
PHYSICAL REVIEW D 69, 123001 ~2004!
Growth of correlations in gravitational N-body simulations
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In the gravitational evolution of a cold infinite particle distribution, two-body interactions can be predomi-
nant at early times: we show that, by treating the simple case of a Poisson particle distribution in a static
universe as an ensemble of isolated two-body systems, one may capture the origin of the first nonlinear
correlated structures. The developed power-law-like behavior of the two-point correlation function is then
simply related to the functional form of the time-evolved nearest-neighbor probability distribution, whose time
dependence can be computed by using the Liouville theorem for the gravitational two-body problem. We then
show that a similar dynamical evolution is also found in a large-scale ordered distribution, which has striking
similarities to the case of a cosmological cold dark matter simulation which we also consider.
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I. INTRODUCTION

Nonlinear gravitational clustering can be studied
means ofN-body simulations~NBS! which compute numeri-
cally the evolution of a system of particles under the act
of their mutual gravity. The gravitational many-body pro
lem consists in the explanation of the time evolution of t
NBS and in the theoretical understanding of the formation
nonlinear structures. Up to now, two different approach
have been generally studied: the first involves research
approximate solutions of the Bogoliubov-Born-Gree
Kirwood-Yvon ~BBGKY! hierarchy@1#, and the second ex
plores statistical thermodynamics mainly developed
Saslaw@2#.

A main issue in the context of cosmological NBS is
relate the formation of nonlinear structures to the spec
choice of initial conditions used: this is done in order
constraint models with observations of cosmic microwa
background radiation anisotropies, which are related to
initial conditions, and of galaxy structures, which give i
stead the final configuration of strongly clustered mat
Standard primordial cosmological theoretical density fiel
such as the cold dark matter~CDM! case, are Gaussian an
made of a huge number of microscopic mass particles, wh
are usually treated theoretically as a self-gravitating co
sionless fluid@3–5#: this means that the fluid must be diss
pationless and that two-body scattering should be small.
problem is then in which limit NBS, based on particle d
namics, are able to reproduce the above two conditions
this context, one has to consider the issue of the physical
of particle fluctuations in the dynamics of NBS as the to
energy is conserved during time evolution~the only mecha-
nism of energy dissipation is related to local gravitation
processes!.

In fact, in the discretization of a continuous density fie
one faces two important limitations corresponding to the n
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length scales which are introduced. On the one hand, a r
tively small number of particles are used: this introduce
mass scale which is the mass of these particles.~In typical
cosmological NBS, this mass is of the order of a galaxy a
hence many orders of magnitude larger than the microsc
mass of a CDM particle.! Furthermore, it introduces a new
characteristic length scale given by the average distance
tween nearest-neighbor~NN! particles^L&. Clearly the dis-
cretization method used should conserve the continuous
relations, but this is a problematic aspect of stand
methods@6–10#. On the other hand, one must smooth t
gravitational force at small scales in order to avoid proble
related to the divergence of the numerical integrator and
move collisional effects due to strong scattering between p
ticles. This is usually done by using a softening lengthe in
the gravitational potential generally defined as

f~r !52
1

Ae21r 2
. ~1!

This is the second length scale introduced to numeric
simulate the collisionless fluid.

The question which naturally arises is then how to cho
the two new length scaleŝL& ande: the first obvious con-
dition is that they must both be smaller than the intrin
characteristic scales of the continuous field~that is, smaller
than the typical scale corresponding to the turnover scal
the CDM power spectrum!. Then one has to tune the rati
h5^L&/e appropriately with respect to the physical proble
under study. In fact, whenh.1 one has a larger dynamica
range than the caseh,1, but strong scattering betwee
nearby particles is not smoothed and hence one is not e
tively reproducing a dynamics where particles play the r
of collisionless fluid elements. It is in this sense that o
talks about the role of discreteness in NBS, namely t
strong scattering between nearby particles is produced by
discretization and by the choice ofh.1, and it should be
considered artificial and spurious with respect to the dyna
cal evolution of a self-gravitating fluid. This point has be
©2004 The American Physical Society01-1
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considered in different ways and contexts by many auth
e.g., @3–5,11–14#: they all show that discreteness has so
influence on the formation of the structures.

For this reason, discreteness, which nevertheless in
duces large fluctuations in the density field up to scales
order^L&, may play an important role in the early stages
nonlinear structure formation, i.e., when the average dista
between nearby particles becomes rapidly smaller than^L&.
How discrete effects are then ‘‘exported’’ toward larg
scales, if they are at all, is a complex and difficult problem
understand. In other words, the problem is that of und
standing whether large nonlinear structures, which at
times contain many particles, are produced solely by the
lisionless dynamics of a fluid and its density fluctuations
whether the particle collisional processes are important
in the long term. For example, in@11# it was argued that
discreteness effects play an important role in the self-sim
evolution of correlated structures, while the effect of N
interactions has been the subject of a toy model develope
@12#.

In @15,16# we have already considered the effects of d
cretization in the dynamics of nonlinear structure format
in several NBS with and without space expansion. We h
concluded that the fluctuations at the smallest scales in t
NBS—i.e., those associated with the discreteness of
particles—play a central role in the dynamics of clustering
the nonlinear regime. This was based, in particular, on
fact that the correlations appear to be built up from the ini
clustering at the smallest scales and that the nature of
clustering seems to be independent of~or at most very
weakly dependent on! the initial conditions. The theoretica
understanding of the creation of these correlations sho
therefore deal with the apparently crucial role of the intr
sically highly fluctuating initial density field.

In this paper, we put our previous results on a firm
physical basis. We study the formation of first structures
several NBS. As a reference example, we use a cold~zero
initial velocity! Poisson distribution as initial conditions an
we consider the case of a nonexpanding background, i.
static universe. In this case, we show that two-body inter
tions are enough to explain the evolution of the correlat
function at early times, as has been already noticed in@17#.
This is done by treating theN-body problem as an ensemb
of isolated two-body systems. Such an approximation is
tified, in the Poisson case, by the fact that the probability t
nearby particles are mutually NN is high enough (;0.6)
~becoming of order 1 when very close particles are only c
sidered! and by the fact that the NN force is the dominati
one @18#. Using the Liouville theorem for the gravitationa
two-body problem, we can find the early evolution of the N
probability distribution. As this distribution can be linked
the conditional density and therefore to the reduced tw
point correlation function, we also obtain their evolution
early times. Comparing with the results from the simulatio
we find excellent agreement: this shows that the first str
tures observed are a consequence of two-body interac
between NNs. After a time of the order of the typical tim
scale of two-body interaction, this is of course not the c
anymore. However, we note that the functional behavior
12300
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the two-point correlation function remains unchanged at la
times, while the regime of strong clustering increases w
time.

We then study in the same perspective three other dif
ent simulations in which the force is not dominated by sho
scale contributions since the beginning. The link between
NN probability distribution is found to be an efficient tool t
study the nature of the first correlations developed and
growth of power-law correlations when high-resolution (h
@1) NBS are considered.

II. STATISTICAL TOOLS

A simple tool used to study clustering of a matter dist
bution is the two-point correlation function @19#
^n(r1)n(r2)&, which gives the probability density for finding
one particle aroundr1 and a second one aroundr2 @n(r )
being the microscopic mass density function#. In the follow-
ing, we will restrict ourselves to distributions which have
well-defined average densityn0 and are homogeneous an
isotropic. In that case, the two-point correlation functi
only depends onr 125ur12r2u and the asymptotic averag
density is positive. This function is useful to study both co
tinuous and discrete distributions of matter. In the latter ca
which is the case of interest here, it can be useful to mea
averages from a point occupied by a particle. For instan
one can define theconditional density

^n~r !&p[
^n~0!n~r !&

n0
~2!

for r .0; this gives the average density at a distancer from
an occupied point.1 It is easy to show that one has the fo
lowing relation:

^n~r !&p[n0@11j~r !# for r .0, ~3!

wherej(r ) is thenondiagonal part of the reduced two-poin
correlation function@19#.

In order to study small-scale properties of a discrete d
tribution, one may consider thenearest-neighbor probability
distribution v(r ). This gives the probability density of th
distance from a particle to its NN@18#. Let us briefly discuss
its relation to the average conditional density. By definitio
the probability that, given a particle, there is another parti
in the infinitesimal volume elementdV at distancer is

p1~r !5^n~r !&p dV. ~4!

Now we only have to note that the probabilityv(r )dr for a
given particle having a NN at a distance betweenr and r
1dr is the probability of having no NN in the sphere o
radiusr centered on the particle multiplied by the probabili
of having one particle in the infinitesimal spherical sh
around this sphere,

1^ &p means that it is a conditional average: the origin is an oc
pied point.
1-2
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v~r !dr 5S 12E
0

r

v~s!dsD ^n~r !&p4pr 2 dr , ~5!

where the second part of the right-hand side is the proba
ity p1(r ) with dV54pr 2 dr .

III. EVOLUTION OF A POISSON DISTRIBUTION

In the case of a Poisson distribution, one simply h
^n(r )&p5n0 @19#. It is then easy to solve Eq.~5! for v(r ).
One finds@18#

v~r !54pn0r 2 expS 2
4

3
pn0r 3D . ~6!

The average distance between a particle and its NN is g
by

^L&5E
0

`

rv~r !dr 5S 3

4pn0
D 1/3

GES 4

3D , ~7!

whereGE is the Euler incomplete gamma function.
Let us now compute the probability, in a Poisson dis

bution, that given a particle and its NN, they are mutua
NN. Let us suppose that a particleA has the particleB as its
NN at distancer. The probability thatA is the NN of B is
equal to the probability that no other particles are in
volumev(r ) defined by the portion of the sphere of radiusr
aroundB which is not contained in the sphere of radiusr
aroundA. For a Poisson distribution this is simply2

p2~r !5exp„2n0v~r !…, ~8!

wherev(r ) is given by

v~r !5
11

12
pr 3. ~9!

Averaging onr, we get the probability that two particles a
mutually NN,

p35E
0

`

v~r !exp„2n0v~r !…dr'0.6. ~10!

Hence we have that more than half of the particles are
tually NN. If we restrict ourselves to particles which have
NN at a distancel ,^L&, this probability becomes

p45

E
0

^L&
v~r !exp„2n0v~r !…dr

E
0

^L&
v~s!ds

'0.8. ~11!

This result, together with the fact that in a Poisson distrib
tion the force on a particle is mainly due to its NN@18#,

2In a Poisson distribution, the probability that there arek particles
in a volumeV is given by (n0V)k exp(2n0V)/k!.
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allows us to consistently treat for an initial short time t
many-body problem as an ensemble of independent and
lated two-body systems.

A. Time scale of NN interaction

This last result explains what happens if one leave
Poisson distribution without velocity evolving under its ow
gravity: most of particles will fall on their NN. Let us dete
mine the time scale of this phenomenon. To this aim, one
use conservation of energy in a pair of particles of massm,

E52
Gm2

r 0
5

m

2
~ ẋ1

21 ẋ2
2!2

Gm2

r ~ t !
, ~12!

where we have used the Newtonian potential. As we will s
in more detail in the next subsection, the problem can
reduced to a single dimension, and choosing center-of-m
coordinates we getx1(t)52x2(t). After some algebraic ma
nipulations, Eq.~12! becomes

ẋ152AGmS 1

2x1

2
1

r 0
D ~13!

assuming thatx1(0).0. The time of fall is

t fall~r 0!52E
r 0/2

0 FGmS 1

2x
2

1

r 0
D G21/2

dx

5
r 0

3/2p

4

1

AGm
. ~14!

Taking for r 0 the mean distance between NNs,^L& given by
Eq. ~7!, we get

t5
p

4
A3GE

3~4/3!
1

A4pGr0

'
1.148

A4pGr0

, ~15!

wherer05mn0 is the mass density.

B. Approximate evolution of the conditional average density

As already mentioned, the force on a particle in a Pois
distribution is almost only due to its NN. As in our simula
tions, the particles have no initial velocity. They will start
fall in the direction of their NN, and we will see that this
what explains the early evolution of^n(r )&p for a time t
&t.

Let us consider that the interaction potential isU(r )
5U(r ).3 As we said before, we make the assumption t
the force on a particle is only due to its NN and that t
Poisson distribution can be approximated by an ensembl
particle pairs evolving independently. The evolution of o
of these pairs is given by the following equations:

3We do not restrict ourselves to a precise potential as it can var
different NBS.
1-3
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mẍ152¹x1
U~r 12!52

dU

dr U
r 12

•

x12x2

r 12
, ~16a!

mẍ252¹x2
U~r 12!51

dU

dr U
r 12

•

x12x2

r 12
,

~16b!

with r 125ux12x2u. Adding these two equations, one ge
ẍ152 ẍ2 ~conservation of total momentum!. As the particles
are supposed to be at rest att50, one hasx152x2 with a
proper choice of the origin~center-of-mass coordinates!.
With this relation,x12x252x1522x2 and one has to solve
only one equation of motion, for instance for particle 1,

mẍ152
dU

dr U
2ux1u

•

x1

ux1u
. ~17!

Using again the fact that the initial velocity is null, one c
reduce the number of dimensions to one,

mẍ52
dU

dr U
2uxu

•sgn~x!52
dV

dx
~18!

with V(x)5U(u2xu)/2, which is the equation for the evolu
tion of a single particle in the potentialV. One can now use
the Liouville theorem@20# in order to study the evolution o
a phase-space density function of systems evolving acc
ing to this equation, and by choosing an appropriate den
function one can obtain the evolution ofv(r ).

If f (x,v,t) is a phase-space density function, the Liouvi
theorem states that

~] t1v]x1 v̇]v! f 50, ~19!

where, in our case,mv̇52dV/dx. The appropriate initial
condition is

f ~x,v,0!5d~v !
v~2uxu!

2
, ~20!

with v(r ) given by Eq.~6!. We divide it by 2 in order to
have half of the particles withx.0 and half with x,0.
Knowing f (x,v,t), one can obtainv(r ,t), the time-evolved
NN probability distribution, with

v~r ,t !5E
2`

`

f ~2r /2,v,t !dv

1E
2`

`

f ~r /2,v,t !dv. ~21!

In order to solve the Liouville equation, let us denote
f t(x0 ,v0)5„Xt(x0 ,v0),Vt(t,x0 ,v0)… the solution of the
equation of motion with initial conditionx0 ,v0 at t50. The
Liouville equation implies thatf (x,v,t) remains constan
along a phase-space trajectory,

f „Xt~x0 ,v0!,Vt~x0 ,v0!,t…5 f ~x0 ,v0,0!. ~22!
12300
d-
ty

With our initial conditions, the solution of this equation
therefore

f ~x,v,t !5 f „f2t~x,v !,0…

5E E
R2

dx1 dv1@ f „f2t~x1 ,v1!,0…

3d~x2x1!d~v2v1!#

5E E
R2

dx0 dv0@ f ~x0 ,v0,0!

3d„x2Xt~x0 ,v0!…d„v2Vt~x0 ,v0!…# ~23!

with f „Xt(x,v),Vt(x,v),t…[ f „f t(x,v),t…. We have used the
fact that the determinant of the Jacobian matrix in the cha
of variables from (x1 ,v1) to (x0 ,v0) is det„]f t /](x,v)…
51. This is actually related to the Liouville theorem@21#.

With this solution, we can get the evolution ofv(r ,t).
First let us remark thatf (x,v,0)5 f (2x,2v,0), and as the
force in Eq.~18! is odd, if x(t) is a solution,2x(t) is also a
solution. This enables us to show thatf (x,v,t)5 f (2x,
2v,t). It is then easy to see that Eq.~21! can be rewritten as

v~r ,t !52E
2`

`

f ~r /2,v,t !dv. ~24!

Using this last equation and Eq.~23!, one has

v~r ,t !52E
2`

`

dx0E
2`

`

dv0 f ~x0 ,v0,0!

3d„r /22Xt~x0 ,v0!…. ~25!

As f (x,v,0)5d(v)v(2uxu)/2, this becomes

v~r ,t !5E
2`

`

dx0 v~2ux0u!d„r /22Xt~x0,0!…. ~26!

Using the fact that for a functionf :R→R one has

d„f ~x!…5 (
yPZ( f )

d~x2y!

u f 8~y!u
~27!

with Z( f )5$yPRu f (y)50%, we get

v~r ,t !5 (
x0PSt

r
UdXt~x0,0!

dx0
U21

v~2ux0u! ~28!

with St
r5$x0PRuXt(x0,0)5r /2%. Of course there are point

x0 in St
r such that dXt(x0,0)/dx050 and thereforev(r ,t) is

not well defined at some isolated points.
We may solve Eq.~18! numerically to find a solution for

Xt(x0,0). The steps to getv(r ,t) for a given t are the fol-
lowing. We start with a set$x0,i5x0,min1 idud.0, 0< i
<n%, wherexmin , d, and n are chosen so that the regio
covered gives non-negligible values forv(2x) and that this
region is sufficiently sampled. For eachi, one calculates nu-
mericallyXi[Xt(x0,i ,0). By doing a linear interpolation with
1-4
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these values, we have an estimate ofXt(x0,0) for all x0 in the
region covered by thex0,i . The last step is to find the set o
x which solvesXt(x,0)5r /2. Once we havev(r ,t), we find
the conditional density by using Eq.~5!.

C. Comparison with a simulation

In order to test the simple argument presented in the
ceding subsection, we did anN-body simulation. We have
used the codeGADGET @22# based on a tree algorithm. Th
infinite universe is simulated by using periodic bounda
conditions and the usual Ewald summation technique.
force between two particles is not exactly Newtonian bu
softened one is used@23#. Note that the potential used is no
the standard Plummer one but a similar one which has
advantage of being perfectly Newtonian at a scale larger t
the softening length.

We have generated a Poisson distribution withN5323

particles in a box of nominal sizeL. The mass of the particle
is such that the mass density is 1. The softening lengthe
50.001 75L: by using Eq.~7! we find ^L&'0.017L and
henceh'10. The initial velocities are set to zero, and t
simulation is run up to 4t.

The time evolution of the conditional density is shown
Fig. 1 @here and in what follows, we normalize the cond
tional average density to the asymptotic density, i.e., we c
sider ^n(r )&p /n0]. It is worth noticing that once the power
law correlations are developed, the subsequent evolu
increases the range of scales where nonlinear clusterin
formed, i.e., wherên(r )&p@n0 , by approximately a simple
rescaling: denoting bŷn(r ,t)&p the conditional density a
time t, one has

^n~r ,t1d!&p'^n~ar,t !&p , ~29!

wherea.0 is a constant which depends on the time@16#.
In Fig. 2, we show the initial NN density distributio

obtained from the Poisson distribution used in the simulat
and the one from Eq.~6!. The conditional density of the
initial configuration together with the one obtained by usi
Eq. ~5! are shown in Fig. 3.

FIG. 1. The normalized conditional density in a Poisson dis
bution at timet, 2t, 3t, 4t. Note that once correlations are deve
oped, the subsequent evolution increases the range of scales
nonlinear @^n(r )&p@n0# clustering is formed, while the function
behavior of two points remains unchanged.
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The evolution of the NN probability distribution in th
simulation together with the one obtained from Eq.~28!, at
times 0.5t, t, and 1.5t, are shown in Figs. 4–6. We ma
notice that the agreement is quite good and even excelle
t50.5t. The differences which appear att5t and t51.5t
seem to be explained by the following arguments.

First of all, we remind the reader that in a Poisson dis
bution the force acting on a particle can be decompose
two terms, namely the one given by the NN particle and
one due to all the other particles. While the first represen
large contribution, the second rapidly goes to zero for sy
metry reasons@18#. However, for particles which have a NN
further than the averagêL&, the situation is different. Let us
denote such a particle byA and its NN byB. Since the force
FBA from the latter onA is weaker than the average force o
a particle from its NN, the force contribution of other pa
ticles nearby also becomes important with regard to the t
force on A. This total force is then not necessarily in th
direction of B and the particleA will not ‘‘fall’’ on it. Fur-
thermore, the particleB has a high probability of having a
NN different from A; it should therefore not go towardsA.
The distance betweenA and its NNB should then grow. This

-

ere

FIG. 2. Initial NN probability distribution for the Poisson cas
The solid line is the exact solution given by Eq.~6! while the
dashed line is the measured one in the simulation.

FIG. 3. Normalized two-point conditional density at the initi
time: the solid line~theory! is the theoretical ensemble averag
behavior while the dashed line is the measured one in the sim
tion.
1-5
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is actually what we observe if we compare carefully Figs
and 6: looking at the value ofr /L at large scales at which th
NN probability distribution reaches a value of 1021, we see
that it is 331022 at t50 and 3.531022 at t51.5t, i.e., the
particles whose NN is at a distance 331022L initially are at
a larger distance (3.531022L) at t51.5t.

Secondly, concerning particles which have their NN a
distance closer than the average^L&, we observe that a
scales between 1023L and 531023L a bump is created: ou
simple model predicts fewer particles than observed in
simulation. This seems to be a sign of the creation of lar
structures. If two particles are isolated, they will move in
regular oscillating motion. This is what the model predic
In the simulation, these two particles, i.e., a particle and
NN, will move together for a while as in the model, but
the same time they will be attracted toward another pair
group of particles, which is not described by the model. T
could have the effect of bringing the two particles clos
together and could even give rise to an exchange of NN w
the other group of particles, causing the evolution of the N
probability distribution to be different from that in the mode
The bump reflects, therefore, this step of the clustering wh
tends to bring pairs together.

In Figs. 7–9, we compare the predictions of the con
tional density given by our model with the measured on

FIG. 4. NN probability distribution att50.5t in the Poisson
simulation.

FIG. 5. NN probability distribution att5t in the Poisson simu-
lation.
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from the simulations at times 0.5t, t, and 1.5t. One sees
again that our approximation works really well as it succee
in reproducing the development of the correlations. T
means that these correlations are therefore only a co
quence of the interaction of NNs. We may also notice
interesting thing: att51.5t, even if the agreement is ma
ginally good at scales larger than 1023L, it is still correct at
smaller scales. An explanation is that these scales corres
to pairs whose particles were very close~i.e.,,^L&) initially
and were therefore well bounded. When they start to feel
effect of the surrounding particles, their relative motion
not affected and is still described by a two-body interactio

At larger scales, where there are no correlations, our
proximation fails to reproduce the correct behavior at
times. For a certainr the conditional density goes rapidly t
0. This is due to the fact that at these scales, the NN pr
ability distribution is really small and Eq.~5! is not valid
anymore: this equation implies that the density around a p
ticle is only due to its NN and that there are no partic
further than the NN. Therefore, at distances larger than
average distance between NNs, the density has to go to
there are no other particles to maintain a nonzero densit

We finally remark that, as noticed in@16#, to study the role
of these NN interactions in the evolution of clustering, o
may modify the force integrator of the numerical code
include only the NN contribution to the gravitational force

FIG. 6. NN probability distribution att51.5t in the Poisson
simulation.

FIG. 7. Behavior of the average conditional density att50.5t in
the Poisson simulation.
1-6
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Of course, the result agrees perfectly with the study p
sented here.

D. Poisson simulation with large softening

In the Poisson simulation, we have observed that the
structures created are pairs of particles. Now we presen
other simulation in which this is not the case. It is simply
Poisson simulation with a large softening, 100 times lar
than in the previous case:e50.175L and henceh'0.1.

Figure 10 shows the evolution of the conditional dens
in this simulation. The time is still in units oft but only for
comparison with the first Poisson simulation, because th
no longer a microscopic characteristic time. One can see
the correlations do not develop at the smallest scales of
system (̂L&50.017L) but are directly found up to 1021L,
which is of the order ofe.

Looking now at Figs. 11–14, where we compare the c
ditional densities obtained from the simulation with tho
reconstructed from the NN probability distributions, we s
that as soon as correlations develop, they are already ma
many particles as the approximations of the conditional d
sity by the NN probability distribution fail.

In the beginning of this simulation, the NN contribution
the total force acting on a particle is clearly not importa
The dominant contribution is actually the force due to ma
particles at some larger scales. This means that two ne
particles do not fall on each other as in the previous case

FIG. 8. Behavior of the average conditional density att5t in
the Poisson simulation.

FIG. 9. Behavior of the average conditional density att51.5t in
the Poisson simulation.
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feel approximately the same force and therefore go in
same direction once the simulation starts. This direct
should be the one of the nearest mass overdensity. S
other particles will also be attracted in this direction. T
effect of this motion is the formation of the first structure
directly made of more than two particles.

As a final remark, it is interesting to note that whe
power-law correlations are formed att'4t, the exponent
and the amplitude of the conditional density agree very w
with the small softening simulation that was previously d
cussed.

IV. THE SHUFFLED LATTICE AND THE CDM CASE

We study now two different cases in which the avera
force on a particle in the initial distribution is different from
the Poisson case, i.e., it is not dominated by the NN one.
main point here is to use the relation~5! to study the creation
of the first structures: by obtaining the NN probability dist
bution in a simulation, we reconstruct the conditional dens
and compare it with the one measured directly in the sim
lation.

A. The shuffled lattice

A shuffled lattice is a simple ordered distribution@19#
which is obtained by adding a random small perturbation

FIG. 10. Evolution of the normalized conditional density in th
Poisson simulation with large softening simulation. The times
0,1,2,3,4 in units oft.

FIG. 11. Reconstruction of the conditional density fromv(r ) at
t50 in the Poisson simulation with large softening simulation.
1-7
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a perfect lattice of particles: each particle of this lattice
moved randomly in a cubic box centered on the unpertur
position of the particle. The only parameter is then the ra

as5
d

l
~30!

between the size of the cubic box 2d and the lattice spacing
l. Whenas50 it is a perfect lattice, while asas→` it be-
comes a Poisson distribution@19#. For the simulation pre-
sented here, we have used a shuffled lattice with 323 particles
and a shuffling parameteras50.25. The mass of the par
ticles, the number density, and the softening length of
force are the same as for the Poisson simulations previo
discussed: this givesh'14.

In Fig. 15, the evolution of the conditional density
shown. The time goes from 0 to 4t with t given by Eq.~15!.
One may note that once correlations are developed, the
lution proceeds in a very similar way to the Poisson case~see
Fig. 1!: it is the same kind of rescaling as given by Eq.~29!,
the only difference being the speed at which this happ
@16#.

In Fig. 16, we show the NN probability distribution me
sured in the simulation at the corresponding times. It is
portant to note that att50 there is an anticorrelation at sma

FIG. 12. Reconstruction of the conditional density fromv(r ) at
t5t in the Poisson simulation with large softening simulation.

FIG. 13. Reconstruction of the conditional density fromv(r ) at
t52t in the Poisson simulation with large softening simulation.
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scales: the normalized conditional density is smaller than
This is due to the fact that two particles cannot be closer t
a minimal distance which depends onas, the excluded vol-
ume feature being a typical property ofsuperhomogeneou
distributions@19#. This can be seen with the NN probabilit
distribution, which is very peaked around the mean interp
ticle separation.

Figures 17–21 show the reconstructed conditional den
~by using the NN probability distribution! and the one mea
sured directly in the simulation. As for the Poisson case,
sees that the first structures observed via the conditional
sity are only due to a change of the NN probability distrib
tion. Of course the dynamics of a particle with its NN are n
described in the same way as for the Poisson case. The f
on a particle cannot be approximated by the one from its N
but the latter seems to be sufficiently important to give
direction of the particle displacement. Another interesti
point is the fact that there are two phases in the cluster
This can be seen in Fig. 15: betweent050 andt15t almost
nothing happens, while betweent15t andt252t the corre-
lations are quickly developed. Ast22t15t is the typical
time scale for two isolated particles, separated by a dista
of order l, to fall on each other, this seems to show that t
brutal change is a sign of such a behavior.

In order to verify this argument, we have done a simp
test: we have run the simulation again but with a modifi

FIG. 14. Reconstruction of the conditional density fromv(r ) at
t53t in the Poisson simulation with large softening simulation.

FIG. 15. Evolution of the normalized conditional density in th
shuffled lattice distribution. The times are 0,1,2,3,4 in units oft.
1-8
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integrator which, for a given particle, calculates the for
acting on it only from itsn NNs, n being an integer identica
for all the particles, which can be chosen arbitrarily a
changed during the simulation. For our study, we have d
the following: ~i! at t50, the integrator finds the six NNs o
each particle;~ii ! it starts to evolve the system up tot5t,
but at each time step the force on a particle is due only to
six particles, which were its six NNs att50; ~iii ! at t5t,
the integrator finds the NN neighbor of each particle;~iv! it
continues the evolution up tot52t, the force on a particle
now being only the one from the particle which was its N
at t5t.

In Fig. 22, we show the result which confirms our a
sumption: betweent and 2t, the dynamics is driven by NN
interaction. Furthermore, one can see that between 0 ant,
what matters for a particle is the force from its six NN
chosen for the reason that in a perfect lattice, for a giv
particle, there is not a single NN but there are six NNs, al
the same distancêL&. In the case of the lattice, these s
particles are in a perfect symmetric configuration around
center particle~this is the case for all the particles whe
considered as centers!. This implies that the force resultin
from these particles cancels. In a shuffled lattice, as long
the parameteras is smaller than 1, this remains the cas
even if there is a single NN for each particle, there are
ways five other particles which are almost at the same

FIG. 16. Evolution of the NN probability distribution in th
shuffled lattice for the same times as in Fig. 15.

FIG. 17. Reconstruction of the conditional density fromv(r ) at
t50 in the shuffled lattice.
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tance as the NN. The simple test presented shows actu
that the force from these six particles is what matters for
evolution of the correlations in the system betweent50 and
t, and the force from more distant particles is negligible.

Some simple calculations show actually that the force
a particle in a shuffled lattice is approximately given by

Fs52A3
as

l 2
, ~31!

assumingGm251. Looking at Fig. 23, one has, for instanc
that the squared distancer 01 between the central particle
and particle 1 is given by

r 01
2 5 l 2F S 12

«1,x2«0,x

l D 2

1 (
k5y,z

S «1,k2«0,k

l D 2G , ~32!

where« i5(« i ,x ,« i ,y ,« i ,z) is the displacement of thei th par-
ticle with respect to its lattice point. Supposing that the
displacements are small compared tol, one finds that the
force on the central particle from particle 1 is

FIG. 18. Reconstruction of the conditional density fromv(r ) at
t5t in the shuffled lattice.

FIG. 19. Reconstruction of the conditional density fromv(r ) at
t52t in the shuffled lattice.
1-9
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F1,x5
2~ «̃0,x2 «̃1,x!21

l 2
1O~ «̃2!, ~33a!

F1,k5
«̃1,k2 «̃0,k

l 2
1O~ «̃2! for k5y,z,

~33b!

with «̃ i ,k5« i ,k / l . Making now the sum over the six particle
around and averaging on all the« i ,k which are random vari-
ables going from2d to d, one obtainŝ Fx&5^(1

6Fi ,x&50
and a variancêFx

2&54d2/ l 6. This gives for the total square
force

^F2&5^Fx
21Fy

21Fz
2&5

12d2

l 6
~34!

whose square root is given by Eq.~31!. The force from the
NN is given approximately byFNN' l 22, which shows that
the real force is roughly

Fs'2A3asFNN . ~35!

FIG. 20. Reconstruction of the conditional density fromv(r ) at
t53t in the shuffled lattice.

FIG. 21. Reconstruction of the conditional density fromv(r ) at
t54t in the shuffled lattice.
12300
One can estimate a time scalets defined by the relationl /2
5GmFsts

2/2 which is an approximative upper bound for th
time scale needed by two NN particles to fall on each oth

ts5A 2p

A3as

1

A4pGr0

'1.7
t

Aas

~36!

with t given by Eq.~15!. Some simple numerical tests pe
formed by varyingas show that the real time scale is clos
to

ts'
t

Aas

&ts . ~37!

In our case, withas50.25, this givests'2t which is indeed
in good agreement with the simulation.

In summary, while in a Poisson simulation, the corre
tions are made directly from the interaction between NN.
a shuffled lattice, there is a first phase in which a parti
interacts mainly with its six NNs. This phase is characteriz
by strong anticorrelations which are slowly destroyed. T
is then followed by a second phase in which some posi
correlations are rapidly developed under some dynam
driven by NN interactions.

FIG. 22. Conditional density in the simulation~S! and in the
modified simulation~MS! for the shuffled lattice.

FIG. 23. Force in a shuffled lattice. The small circles (s) rep-
resent the lattice points while the black dots (d) represent the
particles.
1-10
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B. CDM simulation

Finally, we study a CDM cosmological simulation whic
has been done by the Virgo Consortium@24#. This simulation
is representative of many other cosmological simulations
their parameters, their initial particle configurations, a
their small-scale properties are more or less always the sa
The following discussion should therefore apply to oth
cosmological simulations of CDM type. Compared to t
simulations we have done, this cosmological simulation
different on two points. First, there is space expansion. S
ondly, the initial conditions~IC! are very elaborate. This las
point needs some explanation.

The goal of this simulation is to study the evolution of
gravitating fluid made of CDM particles with particular in
tial correlations. As already mentioned, the particles in
simulation do not represent CDM particles but are a kind
cloud of CDM whose mass is of the order of a galaxy. T
discretization of the fluid introduces some effects which
reduced by putting initially the particles in a particular wa
The trick is to create first a distribution where the force on
particle is almost zero. In the Virgo case, this is done
running the integrator used for the simulation on a Pois
distribution with a negative gravity constant for a while. T
distribution obtained is characterized by the fact that
main part of the force on a particle comes from large-sc
mass fluctuations. The contribution from nearby particles
negligible. Note that the use of a repulsive gravity gives
behavior similar to aone-component plasma@9#.

With this new distribution, it is necessary to apply a co
related displacement which would transform a continuo
and perfectly uniform distribution into the expected CD
fluid, i.e., with a power spectrum on relatively large scal4

behaving asP(k);kn with 23,n,21. This displacemen
field is applied by using the Zeldovich approximation, whi
also fixes the initial velocity of each particle as a function
its displacement. The distribution obtained is therefore c
related at all scales and has some small initial velocity.5

Note that as the preinitial distribution has superhomo
neous properties~as a lattice or a one-component plasm
@19,9#! there are two main points to be considered:~i! on
small scales the distribution continues to have the exclu
volume feature typical of superhomogeneous systems,~ii ! on
large scales the correlation properties are given by a com
combination of the preinitial correlations~which are long-
ranged! and by the correlations imposed by the displacem
field. Whether the resulting fluctuation field has the sa
small-scale properties of the CDM continuous distribution
questionable@6–8,10#. However, here we are interested on
in the small-scale features that have a clear imprint of
preinitial superhomogeneous distribution that is very simi
as we discuss below, to the shuffled lattice.

This simulation is made withN52563 particles in a box
of sizeL5239.5 Mpc/h ~where 0.5&h&1 is the dimension-

4It is not the aim of this simulation to consider the smallk region
whereP(k);k.

5Note that the velocities are small@6#. This is why afterwards we
dare to compare this simulation with our initially static simulation
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less Hubble constant!. The masses are such thatV51 and it
should represent a standard CDM model. The softening
e50.036 Mpc/h, which givesh'25. This simulation goes
from a redshiftz550 to z50.

We have measured the conditional density and the
probability distribution. With the latter we have used the a
proximation based on the NN probability distribution
compute the conditional density. The evolution of the N
probability distribution and the conditional density a
shown in Figs. 24 and 25, while the results are shown
Figs. 26–28.

The first striking feature that we note is that the evoluti
is very similar to the shuffled lattice case. The condition
density, being initially that of an anticorrelated distributio
develops then positive power-law-like correlations at sca
smaller than̂ L&.

This evolution of the correlations is well described b
using the NN probability distribution, which means th
these correlations are simply due to correlations betw
NNs. In @15#, we already analyzed this simulation. We o
served that correlations started at the smallest scales o
system, i.e.,e,r ,^L&. Now with the relation between the
NN probability distribution and the conditional density, w
can make this observation more accurate: the ‘‘correlation
the smallest scales’’ are actually correlations between N
As in @15#, we can again raise the question of whether th

.

FIG. 24. Evolution of the NN probability distribution in the
CDM simulation. The times are given by the redshiftz.

FIG. 25. Evolution of the conditional density in the CDM simu
lation. The times are given by the redshiftz.
1-11
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correlations are due to some interactions between NNs o
a ‘‘large-scale’’ effect, i.e., a consequence of the initial v
locity field and the acceleration of the particles under
gravity of large-scale mass fluctuations. This large-scale
fect is what we would expect from fluid dynamics.

The main point in@15# and @16# was the kind of univer-
sality of the correlations developed in different gravitati
systems of particles, among them this CDM simulation
Poisson simulation, and a shuffled lattice simulation. N
we can add that the first correlations are exactly of the sa
kind in all these simulations, namely NN correlations. In
Poisson and a shuffled lattice simulation, the discretiza
plays an important role in the creation of these correlatio
This would suggest that it is the case for the CDM simu
tion.

V. CONCLUSIONS

The fundamental relation used in this paper is Eq.~5!. It
relates the NN probability distributionv(r ) to the condi-
tional density^n(r )&p at scales of the order of the avera
distance between NNs as long as most of the particles ha
clear NN. By checking if this relation holds in a simulatio

FIG. 26. Reconstruction of the conditional density fromv(r ) in
the CDM simulation atz510.

FIG. 27. Reconstruction of the conditional density fromv(r ) in
the CDM simulation atz55. Note that the discrepancy at scal
below e comes from a too small statistics on the measured co
tional density.
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we get an interesting piece of information on the nature
the correlations: are they only due to NN correlations or
they show the existence of structures made of many p
ticles?

In the three simulations that we have considered, Pois
shuffled lattice, and CDM, which are high-resolution on
(h@1), we have seen that this relation holds at early tim
showing that the correlations grow by being initially on
NN correlations. In another simulation, Poisson with lar
softening such thath!1, we have seen that this is not th
case anymore. In this simulation, the first correlations
due directly to the formations of large structures—i.e., larg
than the typical distance between NNs—containing m
than two particles.

The results for the high-resolution Poisson simulation a
for the shuffled lattice have encouraged us to push the an
sis a bit further. In the Poisson case, using the relation~5!
and considering that~i! the force on a particle is mainly du
to its NN and~ii ! for more than half of the particles, two
particles are mutually NN, we could treat the system as a
of isolated two-body systems. Knowing the initial NN pro
ability distribution and using the Liouville theorem, it wa
then possible to find the early evolution of the correlatio
with quite a lot of precision.

In the shuffled lattice simulation, we have observed tha
the beginning the situation was more complex than in
Poisson case. Due to the approximative symmetries,
early evolution involves interactions between more than t
particles. Actually, in this case, instead of having a single N
for each particle, there are six particles which lie at alm
the same distance: such a situation changes the small-
behavior of the force on an average particle by introducin
compensation, which is exact and gives a null force o
when the lattice case is considered. However, the resu
similar to the Poisson case: the formation of correlatio
between NNs. At a later time, the situation becomes exa
identical to the Poisson case as the system behaves like
of isolated two-body systems. The consequence is a ra
growth of the correlations between NNs.

For the CDM simulation, we have not tested whether
i-

FIG. 28. Reconstruction of the conditional density fromv(r ) in
the CDM simulation atz53. Note that the discrepancy at scal
below e comes from a too small statistics on the measured co
tional density.
1-12
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evolution could be explained at a certain time by NN int
actions. This is a really important question because
simulation is supposed to describe a fluid. The particles
not meant to describe particles but mass tracers: they sh
follow the flow due to gravity from the large-scale ma
fluctuations. If this simulation had the same dynamics as
Poisson and shuffled lattice simulations, that is, if it could
explained by NN interactions in a small amount of time, th
would clearly show that the fluid is not well simulated, as t
evolution would be influenced by the discrete nature of th
particles resulting from the discretization of the fluid a
thus it would not exist in a real fluid. This would then requi
some careful study in order to understand how these eff
influence the later evolution.

In some previous papers@15,16# we already raised thes
questions, after having observed the kind of universal co
lations developed in different simulations all characteriz
by their particle-based dynamics. In some recent pap
@13,14#, others authors have also analyzed the influence
these particles could have on the evolution, but only a
consequence of close encounters between these part
Their conclusions were that the particles have an influe
on the density profile of the clusters.

In this paper, we have tried to bring a new element to
understanding of what happens in several high-resolu
simulations, including the cosmological CDM one, by sho
ing the nature of the first correlations developed. We a
raise some new questions which clearly deserve fur
study. From our results, we now argue for three conclusi
about the nature of clustering in the nonlinear regime
served in these NBS. With respect to cosmological NBS,
conclude that the exponent characterizing the nonlinear c
tering observed has essentially nothing to do with~i! the
expansion of the Universe or~ii ! the nature of the smal
initial fluctuations imposed in the IC. We further present e
dence for a qualitative description of the dynamics drivi
this clustering given in@11# based on the Poisson case, and
@15# based on a similar analysis of the CDM simulation.~iii !
The nonlinear clustering develops from the large fluctuati
intrinsic to the particle distribution at small scales~specifi-
cally around the smallest resolved scalee). In particular, we
show here that the exponent characterizing it can be see
se
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o-
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emerge at early times in the simulations when the evolut
is well approximated as being due only to the interactio
between NN particles.

A more quantitative description of this dynamics is ev
dently needed, with the principal goal being to understa
the specific value of the exponent. In the cosmological lite
ture ~see, e.g.,@1#!, the idea is widely dispersed that th
exponents in nonlinear clustering are related to that of
initial power spectrum of the small fluctuations in the CD
fluid, and even that the nonlinear two-point correlation c
be considered an analytic function of the initial two-poi
correlations@25,26# ~although see@2#, where more emphasi
is put on the tendency for IC to be washed out in the n
linear regime!. The models used to explain the behavior
the nonlinear regime usually involve both the expansion
the Universe and a description of the clustering in terms
the evolution of a continuous fluid. We have argued that
exponent is universal in a very wide sense, being commo
the nonlinear clustering observed in the nonexpanding c
It would appear that the framework for understanding
nonlinear clustering must be one in which discreteness~and
hence intrinsically nonanalytical behavior of the dens
field! is central, and that the simple context of nonexpand
models should be sufficient to elucidate the essential phys
Note that we have not discussed here theamplitudeof the
correlation function, and in particular how it evolves in tim
which is directly related to the time evolution of the scale
nonlinearity. This is where the fluctuations at large sca
which are different in the various IC considered, can pla
role as envisaged in the cosmological context~through the
linear amplification of power at large scales!. We will ad-
dress this question further, again considering nonexpand
models, in future work.
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