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ASYMFAST: A method for convolving maps with asymmetric main beams
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We describe a fast and accurate method to perform the convolution of a sky map with a general asymmetric
main beam along any given scanning strategy. The method is based on the decomposition of the beam as a sum
of circular functions, here Gaussians. It can be easily implemented and is much faster than pixel-by-pixel
convolution. In addition,ASYMFAST can be used to estimate the effective circularized beam transfer functions
of cosmic microwave background instruments with nonsymmetric main beam. This is shown using realistic
simulations and by comparison to analytical approximations which are available for Gaussian elliptical beams.
Finally, the application of this technique toARCHEOPSdata is also described. Although developed within the
framework of cosmic microwave background observations, our method can be applied to other areas of
astrophysics.
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I. INTRODUCTION

With the recent increase in accuracy and angular s
coverage in cosmic microwave background~CMB! experi-
ments, a major objective is to include beam uncertain
when estimating cosmological parameters@1#, and in particu-
lar the asymmetry of the beam@2#. As seen by theCOSMO-

SOMAS @3#, BOOMERANG @4#, MAXIMA @5#, ARCHEOPS @6#,
and Wilkinson Microwave Anisotropy Probe~WMAP! Col-
laborations@7#, and anticipated for Planck, the systema
errors are dominated at smaller scales~higher multipoles,,)
by the uncertainties in the reconstruction of and deconvo
tion from the beam pattern. So the beam must be consid
more realistically, in particular by rejecting the assumptio
of Gaussianity and/or symmetry. This leads to a better m
elization of the beam to convolve with and a better estim
tion of its representation in the harmonic space, its tran
function B,

eff .
The use of simulated sky maps takes an important pa

the analysis of astrophysical data sets to study possible
tematic effects and noise contributions, and also to comp
the data to theoretical predictions or to observations fr
other instrumental setups. This is one of the most challeng
problems in data analysis: obtaining a simple and accu
model for the instrumental response. In many cases, Mo
Carlo approaches are favored as they are in general sim
than the analytic ones. However, they need a great numb
simulations, which often requires too much execution ti
for the available computing facilities. A large amount of th
time is spent in the convolution of the simulated data by
instrumental response or beam pattern. For an asymm
beam, the convolved map at a given pointing direction on
sky would depend both on the relative orientation of t
beam on the sky and on the shape of the beam pattern.

*Electronic address: tristram@lpsc.in2p3.fr
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makes brute-force convolution particularly painful and slo
~e.g.,@8#!.

Therefore, either we work in the spherical harmonic spa
using a general and accurate convolution algorithm~see@9#
for a fast implementation!, or we model the beam pattern b
a series of easy-to-deal-with functions and compute for e
a fast convolution in harmonic space.

The work of@9# shows how to convolveexactlytwo band-
limited but otherwise arbitrary functions on the sphere
which can be the 4-p beam pattern and the sky description
At each point on the sphere, one computes a ring of differ
convolution results corresponding to all relative orientatio
about this direction. To allow subsequent interpolation at
bitrary locations, it is sufficient to discretize each Euler an
describing the position on the sphere intoO(L) points,
whereL measures the larger of the inverse of the smal
length scale of the sky or beam. The speed of the met
depends on the scanning strategy: inO(L3) for constant-
latitude scans and inO(L4) for other strategy—even if fac
torization may be found in some cases. This method is u
for Planck simulations in the case of elliptical Gaussi
beams for the polarized channels@10# and it is one of the
most promising techniques to decrease side-lobe effect
the WMAP results@11#. While it is efficient for a certain
class of observational strategies@10#, it may be difficult to
implement in the more general case of nonconstant latit
scanning strategies@12#.

For the second method based on the modeling of the b
pattern, several solutions have been proposed either circ
izing the beam~@13# or @14#! or assuming an elliptical Gauss
ian beam~@15# or @16#!. Here we propose an alternativ
method,ASYMFAST, which easily can account for any mai
beam shape. In general, the main beam maps can be obt
from point sources such as the planets Jupiter and Saturn~see
@17# for a general view,@18,19# for HFI,LFI beams, and@13#
for WMAP beams!. The beam maps are then fitted with th
appropriate model from which the beam transfer funct
can be computed. Moreover, the beam modelization can
©2004 The American Physical Society08-1
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TRISTRAM et al. PHYSICAL REVIEW D 69, 123008 ~2004!
used as input for deconvolution methods like@20# or optimal
map-making iterative methods such asMAPCUMBA @21#.

In contrast to@9#, ASYMFAST deals only with main beam
which are decomposed onto a sum of 2D symmetric Ga
ians and does not take into account far-side lobes. In
following, we will simply refer to a Gaussian as a 2D sym
metric Gaussian function. The sky is then easily convolv
by each Gaussian and the resulting convolved submaps
combined into a single map which is equivalent to the s
convolved by the original asymmetric beam. This meth
can be used for any observational strategy and is eas
implement. As the goal ofASYMFAST is only to deal with
main beams, we shall not directly compare the method of@9#
with the method in this paper.

The use of a 4-p beam is beyond the scope ofASYMFAST,
so ASYMFAST and the@9# method are not directly compare
in this paper.

We describe our approach in Sec. II and the simulati
we used to check the accuracy and performance of
method in Sec. III. Section IV describes the symmetric
pansion of the beam. In Sec. V, we compare the accurac
our method with respect to the elliptical Gaussian and
brute-force approach. Section VI discusses the tim
computing efficiency of the different convolution metho
considered. Finally, in Sec. VII, we describe a method
estimate the effective beam transfer function. This techni
has been successfully used for the determination of
ARCHEOPSmain beam in Sec. VIII.

II. METHOD

ASYMFAST approaches any asymmetric beam by a lin
combination of Gaussian functions centered at different
cations within the original beam pattern.

The convolution is performed separately for each Gau
ian and then the convolved maps are combined into a si
map. The map convolution with the Gaussian beams is c
puted in the spherical harmonic space. This allows us
perform the convolution in a particularly non-time
consuming way. By contrast, the brute-force convolution
an asymmetric beam needs to be performed in real spac
each of the time samples so that the relative orientation
the beam on the sky is properly taken into account for e
pointing direction.

The ASYMFAST method can be described in five ma
steps.

~i! The beam is decomposed into a weighted sum oN
Gaussians. The number of Gaussians is chosen by mini
ing residuals according to user-defined precision~see Sec.
IV !.

~ii ! The initial map is oversampled1 by a factor of 2 and
convolved with each of the Gaussian functions. The sky m
is decomposed intoa,m coefficients in harmonic space
Then,N submaps are computed, each of them smoothed
the corresponding Gaussian subbeam, by multiplying thea,m

1We consider oversampled submaps to reduce the influence o
pixelization.
12300
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coefficients of the original sky map by the current appro
mation of the transfer functions of the Gaussian beamsB,

N

5exp@2,(,11)sN
2#.

~iii ! The submaps are deprojected into timelines using
scanning strategy of the corresponding subbeam position

~iv! The N timelines are stacked into a single on
weighted by their subbeam amplitude.

~v! The timeline obtained this way is projected onto t
sky with the scanning strategy corresponding to the cente
the beam pattern, and we obtain the convolution of the or
nal sky map with the fitted beam along the scan.

The HEALPIX @22# package is used to store maps~ring
description!, to compute the decomposition of the sky map
spherical harmonics~anafast!, and to reconstruct maps from
the a,m coefficients~synfast!.

III. BEAMS AND SCANNING STRATEGY SIMULATIONS

The method was checked using realistic simulations o
sky observation performed by an instrument with asymm
ric beam pattern and complex scanning strategy. To keep
time consumption reasonable within our computing capab
ties without degrading the quality of the results, we ha
chosen beams with a full width at half maximum~FWHM!
between 40 and 60 arcmin sampled by steps of 4 arc
~square beam map of 60360 pixels corresponding to 434
deg!.

We consider two sets of simulations: a first one cor
sponding to a quasicircular beam to which we have ad
1% ~simulation 1a! and 10%~simulation 1b! of noise, and a
second one corresponding to an irregular beam to which
have also added noise in the same way~simulations 2a and
2b!. These two sets are obtained from a sum of a rand
number of elliptical Gaussians with random positions with
0.4 deg around the center and random FWHMs and am
tudes. Then, the beams are smoothed with a 4 arcmin width
Gaussian and white noise is added.

The scanning strategy is assumed to be a set of cons
tive meridians with sampling of 3 arcmin over each meridi
and a lag of 3 arcmin between two meridians. This strateg
roughly similar to the Planck observing plan. It allows a
efficient check of the method as, close to the equator,
beams are parallel and the effect of the orientation is ma
mum. However, close to the pole, the high number of bea
in a different direction per pixel makes the effective bea
more circular. In order to save time, we keep only half
hemisphere of the sky, so we use about 6.5 million d
samples. The number of hits per pixel is highly variable fro
equator to pole, ranging from 1 to about 8000 near the p

For high-resolution instruments, such as Planck,
should consider maps with resolution of the order of 1 a
min. However, this would require too much computing tim
for brute-force convolution. Instead, in this paper, we co
sider maps of the sky with a pixel size of'24 arcmin which
are stored in theHEALPIX format (Nside5256). We have
checked that the results obtained withASYMFAST considering
lower-resolution maps with larger beams can be general
to higher-resolution maps with narrower beams.

he
8-2
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IG. 1. ~Color online.! Main results for the two sets of simulations described in Sec. IV~first two rows, simulations 1a and 1b; last two rows, simulations 2a and 2b!. From left to
for each row: the initial simulated beam pattern,id1noise, the quadratic deviationSas a function of the number of Gaussians, the best-fit model for the beam pattern, the residual
after subtraction of the input noise in percent, and the histogram of the residual map including input noise. The dotted blue lines show the computed number of Gaussians necessary
produce the initial simulated beam. The histogram of the residual map is fitted with a Gaussian~curved line!; the difference is shown by the line at the bottom.
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IV. SYMMETRIC GAUSSIAN EXPANSION OF THE BEAM

We model the original beam pattern usingN Gaussians,
i P$1,N%, of the form

g~xi ,yi ,s i ;x,y!5
1

2ps i
2
expF ~x2xi !

21~y2yi !
2

2s i
2 G . ~1!

The beam is fitted with a weighted sum of theN Gaussians:

b~x,y!5(
i 51

N

Aig~xi ,yi ,s i ;x,y! ~2!

so we have 4N free parameters corresponding to width (s i ,
FWHM5A8 ln 2si), amplitude (Ai), and center position o
each Gaussian (xi ,yi).

The optimal value ofN depends on the required precisio
We perform the fit using 1 to 10 Gaussians~which is typi-
cally enough to attain residuals of the order of the no
level! and compute the quadratic deviation to the origin
beam pattern,

S~N!5
1

np
(
p51

np

@bN
fit~p!2b~p!#2, ~3!

where np represents the total number of pixels,bN
fit corre-

sponds to the fitted beam withN Gaussians, andb to the
original beam pattern.

We consider now the two sets of simulations~simulations
1a, 1b, 2a, and 2b! described in Sec. III. The fit is performe
using a least-squares fit in the nonlinear case following
algorithm described in@23#. Figure 1 presents the main re
sults for these two sets of simulations: the first two rows
simulations 1a and 1b, and the last two rows for simulatio
2a and 2b. In each case, we have plotted, from left to rig
~i! the initial simulated beam pattern;~ii ! the initial simulated
beam pattern1 noise; ~iii ! the quadratic deviationS as a
function of the number of GaussiansN ~the dotted line rep-
resents the number of Gaussians chosen for the final b
pattern model!; ~iv! the best-fit model for the beam patter
~v! the residual map after subtraction of the input noise
percent; and~vi! the histogram of the residual map includin
input noise, fitted to a Gaussian~curved line! with residuals
to the Gaussian.

The distribution ofS(N) is modeled by a decreasing e
ponential, exp(2tN), plus a constantk. The number of Gaus
siansN is chosen such thatN is the smaller value verifying

S~N!2k,
t

t
, ~4!

where t is a threshold defined by the user for the requir
precision.

Figure 1 shows that a small number of Gaussians
enough for a good fit~typically fewer than 10 Gaussians giv
less than 2% residuals!. In some cases, the algorithm do
not converge and therefore no data point is plotted on
figure. Lack of convergence may appear for some comb
12300
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tion of number of Gaussians. This is generally solved
using a smaller or larger number of Gaussians in the fit.

The efficiency of the fit is illustrated by the distribution o
the residuals, which are very close to the white noise dis
bution centered at zero with the dispersion correspondin
the level of the input noise. Note also that the reconstruc
beams are marginally sensitive to the noise level and that
apparent decomposition in three different peaks~case 1b!
leads to residuals with amplitude only of the level of t
noise.

Once the Gaussian parameters have been estimated,
simulations using any pointing strategy can be done quic
and precisely.

V. ACCURACY OF THE ASYMFAST METHOD

In this section, we compare the accuracy ofASYMFAST to
that of other common approaches, including the modeling
the beam pattern either by a single circular Gaussian or b
elliptical Gaussian. We use as a reference the brute-fo
convolution with the true beam pattern at each pointing
rection.

For this purpose, we have convolved, using the differ
methods described before, a map containing 26 point sou
with the same amplitudes uniformly distributed over half
hemisphere. The level of accuracy for each of the form
methods of convolution is estimated by computing the q
dratic deviation of the convolved map obtained for that p
ticular method with respect to the convolved map obtain
by brute-force convolution.

Table I represents the quadratic deviation for each of
methods as a percentage of the maximum of the orig
point-sources map. This quantity can be interpreted as
percentage of spurious noise introduced by the convolu
method. In the case of quasicircular beams~simulations 1a
and 1b!, ASYMFAST is 1.5 ~6! times more accurate than th
elliptical ~circular! approximation. For more realistic irregu
lar beams~simulations 2a and 2b!, ASYMFAST is about four
~ten! times more accurate than the elliptical~circular! ap-
proach. Moreover,ASYMFAST depends neither on the shap
of the beam pattern nor on the noise level.

Figure 2 shows, for the two sets of simulations conside
~simulations 1a,1b on the top panel and simulations 2a
and the bottom panel!, the histogram of the percentage of th
quadratic deviation residual maps for theASYMFAST ~solid
line!, elliptical ~dashed line!, and circular~dotted line! ap-
proximations. The figure confirms the results shown in Ta
I, indicating thatASYMFAST is a very good approximation to

TABLE I. Accuracy of the three methods discussed in the t
~see Sec. V! for each set of simulations.

Beam One circular One elliptical ASYMFAST

simulation Gaussian Gaussian (N Gaussians!

1a 4.444 1.187 0.734~7!

1b 4.420 1.281 0.936~7!

2a 10.513 4.095 0.826~8!

2b 10.464 4.154 1.455~5!
8-4
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FIG. 2. ~Color online.! Histogram of the percentage of the quadratic deviation residual maps for theASYMFAST ~solid line!, elliptical
~dashed line!, and circular~dotted line! approximations. Top panel: simulations 1a,1b. Bottom panel: simulations 2a,2b.
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both quasicircular and irregular beams~residuals smaller
than 5%!. By contrast, the elliptical approximation can on
be safely used in the case of quasicircular beams~residuals
about 20% for simulations 2!. The circular approximation, a
expected, is very poor in any case~residuals of the order o
40%!.

In conclusion, theASYMFAST results are very close to th
12300
standard solution, while the circular and elliptical Gauss
approximations are very poor for realistic beam patterns
addition, the standard approach, which works in real spa
necessarily uses a beam pattern with fixed resolution.
contrast,ASYMFAST works in the spherical harmonic spac
where the resolution is only limited by the pixelization of th
sky map. Moreover,ASYMFAST can obtain full resolution in
8-5
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frequency with no mixing. Obtaining the same frequen
resolution with brute-force convolution requires a full-s
beam pattern which increases considerably the compu
time.

VI. TIME-COMPUTING EFFICIENCY OF ASYMFAST
VERSUS BRUTE-FORCE CONVOLUTION

As discussed in the following section, the determinat
in the spherical harmonic space of the effective circu
transfer function of an asymmetric beam pattern,B,

eff , re-
quires a large number~of the order of 1000! of accurate
Monte Carlo simulations of fake data appropriately co
volved by the instrument beam. Therefore, any algorit
used for this purpose needs to be much faster than the b
force convolution procedure to keep the computing time r
sonable.

To quantify the time-computing efficiency ofASYMFAST,
we considernsimu51000 Monte Carlo simulations of a con
volved full-sky map for a single Planck-like detector. We u
a squared map ofnbeam53600 pixels to describe the bea
pattern and simulated timelines for 12 months of Planck
servations, which correspond tonscan553109 samples. With
ASYMFAST, we model the beam pattern usingN510 Gauss-
ians. For each simulation, the total number of pixels2 on the
full-sky map isnpix512*Nside

2 for three values ofNside: 256,
512, and 1024 considered.

For these simulations, Table II shows the computing tim
in terms of arbitrary CPU units, for circular beam convol
tion in the harmonic space using theHEALPIX package and
for asymmetric beam convolution usingASYMFAST or brute-
force convolution algorithms.

We observe thatASYMFAST is more than 50 times faste
than the brute-force convolution for the high resolutio
(Nside5512 or 1024!. This is because the convolution in th
spherical harmonic space used byASYMFAST is much faster
than in real space. In addition,ASYMFAST is particularly ef-
ficient for Monte Carlo purposes because the beam mo
ization and the computing of the pointing directions cor
sponding to each of theN subbeam are performed only onc

Furthermore, for high resolutions, theASYMFAST comput-
ing time is just a factor of 2 larger than the computing tim

2We have considered theHEALPIX convention@22#.

TABLE II. Computing time, in terms of 106 arbitrary CPU units
and including the input/output time access, for circular beam c
volution in the harmonic space using theHEALPIX package, and for
asymmetric beam convolution usingASYMFAST and brute-force con-
volution algorithms. We have considered a set of 1000 simulati
as described in Sec. VI.

HEALPIX ASYMFAST Brute force
Nside One Gaussian Ten Gaussians Convolutio

256 0.127 7.40 171
512 1.02 29.1 1340
1024 8.13 203 10700
12300
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needed for the convolution ofN circular Gaussians in spher
cal harmonic space. The extra computing time with resp
to the convolution ofN circular Gaussians comes from th
projection and the deprojection operations performed
ASYMFAST.

Finally, the difference in computing time betweenASYM-

FAST and the brute-force convolution also increases with
beam map resolution as the second method depends lin
on the beam map number of pixels whileASYMFAST is very
marginally sensitive to it, only at the beam fit step.

VII. APPLICATION TO CMB ANALYSIS: ESTIMATION
OF THE BEAM TRANSFER FUNCTION Bø

In this section, we describe howASYMFAST can be used to
estimate this effective circular transfer function for realis
asymmetric beams. A beam is described in the spherical
monic space by a set of coefficientsb,m for each scanning
orientation at each pointing position. The Gaussianity of
primordial fluctuations of the CMB is a key assumption
modern cosmology, motivated by simple models of inflatio
So the angular power spectrum of the CMB should be
circular quantity and it is common to just consider an effe
tive circular beam transfer function,B,

eff . The ‘‘circulariza-
tion’’ of the beam may be obtained in several ways : assu
ing a Gaussian beam~the easiest way, leading to a simp
analytic description!, computing the optimal circularly sym
metric equivalent beam~ @14#, applied toMAXIMA !, or fitting
the radial beam profile by a sum of Hermite polynomia
~@13#, applied to WMAP!. The analytic expression of th
beam transfer function of elliptical Gaussian beams has
been studied in detail by@16# and by@15#, who applied it to
PYTHON V.

With ASYMFAST, the ‘‘circularization’’ of the beam de-
pends on the scanning strategy as it is computed on the
after convolution by the asymmetric main beam. So it
comparable to or more precise than other methods, dep
ing on how the scans intersect.

For a circular Gaussian beam~anglesu andf correspond-
ing to the beam direction!,

b~u,f!5
1

2ps2
expF2

u2

2s2G , ~5!

the beam transfer function in the case of a pixel scale m
smaller than the beam scale is approximated by@24#

B,5expF2
1

2
,~,11!s2G . ~6!

Note that in this case, the beam transfer function does
depend on the orientation of the beam on the sky and
given by a simple analytical expression.

For a moderate elliptical Gaussian beam pattern, we
compute an analytic approach@16# to the beam transfer func
tion by introducing a small perturbation to Eq.~5! so that

b,~u,f!5
1

2ps2
expF2

u2

2s2
f ~f!G , ~7!

-

s
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FIG. 3. ~Color online.! Beam transfer functions and variations with respect toASYMFAST for the two sets of simulations~simulations 1a,
1b, 2a, and 2b!. The Monte Carlo estimation usingASYMFAST described in Sec. VII~solid line! is compared to the analytic transfer functio
of a circular approximation of the beam~semidashed line! and to the elliptical approximation to order 4 from@16# ~dashed line!. The top
panel represents the beam transfer functions, whereas the bottom panel shows the differences from theASYMFAST estimation for the other two
approximations.
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where f (f) describes the deviation from circularity.
For general irregular asymmetric beams, the previous

proximation is not well adapted and the orientation of t
beam on the sky has to be taken into account. For this
pose, we estimate an effective beam transfer function,B,

eff ,
from Monte Carlo simulations which use theASYMFAST
method for convolution as follows.

~i! We convolve CMB simulated maps by the beam p
tern usingASYMFAST.
12300
p-

r-

-

~ii ! For each simulation, we estimate aB,
eff inverting the

equation@25#

C̃,5M ,,8B,8
eff2C,8 ,

where M ,,8 is the coupling kernel matrix that takes int
account the nonuniform coverage of the sky map,C̃, is the
8-7



a

e
-

cu
a

sf
e

is
er

d
m
d
l
l,
n

od
e
u

ca
ra
l,
nt
a

d

ap

ul
th
i

b
rg

f
er
th
.

F

de
th

he
ss

his-
ce

ng

of

-

he
-

not
tri-
the

first

uals
ma-

r

TRISTRAM et al. PHYSICAL REVIEW D 69, 123008 ~2004!
pseudopower spectrum computed on the convolved map,
C, is the input theoretical model.

~iii ! We compute the effective transfer function of th
beam by averaging theB,

eff obtained for each of the simula
tions.

We have tested this method on simulations of pure cir
lar Gaussian beams for which we have obtained a be
transfer function fully compatible with Eq.~6!, as expected.

Figure 3 shows the estimate of the effective beam tran
function B,

eff for the two sets of beam simulations discuss
in the previous sections~simulations 1a, 1b, 2a, and 2b! us-
ing a Monte Carlo of 25 simulations. The results of th
Monte Carlo~solid line! are compared to the analytic transf
function of a circular approximation of the beam~semi-
dashed line! and to the elliptical approximation compute
from @16# ~dashed line!. The top panel represents the bea
transfer functions, whereas the bottom panel shows the
ferences from theASYMFAST estimation for both analytica
approximations ~circular, semidashed line and elliptica
dashed line!. TheASYMFAST effective beam transfer functio
shows some irregularities at very low, due to the cosmic
variance.

As expected, for the quasicircular beam~simulations 1a
and 1b!, the estimate transfer functions for the three meth
are similar within 10%. The differences observed betwe
our approach and the elliptical approximation are mainly d
to the fact that the latter does not take into account the s
ning strategy. Due to the complex but realistic scanning st
egy used in our simulations, we expect that, in genera
given position on the sky will be observed with differe
relative beam orientations and therefore the effective be
will appear more circular.

By contrast, for a more irregular beam pattern~simula-
tions 2a and 2b!, the differences between the three metho
are much larger~from 10% at low, up to 70% at high,).
The beam transfer function obtained using the elliptical
proximation follows better the one obtained usingASYM-

FAST. We expect that the complex scanning strategy wo
make the effective beam more circular. However, as
beam pattern is very asymmetric, the effective beam w
contain complex highly irregular structures which cannot
mimicked by an oriented elliptical beam. Therefore, the la
est differences are found at high resolution.

Note that the results presented here are also valid
higher-resolution beams. For this paper, we have consid
low-resolution beams to be able to directly compare
ASYMFAST convolution to standard brute-force convolution

VIII. APPLICATION TO ARCHEOPS

ASYMFAST has been applied to the main beam of theAR-

CHEOPS bolometers, which are identical to the Planck-H
ones. The beam shapes were measured onJUPITER @26# and
are moderately elliptical for most of them, the multimo
ones being rather irregular. Figure 4 shows the study of
ARCHEOPS217 GHz photometer used for the firstARCHEOPS

CMB analysis@6#. In the first row we show the 131 deg
with 1 arcmin pixel maps of the main beam; at left is t
initial map, at right is the reconstructed one with 10 Gau
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ians. The second row presents the residual map and its
togram. The latter is fitted with a Gaussian; the differen
from it is also shown. The Monte Carlo estimation usi
ASYMFAST described in Sec. VII~solid line! is compared to
the analytic transfer function of a circular approximation
the beam~semidashed line!, to the elliptical approximation to
order 4 from@16# ~dashed line!, and to the estimation ob
tained by simulation used in@6# ~dotted line!. They are
shown in the third row figure. The bottom panel shows t
differences from theASYMFAST beam transfer function esti
mation for the other three approaches.

The beam is well reproduced as the residual map does
exhibit any structure. Moreover, the dispersion of the dis
bution of the residuals is compatible to the noise level of

FIG. 4. ~Color online.! From left to right and from top to bot-
tom: Main beam map of the 217 GHz photometer used in the
ARCHEOPSCMB analysis and its reconstruction withASYMFAST us-
ing 10 Gaussians; the residuals map to this one and the resid
histogram; the beam transfer function for the Gaussian approxi
tion, for the simulations as done in@6#, and forASYMFAST; relative
differences from theASYMFAST beam transfer function estimate fo
the other three approaches. See text for details.
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initial map. The deviation to the Gaussian and to the ellip
cal models arises from,'200, i.e., the top of the first acous
tic peak, and culminates around,'5002600, i.e., at the
second peak location. Therefore, the fine structure of m
beams with equivalent FWHM of 13 arcmin is already d
terminant for the measurement of the second acoustic p
with ARCHEOPS. Because of the irregularity of the beam, w
are more sensitive to higher-resolution structures.

IX. CONCLUSIONS

ASYMFAST is a fast and accurate convolution procedu
particularly well-adapted to asymmetric beam patterns
complex scanning strategies which are often used in C
observations.ASYMFAST can both produce convolved map
from input timelines and compute, from Monte Carlo sim
lations, an accurate circular approximation to the trans
function,B,

eff , of any asymmetric beam pattern. The comp
ing time needed to obtain a convolved map is dominated
the HEALPIX software computing time. So it scales
O(npix

3/2), wherenpix is the number of pixels of the map, wit
a multiplying factor depending on the number of Gaussia

ASYMFAST models any general beam pattern by a line
combination of circular 2D Gaussians, permitting an ac
rate reconstruction of the instrumental beam, with residu
smaller than 1%~compared to 4% for an elliptical Gaussia
model!. In addition,ASYMFAST convolution is at least a fac
12300
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d
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tor of 50 faster than the brute-force convolution algorith
for full-sky maps of 12.5 million pixels and even faster
higher resolution. This allows us to perform a large numb
of Monte Carlo simulations in a reasonable computing ti
to estimate accurately the effective circular transfer funct
of the beam pattern.

By contrast to other modeling techniques such as@13# and
@16#, ASYMFAST can be used with noncircular and nonelli
tical beam patterns. Furthermore,ASYMFAST approximates
the main beam pattern while@9# uses an exact 4-p beam
description, nevertheless it can be applied equally easily
any general scanning strategy, while the feasibility of@9#
strongly depends on the former@12#.

Note thatASYMFAST is a general convolution algorithm
which can also be used successfully in many other as
physical areas to reproduce the effects of asymmetric b
patterns on sky maps and to compare observations from
dependant instruments, which requires the cross-convolu
of the datasets. Any circular functions with analytic descr
tion in harmonic space may be used instead of 2D symme
Gaussians.
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