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Thermal heat kernel expansion and the one-loop effective action of QCD at finite temperature
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The heat kernel expansion for field theory at finite temperature is constructed. It is based on the imaginary
time formalism and applies to generic Klein-Gordon operators in flat space-time. Full gauge invariance is
manifest at each order of the expansion and the Polyakov loop plays an important role at any temperature. The
expansion is explicitly worked out up to operators of dimension 6 included. The method is then applied to
compute the one-loop effective action of QCD at finite temperature with massless quarks. The calculation is
carried out within the background field method in & scheme up to dimension-6 operators. Further, the
action of the dimensionally reduced effective theory at high temperature is also computed to the same order.
Existing calculations are reproduced and new results are obtained in the quark sector for which only partial
results existed up to dimension 6.
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[. INTRODUCTION and then to derive the Lagrangian of the dimensionally re-
duced effective theorySec. I\). Further applications can
The extension of field theory from zero to finite tempera-and will be considered in other cases of intefési.
ture and density is a natural step undertaken quite early The effective action, an extension to quantum field theory
[1-6]. The interest is both at a purely theoretical level and inof the thermodynamical potentials of statistical mechanics,
the study of concrete physical theories. At the theoreticaplays a prominent theoretical role, being directly related to
level one needs appropriate formulations of the thermatjuantities of physical interest. To one loop it takes the form
problem, for which there are several formalisms availablec Trlog(K), whereK is the differential operator controlling
[7], as well as mathematical tools to carry out the calculathe quadratic quantum fluctuations above a classical back-
tions. From the point of view of concrete theories a centralground. Unfortunately, this quantity is afflicted by math-
point is the study of the different phases of the model and thematical pathologies, such as ultraviolet divergences or
nature of the phase transitions. That study applies not only tmany-valuation(particularly in the fermionic cageFor this
condensed matter theories but also to fundamental ones, suskason, it has proved useful to express the effective action in
as the electroweak phase transition, of direct interest in earlierms of the diagonal matrix elements of the heat kefoel
cosmology and baryogenedig], and quantum chromody- simply the heat kernel, from now dKix|e” "¢|x), by means
namics which displays a variety of phases in addition to theof a proper time representatigeee, e.g., Eq2.17) below]
hadronic ond9-12]. Such new phases can presumably bg15,16. Unlike the one-loop effective action, the heat kernel
probed at the laboratory in existifBNL Relativistic Heavy is one-valued and ultraviolet finite for any positive proper
lon Collider (RHIC)] [13] and future(ALICE) facilities. Ob-  time 7 (we assume that the real part Kf is positive. A
viously one expects all these features of QCD at finite temfurther simplifying property is that, after computing the loop
perature to be fully consistent with manifest gauge invari-momentum integration implied by taking the diagonal matrix
ance. As is well known Lorentz invariance is manifestly element, the result is independent of the space-time dimen-
broken due to the privileged choice of the reference frame agion, apart from a geometrical factor. In practice the compu-
rest with the heat bath; however, gauge invariance remainstion of the heat kernel is through the so-called heat kernel
an exact symmetry. At zero temperature preservation oéxpansion. This is an expansion which classifies the various
gauge invariance involves mixing of finite orders in pertur-contributions by their mass scale dimension, as carried by
bation theory. As will become clear below, compliance withthe background fields and their derivatives. This is equiva-
gauge invariance requires mixing of infinite orders in pertur-lent to an expansion in the powers of the proper timén
bation theory at finite temperature. this way the heat kernel is written as a sum of all local
The purpose of the present work is twofold. The first partoperators allowed by the symmetries with certain numerical
(Sec. 1) is devoted to introduce a systematic expansion forcoefficients known as Seeley-DeWitt or heat kernel coeffi-
the one-loop effective action of generic gauge theories atients. The perturbative and derivative expansions are two
finite temperature in such a way that gauge invariance isesummations of the heat kernel expansion. This expansion
manifest at each order. In the second part this technique isas been computed to high orders in flat and curved space-
applied to QCD in the high-temperature regime, first to comtime in manifolds with or without boundary and in the pres-
pute its one-loop gluon and quark effective acti@ec. Ill  ence of non-Abelian background fielfs7-23.
In order to apply the heat kernel technique to the compu-
tation of the effective action at finite temperature it is neces-

*Electronic address: emegias@ugr.es sary to extend the heat kernel expansion to the thermal case.
"Electronic address: earriola@ugr.es This can be done within the imaginary time formalism,
*Electronic address: salcedo@ugr.es which amounts to a compactification of the Euclidean time
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coordinate. The space-time becomes a topological cylindemade manifest in particular cases and configuratiofi8h
(As usual in this context, we consider only flat space-time<Of course, the relevance of the Polyakov loop is well known
without boundary. Now, the heat kernel describes how anin quarkless QCD at high temperature, where it is the order
initial Dirac delta function in the space-time manifold parameter signaling the presence of a deconfining pHgse
spreads out as the proper time passes, with the Klein-Gordorhe determination of the effective action of the Polyakov
operatorK acting as a Laplacian operator. As is known, theloop after integration of all others degrees of freedom has
standard smalf- asymptotic expansion is insensitive to glo- been pursued, e.g., i81]. Our results imply that, because
bal properties of the space-time manifold. This means thaghe formulas are quite general and should hold for any gauge
the space-time compactification, and hence the temperaturgyoup, the Polyakov loop must be accounted for, not only in
will not be seen in the strict expansion in powersrofAs a  the color degrees of freedom and at high temperature, but
consequence, the ultraviolet sector and hence the renormailiso in other cases such as the chiral flavor group with vector
ization properties of the theory and the quantum anomalieand axial-vector couplings and at any finite temperafli.
are temperature independent, a well-known fact in finite-The thermal heat kernel expansion is derived in Sec. II.
temperature field theorj24,25.) Within a path integral for- In Sec. Il we apply the previous technique to the compu-
mulation of the propagation in proper time, this correspondsation of the effective action of QCD at finite temperature to
to an exponential suppressipnamely, of ordee #747; cf.  one loop. Here we refer to the effective action in the techni-
Eg. (2.5)] of closed paths which wind around the space-timecal sense of generating function of one-particle irreducible
cylinder. The compactification is made manifest if instead ofdiagrams. For the quark sectove consider massless quarks
counting powers of one classifies the contributions by their for simplicity) the method applies directly by taking as
mass dimension. The corresponding thermal Seeley-DeWitflein-Gordon operator the square of the Dirac operator and
coefficients will then be powers af but with exponentially ~ using an integral representation for the fermionic determi-
suppressed-dependent corrections. As a result of the com-nant. In the gluon sector, the fluctuation operator is of the
pactification, the new expansion will not be Lorentz invari- Klein-Gordon type in the Feynman gauge, and so the tech-
ant, although rotational invariance will be maintained. In ad-hique applies too, but this time in the adjoint representation
dition, we find coefficients of half-integer order which at of the gauge group and including the ghost determinant. The
zero temperature can appear only for manifolds with boundcalculation is carried out using the covariant background
ary (as distributions with support on the bounddge]). field method. To treat ultraviolet divergences dimensional
Such half-order terms vanish in a strict proper time expan¥egularization is applied, plus the modified minimal subtrac-
sion. tion (MS) scheme. We have also made the calculation using
Another relevant issue is the preservation of gauge invarithe Pauli-Villars scheme as a check. In this computation the
ance. At zero temperature the only local gauge covarianbackground gauge fields are not stationary, and this allows us
guantities available are the matter fields, the field strengtto write expressions which are manifestly invariant under all
tensor and their covariant derivatives. However, at finite temgauge transformationgecall that in the time-compactified
perature there is a further gauge covariant quantity whiclspace-time there are topologically large gauge transforma-
plays a role: namely, th@ntraced thermal Wilson line or tions [32]). The result is expressed using gauge invariant
Polyakov loop. Since temperature effects in the imaginanjocal operators, including operators of up to dimension 6,
time formalism come from the winding around the space-and the Polyakov lood2(x). This is done for arbitrary
time cylinder, the Polyakov loop appears naturally in theSU(N) (N being the number of coloysFor SU?2) and SU3)
thermal heat kernel. Our calculation, anticipated[#Y], the traces on the color group are worked out, to dimension 6
shows that the thermal heat kernel coefficients at a point for SU(2) and to dimension 4 for S@3). In our expansion the
become functions of the untraced Polyakov loop that startdependence on the Polyakov loop is treated exqatéykeep
and ends ax. Although such a dependence is consistent withall orders in an expansion in powers of 16){ but the ex-
gauge invariance at finite temperature, it is not required by ipansion in covariant derivatives is truncated without spoiling
either. Nevertheless, there is a simple argument which showgauge invariance at finite temperature. In particular the time
that the heat kernel expansion cannot be simply given by aovariant derivative is not kept to all orders. This is probably
sum of gauge covariant local operatdasbeit with Lorentz  the best one can do for nonstationary backgrounds and gen-
symmetry broken down to rotational symmetryFor the eral gauge groups. If one considers particular gauge groups
Klein-Gordon operator describing a gas of identical particlesand stationary backgrounds, one still has to truncate the ex-
free from any external fields other than a chemical potentiapansion in the spatial covariant derivatives, but it is possible
(plus a possible mass tejit is obvious that such a chemical to add all orders in the temporal gluon component. This is
potential(which can be regarded as a constanumber sca- the viewpoint adopted in the recent wdr&3,34] for SU(2)
lar potentialAy) has no effect through the covariant deriva- as a color gauge group. The calculation presented here and
tives, and so it is invisible in the gauge covariant local op-that of[33,34] are in a sense complementary, since neither of
erators. However, it is visible in the Polyakov loop, and it isthem can be deduced from each other; i.e., we find terms of
only in this way that the effective action, or the grand-the effective action functional which are missed by the sta-
canonical potential, and hence the particle density, can ddionarity condition, and there are terms of higher order in
pend on the chemical potential. The dependence of the theAy(x) which are not kept at a finite order of our expansion.
mal heat kernel coefficients on the Polyakov loop wasNevertheless, there are terms which can be compared in both
overlooked in previous calculatio28,29, although it was approachessee Sec. I\
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As is known, the effective action of perturbative QCD at but only once, and then applied in a variety of situations.
finite temperature contains infrared divergences due to the

massless gluons in the chromomagnetic s¢@6136. Such Il. HEAT KERNEL EXPANSION

divergences come from stationary quantum fluctuations AT FINITE TEMPERATURE

which are light even at high temperature, whereas the non-

stationary modes become heavy, with an effective mass of A. Polyakov loop and the heat kernel

the order of the temperaturg from the Matsubara fre-  we will consider Klein-Gordon operators of the form
guency. So the procedure which has been devised to avoid

the infrared problem is to integrate out the heavy, nonstation- K=M(x)— D2, D,=3d,+A,X). (2.1

ary modes to yield the action of an effective theory for the

stationary modes—i.e., of gluons in three Euclidean dimenM (x) is a scalar field which is a Hermitian matrix in internal
sions[10,11,37-42 In this way one obtains a dimensionally space(gauge group spageand the gauge fields ,(x) are
reduced theoryCsp . (One can go further and integrate out anti-Hermitian matricek acts on the particle wave function
the chromoelectric gluons which become massive througin d+ 1 Euclidean dimensions and in the fundamental repre-
the Debye mechanism. We do not consider such further resentation of the gauge group. At finite temperature in the
duction here. By construction,Lsp reproduces the static imaginary time formalism the time coordinate is compacti-
Green functions of the four-dimensional theofy,. Of  fied to a circle; i.e., the space-time has topola§¥,. 1
course, the infrared divergences will reappear now if this=S!'x M. Correspondingly, the wave functions are peri-
action is used in perturbation theory. However, residing in eodic in the bosonic case, with perigl(the inverse tempera-
lower dimension/L3p is better behaved in the ultraviolet and ture), antiperiodic in the fermionic case, and the external
also more amenable to nonperturbative techniques, such &elds M,A, are periodic.

lattice gauge theory. The parameters@f, (masses, cou- In order to obtain the heat kernét|e™ TK|x> (a matrix in
pling constants can be computed in standard perturbativeinternal spacewe use the symbols method, extended to fi-
QCD since they are infrared finite, coming from integrationjite temperature i{46,47: For an operatorf =f(M,D )

of the heavy nonstationary modes, although they are scalgynsiructed out oM andD a
dependent due to the standard ultraviolet divergences of -
four-dimensional QCD. Section IV is devoted to obtaining 1 g
the action of the reduced theory. This is easily done from the (x|f(M,D ,)|x)= = >, f P
calculation of the effective action in Sec. Il by removing the . B o (2m)d
static Matsubara mode in the gluonic loop integrations. This (2.2
theory inherits the gauge invariance under stationary gauge

transformations of the four-dimensional theory, but a largeHere p, are the Matsubara frequenciesgi2/ 8 for bosons
gauge invariance is no longer an issue since more generand 2r(n+3)/p3 for fermions, and the sum extends to all
gauge transformations would not preserve the stationarity dhtegersn. On the other hand,0) is the zero-momentum
the fields. In addition, at high temperature fluctuations of thewvave function, (x|0)=1. The matrix-valued function
Polyakov loop far from unityor from a center of the gauge (x|f(M 'Du+ipu)|0> is the symbol off. It is important to
group element in the quarkless cpaee suppressed and so it note that this wave function is periodin fact constantand

is natural to expand the action in powersAy. We obtain  not antiperiodic, even for fermions. The antiperiodicity of the
the action up to operators of dimension 6 includedunting  fermionic wave function is only reflected in the Matsubara
each gluon field as mass dimensiop dd compare with frequencies in this formalism. Whenever the symbols method
existing calculations to the same order quoted in the literais usedd,, acts on the periodic external fields. Ultimately
ture[10,11,40,43-4F The relevant scale&y, ¢ for the run-  acts on|0) giving zero(this means in practice a right-acting
ning coupling constant in the high-temperature regime arelerivative operator

identified and reproducdd4]. For the dimension-6 terms, in In order to introduce the necessary concepts gradually and
the gluon sector we find agreement wi#8] if the Polyakov  to provide the rationale for the occurrence of the Polyakov
loop is expanded in perturbation theory and in the quarkoop in the simplest case, in what remains of this subsection
sector we reproduce the results[d8] for the particular case we will consider the case of no vector potential, space-
considered theréno chromomagnetic gluons and no more independent scalar potential, and constesmumber mass
than two spatial derivativesWe give the general result for term:

SU(N) and simpler expressions for the cases of Bland

(x|f(M,D,,+ip,)|0).

SU@). A(X)=0, Ag=Aq(X0), M(x)=m? [m? ]=0.
The heat kernel and the QCD parts of the paper may
interest different audiences, the first one being more method- (2.3

ological and the second one more phenomenological, and to

some extent they can be read independently. The QCD paliithis choice avoids complications coming from the spatial
does not require all the details of the derivation of the thercovariant derivatives and commutators at this point of the
mal heat kernel expansion but only the final formulas. Indiscussion. The result will be the zeroth-order term of an
fact, one of the points of this paper is that the thermal coefexpansion in the number of commutatpi®, , ] and[M, ].
ficients need not be computed each time for each application, An application of the symbols method yields in this case
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dp . - not effective due to the assumed periodic dependence. An-
S(x|e” TP (Botipo)l| ) other point to note is thdd, (or any function of i} acts as a
(27) gauge covariant operator on the external figfqg,,x) and
so transforms according to the local gauge transformation at
the point §g,Xx). Correspondingly, the Polyakov loop, which
is also gauge covariant, starts at timgeand not at time zero
(2.4  InEq.(2.7); this difference would be irrelevant for the traced
Polyakov loop, but not in the present context.
[After the replacemenD— D+ p dictated by Eq.(2.2), D; An application of the rulg2.9), yields, in particular,
=g; can be set to zero due 10).]
The sum over the Matsubara frequencies implies that the 1

e -5 |

2

e™ 1 m(Dg+ipg)2
(mm"’zﬁp2 (xle™2T710).
0

i . f 2_ _ 122 -
operator (1,8)2poeT(DO*'po)2 is a periodic function ofD, ] pEo e7(PotiPo)’= (amn ()kQke kAT
with period 2mi/8; thus, it is actually a one-valued function (2.10
of e #Po, This can be made explicit by using Poisson’s sum-
mation formula, which yields More generally,

1 2 2,2 1
- (Do+ipg)? — +\ka—kBDoa—k?B%/4r . .
e ) e e = i
52 (4777)1,2%( 3 H(ipo+Do=2 f(lpo ﬂlog(Q)), (2.1

(2.9

(= for bosons or fermions, respectivelyThis observation
allows us to apply the operator identit$7]

provided the sum is absolutely convergent, so that the sum is
a periodic function oDg. Thus it will prove useful to intro-
duce the quantit@ defined as
ePle™APo=()(x), (2.6)
) . 1
where(x) is the thermal Wilson line or untraced Polyakov Q=ipo+Do=ipo— E")g(ﬂ)- (2.12
loop:

Xo+ B The second equality holds in expressions of the fe2m.J).
Qx)=T exp( — f Ao(x(),x)dx()) . (2.7 (Note that the two definitions @ are not equivalent in other
%o contexts—e.g., irEpOfl(Q)sz(Q)—unIess[DO,X]=0.)

[T refers to temporal ordering and the definition is given for ~ The heat kernel in Eq2.4) becomes

a general scalar potenti&h(x).] The Polyakov loop appears

here as the phase difference between gauge covariant and _x a2l 02
noncovariant time translations around the compactified Eu- (x|e”™x)= (477—7_)(1/28 B pE e (2.13
clidean time. Physically, the Polyakov loop can be inter- 0

preted as the propagator of heavy particles in the gauge field

background. The identity2.6) is trivial if one chooses a _ 1 —m2, )

gauge in whichA is time independenwhich always exists N (47”)(d+1)/2e 9o(Q).

globally) since in such a gaug@ =e %, andD,, A,, and (2.14
do all commute. The identity itself is gauge covariant and

holds in any gauge47]. In the first equality we have removed the brackets |0)

~ The point of USi”ﬁ% Eq(2.6) is that the translation operator since for multiplicative operators lik€(x), these brackets
in Euclidean timeg”*, has no other effect than moving  just pick up the value of the function atIn the last equality
to Xo+ B and this operation is the identity in the compactified e have used the definition of the functiops(Q) which

time, will appear frequently below:
ehflo=1 (2.9

en(Q:71 B = (4mn) 122 3 172QNe?,
Po

|-

(even in the fermionic case, recall that after applying the
method of symbols the derivatives act on the external fields
and not on the particle wave functionso one obtains the 1

remarkable result Q=ipo— Elog(Q). (2.15

e PPo=(x). (2.9
Note that there is a bosonic and a fermionic version of each
That is, whenever the differential opera@g appears peri- such function, and the two versions are related by the re-
odically (with period 2mi/B), it can be replaced by the mul- placementQ)— — . As indicated, these functions depend
tiplicative operator (i.e., the ordinary function only on the combination/B2. In the zero-temperature limit,
—(1/B)logQ2(x)]. The many-valuation of the logarithm is the sum ovep, becomes a Gaussian integral, yielding
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niz operator constructed with the covariant derivatizgs and
0:0)= (—5) (n=1!t (n even, ) M(x) [cf. Egs.(2.23 and(2.24)]. The heat kerneé™ ™ is
on(£;0)= (2.16 dimensionless by assigning engineering mass dimensions
0 (n odd). —-2,+1, and+2 to 7, D, andM, respectively. So at zero
temperature, the expansion in powers7ofs equivalent to

gﬁl C?Set)ke—%efrzléggrrg];ggge'V\Irrl(()arrnefsaiﬁg'c;t?mé?lzg?:s begounting the mass dimension carried by the local operators.
y N ’ At finite temperature there is a further dimensional quan-

come exponentially suppressed, either at low temperature ?ﬁy 5, the two countings are no longer equivalent, and one
low proper timer. ' '

has to specify the concrete expansion to be used. It is well

Thg result in Eq(2.14) IS S“ﬁ'c'e"!t .to_denve the.grand— known that the finite-temperature corrections are negligible
canonical potential of a gas of relativistic free particles. For,

L . : . in the ultraviolet region, so that, for instance, the temperature
definiteness we consider the bosonic daki. The effective . ' L :

. . . not modify the renormalization properti f ntum
action (related to the grand-canonical potential through does not modify the renormalization properties of a quantu

— B0, is obtained as field theory[24,25 and al_so th_e quantum anomalies are not
g affected[3,50]. The ultraviolet limit corresponds to the smalll
odr 7 limit in the heat kernel. As noted before and can be seen,
W=Trlog(K)= —Trf —(x|e”™|x). (217  e.g., in Eq(2.10, the finite and smallr corrections are of
o the order ofe 47 or less, and so they are exponentially
K includes a chemical potentia= —iu as unique external SuPPressed. Of course, the same exponential suppression ap-
field, and the corresponding Polyakov loop i€  Plies to the low-temperature and finitelimit. This implies
—exp(Br). Using Eq. (2.14), subtracting the zero- thata strict expansion of the heat kernel in powers @il
temperature partwhich corresponds to setting,—1), and  Yield precisely the same asymptotic expansion as at zero

carrying out the integrations yields the standard ref4t temperature. In order to pick up nor_1trivia| finit_e-temperature
corrections we arrange our expansion according to the mass

d9%d9k dimension of the local operators. In this counting we take the
=Nf 5 [log(1— e Alek—w) Polyakov loop{}, D,, andM as zeroth, first, and second
) order, respectively. In addition one has to specify k)
+log(1— e~ Aot m)]. (2.189 is at the left in all termgequivalently, one could define a
similar expansion with() always at the right This is re-
N is the number of species ang,= \k?+mZ. quired because the commutator Qf with other quantities

In next subsection, after the introduction of more generapenerates commutatdr®,, ] which are dimensionful in our
external fields, we will consider expansions in the number ofounting. After these specifications the expansion of
spatial covariant derivatives and mass terms. At zero temix|e” ™|x) for a generic gauge group is unique and well
perature, the derivative expansion involves temporal derivadefined and full gauge invariance is manifest at each order.
tives as well, as demanded by Lorentz invariance, but such The expansion just described, in which each term contains
an expansion is more subtle at finite temperature. The dire@rbitrary functions of the Polyakov loop but only a finite
method would be to expand in powers Bf, in Eq. (2.4); number of covariant derivativgicluding timelike onekg is
however, this procedure spoils gauge invarian@eg., the natural extension of the standard covariant derivative ex-
Dy|0)=A,|0) is not gauge covariantAs a rule, giving up pansion at zero temperature. Its justification is given in great
the periodic dependence [mo breaks gauge invarian@é?]_ detall |n[47] .FOI' the r.eadeﬂs CO!"Ivenience we have summa-
One can try to first fix the gauge so tha is stationary and  fized the main points in Appendix A.
then expand in powers @,. This is equivalent to expanding I this expansion the terms are ordered by powers it
in powers of log(2). By construction this procedure pre- With coefficients which depend 06/~ andQ:
serves invariance under infinitesim@r more generally, to-
pologically small gauge transformations; however, it does <X|e—f(M—Di)|x>:(47”)—(d+1)/22 al(x)™.
not preserve invariance under discrete gauge transformations n
([47,49 and Sec. Il D below This is because lo)) is (219
many-valued under such transformations. An expansion in .
the number of temporal covariant derivatives which does nof oM the definition it is clear that the zeroth-order term for a
spoil one-valuation or gauge invariance is described next. 9eneral configuration is just

T _ . 2
B. Diagonal thermal heat kernel coefficients 30(X) = ¢o(2(X); 7/ 57, (220

Here we will consider the heat kernel expansion at finitealready computed in the previous subsecficin Eq. (2.14].
temperature in the completely general case of nontrivial andhis is because when the particular cé2e)) is inserted in
non-Abelian gauge and mass term fiellg(x) andM(x). the full expansion all terms of higher order, with one or more

First of all one has to specify the counting of the expan{D,,, ] or m?, vanish identically.
sion. At zero temperature, the expansion is defined as one of For subsequent reference we introduce the following no-
(x|e”™|x) in powers ofr [after extracting the geometrical tation. The field strength tensor is defined &,
factor (4m7)~@* D2 Each power ofr is tied to a local =[D,,D,] and, likewise, the electric field i§;=Fg. In
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addition, the notatiorD,, means the operatiofD ,, ]. Fi- Equation(2.23 inserted into Eq(2.21) is of course cor-
nally we will use a notation of the typ¥,,, to mean Tect but not very useful as it stands. For instance, for the
A A A A zeroth order, the expansion in EQ.23 would be needed to
6,0,0,X=[D,.[D,.[D,.X]]]—e.g.. Moy=D2M, F.,, P n 6623 © needec
-DE . all orders to re_pro_duce the simple _res(ti]tZ@, sincee™ is
Toﬁew method for expanding a generic function not a polynomial inQ. In view of this, we consider instead

(x|f(M,D,)|x) has been explained in detail {#7]. We

have applied this procedure to compute the heat kernel coef- 5 2 ” o .

ficients to mass dimension 6. However, for the heat kemnel(x|e” "™~ " PD|x)=(477)~ 923, e@a,(Q%M,D;)7",
there is an alternative approach which uses the well-known n=0 (2.25
Seeley-DeWitt coefficients at zero temperature. This is the '
method that we explain in detail here. The idea is as follows. ) -
The symbols method formul@.2) is applied to the temporal Which introduces a new set of polynomial coefficients

dimension only: a,(Q%M,D;). By their definition, it is clear that these coef-
ficients are unchanged ifQ?” is everywhere replaced by

1 2 “ 2 ” - . . .~ . 2

—7(M=D?)|y\ _ = —7(M—Q2-D?) Q~°+c number.” This implies that ina,, the quantityQ

X|e X)= x|e i’|x), - o g
(X “Ix) B %;‘ X ) appears only in the formiQ?, ]. This is an essential im-

provement over the original coefficients,, since each

Q=ipo+Do. (22)  [Q? ] will yield at least oneD,, and so higher orders in
2 . .

. ) ) [Q“ ] appear only at higher orders in the heat kernel
(The brackets(x| |0), associated with the Hilbert space expansiort.
overxg, are understood although not written explicitlyhis The calculation of the coefficienﬁgq(Qz M f)_) follows
implies that we can use the standard zero-temperature eXpaé‘ésily from the relation T
sion for thed-dimensional heat kernel with effective Klein-
Gordon operator:

2 ~
Ko=Y—D2, Y=M-QZ 2.22 2 ayr'=e’? X, A, (2.26

In this contextY is the non-Abelian mass term, because,

although it contains temporal derivativés Q), it does not If one takes the expression on the left-hand <iddS) and

contain spatial derivatives and so acts multiplicatively on thenoves allQ? blocks to the left using the commutafa®?, ],

spatial Hilbert space. The standard heat kernel expansiofvo types of terms will be generated) terms withQ? only

gives then inside commutators andi) terms with one or moreQ?
blocks at the left. The terms of ty@® are those correspond-

ing to = ,a,7". To lowest orders one finds

)

<x|e‘T(Y‘Di2)|x)=(4777)““220 an(Y, D)7, (2.23

~ ao_la

where the coefficienta, (Y,D;) are polynomials of dimen-
sion 2n made out ofY and D;=[D;, ]. To lowest orders ~
[17,19, & =-M,

ot Fam oM SMy+ 2+ S[QAM]+ = (Q?

ey =3 g Mii+ i+ 5[Q% M+ £ (Q%ii.

1 ' (2.27
1., 1 1, ~
4= §Y B 5Yii+ 1_2Fij1 Once thea, coefficients are so constructed one has to

proceed to rearrange E@.25 as an expansion in powers of

M, D;, andD,. The expansions iM and D; are already
ij Yl inherited from Eq.(2.23. It remains to expandQ?, ] in

terms off Q, ] or, equivalently, in terms dbo=[D,, ] since
the quantitieQ andD, differ by ac number. To do this, in

thea,, coefficientsQ is to be moved to the left, introducing

1 1
Yiijj — @[Fi

1, 1 1,
a3:_—Y +l_2{Y’Y||}+_YI _6_0

6 12

1,01 1, 1
_%{YvFij}_%FinFij"'4_5Fijk_3_0|:ij|:jk|:ki

1 1
+ o F i+ —{Fij Fiij}- (2.24
180 60 This kind of resummations is standard also at zero temperature to
~ . move, e.g., the mass teren ™ to the left and leave only pM, ]
(As noted beforer;; = DizY, Fi=DiFj, etc) dependence in the coefficierts7].
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Do, until all the terms so generated are local operators made

out of If)ﬂ andM and all uncommutate®’s are at the left:
e.g.,

- 1,1 1, 1
a2=§l\/| _EMii+l_2Fij_§M00
1,1 1
+ 3B+ gEai TQMo— 5 QE;. (229

(Recall thatE; stands for the electric fielty; .) We can see

two types of contributions im,: namely, those without &
at the left and those with one. @ is assigned an engineering

dimension of mass, all the terms are of the same dimension,

PHYSICAL REVIEW D 69, 116003 (2004
a0~50~ @oag’
a;~a;~ ®oay,
a,~a,~ @oaz+ @1ays,
a3~ a3~ Podzt P1ag,t @Ay,
ay~ a4~ pody + Q187 @23+ @aay,

~ T T T T T
as~ag~ @ods T 189t o8yt a8zt @aaz.

(2.30

mass to the fourth. However, in our counting only the dimen-

sion carried byﬁﬂ andM is computed, and so the two types
of terms are of different order: namely, mass to the fourt

and mass to the third, respectively. Indeed, whefis intro-
duced in Eq(2.25 (i.e., it gets multiplied b)eTQZ) and then

The mixing of terms is a nuisance that does not occur at

pZero temperature; however, it cannot be avoidgdontains

po and must count as zeroth ord@therwise, ifQ were of
order 1 the expansion would consist of polynomialQiand
the sum overmp, would not converge On the other hand,

in Eq. (2.21) (the sum over the Matsubara frequencies iscountingp, as zeroth order anby as first order even when

carried out we will obtain the contributions(using
2
ZpaneTQ ~¢n)

~ 1 9 1 1 5 1 1 5
aZ_)(PO(*Q) EM _EM“+1—2FH_§MOO+§Ei
! 2 L 312
+ EEOii T+ (pl(Q) Mo_ §Eii T (229

These are contributions to the thermal heat kernel coeffi
cientsa) and a},, respectively, introduced in Eq2.19.

it is insideQ results in a breaking of gauge invariance, as we
noted at the end of the previous subsection. The fact(hat

counts as dimensionless abg as dimension 1 is necessary
to have an order by order gauge invariant expansion. This
counting is well defined provided that dll’s are at the left
(for instance of the local operatorfcf. Eq. (2.36) and dis-
cussion belo

From Eq.(2.30 we can see that we do not need the com-
plete zero-temperature coefficierds and as. Here ag re-

quires only termsY", with n=2,3,4 in a4(Y,I5i) and n

=45 inag(Y,D;). We have extracted the zero-temperature
coefficients from[18]. These authors actually provide the
traced coefficient®,(x) defined by

Note the presence of half-integer order coefficients from

terms with an odd number @'’s.
As we have just shown, each zero-temperature heat kern
coefficientay in Eq. (2.23 allows us to obtain a correspond-

ing coefficientﬁk with the same engineering dimensiok.?2

el Tr(e " PD)=(4mr) S | dixtr(b,) 7",
n=0

(2.31

Such a coefficient in turn contributes, in general, to severayhere Tr is the trace in the full Hilbert space of wave func-

heat thermal coefficients] (with mass dimensionr®. Let
us discuss in detail to which| contributes eacfs,. The

tions and tr is the trace over the internal space only. The
coefficienta, is obtained by means of a first order variation

change from engineering to real dimension comes about b&f b, ; [cf. Eq.(2.41)]. The advantage of this procedure is

cause some terms &, contain factors of) at the left which

do not act asﬁo and so count as dimensionless. Therefore i
is clear that for giverk, the allowed satisfyn=<k, the equal
sign corresponding to terms having &lls in commutators.
On the other hand, the maximum number[ &2, I's in a,
(k>0) isk—1, and from these, at mokt- 1 uncommutated
Q’s can reach the left of the term. This yields the further
conditionk=2n—1. Note further that a facta@’ gives rise

to a coefficientp,({2) in aI. In summary, in the computa-
tion of the thermal coefficienta’ up ton=3 (mass dimen-
sion 6, we find the scheme

t

that the traced coefficients are much more compact and bet-
ter checked.

As we have said, we have computed the thermal heat
kernel coefficients up to and including mass dimension 6 by
the procedure just described and also by that detailgdidh
This latter approach uses the symbols method for space and
time coordinates and so computes the coefficients from
scratch(in passing it yields the zero-temperature coefficients
as wel). We have verified that the two computations give
identical results after using the appropriate Bianchi identities
(in practice the method ¢#7] tends to give somewhat more
compact expressiopsThe results are as follows:
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= %0
T _
a;,=0,

T
al:_QDOM!

- 1
a3z~ ¢1| Mo— 3 Eii |,
To0, 1= o
= o, +g<P2(Ei + Egii —2Moqo),
- 1 1 1 1 1 1 1
a5/2:§(Z‘P1+(P3)MOOO+€‘PlMOii_§‘Pl(2MOM+MMO)+ E‘Pl({MiaEi}+{M:Eii})_ 3 %17 @3 Eooi — 35 ¢1Fiij;
5 2 1 4 1 1 1
“lgPitges EoEi— >%1T 1593 EiE0i+§)‘Pl[EjaFiij]_(Pl EFOijFij+1_5FijFoij ,

1— 1

i 1
=@oa3 °— 1927 E%) M o000~ @@2(3'\/'001 —15M oM — 5MM go— 15M 5+ 4{M ,E7} + 2E;M E; + 4M Eg;; + 6E;; M

+4M,Eg +6Eq M, + 7TME; + 3E;; M+ 6M g E; + 4E;M ;) +

3— 1— 1_

20¥2 1E%4 EOOGi""a)‘PZEOiijj
4— 2 .

%‘Pz_ 1_5€04 EGi

1— 1— 77— 1
+(§<P2_ §<P4) EooEi+ 3072 E‘P4) EiEog + 0<P2(2{E| Ejjit+HE; ,E|11}+5E2+4E2

+4F0iijEj_2EjF0II] 2E0I] ij [EIJ!

+7F o Fij + 3F; Fog; + 8F3,.). (2.32
|
In these formulas, ~° stands for the zero-temperature coef- C. Traced thermal heat kernel coefficients
ficient. These are the same as those in Eg24) but using The zero-temperature traced heat kernel coefficients have

M instead onTand space- time indicezs instead of spacepeen introduced in Eq2.31) (for the d-dimensional operator
indices—e.g., a; °=3M?—§M,,,+35F%,. For conve- Y-D?). Of course, the choick,=a, would suffice, how-
nience we have introduced the auxmary ‘functions ever, exploiting the trace cyclic property and integration by
parts more compact choices are possible. At lowest orders
the coefficients can be taken &se give the formulas for

4 K=M—D? at zero temperature; the heat kernel coefficients

©2= 0 +2¢2, ©4=@o— 3 Pa, L op e
2 e 2 TaTTo 3T are dimension independegrjtl8,21]

bo=1,
(—2)" i
QDZH Po— (2” 1)” Pons (233)

which vanish atr/ 82=0. As a result of the Bianchi identity,
there is some ambiguity in writing the terms. We have cho b,= —M2+ —F2

. f . . . 2= Iz
sen to order the derivatives so that all spatial derivatives are 2 12
done first and the temporal derivatives are the outer ones.
This choice appears naturally in our approach and in addition

is optimal to obtain the traced coefficiefits since the zeroth 1 1 1 1
P i by=— =M%~ —M2— —F, MF,,— —F2

derivative of the Polyakov loop vanishgsf. Eq. (2.36) be- 6 12k 12w 60 HHY
low], and so terms of the forma,X, do not contribute to the

traced coefficients upon using integration by parts. The terms " iF FE (2.34
ag, a;, ayy,, anda, were given in[27]. 9Q wv val am: '
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By constructiona,— b, is a commutator which vanishes in- . 1
side Tr. Likewise, we can introduce the traced coefficients at Ps;,= — g@r{Mi Ei},
finite temperature:

—7(M-D2)y _ @Ry d+1 Ty n bI=0-b +l_ EM2+E-ME-+i
Tr(e wW)=(4mT) d“"*xtr(b,) 7", 3= Podst g@p| Mo+ EME;
n

T
(2.35 1, 1
T T . _ +—F&— =EFE
with b,, simpler thana,,. Once again we choose a canonical 100" 5
form for these coefficients where a function @f put at the
left is multiplied by a local operatofi.e., an operator made This is the main result of this section, where thefunctions
out of M and D). To simplify the traced coefficients and are given in Egs(2.19 and(2.33. In these formulas thb,,
bring them to the canonical form we need to work out theare the zero-temperature coefficients given in E284). We
commutators of the formiX,f(Q)] [in particularlﬁuf(ﬂ)] note that the coefficienb; above is not identical to that
as a combination of terms of the type function@ftimes ~ given in[27]. [The coefficient ir{27] corresponds to replace
local operator. As shown in Appendix B, the rules are aspoPs above byeobs, where b differs from bs in Egs.
follows: let f denote a function of) [e.g., ¢,(Q2)] and let  (2.34 by a cyclic permutatior}.The two versions ob; differ
£ pe its nth derivative with respect to the variable by higher-order terms. In what follows we use the coefficient

+

1— 1,
1074~ %2 Eoi- (2.39

—log(Q)/B; then, in Egs.(2.38.
Several remarks should be made about these expressions.
ﬁofzo, Either at zero or finite temperature there is an ambiguity in
the choice of the traced coefficiertig; however, the ambi-

. 1 1 guity is essentially larger at finite temperature. Indeed, writ-
Dif=—1"Ei+ 5 f"Eoi — gf(s)Eocﬁ . ing the expansion as

2

[X6]= — ' Xo+ %f,,xoo_ %f<s>xooo+ o Tr(e " ™"PW)=(4m7) <d“”2§ Bi7", (239
(2.36

_ . we find that, althouglb, is ambiguousB,~° is not. This is
These formulas imply that, unlike the zero-temperature casgecause at zero temperature the expansion is tied to a series

the cyclic property mixes terms of differeflt order at finite expansion in powers of a parameteay, 7). At finite tem-
temperature. This is because, as noted abDyehas dimen-  perature the expansion is not tied to a paramétés rather
sions of mass whered3 counts as dimensionless. So, for a commutator expansipand so the ambiguity exits not only
instance ¢,({)) is of order zero and; is of first order, yet  for b; but also forB|. For instanceb] above has been
Dieo(Q) contains terms of all orders, starting with dimen- €xpressed in terms of the coefficidnt given in Eqs.(2.34).
sion 2. As we will discuss below, this implies that there is aNothing changes at zero temperature if we adigl, to b,
certain amount of freedom in the choice of the traced coefsince the addition is a pure commutator; howeverbjnit
ficients. To apply these commutation rulesabwe further ~ would mean to adgoM ,,, which is no longer a pure com-

need the relation mutator, thereby changing the functionﬂ; In fact,
®oM ., which is formally of dimension 4, can be expressed
en=\(2¢n 1+ N@n ). (2.37  as a sum of terms of dimension 5 and higher, using integra-

tion by parts and the commutation rulés36). So the con-
Using these rules we can apply integration by parts and therete choice obg affects the form of the higher ordelts;.g,z,
cyclic property to the previously computed coeﬁicieaﬁ bl etc.
and choose a more compact form for them valid inside the Taking into account this ambiguity, our criterion for

trace. In this way we obtain, up to mass dimension 6, choosing the traced coefficients has been to recursively bring
- the b to a compact form. We observe that inside the trace
bo=¢o, (upon applying the commutation rujesy, is a sum of terms

of dimension 4 and higher, so we chodsg,=0. Thena},

bI,2= 0, augmented with the terms generated fragy}, is brought to
T the most compact form. This in turn produces higher-order
b;=—¢oM, terms which are added @, and so on. Of course, this is
T not the only possibility, since takenb;{ to be simplest may
b3;,=0, imply a greater complication in the higher-order coefficients.

For instance, as can be shown, it is possible to arrange the
bT= o-b,— 1 E2 expansion so that all half-order traced coefficients vanish:
27 b2 P2 e.g.,b,, can be removed at the cost of complicating.
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It should be clear that the ambiguity in the expansﬂj:n Here D,=d,+A,, with A, and F,,=[D,,D,] anti-
in Eq. (2.39 does not affect its sum but only amounts to aHermitian matrices of dimensioN. They belong to the fun-
reorganization of the series. On the other hand, the untracethmental representation of the Lie algebra of the gauge
coefficientsa] are not ambiguous: once brought to their ca-group SUN).?
nonical form they are unique functionals BfandA, .

The heat kernel is symmetric under transposition of op- A. Quark sector
erators, théo! have been chosen so that this mirror symme-

try ho!ds at each order. T . which is somewhat simpler than the gluon contributigrhe
AST'S well known[17], not only thea, allow_one t_o.o.btaln latter requires the use of the adjoint representation, introduc-
the b, but also the converse is true. By their definition, tion of ghost fields, and treatment of the infrared diver-
gences. Upon functional integration of the quark fields, the
, partition function of the system picks up the following factor
Tr(e”"M=DL)y, from the quark sector:

(2.40 Z,[A]=Det(D)N1=Det( D ?)N"2, (3.2

In this subsection we work out the quark contribution

1
—7M-D?)| N _ =
{xle “X)= = S

Using the expansions in both sides, one finds, at zero tenjYN€reNs denotes the number of quark flavofas usual, we
peraturelusing Eq.(2.39)], ave squared the Dirac operator to obtain a Klein-Gordon

operaton The corresponding contribution to the effective ac-
tion is (we use the conventiof=e Al
5BT:0
n+1
OM(x) "

(2.41

== I [A]= - Yy wZ—NdeTT D2
olAl=— =5 Trlog(D %)= = 0T rexp(7 <)

At finite temperature, the variation bf, contributes not only
to a;_, but also to all higher-order coefficients, in general.
So we have, instead,

= :f d*X L4(x), (3.3

Nf odr /.LZE
Lyx)=—5 | ————=> > (b ).
BT k—n—1 (2 42 2 U (4777) n
kT ' (3.9

T __
An(X)= OM(X) 1<K=n+1

In this formula the Dirac trace is included in tm%’q and
where on the RHS only the terms of dimensiam&@e to be  “tr” refers to color trace(in the fundamental representation
retained andk takes integer as well as half-integer values. WeThe ultraviolet divergences at=0 are regulated using di-
have checked our results by verifying that this relation holdsnensional regularization, with the conventidr=4—2e. As
for our coefficients. is standard in dimensional regularization, the fagtSf is
introduced in order to deal with an effective Lagrangian of
mass dimension 4 rather than-2e.

To apply our thermal heat kernel expansion we need only
to identify the corresponding Klein-Gordon operator. We use

Here we will apply the thermal heat kernel expansion just
derived to obtain the one-loop effective action of QCD with Y=Vl Vu¥o=0ut 0, Woad1)=4. (3.5
massless quarks in the high-temperature region. We remark
that the effective action we are referring to is the standard’he expression
one in quantum field theory: namely, the classical generator
of the one-particle irreducible diagrams. As a consequence 5 )
our classical fields may be time dependent. The quantum ~D*=-DL=50uFu (3.6)
effective action in the sense of dimensional reducf®8], as
an effectiv_e fie_ld theory for the static mo_des, is o_f great; entifies—%awFW as the(square mass termM of the
relevance in high-temperature QCD and is also discusse lein-Gordon operator in this case. A direct application of

below, in Sec. IV. We will use the background field method, T T .
which preserves gauge invariari&l]. The Euclidean action Eas. (2.38 shows thatb; andbs, cannot contributethey

IS

IlI. ONE-LOOP EFFECTIVE ACTION OF CHIRAL QCD
AT HIGH TEMPERATURE

“Our point of view will be thatA,, itself is the quantum field,
independently of any particular choice of basis inN)(So the

S=— if d4x tr(F2 O+ f d4xEDq. (3.1 coupling constang is also independent of that choice. As a result of
2¢F a gauge invariancel,, is not renormalized.
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have a singleM and this cancels due to the trace over Dirac - 2(2m\4 /1
space. The other coefficients give, to mass dimension 6 in- | Zp0=— §(F Byl 5+ V) +0(e), (3.10
cluded,

bl —4 so the effective potential is
0q~— b0

EO,q(X) = 7T2NfT4

2N 1 _
E— 1—2“’[(1—41/2)2]),

2 _
byg=— §(¢0Fiv+ ©2E7),

: 1 1
2 1 — a2miv — —<p<—. .
b;,q:¢0(4_5F;LVF WFaut GFiw 15F;2uw) Q(x)=e*™", ><v<3 (3.11)
1 1 HereN is the number of colors, tr is taken in the fundamental
+§Dz 15E2 10F°'1 15EF E) representation of the gauge group, andis the matrix
log(Q2)/(2i) with eigenvalues in the bran¢H|<l/2. This is
(2— — ) E2 3.7) the well-known resulf9].
5%4” #2)Foi- ' The terms of mass dimension 4 have a pole=a0. Us-

ing the relation

In these formulas the functions, [defined in Egs(2.15

and(2.33] correspond to their fermionic versions. All fields 1

are in the fundamental representation. {(1+z,9)=— —d(@)+0(2) (3.12
The required integrals overin Eq. (3.4) are of the form

v [wherey(q) is the digamma functiop one finds
o= [T amtnerter o), lol=1, @9

! 1
lo.0= _ +log(4m) = ye+2 log( wBldm) = Y| 5 +v
whereg, refers to the bosonic or fermionic version, respec-

tively. In the quark sector the argumentwill be the Polya- _ E_ L0
kov loop in the fundamental representation or, in practice, 4 2 7 (e),
any of its eigenvalues. These integrals can be done in closed
form (see Appendix € In particular, - _ _
bP P lo5=logt 2lg0= —2+0(e). (3.13

| Z,Zn(eZ#i V)

—

[For convenience, we have introduced the integidis;

C+n+ e+ 1) analogous td€ on IN EQ.(3.8) but USIngcp2n instead of<p2n ]
2 The termd e 1+ log(4m)— yc] in in I, come with tr§?,,)

2€F

I 1 and are removed by adopting thS scheme. We will dis-
2 cuss this in conjunction with gluon sector. After renormaliza-
tion,
1 1
X\ 1+2€+26,—+V)+§ 1+2€+26,——V”,
’ ’ L _ 1t Ntri| 21 A7 T ! +
2q(X) = 5(47)2 itry| 2 log(u/4=T) Y5t
1 1 3.9
—s<r<j3. .
2 2 1 -
—¢(——v) Ffw—ZE?]. (3.19

The integralslzn(w) are one-valued functions ab—i.e.,
periodic in terms of; however, to fipply1 the exlplicit formula Finally, the terms of mass dimension 6 in four space-time
(3.9), v has to be taken in the interval; <v<3. The gen-  dimensions requird;, 1,5, and ;5. Using the relation

eralized Riemann{ function {(z,q)==,_,(n+q) * has V()= (- 1)”“n'§(n+1,q) [52], one obtains
only a single pole az=1 [52], so the dimensionally regu-

lated integrals yield the standard pole of the type ddlely B\2 1
for the integrald ,,, which appear irb;q. l10=— (4—) [zﬂ §+ v|+y" 57 +0(e),
We can now proceed to compute the contributions to the ™
effective Lagrangian. The zeroth order requires ;. Using
the relation £(1—n,q)=—-B,(q)/n, n=1,2,..., with '1_,52 —2l;4+0(e), '1_2: —4l; 4+ 0(e).
B,(q) the Bernoulli polynomial of orden [52], one finds (3.1
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[All these integrals are related through simple proportionalityThe coupling constant has no effect here since it can be
factors, as follows from Eq(C6).] This yields absorbed in the normalization of the fields. The ghost fields
C andC are anticommutindgalthough periodic in Euclidean
time) and are matrices in the fundamental representation of
Lag(X)= - — &ter” E+?) +¢/’(3—?) Su).
q (47)4 T2 2 2 The full effective actionto one loop is

8 1, 1., 1
25T i P Faut 5P o aun™ 557 dus

"\ a5 m 24" \uv” GO mav

—2e

. F[A]=—M2% dextr(FiV)+Fq[A]+Fg[A],

1
~ 30+ 15EiFijEj”. (3.16 319

In all these formulasy is the matrix Iog())/(_27-ri)1 inthe  \yhere the first piece is the tree level acti@ecounting for
fundamental representation and in the brafgf<; in the  renormalization; gis dimensionless the second one is the
eigenvalue sense. Note the hierarchy in powers of temperguark contribution, obtained in the previous subsection, and

ture, £o~T4, _£2~T°,_ _£3~T_2, implying that the heat he |ast term follows from functional integration oway and
kernel expansion at finite temperature is essentially an & Cin Eq. (3.19:

pansion ork?/T? with k the typical gluon momentum. Terms
of order T2 are forbidden since there is no available gauge
invariant operator of dimension 2.
1 R . R
B. Gluon sector TolAl= ET”OQ(_D;ZL_ZFW)_-” log(~D3)
In the background field approa¢bl] the gluon field is
split into a classical field plus a quantum fluctuation—i.e., :;f d*x Ly(X), (3.20
A,—A,+a, inthe action(3.1). As is standard in the effec-
tive action formalism, the appropriate currents are added so
that the classical field\, is a solution of the equations of ) )
motion (and so no terms linear in the fluctuation remain whereD,=[D,, ] andF,,=[F,,, ]. From Eq.(3.18), we
The one-loop effective action corresponds then to negleatan see that the Klein-Gordon operator over the gluon field
contributions beyond the quadratic terms in the quantuna, acts on an internal space of dimensiBrx (N?—1),
fluctuations and integrate over,. (The quark fields are whereD=4-2¢ is the number of gluon polarizatior{@-
taken as pure fluctuation, sg, does not change the quark cluding the two unphysical ongand corresponds to the Lor-
sector at one loop. entz indexu, and N?—1 is the dimension of the adjoint

The quadratic piece of the gluon action is representation of the grouﬁ)ﬂ and IEMV act in the adjoint
representation. The covariant derivative of the Klein-Gordon
1 R R operator is the identity in the Lorentz space whereas the
S(Z):——Zj d4xtr[—aVDiaV—2aM[FM,,,a,,]—(DMaM)z]. “mass term” is a matrix in that space: namelyMmj,,=
g (3.17 —ZIEMV. Similarly, the space of the Klein-Gordon operator
' over the ghost fields has dimensibR— 1, the mass term is
zero, and the corresponding covariant derivative is pigt
But in the adjoint representation.
Applying once again the heat kernel representation, we
ave

Here all covariant derivatives are those associated to th
classical gluon fielcA, . Note that the first two terms are of
the standard Klein-Gordon form, but the last one is not. Beh
fore doing the functional integration over, one has to fix

the gauge of these fields. This implies adding a gauge fixing
term and the corresponding Faddeev-Popov 18} in the

action. We take the covariant Feynman ga@gaﬂ= f(x), 1 (=dr p2e
since the associated gauge fixing action precisely cancels the Ly(X)=— 5 7
offending term D ,a,,)? in Eq. (3.17). After adding the ghost

term one has

2 ™tr(b) ), (3.21)

0 T (4mrr)PP

L where, for convenience, the Lorentz trace over gluons as
S _ _2J dx tr[—a,,f)iay—ZaM[FM,,,a,,]—Ef)iC]. WTeII as theAghost contribution are mc_luded in _th_e coefficient

g b4 Here trdenotes the color trace in the adjoint represen-
(3.18 tation. A straightforward calculation yields
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bog=(D—2) (),

T b-2 A2 2 aleo
b2,g 2+T QDO(Q)FMV_ 6 QDZ(Q)EI '
L [(4 D=2\, . . 1.
b3g:@0(Q) §+W F/'WF,,)\F)\/_L'F 3F>\MV
D-2., ] 1 [ .
60 F,ulu,y 6()02(9) FO'u,V

2 s p2 _orpoa
+ o (EiitFoij— 2EiFE))

1— . 1 .\,
+(D-2) Eﬁ%(ﬂ)_gﬁoz(ﬂ) Eoi- (3.22

PHYSICAL REVIEW D 69, 116003 (2004

The mass dimension-4 piece of the effective Lagrangian,
commg frombzg, requiresl 5, which is ultraviolet divergent

and| *WhICh is UV finite[cf. Eq. (3.13]. The finite pieces,
in the MS scheme, are found to be

Log(X)= [11( 2 log( pldmT) + 13— ()

NPT P -
_w(l—v)>FMV—§Ei}, O<v<l1l. (3.2

On the other hand, the divergent contribution in the gluon
sector, combined with that in the quark sector and the tree
level Lagrangian, yieldgall terms have been multiplied by
the factoru?¢ to restore dimensions

The coefficients] , andbd,, vanish, as do all terms with a
single M, due to the Lorentz trace. The contributions with
D —2 come from pieces withol! in Eqgs.(2.38 and(2.34).
The effect of the ghost is to remove two gluon polarizations,
D—D—2. Unlike the fermionic case, the thermal heat ker-
nel coefficients depend explicitly on the space-time dimen-
sion through these polarization factors. In these formulas the
functions ¢,, correspond to their bosonic versions. In addi-

Lied X)+ LG (X)+ L (%)

1 ) 1
=——tr(F,,)+ (Z+Iog(4w)—yE)

1
26 " (4m)?

tion, its argumenf) and all field strength tensor and covari-

ant derivatives are in the adjoint representation.

(3.27

11 £2 N¢ F2
1—2tr( )—?tr( MV) .

We can now proceed to the calculation of the effective

Lagrangian. We note that the integrals oveare no different

to those for the quark sectpsee Eq(3.8) and Appendix &
after the replacementv—v—3 [coming from ¢ (w)

=¢,(—w)] and so 6Kvr<<1 now:

2€ 2¢
17 on(€277)=(—1)" (47 >(“ﬁ) (ﬁ)

2
I'eé+ntet 5
X 1 [L(1+2€+2€,v)
(3
+{(1+2¢+2e1-v)], 0<p<l.
(3.23

In this way, for the effective potential one obtains

2

Log(x)= %T“t“r[ Ba(3)+By(1— )] (3.24

T4(N2 1)+2 T4 [ 31— )2,

v=log(Q)/(2mi), 0<w<1. (3.25

This is also in agreement with the well-known req@lt. We

emphasize thal and» are now in the adjoint representation

as indicated by the notation. tr

Use of the SUKN) identity (E5) yields the renormalized tree
level Lagrangian

div div 1 2
Lied X)+ L g (X)+ L (X):_—Zgz(/.L)tr(FMV),
(3.28

with the standard one-loop renormalization group improved
in the MS scheme,

1 1 1
20 :g_S_'BO ;+|09(47T)—7’E),
1 (11 2 )
,30—(417)2 3 N=3N¢, (3.29

guaranteeing the scale independence of(BE@7). Note that,
due to gauge invariance, the classical fieAdsdo not need
ultraviolet renormalization(In the context of the dimension-
ally reduced effective theory, finite, temperature-dependent,
renormalization has been found to be useful in practice
[40,43. See Sec. IV.

Putting together all terms of mass dimensiotrehormal-
ized tree level plus one logpwe find
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1 1 )+ (1— )| 1+ )+ (1= 0)|5- 0= — 27,
Ly(X)=| — 27 () + Bo log(u/4nT)+ 3 @ )2N W)+ A=) imo= d (1) + (1= V)im0 e
M T “ R “ “
11 ')+ (1=v) 0= 9" (1+ 1)+ 4" (1-v)[5-0
2\ _ - > - _VIE2 -
XU(FL) = 5 g ML)+ 910 IFL) 44(3), (3.32
1 ) 1 ) to be made in the subspaﬁe: 1 only, when taking the trace
+ 3 5> N tr[ [ o > +v|+ lﬁ( 57 v) Ffw] in the adjoint representation. One may worry that subtracting
(4) this subspace is not consistent with gauge invariance. This is
5 not so. As will be discussed below, the periodicity of the
—=(N—Njy) Ztr[EiZ], effective action as a function of lo@) is an important re-
3 (4m quirement. This property is not spoiled by the previous pre-
scriptions.
_ R Alternatively, one can regulate the infrared divergence by
—5<vr<z, 0<v<l (330 including a cutoff functione™ ™ in the r integral. The in-

frared finite modes are unaffected in the limit of smaill
rT'1I'he static mode inp develops powerlike divergences to be

Th rms of m imension r il ined fr . . . .
e terms of mass dimension 6 are easily obtained fro added to the result obtained through dimensional regulariza-

. . T . + +_ + .
the coefficientoz 4 and the integral$, o, 1,7, andl, 3 tion. These terms are easily computed and are
1 1 nes " - 17 2 2
Lag(X)=75 m ;U [¢"(v)+¢"(1-v)] Lowr= zg— T UI1IF,, +2E] ],
61. . . 1. 1. 3.
X| =F  FZFaut 2F2 .~ ooF2 + =F5 ., 17 61
45 #vi AT g w3 mar B O Lar= 2207 —31 ~ 3 Fun FraFau
1., 2.. . ,
— g5t EEFE |- (3.3D +Ei FijEj T EiFijEj—5F
. . . 1., 2 2 2
Note again the hierarchy in powers of temperatufg, + 5P T 5 0w 3B — 5B |-

~T4 Lo~T° L3~T 2
(3.33
C. Infrared divergence and other renormalization schemes Even though this is a gluonic term, the result has been ex-
The integrals! “e.n may contain not only ultraviolet di- pressed in the fundamenta_\l _representatiorj, which is often
vergences but also infrared on@®rresponding to the large preferable.[_Unfortupatgly this is not so easily done for the
7 region. Specifically, this happens i€=0, n=0, and other gluonic contributions, for agenerql Y(group, due
e?m7=+1 (see Appendix T In the quark sectofi.e., in the to the presence of the Polyakov loop in t_he formdlds.
fundamental representatipand for a generic configuration theSe expressions we have used the notdipj) to denote
of Ag(x), no eigenvalue of will be —1 in the bulk and so the pieces of ,, which commute wit) andF ,,, for the
such divergence can be disregarded. Unfortunately, in thE@mainder. Specifically, in the gauge in whithis diagonal,
gluon sector the situation is different since for any gauge | 1 the diagonal part oF ,,. As shown in Appendix E,
configuration at leas— 1 eigenvalues of)(x) are neces- only terms mvolw_ng at least one p_erpen_d_mul_ar component
sarily unity. Therefore, the singular value=integer always may be infrared divergent, and this is verified in EG533.

appears when evaluating the adjoint traceCyy, and L. _\Net.havzltusedtherle s schemepm ?|\n}ﬁnsmnal Tegu-
The infrared divergences are characteristic of massless the@—”zal ion. Alternatively oné can use Faull-villars regulariza-
fies at finite temperaturk8s,36). tion which amounts to inserting a regulating factor (1

For v=0, the infrared divergence comes solely from the— €~ ™) in the 7 integration[33]. All convergent integrals
static Matsubara mod@,=0, in ¢,. The corresponding in- (including I,3) are unchanged in the limit of largi,
tegral overr has no natural scale and so the point of viewwhereas
can be taken that such divergences are automatically re-
moved by dimensional regularizatidb4]. As explained in
Appendix C, the integrals; ,, without the static mode are  3Note thatl ; 5 also containsp, and so is also afflicted by the
given by the same expressio(@&23 after the replacement givergence. This implies that introducieg ™7 is not equivalent to
v— 1+ v in the first function. The resulting prescription is a regularization of the digamma functiéand its derivativesin the
then to use the formulas af,, and L34 with the replace- final formulas, since simple scaling relations of the typeL5 or
ments (C6) no longer hold.
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Igo =2 log(M/ )+ 2 log( uBl4m) — h(v) — (1—v)
+O(M™ Y, o<w<1,

11 1 .
F2oX)= " g [ ( 2logulAmT) = 77~ ¥(»)

., (124
lo87"=2 log(M/ ) +2 log uBl4m) — i %+y "z”(l"’))Einr 11 m +2logp/amT)
1 L1 1 1 1.1 L,
— 57V +O(M™), —5<r<y. (3.39 —ﬁ-i—'yE—Ew(V)—zw(l—v) E

(Note that these formulas do not actually depend on the scale
m.) The Pauli-Villars-renormalized result is obtained by
combining log?% «?) with the bare coupling constant in the
tree level Lagrangian to yield the renormalized coupling con-
stant g(u). If, as usual, the\ g parameter in the schenke +
is defined as the scaje= A for which 1/gﬁ(,u) vanishes, it

J’_

2 log( wl/4mT)+ 111— (v)— w(l—;)) éﬁ‘

T 4 2 log( uldnT) + - Ly
o T2 10gu/ATT)+ 7+ ve— S ¥(v)

is found that the Pauli-Villars anblS schemes give identical 1 A
renormalized results, at one loop, when — Elp(l— v)) I§i2L . (3.39
log(A2 /A2 = . (3.39 A
PYITMST 11-2N/N Herev=B¢/27 (mod 1) and

The difference between both scales comes fromithie Eq.
(3.26, which is due to the-2¢ extra gluon polarizations in E= EiH+ E,, B= éiH+ B, (3.39
the dimensional regularization schefisb)].

D. Results for SU2) and SU?) are the decompositions of the electric and magnetic fields in

We can particularize our formulas for ) by working the .d_irec.tions para_tllel a}nd perpgndicularAg This decom-
out the color traces explicitly. We use the anti-HermitianPOSition is gauge invariant provided that in a general gauge
su2) basisa/2i, so ;t/heectg?rallel direction is that marked by the Polyakov loop

The quark and gluon sector contributions are periodic in
wvo €. (3.36 ¢ with periods 47T and 27T, respectively. This periodicity
in Ay of the coefficients multiplying the local operators is a
consequence of gauge invariance. Indeed, after choosing the
It is convenient to choose the “Polyakov gauge,” in which polyakov gauge there is still freedom to make further non-
A, is time independent and diagonf@6]. In SU2), A= stationary gauge transformations within this gauge. Such
—3io3¢. In this case the eigenvalues of the Polyakov looptransformationgnamed discrete transformations[#6]) are
in the fundamental representation are exf¢/2), and in  of the formU(x,) =exp,A), whereA is a constant diago-
the adjoint representation are exp@¢) and 1. Full results  nal matrix. Its eigenvalues;, j=1,... N [we consider a
for Lo, 4X) in both sectors are given in Appendix D. Here general SUK) group in this discussidn are quantized by
we quote the results fo£,(x) from the gluon and quark the requirement of periodicity iRg. For quarksJ(x,) must
loops, be strictly periodic and hence;=2in; /B, njeZ (the in-
tegersn; are x independent by continuily Since under a
P 1 _\ discrete transformatiory(x) —Aq(X) + A, the eigenvalues
2 Iog( ﬁ) - 1//(5 + V) of log(Q)/(27i) change agj— v;—n; . In SU2) this implies
77 that the effective action in the quark sector must be periodic

[, i-
AO:_EO"A(), FMV:_EO'F

F2” G

in ¢ with period 47 T. In the gluon sector, periodicity of

_ ¢(1_7) —1|E24[2 Iog( L) —y 1+7 A, (X) in Xo only requires that) (xo+ 8) =e?™*NU(xo), k
2 4mT 2 =1,... N, and there is an additional symmetry associated
1 1. with the center of the gauge groys$,9,5¢. That is, \;

- z/z(z—v) BIZ] (3.37 =2mi(n;+k/N)/B in the absence of quarksote thatk is

both x independent angl independent The eigenvalues of
. Iog(fl)/(27ri) change awj;:==vj—v,—vj,—Nn;+n, and the
with v=(B¢l4mw+1/2)(mod1)-1/2 and Bizéeiijjk is  effective action in the gluon sector must be invariant under
the magnetic field: such replacement. In SP) it corresponds to periodicity igb
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with period 27T. From this discussion it follows that an dix D). The functionf(¢) is periodic and so this contribu-

expansion in powers of log)) breaks gauge invariance un- tion is fully gauge invariant. However, the operafgi) B3
der discrete gauge transformations. The local operﬁﬁr,s has still to be brought to the standard form in the B340.
Bj. 7, andB?, are directly gauge invariant. Using Bgi=AoX B, , it follows that h, picks up a gauge
We can compare these results with those[&8,34. invariant but nonperiodic contributiorp?f(¢). (At this
That work goes beyond ours in that we compute the lowespoint we disagree witthi33] which notes thaff; needs not
terms in an expansion iD, whereas in33,34 all orders be periodic but requires periodicity df;.) We also note
in A, are retained in the electric sector. On the otherthat in our calculationf; andh; are both infrared diver-
hand, unlike[33,34, we treat groups other than §2),  gent, whereas in the calculation [#3] only h, is divergent.
our gauge field configurations are not stationary, andThiS should indicate that a resummation to all orders in
we consider higher-order terms in the spatial covarianD, of our expansion may remove spurious infrared diver-
derivatives' gences.
Let us restrict ourselves to stationary gauge configurations For SU3) we present explicit results for the effective La-
and the gluon sector in SB), as in[33]. In a notation close grangian up to mass dimension 4 included. We use the con-
to that in[33], the terms of the effective Lagrangian which vention

are quadratic ik ,,,, but of any order ifA,, are of the form

—t3($)Ef— f1(B)EL —ha($)Bf —hy(4)B7. .

(3.40 Ap=—5NA3=—5N-Ag,  Fu,=—s\FS

To obtain these S(2) group structure functions in our ex-
pansion we would need to retain terms with two or four
spatial indices but any number of commutafodg, ]. Nev-  where g, s=1,...,8, are theGell-Mann matrices. In the
ertheless, in the parallel space our calculation is complet@olyakov gauge,
since all terms of the formlféSFW)H, n=1, vanish identi-
cally in the stationary case. This implies thif(¢) and
h;(¢) do not get any further contribution beyond those in N /3
L,4(x), and indeed, after passing to the Pauli-Villars scheme Ap=—i —3¢3—i —\gs. (3.42
with Apy=eY??A 55, one verifies thaf; andh; of [33] are 2 2
reproducedf is not reproduced to mass dimension 6, byt
is reproduced when we retain mass dimension 4 terms only,
since in the magnetic sector the calculatiofid] introduces The effective Lagrangian from the quark sector can be ex-
ad hoc simplifying approximations which in practice are pressed in terms of the quantities
equivalent to usingC,4(X).
An important point is that of the periodicity of the struc-
ture functions, also emphasized [i83]. In our calculation,
the coefficients of the local operators will always be periodic
in ¢ due to gauge invariance. Yet this does not imply that the Vlzm(‘/’ﬁ bs), szm(— h3+ ds),
structure functions themselves should be periodic. The ones
in the parallel sector, which coincide to all orders with the
coefficients inL,4(x), will certainly be periodic, buf, and
h; will not be periodic in¢. For instanceh; receives a 1

o > =—— 34
contribution from£;4(x) of the formf(¢)B; (see Appen- i (343
“The stationarity conditiofis a restriction; there are gauge invari- as
ant terms of the effective action functional which are not recon-
structible from the stationary case. One might think that starting
from the stationary case, all commutators involvigcan be pro- 72TAN,

moted to temporal covariant derivatives, with the prescription Log=—
[Ag, ]—=[Dg, ]. This is consistent with gauge invariance but does .

not account all possible terms which may appear in the nonstation-

ary casez. Eor in__c,tance, mo'EiU]z)' which is equivalent to +(1_4;23)2), (3.44)
tr{(doE;))“], is obviously nonidentically zero, but cannot be recov-

ered by the above prescription sinfc&y,E;]=0. This argument

substantiates our claim that our expansion and thE3&f34] are in

fact complementary to each other. and

8
_ - _A1.2\2 _A.,2\2
12 ( 5-i—(l 4v70)°+(1—4v5)
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R N
(#) 52— [F (v) + () IL(FL)2+(F2)2+ (F3 )2

= 0 —_ — —
20" 42| OO\ 2mT) " 2 12(41)2

[~ (v + 1 (va)IL(FL,) 2+ (F )% — [~ (v2)+ 1 (va) IL(FS,) 2+ (FL,)7]

12(4 )2 124 )2
1 () () 4 ) (S, 2 — [ ()~ £ () FS,FS,, (3.49
36(4 )2 “7 6\3(4m)? S
where we have defined
1 — — 1 1
f- (V) Ul = +V +lﬂ ), = +§ (modl)—z (346)
In the gluon sector, we introduce the invariants
1 1 1
V12:m¢31 Vslz_m(¢3+3¢s): V23:m(_¢3+3¢8)- (3.47)
in terms of which the effective Lagrangian is
4 2 . - . - A -
Log(x)= 3T — T+ Vil 1= 119+ V3(1— vg) *+ 31— m)z) (348
and
_ R = it 1s2 2 2)
Log(X)=— an 11|044 T) Z}Ei Gy [11| 44 —|+35/Bi- 1o m(E,L +5B0
11(f (0)+f* vlz>+—f (va)+ 3 ot (vB))[(F )2+ (F2,)%
" am? 12 e
1—1(f+(0)+—f (v +17 (V31)+—f st))[(F4 )2+ (F3,)?]
(477)2]_ mv 224
11 + + 6 \2 7 \2 1 + 1 +
(477)21— f 0)+—f (V12)+_f (v30) + 17 (vaa) |[[(F )"+ (F )]+ 42 12 2t7 (v + 517 (va)
3 2 8 \2 11 + + 3 8
—f (v2a) | (F,)+ )2 8[f (va) + 17 (w29 I(F, )+( )Zm[f (va) =7 (vaa) IF,F L, (349
with

fFr()=g(»)+yp(1—v) (veZ), v=v (modl),

f7(0)=—27g. (3.50

Finally, the renormalized tree level is

1 .
Lired X) = F2,. 35
w0 P - 390

In the stationary case, the most general structure compatible witB) Symmetry, constructed with twg;’s and any
number ofAg’s, contains six structure functiorisee Appendix E
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f1o 3, e[ (ED 2+ (EP) 2]+ fas( b3, pe) [ (Ef)2+ (ED)2]+ for b3, pe)[(ED)?+ (E))?]+ faxl b3, dg) (ED)2
+fog b, de) (ED)2+ fag b3, dbg) (EPED) (3.52

(and similarly forB;B;, etc). Our results forZ, are of this form. Our expressions corresponding 4§, fgg, andfsg are

already correct to all orders iy, since aIII50 operators cancel in the directions 3 and 8 of the adjoint space. More generally
for any SUN) and any structure functioy, decomposeg§ ,, into a parallel componeritvhich commutes withA;) and a
perpendicular componerifully off diagonal in the gauge in whicl\, is diagonal. The structure functions not involving
perpendicular components depend periodicallyAgrand can be computed exactly using the appropriate finite order of our
expansion(that is, the lowest order at which the corresponding local operator appeéjs in

In Appendix E we give further details on the calculation for(Sluand SUN).

IV. DIMENSIONALLY REDUCED EFFECTIVE THEORY 1 1
As is well known, in the high-temperature limit nonsta- Lagx)= (41)2T tr[1—2<2 log(u/4mT) + 11

tionary fluctuations become heavy and are therefore sup-
pressed, and one expects QCD to behave as an effective - ~las 1.,
three-dimensional theory for the stationary configurations —Yv)—P(=v) |FL,— §Ei ' (4.2
only [10,11,37—42 Our previous calculation of the effective
action was obtained by separating background from fluctua-
tion and integrating the latter to one loop. Clearly, we can 1 1. R A
adapt that procedure to obtain the action of the dimensionally Eéyg(x) =5 —3tr[(¢”( v)+ " (—v))
reduced effective theory, to be denotéd(x), by (i) using (4m)" T
stationary backgrounds and) taking purely nonstationary 61 . . 1. 1.
fluctuations only—that is, removing the static Matsubara X| 2 P Faut 3F5 = 2eF o
mode in all frequency summations. In addition, there is a 45 3 30
further factorB in £'(x) from the time integration. Note that 3. 1. 2
L£'(x) is not the effective actiotior Lagrangiah of the di- + gF(ZJW— 1—5Eﬁ+ 1—5EiFijEj”. 4.3

mensionally reduced theory but its true actimithin the
one-loop approximationin the sense that functional integra-

tion over the stationary configurations with' (x) yields the In these expressiorﬁo stands fo Ao, ]. Note that, having

partition function. Besides taking,, stationary, we will as-
sume that, is small(in particular|v|<1), which is correct

in the high-temperature regime. We will come back to this

point later.

The static Matsubara mode is not present in the quar

sector, so for that sector we simply firﬂé(x)zﬁﬁq(x).

Likewise, the removal of the static mode is irrelevant in the

ultraviolet region; hencef ;.{X) = BLyedX) for the renor-
malized tree level.

As discussed in Appendix C, the removal of the static

mode in the one-loop gluon sect@nd for|»|<1) corre-
sponds to replacing(1+2¢+2¢€,v)— {(1+2€+2€,1+v)

in Eq. (3.23. For the effective potential this meais ()
—By4(1+7») in Eq. (3.24, and so (dropping an
Ap-independent terjn

Log(x)

2m? 3502 ~2 - A ;
— TP UAA+7)], v=log(Q)/(2i),
(4.1)

The analogous replacement in the mass dimension fo
and six terms givegusing the identityy(1+ »)+ ¢(1— »)
=y(v) + (- v)]

K

removed the static modé,’(x) is free from infrared diver-
gences.

At high temperature the effective potential suppresses
configurations withQ)(x) far from unity, so by means of a
suitable gauge transformation we can assume AQéx) is
small® In the absence of quarks, the situation is similar al-
though in this casdl(x) lies near a center of the group
element; the center symmetry is spontaneously broken sig-
naling the deconfining pha$6,11,54. After a suitable gen-
eralized(many-valuedl gauge transformation the configura-
tion can be brought to the smal}(x) region. It can be noted
that only whenA, is small (v|<1) the non static fluctua-
tions are the heavy ones. If we were to choose the gauge so
that v is near some other integer value the light mode
would be thenth Matsubara mode and integrating out this
light mode would yield a nonlocabnd so nonusefulction
for the effective theory.

5To bring A, to the |v|<1 basin it will be necessary to use a
discrete gauge transformation, as described in the paragraph after
Eqg. (3.39. Because such transformations are globalir{depen-

Lﬂ,eni), this will be only possible if the original(x) lies in the

same basirfi.e., near the same integey for all x. We assume this,
since otherwise()(x) would be far from unity in the crossover
region, thereby increasing the eneldy].
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powers ofAq, using the relationv=—Ay/(2iT) either in
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It is possible to rescald; and A, (with different renormal-
ization factory so that L,(x) looks like the zero-

the fundamental or the adjoint representations. We expand ugmperature renormalized tree leydl28 [39,40,43. How-

to and including terms of dimension 6, where néy com-

ever, we will work with the original variables.

ing from Q) counts as dimension 1. Note that this new count-  The result for §(T) coincides with 10] for N=3. It also

ing is free from any ambiguityalthough it is in conflict with
explicit gauge invariange

The effective potential is already a polynomial Ag.
From Egs.(3.11) and (4.1), we obtain

Lo0==|53+ 5| TAD+ (A}

A 2

(N=Np)(AQ). (4.9

+
1272T

We have introduced the shorthand notaij2 :=tr(X) (trace
in the fundamental representatjaand used the SU) iden-
tity (E6). This result agrees witf0,43 (there written in the
adjoint representation

In particular for SW2) and SU3), using the identityE7)
valid for those groups, we find

Lo=-|73

+—|T(A2) + ! (6+N—N;)(A2)2
6 0 24727 o

N=2,3, (4.9

which reproduces the result quoted[ib0] and [11] for N

=3. We note that consistency requires to include up to two-

loop contributions in the effective potentigdg].

agrees with [43] (setting N{=0) assuming a suitable
N-dependent factor between the scaleshere andu here.
The scale-independent ratio

2 ?(p)
3 (4mp?

Ge(T) _
ga(T)

found here differs from that reference. On the other hand, in
analogy with

=——(N=N§p+0(g" 4.9

=20 log(u/ Afis), (4.9

1
o*(w)

magnetic and electric thermal parameters can be intro-
duced[44]:

=20 l0g(T/AL ), (4.10

gé,M(T)

which set the scale of high temperatures for both coupling
constants. For the magnetic sector we find

N—8Ns log 2
22N—4N;
(4.1)

log(A 1,/ Ajis) = ye—log(4) +

The terms of dimension four with derivatives come fromn agreement with44].

L5(x), given essentially in Eqg.(3.30 [W|th w(l—v)
—(—v) and an extra factog], and settlngv and v to

Next, we consider terms of dimension 6. They come from
L 5(x) expanding the digamma functions to second order in

zero. The result can be written &be subindex 4 indicates v and from£ 3(x) to zeroth order. From the quark sector we
operators of dimension 4, and all gluon fields count as massbtain

dimension 1

(BY)

(EH)-

Ligy()=— (4.6)

TOZ(T) TgM(T>

(once again in the fundamental representatidror the

(chromagelectric and magnetic effective couplings we find

1 1
= —2Bo[log( /4w T)+
2T P Bollog(u/AmT) + ve]
N N P
3(4m)? 08 2) )
! ! 2Bo[log( /47 T) + ve]
= - 0 77
G Plu) LT e
+ 3(4Tr)2(—N+8Nf log 2). 4.7

B?:
(4m)*

g

28
Ligyo(¥)= 7583 —— Nf<F,WFMFW+6F2

9 22 2

(4.12

where we have made use of the identff,,=2F2,,
—4F ,,F,\F),, valid inside the functional tracE143] For

gluons we have, instead,

/33 . 57.

M FuFnFret 5F2

L) o(X)= 455(3)( ) > P

+27F5,,+165A%F2 —3E7 +6E,F;E; |.

(4.13
Using Eqgs.(E5) and (E6), this gives, for the full result,
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2 «(3) 2 14 e.g., in the radiatively induced Chern-Simons action of (2
2 68 (2 14 T 2)-di : o : .
15 (477)4T3[(3 N 3 Nf)(FMFMFM) 1)-dimensional fermionic theorid49]. In the case where

Eée)(x) ==
the heat bath is chosen to be at rest the Polyakov loop is

B 2 . 2 generated by the imaginary time component of the gauge

+ (1N 28Nf)<FWV>+(18N 21Nf)<F°W> field and can be regarded as a non-Abelian generalization of
+(11(N—140\If)(A§FiV>—(2N—14Nf)(Eﬁ the well-known chemicaI. potentigl. Actually, we have pro-
vided arguments supporting this interpretation; if the Polya-

+(4N—28Nf)(EiFiJ—EJ->+110(A(2))(F,2w) kov loop was absent or represented in perturbation theory,

the particle number could not be fixed, as one expects from

+220(A0FM,,)2 _ (4.14 standard the_rmodynamms requirements. The new ingredient
of our technique is that a certain combination of the Polya-

oo ~_ kov loop and the temperature has to be treated as an inde-
For SU2) and SU3) the term with(AgF ;) can be elimi-  pendent variable, in order to guarantee manifest gauge in-
nated by using the identitfE7). In addition, in SW2) the  variance. This can be done without fixing the gauge.
term with (F§,,,) can also be removed using E8). This An immediate application of our method can be found in
produces QCD at finite temperature in the region of phenomenological
interest corresponding to the quark-gluon plasma phase. In
) 2 {(3) 1, fact, the heat kernel expansion corresponds in this case to a
£(6)()()2_1_5(47_r)4-|-3[(3_7'\|f)<§':fw':v%':w_§F0;w high-temperature derivative expansion organized in a very
efficient way. In the case of QCD the finite-temperature heat
) 5 kernel expansion can be applied to compute the one-loop
—2Eji +4EFjE} ) + (57— 28N)(F,,,,) effective action stemming from the fermion determinant and
from the bosonic determinant corresponding to gluonic fluc-
tuations around a given background field. As a result we
have been able to reproduce previous partial calculations and
to extend them up to terms of ord€r 2 including the Polya-
for N=3, (4.15 kov loop effects, for a general gauge group SIY( As a
by-product we have computed the action of the dimension-

{165 TN AR+ 200,00 |

4 {(3) 1 ally reduced effective theory to the same order. Further we
ﬁ(’G)(x)= 15 m (2—7Nf)<§FWFMFM— Eﬁ have studied the emerging group structures in the case of two
(4m) and three colors.
2
+2EiF; Ej> +(19-14N¢)(F,,,) + (74— 14Ny) ACKNOWLEDGMENTS
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for N=2. (4.19
/:(’G)(x) has been computed previously [43] for the APPENDIX A
gluon sector and arbitrary number of colors. Our result ] ) . o o
agrees with that calculatiofand disagrees with45]). The In this appendix we explain and justify the definition of

puted in[45] for SU(3), in the absence of chromomagnetic duced in[47]. This expansion has been applied 46,49,59.
field (A;=0) and neglecting terms with more than two spa- _When the symbols metha@.2) is used, one starts with a

tial derivatives(i.e., neglectingE2). Our result reproduces 9iven operatof(M,D ) acting on the space of particle wave
that calculation in that limit as well. functions. Becaus#l andD , transform covariantlyhomo-

geneouslyunder gauge transformations, sofd,D ) and
f(M,D,+ip,) (sincep, is just ac numbey. However, the
function({x|f (M D+ ipﬂ)|0> is not gauge covariant in gen-

In the present work we have developed in full detail theeral. For instance(x|D ,|0)=(x|(d,+A,)[0)=(x|A,|0)
heat kernel expansion at finite temperature introduced irFA,(x)(x|0)=A ,(x). Gauge invariance is broken by the
[27]. We have paid special attention to the role played by theero four-momentum stat®) but is recovered in Eq2.2)
untraced Polyakov loop or thermal Wilson line in maintain- after integration over spatial momenta and summation over
ing manifest gauge invariance. This is a highly nontrivialthe Matsubara frequencies. This is as it should be, since
problem since preserving gauge invariance at finite temperax|f(M,D ,)|x) is manifestly covariantwe are assuming ul-
ture requires infinite orders in perturbation theory. The contraviolet convergence of—e.g., the heat kernel for>0).
flict between finite-order perturbation theory and finite-In the spatial case, gauge covariance is recovered because,
temperature gauge invariance has been previously illustratedfter integration over momenta, all spatial covariant deriva-

V. CONCLUSIONS
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tives appear only in the form of commutat¢i3;, ]. That s, APPENDIX B
if one drags alD; to the right(generating commutatorsall . . . '
the noncogvarianlt terms c%:mcgel after ir?tegration. There is a. Let us eSta_‘bI'Sh the commuta.tlon rAuIé?sge). Itis ?‘Uff"
simple mechanism for this cancellation—namelyDif on  Ciént to consider the cage,f] sinceD , f is a particular
the right-hand side of Eq2.2) is replaced byD;+ia;, a; case. Becauses e_1funcyon Of{),Dlt is also afuncuon oD,
being ac number, this shift can be absorbed by a redefinitionirough the relationshig)=e™#Po. In fact, it is better to
of p; and nothing changes. Certainly, all terms within a ~ Prove the relation for a gener&(Do) (not necessarily peri-
commutator are manifestly invariant under the shift, but nodic in its argument No special property ob, is required,
those withD; at the right and outside commutators which SO the statement is that, for any two operat&rand'Y and
would develop and;-dependent spurious contribution. One for any functionf,

concludes that no such noncovariant terms can survive the
momentum integration. Indeed, the only way in whibh

can appear gauge covariantly in the effective action func-
tional is through commutatofdD;, ]. At zero temperature
the same holds foD,; however, at finite temperatur®,

[X (V) ]=— 1" (VY. X]+ %f”(Y)[Y,[Y,X]H e

. . . I~ <= 1)"
can appear in two different ways without spoiling gauge _ ( FMY)D(X Dui=[Y
invariance—namely, through the commutafdd,, ] and r1§=:1 n! (Y)DY(X), velY )
through the Polyakov loof)(x)—and in general both are (B1)

realized on the right-hand side of E@.2). To see how this

comes about in detail, assume we have already carried outjs sufficient to prove this identity for functions of the type
the momentum integration and &\, are in commutatoréso  f(Y)=e MY, where\ is ac number, since the general case is

the operator is multiplicative regardingspacg. This will  then obtained through Fourier decomposition. The RHS of
produce a typical term of the form Eq. (B1) is

TT=2, (x|hy(Do+ipg)Xhy(Do+ipg)Y- - -|0), A"

DEO (x[hy(Do+ipg)Xhy(Do+ipo) |0) D —le‘”YDC,(X):e_”(e"DY—l)X
(A1) n=1 M
A A aAYy A AY oy —\Y
where X,Y, ... are gauge covariant operators constructed e (e Xe X)=[X.e 1,
with M, Fj;, E; and their spatial covariant derivatives. If we (B2
now move theDy+ip, to the left, also generating commu-
tators, we will obtain typical terms of the form which coincides with the LHS of EqB1). We have used the
well-known identityePy(X)=e"Xe Y.
TT=2 (x|h(Do+ipo)DEXDYY---10).  (A2)
Po APPENDIX C
(As always,Do=[D,, ].) As we know from Sec. Il A, the The basic integrals are
sum overp, produces a one-valued function 9f(x):
~ ~ -~ * = ” a—1 =+ 2miv
TT=R(Q)DIXDIY- - . (A3) o (v,0) fo dr 7% "en (€77),

(We can removéx| - |0) since no nonmultiplicative operator vacR n=012.... 1)

remains in the expression, which is to be evaluated)athe
shift mechanisnD,— Dg+iay does not work in the tempo-
ral direction sincep, is discrete rather than continuous; how- Where the functiong, are defined in Eq2.15 and+ refers
ever, it still implies that theD, at the left can appear only t0 the_boson!c and fermionic versions, respectively. For the
through a periodic dependence unfeg—Dy+2i/B. This  bosonic version,
restricts theDy not in commutators to appear through the
Polyakov loop. Va2
In Eq. (A3) gauge covariance is manifest. If we were to In(v,0)= T(?
expandh(Q) in powers ofD [recall Eq.(2.9)] the above-
mentioned periodicity, and thus gauge invariance, would be
spoiled. So our counting is to assign zeroth order to the
Polyakov loop and first order to each covariant derivative,
either temporal or spatial. In this way, we obtain a natural (C2
generalization of the standard expansion in covariant deriva- '
tives used at zero temperature, with manifest gauge invarWe have excluded the cagé™”=1 which is discussed be-
ance order by order in the expansion. low. Integration overr gives

) > (k=p)"
keZ

% fde 7_a+(n—1)/26—(277/5)2(k— V)ZT, vel.
0
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1
N . I a+n/2+§ ﬁ 20
—in
|n(V,a)—I —1 Z
T(E)
(k—)" 1

. C3
Ke7 |k_V|n |k_v|2a+l ( )

Defining v=ko+ », 0<»<1, the sum ovek can be split

into the sum folk<k, and another fok>k,. In terms of the
generalized Riemand function[52] this gives

1
F(a+n/2+§

e
2

I (v,a)=

B 2a . .
(E) [(=D)"(2a+ 1)

+i"(2a+1,1-v)],

0<p<1, v=kytv, kel (C4)

For the fermionic version, using,, (0)= ¢, (— ) (and so
v—wv+3), one obtains

B 2
Iy (v,0)= —————
i

1
F( a+n/2+ =

2 11 v
a+ ,§+V

ﬁ 2a .
z) [(—l) {

2

+in¢ -—E<?<E. (C5)
2 ' 2 2

1
2+ 1-— v)

Note that

( _ 1)n/22,ﬂ_71/21'*

I,T(v,a):I,'ﬁ(O,a):

Oy

n 1
a+§+§
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1

r a-l—n—l—i

Ion(v,a)=(—1)"

lo(v,a). (C6)

1
a+ =

Hletz

The formulas are consistent with periodicity and parity

(C7)

As discussed in Sec. IV, the dimensionally reduced effec-
tive theory for the stationary configurations requires us to
remove the static mode from the summation over Matsubara
frequencies in the bosonic integrals. This prescription breaks
periodicity in v but this is not relevant for the effective
theory, since it only describes the sma} (or v) region.(A
prescription that preserves periodicity would be to remove
the frequencyk=k, whenv<1 andk=k,+1 wheny>1.)

The result for thdv|<1 is

+

|ﬁ(v,a)zlﬁ(v-l—l,a):(—1)n|g(—v,a).

1
a+n/2+ =

)

+i"(2a+1,1-v)],

r

|,'1+(V,a)=

:8 2a
(E) [(=D)"(2a+1,1+v)

—1<p<l. (C8

A related issue is that of the infrared divergences for in-
tegerv. As a result of periodicity, we can restrict the discus-
sion to the case=0. Forn#0, the static Matsubara mode
does not contribute tb. (v,«), and so there is no infrared
divergence in this case. On the other handl v, ), the
static mode is either infrared or ultraviolet divergent. In di-
mensional regularization such an integfal=k=n=0 in
Eq.(C2)]is defined as zero since it has no natural sgadg.

So for all n the result is equivalent to removing the static
mode

(BI2m)%*¢(2a+1), evenn

for vel. (C9

odd n

Alternatively one can regulate the infrared divergence by adding a cutoff funetioh’ (m—0) in the 7 integral. This
amounts to adding a contributiofd T (a+ 1/2)/(Bm?** ) in 1§ (v,a) for integerv.

APPENDIX D

In this appendix we present results for @in both sectors, including all terms of mass dimension 6. All results are given
in the MS scheme. In these formulas we have allowed for an explicit infrared cut,&fs commented at the end of Appendix

C. The results with strict dimensional regularization are recovered by removing all infrared divergent terms from the formulas.
The conventions are those of Sec. Il D:
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Lood )= ——F2 (D1)
tre 492('“ ,u,v’
L O
Log0)=—5—| = g +4¥*(1=1)?), (D2)
11 |1 11 7TT 1 1
£2,g(x):_@ 177209 7~ ) P(v)—p(1—v) |F2 - 962 +tq7t2log 7= T Jr7’E——l!/(7/)
Lol e 2 (ﬂ)E D3
2 '70( V) mvl 24’”_2 i 48 il ( )

3

+2£(3)— " (V) — " (1—v)

(F,U.VXFva)' Fa,u

3
+4L3)— ¢ (v)—'(1-1) |F

1\ 1 1\2 7T ,
_4877_2(_-[') [llf’,(v)+ ,’[/’(1 V)]F)\MV”—F (ﬁ) 16(? F)\l“,l
1 1 , ) 1 1 ar ., )
+4807T2(—T) [0/ (n) + 9" (1= ) I = —960772(—T) (W +AL3) — ¢ (V) — Y (1) |F2 .
1 ? " " ar A .
_80772(_T) [/ () 9" (A= DIFG, + 160772(“) (; +AL3) -~ ()= ' (1= ) |FE,,.
] () 5% gl W0
o2\ &) || Bt 0| ) WA= 0IE,

+4L3) =" (V) — ' (1—v)

=5 1 1 ,
EiiL 24077_2 47TT [lﬁ (V)

" - = = S 1 1 2 mT : nel " - = = S
+ i (1_V)]8ijk(EiXEj)'Bk+T0ﬂ_2 2.7 18 —4L3) =" (v)—¢"(1—v) |&jj(EiL XEjL)- By,

47T
(D4)
2 4 2 2
Equ(X)=§7T T Nf 1—5—2(1 41/) (DS)
i 1 1 1., Nt -,
£2q(x)— 2Iog<4 T) o 2+v w(z ) w Jam B (D6)
Laa(3)= T 12"1+_+"1_16|f F,)-F,,+-F2 —F2
3,q(X)_W 2.7 |V 2T Y s v 3 (FunXFua) Faut 5P = Fl
_28ijk(EiXEj)’§k+3ﬁg;w_2Eﬁ)- (D?)

It can be noted that the quark terms do not distinguish between parallel and perpendicular components. This is due to the
fact that in SW2) an even function o?[or any other element of §2)] in the fundamental representation is necessarity a
number. Since the,, functions involved to mass dimension 6 are all evenﬂluiependence gets out of the trace in E§sl4)
and (3.16 and A, is no longer a privileged direction in color space. This mechanism does not act in the adjoint
representation—i.e., in the gluon sector—or for other SU¢roups[cf. Eq. (3.45].

The infrared divergence is tied winteger, so it does not exist for fermions, and also cancels in all gluon terms involving
only parallel components.
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APPENDIX E

In SU(N) the gauge can be chosen so tAgtis diagonal.
This form is unique(up to permutation of eigenvalueand
producesN—1 quantities invariant under SNj [ ¢3, ¢g
for SU3)]. If X representsk,, or any other element of
su(N) [XT=—X, tr(X)=0] with N°~1 independent com-
ponents, we can use the remaining gauge freedte N
—1 gauge transformations which lea®g diagona) to fix
N—1 of these components. This adds?-1)—(N—1)
new invariants involvingX (and Ap). Of these,N—1 are
linear in X (the diagonal components of), N(N—1)/2 are
quadratic, and N—1)(N—2)/2 are cubic. For instance, in
SU(3), under a diagonal gauge transformation

X a b
X=| —a* vy c
—b* —c* —x-y
X dla=Bg datp)p
| —eila=B)gx y dlar2hc |
_efi(2a+ﬁ)b* _efi(a+2ﬁ)c* —X—y
(ED)

the invariants are, y, aa*, bb*, cc*, andab*c (the last
one is complex but its modulus is not independgleRbr X
= E; this gives the six structure functions in E§.52. Each
further vectorY e su(N) produces newN?—1 invariants.

PHYSICAL REVIEW D69, 116003 (2004

From the point of view of the gauge group, the computa-
tion of the trace in the adjoint space involves only four dif-
ferent structures appearing i, bj,, andbj,. These are

T f()]=2" fwaw),

THQIF2,1=> f(0a)[(F2,)aat (F2,)a

- Z(F,Lv)aa(F,uv)éé]v

[ F(QF L FFr )= f(0a)[(FF nFyu)aa

aa
+(F L FunFawaa
—(Fu)aa(FinFawaa
—(FuFi)aalFaaal,

UL F(DEFE =2 f(0a[(EiFiiEjaa

EiFijE)aa—(EDaal[Fij \EjDaa
[Ei.FijDaa(Ej)aa
EiEjaa(Fij)aa

>
+(
—(
—(
—(Fij)aa(EiEj)aal-

(E4)

For computing the traces in the adjoint representation one

possibility is to use the adjoint basi§¥),;=f,s;, such that

toF,,= FfwtS (ts=\/2i) in the fundamental representation

it correspondsewz Ff’L,,TS in the adjoint one. We have also

[E;é in the first equation indicates that one of tNenodes

with a=a should not be included. This removes the singlet
mode present in W) but not SUN). The singlet mode

used an alternative approach, as follows. The elements Qfpes not contribute in the other formulpOften, f(w)

su(N), such as the gluon quantum fluctuatiap), are N

XN matrices, &,).a. From the action Fo(a)
=[F,,.a,], it follows

(F ) ampb=(F ) abBab— San(F )ba s

a,b,a,b=1,... N. (E2)
In matrix notation this can be written :fs,w= F.®l-1
®F;V= F.,®1+1®F}, or even, in shorter form,

T _ *
F —FW—FM,,+FM,

,LLV= F,U.V (E3)
understanding thaFlTw or F;, always refer to the dotted
space. SimilarlyA,=A,—A]=A,+A% . Since dotted and
undotted operators commute, it follows that tlik=0
®0*=0®0 1T for the Polyakov loop. In the Polyakov
gauge @, stationary and diagonal) is diagonal )).p
=w,8, and Q is also diagonal in that basis {4z b

= Waa0ap0ah, With wa3= w0, ™.

=f(o 1) [i.e., f(w,,) is symmetric ina,a], but this prop-
erty has been not used here. It can be observed that the
contributionsa=a, which correspond t€)=1 and are af-
flicted by infrared divergences, cancel in the subspace paral-
lel (i.e., for F,,, diagonal in the Polyakov gaupe

Useful SUN) identities are ( ) stands for trace in the
fundamental representation

tr(X?)=2N(X?), XesuN), (E5)
tr(X2Y2) = 2N(X2Y?) + 2(X?)(Y?) + 4(XY)?,
X,Y esuN), (E6)
(Y2 =~ (XY I+ 5 (YD + 5 (XY)?,
X,Yesu3), (E7)
([X,Y]?)==2(X2(Y?) +2(XY)2, X,Yesu2).
(E8)
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