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Thermal heat kernel expansion and the one-loop effective action of QCD at finite temperature

E. Megı́as,* E. Ruiz Arriola,† and L. L. Salcedo‡

Departamento de Fı´sica Moderna, Universidad de Granada, E-18071 Granada, Spain
~Received 11 December 2003; published 28 June 2004!

The heat kernel expansion for field theory at finite temperature is constructed. It is based on the imaginary
time formalism and applies to generic Klein-Gordon operators in flat space-time. Full gauge invariance is
manifest at each order of the expansion and the Polyakov loop plays an important role at any temperature. The
expansion is explicitly worked out up to operators of dimension 6 included. The method is then applied to
compute the one-loop effective action of QCD at finite temperature with massless quarks. The calculation is
carried out within the background field method in theMS scheme up to dimension-6 operators. Further, the
action of the dimensionally reduced effective theory at high temperature is also computed to the same order.
Existing calculations are reproduced and new results are obtained in the quark sector for which only partial
results existed up to dimension 6.
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I. INTRODUCTION

The extension of field theory from zero to finite tempe
ture and density is a natural step undertaken quite e
@1–6#. The interest is both at a purely theoretical level and
the study of concrete physical theories. At the theoret
level one needs appropriate formulations of the therm
problem, for which there are several formalisms availa
@7#, as well as mathematical tools to carry out the calcu
tions. From the point of view of concrete theories a cen
point is the study of the different phases of the model and
nature of the phase transitions. That study applies not onl
condensed matter theories but also to fundamental ones,
as the electroweak phase transition, of direct interest in e
cosmology and baryogenesis@8#, and quantum chromody
namics which displays a variety of phases in addition to
hadronic one@9–12#. Such new phases can presumably
probed at the laboratory in existing@BNL Relativistic Heavy
Ion Collider ~RHIC!# @13# and future~ALICE! facilities. Ob-
viously one expects all these features of QCD at finite te
perature to be fully consistent with manifest gauge inva
ance. As is well known Lorentz invariance is manifes
broken due to the privileged choice of the reference fram
rest with the heat bath; however, gauge invariance rem
an exact symmetry. At zero temperature preservation
gauge invariance involves mixing of finite orders in pertu
bation theory. As will become clear below, compliance w
gauge invariance requires mixing of infinite orders in pert
bation theory at finite temperature.

The purpose of the present work is twofold. The first p
~Sec. II! is devoted to introduce a systematic expansion
the one-loop effective action of generic gauge theories
finite temperature in such a way that gauge invariance
manifest at each order. In the second part this techniqu
applied to QCD in the high-temperature regime, first to co
pute its one-loop gluon and quark effective action~Sec. III!

*Electronic address: emegias@ugr.es
†Electronic address: earriola@ugr.es
‡Electronic address: salcedo@ugr.es
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and then to derive the Lagrangian of the dimensionally
duced effective theory~Sec. IV!. Further applications can
and will be considered in other cases of interest@14#.

The effective action, an extension to quantum field the
of the thermodynamical potentials of statistical mechan
plays a prominent theoretical role, being directly related
quantities of physical interest. To one loop it takes the fo
c Tr log(K), whereK is the differential operator controlling
the quadratic quantum fluctuations above a classical ba
ground. Unfortunately, this quantity is afflicted by mat
ematical pathologies, such as ultraviolet divergences
many-valuation~particularly in the fermionic case!. For this
reason, it has proved useful to express the effective actio
terms of the diagonal matrix elements of the heat kernel~or
simply the heat kernel, from now on! ^xue2tKux&, by means
of a proper time representation@see, e.g., Eq.~2.17! below#
@15,16#. Unlike the one-loop effective action, the heat kern
is one-valued and ultraviolet finite for any positive prop
time t ~we assume that the real part ofK is positive!. A
further simplifying property is that, after computing the loo
momentum integration implied by taking the diagonal mat
element, the result is independent of the space-time dim
sion, apart from a geometrical factor. In practice the com
tation of the heat kernel is through the so-called heat ke
expansion. This is an expansion which classifies the vari
contributions by their mass scale dimension, as carried
the background fields and their derivatives. This is equi
lent to an expansion in the powers of the proper timet. In
this way the heat kernel is written as a sum of all loc
operators allowed by the symmetries with certain numer
coefficients known as Seeley-DeWitt or heat kernel coe
cients. The perturbative and derivative expansions are
resummations of the heat kernel expansion. This expan
has been computed to high orders in flat and curved sp
time in manifolds with or without boundary and in the pre
ence of non-Abelian background fields@17–23#.

In order to apply the heat kernel technique to the com
tation of the effective action at finite temperature it is nec
sary to extend the heat kernel expansion to the thermal c
This can be done within the imaginary time formalism
which amounts to a compactification of the Euclidean tim
©2004 The American Physical Society03-1



de
e
n

ld
rd
he
o-
th
tu

m
lie
ite

d

m
o
ir
W

m
ri-
d

at
nd

an

ar
ia
g
m
ic

ar
ce
he

nt
ar
it
y
ow
y

le
tia
l

a-
p
is
d-
d
he
a

wn
der

ov
as

e
uge
in
but

ctor

u-
to
ni-
ble
s
s
nd

mi-
the
ch-
ion
The
nd

nal
c-
ing
the
s us
all

ma-
ant
6,

n 6

ing
me
ly

gen-
ups
ex-

ble
is

and
r of
s of
ta-
in
n.
both
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coordinate. The space-time becomes a topological cylin
~As usual in this context, we consider only flat space-tim
without boundary.! Now, the heat kernel describes how a
initial Dirac delta function in the space-time manifo
spreads out as the proper time passes, with the Klein-Go
operatorK acting as a Laplacian operator. As is known, t
standard small-t asymptotic expansion is insensitive to gl
bal properties of the space-time manifold. This means
the space-time compactification, and hence the tempera
will not be seen in the strict expansion in powers oft. ~As a
consequence, the ultraviolet sector and hence the renor
ization properties of the theory and the quantum anoma
are temperature independent, a well-known fact in fin
temperature field theory@24,25#.! Within a path integral for-
mulation of the propagation in proper time, this correspon
to an exponential suppression@namely, of ordere2b2/4t; cf.
Eq. ~2.5!# of closed paths which wind around the space-ti
cylinder. The compactification is made manifest if instead
counting powers oft one classifies the contributions by the
mass dimension. The corresponding thermal Seeley-De
coefficients will then be powers oft but with exponentially
suppressedt-dependent corrections. As a result of the co
pactification, the new expansion will not be Lorentz inva
ant, although rotational invariance will be maintained. In a
dition, we find coefficients of half-integer order which
zero temperature can appear only for manifolds with bou
ary ~as distributions with support on the boundary@26#!.
Such half-order terms vanish in a strict proper time exp
sion.

Another relevant issue is the preservation of gauge inv
ance. At zero temperature the only local gauge covar
quantities available are the matter fields, the field stren
tensor and their covariant derivatives. However, at finite te
perature there is a further gauge covariant quantity wh
plays a role: namely, the~untraced! thermal Wilson line or
Polyakov loop. Since temperature effects in the imagin
time formalism come from the winding around the spa
time cylinder, the Polyakov loop appears naturally in t
thermal heat kernel. Our calculation, anticipated in@27#,
shows that the thermal heat kernel coefficients at a poix
become functions of the untraced Polyakov loop that st
and ends atx. Although such a dependence is consistent w
gauge invariance at finite temperature, it is not required b
either. Nevertheless, there is a simple argument which sh
that the heat kernel expansion cannot be simply given b
sum of gauge covariant local operators~albeit with Lorentz
symmetry broken down to rotational symmetry!. For the
Klein-Gordon operator describing a gas of identical partic
free from any external fields other than a chemical poten
~plus a possible mass term! it is obvious that such a chemica
potential~which can be regarded as a constantc-number sca-
lar potentialA0) has no effect through the covariant deriv
tives, and so it is invisible in the gauge covariant local o
erators. However, it is visible in the Polyakov loop, and it
only in this way that the effective action, or the gran
canonical potential, and hence the particle density, can
pend on the chemical potential. The dependence of the t
mal heat kernel coefficients on the Polyakov loop w
overlooked in previous calculations@28,29#, although it was
11600
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made manifest in particular cases and configurations in@30#.
Of course, the relevance of the Polyakov loop is well kno
in quarkless QCD at high temperature, where it is the or
parameter signaling the presence of a deconfining phase@5#.
The determination of the effective action of the Polyak
loop after integration of all others degrees of freedom h
been pursued, e.g., in@31#. Our results imply that, becaus
the formulas are quite general and should hold for any ga
group, the Polyakov loop must be accounted for, not only
the color degrees of freedom and at high temperature,
also in other cases such as the chiral flavor group with ve
and axial-vector couplings and at any finite temperature@14#.
The thermal heat kernel expansion is derived in Sec. II.

In Sec. III we apply the previous technique to the comp
tation of the effective action of QCD at finite temperature
one loop. Here we refer to the effective action in the tech
cal sense of generating function of one-particle irreduci
diagrams. For the quark sector~we consider massless quark
for simplicity! the method applies directly by taking a
Klein-Gordon operator the square of the Dirac operator a
using an integral representation for the fermionic deter
nant. In the gluon sector, the fluctuation operator is of
Klein-Gordon type in the Feynman gauge, and so the te
nique applies too, but this time in the adjoint representat
of the gauge group and including the ghost determinant.
calculation is carried out using the covariant backgrou
field method. To treat ultraviolet divergences dimensio
regularization is applied, plus the modified minimal subtra
tion (MS) scheme. We have also made the calculation us
the Pauli-Villars scheme as a check. In this computation
background gauge fields are not stationary, and this allow
to write expressions which are manifestly invariant under
gauge transformations~recall that in the time-compactified
space-time there are topologically large gauge transfor
tions @32#!. The result is expressed using gauge invari
local operators, including operators of up to dimension
and the Polyakov loopV(x). This is done for arbitrary
SU(N) (N being the number of colors!. For SU~2! and SU~3!
the traces on the color group are worked out, to dimensio
for SU~2! and to dimension 4 for SU~3!. In our expansion the
dependence on the Polyakov loop is treated exactly@we keep
all orders in an expansion in powers of log(V)] but the ex-
pansion in covariant derivatives is truncated without spoil
gauge invariance at finite temperature. In particular the ti
covariant derivative is not kept to all orders. This is probab
the best one can do for nonstationary backgrounds and
eral gauge groups. If one considers particular gauge gro
and stationary backgrounds, one still has to truncate the
pansion in the spatial covariant derivatives, but it is possi
to add all orders in the temporal gluon component. This
the viewpoint adopted in the recent work@33,34# for SU~2!
as a color gauge group. The calculation presented here
that of@33,34# are in a sense complementary, since neithe
them can be deduced from each other; i.e., we find term
the effective action functional which are missed by the s
tionarity condition, and there are terms of higher order
A0(x) which are not kept at a finite order of our expansio
Nevertheless, there are terms which can be compared in
approaches~see Sec. III!.
3-2
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THERMAL HEAT KERNEL EXPANSION AND THE ONE- . . . PHYSICAL REVIEW D 69, 116003 ~2004!
As is known, the effective action of perturbative QCD
finite temperature contains infrared divergences due to
massless gluons in the chromomagnetic sector@35,36#. Such
divergences come from stationary quantum fluctuati
which are light even at high temperature, whereas the n
stationary modes become heavy, with an effective mas
the order of the temperatureT, from the Matsubara fre-
quency. So the procedure which has been devised to a
the infrared problem is to integrate out the heavy, nonstat
ary modes to yield the action of an effective theory for t
stationary modes—i.e., of gluons in three Euclidean dim
sions@10,11,37–42#. In this way one obtains a dimensional
reduced theoryL3D . ~One can go further and integrate o
the chromoelectric gluons which become massive thro
the Debye mechanism. We do not consider such further
duction here.! By construction,L3D reproduces the stati
Green functions of the four-dimensional theoryL4D . Of
course, the infrared divergences will reappear now if t
action is used in perturbation theory. However, residing i
lower dimension,L3D is better behaved in the ultraviolet an
also more amenable to nonperturbative techniques, suc
lattice gauge theory. The parameters ofL3D ~masses, cou-
pling constants! can be computed in standard perturbat
QCD since they are infrared finite, coming from integrati
of the heavy nonstationary modes, although they are s
dependent due to the standard ultraviolet divergences
four-dimensional QCD. Section IV is devoted to obtaini
the action of the reduced theory. This is easily done from
calculation of the effective action in Sec. III by removing th
static Matsubara mode in the gluonic loop integrations. T
theory inherits the gauge invariance under stationary ga
transformations of the four-dimensional theory, but a lar
gauge invariance is no longer an issue since more gen
gauge transformations would not preserve the stationarit
the fields. In addition, at high temperature fluctuations of
Polyakov loop far from unity~or from a center of the gaug
group element in the quarkless case! are suppressed and so
is natural to expand the action in powers ofA0. We obtain
the action up to operators of dimension 6 included~counting
each gluon field as mass dimension 1! and compare with
existing calculations to the same order quoted in the lite
ture @10,11,40,43–45#. The relevant scalesLM ,E

T for the run-
ning coupling constant in the high-temperature regime
identified and reproduced@44#. For the dimension-6 terms, i
the gluon sector we find agreement with@43# if the Polyakov
loop is expanded in perturbation theory and in the qu
sector we reproduce the results of@45# for the particular case
considered there~no chromomagnetic gluons and no mo
than two spatial derivatives!. We give the general result fo
SU(N) and simpler expressions for the cases of SU~2! and
SU~3!.

The heat kernel and the QCD parts of the paper m
interest different audiences, the first one being more meth
ological and the second one more phenomenological, an
some extent they can be read independently. The QCD
does not require all the details of the derivation of the th
mal heat kernel expansion but only the final formulas.
fact, one of the points of this paper is that the thermal co
ficients need not be computed each time for each applica
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but only once, and then applied in a variety of situations

II. HEAT KERNEL EXPANSION
AT FINITE TEMPERATURE

A. Polyakov loop and the heat kernel

We will consider Klein-Gordon operators of the form

K5M ~x!2Dm
2 , Dm5]m1Am~x!. ~2.1!

M (x) is a scalar field which is a Hermitian matrix in intern
space~gauge group space!, and the gauge fieldsAm(x) are
anti-Hermitian matrices.K acts on the particle wave functio
in d11 Euclidean dimensions and in the fundamental rep
sentation of the gauge group. At finite temperature in
imaginary time formalism the time coordinate is compac
fied to a circle; i.e., the space-time has topologyMd11
5S13Md . Correspondingly, the wave functions are pe
odic in the bosonic case, with periodb ~the inverse tempera
ture!, antiperiodic in the fermionic case, and the extern
fields M,Am are periodic.

In order to obtain the heat kernel^xue2tKux& ~a matrix in
internal space! we use the symbols method, extended to
nite temperature in@46,47#: For an operatorf̂ 5 f (M ,Dm)
constructed out ofM andDm ,

^xu f ~M ,Dm!ux&5
1

b (
p0

E ddp

~2p!d
^xu f ~M ,Dm1 ipm!u0&.

~2.2!

Here p0 are the Matsubara frequencies, 2pn/b for bosons
and 2p(n1 1

2 )/b for fermions, and the sum extends to a
integersn. On the other hand,u0& is the zero-momentum
wave function, ^xu0&51. The matrix-valued function

^xu f (M ,Dm1 ipm)u0& is the symbol off̂ . It is important to
note that this wave function is periodic~in fact constant! and
not antiperiodic, even for fermions. The antiperiodicity of t
fermionic wave function is only reflected in the Matsuba
frequencies in this formalism. Whenever the symbols meth
is used,]m acts on the periodic external fields. Ultimately]m
acts onu0& giving zero~this means in practice a right-actin
derivative operator!.

In order to introduce the necessary concepts gradually
to provide the rationale for the occurrence of the Polyak
loop in the simplest case, in what remains of this subsec
we will consider the case of no vector potential, spa
independent scalar potential, and constantc-number mass
term:

A~x!50, A05A0~x0!, M ~x!5m2, @m2, #50.

~2.3!

This choice avoids complications coming from the spa
covariant derivatives and commutators at this point of
discussion. The result will be the zeroth-order term of
expansion in the number of commutators@Dm , # and@M , #.

An application of the symbols method yields in this ca
3-3



th

n
m

v

fo
s

a
Eu
er
fie

nd

r

ed

th
ld

l-

s

An-

n at
h

d

m is

r

ach
re-
d

,

MEGÍAS, RUIZ ARRIOLA, AND SALCEDO PHYSICAL REVIEW D69, 116003 ~2004!
^xue2tKux&5
1

b (
p0

E ddp

~2p!d
^xue2t[m21p22(D01 ip0)2] u0&

5
e2tm2

~4pt!d/2

1

b (
p0

^xuet(D01 ip0)2
u0&.

~2.4!

@After the replacementD→D1p dictated by Eq.~2.2!, Di
5] i can be set to zero due tou0&.#

The sum over the Matsubara frequencies implies that
operator (1/b)(p0

et(D01 ip0)2
is a periodic function ofD0

with period 2p i /b; thus, it is actually a one-valued functio
of e2bD0. This can be made explicit by using Poisson’s su
mation formula, which yields

1

b (
p0

et(D01 ip0)2
5

1

~4pt!1/2 (
kPZ

~6 !ke2kbD0e2k2b2/4t

~2.5!

(6 for bosons or fermions, respectively!. This observation
allows us to apply the operator identity@47#

eb]0e2bD05V~x!, ~2.6!

whereV(x) is the thermal Wilson line or untraced Polyako
loop:

V~x!5T expS 2E
x0

x01b

A0~x08 ,x!dx08D . ~2.7!

@T refers to temporal ordering and the definition is given
a general scalar potentialA0(x).# The Polyakov loop appear
here as the phase difference between gauge covariant
noncovariant time translations around the compactified
clidean time. Physically, the Polyakov loop can be int
preted as the propagator of heavy particles in the gauge
background. The identity~2.6! is trivial if one chooses a
gauge in whichA0 is time independent~which always exists
globally! since in such a gaugeV5e2bA0, andD0 , A0, and
]0 all commute. The identity itself is gauge covariant a
holds in any gauge@47#.

The point of using Eq.~2.6! is that the translation operato
in Euclidean time,eb]0, has no other effect than movingx0
to x01b and this operation is the identity in the compactifi
time,

eb]051 ~2.8!

~even in the fermionic case, recall that after applying
method of symbols the derivatives act on the external fie
and not on the particle wave functions!, so one obtains the
remarkable result

e2bD05V~x!. ~2.9!

That is, whenever the differential operatorD0 appears peri-
odically ~with period 2p i /b), it can be replaced by the mu
tiplicative operator ~i.e., the ordinary function!
2(1/b)log@V(x)#. The many-valuation of the logarithm i
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not effective due to the assumed periodic dependence.
other point to note is thatD0 ~or any function of it! acts as a
gauge covariant operator on the external fieldsF(x0 ,x) and
so transforms according to the local gauge transformatio
the point (x0 ,x). Correspondingly, the Polyakov loop, whic
is also gauge covariant, starts at timex0 and not at time zero
in Eq. ~2.7!; this difference would be irrelevant for the trace
Polyakov loop, but not in the present context.

An application of the rule~2.9!, yields, in particular,

1

b (
p0

et(D01 ip0)2
5

1

~4pt!1/2 (
kPZ

~6 !kVke2k2b2/4t.

~2.10!

More generally,

(
p0

f ~ ip01D0!5(
p0

f S ip02
1

b
log~V! D , ~2.11!

provided the sum is absolutely convergent, so that the su
a periodic function ofD0. Thus it will prove useful to intro-
duce the quantityQ defined as

Q5 ip01D05 ip02
1

b
log~V!. ~2.12!

The second equality holds in expressions of the form~2.11!.
„Note that the two definitions ofQ are not equivalent in othe
contexts—e.g., in(p0

f 1(Q)X f2(Q)—unless@D0 ,X#50.…
The heat kernel in Eq.~2.4! becomes

^xue2tKux&5
1

~4pt!d/2
e2tm2 1

b (
p0

etQ2
~2.13!

5
1

~4pt!(d11)/2
e2tm2

w0~V!.

~2.14!

In the first equality we have removed the brackets^xu•u0&
since for multiplicative operators likeV(x), these brackets
just pick up the value of the function atx. In the last equality
we have used the definition of the functionswn(V) which
will appear frequently below:

wn~V;t/b2!5~4pt!1/2
1

b (
p0

tn/2QnetQ2
,

Q5 ip02
1

b
log~V!. ~2.15!

Note that there is a bosonic and a fermionic version of e
such function, and the two versions are related by the
placementV→2V. As indicated, these functions depen
only on the combinationt/b2. In the zero-temperature limit
the sum overp0 becomes a Gaussian integral, yielding
3-4
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wn~V;0!5H S 2
1

2D n/2

~n21!!! ~n even!,

0 ~n odd!.

~2.16!

As can be seen, for instance, from Eq.~2.10!, in this limit
only the k50 mode remains, whereas the other modes
come exponentially suppressed, either at low temperatur
low proper timet.

The result in Eq.~2.14! is sufficient to derive the grand
canonical potential of a gas of relativistic free particles. F
definiteness we consider the bosonic case@48#. The effective
action ~related to the grand-canonical potential throughW
5bVgc) is obtained as

W5Tr log~K !52TrE
0

`dt

t
^xue2tKux&. ~2.17!

K includes a chemical potentialA052 im as unique externa
field, and the corresponding Polyakov loop isV
5exp(ibm). Using Eq. ~2.14!, subtracting the zero
temperature part~which corresponds to settingw0→1), and
carrying out the integrations yields the standard result@24#

W5NE ddxddk

~2p!d
@ log~12e2b(vk2m)!

1 log~12e2b(vk1m)!#. ~2.18!

N is the number of species andvk5Ak21m2.
In next subsection, after the introduction of more gene

external fields, we will consider expansions in the numbe
spatial covariant derivatives and mass terms. At zero t
perature, the derivative expansion involves temporal der
tives as well, as demanded by Lorentz invariance, but s
an expansion is more subtle at finite temperature. The di
method would be to expand in powers ofD0 in Eq. ~2.4!;
however, this procedure spoils gauge invariance~e.g.,
D0u0&5A0u0& is not gauge covariant!. As a rule, giving up
the periodic dependence inD0 breaks gauge invariance@47#.
One can try to first fix the gauge so thatA0 is stationary and
then expand in powers ofA0. This is equivalent to expandin
in powers of log(V). By construction this procedure pre
serves invariance under infinitesimal~or more generally, to-
pologically small! gauge transformations; however, it do
not preserve invariance under discrete gauge transforma
~@47,49# and Sec. III D below!. This is because log(V) is
many-valued under such transformations. An expansion
the number of temporal covariant derivatives which does
spoil one-valuation or gauge invariance is described nex

B. Diagonal thermal heat kernel coefficients

Here we will consider the heat kernel expansion at fin
temperature in the completely general case of nontrivial
non-Abelian gauge and mass term fieldsAm(x) andM (x).

First of all one has to specify the counting of the expa
sion. At zero temperature, the expansion is defined as on
^xue2tKux& in powers oft @after extracting the geometrica
factor (4pt)2(d11)/2]. Each power oft is tied to a local
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operator constructed with the covariant derivativesDm and
M (x) @cf. Eqs. ~2.23! and ~2.24!#. The heat kernele2tK is
dimensionless by assigning engineering mass dimens
22,11, and12 to t, Dm , andM, respectively. So at zero
temperature, the expansion in powers oft is equivalent to
counting the mass dimension carried by the local operat

At finite temperature there is a further dimensional qua
tity b, the two countings are no longer equivalent, and o
has to specify the concrete expansion to be used. It is w
known that the finite-temperature corrections are negligi
in the ultraviolet region, so that, for instance, the temperat
does not modify the renormalization properties of a quant
field theory@24,25# and also the quantum anomalies are n
affected@3,50#. The ultraviolet limit corresponds to the sma
t limit in the heat kernel. As noted before and can be se
e.g., in Eq.~2.10!, the finite-b and small-t corrections are of
the order ofe2b2/4t or less, and so they are exponentia
suppressed. Of course, the same exponential suppressio
plies to the low-temperature and finite-t limit. This implies
that a strict expansion of the heat kernel in powers oft will
yield precisely the same asymptotic expansion as at z
temperature. In order to pick up nontrivial finite-temperatu
corrections we arrange our expansion according to the m
dimension of the local operators. In this counting we take
Polyakov loopV, Dm , and M as zeroth, first, and secon
order, respectively. In addition one has to specify thatV(x)
is at the left in all terms~equivalently, one could define
similar expansion withV always at the right!. This is re-
quired because the commutator ofV with other quantities
generates commutators@D0 , # which are dimensionful in our
counting. After these specifications the expansion
^xue2tKux& for a generic gauge group is unique and w
defined and full gauge invariance is manifest at each ord

The expansion just described, in which each term conta
arbitrary functions of the Polyakov loop but only a fini
number of covariant derivatives~including timelike ones!, is
the natural extension of the standard covariant derivative
pansion at zero temperature. Its justification is given in gr
detail in @47#. For the reader’s convenience we have summ
rized the main points in Appendix A.

In this expansion the terms are ordered by powers oft but
with coefficients which depend onb2/t andV:

^xue2t(M2Dm
2 )ux&5~4pt!2(d11)/2(

n
an

T~x!tn.

~2.19!

From the definition it is clear that the zeroth-order term fo
general configuration is just

a0
T~x!5w0~V~x!;t/b2!, ~2.20!

already computed in the previous subsection@cf. Eq. ~2.14!#.
This is because when the particular case~2.3! is inserted in
the full expansion all terms of higher order, with one or mo
@Dm , # or m2, vanish identically.

For subsequent reference we introduce the following
tation. The field strength tensor is defined asFmn

5@Dm ,Dn# and, likewise, the electric field isEi5F0i . In
3-5
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addition, the notationD̂m means the operation@Dm , #. Fi-
nally we will use a notation of the typeXmna to mean
D̂mD̂nD̂aX5@Dm ,@Dn ,@Da ,X###—e.g., M005D̂0

2M , Famn

5D̂aFmn .
The method for expanding a generic functio

^xu f (M ,Dm)ux& has been explained in detail in@47#. We
have applied this procedure to compute the heat kernel c
ficients to mass dimension 6. However, for the heat ker
there is an alternative approach which uses the well-kno
Seeley-DeWitt coefficients at zero temperature. This is
method that we explain in detail here. The idea is as follo
The symbols method formula~2.2! is applied to the tempora
dimension only:

^xue2t(M2Dm
2 )ux&5

1

b (
p0

^xue2t(M2Q22Di
2)ux&,

Q5 ip01D0 . ~2.21!

~The bracketŝ x0u u0&, associated with the Hilbert spac
overx0, are understood although not written explicitly.! This
implies that we can use the standard zero-temperature ex
sion for thed-dimensional heat kernel with effective Klein
Gordon operator:

K05Y2Di
2 , Y5M2Q2. ~2.22!

In this contextY is the non-Abelian mass term, becaus
although it contains temporal derivatives~in Q), it does not
contain spatial derivatives and so acts multiplicatively on
spatial Hilbert space. The standard heat kernel expan
gives then

^xue2t(Y2Di
2)ux&5~4pt!2d/2(

n50

`

an~Y,D̂ i !t
n, ~2.23!

where the coefficientsan(Y,D̂ i) are polynomials of dimen-
sion 2n made out ofY and D̂ i5@Di , #. To lowest orders
@17,19#,

a051,

a152Y,

a25
1

2
Y22

1

6
Yii 1

1

12
Fi j

2 ,

a352
1

6
Y31

1

12
$Y,Yii %1

1

12
Yi

22
1

60
Yii j j 2

1

60
@Fii j ,Yj #

2
1

30
$Y,Fi j

2 %2
1

60
Fi j YFi j 1

1

45
Fi jk

2 2
1

30
Fi j F jkFki

1
1

180
Fii j

2 1
1

60
$Fi j ,Fkki j%. ~2.24!

~As noted beforeYii 5D̂ i
2Y, Fi jk5D̂ iF jk , etc.!
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Equation~2.23! inserted into Eq.~2.21! is of course cor-
rect but not very useful as it stands. For instance, for
zeroth order, the expansion in Eq.~2.23! would be needed to
all orders to reproduce the simple result~2.20!, sinceetQ2

is
not a polynomial inQ. In view of this, we consider instead

^xue2t(M2Q22Di
2)ux&5~4pt!2d/2(

n50

`

etQ2
ãn~Q2,M ,D̂ i !t

n,

~2.25!

which introduces a new set of polynomial coefficien
ãn(Q2,M ,D̂ i). By their definition, it is clear that these coe
ficients are unchanged if ‘‘Q2’’ is everywhere replaced by
‘‘ Q21c number.’’ This implies that inãn the quantityQ2

appears only in the form@Q2, #. This is an essential im-
provement over the original coefficientsan , since each

@Q2, # will yield at least oneD̂0, and so higher orders in
@Q2, # appear only at higher orders in the heat kern
expansion.1

The calculation of the coefficientsãn(Q2,M ,D̂ i) follows
easily from the relation

(
n50

`

antn5etQ2

(
n50

`

ãntn. ~2.26!

If one takes the expression on the left-hand side~LHS! and
moves allQ2 blocks to the left using the commutator@Q2, #,
two types of terms will be generated:~i! terms withQ2 only
inside commutators and~ii ! terms with one or moreQ2

blocks at the left. The terms of type~i! are those correspond
ing to (nãntn. To lowest orders one finds

ã051,

ã152M ,

ã25
1

2
M22

1

6
Mii 1

1

12
Fi j

2 1
1

2
@Q2,M #1

1

6
~Q2! i i .

~2.27!

Once theãn coefficients are so constructed one has
proceed to rearrange Eq.~2.25! as an expansion in powers o
M, D̂ i , and D̂0. The expansions inM and D̂ i are already
inherited from Eq.~2.23!. It remains to expand@Q2, # in
terms of@Q, # or, equivalently, in terms ofD̂05@D0 , # since
the quantitiesQ andD0 differ by a c number. To do this, in
the ãn coefficientsQ is to be moved to the left, introducing

1This kind of resummations is standard also at zero temperatu
move, e.g., the mass terme2tM to the left and leave only a@M , #
dependence in the coefficients@17#.
3-6
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D̂0, until all the terms so generated are local operators m

out of D̂m andM and all uncommutatedQ’s are at the left:
e.g.,

ã25
1

2
M22

1

6
Mii 1

1

12
Fi j

2 2
1

2
M00

1
1

3
Ei

21
1

6
E0i i 1QM02

1

3
QEii . ~2.28!

~Recall thatEi stands for the electric fieldF0i .) We can see
two types of contributions inã2: namely, those without aQ
at the left and those with one. IfQ is assigned an engineerin
dimension of mass, all the terms are of the same dimens
mass to the fourth. However, in our counting only the dime
sion carried byD̂m andM is computed, and so the two type
of terms are of different order: namely, mass to the fou
and mass to the third, respectively. Indeed, whenã2 is intro-
duced in Eq.~2.25! ~i.e., it gets multiplied byetQ2

) and then
in Eq. ~2.21! ~the sum over the Matsubara frequencies
carried out! we will obtain the contributions ~using
(p0

QnetQ2
;wn)

ã2→w0~V!S 1

2
M22

1

6
Mii 1

1

12
Fi j

2 2
1

2
M001

1

3
Ei

2

1
1

6
E0i i D t21w1~V!S M02

1

3
Eii D t3/2. ~2.29!

These are contributions to the thermal heat kernel coe
cients a2

T and a3/2
T , respectively, introduced in Eq.~2.19!.

Note the presence of half-integer order coefficients fr
terms with an odd number ofQ’s.

As we have just shown, each zero-temperature heat ke
coefficientak in Eq. ~2.23! allows us to obtain a correspond
ing coefficientãk with the same engineering dimension 2k.
Such a coefficient in turn contributes, in general, to seve
heat thermal coefficientsan

T ~with mass dimension 2n). Let

us discuss in detail to whichan
T contributes eachãk . The

change from engineering to real dimension comes about
cause some terms inãk contain factors ofQ at the left which
do not act asD̂0 and so count as dimensionless. Therefor
is clear that for givenk, the allowedn satisfyn<k, the equal
sign corresponding to terms having allQ’s in commutators.
On the other hand, the maximum number of@Q2, # ’s in ãk
(k.0) is k21, and from these, at mostk21 uncommutated
Q’s can reach the left of the term. This yields the furth
conditionk<2n21. Note further that a factorQ, gives rise
to a coefficientw,(V) in an

T . In summary, in the computa
tion of the thermal coefficientsan

T up to n53 ~mass dimen-
sion 6!, we find the scheme
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de

n,
-

h

s

-

el

al

e-

it

r

a0;ã0;w0a0
T ,

a1;ã1;w0a1
T ,

a2;ã2;w0a2
T1w1a3/2

T ,

a3;ã3;w0a3
T1w1a5/2

T 1w2a2
T ,

a4;ã4;w0a4
T1w1a7/2

T 1w2a3
T1w3a5/2

T ,

a5;ã5;w0a5
T1w1a9/2

T 1w2a4
T1w3a7/2

T 1w4a3
T .

~2.30!

The mixing of terms is a nuisance that does not occu
zero temperature; however, it cannot be avoided:Q contains
p0 and must count as zeroth order~otherwise, ifQ were of
order 1 the expansion would consist of polynomials inQ and
the sum overp0 would not converge!. On the other hand
countingp0 as zeroth order andD0 as first order even when
it is insideQ results in a breaking of gauge invariance, as
noted at the end of the previous subsection. The fact thaV

counts as dimensionless andD̂0 as dimension 1 is necessa
to have an order by order gauge invariant expansion. T
counting is well defined provided that allV ’s are at the left
~for instance! of the local operators@cf. Eq. ~2.36! and dis-
cussion below#.

From Eq.~2.30! we can see that we do not need the co
plete zero-temperature coefficientsa4 and a5. Here a3

T re-

quires only termsYn, with n52,3,4 in a4(Y,D̂ i) and n

54,5 in a5(Y,D̂ i). We have extracted the zero-temperatu
coefficients from@18#. These authors actually provide th
traced coefficientsbn(x) defined by

Tr~e2t(Y2Di
2)!5~4pt!2d/2(

n50

` E ddx tr~bn!tn,

~2.31!

where Tr is the trace in the full Hilbert space of wave fun
tions and tr is the trace over the internal space only. T
coefficientan is obtained by means of a first order variatio
of bn11 @cf. Eq. ~2.41!#. The advantage of this procedure
that the traced coefficients are much more compact and
ter checked.

As we have said, we have computed the thermal h
kernel coefficients up to and including mass dimension 6
the procedure just described and also by that detailed in@47#.
This latter approach uses the symbols method for space
time coordinates and so computes the coefficients fr
scratch~in passing it yields the zero-temperature coefficie
as well!. We have verified that the two computations gi
identical results after using the appropriate Bianchi identit
~in practice the method of@47# tends to give somewhat mor
compact expressions!. The results are as follows:
3-7
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a0
T5w0 ,

a1/2
T 50,

a1
T52w0M ,

a3/2
T 5w1S M02

1

3
Eii D ,

a2
T5w0a2

T501
1

6
w̄2~Ei

21E0i i 22M00!,

a5/2
T 5

1

3
~2w11w3!M0001

1

6
w1M0i i 2

1

3
w1~2M0M1MM0!1

1

6
w1~$Mi ,Ei%1$M ,Eii %!2S 1

3
w11

1

5
w3DE00i i 2

1

30
w1Eii j j

2S 5

6
w11

2

5
w3DE0iEi2S 1

2
w11

4

15
w3DEiE0i1

1

30
w1@Ej ,Fii j #2w1S 1

10
F0i j Fi j 1

1

15
Fi j F0i j D ,

a3
T5w0a3

T502S 1

4
w̄22

1

10
w̄4D M00002

1

60
w̄2~3M00i i 215M00M25MM00215M0

214$M ,Ei
2%12EiMEi14ME0i i 16E0i i M

14MiE0i16E0iM i17M0Eii 13Eii M016M0iEi14EiM0i !1S 3

20
w̄22

1

15
w̄4DE000i i 1

1

60
w̄2E0i i j j

1S 1

2
w̄22

1

5
w̄4DE00iEi1S 7

30
w̄22

1

10
w̄4DEiE00i1S 19

30
w̄22

4

15
w̄4DE0i

2 1
1

180
w̄2~2$Ei ,Ej ji %14$Ei ,Ei j j %15Eii

2 14Ei j
2

14F0i i j Ej22EjF0i i j 22E0i j Fi j 2@Ei j ,F0i j #24E0iF j j i 12F j ji E0i12EiFi j Ej12$EiEj ,Fi j %

17F00i j Fi j 13Fi j F00i j 18F0i j
2 !. ~2.32!
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In these formulasan
T50 stands for the zero-temperature coe

ficient. These are the same as those in Eqs.~2.24! but using
M instead of Y and space-time indices instead of spa
indices—e.g., a2

T505 1
2 M22 1

6 Mmm1 1
12 Fmn

2 . For conve-
nience we have introduced the auxiliary functions

w̄25w012w2 , w̄45w02
4

3
w4 ,

w̄2n5w02
~22!n

~2n21!!!
w2n , ~2.33!

which vanish att/b250. As a result of the Bianchi identity
there is some ambiguity in writing the terms. We have ch
sen to order the derivatives so that all spatial derivatives
done first and the temporal derivatives are the outer o
This choice appears naturally in our approach and in addi
is optimal to obtain the traced coefficientsbn

T since the zeroth
derivative of the Polyakov loop vanishes@cf. Eq. ~2.36! be-
low#, and so terms of the formwnX0 do not contribute to the
traced coefficients upon using integration by parts. The te
a0

T , a1
T , a3/2

T , anda2
T were given in@27#.
11600
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C. Traced thermal heat kernel coefficients

The zero-temperature traced heat kernel coefficients h
been introduced in Eq.~2.31! ~for thed-dimensional operator
Y2Di

2). Of course, the choicebn5an would suffice, how-
ever, exploiting the trace cyclic property and integration
parts more compact choices are possible. At lowest ord
the coefficients can be taken as~we give the formulas for
K5M2Dm

2 at zero temperature; the heat kernel coefficie
are dimension independent! @18,21#

b051,

b152M ,

b25
1

2
M21

1

12
Fmn

2 ,

b352
1

6
M32

1

12
Mm

2 2
1

12
FmnMFmn2

1

60
Fmmn

2

1
1

90
FmnFnaFam . ~2.34!
3-8
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By constructionan2bn is a commutator which vanishes in
side Tr. Likewise, we can introduce the traced coefficient
finite temperature:

Tr~e2t(M2Dm
2 )!5~4pt!2(d11)/2(

n
E dd11x tr~bn

T!tn,

~2.35!

with bn
T simpler thanan

T . Once again we choose a canonic
form for these coefficients where a function ofV put at the
left is multiplied by a local operator~i.e., an operator made
out of M and D̂m). To simplify the traced coefficients an
bring them to the canonical form we need to work out t
commutators of the form@X, f (V)# @in particularD̂m f (V)]
as a combination of terms of the type function ofV times
local operator. As shown in Appendix B, the rules are
follows: let f denote a function ofV @e.g.,wn(V)] and let
f (n) be its nth derivative with respect to the variable
2 log(V)/b; then,

D̂0f 50,

D̂ i f 52 f 8Ei1
1

2
f 9E0i2

1

3!
f (3)E00i1•••,

@X, f #52 f 8X01
1

2
f 9X002

1

3!
f (3)X0001•••.

~2.36!

These formulas imply that, unlike the zero-temperature c
the cyclic property mixes terms of different order at fin
temperature. This is because, as noted above,D̂0 has dimen-
sions of mass whereasV counts as dimensionless. So, f
instance,w0(V) is of order zero andD̂ i is of first order, yet
D̂ iw0(V) contains terms of all orders, starting with dime
sion 2. As we will discuss below, this implies that there is
certain amount of freedom in the choice of the traced co
ficients. To apply these commutation rules toan

T we further
need the relation

wn85At~2wn111nwn21!. ~2.37!

Using these rules we can apply integration by parts and
cyclic property to the previously computed coefficientsan

T

and choose a more compact form for them valid inside
trace. In this way we obtain, up to mass dimension 6,

b0
T5w0 ,

b1/2
T 50,

b1
T52w0M ,

b3/2
T 50,

b2
T5w0b22

1

6
w̄2Ei

2 ,
11600
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b5/2
T 52

1

6
w1$Mi ,Ei%,

b3
T5w0b31

1

6
w̄2S 1

2
M0

21EiMEi1
1

10
Eii

2

1
1

10
F0i j

2 2
1

5
EiFi j Ej D1S 1

10
w̄42

1

6
w̄2DE0i

2 . ~2.38!

This is the main result of this section, where thewn functions
are given in Eqs.~2.15! and~2.33!. In these formulas thebn
are the zero-temperature coefficients given in Eqs.~2.34!. We
note that the coefficientb3

T above is not identical to tha
given in @27#. @The coefficient in@27# corresponds to replac
w0b3 above byw0b38 , where b38 differs from b3 in Eqs.
~2.34! by a cyclic permutation.# The two versions ofb3

T differ
by higher-order terms. In what follows we use the coefficie
in Eqs.~2.38!.

Several remarks should be made about these express
Either at zero or finite temperature there is an ambiguity
the choice of the traced coefficientsbn

T ; however, the ambi-
guity is essentially larger at finite temperature. Indeed, w
ing the expansion as

Tr~e2t(M2Dm
2 )!5~4pt!2(d11)/2(

n
Bn

Ttn, ~2.39!

we find that, althoughbn is ambiguous,Bn
T50 is not. This is

because at zero temperature the expansion is tied to a s
expansion in powers of a parameter~say,t). At finite tem-
perature the expansion is not tied to a parameter~it is rather
a commutator expansion! and so the ambiguity exits not onl
for bn

T but also forBn
T . For instance,b2

T above has been
expressed in terms of the coefficientb2 given in Eqs.~2.34!.
Nothing changes at zero temperature if we addMmm to b2

since the addition is a pure commutator; however, inb2
T it

would mean to addw0Mmm which is no longer a pure com
mutator, thereby changing the functionalB2

T . In fact,
w0Mmm , which is formally of dimension 4, can be express
as a sum of terms of dimension 5 and higher, using integ
tion by parts and the commutation rules~2.36!. So the con-
crete choice ofb2

T affects the form of the higher orders,b5/2
T ,

b3
T , etc.

Taking into account this ambiguity, our criterion fo
choosing the traced coefficients has been to recursively b
the bn

T to a compact form. We observe that inside the tra
~upon applying the commutation rules! a3/2

T is a sum of terms
of dimension 4 and higher, so we chooseb3/2

T 50. Thena2
T ,

augmented with the terms generated froma3/2
T , is brought to

the most compact form. This in turn produces higher-or
terms which are added toa5/2

T , and so on. Of course, this i
not the only possibility, since taken abn

T to be simplest may
imply a greater complication in the higher-order coefficien
For instance, as can be shown, it is possible to arrange
expansion so that all half-order traced coefficients van
e.g.,b5/2

T can be removed at the cost of complicatingb2
T .
3-9



a
c
a

op
e

em

al

ld

us
ith

a
ar
at
n
tu

a
s
d

uge

n

uc-
r-
e

or

on
c-

-

of

nly
se

of

of
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It should be clear that the ambiguity in the expansionBn
T

in Eq. ~2.39! does not affect its sum but only amounts to
reorganization of the series. On the other hand, the untra
coefficientsan

T are not ambiguous: once brought to their c
nonical form they are unique functionals ofM andAm .

The heat kernel is symmetric under transposition of
erators, thebn

T have been chosen so that this mirror symm
try holds at each order.

As is well known@17#, not only thean
T allow one to obtain

the bn
T but also the converse is true. By their definition,

^xue2t(M2Dm
2 )ux&52

1

t

d

dM ~x!
Tr~e2t(M2Dm

2 )!.

~2.40!

Using the expansions in both sides, one finds, at zero t
perature@using Eq.~2.39!#,

an
T50~x!52

dBn11
T50

dM ~x!
. ~2.41!

At finite temperature, the variation ofbk
T contributes not only

to ak21
T but also to all higher-order coefficients, in gener

So we have, instead,

an
T~x!.2

d

dM ~x! (
1<k<n11

Bk
Ttk2n21, ~2.42!

where on the RHS only the terms of dimension 2n are to be
retained andk takes integer as well as half-integer values. W
have checked our results by verifying that this relation ho
for our coefficients.

III. ONE-LOOP EFFECTIVE ACTION OF CHIRAL QCD
AT HIGH TEMPERATURE

Here we will apply the thermal heat kernel expansion j
derived to obtain the one-loop effective action of QCD w
massless quarks in the high-temperature region. We rem
that the effective action we are referring to is the stand
one in quantum field theory: namely, the classical gener
of the one-particle irreducible diagrams. As a conseque
our classical fields may be time dependent. The quan
effective action in the sense of dimensional reduction@38#, as
an effective field theory for the static modes, is of gre
relevance in high-temperature QCD and is also discus
below, in Sec. IV. We will use the background field metho
which preserves gauge invariance@51#. The Euclidean action
is

S52
1

2g2E d4x tr~Fmn
2 !1E d4x q̄D” q. ~3.1!
11600
ed
-

-
-

-

.

e
s

t

rk
d
or
ce
m

t
ed
,

Here Dm5]m1Am , with Am and Fmn5@Dm ,Dn# anti-
Hermitian matrices of dimensionN. They belong to the fun-
damental representation of the Lie algebra of the ga
group SU(N).2

A. Quark sector

In this subsection we work out the quark contributio
which is somewhat simpler than the gluon contribution.~The
latter requires the use of the adjoint representation, introd
tion of ghost fields, and treatment of the infrared dive
gences.! Upon functional integration of the quark fields, th
partition function of the system picks up the following fact
from the quark sector:

Zq@A#5Det~D” !Nf5Det~D” 2!Nf /2, ~3.2!

whereNf denotes the number of quark flavors.~As usual, we
have squared the Dirac operator to obtain a Klein-Gord
operator.! The corresponding contribution to the effective a
tion is ~we use the conventionZ5e2G[A] )

Gq@A#52
Nf

2
Tr log~D” 2!5

Nf

2 E
0

`dt

t
Tr exp~tD” 2!

5:E d4x Lq~x!, ~3.3!

Lq~x!5
Nf

2 E
0

`dt

t

m2e

~4pt!D/2 (
n

tn tr~bn,q
T !.

~3.4!

In this formula the Dirac trace is included in thebn,q
T and

‘‘tr’’ refers to color trace~in the fundamental representation!.
The ultraviolet divergences att50 are regulated using di
mensional regularization, with the conventionD5422e. As
is standard in dimensional regularization, the factorm2e is
introduced in order to deal with an effective Lagrangian
mass dimension 4 rather than 422e.

To apply our thermal heat kernel expansion we need o
to identify the corresponding Klein-Gordon operator. We u

gm5gm
† , gmgn5dmn1smn , trDirac~1!54. ~3.5!

The expression

2D” 252Dm
2 2

1

2
smnFmn ~3.6!

identifies 2 1
2 smnFmn as the~square! mass termM of the

Klein-Gordon operator in this case. A direct application
Eqs. ~2.38! shows thatb1

T and b5/2
T cannot contribute~they

2Our point of view will be thatAm itself is the quantum field,
independently of any particular choice of basis in su(N). So the
coupling constantg is also independent of that choice. As a result
gauge invariance,Am is not renormalized.
3-10
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have a singleM and this cancels due to the trace over Dir
space!. The other coefficients give, to mass dimension 6
cluded,

b0,q
T 54w0 ,

b2,q
T 52

2

3
~w0Fmn

2 1w̄2Ei
2!,

b3,q
T 5w0S 32

45
FmnFnlFlm1

1

6
Flmn

2 2
1

15
Fmmn

2 D
1w̄2S 1

15
Eii

2 2
1

10
F0i j

2 2
2

15
EiFi j Ej D

1S 2

5
w̄42w̄2DE0i

2 . ~3.7!

In these formulas the functionswn @defined in Eqs.~2.15!
and~2.33!# correspond to their fermionic versions. All field
are in the fundamental representation.

The required integrals overt in Eq. ~3.4! are of the form

I ,,n
6 ~v!ªE

0

`dt

t
~4pm2t!et,wn

6~v!, uvu51, ~3.8!

wherewn
6 refers to the bosonic or fermionic version, respe

tively. In the quark sector the argumentv will be the Polya-
kov loop in the fundamental representation or, in practi
any of its eigenvalues. These integrals can be done in clo
form ~see Appendix C!. In particular,

I ,,2n
2 ~e2p in!

5~21!n~4p!eS mb

2p D 2eS b

2p D 2, GS ,1n1e1
1

2D
GS 1

2D
3FzS 112,12e,

1

2
1n D1zS 112,12e,

1

2
2n D G ,

2
1

2
,n,

1

2
. ~3.9!

The integralsI ,,n
6 (v) are one-valued functions ofv—i.e.,

periodic in terms ofn; however, to apply the explicit formula
~3.9!, n has to be taken in the interval2 1

2 ,n, 1
2 . The gen-

eralized Riemannz function z(z,q)5(n50
` (n1q)2z has

only a single pole atz51 @52#, so the dimensionally regu
lated integrals yield the standard pole of the type 1/e solely
for the integralsI 0,2n

2 , which appear inb2,q
T .

We can now proceed to compute the contributions to
effective Lagrangian. The zeroth order requiresI 22,0

2 . Using
the relation z(12n,q)52Bn(q)/n, n51,2, . . . , with
Bn(q) the Bernoulli polynomial of ordern @52#, one finds
11600
-

-

,
ed

e

I 22,0
2 52

2

3 S 2p

b D 4

B4S 1

2
1n D1O~e!, ~3.10!

so the effective potential is

L0,q~x!5p2NfT
4S 2N

45
2

1

12
tr@~124n̄2!2# D ,

V~x!5e2p i n̄, 2
1

2
, n̄,

1

2
. ~3.11!

HereN is the number of colors, tr is taken in the fundamen
representation of the gauge group, andn̄ is the matrix
log(V)/(2pi) with eigenvalues in the branchun̄u,1/2. This is
the well-known result@9#.

The terms of mass dimension 4 have a pole ate50. Us-
ing the relation

z~11z,q!5
1

z
2c~q!1O~z! ~3.12!

@wherec(q) is the digamma function#, one finds

I 0,0
2 5

1

e
1 log~4p!2gE12 log~mb/4p!2cS 1

2
1n D

2cS 1

2
2n D1O~e!,

I 0,2̄
2
ªI 0,0

2 12I 0,2
2 5221O~e!. ~3.13!

@For convenience, we have introduced the integralsI ,,2n
6

analogous toI ,,2n
6 in Eq. ~3.8! but usingw̄2n instead ofw2n .]

The terms@e211 log(4p)2gE# in I 0,0
2 come with tr(Fmn

2 )
and are removed by adopting theMS scheme. We will dis-
cuss this in conjunction with gluon sector. After renormaliz
tion,

L2,q~x!52
1

3

1

~4p!2
Nf trH F2 log~m/4pT!2cS 1

2
1 n̄ D

2cS 1

2
2 n̄ D GFmn

2 22Ei
2J . ~3.14!

Finally, the terms of mass dimension 6 in four space-ti
dimensions requireI 1,0

2 , I 1,2̄
2 , and I 1,4̄

2 . Using the relation
c (n)(q)5(21)n11n! z(n11,q) @52#, one obtains

I 1,0
2 52S b

4p D 2Fc9S 1

2
1n D1c9S 1

2
2n D G1O~e!,

I 1,2̄
2

522I 1,0
2 1O~e!, I 1,4̄

2
524I 1,0

2 1O~e!.
~3.15!
3-11
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MEGÍAS, RUIZ ARRIOLA, AND SALCEDO PHYSICAL REVIEW D69, 116003 ~2004!
@All these integrals are related through simple proportiona
factors, as follows from Eq.~C6!.# This yields

L3,q~x!52
2

~4p!4

Nf

T2
trF Fc9S 1

2
1 n̄ D1c9S 1

2
2 n̄ D G

3S 8

45
FmnFnlFlm1

1

24
Flmn

2 2
1

60
Fmmn

2 1
1

20
F0mn

2

2
1

30
Eii

2 1
1

15
EiFi j Ej D G . ~3.16!

In all these formulasn̄ is the matrix log(V)/(2pi) in the
fundamental representation and in the branchun̄u, 1

2 in the
eigenvalue sense. Note the hierarchy in powers of temp
ture, L 0;T4, L 2;T0, L 3;T22, implying that the heat
kernel expansion at finite temperature is essentially an
pansion onk2/T2 with k the typical gluon momentum. Term
of order T2 are forbidden since there is no available gau
invariant operator of dimension 2.

B. Gluon sector

In the background field approach@51# the gluon field is
split into a classical field plus a quantum fluctuation—i.
Am→Am1am in the action~3.1!. As is standard in the effec
tive action formalism, the appropriate currents are added
that the classical fieldAm is a solution of the equations o
motion ~and so no terms linear in the fluctuation remai!.
The one-loop effective action corresponds then to neg
contributions beyond the quadratic terms in the quant
fluctuations and integrate overam . ~The quark fields are
taken as pure fluctuation, soam does not change the quar
sector at one loop.!

The quadratic piece of the gluon action is

S(2)52
1

g2E d4x tr@2anD̂m
2 an22am@Fmn ,an#2~D̂mam!2#.

~3.17!

Here all covariant derivatives are those associated to
classical gluon fieldAm . Note that the first two terms are o
the standard Klein-Gordon form, but the last one is not. B
fore doing the functional integration overam one has to fix
the gauge of these fields. This implies adding a gauge fix
term and the corresponding Faddeev-Popov term@53# in the
action. We take the covariant Feynman gaugeD̂mam5 f (x),
since the associated gauge fixing action precisely cancel
offending term (D̂mam)2 in Eq. ~3.17!. After adding the ghost
term one has

S(2)52
1

g2E d4x tr@2anD̂m
2 an22am@Fmn ,an#2C̄D̂m

2 C#.

~3.18!
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The coupling constant has no effect here since it can
absorbed in the normalization of the fields. The ghost fie

C andC̄ are anticommuting~although periodic in Euclidean
time! and are matrices in the fundamental representation
su(N).

The full effective action~to one loop! is

G@A#52
m22e

2g0
2 E dDx tr~Fmn

2 !1Gq@A#1Gg@A#,

~3.19!

where the first piece is the tree level action~accounting for
renormalization; g0 is dimensionless!, the second one is the
quark contribution, obtained in the previous subsection,
the last term follows from functional integration overam and

C, C̄ in Eq. ~3.18!:

Gg@A#5
1

2
Tr log~2D̂m

2 22F̂mn!2Tr log~2D̂m
2 !

5:E d4x Lg~x!, ~3.20!

whereD̂m5@Dm , # andF̂mn5@Fmn , #. From Eq.~3.18!, we
can see that the Klein-Gordon operator over the gluon fi
am acts on an internal space of dimensionD3(N221),
whereD5422e is the number of gluon polarizations~in-
cluding the two unphysical ones! and corresponds to the Lor
entz indexm, and N221 is the dimension of the adjoin

representation of the group.D̂m and F̂mn act in the adjoint
representation. The covariant derivative of the Klein-Gord
operator is the identity in the Lorentz space whereas
‘‘mass term’’ is a matrix in that space: namely, (M )mn5

22F̂mn . Similarly, the space of the Klein-Gordon operat
over the ghost fields has dimensionN221, the mass term is
zero, and the corresponding covariant derivative is justDm
but in the adjoint representation.

Applying once again the heat kernel representation,
have

Lg~x!52
1

2E0

`dt

t

m2e

~4pt!D/2 (
n

tntr̂~bn,g
T !, ~3.21!

where, for convenience, the Lorentz trace over gluons
well as the ghost contribution are included in the coefficie
bn,g

T . Here tr̂denotes the color trace in the adjoint represe
tation. A straightforward calculation yields
3-12
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b0,g
T 5~D22!w0~V̂ !,

b2,g
T 5S 221

D22

12 Dw0~V̂ !F̂mn
2 2

D22

6
w̄2~V̂ !Êi

2 ,

b3,g
T 5w0~V̂ !F S 4

3
1

D22

90 D F̂mnF̂nlF̂lm1
1

3
F̂lmn

2

2
D22

60
F̂mmn

2 G1
1

6
w̄2~V̂ !S 22F̂0mn

2

1
D22

10
~Êii

2 1F̂0i j
2 22Êi F̂ i j Ê j ! D

1~D22!S 1

10
w̄4~V̂ !2

1

6
w̄2~V̂ ! D Ê0i

2 . ~3.22!

The coefficientsb1,g
T andb5/2,g

T vanish, as do all terms with a
single M, due to the Lorentz trace. The contributions w
D22 come from pieces withoutM in Eqs.~2.38! and~2.34!.
The effect of the ghost is to remove two gluon polarizatio
D→D22. Unlike the fermionic case, the thermal heat k
nel coefficients depend explicitly on the space-time dim
sion through these polarization factors. In these formulas
functionswn correspond to their bosonic versions. In ad
tion, its argumentV̂ and all field strength tensor and cova
ant derivatives are in the adjoint representation.

We can now proceed to the calculation of the effect
Lagrangian. We note that the integrals overt are no different
to those for the quark sector@see Eq.~3.8! and Appendix E#,
after the replacementn→n2 1

2 @coming from wn
1(v)

5wn
2(2v)] and so 0,n,1 now:

I ,,2n
1 ~e2p in!5~21!n~4p!eS mb

2p D 2eS b

2p D 2,

3

GS ,1n1e1
1

2D
GS 1

2D @z~112,12e,n!

1z~112,12e,12n!#, 0,n,1.

~3.23!

In this way, for the effective potential one obtains

L0,g~x!5
p2

3
T4tr̂@B4~ n̂ !1B4~12 n̂ !# ~3.24!

52
p2

45
T4~N221!1

2p2

3
T4 tr̂@ n̂2~12 n̂ !2#,

n̂5 log~V̂ !/~2p i !, 0, n̂,1. ~3.25!

This is also in agreement with the well-known result@9#. We
emphasize thatV̂ andn̂ are now in the adjoint representatio
as indicated by the notation trˆ.
11600
,
-
-
e

-

The mass dimension-4 piece of the effective Lagrangi
coming fromb2,g

T , requiresI 0,0
1 which is ultraviolet divergent

andI 0,2̄
1 which is UV finite @cf. Eq. ~3.13!#. The finite pieces,

in the MS scheme, are found to be

L2,g~x!5
1

~4p!2
tr̂F11

12S 2 log~m/4pT!1
1

11
2c~n̂ !

2c~12 n̂ ! D F̂mn
2 2

1

3
Êi

2G , 0, n̂,1. ~3.26!

On the other hand, the divergent contribution in the glu
sector, combined with that in the quark sector and the t
level Lagrangian, yields~all terms have been multiplied b
the factorm2e to restore dimensions!

Ltree~x!1L q
div~x!1L g

div~x!

52
1

2g0
2

tr~Fmn
2 !1

1

~4p!2 S 1

e
1 log~4p!2gED

3S 11

12
tr̂~ F̂mn

2 !2
Nf

3
tr~Fmn

2 ! D . ~3.27!

Use of the SU(N) identity ~E5! yields the renormalized tree
level Lagrangian

Ltree~x!1L q
div~x!1L g

div~x!52
1

2g2~m!
tr~Fmn

2 !,

~3.28!

with the standard one-loop renormalization group improv
in the MS scheme,

1

g2~m!
5

1

g0
2

2b0S 1

e
1 log~4p!2gED ,

b05
1

~4p!2 S 11

3
N2

2

3
Nf D , ~3.29!

guaranteeing the scale independence of Eq.~3.27!. Note that,
due to gauge invariance, the classical fieldsAm do not need
ultraviolet renormalization.~In the context of the dimension
ally reduced effective theory, finite, temperature-depend
renormalization has been found to be useful in pract
@40,43#. See Sec. IV.!

Putting together all terms of mass dimension 4~renormal-
ized tree level plus one loop!, we find
3-13
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L2~x!5S 2
1

2g2~m!
1b0 log~m/4pT!1

1

6

1

~4p!2
ND

3tr~Fmn
2 !2

11

12

1

~4p!2
tr̂$@c~ n̂ !1c~12 n̂ !#F̂mn

2 %

1
1

3

1

~4p!2
Nf trH FcS 1

2
1 n̄ D1cS 1

2
2 n̄ D GFmn

2 J
2

2

3
~N2Nf !

1

~4p!2
tr@Ei

2#,

2
1

2
, n̄,

1

2
, 0, n̂,1. ~3.30!

The terms of mass dimension 6 are easily obtained fr
the coefficientb3,g

T and the integralsI 1,0
1 , I 1,2̄

1 , andI 1,4̄
1 :

L3,g~x!5
1

2

1

~4p!4

1

T2
tr̂F @c9~ n̂ !1c9~12 n̂ !#

3S 61

45
F̂mnF̂nlF̂lm1

1

3
F̂lmn

2 2
1

30
F̂mmn

2 1
3

5
F̂0mn

2

2
1

15
Êii

2 1
2

15
Êi F̂ i j Ê j D G . ~3.31!

Note again the hierarchy in powers of temperature,L 0
;T4, L 2;T0, L 3;T22.

C. Infrared divergence and other renormalization schemes

The integralsI
6

,,n may contain not only ultraviolet di-
vergences but also infrared ones~corresponding to the larg
t region!. Specifically, this happens if,>0, n50, and
e2p in561 ~see Appendix C!. In the quark sector~i.e., in the
fundamental representation! and for a generic configuratio
of A0(x), no eigenvalue ofV will be 21 in the bulk and so
such divergence can be disregarded. Unfortunately, in
gluon sector the situation is different since for any gau
configuration at leastN21 eigenvalues ofV̂(x) are neces-
sarily unity. Therefore, the singular valuen5 integer always
appears when evaluating the adjoint trace inL2,g andL3,g .
The infrared divergences are characteristic of massless t
ries at finite temperature@35,36#.

For n50, the infrared divergence comes solely from t
static Matsubara mode,p050, in w0. The corresponding in-
tegral overt has no natural scale and so the point of vie
can be taken that such divergences are automatically
moved by dimensional regularization@54#. As explained in
Appendix C, the integralsI ,,2n

1 without the static mode are
given by the same expressions~3.23! after the replacemen
n→11n in the firstz function. The resulting prescription i
then to use the formulas ofL2,g and L3,g with the replace-
ments
11600
m

e
e

o-

e-

c~n̂ !1c~12 n̂ !u n̂50→c~11 n̂ !1c~12 n̂ !u n̂50522gE ,

c9~ n̂ !1c9~12 n̂ !u n̂50→c9~11 n̂ !1c9~12 n̂ !u n̂50

524z~3!, ~3.32!

to be made in the subspaceV̂51 only, when taking the trace
in the adjoint representation. One may worry that subtract
this subspace is not consistent with gauge invariance. Th
not so. As will be discussed below, the periodicity of t
effective action as a function of log(V̂) is an important re-
quirement. This property is not spoiled by the previous p
scriptions.

Alternatively, one can regulate the infrared divergence
including a cutoff functione2m2t in the t integral. The in-
frared finite modes are unaffected in the limit of smallm.
The static mode inw0 develops powerlike divergences to b
added to the result obtained through dimensional regular
tion. These terms are easily computed and are3

L2,IR5
1

48p

T

m
tr@11Fmn'

2 12Ei'
2 #,

L3,IR5
1

240p

T

m3
trF2

61

3
Fmn'FnaFam

1Ei'Fi j Ej'1EiFi j iEj25Fmnl'
2

1
1

2
Fmmn'

2 1
9

2
F0mn'

2 13E0i'
2 2

1

2
Eii'

2 G .
~3.33!

Even though this is a gluonic term, the result has been
pressed in the fundamental representation, which is o
preferable.@Unfortunately this is not so easily done for th
other gluonic contributions, for a general SU(N) group, due
to the presence of the Polyakov loop in the formulas.# In
these expressions we have used the notationFmni to denote
the pieces ofFmn which commute withV andFmn' for the
remainder. Specifically, in the gauge in whichV is diagonal,
Fmni is the diagonal part ofFmn . As shown in Appendix E,
only terms involving at least one perpendicular compon
may be infrared divergent, and this is verified in Eqs.~3.33!.

We have used here theMS scheme in dimensional regu
larization. Alternatively one can use Pauli-Villars regulariz
tion which amounts to inserting a regulating factor
2e2tM2

) in the t integration@33#. All convergent integrals
~including I 0,2̄

6 ) are unchanged in the limit of largeM,
whereas

3Note thatI ,,2n
1 also containsw0 and so is also afflicted by the

divergence. This implies that introducinge2m2t is not equivalent to
a regularization of the digamma function~and its derivatives! in the
final formulas, since simple scaling relations of the type~3.15! or
~C6! no longer hold.
3-14
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I 0,0
1,PV52 log~M /m!12 log~mb/4p!2c~n!2c~12n!

1O~M 21!, 0,n,1,

I 0,0
2,PV52 log~M /m!12 log~mb/4p!2cS 1

2
1n D

2cS 1

2
2n D1O~M 21!, 2

1

2
,n,

1

2
. ~3.34!

„Note that these formulas do not actually depend on the s
m.… The Pauli-Villars-renormalized result is obtained
combining log(M2/m2) with the bare coupling constant in th
tree level Lagrangian to yield the renormalized coupling c
stant gPV(m). If, as usual, theLR parameter in the schemeR
is defined as the scalem5LR for which 1/gR

2(m) vanishes, it
is found that the Pauli-Villars andMS schemes give identica
renormalized results, at one loop, when

log~LPV
2 /LMS

2
!5

1

1122Nf /N
. ~3.35!

The difference between both scales comes from the1
11 in Eq.

~3.26!, which is due to the22e extra gluon polarizations in
the dimensional regularization scheme@55#.

D. Results for SU„2… and SU„3…

We can particularize our formulas for SU~2! by working
out the color traces explicitly. We use the anti-Hermiti
su~2! basissW /2i , so

A052
i

2
sW •AW 0 , Fmn52

i

2
sW •FW mn , etc. ~3.36!

It is convenient to choose the ‘‘Polyakov gauge,’’ in whic
A0 is time independent and diagonal@46#. In SU~2!, A05
2 1

2 is3f. In this case the eigenvalues of the Polyakov lo
in the fundamental representation are exp(6ibf/2), and in
the adjoint representation are exp(6ibf) and 1. Full results
for L0,2,3(x) in both sectors are given in Appendix D. He
we quote the results forL2(x) from the gluon and quark
loops,

L2,q~x!5
Nf

48p2 H F2 logS m

4pTD2cS 1

2
1 n̄ D

2cS 1

2
2 n̄ D21GEW i

21F2 logS m

4pTD2cS 1

2
1 n̄ D

2cS 1

2
2 n̄ D GBW i

2J , ~3.37!

with n̄5(bf/4p11/2)(mod 1)21/2 and Bi5
1
2 e i jkF jk is

the magnetic field:
11600
le

-

p

L2,g~x!52
11

48p2 F S 2 log~m/4pT!2
1

11
2c~n̂ !

2c~12 n̂ ! DEW i i
2 1S 12

11

pT

m
12 log~m/4pT!

2
1

11
1gE2

1

2
c~n̂ !2

1

2
c~12 n̂ ! DEW i'

2

1S 2 log~m/4pT!1
1

11
2c~n̂ !2c~12 n̂ ! DBW i i

2

1S pT

m
12 log~m/4pT!1

1

11
1gE2

1

2
c~n̂ !

2
1

2
c~12 n̂ ! DBW i'

2 G . ~3.38!

Here n̂5bf/2p (mod 1) and

EW i5EW i i1EW i' , BW i5BW i i1BW i' ~3.39!

are the decompositions of the electric and magnetic field

the directions parallel and perpendicular toAW 0. This decom-
position is gauge invariant provided that in a general ga
the parallel direction is that marked by the Polyakov lo
vector.

The quark and gluon sector contributions are periodic
f with periods 4pT and 2pT, respectively. This periodicity
in A0 of the coefficients multiplying the local operators is
consequence of gauge invariance. Indeed, after choosing
Polyakov gauge there is still freedom to make further no
stationary gauge transformations within this gauge. S
transformations~named discrete transformations in@46#! are
of the formU(x0)5exp(x0L), whereL is a constant diago-
nal matrix. Its eigenvaluesl j , j 51, . . . ,N @we consider a
general SU(N) group in this discussion#, are quantized by
the requirement of periodicity inx0. For quarks,U(x0) must
be strictly periodic and hencel j52p in j /b, njPZ ~the in-
tegersnj are x independent by continuity!. Since under a
discrete transformationA0(x)→A0(x)1L, the eigenvalues
of log(V)/(2pi) change asn j→n j2nj . In SU~2! this implies
that the effective action in the quark sector must be perio
in f with period 4pT. In the gluon sector, periodicity o
Am(x) in x0 only requires thatU(x01b)5e2p ik/NU(x0), k
51, . . . ,N, and there is an additional symmetry associa
with the center of the gauge group@6,9,56#. That is, l j
52p i (nj1k/N)/b in the absence of quarks~note thatk is
both x independent andj independent!. The eigenvalues of
log(V̂)/(2pi) change asn j ,ªn j2n,→n j ,2nj1n, and the
effective action in the gluon sector must be invariant un
such replacement. In SU~2! it corresponds to periodicity inf
3-15
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with period 2pT. From this discussion it follows that a
expansion in powers of log(V) breaks gauge invariance un
der discrete gauge transformations. The local operatorsEW i i

2 ,

BW i i
2 , EW i'

2 , andBW i'
2 are directly gauge invariant.

We can compare these results with those in@33,34#.
That work goes beyond ours in that we compute the low
terms in an expansion inD̂0 whereas in@33,34# all orders
in A0 are retained in the electric sector. On the oth
hand, unlike @33,34#, we treat groups other than SU~2!,
our gauge field configurations are not stationary, a
we consider higher-order terms in the spatial covari
derivatives.4

Let us restrict ourselves to stationary gauge configurati
and the gluon sector in SU~2!, as in@33#. In a notation close
to that in @33#, the terms of the effective Lagrangian whic
are quadratic inFmn , but of any order inA0, are of the form

2 f 3~f!EW i i
2 2 f 1~f!EW i'

2 2h3~f!BW i i
2 2h1~f!BW i'

2 .
~3.40!

To obtain these SU~2! group structure functions in our ex
pansion we would need to retain terms with two or fo
spatial indices but any number of commutators@A0 , #. Nev-
ertheless, in the parallel space our calculation is comp
since all terms of the form (D̂0

nFmn) i , n>1, vanish identi-
cally in the stationary case. This implies thatf 3(f) and
h3(f) do not get any further contribution beyond those
L2,g(x), and indeed, after passing to the Pauli-Villars sche
with LPV5e1/22LMS, one verifies thatf 3 andh3 of @33# are
reproduced.f 1 is not reproduced to mass dimension 6, buth1
is reproduced when we retain mass dimension 4 terms o
since in the magnetic sector the calculation in@33# introduces
ad hoc simplifying approximations which in practice ar
equivalent to usingL2,g(x).

An important point is that of the periodicity of the stru
ture functions, also emphasized in@33#. In our calculation,
the coefficients of the local operators will always be perio
in f due to gauge invariance. Yet this does not imply that
structure functions themselves should be periodic. The o
in the parallel sector, which coincide to all orders with t
coefficients inL2,g(x), will certainly be periodic, butf 1 and
h1 will not be periodic inf. For instance,h1 receives a
contribution fromL3,g(x) of the form f (f)BW 0i

2 ~see Appen-

4The stationarity conditionis a restriction; there are gauge invar
ant terms of the effective action functional which are not rec
structible from the stationary case. One might think that start
from the stationary case, all commutators involvingA0 can be pro-
moted to temporal covariant derivatives, with the prescript
@A0 , #→@D0 , #. This is consistent with gauge invariance but do
not account all possible terms which may appear in the nonsta
ary case. For instance, tr(@D0 ,Ei i#

2), which is equivalent to
tr@(]0Ei i)

2#, is obviously nonidentically zero, but cannot be reco
ered by the above prescription since@A0 ,Ei i#50. This argument
substantiates our claim that our expansion and that of@33,34# are in
fact complementary to each other.
11600
st

r

d
t

s

r

te

e

ly,

c
e
es

dix D!. The functionf (f) is periodic and so this contribu
tion is fully gauge invariant. However, the operatorf (f)BW 0i

2

has still to be brought to the standard form in the Eq.~3.40!.
Using BW 0i5AW 03BW i' , it follows that h1 picks up a gauge
invariant but nonperiodic contributionf2f (f). ~At this
point we disagree with@33# which notes thatf 1 needs not
be periodic but requires periodicity ofh1.! We also note
that in our calculation,f 1 and h1 are both infrared diver-
gent, whereas in the calculation of@33# only h1 is divergent.
This should indicate that a resummation to all orders
D̂0 of our expansion may remove spurious infrared div
gences.

For SU~3! we present explicit results for the effective La
grangian up to mass dimension 4 included. We use the c
vention

A052
i

2
lsA0

s52
i

2
lW •AW 0 , Fmn52

i

2
lsFmn

s , etc.,

~3.41!

where ls , s51, . . . ,8, are theGell-Mann matrices. In the
Polyakov gauge,

A052 i
l3

2
f32 i

A3

2
l8f8 . ~3.42!

The effective Lagrangian from the quark sector can be
pressed in terms of the quantities

n15
1

4pT
~f31f8!, n25

1

4pT
~2f31f8!,

n352
1

2pT
f8 ~3.43!

as

L0,q52
p2T4Nf

12 S 2
8

5
1~124n̄1

2!21~124n̄2
2!2

1~124n̄3
2!2D , ~3.44!

and

-
g

n-
3-16
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L2,q5
Nf

24p2 F logS m

4pTD2
1

2GEW i
21

Nf

24p2
logS m

4pTDBW i
22

Nf

12~4p!2
@ f 2~n1!1 f 2~n2!#@~Fmn

1 !21~Fmn
2 !21~Fmn

3 !2#

2
Nf

12~4p!2
@ f 2~n1!1 f 2~n3!#@~Fmn

4 !21~Fmn
5 !2#2

Nf

12~4p!2
@ f 2~n2!1 f 2~n3!#@~Fmn

6 !21~Fmn
7 !2#

2
Nf

36~4p!2
@ f 2~n1!1 f 2~n2!14 f 2~n3!#~Fmn

8 !22
Nf

6A3~4p!2
@ f 2~n1!2 f 2~n2!#Fmn

3 Fmn
8 , ~3.45!

where we have defined

f 2~n!5cS 1

2
1 n̄ D1cS 1

2
2 n̄ D , n̄5S n1

1

2D ~mod 1!2
1

2
. ~3.46!

In the gluon sector, we introduce the invariants

n125
1

2pT
f3 , n3152

1

4pT
~f313f8!, n235

1

4pT
~2f313f8!, ~3.47!

in terms of which the effective Lagrangian is

L0,g~x!5
4

3
p2T4S 2

2

15
1 n̂12

2 ~12 n̂12!
21 n̂31

2 ~12 n̂31!
21 n̂23

2 ~12 n̂23!
2D ~3.48!

and

L2,g~x!52
1

~4p!2 F11 logS m

4pTD2
1

2GEW i
22

1

~4p!2 F11 logS m

4pTD1
1

2GBW i
22

T

4pm S EW i'
2 1

11

12
BW i'

2 D
1

1

~4p!2

11

12S f 1~0!1 f 1~n12!1
1

2
f 1~n31!1

1

2
f 1~n23! D @~Fmn

1 !21~Fmn
2 !2#

1
1

~4p!2

11

12S f 1~0!1
1

2
f 1~n12!1 f 1~n31!1

1

2
f 1~n23! D @~Fmn

4 !21~Fmn
5 !2#

1
1

~4p!2

11

12S f 1~0!1
1

2
f 1~n12!1

1

2
f 1~n31!1 f 1~n23! D @~Fmn

6 !21~Fmn
7 !2#1

1

~4p!2

11

12S 2 f 1~n12!1
1

2
f 1~n31!

1
1

2
f 1~n23! D ~Fmn

3 !21
1

~4p!2

11

8
@ f 1~n31!1 f 1~n23!#~Fmn

8 !21
1

~4p!2

11

4A3
@ f 1~n31!2 f 1~n23!#Fmn

3 Fmn
8 , ~3.49!

with

f 1~n!5c~n̂ !1c~12 n̂ ! ~n¹Z!, n̂5n ~mod 1!,

f 1~0!522gE . ~3.50!

Finally, the renormalized tree level is

Ltree~x!5
1

4g2~m!
FW mn

2 . ~3.51!

In the stationary case, the most general structure compatible with SU~3! symmetry, constructed with twoEi ’s and any
number ofA0’s, contains six structure functions~see Appendix E!
116003-17
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f 12~f3 ,f8!@~Ei
1!21~Ei

2!2#1 f 45~f3 ,f8!@~Ei
4!21~Ei

5!2#1 f 67~f3 ,f8!@~Ei
6!21~Ei

7!2#1 f 33~f3 ,f8!~Ei
3!2

1 f 88~f3 ,f8!~Ei
8!21 f 38~f3 ,f8!~Ei

3Ei
8! ~3.52!

~and similarly forBiBi , etc.!. Our results forL2 are of this form. Our expressions corresponding tof 33, f 88, and f 38 are
already correct to all orders inA0, since allD̂0 operators cancel in the directions 3 and 8 of the adjoint space. More gene
for any SU(N) and any structure function,A0 decomposesFmn into a parallel component~which commutes withA0) and a
perpendicular component~fully off diagonal in the gauge in whichA0 is diagonal!. The structure functions not involving
perpendicular components depend periodically onA0 and can be computed exactly using the appropriate finite order of
expansion~that is, the lowest order at which the corresponding local operator appears inL).

In Appendix E we give further details on the calculation for SU~3! and SU(N).
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IV. DIMENSIONALLY REDUCED EFFECTIVE THEORY

As is well known, in the high-temperature limit nonst
tionary fluctuations become heavy and are therefore s
pressed, and one expects QCD to behave as an effe
three-dimensional theory for the stationary configuratio
only @10,11,37–42#. Our previous calculation of the effectiv
action was obtained by separating background from fluc
tion and integrating the latter to one loop. Clearly, we c
adapt that procedure to obtain the action of the dimension
reduced effective theory, to be denotedL 8(x), by ~i! using
stationary backgrounds and~ii ! taking purely nonstationary
fluctuations only—that is, removing the static Matsuba
mode in all frequency summations. In addition, there is
further factorb in L 8(x) from the time integration. Note tha
L 8(x) is not the effective action~or Lagrangian! of the di-
mensionally reduced theory but its true action~within the
one-loop approximation!, in the sense that functional integra
tion over the stationary configurations withL 8(x) yields the
partition function. Besides takingAm stationary, we will as-
sume thatA0 is small~in particularunu,1), which is correct
in the high-temperature regime. We will come back to t
point later.

The static Matsubara mode is not present in the qu
sector, so for that sector we simply findL q8(x)5bLq(x).
Likewise, the removal of the static mode is irrelevant in t
ultraviolet region; hence,L tree8 (x)5bLtree(x) for the renor-
malized tree level.

As discussed in Appendix C, the removal of the sta
mode in the one-loop gluon sector~and for unu,1) corre-
sponds to replacingz(112,12e,n)→z(112,12e,11n)
in Eq. ~3.23!. For the effective potential this meansB4( n̂)
→B4(11 n̂) in Eq. ~3.24!, and so ~dropping an
A0-independent term!

L 0,g8 ~x!5
2p2

3
T3 tr̂@ n̂2~11 n̂2!#, n̂5 log~V̂ !/~2p i !,

21<n̂<1. ~4.1!

The analogous replacement in the mass dimension
and six terms gives@using the identityc(11 n̂)1c(12 n̂)
5c( n̂)1c(2 n̂)]
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L 2,g8 ~x!5
1

~4p!2T
tr̂F11

12S 2 log~m/4pT!1
1

11

2c~n̂ !2c~2 n̂ ! D F̂mn
2 2

1

3
Êi

2G , ~4.2!

L 3,g8 ~x!5
1

2

1

~4p!4

1

T3
tr̂F ~c9~ n̂ !1c9~2 n̂ !!

3S 61

45
F̂mnF̂nlF̂lm1

1

3
F̂lmn

2 2
1

30
F̂mmn

2

1
3

5
F̂0mn

2 2
1

15
Êii

2 1
2

15
Êi F̂ i j Ê j D G . ~4.3!

In these expressionsD̂0 stands for@A0 , #. Note that, having
removed the static mode,L 8(x) is free from infrared diver-
gences.

At high temperature the effective potential suppres
configurations withV(x) far from unity, so by means of a
suitable gauge transformation we can assume thatA0(x) is
small.5 In the absence of quarks, the situation is similar
though in this caseV(x) lies near a center of the grou
element; the center symmetry is spontaneously broken
naling the deconfining phase@5,11,56#. After a suitable gen-
eralized~many-valued! gauge transformation the configura
tion can be brought to the smallA0(x) region. It can be noted
that only whenA0 is small (unu,1) the non static fluctua-
tions are the heavy ones. If we were to choose the gaug
that n is near some other integer valuen, the light mode
would be thenth Matsubara mode and integrating out th
light mode would yield a nonlocal~and so nonuseful! action
for the effective theory.

5To bring A0 to the unu,1 basin it will be necessary to use
discrete gauge transformation, as described in the paragraph
Eq. ~3.39!. Because such transformations are global (x indepen-
dent!, this will be only possible if the originalA0(x) lies in the
same basin~i.e., near the same integern) for all x. We assume this,
since otherwiseV(x) would be far from unity in the crossove
region, thereby increasing the energy@57#.
3-18
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BecauseA0 is small, it is standard to expand theL 8(x) in
powers ofA0, using the relationn52A0 /(2p iT) either in
the fundamental or the adjoint representations. We expan
to and including terms of dimension 6, where nowA0 com-
ing from V counts as dimension 1. Note that this new cou
ing is free from any ambiguity~although it is in conflict with
explicit gauge invariance!.

The effective potential is already a polynomial inA0.
From Eqs.~3.11! and ~4.1!, we obtain

L 08~x!52S N

3
1

Nf

6 DT^A0
2&1

1

4p2T
^A0

2&2

1
1

12p2T
~N2Nf !^A0

4&. ~4.4!

We have introduced the shorthand notation^X&ªtr(X) ~trace
in the fundamental representation! and used the SU(N) iden-
tity ~E6!. This result agrees with@40,43# ~there written in the
adjoint representation!.

In particular for SU~2! and SU~3!, using the identity~E7!
valid for those groups, we find

L 08~x!52S N

3
1

Nf

6 DT^A0
2&1

1

24p2T
~61N2Nf !^A0

2&2,

N52,3, ~4.5!

which reproduces the result quoted in@10# and @11# for N
53. We note that consistency requires to include up to tw
loop contributions in the effective potential@58#.

The terms of dimension four with derivatives come fro
L 28(x), given essentially in Eq.~3.30! @with c(12 n̂)

→c(2 n̂) and an extra factorb], and settingn̄ and n̂ to
zero. The result can be written as~the subindex 4 indicate
operators of dimension 4, and all gluon fields count as m
dimension 1!

L(4)8 ~x!52
1

TgE
2~T!

^Ei
2&2

1

TgM
2 ~T!

^Bi
2& ~4.6!

~once again in the fundamental representation!. For the
~chromo!electric and magnetic effective couplings we find

1

gE
2~T!

5
1

g2~m!
22b0@ log~m/4pT!1gE#

1
1

3~4p!2 FN18Nf S log 22
1

4D G ,
1

gM
2 ~T!

5
1

g2~m!
22b0@ log~m/4pT!1gE#

1
1

3~4p!2
~2N18Nf log 2!. ~4.7!
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It is possible to rescaleAi andA0 ~with different renormal-
ization factors! so that L(4)8 (x) looks like the zero-
temperature renormalized tree level~3.28! @39,40,43#. How-
ever, we will work with the original variables.

The result for gM
2 (T) coincides with@10# for N53. It also

agrees with @43# ~setting Nf50) assuming a suitable
N-dependent factor between the scalesL there andm here.
The scale-independent ratio

gE
2~T!

gM
2 ~T!

512
2

3

g2~m!

~4p!2
~N2Nf !1O~g4! ~4.8!

found here differs from that reference. On the other hand
analogy with

1

g2~m!
52b0 log~m/LMS!, ~4.9!

magnetic and electric thermalL parameters can be intro
duced@44#:

1

gE,M
2 ~T!

52b0 log~T/LE,M
T !, ~4.10!

which set the scale of high temperatures for both coupl
constants. For the magnetic sector we find

log~LM
T /LMS!5gE2 log~4p!1

N28Nf log 2

22N24Nf
,

~4.11!

in agreement with@44#.
Next, we consider terms of dimension 6. They come fro

L 28(x) expanding the digamma functions to second orde
n and fromL 38(x) to zeroth order. From the quark sector w
obtain

L(6),q8 ~x!5
28

45
z~3!

b3

~4p!4
Nf K FmnFnlFlm16Fmmn

2

1
9

2
F0mn

2 130A0
2Fmn

2 23Eii
2 16EiFi j Ej L ,

~4.12!

where we have made use of the identityFlmn
2 52Fmmn

2

24FmnFnlFlm , valid inside the functional trace@43#. For
gluons we have, instead,

L(6),g8 ~x!52
2

45
z~3!

b3

~4p!4
tr̂S F̂mnF̂nlF̂lm1

57

2
F̂mmn

2

127F̂0mn
2 1165Â0

2F̂mn
2 23Êii

2 16Êi F̂ i j Ê j D .

~4.13!

Using Eqs.~E5! and ~E6!, this gives, for the full result,
3-19
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L(6)8 ~x!52
2

15

z~3!

~4p!4T3 F S 2

3
N2

14

3
Nf D ^FmnFnlFlm&

1~19N228Nf !^Fmmn
2 &1~18N221Nf !^F0mn

2 &

1~110N2140Nf !^A0
2Fmn

2 &2~2N214Nf !^Eii
2 &

1~4N228Nf !^EiFi j Ej&1110̂ A0
2&^Fmn

2 &

1220̂ A0Fmn&
2G . ~4.14!

For SU~2! and SU~3! the term with^A0
2Fmn

2 & can be elimi-
nated by using the identity~E7!. In addition, in SU~2! the
term with ^F0mn

2 & can also be removed using Eq.~E8!. This
produces

L(6)8 ~x!52
2

15

z~3!

~4p!4T3 F ~327Nf !K 2

3
FmnFnlFlm2

1

3
F0mn

2

22Eii
2 14EiFi j Ej L 1~57228Nf !^Fmmn

2 &

1S 1652
70

3
Nf D ~^A0

2&^Fmn
2 &12^A0Fmn&

2!G ,
for N53, ~4.15!

L(6)8 ~x!52
4

15

z~3!

~4p!4T3 F ~227Nf !K 1

3
FmnFnlFlm2Eii

2

12EiFi j Ej L 1~19214Nf !^Fmmn
2 &1~74214Nf !

3^A0
2&^Fmn

2 &1~146221Nf !^A0Fmn&
2G ,

for N52. ~4.16!

L(6)8 (x) has been computed previously in@43# for the
gluon sector and arbitrary number of colors. Our res
agrees with that calculation~and disagrees with@45#!. The
dimension-6 Lagrangian in the quark sector has been c
puted in@45# for SU~3!, in the absence of chromomagnet
field (Ai50) and neglecting terms with more than two sp
tial derivatives~i.e., neglectingEii

2 ). Our result reproduces
that calculation in that limit as well.

V. CONCLUSIONS

In the present work we have developed in full detail t
heat kernel expansion at finite temperature introduced
@27#. We have paid special attention to the role played by
untraced Polyakov loop or thermal Wilson line in mainta
ing manifest gauge invariance. This is a highly nontriv
problem since preserving gauge invariance at finite temp
ture requires infinite orders in perturbation theory. The c
flict between finite-order perturbation theory and finit
temperature gauge invariance has been previously illustra
11600
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-

-
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l
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-

d,

e.g., in the radiatively induced Chern-Simons action of
11)-dimensional fermionic theories@49#. In the case where
the heat bath is chosen to be at rest the Polyakov loo
generated by the imaginary time component of the ga
field and can be regarded as a non-Abelian generalizatio
the well-known chemical potential. Actually, we have pr
vided arguments supporting this interpretation; if the Pol
kov loop was absent or represented in perturbation the
the particle number could not be fixed, as one expects fr
standard thermodynamics requirements. The new ingred
of our technique is that a certain combination of the Pol
kov loop and the temperature has to be treated as an i
pendent variable, in order to guarantee manifest gauge
variance. This can be done without fixing the gauge.

An immediate application of our method can be found
QCD at finite temperature in the region of phenomenologi
interest corresponding to the quark-gluon plasma phase
fact, the heat kernel expansion corresponds in this case
high-temperature derivative expansion organized in a v
efficient way. In the case of QCD the finite-temperature h
kernel expansion can be applied to compute the one-l
effective action stemming from the fermion determinant a
from the bosonic determinant corresponding to gluonic fl
tuations around a given background field. As a result
have been able to reproduce previous partial calculations
to extend them up to terms of orderT22 including the Polya-
kov loop effects, for a general gauge group SU(N). As a
by-product we have computed the action of the dimensi
ally reduced effective theory to the same order. Further
have studied the emerging group structures in the case of
and three colors.
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APPENDIX A

In this appendix we explain and justify the definition
covariant derivative expansion at finite temperature int
duced in@47#. This expansion has been applied in@46,49,59#.

When the symbols method~2.2! is used, one starts with a
given operatorf (M ,Dm) acting on the space of particle wav
functions. BecauseM andDm transform covariantly~homo-
geneously! under gauge transformations, so dof (M ,Dm) and
f (M ,Dm1 ipm) ~sincepm is just ac number!. However, the
function^xu f (M ,Dm1 ipm)u0& is not gauge covariant in gen
eral. For instance,̂ xuDmu0&5^xu(]m1Am)u0&5^xuAmu0&
5Am(x)^xu0&5Am(x). Gauge invariance is broken by th
zero four-momentum stateu0& but is recovered in Eq.~2.2!
after integration over spatial momenta and summation o
the Matsubara frequencies. This is as it should be, si
^xu f (M ,Dm)ux& is manifestly covariant~we are assuming ul-
traviolet convergence off —e.g., the heat kernel fort.0).
In the spatial case, gauge covariance is recovered beca
after integration over momenta, all spatial covariant deri
3-20
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tives appear only in the form of commutators@Di , #. That is,
if one drags allDi to the right~generating commutators!, all
the noncovariant terms cancel after integration. There
simple mechanism for this cancellation—namely, ifDi on
the right-hand side of Eq.~2.2! is replaced byDi1 iai , ai
being ac number, this shift can be absorbed by a redefinit
of pi and nothing changes. Certainly, all terms withDi in a
commutator are manifestly invariant under the shift, but
those withDi at the right and outside commutators whi
would develop andai-dependent spurious contribution. On
concludes that no such noncovariant terms can survive
momentum integration. Indeed, the only way in whichDi
can appear gauge covariantly in the effective action fu
tional is through commutators@Di , #. At zero temperature
the same holds forD0; however, at finite temperature,D0
can appear in two different ways without spoiling gau
invariance—namely, through the commutator@D0 , # and
through the Polyakov loopV(x)—and in general both are
realized on the right-hand side of Eq.~2.2!. To see how this
comes about in detail, assume we have already carried
the momentum integration and allDi are in commutators~so
the operator is multiplicative regardingx space!. This will
produce a typical term of the form

TT5(
p0

^xuh1~D01 ip0!Xh2~D01 ip0!Y•••u0&,

~A1!

where X,Y, . . . are gauge covariant operators construc
with M, Fi j , Ei and their spatial covariant derivatives. If w
now move theD01 ip0 to the left, also generating commu
tators, we will obtain typical terms of the form

TT5(
p0

^xuh~D01 ip0!D̂0
nXD̂0

mY•••u0&. ~A2!

~As always,D̂05@D0 , #.! As we know from Sec. II A, the
sum overp0 produces a one-valued function ofV(x):

TT5h̃~V!D̂0
nXD̂0

mY•••. ~A3!

~We can removêxu•u0& since no nonmultiplicative operato
remains in the expression, which is to be evaluated atx.! The
shift mechanismD0→D01 ia0 does not work in the tempo
ral direction sincep0 is discrete rather than continuous; how
ever, it still implies that theD0 at the left can appear onl
through a periodic dependence underD0→D012p i /b. This
restricts theD0 not in commutators to appear through t
Polyakov loop.

In Eq. ~A3! gauge covariance is manifest. If we were
expandh̃(V) in powers ofD0 @recall Eq.~2.9!# the above-
mentioned periodicity, and thus gauge invariance, would
spoiled. So our counting is to assign zeroth order to
Polyakov loop and first order to each covariant derivati
either temporal or spatial. In this way, we obtain a natu
generalization of the standard expansion in covariant der
tives used at zero temperature, with manifest gauge inv
ance order by order in the expansion.
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APPENDIX B

Let us establish the commutation rules~2.36!. It is suffi-
cient to consider the case@X, f # since D̂m f is a particular
case. Becausef is a function ofV, it is also a function ofD0
through the relationshipV5e2bD0. In fact, it is better to
prove the relation for a generalf (D0) ~not necessarily peri-
odic in its argument!. No special property ofD0 is required,
so the statement is that, for any two operatorsX andY and
for any functionf,

@X, f ~Y!#52 f 8~Y!@Y,X#1
1

2
f 9~Y!@Y,@Y,X##1•••

5 (
n51

`
~21!n

n!
f (n)~Y!DY

n~X!, DYª@Y, #.

~B1!

It is sufficient to prove this identity for functions of the typ
f (Y)5e2lY, wherel is ac number, since the general case
then obtained through Fourier decomposition. The RHS
Eq. ~B1! is

(
n51

`
ln

n!
e2lYDY

n~X!5e2lY~elDY21!X

5e2lY~elYXe2lY2X!5@X,e2lY#,

~B2!

which coincides with the LHS of Eq.~B1!. We have used the
well-known identityeDY(X)5eYXe2Y.

APPENDIX C

The basic integrals are

I n
6~n,a!ªE

0

`

dt ta21wn
6~e2p in!,

n,aPR, n50,1,2, . . . , ~C1!

where the functionswn are defined in Eq.~2.15! and6 refers
to the bosonic and fermionic versions, respectively. For
bosonic version,

I n
1~n,a!5

A4p

b S 2p i

b D n

(
kPZ

~k2n!n

3E
0

`

dt ta1(n21)/2e2(2p/b)2(k2n)2t, n¹Z.

~C2!

We have excluded the casee2p in51 which is discussed be
low. Integration overt gives
3-21
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I n
1~n,a!5 i n

GS a1n/21
1

2D
GS 1

2D S b

2p D 2a

3(
kPZ

~k2n!n

uk2nun
1

uk2nu2a11
. ~C3!

Defining n5k01 n̂, 0, n̂,1, the sum overk can be split
into the sum fork<k0 and another fork.k0. In terms of the
generalized Riemannz function @52# this gives

I n
1~n,a!5

GS a1n/21
1

2D
GS 1

2D S b

2p D 2a

@~2 i !nz~2a11,n̂ !

1 i nz~2a11,12 n̂ !#,

0, n̂,1, n5k01n̂, k0PZ. ~C4!

For the fermionic version, usingwn
2(v)5wn

1(2v) ~and so
n→n1 1

2 ), one obtains

I n
2~n,a!5

GS a1n/21
1

2D
GS 1

2D S b

2p D 2aF ~2 i !nzS 2a11,
1

2
1 n̄ D

1 i nzS 2a11,
1

2
2 n̄ D G , 2

1

2
, n̄,

1

2
. ~C5!

Note that
11600
I 2n
6 ~n,a!5~21!n

GS a1n1
1

2D
GS a1

1

2D I 0
6~n,a!. ~C6!

The formulas are consistent with periodicity and parity

I n
6~n,a!5I n

6~n11,a!5~21!nI n
6~2n,a!. ~C7!

As discussed in Sec. IV, the dimensionally reduced eff
tive theory for the stationary configurations requires us
remove the static mode from the summation over Matsub
frequencies in the bosonic integrals. This prescription bre
periodicity in n but this is not relevant for the effectiv
theory, since it only describes the smallA0 ~or n) region.~A
prescription that preserves periodicity would be to remo
the frequencyk5k0 when n̂, 1

2 andk5k011 whenn̂. 1
2 .!

The result for theunu,1 is

I n8
1~n,a!5

GS a1n/21
1

2D
GS 1

2D S b

2p D 2a

@~2 i !nz~2a11,11n!

1 i nz~2a11,12n!#, 21,n,1. ~C8!

A related issue is that of the infrared divergences for
tegern. As a result of periodicity, we can restrict the discu
sion to the casen50. Forn5” 0, the static Matsubara mod
does not contribute toI n

1(n,a), and so there is no infrared
divergence in this case. On the other hand, inI 0

1(n,a), the
static mode is either infrared or ultraviolet divergent. In d
mensional regularization such an integral@n5k5n50 in
Eq. ~C2!# is defined as zero since it has no natural scale@54#.
So for all n the result is equivalent to removing the sta
mode
iven
ix
rmulas.
I n
1~n,a!5I n8

1~0,a!5H ~21!n/22p21/2GS a1
n

2
1

1

2D ~b/2p!2az~2a11!, even n

0, odd n

for nPZ. ~C9!

Alternatively one can regulate the infrared divergence by adding a cutoff functione2m2t (m→0) in the t integral. This
amounts to adding a contributionA4pG(a11/2)/(bm2a11) in I 0

1(n,a) for integern.

APPENDIX D

In this appendix we present results for SU~2! in both sectors, including all terms of mass dimension 6. All results are g
in theMS scheme. In these formulas we have allowed for an explicit infrared cut offm, as commented at the end of Append
C. The results with strict dimensional regularization are recovered by removing all infrared divergent terms from the fo
The conventions are those of Sec. III D:
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Ltree~x!5
1

4g2~m!
FW mn

2 , ~D1!

L0,g~x!5
p2T4

3 S 2
1

5
14n̂2~12 n̂ !2D , ~D2!

L2,g~x!52
11

96p2 F 1

11
12 logS m

4pTD2c~n̂ !2c~12 n̂ !GFW mni
2 2

11

96p2 FpT

m
1

1

11
12 logS m

4pTD1gE2
1

2
c~n̂ !

2
1

2
c~12 n̂ !GFW mn'

2 1
1

24p2
EW i

22
1

48p2 S pT

m DEW i'
2 , ~D3!

L3,g~x!5
61

2160p2 S 1

4pTD 2F8S pT

m D 3

12z~3!2c9~ n̂ !2c9~12 n̂ !G~FW mn3FW na!•FW am

2
1

48p2 S 1

4pTD 2

@c9~ n̂ !1c9~12 n̂ !#FW lmni
2 1

1

96p2 S 1

4pTD 2F16S pT

m D 3

14z~3!2c9~ n̂ !2c9~12 n̂ !GFW lmn'
2

1
1

480p2 S 1

4pTD 2

@c9~ n̂ !1c9~12 n̂ !#FW mmni
2 2

1

960p2 S 1

4pTD 2F16S pT

m D 3

14z~3!2c9~ n̂ !2c9~12 n̂ !GFW mmn'
2

2
3

80p2 S 1

4pTD 2

@c9~ n̂ !1c9~12 n̂ !#FW 0mni
2 1

3

160p2 S 1

4pTD 2F28S pT

m D 3

14z~3!2c9~ n̂ !2c9~12 n̂ !GFW 0mn'
2

2
1

10p2 S 1

4pTD 2S pT

m D 3

EW 0i'
2 1

1

240p2 S 1

4pTD 2

@c9~ n̂ !1c9~12 n̂ !#EW i i i
2

2
1

480p2 S 1

4pTD 2F28S pT

m D 3

14z~3!2c9~ n̂ !2c9~12 n̂ !GEW i i'
2 1

1

240p2 S 1

4pTD 2

@c9~ n̂ !

1c9~12 n̂ !#« i jk~EW i3EW j !•BW k1
1

240p2 S 1

4pTD 2F8S pT

m D 3

24z~3!2c9~ n̂ !2c9~12 n̂ !G« i jk~EW i'3EW j'!•BW ki ,

~D4!

L0,q~x!5
2

3
p2T4Nf S 2

15
2

1

4
~124n̄2!2D , ~D5!

L2,q~x!5
Nf

96p2 F2 logS m

4pTD2cS 1

2
1 n̄ D2cS 1

2
2 n̄ D GFW mn

2 2
Nf

48p2
EW i

2 , ~D6!

L3,q~x!5
Nf

960p2 S 1

4pTD 2Fc9S 1

2
1 n̄ D1c9S 1

2
2 n̄ D G S 16

3
~FW mn3FW na!•FW am1

5

2
FW lmn

2 2FW mmn
2

22« i jk~EW i3EW j !•BW k13FW 0mn
2 22EW i i

2 D . ~D7!

It can be noted that the quark terms do not distinguish between parallel and perpendicular components. This is d
fact that in SU~2! an even function ofn̄ @or any other element of su~2!# in the fundamental representation is necessarilyc
number. Since thewn functions involved to mass dimension 6 are all even, then̄ dependence gets out of the trace in Eqs.~3.14!
and ~3.16! and A0 is no longer a privileged direction in color space. This mechanism does not act in the a
representation—i.e., in the gluon sector—or for other SU(N) groups@cf. Eq. ~3.45!#.

The infrared divergence is tied ton integer, so it does not exist for fermions, and also cancels in all gluon terms invo
only parallel components.
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APPENDIX E

In SU(N) the gauge can be chosen so thatA0 is diagonal.
This form is unique~up to permutation of eigenvalues! and
producesN21 quantities invariant under SU(N) @f3 , f8
for SU~3!#. If X representsFmn or any other element o
su(N) @X†52X, tr(X)50# with N221 independent com
ponents, we can use the remaining gauge freedom~the N
21 gauge transformations which leaveA0 diagonal! to fix
N21 of these components. This adds (N221)2(N21)
new invariants involvingX ~and A0). Of these,N21 are
linear in X ~the diagonal components ofX), N(N21)/2 are
quadratic, and (N21)(N22)/2 are cubic. For instance, i
SU~3!, under a diagonal gauge transformation

X5S x a b

2a* y c

2b* 2c* 2x2y
D

→S x ei (a2b)a ei (2a1b)b

2e2 i (a2b)a* y ei (a12b)c

2e2 i (2a1b)b* 2e2 i (a12b)c* 2x2y
D ,

~E1!

the invariants arex, y, aa* , bb* , cc* , andab* c ~the last
one is complex but its modulus is not independent!. For X
5Ei this gives the six structure functions in Eq.~3.52!. Each
further vectorYPsu(N) produces newN221 invariants.

For computing the traces in the adjoint representation
possibility is to use the adjoint basis (Ts) rt5 f rst , such that
to Fmn5Fmn

s ts (ts5ls/2i ) in the fundamental representatio

it correspondsF̂mn5Fmn
s Ts in the adjoint one. We have als

used an alternative approach, as follows. The element
su(N), such as the gluon quantum fluctuationam , are N

3N matrices, (am)aȧ . From the action F̂mn(al)
5@Fmn ,al#, it follows

~ F̂mn!aȧ,bḃ5~Fmn!abd ȧḃ2dab~Fmn! ḃȧ ,

a,b,ȧ,ḃ51, . . . ,N. ~E2!

In matrix notation this can be written asF̂mn5Fmn ^ 121
^ Fmn

T 5Fmn ^ 111^ Fmn* or even, in shorter form,

F̂mn5Fmn2Fmn
T 5Fmn1Fmn* , ~E3!

understanding thatFmn
T or Fmn* always refer to the dotted

space. Similarly,Âm5Am2Am
T5Am1Am* . Since dotted and

undotted operators commute, it follows that theV̂5V
^ V* 5V ^ V21T for the Polyakov loop. In the Polyako
gauge (A0 stationary and diagonal! V is diagonal (V)ab

5vadab and V̂ is also diagonal in that basis, (V̂)aȧ,bḃ

5vaȧdabd ȧḃ , with vaȧ5vav ȧ
21 .
11600
e
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From the point of view of the gauge group, the compu
tion of the trace in the adjoint space involves only four d
ferent structures appearing inb0,g

T , b2,g
T , andb3,g

T . These are

tr̂@ f ~V̂ !#5( 8

aȧ

f ~vaȧ!,

tr̂@ f ~V̂ !F̂mn
2 #5(

aȧ

f ~vaȧ!@~Fmn
2 !aa1~Fmn

2 ! ȧȧ

22~Fmn!aa~Fmn! ȧȧ#,

tr̂@ f ~V̂ !F̂mnF̂nlF̂lm!] 5(
aȧ

f ~vaȧ!@~FmnFnlFlm!aa

1~FmnFnlFlm! ȧȧ

2~Fmn!aa~FnlFlm! ȧȧ

2~FmnFnl!aa~Flm! ȧȧ#,

tr̂@ f ~V̂ !Êi F̂ i j Ê j #5(
aȧ

f ~vaȧ!@~EiFi j Ej !aa

1~EiFi j Ej ! ȧȧ2~Ei !aa~@Fi j ,Ej # ! ȧȧ

2~@Ei ,Fi j # !aa~Ej ! ȧȧ

2~EiEj !aa~Fi j ! ȧȧ

2~Fi j !aa~EiEj ! ȧȧ#. ~E4!

@(aȧ
8 in the first equation indicates that one of theN modes

with a5ȧ should not be included. This removes the sing
mode present in U(N) but not SU(N). The singlet mode
does not contribute in the other formulas.# Often, f (v)
5 f (v21) @i.e., f (vaȧ) is symmetric ina,ȧ], but this prop-
erty has been not used here. It can be observed that
contributionsa5ȧ, which correspond toV̂51 and are af-
flicted by infrared divergences, cancel in the subspace pa
lel ~i.e., for Fmn diagonal in the Polyakov gauge!.

Useful SU(N) identities are (̂ & stands for trace in the
fundamental representation!

tr̂~X̂2!52N^X2&, XPsu~N!, ~E5!

tr̂~X̂2Ŷ2!52N^X2Y2&12^X2&^Y2&14^XY&2,

X,YPsu~N!, ~E6!

^X2Y2&52
1

6
^@X,Y#2&1

1

6
^X2&^Y2&1

1

3
^XY&2,

X,YPsu~3!, ~E7!

^@X,Y#2&522^X2&^Y2&12^XY&2, X,YPsu~2!.
~E8!
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