII. APPLICATION TO CMB ANALYSIS: ESTIMATION

OF THE BEAM TRANSFER FUNCTION B,

In this section, we describe hoasYMFAST can be used to
estimate this effective circular transfer function for realistic
symmetric beams. A beam is described in the spherical har-
onic space by a set of coefficiertig,,, for each scanning

frequency with no mixing. Obtaining the same frequency
resolution with brute-force convolution requires a full-sky
beam pattern which increases considerably the computin

time. ) . L " o
orientation at each pointing position. The Gaussianity of the
primordial fluctuations of the CMB is a key assumption of

V1. TIME-COMPUTING EFFICIENCY OF ASYMFAST modern cosmology, motivated by simple models of inflation.

VERSUS BRUTE-FORCE CONVOLUTION So the angular power spectrum of the CMB should be a

As discussed in the following section, the determinationCircular quantity and it is common to just consider an effec-
in the spherical harmonic space of the effective circulartive Circular beam transfer functio¢". The “circulariza-
transfer function of an asymmetric beam pattedfi’, re- ~ tion” of the beam may be obtained in several ways : assum-
quires a large numbefof the order of 100D of accurate Ng @ Gaussian bearihe easiest way, leading to a simple
Monte Carlo simulations of fake data appropriately con-2nalytic description computing the optimal circularly sym-
volved by the instrument beam. Therefore, any algorithmMetric equivalent bear[14], applied toMAXiMA ), or fitting
used for this purpose needs to be much faster than the brutl® radial beam profile by a sum of Hermite polynomials

force convolution procedure to keep the computing time reall13], applied to WMAR. The analytic expression of the
sonable. beam transfer function of elliptical Gaussian beams has also

To quantify the time-computing efficiency elsymrast, ~ Deen studied in detail bj16] and by[15], who applied it to

we considemg;,,= 1000 Monte Carlo simulations of a con- PYTHON V.

volved full-sky map for a single Planck-like detector. We use ~ With ASYMFAST, the “circularization” of the beam de-
a squared map Ofi,e.,=3600 pixels to describe the beam pends on the scanning strategy as it is computed on the map

pattern and simulated timelines for 12 months of Planck ob&fter convolution by the asymmetric main beam. So it is
servations, which correspond b, =5 10° samples. With comparable to or more precise than other methods, depend-

ASYMFAST, we model the beam pattern usifg=10 Gauss- N On how the scans intersect.
ians. For each simulation, the total number of pikeis the For a circular Gaussian beanglesd and¢ correspond-

full-sky map isnp= 12*N§idefor three values oNgjqe: 256, ing to the beam directign

512, and 1024 considered. 1 e
For these simulations, Table Il shows the computing time, b(0,¢)= exg ——— | )
in terms of arbitrary CPU units, for circular beam convolu- 270’ 20°

tion in the harmonic space using theALPIX package and o )
for asymmetric beam convolution usiagYMFAST or brute-  the beam transfer function in the case of a pixel scale much

force convolution algorithms. smaller than the beam scale is approximated 2

We observe thaAsYMFAST is more than 50 times faster 1
than the brute-force convolution for the high resolutions B€=exr{——€(€+l)02 ) (6)
(Ngige=512 or 1024. This is because the convolution in the 2

spherical harmonic space used A§YMFAST is much faster
than in real space. In additioaSYMFAST is particularly ef-
ficient for Monte Carlo purposes because the beam mode
ization and the computing of the pointing directions corre-
sponding to each of thid subbeam are performed only once.
Furthermore, for high resolutions, theaYMFAST comput-
ing time is just a factor of 2 larger than the computing time

Note that in this case, the beam transfer function does not
gepend on the orientation of the beam on the sky and is
given by a simple analytical expression.

For a moderate elliptical Gaussian beam pattern, we can
compute an analytic approafh6] to the beam transfer func-
tion by introducing a small perturbation to E¢) so that

€0 g1 e —
b'(0,¢)= 5 expt — ()], @

2We have considered theALPIX convention[22]. 270
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FIG. 3. (Color online) Beam transfer functions and variations with respeatdomrAasT for the two sets of simulationsimulations 1a,
1b, 2a, and 2h The Monte Carlo estimation usingYMFAST described in Sec. VI(solid ling) is compared to the analytic transfer function
of a circular approximation of the beateemidashed lineand to the elliptical approximation to order 4 frdrm6] (dashed ling The top
panel represents the beam transfer functions, whereas the bottom panel shows the differencesafronribe estimation for the other two
approximations.

wheref(¢) describes the deviation from circularity. (ii) For each simulation, we estimateBéfr inverting the
For general irregular asymmetric beams, the previous apequation[25]

proximation is not well adapted and the orientation of the

beam on the sky has to be taken into account. For this pur-

pose, we estimate an effective beam transfer funcegfl,

from Monte Carlo simulations which use thesYMFAST

method for convolution as follows. ) ) ) )
(i) We convolve CMB simulated maps by the beam pat_where M.+ is the coupling kernel matrix that~takes into

tern usingASYMFAST. account the nonuniform coverage of the sky m@p,is the

6(: M(@/B??ZC{N y
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pseudopower spectrum computed on the convolved map, an

. . . &0 60
C, is the input theoretical model. s 50 Ly
(i) We compute the effective transfer function of the
. eff . . 40 40 40
beam by averaging thB;" obtained for each of the simula- I "
tions.
We have tested this method on simulations of pure circu- fg e ol
lar Gaussian beams for which we have obtained a bean , '2 B

transfer function fully compatible with Ed6), as expected. 0 10 20 30 40 50 o 10 20 30 40 S0
Figure 3 shows the estimate of the effective beam transfe ,
function BS™ for the two sets of beam simulations discussed 3 el -
in the previous sectionsimulations 1a, 1b, 2a, and Rbs- 50 2 s00f *ﬁ: 348518
1
. ;

400 L i T

ing a Monte Carlo of 25 simulations. The results of this 40 0.289

Monte Carlo(solid line) are compared to the analytic transfer sof %, 3kt 200f i
function of a circular approximation of the beafmemi- 20 B En Y 1

dashed ling and to the elliptical approximation computed 4 2 1o0f

from [16] (dashed ling The top panel represents the beam ¢ =3
transfer functions, whereas the bottom panel shows the dif- ¢ 10 20 3¢ 40 50 Obzaa P A e

ferences from theSYMFAST estimation for both analytical

approximations (circular, semidashed line and elliptical,
dashed ling TheAsYMFAST effective beam transfer function
shows some irregularities at very lofvdue to the cosmic

variance.

As expected, for the quasicircular bedsimulations la i Asymfast
and 1b, the estimate transfer functions for the three methods 0.4F T Sftenlar 3
are similar within 10%. The differences observed between 0.21 Benoit et al .

beam window function
o
)

our approach and the elliptical approximation are mainly due o 200 200 500
to the fact that the latter does not take into account the scan multipole

ning strategy. Due to the complex but realistic scanning strat-
egy used in our simulations, we expect that, in general, a

given position on the sky will be observed with different 137 E

relative beam orientations and therefore the effective bearn 108 7

will appear more circular. % 2_ E
By contrast, for a more irregular beam pattésimula- 4F IS i T E

tions 2a and 2} the differences between the three methods e, | S R SRR - 3

are much largeffrom 10% at low{ up to 70% at high). 0 200 400 600

The beam transfer function obtained using the elliptical ap- multipsle

proximation follows better the one obtained usingym- ) ,
FAST. We expect that the complex scanning strategy would F!G- 4. (Color online) From left to right and from top to bot-
make the effective beam more circular. However. as thdo™: Main beam map of the 217 GHz photometer used in the first

beam pattern is very asymmetric, the effective beam Wi"ARCHEOPSCMB analysis and its reconstruction wil$YMFAST us-
. ' ing 10 Gaussians; the residuals map to this one and the residuals

mimicked by an oriented elliotical beam. Therefore. the lar ?histogram; the beam transfer function for the Gaussian approxima-
y P ) ’ 9 tion, for the simulations as done |B], and forAsYMFAST; relative

est differences are found at high resolution. . differences from thesymrasT beam transfer function estimate for
) Note that t_he results preserjted here are also val!d fotrhe other three approaches. See text for details.
higher-resolution beams. For this paper, we have considered
low-resolution beams to be able to directly compare th€ans. The second row presents the residual map and its his-
ASYMFAST convolution to standard brute-force convolution. togram. The latter is fitted with a Gaussian; the difference
from it is also shown. The Monte Carlo estimation using
VIIL. APPLICATION TO  ARCHEOPS ASYMFAST _described in Se_c. VI{soIi(_JI line) is comp_areo_l to
the analytic transfer function of a circular approximation of
ASYMFAST has been applied to the main beam of e the bean{semidashed lineto the elliptical approximation to
CHEOPs bolometers, which are identical to the Planck-HFI order 4 from[16] (dashed ling and to the estimation ob-
ones. The beam shapes were measuregUeIrER[26] and  tained by simulation used ifi6] (dotted ling. They are
are moderately elliptical for most of them, the multimode shown in the third row figure. The bottom panel shows the
ones being rather irregular. Figure 4 shows the study of thdifferences from thesYMFAST beam transfer function esti-
ARCHEOPS217 GHz photometer used for the filgCHEOPS — mation for the other three approaches.
CMB analysis[6]. In the first row we show the X1 deg The beam is well reproduced as the residual map does not
with 1 arcmin pixel maps of the main beam; at left is theexhibit any structure. Moreover, the dispersion of the distri-
initial map, at right is the reconstructed one with 10 Gaussbution of the residuals is compatible to the noise level of the

123008-8



ASYMFAST: A METHOD FOR CONVOLVING MAPS . .. PHYSICAL REVIEW D 69, 123008 (2004

initial map. The deviation to the Gaussian and to the ellipti-tor of 50 faster than the brute-force convolution algorithm
cal models arises fromi~ 200, i.e., the top of the first acous- for full-sky maps of 12.5 million pixels and even faster at
tic peak, and culminates arourfte 500— 600, i.e., at the higher resolution. This allows us to perform a large number
second peak location. Therefore, the fine structure of maiof Monte Carlo simulations in a reasonable computing time
beams with equivalent FWHM of 13 arcmin is already de-to estimate accurately the effective circular transfer function
terminant for the measurement of the second acoustic peak the beam pattern.

with ARCHEOPS Because of the irregularity of the beam, we By contrast to other modeling techniques suchl& and

are more sensitive to higher-resolution structures. [16], ASYMFAST can be used with noncircular and nonellip-
tical beam patterns. FurthermoreSYMFAST approximates
IX. CONCLUSIONS the main beam pattern whilg@] uses an exact 4- beam

_ ) description, nevertheless it can be applied equally easily to

ASYMFAST is a fast and accurate convolution procedureany general scanning strategy, while the feasibility[@f
particularly well-adapted to asymmetric beam patterns an@trongly depends on the formgt2].
complex scanning strategies which are often used in CMB  Note thatasymFAsT is a general convolution algorithm
observationsAsYMFAST can both produce convolved maps which can also be used successfully in many other astro-
from input timelines and compute, from Monte Carlo simu-ppysical areas to reproduce the effects of asymmetric beam
lations, an accurate circular approximation to the transfeb‘-jmemS on sky maps and to compare observations from in-
function,Bf", of any asymmetric beam pattern. The comput-gependant instruments, which requires the cross-convolution
ing time needed to obtain a convolved map is dominated byf the datasets. Any circular functions with analytic descrip-
the HEALPIX software computing time. So it scales astion in harmonic space may be used instead of 2D symmetric
O(ngi’x , Wheren, is the number of pixels of the map, with Gaussians.
a multiplying factor depending on the number of Gaussians.

ASYMFAST models any general beam pattern by a linear
combination of circular 2D Gaussians, permitting an accu-
rate reconstruction of the instrumental beam, with residuals The authors would like to thank F.-X. Bert for fruitful
smaller than 1%compared to 4% for an elliptical Gaussian discussions. ThelEALPIX package was used throughout the
mode). In addition,ASYMFAST convolution is at least a fac- data analysi$22].
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