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Growth of correlations in gravitational N-body simulations
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In the gravitational evolution of a cold infinite particle distribution, two-body interactions can be predomi-
nant at early times: we show that, by treating the simple case of a Poisson particle distribution in a static
universe as an ensemble of isolated two-body systems, one may capture the origin of the first nonlinear
correlated structures. The developed power-law-like behavior of the two-point correlation function is then
simply related to the functional form of the time-evolved nearest-neighbor probability distribution, whose time
dependence can be computed by using the Liouville theorem for the gravitational two-body problem. We then
show that a similar dynamical evolution is also found in a large-scale ordered distribution, which has striking
similarities to the case of a cosmological cold dark matter simulation which we also consider.
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I. INTRODUCTION length scales which are introduced. On the one hand, a rela-
tively small number of particles are used: this introduces a
Nonlinear gravitational clustering can be studied bymass scale which is the mass of these particlestypical
means oN-body simulation§NBS) which compute numeri- cosmological NBS, this mass is of the order of a galaxy and
cally the evolution of a system of particles under the actionheénce many orders of magnitude larger than the microscopic
of their mutual gravity. The gravitational many-body prob- Mass of a CDM particle.Furthermore, it introduces a new
lem consists in the explanation of the time evolution of thecharacteristic length scale given by the average distance be-
NBS and in the theoretical understanding of the formation ofween nearest-neighb¢kN) particles(A). Clearly the dis-
nonlinear structures. Up to now, two different approache$retization method used should conserve the continuous cor-

have been generally studied: the first involves research delations, but this is a problematic aspect of standard
approximate solutions of the Bogoliubov-Born-Green-methods[6—10. On the other hand, one must smooth the
Kirwood-Yvon (BBGKY) hierarchy[1], and the second ex- gravitational force at small scales in order to avoid problems

plores statistical thermodynamics mainly developed byelated to the divergence of the numerical integrator and re-
Saslaw[2]. move collisional effects due to strong scattering between par-

A main issue in the context of cosmological NBS is to ticles. This is usually done by using a softening lengtim
relate the formation of nonlinear structures to the specifi¢he gravitational potential generally defined as
choice of initial conditions used: this is done in order to

constraint models with observations of cosmic microwave 1

background radiation anisotropies, which are related to the P(r)=——. (1)
L. L. . . . 2 2

initial conditions, and of galaxy structures, which give in- e+

stead the final configuration of strongly clustered matter.
Standard primordial cosmological theoretical density fields,This is the second length scale introduced to numerically
such as the cold dark mattéEDM) case, are Gaussian and simulate the collisionless fluid.
made of a huge number of microscopic mass particles, which The question which naturally arises is then how to choose
are usually treated theoretically as a self-gravitating colli-the two new length scalgs\) ande: the first obvious con-
sionless fluid 3-5]: this means that the fluid must be dissi- dition is that they must both be smaller than the intrinsic
pationless and that two-body scattering should be small. Theharacteristic scales of the continuous fiéldat is, smaller
problem is then in which limit NBS, based on particle dy- than the typical scale corresponding to the turnover scale of
namics, are able to reproduce the above two conditions. Ithe CDM power spectrujn Then one has to tune the ratio
this context, one has to consider the issue of the physical role= (A )/ e appropriately with respect to the physical problem
of particle fluctuations in the dynamics of NBS as the totalunder study. In fact, whem>1 one has a larger dynamical
energy is conserved during time evolutithe only mecha- range than the casg<1, but strong scattering between
nism of energy dissipation is related to local gravitationalnearby particles is not smoothed and hence one is not effec-
processes tively reproducing a dynamics where particles play the role
In fact, in the discretization of a continuous density field of collisionless fluid elements. It is in this sense that one
one faces two important limitations corresponding to the newalks about the role of discreteness in NBS, namely that
strong scattering between nearby particles is produced by the
discretization and by the choice af>1, and it should be
*Electronic address: Thierry.Baertschiger@physics.unige.ch ~ considered artificial and spurious with respect to the dynami-
"Electronic address: Francesco.Sylos-Labini@th.u-psud.fr cal evolution of a self-gravitating fluid. This point has been
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considered in different ways and contexts by many authorghe two-point correlation function remains unchanged at later
e.g.,[3-5,11-14 they all show that discreteness has sometimes, while the regime of strong clustering increases with
influence on the formation of the structures. time.

For this reason, discreteness, which nevertheless intro- We then study in the same perspective three other differ-
duces large fluctuations in the density field up to scales o€nt simulations in which the force is not dominated by short-
order(A), may play an important role in the early stages ofscale contr!t_)utlo_ns since the beginning. The Im_k_between the
nonlinear structure formation, i.e., when the average distanciN pProbability distribution is found to be an efficient tool to
between nearby particles becomes rapidly smaller {tdn study the nature of the first c_:orrelatlons c_ieveloped _and the
How discrete effects are then “exported” toward large 9r0Wth of power-law correlations when high-resolution (
scales, if they are at all, is a complex and difficult problem to> 1) NBS are considered.
understand. In other words, the problem is that of under-
standing whether large nonlinear structures, which at late Il. STATISTICAL TOOLS
times contain many particles, are produced solely by the col- . . _
lisionless dynamics of a fluid and its density fluctuations or A S|mple tool used to .study cluste.rlng ofa matter distri-
whether the particle collisional processes are important als?lJtlon IS the_ two-point correlap_on fur?c“on [.191
in the long term. For example, ifL1] it was argued that n(rl)n(r_2)>, which gives the probability density for finding
discreteness effects play an important role in the self-similaP€ Particle around, and a second one aroumd [n(r)
evolution of correlated structures, while the effect of NN P€ing the microscopic mass density funcfiom the follow-
interactions has been the subject of a toy model developed ing, we .WI|| restrict ourselvgs to distributions which have a
[12]. yvell—de_ﬂned average density, and are homoggneous and

In [15,16 we have already considered the effects of dis-isotropic. In that case, the two-point correlatl_on function
cretization in the dynamics of nonlinear structure formation®My depends om;,=|r;—r,| and the asymptotic average
in several NBS with and without space expansion. We havdensity is positive. This function is useful to study both con-

concluded that the fluctuations at the smallest scales in thediuous and discrete distributions of matter. In the latter case,
NBS—i.e., those associated with the discreteness of th@hichis the case of interest here, it can be useful to measure

particles—play a central role in the dynamics of clustering in2Verages from a point occupied by a particle. For instance,
the nonlinear regime. This was based, in particular, on th@n€ can define theonditional density

fact that the correlations appear to be built up from the initial

clustering at the smallest scales and that the nature of the (n(r) (n(O)n(r)) @)
clustering seems to be independent (of at most very P Ng

weakly dependent 9grthe initial conditions. The theoretical

understanding of the creation of these correlations shoulpr r>0; this gives the average density at a distanf®@m
therefore deal with the apparently crucial role of the intrin-an occupied point.It is easy to show that one has the fol-

sically highly fluctuating initial density field. lowing relation:
In this paper, we put our previous results on a firmer
physical basis. We study the formation of first structures in (n(r))p=ne[1+&(r)] for r>0, ()

several NBS. As a reference example, we use a (xédo

initial velocity) Poisson distribution as initial conditions and where£(r) is thenondiagonal part of the reduced two-point
we consider the case of a nonexpanding background, i.e., @orrelation function[19].

static universe. In this case, we show that two-body interac- In order to study small-scale properties of a discrete dis-
tions are enough to explain the evolution of the correlatioriribution, one may consider theearest-neighbor probability
function at early times, as has been already noticed . distribution w(r). This gives the probability density of the
This is done by treating thi-body problem as an ensemble distance from a particle to its NNL8]. Let us briefly discuss

of isolated two-body systems. Such an approximation is jusits relation to the average conditional density. By definition,
tified, in the Poisson case, by the fact that the probability thathe probability that, given a particle, there is another particle
nearby particles are mutually NN is high enougk@.6) in the infinitesimal volume elementV at distance is
(becoming of order 1 when very close particles are only con-

sidered and by the fact that the NN force is the dominating p1(r)=(n(r)),av. (4)
one[18]. Using the Liouville theorem for the gravitational

two-body problem, we can find the early evolution of the NN Now we only have to note that the probabilia(r)dr for a
probability distribution. As this distribution can be linked to given particle having a NN at a distance betweeand r

the conditional density and therefore to the reduced two-dr is the probability of having no NN in the sphere of
point correlation function, we also obtain their evolution atradiusr centered on the particle multiplied by the probability
early times. Comparing with the results from the simulationsof having one particle in the infinitesimal spherical shell
we find excellent agreement: this shows that the first strucaround this sphere,

tures observed are a consequence of two-body interactions

between NNs. After a time of the order of the typical time

scale of two-body interaction, this is of course not the case % ), means that it is a conditional average: the origin is an occu-
anymore. However, we note that the functional behavior opied point.
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r ) allows us to consistently treat for an initial short time the
o(r)dr= ( 1- fo w(S)d5)<n(f)>p47Tf dr, (5 many-body problem as an ensemble of independent and iso-
lated two-body systems.

where the second part of the right-hand side is the probabil-
ity py(r) with dv=4zr2dr. A. Time scale of NN interaction

This last result explains what happens if one leaves a
. EVOLUTION OF A POISSON DISTRIBUTION Poisson distribution without velocity evolving under its own
Sgravity: most of particles will fall on their NN. Let us deter-

In the case of a Poisson distribution, one simply ha mine the time scale of this phenomenon. To this aim, one can

(n(r))p=no [19]. It is then easy to solve E@5) for w(r).

One finds[18] use conservation of energy in a pair of particles of ntass
Gm> m ., .
4 = —= — 2 2 —
w(r)=4wnor2exr1<—§wnor3>. (6) . o 2 AR T (12

where we have used the Newtonian potential. As we will see

The average distance between a particle and its NN is givep1 more detail in the next subsection, the problem can be

by reduced to a single dimension, and choosing center-of-mass
w 13 (g coordinates we get; (t) = — x,(t). After some algebraic ma-
= = = nipulations, Eq(12) becomes
W= [(romo=| | T3] @ e 412
. . : i 1 1
wherel'¢ is the Euler incomplete gamma function. X=—\/Gm ——— (13)
Let us now compute the probability, in a Poisson distri- 2x1  Ig

bution, that given a particle and its NN, they are mutually . _ .
NN. Let us suppose that a partiokehas the particld as its ~assuming thak,(0)>0. The time of fall is
NN at distancer. The probability thatA is the NN of B is B

- . . 1 1 1/2
equal to the probability that no other particles are in the ___) dx
volumeu (r) defined by the portion of the sphere of radius 2X  rg
aroundB which is not contained in the sphere of radius

0
tran(ro)=— fr {Gm

aroundA. For a Poisson distribution this is simply 32 1
= = (14
Po(r) =exp(—ngv(r)), 8 4 Jc

whereu (r) is given by Taking forry the mean distance between NK4,) given by

Eq. (7), we get

11
v(r)=1—2ﬂ'r3. 9 8
T 1 1.14
. . . 7= —\3IZ(4/3) ~ ., (15
Averaging onr, we get the probability that two particles are 4 \/477(3,)0 \/477(3,)0
mutually NN,
wherepg=mn, is the mass density.
p3=f w(ryexp(—ngu(r))dr=0.6. (10
0 B. Approximate evolution of the conditional average density

Hence we have that more than half of the particles are mu-_ S already mentioned, the force on a particle in a Poisson
tually NN. If we restrict ourselves to particles which have adistribution is almost only due to its NN. As in our simula-

NN at a distancé<(A), this probability becomes tions, the particles have no initial velocity. They will start to
’ fall in the direction of their NN, and we will see that this is

(A) what explains the early evolution d@h(r)), for a timet
f w(r)exp(—nev(r))dr <7
Ps= 0 ~0.8. (11) Let us consider that the interaction potential Ur)
FA)w(s)ds =U(r).® As we said before, we make the assumption that
0 the force on a particle is only due to its NN and that the

Poisson distribution can be approximated by an ensemble of
This result, together with the fact that in a Poisson distribu-particle pairs evolving independently. The evolution of one
tion the force on a particle is mainly due to its NN8|, of these pairs is given by the following equations:

2In a Poisson distribution, the probability that there laygarticles 3We do not restrict ourselves to a precise potential as it can vary in
in a volumeV is given by (1,V)* exp(—noV)/k!. different NBS.
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. du X1— Xy With our initial conditions, the solution of this equation is

mx; ==V U(rpp)=——-| - , (168 therefore
1 dr |, lio
12
f(X,U,t):f((,b_t(X,U),O)

. Y U(r) =+ du X1— X5
mX = — r = —_— . s

’ e dr r, 12 :f fdeXl dv [ f(P-1(X1,01),0)

(16b)

X (X—X1) (v —v1)]
with r1,=|X;—X,|. Adding these two equations, one gets
X, = —X, (conservation of total momentymAs the particles
are supposed to be at resttat0, one hasx;= —x, with a
proper choice of the origincenter-of-mass coordinades
With this relation x; —x,=2x; = —2x, and one has to solve
only one equation of motion, for instance for particle 1,

:f ﬁl?deOdvo[f(Xo,Uo,o)
X 8(X—X¢(X0,00))8(v —Vi(Xo,v0))] (23

with f(Xy(X,v),Vi(X,v),)=f(h(X,v),t). We have used the
fact that the determinant of the Jacobian matrix in the change
of variables from Xq,v4) to (Xg,vq) IS de{d¢,/d(X,v))

=1. This is actually related to the Liouville theordi2i].

With this solution, we can get the evolution af(r,t).
Using again the fact that the initial velocity is null, one canFirst let us remark that(x,v,0)=f(—x,—v,0), and as the
reduce the number of dimensions to one, force in Eq.(18) is odd, ifx(t) is a solution,—x(t) is also a
solution. This enables us to show théfx,v,t)="f(—x,

du
dr

. X1
le: -

7

2[xq] |Xl| .

mx= — ‘jj_l: sgrix)=— & (18) —v,t). Itis then easy to see that EQ1) can be rewritten as

2|x| -
with V(x)=U(|2x|)/2, which is the equation for the evolu- o(r,t)=2 f frzp Hdv. (24)
tion of a single particle in the potentigl One can now use
the Liouville theoren{20] in order to study the evolution of Using this last equation and E(23), one has
a phase-space density function of systems evolving accord-
ing to this equation, and by choosing an appropriate density N *
function one can obtain the evolution ofr). w(r,1)=2 deO ﬂodvo f(X0,00,0)

If f(x,v,t) is a phase-space density function, the Liouville
theorem states that X 8(r12—X(Xg,vg))- (25
(0 +va,+0v3,)f=0, (19 Asf(x,0,0)=8(v)w(2|x[)/2, this becomes
where, in our casemv=—dV/dx. The appropriate initial w(r,t)=fx dXo w(2|Xo|) 8(r 12— Xi(X0,0)).  (26)
condition is —
o(2|X]) Using the fact that for a functioh: R—R one has
f(%,0,00=8(v) ——, (20)
o(X—y)
with w(r) given by Eq.(6). We divide it by 2 in order to 5(f(x))—y§(f) ) (27)
have half of the particles witk>0 and half withx<<0.
Knowing f(x,v,t), one can obtaim(r,t), the time-evolved wjith Z(f)={yeR|f(y)=0}, we get
NN probability distribution, with
dX(%0,0)| ~*
- (=2 ‘d—‘ o(2x)) (28
w(r,t)= f(=r/2p,t)dv xoe S Xo

+f F(r/2p t)dv. 21)

In order to solve the Liouville equation, let us denote by

di(X0,v0) = (Xi(Xg,v0),Vi(t,Xg,vg)) the solution of the
equation of motion with initial conditiorxg,vy att=0. The
Liouville equation implies thatf(x,v,t) remains constant
along a phase-space trajectory,

f(Xi(X0,00),Vi(X0,00),1)=f(X0,00,0). (22

with S{={xg e R|X{(X0,0)=r/2}. Of course there are points
Xg in St such that &(xq,0)/dxo=0 and thereforeo(r,t) is
not well defined at some isolated points.

We may solve Eq(18) numerically to find a solution for
Xi(X0,0). The steps to geb(r,t) for a givent are the fol-
lowing. We start with a sef{Xo;=Xgmin+id|5>0, O<i
<n}, wherexy,, 6, andn are chosen so that the region
covered gives non-negligible values fef2x) and that this
region is sufficiently sampled. For eachone calculates nu-
merically X;=X(Xq;,0). By doing a linear interpolation with
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FIG. 1. The normalized conditional density in a Poisson distri-
bution at timer, 27, 37, 47. Note that once correlations are devel-
oped, the subsequent evolution increases the range of scales wh
nonlinear[(n(r)),>no] clustering is formed, while the function
behavior of two points remains unchanged.

FIG. 2. Initial NN probability distribution for the Poisson case.
él'rée solid line is the exact solution given by E@) while the
dashed line is the measured one in the simulation.

The evolution of the NN probability distribution in the

these values, we have an estimat&gfo,0) for allx, in the ~ Simulation together with the one obtained from E2g), at
region covered by they; . The last step is to find the set of times 0.7, 7, and 1.7, are shown in Figs. 4-6. We may
x which solvesX,(x,0)=r/2. Once we have(r,t), we find notice that the_agreement is quite good and even excellent at
the conditional density by using E¢). t=0.5r. The dlffe_rences which appear &t 7 andt=1.5r
seem to be explained by the following arguments.
First of all, we remind the reader that in a Poisson distri-
bution the force acting on a particle can be decomposed in
In order to test the simple argument presented in the premyo terms, namely the one given by the NN particle and the
ceding subsection, we did a-body simulation. We have one due to all the other particles. While the first represents a
used the cod&ADGET [22] based on a tree algorithm. The |arge contribution, the second rapidly goes to zero for sym-
infinite universe is simulated by using periodic boundarymetry reason§18]. However, for particles which have a NN
conditions and the usual Ewald summation technique. Theurther than the averagde\ ), the situation is different. Let us
force between two particles is not exactly Newtonian but adenote such a particle by and its NN byB. Since the force
softened one is usg@3]. Note that the potential used is not £, from the latter oA is weaker than the average force on
the standard Plummer one but a similar one which has tha partic|e from its NN, the force contribution of other par-
advantage of being perfectly Newtonian at a scale larger thaficles nearby also becomes important with regard to the total
the softening length. force onA. This total force is then not necessarily in the
We have generated a Poisson distribution with:32®  direction of B and the particleA will not “fall” on it. Fur-
particles in a box of nominal size The mass of the particles thermore, the particl® has a high probability of having a
is such that the mass density is 1. The softening length is NN different from A; it should therefore not go towards
=0.0017%: by using Eq.(7) we find (A)~0.011 and  The distance betweehand its NNB should then grow. This
hencen~10. The initial velocities are set to zero, and the
simulation is run up to 4. 10!
The time evolution of the conditional density is shown in . Theory ——
Fig. 1 [here and in what follows, we normalize the condi-
tional average density to the asymptotic density, i.e., we con-
sider(n(r)),/no]. It is worth noticing that once the power-
law correlations are developed, the subsequent evolution
increases the range of scales where nonlinear clustering is
formed, i.e., whergn(r)),>n,, by approximately a simple
rescaling: denoting byn(r,t)), the conditional density at
time t, one has

C. Comparison with a simulation

(n(ry, / g
50

(n(r,t+8))p=~(n(ar,t)),, (29 1 )
10 .
107 102

riL

wherea>0 is a constant which depends on the tifié].

In Fig. 2, we show the initial NN density distribution
obtained from the Poisson distribution used in the simulation F|G. 3. Normalized two-point conditional density at the initial
and the one from Eq(6). The conditional density of the time: the solid line(theory is the theoretical ensemble average
initial configuration together with the one obtained by usingbehavior while the dashed line is the measured one in the simula-
Eq. (5) are shown in Fig. 3. tion.
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10 Theory — T 10
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FIG. 4. NN probability distribution at=0.5r in the Poisson FIG. 6. NN probability distribution at=1.5r in the Poisson
simulation. simulation.

is actually what we observe if we compare carefully Figs. 2from the simulations at times Ozb 7, and 1.5. One sees
and 6: looking at the value afL at large scales at which the again that our approximation works really well as it succeeds
NN probability distribution reaches a value of 79 we see in reproducing the development of the correlations. This
that it is 310 2 att=0 and 3.5¢10 2 att=1.57, i.e., the means that these correlations are therefore only a conse-
particles whose NN is at a distancex30 2L initially are at ~ quence of the interaction of NNs. We may also notice an
a larger distance (3:610 2L) att=1.5r. interesting thing: at=1.5r, even if the agreement is mar-

Secondly, concerning particles which have their NN at aginally good at scales larger than 1, it is still correct at
distance closer than the avera@&), we observe that at smaller scales. An explanation is that these scales correspond
scales between I6L and 5< 10 °L a bump is created: our to pairs whose particles were very cldge., <(A)) initially
simple model predicts fewer particles than observed in th@nd were therefore well bounded. When they start to feel the
simulation. This seems to be a sign of the creation of largeeffect of the surrounding particles, their relative motion is
structures. If two particles are isolated, they will move in anot affected and is still described by a two-body interaction.
regular oscillating motion. This is what the model predicts. At larger scales, where there are no correlations, our ap-
In the simulation, these two particles, i.e., a particle and itroximation fails to reproduce the correct behavior at all
NN, will move together for a while as in the model, but at times. For a certain the conditional density goes rapidly to
the same time they will be attracted toward another pair of. This is due to the fact that at these scales, the NN prob-
group of particles, which is not described by the model. Thisability distribution is really small and Eq5) is not valid
could have the effect of bringing the two particles closeranymore: this equation implies that the density around a par-
together and could even give rise to an exchange of NN wittiicle is only due to its NN and that there are no particles
the other group of particles, causing the evolution of the NNfurther than the NN. Therefore, at distances larger than the
probability distribution to be different from that in the model. average distance between NNs, the density has to go to 0 as
The bump reflects, therefore, this step of the clustering whiclthere are no other particles to maintain a nonzero density.
tends to bring pairs together. We finally remark that, as noticed 6], to study the role

In Figs. 7-9, we compare the predictions of the condi-of these NN interactions in the evolution of clustering, one

tional density given by our model with the measured onegnay modify the force integrator of the numerical code to
include only the NN contribution to the gravitational force.

10°
Theory ——
Simulation ———-
107 ]
- £
3 10} = 4
)
s 4
1 1
ol 10' | ¥ N
{A)
. 10° e
107 . . i . L
10* 102 10?2 10* 10 102 10
riL r/L
FIG. 5. NN probability distribution at= 7 in the Poisson simu- FIG. 7. Behavior of the average conditional density-a0.57 in
lation. the Poisson simulation.
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Theory ——
Simulation ———-
10° | :
10! |
£ et i g
= O =
- N N
= X
1 ~
10
oL
\ (A 10
10° | e —
10 10 102 107! 103 102 e
riL rlL
h FIG_‘ 8. Be_havllor_ of the average conditional densitytatr in FIG. 10. Evolution of the normalized conditional density in the
the Poisson simulation. Poisson simulation with large softening simulation. The times are

. 0,1,2,3,4 in units ofr.
Of course, the result agrees perfectly with the study pre-
sented here. feel approximately the same force and therefore go in the
same direction once the simulation starts. This direction

D. Poisson simulation with large softening should be the one of the nearest mass overdensity. Some

In the Poisson simulation. we have observed that the fir<pther particles will also be attracted in this direction. The

structures created are pairs of particles. Now we present asffect of this motion is the formation of the first structures,
directly made of more than two particles.

other simulation in which this is not the case. It is simply a ‘ el b )
Poisson simulation with a large softening, 100 times larger AS & final remark, it is interesting to note that when
than in the previous case=0.173_ and hencey~0.1. power-law co_rrelatlons are fo_rr_ned Bt47, the exponent
Figure 10 shows the evolution of the conditional density2nd the amplitude of the conditional density agree very well
in this simulation. The time is still in units of but only for with the small softening simulation that was previously dis-
comparison with the first Poisson simulation, because this i§USSed-
no longer a microscopic characteristic time. One can see that
the correlations do not develop at the smallest scales of the V. THE SHUFFLED LATTICE AND THE CDM CASE
system (A)=0.01) but are directly found up to 1L, We study now two different cases in which the average
which is of the order Of. force on a particle in the initial distribution is different from
_ Looking now at Figs. 1114, where we compare the CONyye poisson case, i.e., it is not dominated by the NN one. The
ditional densities obtained from thg smulgﬂon with those5in point here is to use the relatiéB) to study the creation
reconstructed from the NN probability distributions, we Seeys the first structures: by obtaining the NN probability distri-
that as soon as correlations develop, they are already made gfion, in a simulation, we reconstruct the conditional density
many particles as the approximations of the conditional denzng compare it with the one measured directly in the simu-
sity by the NN probability distribution fail. lation.
In the beginning of this simulation, the NN contribution to
the total force acting on a particle is clearly not important. A The shuffled lattice

The dominant contribution is actually the force due to many o . o
particles at some larger scales. This means that two nearby A shuffled lattice is a simple ordered distributi¢h9]

particles do not fall on each other as in the previous case bwrhich is obtained by adding a random small perturbation to

, 10! .
Theory —— Measured ——
Reconstructed -

10° |
(=] o
£} £ ,
& =& 10
£ )
E E

10}

A

102 10"
r/L

10° } .

: : 10

10* 103 102 107! 102
17/

FIG. 11. Reconstruction of the conditional density frar(r) at

FIG. 9. Behavior of the average conditional density-at..5r in
t=0 in the Poisson simulation with large softening simulation.

the Poisson simulation.
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FIG. 14. Reconstruction of the conditional density frartr) at

FIG. 12. Reconstruction of the conditional density frarfr) at =3 in the Poisson simulation with large softening simulation.
t=r in the Poisson simulation with large softening simulation.
. L . . .. scales: the normalized conditional density is smaller than 1.
a perfect lattice c.)f partlcl'es. each particle of this lattice is his is due to the fact that two particles cannot be closer than
moved randomly in a cubic box centered on the unperturbed | i o, distance which depends ap, the excluded vol-
position of the particle. The only parameter is then the ratiq, e feature being a typical property ’smperhomogeneous
5 distributions[19]. This can be seen with the NN probability
as=7 (300  distribution, which is very peaked around the mean interpar-
ticle separation.
. . , , Figures 17—-21 show the reconstructed conditional density
between the size of the cubic box2nd the lattice spacing by ysing the NN probability distributiorand the one mea-
| Whenas=0 it is a perfect lattice, while aas— it be- g req directly in the simulation. As for the Poisson case, one
comes a Poisson distributidil9]. For the simulation pre-  geeq that the first structures observed via the conditional den-
sented here,_we have used a shuffled lattice withpa2ticles sity are only due to a change of the NN probability distribu-
and a shuffling parametat;=0.25. The mass of the par- oy Of course the dynamics of a particle with its NN are not
ticles, the number density, and the softening length of thgjescribed in the same way as for the Poisson case. The force
fc_)rce are the same as for the Poisson simulations previously,, 4 particle cannot be approximated by the one from its NN,
discussed: this giveg~14. - __ but the latter seems to be sufficiently important to give the
In Fig. 15, the evolution of the conditional density is gjrection of the particle displacement. Another interesting
shown. The time goes from 0 tordvith = given by EQ.(15).  point is the fact that there are two phases in the clustering.
One may note that once correlations are developed, the eveis can be seen in Fig. 15: betwega-0 andt, =  almost
Iu_tion pro.ceeds ina very similar way to the Foisson dase nothing happens, while betweep~ r andt, =27 the corre-
Fig. 1): itis the same kind of rescaling as given by E29),  |ations are quickly developed. As—t,=r is the typical
the only difference being the speed at which this happengme scale for two isolated particles, separated by a distance
[16]. i L of orderl, to fall on each other, this seems to show that this
In Fig. 16, we show the NN probability distribution mea- i change is a sign of such a behavior.
sured in the simulation at the corresponding times. Itis im- |n order to verify this argument, we have done a simple
portant to note that @t=0 there is an anticorrelation at small {ost- we have run the simulation again but with a modified

1
10 Measured ——— 10° i ! 0 ——
Reconstructed ——- 1
AN 2 o
10% | J‘i‘y 3 — ]
1 i
Y n\,v’\‘ 4 __________
= ) !
5 \éb 101 L
2 100 N
b S 0 .'n...;.\ L
£ E 100} > S
/
10!t ,’z;"
@ ¢ i
10" > 1 10? = 3 ) i
107 10° 10 10 10° 10° 10

rflL

FIG. 15. Evolution of the normalized conditional density in the

FIG. 13. Reconstruction of the conditional density frarr) at
shuffled lattice distribution. The times are 0,1,2,3,4 in units-of

t=27 in the Poisson simulation with large softening simulation.

123001-8



GROWTH OF CORRELATIONS IN GRAVITATIONALN- . ..

PHYSICAL REVIEW D 69, 123001 (2004

140 1 Measured ——
120 10 Reconstructed —-—-—-—-
100 | A
£ 10°
§ 80 | :&
60 =
-1
20} 10
A
) N
10
101!

r/iL

r/lL

FIG. 18. Reconstruction of the conditional density frartr) at

FIG. 16. Evolution of the NN probability distribution in the
t= 7 in the shuffled lattice.

shuffled lattice for the same times as in Fig. 15.

integrator which, for a given particle, calculates the forcetance as the NN. The simple test presented shows actually
acting on it only from itsn NNs, n being an integer identical that the force from these six particles is what matters for the
for all the particles, which can be chosen arbitrarily and€velution of the correlations in the system betwéer0 and
changed during the simulation. For our study, we have doné. and the force from more distant particles is negligible.

the following: (i) att=0, the integrator finds the six NNs of ~ Some simple calculations show actually that the force on
each particle{ii) it starts to evolve the system up te- a particle in a shuffled lattice is approximately given by

but at each time step the force on a particle is due only to the
six particles, which were its six NNs a&0; (iii) att=r,
the integrator finds the NN neighbor of each parti¢le) it
continues the evolution up tio=27, the force on a particle
now being only the one from the particle which was its NN
att=r. assumingsm?= 1. Looking at Fig. 23, one has, for instance,

In Fig. 22, we show the result which confirms our as-that the squared distancg; between the central particle 0
sumption: between and 2r, the dynamics is driven by NN and particle 1 is given by
interaction. Furthermore, one can see that between Orand

( 1 81,)(? 80,)() 2

a
Fe=2\3 —, (31)
|

what matters for a particle is the force from its six NNs
chosen for the reason that in a perfect lattice, for a given ra,
particle, there is not a single NN but there are six NNs, all at

=12

the same distancé\ ). In the case of the lattice, these six e e )2
particles are in a perfect symmetric configuration around the + E (M) } (32)
center particle(this is the case for all the particles when k=y.z |

considered as centegrsThis implies that the force resulting

from these particles cancels. In a shuffled lattice, as long afheres;= (& x,&i i) is the displacement of thigh par-
the parameters is smaller than 1, this remains the case:ticle with respect to its lattice point. Supposing that these
even if there is a single NN for each particle, there are aldisplacements are small compared|toone finds that the
ways five other particles which are almost at the same disforce on the central particle from particle 1 is

1 Measured —— Measured ——
10° ¢ Reconstructed ——-——- 3 Reconstructed —————
10% | .
‘ )

€ 100} £
e~ S~
& 2= a1 |
E €10
= =

€

._.
=)
=
S
=]
|

Pl
102 107! 10 103 102 10!
r/L r/lL

10"

FIG. 19. Reconstruction of the conditional density frarfr) at
t=27 in the shuffled lattice.

FIG. 17. Reconstruction of the conditional density frarr) at
t=0 in the shuffled lattice.
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FIG. 20. Reconstruction of the conditional density frarfr) at
t=37 in the shuffled lattice.

 2(egxe10—1

Fix= +0(?), (333

I 2

€1k~ €0k
—+
|2

Foy= O(e?) for k=y,z,

(33b

with Ei,k:si'kll. Making now the sum over the six particles
around and averaging on all tleg, which are random vari-
ables going from— 8 to &, one obtaingF,)=(=5F; ,)=0
and a variancéF2)=46%/1°. This gives for the total squared
force

1252

<F2>:<F>2<+F§+F§>:|T (34)

whose square root is given by E@1). The force from the
NN is given approximately by yy~! "2, which shows that
the real force is roughly

F~2\3aF . (35)
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\m Reconstructed ———-
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FIG. 21. Reconstruction of the conditional density frar{r) at
t=4r7 in the shuffled lattice.
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FIG. 22. Conditional density in the simulatiq®) and in the
modified simulation(MS) for the shuffled lattice.

One can estimate a time scdledefined by the relatioh/2
:GmFst§/2 which is an approximative upper bound for the
time scale needed by two NN particles to fall on each other,

[ 2 1 T
ts= ———=1.7=
) \/gas N4mGpo \/gs

with 7 given by Eq.(15). Some simple numerical tests per-
formed by varyingas show that the real time scale is closer
to

(36)

,
—_—
<t,.

Va,

In our case, withag=0.25, this givesr¢~27 which is indeed
in good agreement with the simulation.

In summary, while in a Poisson simulation, the correla-
tions are made directly from the interaction between NN. In
a shuffled lattice, there is a first phase in which a patrticle
interacts mainly with its six NNs. This phase is characterized
by strong anticorrelations which are slowly destroyed. This
is then followed by a second phase in which some positive
correlations are rapidly developed under some dynamics
driven by NN interactions.

TS

(37)

4%°
L o-
[ TEERIT SRR .OI_‘ O
l [ )
F, 2
e3
o]

FIG. 23. Force in a shuffled lattice. The small circl€3)(rep-
resent the lattice points while the black do®)( represent the
particles.
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B. CDM simulation 1200

A
Finally, we study a CDM cosmological simulation which 1000 |
has been done by the Virgo Consortifizd]. This simulation
is representative of many other cosmological simulations as 800
their parameters, their initial particle configurations, and =
their small-scale properties are more or less always the same. ¥ 600
The following discussion should therefore apply to other 400
cosmological simulations of CDM type. Compared to the
simulations we have done, this cosmological simulation is 200 H
different on two points. First, there is space expansion. Sec- T
ongly, the initial cond|t|on9{I(_:) are very elaborate. This last 00 000l 0002 0003 0004 0005 0008
point needs some explanation. YL

The goal of this simulation is to study the evolution of a
gravitating fluid made of CDM particles with particular ini- FIG. 24. Evolution of the NN probability distribution in the
tial correlations. As already mentioned, the particles in theCDM simulation. The times are given by the redstaift
simulation do not represent CDM particles but are a kind of
cloud of CDM whose mass is of the order of a galaxy. Thisless Hubble constantThe masses are such tat=1 and it
discretization of the fluid introduces some effects which areshould represent a standard CDM model. The softening is
reduced by putting initially the particles in a particular way. €=0.036 Mpch, which givesn~25. This simulation goes
The trick is to create first a distribution where the force on afrom a redshiftz=50 toz=0.
particle is almost zero. In the Virgo case, this is done by We have measured the conditional density and the NN
running the integrator used for the simulation on a Poissoiprobability distribution. With the latter we have used the ap-
distribution with a negative gravity constant for a while. The proximation based on the NN probability distribution to
distribution obtained is characterized by the fact that thecompute the conditional density. The evolution of the NN
main part of the force on a particle comes from large-scalgrobability distribution and the conditional density are
mass fluctuations. The contribution from nearby particles ishown in Figs. 24 and 25, while the results are shown in
negligible. Note that the use of a repulsive gravity gives aFigs. 26—28.
behavior similar to ane-component plasnj&]. The first striking feature that we note is that the evolution
With this new distribution, it is necessary to apply a cor-is very similar to the shuffled lattice case. The conditional
related displacement which would transform a continuouglensity, being initially that of an anticorrelated distribution,
and perfectly uniform distribution into the expected CDM develops then positive power-law-like correlations at scales
fluid, i.e., with a power spectrum on relatively large schles smaller than(A).
behaving a® (k) ~k" with —3<n< —1. This displacement This evolution of the correlations is well described by
field is applied by using the Zeldovich approximation, whichusing the NN probability distribution, which means that
also fixes the initial velocity of each particle as a function ofthese correlations are simply due to correlations between
its displacement. The distribution obtained is therefore corNNs. In[15], we already analyzed this simulation. We ob-
related at all scales and has some small initial velocity. ~ served that correlations started at the smallest scales of the
Note that as the preinitial distribution has superhomogesystem, i.e.e<r<(A). Now with the relation between the
neous propertiegas a lattice or a one-component plasmaNN probability distribution and the conditional density, we
[19,9) there are two main points to be consideréid:on  can make this observation more accurate: the “correlations at
small scales the distribution continues to have the excludethe smallest scales” are actually correlations between NNs.
volume feature typical of superhomogeneous syst¢imsn  As in [15], we can again raise the question of whether these
large scales the correlation properties are given by a complex

combination of the preinitial correlationsvhich are long- 10° - T p—
ranged and by the correlations imposed by the displacement 2L 5 e
field. Whether the resulting fluctuation field has the same ? T
small-scale properties of the CDM continuous distribution is 10!
guestionabl¢6—8,10. However, here we are interested only e ]
in the small-scale features that have a clear imprint of the & 10 7
preinitial superhomogeneous distribution that is very similar, § 10!
as we discuss below, to the shuffled lattice. T,
This simulation is made witlN=256° particles in a box 10
of sizeL=239.5 Mpch (where 0.5sh=<1 is the dimension- 103}
3 Y
10* : : :

e _ o _ _ _ 10° 10 103 102 107

It is not the aim of this simulation to consider the sniategion riL
whereP (k) ~k.

SNote that the velocities are sm@f]. This is why afterwards we FIG. 25. Evolution of the conditional density in the CDM simu-

dare to compare this simulation with our initially static simulations. lation. The times are given by the redstuft
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th FCI:CISDNZIG RelcctJ_nstru‘;:t_lolnoof the conditional density fresfr) in FIG. 28. Reconstruction of the conditional density frar¢r) in
€ simulation ag= LU. the CDM simulation atz=3. Note that the discrepancy at scales

) ) ) below e comes from a too small statistics on the measured condi-
correlations are due to some interactions between NNs or af@na| density.
a “large-scale” effect, i.e., a consequence of the initial ve-
locity field and the acceleration of the particles under thewe get an interesting piece of information on the nature of
gravity of large-scale mass fluctuations. This large-scale efihe correlations: are they only due to NN correlations or do
fect is what we would expect from fluid dynamics. they show the existence of structures made of many par-

The main point in[15] and[16] was the kind of univer- tjcles?

sality of the correlations developed in different gravitating |n the three simulations that we have considered, Poisson,
systems of particles, among them this CDM simulation, ashuffled lattice, and CDM, which are high-resolution ones
Poisson simulation, and a shuffled lattice simulation. NOW(77>1), we have seen that this relation holds at ear]y times
V\{G Can add that the flrSt.CorrelatlonS are exactly Of the Samg‘nowing that the correlations grow by being |n|t|a||y 0n|y
kind in all these simulations, namely NN correlations. In aNN correlations. In another simulation, Poisson with large
Poisson and a shuffled lattice simulation, the d|scret|zat|orgoftening such thap<1, we have seen that this is not the
plays an important role in the creation of these correlationsease anymore. In this simulation, the first correlations are
This would suggest that it is the case for the CDM simula-dye directly to the formations of large structures—i.e., larger

tion. than the typical distance between NNs—containing more
than two particles.
V. CONCLUSIONS The results for the high-resolution Poisson simulation and

. R . for the shuffled lattice have encouraged us to push the analy-
The fundamental relation used in this paper is &. It sis a bit further. In the Poisson case, using the relati®n

r_elates the_ NN probability distributiom(r) to the condi- and considering thdi) the force on a particle is mainly due

tlpnal den3|ty<n(r)>p at scales of the order of the_ average ., s NN and(ii) for more than half of the particles, two
g;:;arnﬁil bgtwsr?gc':i':s ;irl]?ng ?St.moit cl)(]; th_e paryclels tr.]avepaarticles are mutually NN, we could treat the system as a set

- BY 9 S refation holds in a simuiation, ¢ jso|ated two-body systems. Knowing the initial NN prob-

ability distribution and using the Liouville theorem, it was

Measured ——— then possible to find the early evolution of the correlations
Reconstructed ——— with quite a lot of precision.

In the shuffled lattice simulation, we have observed that at
the beginning the situation was more complex than in the
Poisson case. Due to the approximative symmetries, the
early evolution involves interactions between more than two
particles. Actually, in this case, instead of having a single NN
for each patrticle, there are six particles which lie at almost
the same distance: such a situation changes the small-scale
behavior of the force on an average particle by introducing a
compensation, which is exact and gives a null force only
when the lattice case is considered. However, the result is
similar to the Poisson case: the formation of correlations

il between NNs. At a later time, the situation becomes exactly

FIG. 27. Reconstruction of the conditional density frarr) in identical to the Poisson case as the system behaves like a set

the CDM simulation az=5. Note that the discrepancy at scales Of isolated two-body systems. The consequence is a rapid

below e comes from a too small statistics on the measured condigrowth of the correlations between NNs.
tional density. For the CDM simulation, we have not tested whether the

10°

l01 L

10° |

(), 1 g

10—1 L

-2 .
10
103 10

123001-12



GROWTH OF CORRELATIONS IN GRAVITATIONALN- . .. PHYSICAL REVIEW D 69, 123001 (2004

evolution could be explained at a certain time by NN inter-emerge at early times in the simulations when the evolution
actions. This is a really important question because thiss well approximated as being due only to the interactions
simulation is supposed to describe a fluid. The particles arbetween NN particles.

not meant to describe particles but mass tracers: they should A more quantitative description of this dynamics is evi-
follow the flow due to gravity from the large-scale massdently needed, with the principal goal being to understand
fluctuations. If this simulation had the same dynamics as théhe specific value of the exponent. In the cosmological litera-
Poisson and shuffled lattice simulations, that is, if it could befure (see, €.g.[1]), the idea is widely dispersed that the
explained by NN interactions in a small amount of time, this€XPonents in nonlinear clustering are related to that of the
would clearly show that the fluid is not well simulated, as thelMtial power spectrum of the small fluctuations in the CDM

evolution would be influenced by the discrete nature of thes%u'd' anqd evedn that th? nor;llnea}r tWOf'pﬁmt. qqrrlelatlon can
particles resulting from the discretization of the fluid andP€ considered an analytic function of the initial two-point

thus it would not exist in a real fluid. This would then require COTTélations 25,28 (although se¢2], where more emphasis

some careful study in order to understand how these effects PUt On _the tendency for IC to be wash_ed out in the_ non-
influence the later evolution. inear regime. The models used to explain the behavior in

In some previous papefd5,16 we already raised these the nonlinear regime usually involve both the expansion of

guestions, after having observed the kind of universal corret-he Universe and a description of the clustering in terms of

lations developed in different simulations all chrclr::lcterizeothe evolutqon O.f a continuous flw_d. We have a_rgued that the
by their particle-based dynamics. In some recent pape xponent is universal in a very wide sense, being common to

[13,14), others authors have also analyzed the influence thaf'e nonlinear clustering observed in the nonexpanding case.
these particles could have on the evolution, but only as a wquld appear .that the framewqu fo_r understandmg the
consequence of close encounters between these particl«?mlmear clustering must be one in which discreter(ss!

Their conclusions were that the particles have an influenc e'ncg intrinsically nonanalyt_ical behavior of the dens_ity
on the density profile of the clusters leld) is central, and that the simple context of nonexpanding

In this paper, we have tried to bring a new element to thénodels should be sufficient to elucidate the essential physics.
understanding of what happens in several high-resolutio ote that we have not discussed here dneplitudeof the

simulations, including the cosmological CDM one, by show-correlation function, and in particular how it evolves in time,

ing the nature of the first correlations developed. We aIS(YVh'C_h IS Q|rectly_ re_lated to the time evol_utlon of the scale of
ponlmearlty. This is where the fluctuations at large scales,

raise some new questions which clearly deserve furthe hich i in th ) Ic idered |
study. From our results, we now argue for three conclusiond/ /¢ aré dinerent in the various 1t considered, can piay a

about the nature of clustering in the nonlinear regime obl0l€ as envisaged in the cosmological contékrough the

served in these NBS. With respect to cosmological NBS, Wéinear amplification of power at large scalesVe will ad-

conclude that the exponent characterizing the nonlinear cluéj-ress th|§ question further, again considering nonexpanding
tering observed has essentially nothing to do withthe ~ Mdels, in future work.

expansion of the Universe dii) the nature of the small
initial fluctuations imposed in the IC. We further present evi-
dence for a qualitative description of the dynamics driving We warmly thank D. Pfenniger at the Observatory of
this clustering given ifi11] based on the Poisson case, and inGeneva for the use of theravITOR cluster to run numerical
[15] based on a similar analysis of the CDM simulatigii,) simulations. We thank M. Joyce, A. Gabrielli, L. Pietronero,
The nonlinear clustering develops from the large fluctuation®\. Melott, and R. Durrer for very useful discussions and
intrinsic to the particle distribution at small scalespecifi-  comments. F.S.L. acknowledges the support of the Marie Cu-
cally around the smallest resolved sca)e In particular, we  rie Fund through Grant No. HPMF-CT-2001-01443 and the
show here that the exponent characterizing it can be seen tdniversity of Geneva for the kind hospitality.
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