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R-parity violating minimal supergravity model
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We present the minimal supersymmetric standard model with general brokenR parity, focusing on minimal
supergravity~MSUGRA!. We discuss the origins of lepton number violation in supersymmetry. We have
computed the full set of coupled one-loop renormalization-group equations for the gauge couplings, the su-
perpotential parameters, and for all the soft supersymmetry breaking parameters. We provide analytic formulas
for the scalar potential minimization conditions which may be iterated to arbitrary precision. We compute the
low-energy spectrum of the superparticles and the neutrinos as a function of the small set of parameters at the
unification scale in the general basis. Specializing to MSUGRA, we use the neutrino masses to set new bounds
on theR-parity violating couplings. These bounds are up to five orders of magnitude stricter than the previ-
ously existing ones. In addition, new bounds on theR-parity violating couplings are also derived demanding a
nontachyonic sneutrino spectrum. We investigate the nature of the lightest supersymmetric particle and find
extensive regions in parameter space where it isnot the neutralino. This leads to a novel set of supersymmetric
signatures, which we classify.
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I. INTRODUCTION

The most widely studied supersymmetric scenario is
minimal supersymmetric standard model~MSSM! with con-
served Rparity @1–3#. The unification of the three Standar
Model gauge couplings,gi , at the scaleMX5O(1016 GeV)
@4#, is a strong indication that supersymmetry~SUSY! is em-
bedded in a unified model. In the simplest such model@1#,
SUSY breaking occurs in a hidden sector~decoupled from
the Standard Model gauge interactions!, and is communi-
cated to our visible sector via gravity@5#. The scale of SUSY
breaking in the visible sector is thus the Planck scale,M P
51019 GeV.

The large number of parameters in the MSSM is restric
by making well-motivated simplifying assumptions at t
unification scale. In the special case of the minimal sup
gravity model~MSUGRA!, there are five parameters beyon
those of the Standard Model:

M0 ,M1/2,A0 ,tanb,sgn~m!. ~1!

These are the universal scalar massM0 , gaugino massM1/2,
and trilinear scalar couplingA0 , respectively, as well as th
ratio of the Higgs vacuum expectation values~VEV’s!,
tanb, and the sign of the bilinear Higgs mixing paramet
m. Given these five parameters at the unification scale,
can predict the full mass spectrum as well as the coupling
the particles at the weak scale via the supersymme
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renormalization-group equations~RGEs!. This is the most
widely used model for extensive phenomenological and
perimental tests of supersymmetry. It is the purpose of
paper to create an analogous model in the case of super
metry with broken R-parity (R” p): the R-parity violating
minimal supergravity model (R” p MSUGRA!.

The MSUGRA model with universal boundary condition
was first extended to include bilinearR” p by Hempfling@6#,
focusing on the neutrino sector. A further detailed analysis
this framework was performed by Hirschet al. @7#. de Carlos
and White were the first to go beyond bilinearR” p and con-
sider the full set ofR” p couplings@8,9#. However, they re-
stricted themselves to the third-generation Higgs-Yuka
couplings and used an approximate method to minimize
scalar potential. We detail below how we go beyond t
work.

We shall consider the chiral superfield particle content

Qi
x , D̄ i

x , Ū i
x , Li

a , Ēi , H1
a , H2

a . ~2!

Herei 51,2,3 is a generation index,x51,2,3, anda51,2 are
SU(3) andSU(2) gauge indices, respectively. In supersy
metry, the lepton doublet superfieldsLi

a and the Higgs dou-
blet superfield coupling to the downlike quarks,H1 , have the
same gauge and Lorentz quantum numbers~this is an essen-
tial feature in our discussion below!. When appropriate, we
shall combine them into the chiral superfieldsL a50, . . . ,3

a

5(H1
a ,Li 51,2,3

a ). The gauge quantum numbers of the chi
superfields and the vector superfields are given in Table

ol-
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A. R-parity violation

R parity is defined as the discrete multiplicative symme
@10#

Rp5~À1!2S13B1L, ~3!

whereS is the spin,B the baryon number, andL the lepton
number of the particle. All Standard Model particles inclu
ing the two scalar Higgs doublets haveRp511; their super-
partners haveRp521. When allowing forR-parity viola-
tion, the full renormalizable superpotential is given by@11#

W5eab@~YE! i j L i
aH1

bĒj1~YD! i j Qi
axH1

bD̄ jx

1~YU! i j Qi
axH2

bŪ jx#

1eabF1

2
l i jkLi

aL j
bĒk1l i jk8 Li

aQj
xbD̄kxG

1
1

2
exyzl i jk9 Ū i

xD̄ j
yD̄k

z2eab@mH1
aH2

b1k iL i
aH2

b#. ~4!

Here YE,D,U are 333 matrices of Yukawa couplings
l i jk ,l i jk8 ,l i jk9 are Yukawa couplings andk i are mass-
dimension-1 parameters.eab andexyz are the totally antisym-
metric tensors, withe125e123511. The terms proportiona
to l,l8,l9, andk i violate R parity explicitly and it is their
effect that we investigate in detail in this paper. The ter
proportional tol9 violate baryon number, whereas the term
proportional tol,l8, andk i violate lepton number. Baryon
and lepton-number violation cannot be simultaneou
present in the theory, otherwise the proton will decay rapi
@12,13#. We discuss in detail in Sec. II how this can be gu
anteed.

When extending MSUGRA to allow forR-parity viola-
tion, the particle content remains the same but we have
ditional interactions in the superpotential, Eq.~4!, as well as
the soft-breaking scalar potential@cf. Eq. ~30!#. Thus within
the R” p MSUGRA the RGEs must be modified. The runnin
of the gauge couplings is only affected at the two-loop le
and the effects have been discussed in Ref.@14#. Reference
@14# also contains theR” p two-loop RGEs for the superpo
tential parameters. Here we restrict ourselves to the one-
RGEs. In order to fix the notation, we present the RGEs
the superpotential couplings as well as the gauge coupl
in Appendix A. Due to the flavor indices, the RGEs for t
soft supersymmetry breaking terms are highly coupled
each other. In Appendix B, we discuss a very elegant met
developed by Jack and Jones@15# to derive the full set of
RGEs for the soft-supersymmetry breaking terms and ap
it to the case of theR” p MSUGRA. As we discuss, Jack an
Jones’ method is more easily implemented in a numer
computation. We also independently calculate theb func-
tions of the theory by using the formulas from Ref.@16#. The
resulting RGEs for the soft-supersymmetry breaking ter
are given explicitly in Appendix C. We have checked that o
results for theb functions in Appendixes C and D are in fu
11500
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agreement. Furthermore, where relevant, they agree with
vious ~subsets of! results which have been computed by t
standard method@8,17#.

Given the RGEs, we can compute the full model at t
weak scale, including the mass spectrum and the coupl
of all the particles as a function of our unified scale (MX)
boundary conditions. In our numerical results for t
R” p MSUGRA, we extend the parameters given in Eq.~1! by
only one R” p coupling. We thus have

$l,l8,l9%1 ,M0 ,M1/2,A0 ,tanb,sgn~m! ~5!

as our free parameters atMX . $l,l8,l9%1 indicates that only
oneR” p coupling is nonzero atMX . We note that through the
coupled RGEs many couplings can be nonzero atMZ and
this is taken into account in the numerical implementation
our RGEs.

Due to existing experimental bounds on the (l,l8,l9)
@18,19#, the couplings are typically small and we thus expe
the deviations from MSUGRA due toR” p to be small. How-
ever, besides the RGEs discussed above, there are fou
portant aspects where there are significant changes
which we discuss in detail in this paper:~i! the origin of

TABLE I. The particle content of the MSUGRAR” p model in
terms of superfields and their decomposition into components w
their SU(3)c3SU(2)L3U(1)Y quantum numbers.x,X are SU~3!
representation and generator indices;a,A are SU~2! representation
and generator indices.a50, . . . ,3 is the familyindex of the lepton
superfield, andi 51, . . . ,3 theusual family index of quarks, lep-
tons, and their superpartners. The fermionic components of the
perfields are two-component Weyl spinors.

Chiral
superfields

SU(3)c3SU(2)L3U(1)Y Components

Qi
a,x

(3,2, 1
6 ) SũL

d̃L
D, SuL

dL
D

D̄ i
x (3̄,1, 1

3 ) d̃R* ,dR

Ūi
x (3̄,1,2 2

3 ) ũR* ,uR

L a
a5$H1

a ,Li
a% (1,2,2 1

2 ) S ña

ẽLa
D5HS h1

0

h1
2D,S ñi

ẽLi
DJ,

S na

eLa
D5HS h̃1

0

h̃1
2D, S ni

eLi
DJ

Ēi
(1,1,1) ẽR* ,eR

H2
a

(1,2, 1
2 ) Sh2

1

h2
0 D, Sh̃2

1

h̃2
0 D

Vector
superfields

SU(3)c3SU(2)L3U(1)Y Components

V1 (1,1,0) B̃, Bm

V2 (1,3,0) W̃ (A), Wm
(A)

V3 (8,1,0) G̃(X), Gm
(X)
2-2
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R-PARITY VIOLATING MINIMAL SUPERGRAVITY MODEL PHYSICAL REVIEW D 69, 115002 ~2004!
lepton number violation,~ii ! minimizing the scalar potential
~iii ! neutrino masses, and~iv! the nature of the lightest su
persymmetric particle~LSP!.

~i! Since the discovery of neutrino oscillations, we kno
that leptonflavor is violated. If the observed neutrinos hav
Majorana masses, then leptonnumberis violated as well. In
theR” p MSSM, the lepton number is naturally violated in th
superpotential by the Yukawa couplings (l,l8) as well as
the mass termsk i . In Sec. II, we discuss the origin of thes
terms in high-energy unified theories and argue that they
just as well motivated as in theR-parity conserving case. Fo
this we reanalyze the seminal work onZ2 and Z3 discrete
gauge symmetries by Ibanez and Ross@20#. We find a
slightly different set of allowed operators, but the conc
sions remain the same.

We argue that within supergravity, with gravity-mediat
supersymmetry breaking, it is natural to have bothk i50 and
D̃ i50 at the unification scale,MX . This has not been take
into account in previousR” p RGE studies.@Here D̃ i is the
corresponding soft supersymmetry breaking bilinear term
k i , cf. Eq. ~30!.# This reduces the number of parameters
must consider to the set given in Eq.~5!. At the weak scale,
however, in generalk i ,D̃ i5” 0, but these are then derive
quantities.

~ii ! Since the lepton doublet superfieldsLi
a have the same

gauge and Lorentz quantum numbers as the downlike H
doubletH1 , we effectively have a five-Higgs-doublet mod
for which we must minimize the scalar potential. Within o
RGE framework, this must be done in a consistent appro
while maintaining the value of tanb given at the weak scale
and also obtaining the correct radiative electroweak sym
try breaking @21#. In Ref. @7# ~bilinear R-parity violation!,
points were tested to see if they minimize the potential
the case~in their notation! B̃5D̃ i5A021. We have directly
minimized the potential and do not make the latter additio
assumption. Instead, we determineB̃,D̃ i via electroweak ra-
diative breaking. If we obtain a point with radiative breakin
of color or electric charge, we disregard it. We also go
yond the numerical approximations made in Ref.@8# to ob-
tain the full result. The technical details of the iterative pr
cedure are given in Sec. IV.

~iii ! Due to the coupledR” p RGEs, a nonzerol or l8
together withm(MX)5” 0 will generate nonzerok i ’s at the
weak scale@8,22,23#. The k i ’s lead to mixing between the
neutrinos and neutralinos resulting in one nonzero neut
mass at tree level@24–26#. Thus one or more nonvanishin
(l,l8) at MX will result in one massive neutrino at the wea
scale via the RGEs and thek i . Requiring this neutrino to be
less than the cosmological bound on the sum of the neut
masses determined by the Wilkinson Microwave Anisotro
Probe ~WMAP! Collaboration @27# using their data com-
bined with the 2 dimensional Far Galaxy Red-Shift Surv
~2DFGRS! data@28#,

( mn i
,0.71 eV, ~6!

thus gives a bound on the (l,l8) at MX . These bounds are
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determined in Sec. VII A and are very strict for the speci
MSUGRA point SPS1a, but are fairly sensitive to the prec
choice of parameters atMX . The bounds are summarized
Table III. In Refs. @8,23#, it was argued that such bound
exist, however no explicit bounds were determined and
full flavor effects were also not considered. Here we pres
for the first time a complete analysis of the correspond
bounds. In a future publication we will address the possib
ity of solving the atmospheric and solar neutrino proble
within our framework.

~iv! In the MSSM and MSUGRA, the LSP is stable due
conservedR parity. It can thus have a significant cosmolog
cal relic density@29–31#. Observational bounds require th
LSP to be charge- and color-neutral@31# with a strong pref-
erence for the lightest neutralino,x̃1

0. In R” p , the LSP is not
stable and thus not constrained by the observational bou
on relic particles@32#. Therefore, any supersymmetric pa
ticle can be the LSP,

G̃, x̃1
0 , x̃1

6 , q̃i 51, . . . ,6, ,̃ i 51, . . . ,6
6 , ñ j 51,2,3, ~7!

where x̃1
0 ,x̃1

6 denote the lightest neutralino and chargin

and q̃i ,,̃ i
6 ,ñ j denote the right- and left-handed squarks a

charged sleptons as well as the left-handed sneutrinos
spectively.

Depending on the nature of the LSP, the collider pheno
enology will be completely different@34#. It is not feasible to
study the full range of signatures resulting from the differe
possible LSPs in Eq.~7! or the different possible mass spe
tra. It is thus mandatory to have a well-motivated mass sp
trum, including the LSP, as in the MSSM and MSUGR
Below, in Sec. VII, we determine the nature of the LSP
well as the rest of the mass spectrum as a function of
input parameters. In the no-scale supergravity models,
find significant ranges where thet̃ is the LSP. In Sec. VIII
we discuss the phenomenology of at̃ LSP.

The case of a stau LSP, to our knowledge, was first d
cussed in Ref.@35# in the framework of third-generation bi
linear R-parity violation. In Ref.@36#, the case of trilinear
R” p was considered, with the focus on the comparison
tween charged Higgs and stau-LSP phenomenology. We
beyond this to present a systematic analysis of all poss
stau decays depending on the dominantR” p coupling and
classify the resulting signatures. For a recent analysis
charged slepton LSP decays in the presence of trilinea
bilinear R” p couplings, see Ref.@37#. There, only two-body
decays are considered and the parameters are restricted
simultaneous solution of the solar and atmospheric neut
problems. In Sec. VIII we present the general analysis.

Very recently, in Ref.@38#, the nature of the LSP in cor
relation with the neutrino properties was studied in biline
R” p , i.e., the trilinear couplingsl i jk ,l i jk8 ,l i jk9 are all set to
zero by hand. Since also the dependence on the super
metry breaking parameters is not the focus of the invest
tion, this work is complementary to ours.

A stau LSP withR-parity conservationon the lab scale,
i.e., the stau is stable in collider experiments, has been
2-3
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cussed in Ref.@39#. For completeness we mention that with
R-parity conservation several authors have considered
case of a gluino LSP@40#.

B. Outline

In Sec. II, we present the motivation for supersymme
with broken R parity and discuss the possible origins
baryon- and lepton-number violation. We focus in particu
on the origin of theLiH2 mixing. In Sec. III, we present the
full set of parameters and interactions in the MSUGR
model with brokenR parity, including the SUSY breaking
parameters. In Sec. IV we discuss the radiative electrow
symmetry breaking including the full minimization of th
Higgs potential. In Sec. V we determine the complete m
spectrum as a function of our parameters. In Sec. VI
discuss the boundary conditions we impose atMX and their
numerical effect. In Sec. VII we present our main resu
including the bounds we obtain on theR” p Yukawa couplings
from the WMAP constraint on the neutrino masses. In S
VIII we discuss the phenomenology of the stau LSP, cla
fying possible final-state signatures at colliders and comp
ing the stau decay length. We offer our summary and c
clusions in Sec. IX.

We present two methods for computing these equation
Appendixes A, B, and C. We present the complete se
RGEs at one loop in Appendix C. In Appendix D we com
pute the four-body decay of the stau.

II. ORIGINS OF LEPTON- AND BARYON-NUMBER
VIOLATION

In this section, we investigate general aspects of the or
of baryon- and lepton-number violation in supersymme
and thus the motivation forR-parity violation @12#. We then
discuss in more detail the origin of thek iL iH2 terms in the
context of only lepton-number violation. In particular, for th
following, we would like to know under what condition
after supersymmetry breaking we can rotate away both
k iL iH2 terms and the corresponding soft breaking ter
D̃ i L̃ iH2 .

A. Discrete symmetries

In the MSSM in terms of the resulting superpotential,R
parity is equivalent to requiring invariance under the discr
symmetry matter parity@12#. If instead we require invarianc
under baryon parity,

~Q,Ū,D̄ ! → 2~Q,Ū,D̄ !,

~L,Ē,H1 ,H2! → ~L,Ē,H1 ,H2!, ~8!

we allow for the termsLLĒ, LQD̄, andLH2 in the super-
potential, while maintaining a stable proton. Similarly, lept
parity only allows for theŪD̄D̄ terms. Thus when allowing
for a subset ofR-parity violating interactions which ensur
proton stability, we must employ a discrete symmetry wh
treats quark and lepton superfields differently. In grand u
fied theories~GUTs! this is unnatural, as we discuss below
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In string theories, we need not have a simple GUT gau
group. Thus models exist for both lepton- and baryo
number violation@41#, and there is no preference forRp
conservation orR” p . However, discrete symmetries can b
problematic when gravity is included. Unless it is a remna
of a broken gauge symmetry, the discrete symmetry will
broken by quantum gravity effects@42#. The requirement tha
the original gauge symmetry be anomaly-free can be tra
lated into a set of conditions on the charges of the disc
symmetry@20,43#. Considering the complete set ofZ2 and
Z3 discrete symmetries, and the particle content given
Table I, only theZ2 symmetry R parity, R2 , and theZ3
symmetryB35R3L3 @44# are discrete gauge anomaly-fre
@20#. B3 is baryon parity and allows for the interaction
LLĒ,LQD̄, andLH2 but prohibitsŪD̄D̄.

This, however, does not completely solve the problem
proton decay. In supersymmetry, there are also dange
dimension-5 operators which violate lepton or baryon nu
ber. The complete list is

O15@QQQL#F , O25@ŪŪD̄Ē#F ,

O35@QQQH1#F , O45@QŪĒH1#F ,

O55@LLH2H2#F , O65@LH1H2H2#F , ~9!

O75@ŪD̄* Ē#D , O85@H2* H1Ē#D ,

O95@QŪL* #D , O105@QQD̄* #D ,

where we have dropped gauge and generation indices.
subscriptsF,D refer to taking theF or the D term of the
given product of superfields. We differ from Ref.@20# in that
we have dropped the operator@H2H2e* #D , which vanishes
identically, and we included the operator@QQd* #D . As in
Ref. @20#, we have systematically studied whichZ2 or Z3
symmetry allows for which dangerous dimension-5 ope
tors. Our results are summarized in Table II. We find so
slight discrepancies with Ref.@20#. Furthermore, we have
added the bilinear superpotential termk iL iH2 (k term! not
presented in Ref.@20#. As expected, them term and thek
term go hand in hand in generalized baryon parity mod
~GBP! but the opposite is true for the generalized mat
~GMP! or lepton ~GLP! parity models: since them term
should, phenomenologically, be a nonzero parameter,
GMP or GLP models containing thek term are experimen-
tally excluded. The requirement of neutrino masses exclu
also the GMP and GLP models which do not allow for t
DL52 term:LLH2H2 . These models do not have any oth
source within perturbation theory to incorporate neutri
masses. From the models left, i.e.,@GMP : R2 ; GLP : L2 ,L3 ;
GBP : R2L2 ,R3L3] only two can be induced from broke
and anomaly-free gauge symmetries: these are the GMPR2
~the usualR-parity case! and the GBP:B35R3L3 .

Thus what we see from Table II is that although t
MSSM R parity is capable of eliminating the dimension
operators, it isnot capable of eliminating those of dimensio
2-4
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TABLE II. In the left column we have the complete list of independentZ2 andZ3 discrete symmetries as in@20#. GMP, GLP, GBP denote
generalized matter parity, lepton parity, and baryon parity, respectively. In the top row we have the complete list of dimension-5 o
which violate baryon or lepton number@cf. Eq.~9!#. We have also included the operatorH1H2 . The symbolA denotes that the correspondin
operator is allowed by that discrete symmetry. There are a few discrepancies compared to Ref.@20#.

H1H2 LH2 QQQL ŪŪD̄Ē QQQH1 QŪĒH1
LLH2H2 LH1H2H2 H2* H1Ē QŪL* ŪD̄* Ē QQD̄*

GMP:
R2 A A A A

A2R2 A A A A A A A A

R3 A A A

R3A3 A A A A A A A A

R3A3L3 A A A A

R3L3
2

A

A3 A

A3L3
2

A A A A A A A

GLP:
L2 A A A A

A2L2 A A A A A A A A

L3 A A A

R3A3
2L3 A A

R3A3
2L3

2
A A A A A A A

GBP:
R2L2 A A A A A A A A

R2A2L2 A A A A A A

R3L3 A A A A A A A A

A3L3 A

R3A3L3
2

A A A
la
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5. Both dimension-4 and dimension-5 baryon-number vio
ing operatorsare not allowed if the Z3-discrete symmetry
B35R3L3 is imposed instead of theR-parity (R2) symmetry.
In this paper, we study the phenomenology of the mo
based on the discreteZ3 symmetryB35R3L3 @45#.

B. Grand unified models

In GUTs, quarks and leptons are in common multipl
and this simple approach does not suffice. We consider
case of the gauge groupsSU(5) andSO(10) separately.

1. SU(5)

In SU(5) models, the trilinear and bilinearR-parity vio-
lating terms are given, respectively, by

hi jkC iC jXk , kiC iF5 , ~10!

where C is the 5* representation containing theD̄ and L

superfields,X is the 10 representation containing theQ,Ū,
and Ē superfields, andF5 is the Higgs superfield in the5
representation. hi jk are Yukawa couplings andki
dimension-1 couplings.i , j ,k are generation indices. Unles
hi jk&10213, this leads to unacceptably rapid proton dec
Thus this term must be forbidden by an additional symme
The generalization of matter parity where nowC and X
11500
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change sign prohibits both terms in Eq.~10! and guarantees
that R” p terms are not generated onceSU(5) is broken.

Alternative ~discrete! symmetries can also be considere
In Ref. @24#, a discrete fivefoldR symmetry is constructed
which prohibits the terms in Eq.~10!. However, after break-
ing SU(5)→SU(3)3SU(2)3U(1) and integrating out the
heavy fields, the operatorskiC iF5 are generated, resulting i
bilinear R-parity violation. The size of the coupling depend
on the vacuum expectation values of the large dimensio
Higgs field representations which breakSU(5). Similar
symmetries can also be constructed to obtain trilin
R-parity violation. This was done in the case of ‘‘flipped
SU(5)3U(1) in Ref. @46# and is easily transferred to th
case ofSU(5). The question of whether it is possible t
obtainR” p in GUTs with a largeDL/DB hierarchy was also
addressed in Ref.@47# employing a modified version of the
minimal SU(5), where a built-in Peccei-Quinn symmetry
broken at an intermediate scale.

2. SO(10)

In SO(10) GUTs@48#, B–L is a gauge symmetry and thu
R parity is conserved. Explicitly, the matter fields of a fami
are combined in a~spinorial! 16 representation and the op
erators

Ri jk516i•16j•16k ~11!
2-5
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are notSO(10) invariant.~Again, i , j ,k are generation indi-
ces.! As in theSU(5) case, one would now expect to gene
ateR-parity violating terms after breakingSO(10) andB–L.
However, as shown in Ref.@49#, surprisingly, this depend
strongly on the Higgs representations chosen to perform
breaking.

If we include a 16H-Higgs representation to brea
SO(10), as well as higher dimensional Higgs represen
tions, we have the nonrenormalizable operators

Ni jkH516i•16j•16k•16H•G~H!, ~12!

whereG(H) is a function of the higher-dimensional Higg
representations. When the Higgs fields get vacuum expe
tion values,SO(10) is broken and in generalR-parity violat-
ing operators will be generated. The exact nature of the
sulting R-parity violation depends on the employed Hig
fields and can be consistent with proton decay experim
@50#.

Instead, we can explicitly exclude a16H representation
and breakSO(10) by a126-Higgs representation@49#. Since
Ri jk is an odd product of spinorial representations, it is its
a spinorial representation. Without16H there is now no
spinorial Higgs representation and thus noSO(10) invariant
combination

Ri jk•G8~H!, ~13!

whereG8(H) is a general tensor product of Higgs represe
tations. Thus after spontaneous symmetry breaking the
eratorsRi jk cannot be generated and there is no expl
R-parity violation in the theory. However, in principleR par-
ity can still be broken spontaneously with^ñ&5” 0 or ^ñc&
50, whereñc is a right-handed neutrino@which in this paper
is only included in this discussion ofSO(10)]. With the
absence of a16H it was shown in Ref.@49# thatF flatness at
the GUT scale requireŝñc&50. This is also stable under th
renormalization-group equations. At the GUT scale we m
also have^ñ&50, otherwiseSU(2)L would be broken at
MGUT. Similarly at the weak scale, we must demand^ñ&
50 in order to avoid an unobserved Majoran. Thus in t
modelR parity is conserved at all energies and guaranteed
a gauge symmetry@49#.

We conclude thata priori there is no preference in supe
symmetric GUTs for or againstR-parity violation. Finally,
we note in passing that there exist few attempts in the lite
ture to construct superstring models which accommodate
lepton-numberR” p couplings@51#.

C. Origin of the k iL iH 2 terms

It is well known that through a field redefinition of theLi
andH1 fields, thek i terms in the superpotential Eq.~4! can
be rotated away at any scale@24#. The full rotation matrix in
the complex case was only given recently in Ref.@52#. After
supersymmetry breaking, however, they can only be rota
away jointly with the corresponding soft breaking term
D̃ i L̃ i H̃2 , if k i and D̃ i are aligned@22,26#. Even if they are
aligned at a given scale, this alignment is not stable under
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renormalization-group equations@8,22,23#. However, if k i

and D̃ i are aligned after supersymmetry breaking, then
can choose a basis wherek i5D̃ i50 at the supersymmetry
breaking scale. At the electroweak scale, we then hav
prediction for both k i and D̃ i through the renormalization
group equations~RGEs!, given the initial choice of basis. We
are thus interested in the conditions for alignment after
persymmetry breaking in various unification scenarios, in
der to predictk i(MZ) and D̃ i(MZ).

We first consider the general superpotential of Eq.~4!,
restricted for the casem5k i50. It is invariant under a dis-
creteR symmetry@53#, where the chiralsuperfieldshave the
following R-quantum numbers@54#:

Li Ēi
Qi Ū i D̄ i

H1 H2

0 22 21 21 21 0 0

The vector superfields have zero charge. Each term in
superpotential must haveR charge-2, which is canceled b
the charges of the Grassman coordinates. Thus all trilin
terms exceptŪD̄D̄ are allowed. Note that since this is anR
symmetry, the fermionic components of the chiral and vec
superfields have a different charge than the superfield
particular, theR-parity even components of the chiral supe
fields have the quantum numbers of the conventional lep
number. With this somewhat unusual symmetry, we have
sured lepton-numberconservationfor the SM fields@56#.

However, the phenomenology of this superpotential is
acceptable. Below we show that ifm,k i ,B̃,D̃ i50, theCP-
odd Higgs boson massmA50 and the lightest chargino mas
M x̃

1
6&O(30 GeV), both in disagreement with observatio

mA50 due to the Peccei-Quinn symmetry of the superpot
tial. We thus demandk i ,m5” 0, in order to get consisten
SU(2)3U(1) breaking and a sufficiently heavy chargin
This in turn introduceslepton-number violationfor the low-
energy SM fields.

The parametersk i and m are dimensionful and in prin-
ciple present before supersymmetry breaking. The only m
scale in the theory is the Planck scale (M P), and we thus
expectk i ,m5O(M P). Experiment requiresm5O(MZ) and
k i!MZ . ~The latter strict requirement is due to neutrin
masses, as we discuss in detail below.! This is the well-
known m problem@58#, modified by the presence of thek i .
In the following, we discuss the origin of the weak-scalem
andk i terms and their corresponding soft terms. We can th
determine under what conditions thek i andD̃ i can be simul-
taneously rotated away at the unification scale. We begin
discussing supergravity theories where there are several
posed solutions to them problem @55,58–60#. We review
them here in light of the additionalk i terms.

D. Supergravity

We consider a set of real scalar fieldszi for the hidden
sector and a setya for the observable sector@1#. Collectively
2-6
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we denote themZA . The supergravity Lagrangian depen
only on the dimensionless scalar function~Kähler potential!
@61#,

G~zi ,zi* ;ya ,ya* !52d~zi ,zi* ;ya ,ya* !/M P
2

2 log~ f ~zi ;ya!/M P
3 !. ~14!

Hered determines the Ka¨hler metric andf is the superpoten
tial, which is a holomorphic function. The scalar potential
given by

V52M P
4exp~2G!@31GA~G 21!B

AG B#1
1

2
DaDa

5expS d~ZA ,ZA* !

M P
2 D @~d21!B

AFA†FB

23 f †~ZA* ! f ~ZA!/M P
2 #1

1

2
DaDa. ~15!

HereG A[]G/]ZA , and

~G 21!B
A[

]2G 21

]ZA]ZB*
, ~16!

FA[
] f ~ZA!

]ZA
1M 22

]d~ZA ,ZA* !

]ZA
f ~ZA!, ~17!

and Da is the auxiliary field of the vector superfield. Th
derivatives ofd21 are defined analogously.

The most general form of the low-energy scalar poten
after supersymmetry breaking is@62#

V5S ]g~y!

]ya
D †S ]g~y!

]ya
D1m3/2

2 Sabyayb
†

1m3/2@h~y!1h†~y!#1
1

2
DaDa. ~18!

Here g(ya) is the superpotential for thelow-energyfields
derived fromf (ZA) andm3/2 is the gravitino mass. The firs
and the last terms are the usualF- andD-term contributions
to the scalar potential. The second and third terms arise f
supersymmetry breaking. The general constant matrixSab
has in principle arbitrary entries, i.e., the soft scalar mas
can be nonuniversal.

h(y) is a superpotential, i.e., a holomorphic function
the ya . In the renormalizable case, it is at most trilinear
the fieldsya and contains the supersymmetry breakingA and
B terms@63#. g(y) andh(y) are superpotentials of the sam
fields and due to gauge invariance thus contain the s
terms. However, in general, the coefficients are independ
and thus in particular theA andB terms need not be propor
tional to the corresponding terms ing(y). But if the super-
potential satisfies

f ~zi ;ya!5 f 1~zi !1 f 2~ya!, ~19!
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then the soft-breaking termh(y) is a linear combination of
the superpotentialg(y) andya]g(ya)/]ya @62# and thus each
term is proportional to the corresponding term ing(y). The
condition ~19! is quite natural. If thezi all transform non-
trivially under only the hidden-sector gauge group and theya
transform nontrivially only under the observable sec
gauge group, then combined with the requirement of ren
malizability we obtain the condition~19!.

We now consider theobservablesector superpotentia
given in Eq.~4!. If our superpotential at the unification sca
satisfies Eq.~19!, the D̃ i will be aligned with thek i after
supersymmetry breaking and they can be simultaneously
tated away. Or looked at differently, before supersymme
breaking we can always rotate the fieldsL a

a such thatk i

50. If we then break supersymmetry at this scale, wh
obeying Eq.~19!, we automatically obtainD̃ i50 as well,
since the coefficients inh(ya) are proportional to those in
g(ya). Thus in the case of a renormalizable superpoten
we expect universalA andB terms and thus an alignment o
k i and D̃ i at the unification scale.

E. Implementing a solution to theµ problem

The most widely discussed solution to them problem is to
prohibit themH1H2 in the superpotential via a symmetry, fo
example, anR symmetry, and instead introduce a nonren
malizable term into the Ka¨hler potential,G, which results in
them term after supersymmetry breaking. By using the m
scale inherent in supersymmetry breaking, one then obt
m5O(MZ). This was first proposed by Kim and Nilles@58#,
who introduced the nonrenormalizable term into the sup
potential f. The R symmetry was global and the resultin
axion was phenomenologically acceptable. Giudice a
Masiero @59# introduced a nonholomorphic term into th
Kähler metric functiond instead, also invoking anR symme-
try to prohibit terms in the superpotential. The details of t
axion were not considered. In certain cases, the two me
nisms are equivalent@53#. In the following, we briefly con-
sider the implications of Ref.@58# for the k i terms and ex-
tend this to Ref.@59#.

In the context ofR-parity violation, we have both am and
a k i problem. As an example, we introduce the followin
nonrenormalizable terms into the superpotential:

f 85
1

M P
~az1z2H1H21biz3z4LiH2!, ~20!

assuming them to be invariant under the symmetries of
model. In general, we could have higher powers of thezi . If
the Peccei-Quinn@64# charges which prohibit the bilinea
terms in the superpotential are lepton-flavor blind but dist
guish H1 and Li , then we would expect the general for
shown above.a,bi are dimensionless constants. Due to t
independent fieldszi , we cannot rotate away thebi terms.
After supersymmetry breaking, we get

m5
^z1&^z2&

M P
5O~MZ!, ~21!
2-7
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k i5
^z3&^z4&

M P
5O~MZ!. ~22!

If the fields zi are hidden-sector fields andf 8 mixes the
hidden and observable sectors, then the soft supersymm
bilinears are in general not aligned with thek i since there are
now the additional terms

1

M P
S ] f 1

]z4
^z3&1

] f 1

]z3
^z4& DbiL̃iH2 , ~23!

which have independent coefficients from the purely hidd
sector. Here we have made use of the hidden-sector func
f 1 of Eq. ~19!. The resultingk i terms are stillO(MZ). If
] f 1 /]zi 51,2,3,450, then we have alignment.

Alternatively, the Peccei-Quinn charges can be such
H1 has the same charge as theLi . This is exactly the case o
theB35R3L3 discrete symmetry we discussed in some de
in Sec. II A and that we follow in this paper. The charge
H1 and theLi under this symmetry is22/3. In this case,
z1z25z3z4 in Eq. ~20! and thek i terms can be rotated awa
beforesupersymmetry breaking. NoD̃ i soft terms are gener
ated in supersymmetry breaking then and we havek i5D̃ i
50 at the high scale.

We conclude that it is possible to have alignment of
bilinear terms at the supersymmetry breaking scale but
necessary. The eventual answer will depend on the unde
ing unified theory. We shall assume that we can rotate a
the k i terms before supersymmetry breaking.

III. THE MINIMAL R-PARITY VIOLATING
SUPERSYMMETRIC STANDARD MODEL

The model we consider has the particle content given
Table I and the superpotential given in Eq.~4!. Within this
superpotential, we shall make the assumption that at the
fication scale,MX.1016 GeV, the termsk iL iH2 have been
rotated to zero. For real parameters the orthogonal rota
on the fieldsLa which accomplishes this is given by

La5OabL b8 , ~24!

and explicitly in components

S H1

L1

L2

L3

D 5S c3 2s3 0 0

c2s3 c2c3 2s2 0

c1s2s3 c1s2c3 c1c2 2s1

s1s2s3 s1s2c3 s1c2 c1

D S L 08

L 18

L 28

L 38

D ,

~25!

whereci5cosui andsi5sinui , and
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c15
k2

Ak2
21k3

2
, s15

k3

Ak2
21k3

2
,

c25
k1

AkW 2
, s25

Ak2
21k3

2

AkW 2
, ~26!

c35
m

Am21kW 2
, s35

AkW 2

Am21kW 2
.

Here we have introduced the notationkW 25( ik i
2 . The more

general case of complex parameters is given in Ref.@52#; we
shall restrict ourselves to real parameters here. After
above field redefinition, the only remaining superfield bili
ear term is

m9H18H2 ~27!

with m95Am21kW 2 and H18[L08 . This will be our starting
bilinear superpotential term atMX in our RGE studies below

The RGEs for thek i are given by~see Appendix A!

16p2
d

dt
k i5k igH2

H21kpgLp

Li 1mgH1

Li , ~28!

where at one loop the anomalous dimension mixingLi and
H1 is given by

gLi

H15gH1

Li * 523l
i jk

8*
~YD! jk2l i jk* ~YE! jk , ~29!

with a summation overj ,k implied. ~The remaining anoma
lous dimensions are given in Appendix A.! Therefore, given
m5” 0 at MX and a nonzerol or l8, we will in general
generate a nonzerok i(MZ) @8,14,22,23#. Below we discuss
special exceptional cases where this is not the case.

In order to fix all the parameters, we also need to kn
the general soft-supersymmetry breaking Lagrangian wh
we denote

2Lsoft5L̃a
†~mL̃2!abL̃b1mH2

2 H2
†H21Q̃†~mQ̃

2
!Q̃

1 Ẽ̄~mẼ
2
!Ẽ̄†1 D̃̄~mD̃

2
!D̃̄†1 Ũ̄~mŨ

2
!Ũ̄†

1eabF ~hU! i j Qi
aH2

bŪ j1
1

2
habkL̃a

aL̃b
bĒk

1ha jk8 L̃a
aQj

bD̄k2baL̃a
aH2

b1H.c.G
1

1

2
exyzhi jk9 Ū i

xD̄ j
yD̄k

z1H.c.

1F1

2
M1B̃B̃1

1

2
M2W̃ (G)W̃ (G)

1
1

2
M3G̃(R)G̃(R)1H.c.G . ~30!
2-8
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Here,F̃P@Q̃,Ũ̄,D̃̄,Ẽ̄,L̃# denote the scalar component of th
corresponding chiral superfield.mF̃

2 are the soft-breaking
scalar masses. Note that these are 333 matrices for the
squarks and for the lepton singlets. However, (mL̃2)ab is a
434 matrix. (hU) i j ,habk ,ha jk8 , and hi jk9 as well as ba

5(B̃,D̃ i) are the soft-breaking trilinear and bilinear term
respectively.

The RGEs for theD̃ i are given at one loop by

16p2
dD̃i

dt
5@gLl

LiD̃ l1gH2

H2D̃ i #1B̃gH1

Li 22m~g1!H1

Li

22@~g1!Ll

Lik l1~g1!H2

H2k i #, ~31!

with the anomalous dimensions (g) and the functions (g1)
defined in Appendixes B and C, respectively. These RG
are clearly distinct from those fork i above. It is thus clear
that givenk i(MX)5D̃ i(MX)50, we will lose alignment be-
tween the two at the electroweak scale@8,14,22,23#. In order
to describe the weak-scale physics, we thus require the
set of parameters given in Eqs.~4! and ~30!.

IV. ELECTROWEAK SYMMETRY BREAKING

The full scalar potential is given by

Vscalar5VSUSY1Vsoft, ~32!

with the supersymmetricF-term andD-term scalar potentia
given by @65#

VSUSY5VF1VD

5(
F

U]W

]FU2

1 (
,51

3 g,
2

2 (
A

S (
m,n

Fm* T,,A
mnFnD 2

,

~33!

respectively, andVsoft52Lsoft. In Eq. ~33!, the fieldsFm,n
denote the scalar fields in the theory, andg,51,2,3 are the
gauge couplings withg1 for U(1)Y , g2 for SU(2)L , andg3
for theSU(3)C gauge group. In order to simplify the expre

sions, we shall use the couplingg[A3
5 g1. m,n, . . . and

A,B, . . . . are representation and gauge generator indic
respectively. The explicit expressions forVF andVD can be
found in Ref.@66#.

In the following, we shall focus on the complex neutr
scalar fields:h2

0 ,ña[(h1
0 ,ñ i 51,2,3). For these the scalar po

tential is given by

Vneutral5~mH2

2 1umau2!uh2
0u21@~mL̃

2
!ab1ma* mb#ña* ñb

2~bañah2
01ba* ña* h2

0* !

1
1

8
~g21g2

2!~ uh2
0u22uñau2!21DV, ~34!
11500
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whereDV denotes higher-order corrections@67#. In order to
minimize this potential, it is convenient to write the comple
neutral scalar fields in terms ofCP-evenx2 ,r a andCP-odd
y2 ,ta real field fluctuations,

h2
05x21 iy2 , ~35!

ña5r a1 i t a . ~36!

At the minimum the scalar fields thus take on the valu
^x2&5vu , ^r a&5va , @va5(vd ,v1 ,v2 ,v3)#, and ^y2&
5^ta&50. The minimization conditions forVneutral can be
written as

]Vneutral

]x2
U

min

50,
]Vneutral

]r a
U

min

50, ~37!

where ‘‘min’’ refers to setting the scalar fields to their valu
at the minimum. We then derive the following five minim
zation conditions, wherea,b50,1,2,3 and there is an im
plied sum over repeated indices:

Re@~mL̃
2
!ab1ma* mb#va2Re~bb!vu

2
1

4
~g21g2

2!~ uvuu22uvau2!vb1
1

2

]DV

]vb
50,

~mH2

2 1umau2!vu2Re~bb!vb

1
1

4
~g21g2

2!~ uvuu22uvau2!vu1
1

2

]DV

]vu
50. ~38!

Here Re denotes the real value and we have writ
(]DV/]r a)umin as ]DV/]va and (]DV/]x2)umin as
]DV/]vu . Next, we solve this system of equations. We st
by defining@68#

tanb[
vu

vd
~39!

and

v2[vu
21vd

21(
i 51

3

v i
25

2MW
2

g2
2

, ~40!

where in our conventionv5174 GeV. Then the VEV’svd
andvu can be written

vd
25cos2bS v22(

i 51

3

v i
2D , ~41!

vu
25sin2bS v22(

i 51

3

v i
2D , ~42!

with v i being the three sneutrino VEV’s. The advantage
using the definition given in Eqs.~39!, ~40! is that tanb is
2-9
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the same in theR-parity conserved~RPC! and R” p models.
This facilitates the direct comparison, in particular wh
v i /v!1.

Using these definitions and the notation (v i
2)[( iv i

2 , the
five minimization conditions in Eq.~38! can be written as
~again there is an implied sum over repeated indices!

~mH1

2 1m2!vd1@~mL̃ iH1

2
!1k i* m#v i2B̃vu1

1

2
MZ

2cos 2bvd

1
1

2
~g21g2

2!sin2bvd~v i
2!1

1

2

]DV

]vd
50, ~43!

@~mH1L̃ i

2
!1m* k i #vd1@~mL̃

2
! j i 1k j* k i #v j2D̃ ivu

1
1

2
MZ

2cos 2bv i1
1

2
~g21g2

2!sin2bv i~v j
2!

1
1

2

]DV

]v i
50, ~44!

~mH2

2 1m21uk i u2!vu2B̃vd2D̃ iv i2
1

2
MZ

2cos 2bvu

2
1

2
~g21g2

2!sin2bvu~v i
2!1

1

2

]DV

]vu
50. ~45!
,

11500
In order to solve the above equations, we first derivem in
terms ofvu , vd , andv i from Eqs.~43! and ~45!. It is ob-
tained after solving the quadratic equation

Am21Bm1G50, ~46!

with

A[tan2b21, B[2k i*
v i

vd
, ~47!

G[H F m̄H2

2 1uk i u22
~g21g2

2!

2
~v i !

22D̃ i

v i

vu
G tan2b

2F m̄H1

2 1~mL̃ iH1

2
!

v i

vd
G J 1

1

2
MZ

2~ tan2b21!. ~48!

The solution to Eq.~46! can be written in a more familia
form,
umu25

F m̄H1

2 1~mL̃ iH1

2
!

v i

vd
1k i* m

v i

vd
G2F m̄H2

2 1uk i u22
1

2
~g21g2

2!v i
22D̃ i

v i

vu
G tan2b

tan2b21
2

1

2
MZ

2 . ~49!
ol-
e

We recover the familiar minimization condition@69# in the
RPC limit k i , v i , D̃ i , (mL̃ iH1

2 )→0.

Equation~46!, or equivalently Eq.~49!, has two solutions
for the parameterm: m.0 andm,0. We thus retain the sign
of m as a free parameter. Furthermore, the factork i* (v i /vd)
that multiplies them parameter in Eq.~49! is small since, as
we show below,v i!vd to obtain a small neutrino mass
mn&O(eV).

We can now expressB̃ in terms ofm,vu ,vd ,v i from Eqs.
~43! and ~45!,

B̃5
sin 2b

2 H [ m̄H1

2 1m̄H2

2 12umu21uk i u2]

1@(mL̃ iH1

2 )1k i* m#
v i

vd
2D̃ i

v i

vu
J , ~50!

where in both Eqs.~48! and ~50! we have introduced the
simplifying notation

m̄H2

2 [mH2

2 1
1

2vu

]DV

]vu
, ~51!
m̄H1

2 [mH1

2 1
1

2vd

]DV

]vd
. ~52!

Equation~44! can now be cast in the form

~M ñ
2
! i j v j52@(mH1L̃ i

2 )1m* k i #vd1D̃ ivu2
1

2

]DV

]v i
,

~53!

where

~M ñ
2
! i j 5~mL̃

2
! j i 1k ik j* 1

1

2
MZ

2cos 2bd i j

1
~g21g2

2!

2
sin2b~v22vu

22vd
2!d i j . ~54!

Here we outline the iterative numerical procedure we f
low to obtain the minimum of the potential for a given valu
of tanb.
2-10
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~i! We start in the RPC limit withv i50 and thus obtain
from Eqs.~41!, ~42! initial values forvu and vd ~in
terms of tanb).

~ii ! We solve Eq.~46! @or Eq.~49!# and Eq.~50! also first
in the RPC limit,v i50,k i5D̃ i5(mH1L̃ i

2 )50, and thus

we obtain initial values form and B̃.
~iii ! We treatvu ,vd andm,B̃ as known and solve the sys

tem of Eq. ~53! in terms of thev i . This system is
linear and a lengthy analytical expression of the so
tion exists.

~iv! We return to the first step and compute the correc
values ofvu ,vd including thev i ’s using Eqs.~41!,
~42!. The reader should note that tanb5vu /vd re-
mains exactly the same as in theR-parity conserving
MSSM case@see Eqs.~41!,~42!#. This is the advan-
tage of this formulation—developed for the first tim
in Ref. @68#—and is used throughout this paper. In o
calculation, we include the full one-loop correction
and the dominant two-loop ones as they have b
calculated in the RPC case in Ref.@69# but not
R-parity violating loop corrections@67#.

~v! We repeat the second step but use the nonzero va
of v i as well as the newly computed values ofvu ,vd .
At this point we now also include the nonzero valu
of k i ,D̃ i . The latter could have been included fro
the beginning but it is computationally more conv
nient to do this in the second iteration.

~vi! We now iterate the procedure until convergence
m,B̃,vu ,vd ,v i is reached.

We have explicitly checked that our iteration procedure
very robust, and for all the initial parameters we display
our numerical results we have found the iteration proced
to converge.

Finally, it is well known that the MSSM provides
mechanism of breaking radiatively the electrowe
SU(2)L3U(1)Y symmetry down toU(1)em @21#. Elec-
troweak symmetry breaking in the MSSM occurs wh
mH2

2 ,0 in Eq. ~45!. This is indeed realized in the MSSM

since mH2

2 is driven to negative values by the large to

Yukawa coupling once we employ the RGEs. As we see fr
Eq. ~C18! the R” p couplings do not affect directly the ‘‘run
ning’’ of mH2

2 . However, they do affect the running ofmH1

2 in

Eq. ~C17! through the mixed wave functionH12Li . These
corrections turn out to be small, sincemLiH1

2 is small, in the

minimal supergravity scenario we assume in this paper. C
cluding, the radiative electroweak symmetry breaking in
R” p case works in exactly the same way as in the RPC c

V. PARTICLE AND SUPERPARTICLE MASSES

In the literature, it is common to make a specific ba
choice for theCP-even neutral scalar fieldsh2

0 ,ña , in par-
ticular the basis where onlyvu ,vd5” 0 andv i50. We shall
present our results for particle and superparticle masse
11500
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the generic basis, where all VEV’S can be nonze
vu ,vd ,v i5” 0. We shall strictly follow the conventions o
Grossman and Haber@66# which in theR-parity conserved
limit coincide with those of Haber and Kane@2#. We list in
turn the mass matrices and show how they depend on
basic parameters, as well as the minimum of the poten
determined in the previous section. It is then straightforw
for the reader to choose his/her favorite basis or to work w
the basis-independent spectrum given below.

A. Gauge boson masses

For completeness and in order to fix our notation belo
we write here the masses of theZ andW6 gauge bosons,

MW
2 5

1

2
g2

2~vu
21va

2 !, ~55!

MZ
25

1

2
~g21g2

2!~vu
21va

2 !, ~56!

where againva
2[vd

21( i 51
3 v i

2 . The photon and the gluon
are of course massless. The reader should note the parti
tion of the sneutrino VEV’sv i in the masses of theZ- and
W6-gauge bosons.

B. CP-even Higgs-sneutrino masses

From Eq. ~34!, we see that after electroweak symmet
breaking, the sneutrinos,ñ i , mix with the Higgs bosons
h2

0 ,h1
0[ñ0 . If CP is conserved, the mass eigenstates sepa

into CP-even andCP-odd states. Following Grossman an
Haber @66#, let us denote withñ1 ( ñ2) the CP-even ~CP-
odd! sneutrino mass eigenstates. IfR parity is broken, the
mass ofñ1 is in general different from the mass ofñ2 , i.e.,
there is a sneutrino-antisneutrino mass splitting. TheCP-
even Higgs-sneutrino mass eigenstates are denoted
h0,H0,ñ1

i , where the massMh0,MH0. They are obtained in
the generic basis after the diagonalization of a 535 mass
matrix

L52
1

2
~x2 ,r g!M CP-even

2 S x2

r d
D , ~57!

where

M CP-even
2

5S bava

vu
1

~g21g2
2!

2
vu

2 2bd2
~g21g2

2!

2
vuvd

2bg2
~g21g2

2!

2
vuvg ~mñ

2
!gd1

~g21g2
2!

2
vgvd

D ,

~58!

with

~mñ
2
!ab[@~mL̃

2
!ab1ma* mb#2

~g21g2
2!

4
~vu

22vg
2!dab ,

~59!

and wherevg
2[(gvg

2 . Recall thatba5(B̃,D̃ i).
2-11
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C. CP-odd Higgs-antisneutrino masses

The CP-odd Higgs-sneutrino mass eigenstatesA,ñ2
i ~and

the massless Goldstone boson in the unitary gauge! are ob-
tained in the generic basis after the diagonalization of
35 mass matrix,

L52
1

2
~y2 ,yg!M CP-odd

2 S y2

yd
D , ~60!

where

M CP-odd
2 5S bava

vu
bd

bg ~mñ
2
!gd

D . ~61!

For one generation, we obtain two nonzero eigenvalues w
the eigenstates identified as the sneutrino and theCP-odd
Higgs, respectively,

mñ2

2
5

1

2
Fmñ

2
1

2B̃

sin 2b

1AS mñ
2
2

2B

sin 2b
D 2

14D̃1
2~11tan2b!G , ~62!

MA0
2

5
1

2
Fmñ

2
1

2B̃

sin 2b

2AS mñ
2
2

2B

sin 2b
D 2

14D̃1
2~11tan2b!G . ~63!
11500
5

th

Heremñ is the one-generation version of Eq.~59!. Notice the
tanb enhancement~reduction! of the sneutrino~Higgs! mass
is due exclusively to anR-parity violating contribution. For
D̃1→0 we havemñ2

5mñ andMA0
2

52B̃/sin 2b as it should
be.

The generalization of the Higgs mass sum ruleMh0
2

1MH0
2

5MA0
2

1MZ
2 in the RPC case is written here as

Tr~M CP-even
2 !5MZ

21Tr~M CP-odd
2 !. ~64!

This is easily verified from the matrix forms ofM CP-even
2

andM CP-odd
2 given above. Equation~64! leads to the follow-

ing Higgs mass sum rule in theR” p scenario:

Mh0
2

1MH0
2

1(
i 51

3

M ñ
1
i

2
5MA0

2
1MZ

21(
i 51

3

M ñ
2
i

2
. ~65!

This sum rule is valid only at tree level and is altered
radiative corrections. If the heavy Higgs mass statesA0 and
H0 are degenerate and also the sneutrino-antisneutrino m
difference is small, then the light Higgs boson massh0

would be very close to theZ-boson mass.

D. Charged Higgs bosons-sleptons

The charged Higgs bosons mix with the charged slepto

L52~h2
2 ,ẽLg

,ẽRk
!M charged

2 S h2
1

ẽLd
*

ẽRl
*
D . ~66!

In the basis-independent notation, the 838 mass matrix is
given by
M charged
2 5S ~m2!111D bd* 1Dd lba lma* vb

bg1Dg* ~m2!dg1lag llbd lvavb1Dgd hag lva2lag lma* vu

lbak* mavb hadk* va2ladkmavu ~mẼ
2
! lk1labklag lvbvg1Dlk

D , ~67!
e

with

~m2!11[mH2

2 1umau2, ~68!

D[
1

4
~g2

21g2!~vu
22uvau2!1

1

2
g2

2uvau2, ~69!

Dd[
1

2
g2

2vuvd , ~70!

~m2!gd[~mL̃
2
!dg1mgmd* , ~71!
Dgd[
1

4
~g2

22g2!~vu
22va

2 !ddg1
1

2
g2

2vgvd , ~72!

~D ! lk[
1

2
g2~vu

22va
2 !d lk . ~73!

The remaining parameters are given in Eqs.~4! and ~30!.
Upon diagonalization of the mass matrix~67!, we obtain the
mass eigenstates:G6,H6,ẽi 51, . . . ,6. It is not hard to prove
that the determinant of Eq.~67! is zero and the Goldston
boson corresponds to the eigenvector (2vu ,va,0,0,0).
2-12
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E. Squarks

1. Down squarks

The down squark mass eigenstatesd̃i ,i 51, . . . ,6 are given by diagonalizing the following mass matrix

L52~ d̃Li
* ,d̃Ri 13

* !M down
2 S d̃L j

d̃Rj 13

D , ~74!

where in the$d̃Li
,d̃Ri 13

% basis we have

M down
2 5S ~mQ̃

2
! i j 1la i l8* lg j l8 vavg1S 1

4
g2

21
1

12
g2D ~vu

22va
2 !d i j ha i j8* va2la i j8* mavu

* ~mD̃
2

! i j 1la l j8* lb l i8 vavb1
1

6
g2~vu

22va
2 !d i j

D . ~75!

The * denotes the complex conjugate of the transposed matrix element, i.e., in the above case (M down
2 ) i j

† .

2. Up squarks

The up-squark mass eigenstatesũi ,i 51, . . . ,6 aredetermined by diagonalizing the following mass matrix given in

$ũLi
,ũRi 13

% basis:

L52~ ũLi
* ,ũRi 13

* !M up
2 S ũL j

ũRj 13

D , ~76!

where

M up
2 5S ~mQ̃

2
! i j 1~YUYU

† ! j i vu
22

1

4 S g2
22

1

3
g2D ~vu

22va
2 !d i j ~hU* ! i j vu2~YU* ! i j mav1

* ~mŨ
2

! i j 1~YU
† YU! j i vu

22
1

3
g2~vu

22va
2 !d i j

D . ~77!
ne
o

F. Quarks

The down-quark masses are given by

~md! i j 5la i j8 va , ~78!

the up-quark masses are

~mu! i j 5~YU! i j vu , ~79!

and the coupling constants are defined in Eq.~4!.

G. Neutrinos-neutralinos

The neutrinos mix with the neutralinos resulting in o
massive neutrino at tree level and four massive neutralin
11500
s.

The neutrino-neutralino mass matrix (737 for three genera-

tions of neutrinos! in the (2 i B̃,2 iW̃ (3),h̃2
0 ,na) basis is

given by

L52
1

2
~2 i B̃,2 iW̃ (3),h̃2

0 ,na!MNS 2 i B̃
2 iW̃ (3)

h̃2
0

nb

D , ~80!

where@70#
2-13



MN51
M1 0 MZsW

vu

Avg
2

2MZsW

vb

Avg
2

0 M2 2MZcW

vu

Avg
2

MZcW

vb

Avg
2

MZsW

vu

Avg
2

2MZcW

vu

Avg
2

0 2mb

va va

2 , ~81!

ALLANACH, DEDES, AND DREINER PHYSICAL REVIEW D69, 115002 ~2004!
2MZsWAvg
2

MZcWAvg
2

2ma 0ab
s,
a
th

s

la

e
n

ss

om
n-

lu

e

p-
lec-

at
,
r-

n
tu-

a-
with MZ
2 given in Eq.~56! andsW[sinuW is the electroweak

mixing angle. The matrix~81! has five nonzero eigenvalue
i.e., four neutralinos and one neutrino. We denote the m
eigenstates which are obtained upon diagonalization of
matrix as x̃1, . . . ,4

0 ,n i 51, . . . ,3, with the massesM x̃
1
0,M x̃

2
0

,M x̃
3
0,M x̃

4
0.

SinceM1 ,M2 ,MZ@v i , the matrix Eq.~81! is suggestive
of the well-known seasaw formula,

MN5S M x̃ m

mT 0 D , ~82!

where M x̃ is the 434 neutralino mass matrix with mas
eigenvalues typically M x̃ i

*O(10 GeV) @71#. The off-

diagonal entrym is a 334 matrix with entries of ordergv i ,
or k i . In Sec. VII, we show and below we estimate thatk i
&O(1 MeV) and thusm!M x̃ . The analogy with the Majo-
rana seesaw mechanism is then obvious under the rep
ments

M x̃[M susy⇔MMaj ,

gv i ,k i⇔MDirac. ~83!

In addition, the 333 zero mass matrix in Eq.~82! can be
filled by finite, loop low-energy threshold corrections in th
R” p MSSM as opposed to possible Higgs triplet contributio
in other neutrino mass models. Therefore, neutrino ma
will roughly be given by

mn;
m2

M susy
;

g2v i
2

M susy
&1 eV. ~84!

For the last inequality, we have imposed the bound fr
WMAP in Eq. ~6!. Bearing in mind possible accidental ca
cellations~see below!, we obtain

v i ,k i&1 MeV for M susy&1 TeV. ~85!

A complete calculation of the one neutrino mass eigenva
at tree level reads@68,75#
11500
ss
e

ce-

s
es

e

mn5

m~M1g2
21M2g2!(

i 51

3

Li
2

vuvd~M1g2
21M2g2!22mM1M2

, ~86!

with

Li[v i2vd

k i

m
. ~87!

A redefinition of the phases of the gaugino fieldsB̃ andW̃
together with the gaugino universality assumptionM15M2
[M1/2 can makeM1 and M2 real and positive and so th
numerator of Eq.~86! cannot be fine-tuned to zero@provided
m.O(100 GeV)]. According to the universality assum
tion, the one-loop unification gaugino masses at the e
troweak scale are M15 5

3 (a1
2/aGUT

2 )M1/2 and M2

5(a2
2/aGUT

2 )M1/2, where aGUT5gGUT
2 /4p.0.041 is the

grand unified coupling constant. Taking into account th
vuvd!mM1/2, which we find in our numerical results below
we arrive with an excellent approximation at a simple fo
mula for the tree-level neutrino mass,

mn52
16paGUT

5

(
i 51

3

Li
2

M1/2
. ~88!

This impliesLi&1 MeV for M1/2&1 TeV. One can obtain a
smallLi even withv i;k i;v but that requires a cancellatio
of one part in 105. So the question arises, how can one na
rally obtain a smallLi , i.e., v i;k i&O(1 MeV)? We will
come to this point in Sec. VII.

H. Leptons-charginos

The charged leptons mix with the charginos. The L
grangian contains the (535 for three generations of leptons!
lepton-chargino mass matrix as@76#
2-14
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L52~2 iW̃ 2,eLa

2 !MCS 2 iW̃ 1

h̃2
1

eRk

1
D 1H.c., ~89!

where the mass eigenstatesx̃1,2
6 ,,5(e,m,t) are given upon

the diagonalization of the matrix,

MC5S M2 g2vu 0k

g2va ma lbakvb
D . ~90!

VI. BOUNDARY CONDITIONS AT M X

Due to the large number of parameters in the supers
metry breaking sector@cf. Eq. ~30!#, we shall focus on the
case of minimal supergravity models. These have a m
simplified structure at the high scale, which we assume h
to be the unification scale of the gauge couplings,MX
5MGUT5O(1016). At this scale, the soft SUSY breakin
scalar masses have a common value,M0 :

mQ̃~MX!5mũ~MX!5md̃~MX!

5mL̃~MX!5mẽ~MX![M01̂, ~91!

mH1
~MX!5mH2

~MX![M0 , ~92!

where1̂ is the 333 unit matrix in flavor space. Motivated b
the discussion of Sec. III, we shall assume that we can ro
away thek i terms before supersymmetry breaking and noD̃ i

or (mL̃ iH1

2 ) terms are generated through supersymme

breaking at the unification scaleMX ,

k i~MX!50, D̃ i~MX!5~mL̃ iH1

2
!~MX!50. ~93!

At the scaleMX , we shall assume one nonzeroR” p coupling
at a time, i.e., one coupling from

l i jk~MX!Þ0, l i jk8 ~MX!Þ0, l i jk9 ~MX!Þ0. ~94!

Due to the CKM quark mixing, thel8 RGEs are coupled
Thus in the case of a singlel8(MX)5” 0 we will have more
than onel8(MZ)5” 0 at the weak scale. MSUGRA assum
tions lead to the same prefactors,A0 , of the supersymmetry
breaking trilinear couplingshi jk[A0Yi jk ,

AU~MX!5AD~MX!5AE~MX!

5Al~MX!5Al8~MX!5Al9~MX![A01̂. ~95!

A common massM1/2 for the gauginos completes th
MSUGRA boundary conditions atMX ,

M1~MX!5M2~MX!5M3~MX![M1/2. ~96!

No assumption for quark or lepton Yukawa unification h
been made in our analysis. We thus have the six parame

A0 ,M0 ,M1/2,tanb,sgn~m!,$l,l8,l9%1 . ~97!
11500
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When determining the mass spectrum, in order to furt
simplify the number of input parameters we will restrict ou
selves to a particular supergravity scenario called ‘‘no-sca
supergravity@77#. This scenario predicts a definite relatio
betweenA0 andM0 , namely

A05M050 GeV. ~98!

The ‘‘no-scale’’ scenario, the simplest MSUGRA scenario,
experimentally excluded in the RPC case, but as we sh
below, it is allowed in theR” p case. Our results for the
bounds on theR” p couplings from neutrino masses should
unaffected by this assumption provided (M0 ,uA0u)/M1/2
,10. This is becauseM1/2 dominates the renormalization
group behavior.

In this paper, we only address gravity-mediated supers
metry breaking and do not consider other scenarios, suc
gauge-~GMSB! @78# or anomaly-mediated~AMSB! @79# su-
persymmetry breaking. Although the low-energy spectr
formulas we displayed in the previous section are u
changed, the results for the bounds on theR” p couplings or
the LSP content change dramatically from one model to
other, as we will see shortly. We hope that this paper ser
as a basis to study the phenomenology of other SUSY bre
ing models.

VII. RESULTS

In the following numerical analysis, we use a version
SOFTSUSY @80# which has been augmented wit
R” p couplings. The beta functions for theR” p MSSM cou-
plings and masses contain the full one-loopR” p and RPC
contributions. The beta functions for the RPC MSSM co
plings and masses also contain the two-loop pure RPC
rections. As discussed in Sec. V, small neutrino masses im
that the sneutrino VEV’s must be small. Although we deri
their values from the minimization of the scalar potential, w
neglect them in the calculation of sparticle masses. This
good approximation, valid toO(v i /MSUSY)!1, when con-
sidering only the spectrum of sparticles and not the sm
mixing induced byR” p couplings. We have checked that th
error induced in the sparticle masses is much smaller than
current theoretical uncertainty in the RPC part of the cal
lation @81–83#. TheR” p contribution to the SM Yukawa cou
plings and fermion masses, however, is taken into accoun
described in Sec. V. Radiative electroweak symmetry bre
ing and the determination of sneutrino VEV’s follows th
discussion in Sec. IV.SOFTSUSYadds one-loop RPC thresh
old corrections to the sparticle and Higgs masses, and ta
one-loop RPC threshold corrections into account when
culating the Yukawa and gauge couplings. For further det
on the RPC part of the calculation, consult Ref.@80#. Nu-
merical results from the augmented version of the progr
SOFTSUSY, i.e., beta functions, neutrino masses, electrow
breaking, the mass spectrum, bounds on the couplings,
have been carefully checked with an independentFORTRAN

code@84#.
2-15
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We use the input parameters@85# mt5174.3 GeV,
a

s
MS(MZ)50.1172, and mb(mb)MS54.25 GeV, corre-

sponding tomb
pole55.0 GeV at the three-loop level. Othe

SM MS masses input aremu(2 GeV)53.031023 GeV,
mc(mc)51.2 GeV, md(2 GeV)56.7531023, and
ms(2 GeV)50.1175 GeV. The pole lepton masses are ta
as me55.1131024 GeV, mm50.105 66 GeV, andmt
51.777 GeV. The Fermi constant GF51.166 37
31025 GeV22, the fine-structure constanta(0)21

5137.035 999 76, andMZ591.1876 GeV are used to dete
mine the electroweak gauge couplings.

A. Bounds on lepton-number violating couplings

1. Procedure

We first use the numerical analysis of the RGEs to
bounds upon the lepton-number violating couplin
(l i jk ,l i jk8 ) from the cosmological neutrino mass bound a
requiring the absence of negative mass-squared scalars
than the Higgs bosons and sneutrinos.~This does not refer to
the physical mass and thus does not constitute a tachy!
Neutrinos contribute to the hot dark matter and as such
free-stream out of smaller-scale fluctuations during ma
domination in the early universe. This changes the shap
the matter power spectrum and suppresses the amplitud
fluctuations. Combining the 2dFGRS data@28# together with
the WMAP measurement@27#, one can thus set a bound o
the neutrino mass at 95% C.L.,

(
i

mn i
,0.71 eV. ~99!

Scalar mass squared values can be driven negative du
the RG evolution between the GUT and the weak scale
happens to the Higgs boson in radiative electroweak sym
try breaking. But if any of the electrically charged or col
MSSM scalar fields develop negative mass squared val
QED or QCD would be broken, in conflict with observatio
We therefore reject such values ofl,l8.

Neutrino mass and charge- and color-breaking mini
bounds depend not only upon theR” p couplings, but also on
the RPC SUSY breaking parameters. For a definite quan
tive analysis, we therefore take an example set of SU
breaking parameters. We choose the SPS1a MSUGRA p
@86# which has the following parameter values:M0
5100 GeV, M1/25250 GeV, and trilinear couplingsA0
52100 GeV atMX . tanb(MZ)510 andm.0 are also im-
posed.

As stated in Sec. I, a single nonzeroR” p coupling atMX
will generate through the coupled RGEs nonzerok i(MZ),
D̃ i(MZ), and (mH1L̃ i

2 )(MZ). This is seen explicitly in the

RGEs in Eqs.~28!, ~29!, ~B3!, and~B16!, where the anoma
lous dimensiongLi

H1 couplesm and k i as well as the soft-

breaking sfermion masses, e.g.,mD̃
2 , with (mH1L̃ i

2 ). Since the

anomalous dimension
11500
n

t

her

n.
n
r
of
of

ing
as
e-

s,

a

a-
Y
int

gLi

H1}~YELE1YDLD!, ~100!

k i(MZ), D̃ i(MZ), and (mH1L̃ i

2 )(MZ) are also proportional to

(YELE1YDLD). Throughk i , D̃ i ,(mH1L̃ i

2 )5” 0 at the weak

scale, we obtain nonzero sneutrino VEV’s, as can be s
from Eq.~53!. This in turn gives us a nonzero neutrino ma
as seen in Eq.~88!. In order to estimate the resulting neutrin
mass, we naively integrate the RGEs assuming constan
rameters and insert our result into Eq.~88!. We obtain

mn.2
16paGUT

5M1/2
F vd

16p2G 2F ln
MGUT

MZ
G2F(

i 51

3

~3l i jq8 •~YD! jq

1l i jq•~YE! jq!G 2

f 2S m2

M0
2

;
A0

2

M0
2

;
B̃

M0
2

;tanb D , ~101!

wheref is a complicated dimensionless function of the SUS
parameters with typical valuesO(10). A similar result was
obtained some years ago by Nardi@23#. In Eq. ~101!, we
explicitly see the dependence of the induced neutrino m
on the product ofR” p and Higgs-Yukawa couplings from Eq
~100!. Given a neutrino mass bound, e.g., Eq.~99!, we can
thus derive bounds on theR” p couplings. In the case wher
the downlike quark or the charged lepton mass matrix
diagonal, only theR” p couplingsl ikk8 or l ikk induce neutrino

masses. Thus in the case of theLLĒ operators, since we do
not include lepton mixing, we only obtain bounds onl ikk ,
cf. Table IV. For the quarks we include the CKM mixing an
thus obtain bounds on alll8, cf. Table III.

Equation~101! works as an order of magnitude estima
Setting aGUT50.041, M1/25250 GeV, tanb510, Yb
50.18, andf 510 and using the WMAP bound Eq.~99!, we
obtain

(
i 51

3

@3l i jq8 •~YD! jq1l i jq•~YE! jq#,231025. ~102!

With Yb50.18, we thus obtain the single boundl3338 ,3
31025. Full numerical integration shows thatl3338 ,6
31026. Note that the only tanb dependence in Eq.~101! is
in the functionf.

Another interesting remark arises from Eq.~101!: the
higher the ultraviolet scale is~here denoted asMGUT), the
larger the resulting neutrino mass and the stronger the bo
on thel8,l. Therefore, for the MSUGRA scenario,MGUT
.231016 GeV, the bounds are stronger than for the GMS
model whereMGUT must be taken at the intermediate ene
gies 1011 GeV.
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TABLE III. Upper bounds upon trilinearl8 couplings for SPS1a in the quark mass eigenbasis at the w
scaleMZ and in the weak eigenbasis at the GUT scaleMGUT . The quark mixing assumption is shown in th
first row for each case. Input parameters are given in the text. A superscript oft,n denotes the fact that the
strongest bound comes from the absence of tachyons or the neutrino mass constraint, respectively.

No mixing Up mixing Down mixing
MGUT MZ MGUT MZ MGUT MZ

l1118 1.331023n 4.331023 1.331023n 4.231023 7.231024n 2.331023

l2118 1.331023n 4.331023 1.331023n 4.231023 7.231024n 2.331023

l3118 1.331023n 4.331023 1.331023n 4.131023 7.131024n 2.331023

l1218 0.13t 0.39 0.13t 0.38 3.631024n 1.131023

l2218 0.13t 0.39 0.13t 0.38 3.631024n 2.331023

l3218 0.13t 0.39 0.13t 0.38 3.531024n 1.131023

l1318 0.15t 0.40 0.15t 0.40 6.431024n 1.831023

l2318 0.15t 0.40 0.15t 0.40 6.431024n 1.831023

l3318 0.15t 0.40 0.15t 0.40 6.431024n 1.831023

l1128 0.13t 0.39 0.13t 0.38 3.631024n 1.131023

l2128 0.13t 0.39 0.13t 0.38 3.631024n 1.131023

l3128 0.13t 0.39 0.13t 0.38 3.531024n 1.131023

l1228 7.531025n 2.531025 7.231025n 2.431024 7.431025n 2.431024

l2228 7.531025n 2.531025 7.531025n 2.431024 7.431025n 2.431024

l3228 7.531025n 2.531025 7.531025n 2.431024 7.331025n 2.331024

l1328 0.15t 0.40 1.731022n 5.131022 5.431025n 1.431024

l2328 0.15t 0.40 1.731022n 5.131022 5.431025n 1.531024

l3328 0.15t 0.40 1.731022n 5.031022 5.331025n 1.531024

l1138 0.13t 0.39 3.331023n 1.031022 5.731024n 1.831023

l2138 0.13t 0.39 3.331023n 1.031022 5.731024n 1.931023

l3138 0.13t 0.39 3.231023n 1.031022 5.731024n 1.931023

l1238 0.13t 0.39 4.631024n 1.431023 4.831025n 1.631024

l2238 0.13t 0.39 4.631024n 1.431023 4.831025n 1.631023

l3238 0.13t 0.39 4.531024n 1.431023 4.831025n 1.631024

l1338 2.231026n 6.331026 2.631025 3.931025 2.231026n 6.331026

l2338 2.231026n 6.331026 2.231026n 1.431023 2.231026n 6.331026

l3338 2.131026n 6.231026 2.131026n 6.231026 2.131026n 6.231026
e

rk
a

n-
rate,

from

Eq.

ical
We also have to remark here on another independ
source for neutrino masses in theR” p MSUGRA scenario
coming from finite threshold effects involving squark-qua
or slepton-lepton loops. The resulting neutrino masses
given by @66,87#

~mn
loop! i j 5

1

32p2
(
k,l

l ikll j lkm
k

,sin 2f
k

,ln

m,̃k1

2

m,̃k2

2

1
3

32p2
(
k,l

l ikl8 l j lk8 mk
dsin 2fk

dln

md̃l 1

2

md̃l 2

2
,

~103!

with mk
, (mk

d) the lepton~down-quark! masses,f, (fd) the
slepton~squark! mixing angles, andml̃ i

(md̃l i
) are the slep-

ton ~squark! mass eigenstates@88#. More details are found in
11500
nt

re

Refs. @66,87#. Since the mixing in the first and second ge
eration is negligible and also sleptons are almost degene
the finite neutrino effects of Eq.~103! are not significant for
the heaviest neutrino as compared to the ones induced
Eq. ~101!. For the third generation we find

mn
loop

mn

5

ln
mb̃1

mb̃2

aGUT

M1/2

3mb

p
S ln

MGUT

MZ
D 2

f 2

.1022. ~104!

The above estimate shows that bounds derived from
~101! are stronger than those derived from Eq.~103! @89#.
Thus the new bounds on theR” p couplings presented in
Table II are determined using the constraint Eq.~99!, the full
solution to the one-loop RGEs, and an accurate numer
diagonalization of the neutralino/neutrino mass matrix.
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2. Quark bases

Before discussing our results, we must insert a discus
on bases. In our initial parameter set at the GUT scale@cf.
Eq. ~97!#, the R” p couplings are given in the weak-curre
eigenstate basis. Similarly, the Higgs-Yukawa coupling m
trices YE ,YD ,YU and the corresponding mass matrices
also given in this basis, i.e., in general they are not diago
The matrices are diagonalized by rotating the left- and rig
handed charged lepton and quark fields from the weak b
~w! to the mass basis~m!,

~eL,R
m ! i5~EL,R! i j ~eL,R

w ! j , ~105!

~uL,R
m ! i5~UL,R! i j ~uL,R

w ! j , ~106!

~dL,R
m ! i5~DL,R! i j ~dL,R

w ! j . ~107!

In general, the rotation of the left-handed fields~e.g.,UL) is
different from the right-handed fields (UR). In the weak ba-
sis, due to the nondiagonal elements inYE ,YD ,YU , the
RGEs for differentR” p couplings are coupled. Thus give
one coupling atMX in the weak basis, we will in genera
generate an entire set atMZ ~in the weak basis!. In order to
perform this computation, we must know the explicit for
for the Higgs-Yukawa matrices. However, experimentally
we know is the CKM matrix at the weak scale,

VCKM 5UL
†DL , ~108!

as well as the diagonal matrices in the mass eigenstate b

@md#diag~MZ!5diag~md ,ms ,mb!~MZ!, ~109!

@mu#diag~MZ!5diag~mu ,mc ,mt!~MZ!. ~110!

For VCKM , we use the central values of the mixing angles
the ‘‘standard’’ parametrization detailed in Ref.@85#,

s1250.2195, s2350.039, s1350.0031. ~111!

We neglect theCP-violating phased1350.
In order to perform the computation, we shall make t

following simplifying assumptions.
~i! Due to the uncertainty concerning the neutrino mas

and mixings, we shall assume here thatYE is diagonal in the
weak current basis and thus

~EL,R! i j 5d i j . ~112!

We shall return to the discussion of massive neutrinos
their mixings in our framework in a future publication.

~ii ! We shall assume thatYD,U are real and symmetric
ThusUL5UR andDL5DR .

~iii ! When determining bounds below, we consider th
extreme cases:~a! no-mixing, ~b! the mixing is only in the
down quark sector,~c! the mixing is only in the up-quark
sector. This corresponds to
11500
n

-
e
l.

t-
is

l

sis,

e

s

d

e

~a! DL,R51, UL,R51,

~b! DL,R5VCKM , UL,R51,

~c! UL,R5VCKM , DL,R51. ~113!

In these three scenarios, the mass matrices at the weak
and in the weak current basis are then given by

~a! md~MZ!5@md#diag~MZ!,

mu~MZ!5@mu#diag~MZ!,

~b! md~MZ!5VCKM* •@md#diag~MZ!•VCKM
T ,

mu~MZ!5@mu#diag~MZ!,

~c! md~MZ!5@md#diag~MZ!,

mu~MZ!5VCKM* •@mu#diag~MZ!•VCKM
T .

~114!

Thus in each scenario, the matricesmd(MZ),mu(MZ) are
determined uniquely in terms of their eigenvalues and
CKM matrix.

The Higgs-Yukawa matricesYD,U are proportional to the
mass matrices. Therefore, in each scenario of Eqs.~113!,
~114! the RGEs are fully determined. Given a set
R” p couplings atMX ~of which we will only choose one here
to be nonzero!, we can then compute theR” p couplings~in-
cluding k i) at the weak scale in the weak current bas
Given the full set of parameters atMZ , we can diagonalize
the neutrino/neutralino mass matrix in Eq.~81! and compute
the neutrino mass. For a check this neutrino mass shoul
identical with the one derived in Eq.~86!. We can then use
the experimental bound on the neutrino mass, Eq.~99!, to
determine a bound on theR” p coupling, in the weak current
basis.

For comparison with experiment we must rotate to t
quark mass eigenstate bases in scenarios~b! and ~c!, Eq.
~113!. To do this, we follow the procedure of Ref.@90#. For
scenario~b!, with all the mixing in the down-quark secto
we obtain theR” p interactions for the superfields in the qua
mass eigenbasis,

W R” p

(a).l i jk8 ~VCKM
† !mk@Ni~VCKM! j l Dl2EiU j #D̄m

1
1

2
l i jk9 ~VCKM

† !m j~VCKM
† !nkŪ i D̄mD̄n .

~115!

Referring to Eq.~115!, we define the rotation of the cou
plings to the quark mass basis~denoted with a tilde!,

l̃ i jk8 5l i jm8 ~VCKM* !mk , ~116!

l̃ i jk9 5l imn9 ~VCKM* !m j~VCKM* !nk . ~117!

For scenario~c!, with all mixing in the up sector, and th
superfields in the quark mass eigenstate basis, the supe
tential terms are
2-18
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W R” p

(b).l i jk8 @NiD j2EiUl~VCKM
† ! j l #D̄k

1
1

2
l i jk9 ~VCKM! l i Ū l D̄ j D̄k . ~118!

This implies the rotation ofR” p couplings,

l̃ i jk8 5l i lk8 ~VCKM* ! j l , ~119!

l̃ i jk9 5l l jk9 ~VCKM! i l , ~120!

where in the first term we have taken the rotation of
EUD term.

Another set of bounds applied on theR” p couplingsl i jk8
arises from the requirement of no sneutrino tachyons, i.e.
require the physical massmñ

2
>0. The resulting bound ha

been observed first by de Carlos and White@9# and can be
estimated as

(
jk

l i jk82 ~MX!,
m0

210.5M1/2
2 1 1

2 MZ
2cos 2b

13m0
2149M1/2

2 2 3
2 A0M1/2212A0

2
.

~121!

For the SPS1a benchmark scenario this bound setsall
l i jk8 (MX) to be less than 0.13, in good agreement with
exact numerical solutions of the RGEs in Table II below.

3. Discussion of the bounds

Table III displays the strongest upper bounds upon tri
earl8 couplings coming either from the neutrino mass co
straint or the absence of tachyons at MSUGRA point SP
as described in Sec. VII A 1 above. The different boun
coming from altering the quark mixing assumption are d
played. In each case, the upper bound atMGUT is shown in
the weak eigenbasis, and the corresponding bound is
tained when the couplings and masses of the MSSM are
down to MZ and rotated to the quark mass eigenbasis a
Eqs.~116!, ~117!, ~119!, and~120!. Neglecting quark mixing,
we see that some of the bounds come from the absenc

TABLE IV. Upper bounds upon trilinearl couplings for SPS1a
at the weak scaleMZ and at the GUT scaleMGUT . Input parameters
are given in the text. A superscript oft,n denotes the fact that th
strongest bound comes from the absence of tachyons or neu
masses, respectively.

MGUT MZ

l121 0.080n 0.12
l131 0.080n 0.12
l231 0.55t 0.61
l122 4.431024n 6.731024

l132 0.55t 0.61
l232 4.431024n 6.631024

l123 0.50t 0.58
l133 2.631025n 3.931025

l233 2.631025n 3.931025
11500
e

e

e

-
-
a

s
-

b-
un
in

of

tachyons, and allow large couplings of around 0.4 atMZ .
However, forl i j j8 , the diagonal components ofYD produce a
nonzerok through the RGEs, which in turn generates a ne
trino mass. These bounds are much stronger and are of o
O(102321025). It should be noted that the neutrino boun
are sensitive to the down-quark mass inputs, because
RGEs generatek proportional toYD . When the CKM mix-
ing is assumed to be in the up-quark sector,l i238 ,l i138 , and
l i328 acquire stronger bounds coming from neutrino mas
because the larger up-quark Yukawa couplings inYU also
begin to mix theYD through the RGEs. When all dow
quarks are mixed atMZ , any l i jk8 producesk terms and
therefore a nonzero neutrino mass. In this case, all of
bounds are strong:O(102321025).

Table IV shows the equivalent bounds for thel param-
eters. These bounds arenot sensitive to assumptions abo
quark mixing because the RGE generation ofk proceeds
through the charged-lepton Yukawa couplings, which
have assumed to be diagonal in the weak basis atMZ .
Changing this assumption should drastically change the
sented results. We see that three of the ninel couplings are
not very strongly constrained; they are allowed to beO(1).
If the YE were strongly mixed, this would no longer b
the case and the neutrino mass constraint would prov
stronger constraints, which we expect to be at the leve
O(1021) –O(1025), similar to the six couplings that ar
constrained by neutrino masses in Table IV.

We may ask how much the bounds in Tables III and
depend upon the supersymmetry breaking parameters. In
der to investigate this issue, we scan over the paramete
the no-scale MSUGRA@77#, a simple hypersurface o
MSUGRA parameter space wherem05A050. The remain-
ing parameters (tanb andM1/2) are varied in Fig. 1 and the
maximum possible value of log@l3338 (MGUT)# is displayed as
the background color, as referenced by the bar on the ri
hand side. The white region marked ‘‘no model’’ has tach

ino

FIG. 1. Upper bound uponl3338 (MGUT) as a function of the
no-scale MSUGRA parameter point, assuming all quark mixing
sides in the down sector at the weak scale. The background c
displays the bound as measured by the bar on the right-hand
Contours of isobound are also shown. In the top left-hand wh
region there is no tachyon-free model for any value of the coupli
2-19
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ons for any value ofl3338 and so is not valid. White contour
of l3338 (max)51025, 1025.3, 1025.5, and 1025.8 are shown
from bottom to top, respectively. The strongest bound com
from the neutrino mass constraint, and we see a variatio
two orders of magnitude on the bound across the param
space, the strongest bounds coming from the lowM1/2 re-
gion. The reader should note theM1/2 dependence of the
neutrino mass in the simple formula Eq.~88!. This strong
variation of the neutrino bound is also apparent for the c
of other l8 couplings. Figure 2 shows the variation of th
upper bound onl231(MGUT) with the no-scale MSUGRA
parameter point. The strongest bound comes from the
tachyon constraint, and we see only a small variation of
bound across the parameter space, the strongest bounds
ing from the high tanb region, at lowM1/2. @Recall theM1/2
sensitivity in Eq.~121!.# The behavior of small variation in
the tachyon bound with supersymmetry breaking parame
is replicated for other lepton-number violating coupling
The weak bound of'0.5 over much of the parameter spa
is dependent upon the no-charged lepton mixing at theMZ
assumption.

It is instructive to compare the bounds derived here i
representative scenario of MSUGRA in Tables III and
with the 2s bounds atMZ collected in Table 1 in Ref.@18#
for a rather genericR-parity violating scenario. For compar
son we choose the no-mixing scenario, i.e., case~a! in Eqs.
~113!, ~114! and squark and slepton masses of order of 1
GeV in the latter. For thel i jk8 LiQjD̄k couplings, we obtain
here a one order of magnitude improvement forl2118 , two
orders of magnitude forl3118 ,l1228 , three orders of magni
tude for l1338 , four orders of magnitude forl2228 ,l3228 , five
and up to six orders of magnitude forl2338 ,l3338 . The
sneutrino tachyon constraint of Eq.~121! sets slightly stron-
ger bounds on the couplingsl3238 ,l223,l2328 ,l1328 ,l3318 . In
the case of theR” p couplingsl i jkLiL jEk we obtain two or-
der of magnitude stronger bounds than in Ref.@18# for the

FIG. 2. Upper bound uponl231(MGUT) as a function of the
no-scale MSUGRA parameter point. The background color disp
the bound as measured by the bar on the right-hand side. Con
of isobound are also shown. In the top left-hand white region th
is no tachyon-free model for any value of the coupling.
11500
s
of
ter

e

o-
e
om-

rs
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a

0

couplings:l122,l322,l133,l233. Sneutrino tachyons do no
set better limits in this case. Comparison of the quark mix
cases~b! or ~c! of Eqs.~113!, ~114! derived in Table III with
Table IV of Ref.@18# show similar orders of magnitude, bu
stronger bounds for some of the couplings.

B. LSP content in the no-scale model

As outlined in the Introduction, inR” p MSUGRA the
R” p couplings can affect the weak-scale particle mass sp
trum via the RGEs. They can also affect the interpretation
the resulting spectrum, since withR” p the LSP is no longer
stable, and thus no longer subject to cosmological constra
on stable relics. In theR” p MSUGRA the LSP need not be
electrically and color-neutral. Before discussing theR” p case,
we briefly review the RPC case.

1. The RPC case

To begin with, we perform the scan in the free paramet
M1/2 and tanb in R-parity conserved no-scale MSUGRA
The LSP mass and contours of equal lightest-Higgs mass
displayed in Fig. 3. The background color displays the L
mass according to the scale on the right-hand side of the p
The region disallowed by tachyons is shown in black. In t
bottom left-hand side of the plot is a white line which show
the boundary of the LSP identity. Below the line, the LSP
the lightest neutralino, whereas above it the LSP is a rig
handed stau. A charged LSP is ruled out in theR-parity con-
served scenario from cosmological constraints, and so
entire region above the white line is ruled out. This bou
comes from limits on abundances of anomalously heavy
topes@31#. LEP2 @91# places a lower bound on the Standa
Model Higgs mass ofmh.114.4 GeV. This can also be ap
plied to the MSSM Higgs boson when sin(a2b)'1, which
is the case in all of our results. The theoretical uncertai
upon the lightest Higgs mass is estimated to be63 GeV
@92#, so we place a cautious lower bound onSOFTSUSY’s

s
urs
e

FIG. 3. No-scale supergravity in theR-parity conserved limit.
Labeled constraints coming from tachyons are shown. The ba
ground color displays the LSP mass, which can be read off from
bar on the right-hand side. Dashed contours are contours of ligh

Higgs mass. The white line delineates the labeled regions oft̃ LSP
andx1

0 LSP.
2-20
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prediction of 111 GeV. Even so, we see from Fig. 3 that th
is no parameter space left with both a heavy enough Hi
and a neutral LSP. Thus no-scale supergravity is ruled ou
the R-parity conserved MSSM. However, even a very ti
R” p coupling will make the LSP unstable on cosmologic
time scales and the neutral LSP constraint is then no lon
applicable. For small couplings,O(0.1), the spectrum can
be approximated by theR-parity conserved case, and so F
3 can still be used. We see that the entire region above
Higgs mass contour of 111 GeV would be allowed, for s
LSP masses above 96 GeV@93#.

2. The R” p case

We now map out some parts of no-scale MSUGRA
M1/25500 GeV. Because we wish to show the effects
R-parity violation on the spectrum, we pick cases where
upper bound on theR” p trilinear coupling is weak. This ob
viously occurs when the tachyon bound is the stronger of
two we have shown in Tables III and IV. We display on
l-type coupling~Fig. 4!, one of typel8 ~Fig. 5!, and one of
type l9 ~Fig. 6!.

Figure 4 shows the variation of the nature of the LSP w
tanb andl231(MGUT). The case~b! of Eqs. ~113!, ~114! is
considered. ForM1/25500 GeV, as assumed here, we s
from the equal Higgs mass contours that the lower bound
111 GeV on the lightest-Higgs mass does not pose a v
severe constraint for tanb.3. The LSP mass varies up t
190 GeV in the plane, but this value is a function ofM1/2.
The diagonal white line separates regions of selectron
~above the white line! and stau LSP~below the white line!.
Note that there is an independent (2s) bound for the cou-
pling l231 from the known ratiosRt5G(t→enn̄)/G(t
→mnn̄) corresponding to @18,94#: l231(MGUT),0.046
3(mẽR

/100 GeV). Comparing this bound with the nature

FIG. 4. LSP content of no-scale MSUGRA forM1/2

5500 GeV,l231 nonzero atMGUT , and weak-scale mixing entirely
in the down quarks. The mass of the LSP is displayed in the ba
ground and corresponds to the bar on the right-hand side. Reg
ruled out by the presence of tachyons are in black. The white
delineates labeled regions of different LSP content (e for selectrons
andt for staus!. The dashed lines display contours of equal light
Higgs mass.
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the LSP in Fig. 4, we observe that the scalar tau LSP
favored for tanb*4 unless the above laboratory bound
evaded by takingM1/2@500 GeV.

In Fig. 5, we show the variation of the nonzero neutri
mass in the tanb2l2318 (MGUT) plane. Neutrino masses pro
vide the upper bound uponl2318 for mixing in the up-quark
sector@case~c! in Eqs. ~113!, ~114!#, as assumed here. Fo
larger values ofl2318 '0.15, neutrino masses ofO(0.1 eV)
are possible. In this case, above the white line, the LSP
tau sneutrino, and below it the LSP is the stau. The labo
tory bound for the couplingl2318 (MGUT) reads @18,94#:

k-
ns
e

t

FIG. 5. LSP content of no-scale MSUGRA forM1/2

5500 GeV,l2318 nonzero atMGUT , and weak-scale mixing entirely
in the up quarks. The logarithm of the mass of the heaviest neut
is displayed in the background and corresponds to the bar on
right-hand side. Regions ruled out by the presence of tachyons
in black. The white line delineates labeled regions of different L
content. The dashed lines display contours of equal lightest H
mass.

FIG. 6. LSP content of no-scale MSUGRA forM1/2

5500 GeV,l3239 nonzero atMGUT , and weak-scale quark mixing
in the down sector. The mass of the LSP is displayed in the ba
ground and corresponds to the bar on the right-hand side. Reg
ruled out by the presence of tachyons are in black. There is a
LSP throughout all of the parameter space. The dashed lines dis
contours of equal lightest Higgs mass.
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l2318 (MGUT),0.0573(mb̃L
/100 GeV), and since we find

that for the inputs of Fig. 5 the bottom squark mass is ab
1.2 TeV, the laboratory bound is evaded: the stronger bo
on l2318 comes from the sneutrino tachyon, as is shown in
upper half of Fig. 5.

Finally, we investigate the case of baryon number vio
tion. The case~b! of Eqs.~113!, ~114! is considered. Figure 6
shows how the no-scale MSUGRA LSP mass varies w
tanb and l3239 (MGUT). There is little variation with the
R” p coupling, contrary to the lightest Higgs mass, which
displayed in the form of contours. The previous bound
l3239 ~see Table IV of bound@18#! apart from the theoretica
perturbativity bound comes from the leptonicZ-width ratio
and is l3239 (MGUT),0.015 for quark mixing solely in the
down-quark sector, and with a little variation fromM1/2. We
observe from Fig. 6 that the stau is again the LSP.

We have exhibited, in Figs. 3–6, viable regions of MSS
parameter space where the LSP is the selectron, the sta
the stau sneutrino. Different LSP content drastically alt
the collider signatures of the models. The analysis ab
showed a preference to the stau being the LSP. We dis
this in some more detail in Sec. VIII, below.

C. Sneutrino-antisneutrino mixing with stau LSP

Models which violate lepton number by two units (DL
52) and generate neutrino masses also result in a mass
ting of scalar neutrinos and antineutrinos of the same fla
usually referred to in the literature as sneutrino-antisneut
mixing @95–97#. If the sneutrino mass differenceDmñ

5mñ1
2mñ2

is large and the sneutrino branching ratio into
charged lepton is experimentally significant, then a like si
dilepton signal ine1e2→ ñ2ñ1 with ñ→ l 21X could be
observed@95#. Like the B-meson mass splitting, the obser
ability of the sneutrino mixing effects depends on the rat

xñ[
Dmñ

Gñ

, ~122!

whereGñ is the total sneutrino decay rate. As we have
ready seen from Figs. 4–6, in the no-scale scenario the s
t̃, is the LSP when theR” p couplings are small. In this~ap-
proximately RPC! case, the specific flavor,5(e,m)
sneutrinoñ, decays, via charginos and neutralinos, intoñ,

→,2t̃1nt andñ,→n,t̃6t7. In this case, the probability o
tagging a like-sign dilepton in the processñ l→ l 2t̃1nt is
P(,6,6)5P(,1,1)1P(,2,2) with @95#

P~,6,6!5
xñ

2

2~11xñ
2
!
@B~ ñ,→,2t̃1nt!#

2. ~123!

We investigate below the magnitude of this probability in t
no-scale model withM1/25500 GeV and tanb520 and with
one dominantR” p coupling l1228 (MGUT)57.531025. Fur-
thermore, we consider no-quark mixing in determining t
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relevant bounds from the neutrino masses. In this model,
stau is the LSP. We first calculate the sneutrino mass squ
difference

Dmñ5
Dmñ

2

2mñ

5
mñ1

2
2mñ2

2

2mñ

, ~124!

wheremñ is the average mass ofmñ6
. The sneutrino mass

difference has been calculated in Ref.@98# in a general basis-
independent manner. With our choicel1228 we generate at the
electroweak scale the nonzeroR” p-parameter set:

v1 ,k1 ,D̃1,(mH1L̃1

2 ). The otherR” p parameters remain zer

@99#. This simplifies our calculation for the sneutrino ma
splitting, since we can use the case of one sneutrino gen
tion @the other two decouple from the mass matrices E
~59!, ~61!#. The sneutrino mass splitting reads@98#

Dmñ52
2B̃2MZ

2mñ sin2b sin2d

~MH0
2

2mñ
2
!~Mh0

2
2mñ

2
!~MA0

2
2mñ

2
!
, ~125!

with

cosd56
uvdB̃1v1D̃1u

~vd
21v1

2!1/2~B̃21D̃1
2!1/2

. ~126!

Notice that Eq.~125! does not depend on the superpotent
parameters, in contrast to the neutrino mass in Eq.~86!. It is
helpful to see the numerical values@100# for the parameters
at the electroweak scale starting from the no-scale mo
defined by M1/25500 GeV, tanb520, and l1228 (MGUT)

57.531025. We obtain B̃(MZ)533 238 GeV2, mñ

5357 GeV, Mh0591 GeV, MH05816 GeV, MA0

5816 GeV, vd(MZ)58.7 GeV, v1(MZ)520.0012 GeV,
D̃1520.74 GeV2, and (mH1L̃1

2 )52.5 GeV2. Applying these

values to Eqs.~125!, ~126!, we obtain sin2d51.331028 and
Dmñ52.5 eV. The sneutrino mass splitting is of the sam
order as the neutrino mass obtained from Eq.~86!, since for
m(MZ)5817 GeV andk1(MZ)53.531024 GeV we have
mn51.2 eV @101#.

In order to calculate the probabilityP(,6,6) we still
need the total sneutrino decay rate and the branching r
B( ñ,→,2t̃1nt). In the above scenario, the right-handed s
lectron of the third generation~we call it stau here, although
it is in fact an admixture of the three charged sleptons w
the charged Higgs boson states! is the LSP with a massmt̃
5162 GeV. The rates for the chargino- and neutralin
mediated sneutrino decays~which we assume to be the dom
nant ones! are @95#

G~ ñ,→,2t̃1nt!5
g2

4mñ
3
mt

2 tan2b f x1~mt̃
2/mñ

2
!

1536p3~MW
2 sin 2b2M2m!2

,
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G~ñ,→n,t̃6t7!5
g4mñ

5
f x0~mt̃

2/mñ
2
!

3072p3M1
4

, ~127!

with

f x1~x!5~12x!~1110x1x2!16x~11x!ln x,

f x0~x!5128x18x32x4212x2 ln x. ~128!

In the no-scale model under consideration, we obt
M1(MZ)5206 GeV andM2(MZ)5411 GeV with the gauge
couplingsg(MZ)50.3574 andg2(MZ)50.6525. Thus from
Eq. ~127! we obtain G( ñ,→,2t̃1nt)5210 eV andG( ñ,

→n,t̃6t7)51.23105 eV. So xn5231025 and B( ñ,

→,2t̃1nt)51.731023. We conclude that in this numerica
example the probability for like-sign dileptons, Eq.~123!, is
P(,6,6)56310216, far too small to be observable. O
course this result depends on the parameter space an
probability P(,6,6) is bigger for smaller values ofM1/2
and larger tanb values@see Eq.~127!#. However, if we take
into account the current experimental data,M1/2*200, then
P(,6,6)&1029. We obtain similar results for the othe
R” p couplings.

The above benchmark computation can be helpful to
reader in order understand the typical magnitude of the
rameters we are dealing with in this paper.

VIII. STAU-LSP PHENOMENOLOGY

As discussed in Sec. I, in the case ofR” p , the LSP need
not be the lightest neutralino,x̃1

0. In the previous section we
have investigated the nature of the LSP in the MSUG
scenario and have found regions in parameter space
different LSP’s. In Fig. 4, we have a selectron or stau LSP
Fig. 5 we have found a tau sneutrino or a stau, and in Fi
we have found a stau LSP. The bounds in Table III imply t
if there is any appreciable CKM mixing in the down-qua
sector at the weak scale,l i jk8 must be very small. We also se
some strict bounds upon thel i jk in Table IV. If the
R” p couplings are very small, the spectrum has negligi
perturbation from theR-parity conserved case, the LSP co
tent of which is displayed in Fig. 3. The allowed parame
space withmh0.111 GeV in Fig. 3 then leads to a stau LS
Thus we see a preference for a stau LSP in many no-s
R-parity violating scenarios.

In the RPC MSSM, the collider phenomenology reli
crucially on thex̃1

0 LSP, with all produced sparticles deca

ing in the detector tox̃1
0 plus otherRp-even particles. This

results in missing transverse energy as a typical signature
all production processes. In theR” p MSSM, the RGEs and
thus the spectrum are altered. This changes the decay ch
Since typically all decay chains end in the LSP, the nature
the LSP is essential in determining the supersymmetric
natures. A detailed investigation is beyond the scope of
paper. We shall focus here on a classification of the sig
tures for the main production processes in the case of a
LSP.
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A. Stau decays

The following discussion of the stau LSP is somewh
analogous to the discussion in Ref.@34# for the x̃1

0 LSP. In
determining the final-state signature, it is important to kn
how the stau LSP decays. We shall assume that there
hierarchy among theR” p-coupling constants with one dom
nant coupling, similar to the SM Yukawa couplings in th
mass eigenstate basis. We furthermore assume the m
due tok i is small, as seen in the previous sections of t
paper. Then there are two important distinct cases.

~i! The stau couples to the dominant operator. The domi-
nant operator is in the set$Le,mLtĒe,m,t ,LeLmĒt ,LtQiD̄ j%.
In this case, the stau simply decays via the two-body mo
For the dominant operatorLtQ1D̄1 , for example, we then
obtain @102#

G~ t̃2→ū1d!5
Ncl31182 M t̃

16p
, ~129!

whereNc53 is the number of colors. The complete list
R” p , two-body decays is given in Ref.@102#. For a recent
treatment of two-body stau decays, also see@37#. For the
above two-body decay mode, the decay length is given b

ctt̃53.3310211 mS 1023

l3118
D 2S 100 GeV

M t̃
D ~130!

which in an experiment must be multiplied by the releva
Lorentz boost factorgL of the stau. Only for very smal
coupling (l8&1027) is the decay length relevant.

~ii ! The stau does not couple to the dominant opera
The dominant operator is in the se

$LeLmĒe,m ,Le,mQiD̄ j ,Ū i D̄ j D̄k%. In this case thet̃ decays
via a four-body mode. For the operatorLmQ1D̄1 there are
four decay modes via the neutralino,

t̃2→t21~ x̃1
0!* →t215

m21u1d̄

m11ū1d

nm1d1d̄

n̄m1d1d̄,

~131!

and three decay modes via the chargino,

t̃2→nt1~ x̃1
2!* →nt1H m21d1d̄

m21u1ū

nm1d1ū.

~132!

As an example, we compute here the decayt̃→t2m2ud̄.
The details of the computation, in particular the four-bo
phase space, are given in Appendix D. The result is
2-23
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G~t̃2→t2m1ūd!5
KNcl82uatu2

25p5Mx
2m̃4

M t̃
7
~ ubmu21ubuu21uadu2

2bmbu* 1bmad* 1buad* !

'
KNcl82g4

23p5Mx
2m̃4

M t̃
7 , ~133!

where K51/(720325)51/23 040. at,d ,bm,u are neutralino
coupling constants given in Appendix D.Mx is the neu-
tralino mass andm̃ is the universal scalar fermion mass. W
have assumed massless final-state particles and neglecte
momenta compared toMx ,m̃. In the last step, we have se
the couplingsat,d5bm,u5g, the weak-coupling constant. I
the four-body decay is the dominant decay mode, the de
length can be estimated as

ctt̃56.21026 mS 1023

l8
D 2S Mx

100 GeVD
2

3S m̃

100 GeV
D 4S 100 GeV

M t̃
D 7

. ~134!

For reasonable supersymmetric masses and couplings,
could lead to detached vertices in the detector. This is a v
promising signature for the stau LSP.

If the two-body decay is allowed, i.e., the relevant co
pling is not suppressed, it usually dominates over the fo
body decay. In order to estimate the required hierarchy
couplings for the four-body decay to be relevant, we consi
the ratio

G4~ t̃2→t2m1ūd!

G2~ t̃→ūd!
5OS l8211

2

l83i j
2

2Kg4M t̃
6

p4Mx
2m̃4D .1. ~135!

Assuming the sparticle masses are roughly equal, this co
sponds tol8211/l3i j8 *O(103) for the four-body decay mode
to dominate over the two-body one. If, for example,Mx

5m̃52M t̃
2 , we obtainl8211/l3i j8 *O(104), which is not an

unreasonable hierarchy between generations.

B. Collider signatures

At a collider, the main supersymmetric pair producti
processes are

g̃g̃, q̃q̃, ,̃1,̃2, x̃ i
0x̃ j

0 , x̃ i
1x̃ j

2 , x̃ i
0x̃ j

6 . ~136!

Here we investigate the possible signatures for these
cesses in the case of a stau LSP. In order to determine
final state within the detector, we must know the decay p
terns of the particles. This depends strongly on the supers
metric spectrum and thus upon which point in SUSY bre
ing the parameter space is being studied. For this first st
we shall assume the mass ordering
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mg̃.mq̃.m,̃.mx̃
1
6.mx̃

1
0.mt̃ , ~137!

which we typically obtain~with or without R” p) within
MSUGRA. If there are no near-degenerate particles, a p
duced supersymmetric particle will dominantly cascade
two-particle decays down the mass chain~137!. We display
this decay chain in Fig. 7. We have added at the end b
two- ~first value! and four-particle~last two values! stau de-
cays. Final state quarks are denoted by ‘‘j ’’ to indicate a jet.
We can use this decay chain to determine a qualitative
ture of the possible final-state signatures. Note that due to
strict bounds on theR” p couplings which we have deter
mined, we only expect these to be relevant in the stau-L
decay. Furthermore, in determining signatures we shall
sume that either the two-body or the four-body stau de
dominates. We do not consider the case of comparable pa
decay widths.

At the Tevatron and CERN Large Hadron Collider~LHC!,
the largest production cross sections are for gluinos

squarks. If we consider, for example,q̃Rq̄̃R production, then
the dominant decay mode for the squark is

q̃R→ j x1
0→ j t6t̃7 ~138!

and the final-state signature will be

q̃Rq̃R→5
6 j 1t6t6 for t̃→ j j

6 j 1,,12~t6t6! for t̃→t, j j

6 j 1nn12~t6t6! for t̃→tn j j

6 j 1n,12~t6t6! for t̃→t~n,, ! j j .
~139!

FIG. 7. Possible dominant links in a sparticle decay chain wit
stau LSP andR-parity violation. The two-body decay mode of th
LSP is shown first, followed by two four-body modes.
2-24
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Here, any charge combination for the leptons, is allowed,
since they result from the decay of a virtual~Majorana! neu-
tralino ~cf. Appendix D!. This can give us a like-sign dilep
ton signature. Otherwise, we see that we have a large num
of jets in the final state independent of the decay mode of
stau.~This would be reduced for dominant operatorsLLĒ.)
This makes it more difficult to observe isolated highpT
charged leptons. We can obtain missing transverse mom
tum from the final-state neutrinos, but it will be extreme
diluted due to the many-body decays. The most promis
signatures are like-sign dileptons together with the direct
tection oft ’s @103#, which is of course difficult.

For q̃Lq̃L production, we expect a larger likelihood for th
cascade decay through the heavier neutralinos and
through the charginos. This can lead to a trilepton signa
@104# which can be extended by theadditional t ’s. This re-
quires a detailed analysis, but we expect this to be m
promising than theq̃Rq̃R outlined above.

The gluino decays via the squarks adding an extra je
the final state. In this case, it might be more promising
consider nondominant decay modes, including a possible
rect R” p decay of the neutralino. An estimate of the relati
rates for a pureW-ino neutralino is

G~x̃1
0→m12j!

G~x̃1
0→tt̃ !

'
3l82

32p3
S M x̃

1
0

m̃
D 4

&331027 ~140!

for l8,1022, and where we have neglected the stau ma
This is hopeless, unless the neutralino and the stau are n
degenerate.

At the Tevatron and LHC, the pair production of slepto
is about two to three orders of magnitude lower than
production of squarks or gluinos, for equal mass. Howev
we expect the mass to be lower@cf. Eq. ~137!#, and also the
signal cleaner. At a future linear collidere1e2 facility this is
typically an ideal mode for searches or the measuremen
MSSM parameters. As we can see from the decay chai
Fig. 7, the slepton dominantly decays as

,̃1→x1
0,1→t6t̃7,1. ~141!

We then obtain the final-state signatures

,̃2,̃1→5
4 j 1,,1t6t6 for t̃→ j j

4 j 12~,, !12~t6t6! for t̃→t, j j

4 j 1,,1nn12~t6t6! for t̃→tn j j

4 j 1,,1n,12~t6t6! for t̃→t~n,, ! j j .
~142!

In the second case, the sign of the charge of the two lep
from the stau decays is arbitrary due to the intermediate~Ma-
jorana! neutralino. Thus we can have like-sign trilepton
which is a very promising signature.

Similarly, using the results from Fig. 7, we expect t
as-dominant signatures for neutralino pair production
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x̃1
0x̃1

0→5
4 j 1t6t6 for t̃→ j j

4 j 1,,12~t6t6! for t̃→t, j j

4 j 1nn12~t6t6! for t̃→tn j j

4 j 1n,12~t6t6! for t̃→t~n,, ! j j ,
~143!

depending on the decay of the stau-LSP decay, which in
depends on the dominantR” p coupling. For chargino pair
production we have

x̃1
2x̃1

1→5
4 j 1ntnt for t̃→ j j

4 j 1,,1ntnt1t1t2 for t̃→t, j j

4 j 1nn1ntnt1t1t2 for t̃→tn j j

4 j 1n,1ntnt1t1t2 for t̃→t~n,, ! j j ,
~144!

assuming the chargino decays directly to the stau LSP. If
produce the heavier electroweak gauginos, we can cas
decay through the lighter gauginos producing more char
leptons. For the neutralino we have promising multilept
signatures, whereas for the chargino we expect a signific
amount of missingpT .

In summary, as promising signatures in the case of
stau LSP, we have~i! a detached vertex from the long-live
stau, particularly in the case of the four-body stau decay;~ii !
multilepton final states; and~iii ! multi-tau final states, requir-
ing efficient tau tagging.

The four-body decay of the stau results in more final-st
leptons than the two-body decay and is thus possibly m
promising.

IX. SUMMARY AND CONCLUSIONS

We have investigated for the first time the gene
R” p MSSM in the context of MSUGRA. We have studied
some detail the origin of lepton-number violation and ha
found that with respect to the dimension-5 operators, bar
parity is preferred overR parity. We have then shown that i
a wide class of models, bothk i andD̃ i are zero after super
symmetry breaking at the unification scale. We have ta
this as our boundary conditions atMX in order to investigate
the resulting model in considerable detail.

In order to embed the model within the unification pi
ture, we have computed the full set of renormalization gro
equations in the Appendixes. We have used two metho
including a novel method of Joneset al., which is particu-
larly conducive to the numerical implementation. We th
developed an iterative algorithm which solves the RG
minimizes the potential of the five neutral, scalar,CP-even
fields, while implementing weak-scale Yukawa and gau
boundary conditions. The algorithm is stable and has b
checked by an independent program. This is one of the m
technical advances in this paper. Given the minimum,
determined the complete supersymmetric spectrum, inc
ing also the mass of the heaviest neutrino.

We have then shown that theR” p couplings in this model
2-25
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are severely constrained by the upper bound on the neu
masses, as summarized in Tables III and IV. Thus when
bedding theR” p MSSM in MSUGRA, the neutrino mas
bound is the strictest and most universal, i.e., it applies to
lepton-number violating couplings. This is one of the ma
results of this paper.

We have then looked in detail at the nature of the LSP.
have found solutions with a selectron, tau sneutrino, and
LSP besides the usual neutralino LSP, with the stau m
favored in the no-scale MSUGRA model. This significan
affects collider phenomenology. We present a first discuss
of this broad topic in Sec. VIII. We have also studied t
phenomenology of sneutrino-antisneutrino mixing in th
model, but we do not expect any significant effect.

We conclude that theR” p MSSM is as viable as the RPC
MSSM. As we show, it differs considerably both concep
ally and phenomenologically from the RPC. The intima
connection with neutrino masses is an outstanding fea
which we shall discuss in more detail in a forthcoming pu
lication.
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APPENDIX A: NOTATION AND ANOMALOUS
DIMENSIONS

The chiral superfields of theRp MSSM and the
R” p MSSM have the following GSM5SU(3)c3SU(2)L
3U(1)Y quantum numbers:

L: ~1,2,2 1
2 !, Ē: ~1,1,1!, Q: ~3,2,16 !,

Ū: ~3,1,23 !, D̄: ~3,1,2 1
3 !, H1 : ~1,2,2 1

2 !,

H2 : ~1,2,12 !. ~A1!

The R” p MSSM superpotential is then given by

W5eab@~YE! i j L i
aH1

bĒj1~YD! i j Qi
axH1

bD̄ jx

1~YU! i j Qi
axH2

bŪ jx#2eab@mH1
aH2

b1k iL i
aH2

b#

1eab@
1
2 ~LEk! i j L i

aL j
bĒk1~LDk! i j L i

aQj
xbD̄kx#

1 1
2 exyz~LUi ! jkŪ i

xD̄ j
yD̄k

z . ~A2!
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We denote anSU(3) color index of the fundamental repre
sentation byx,y,z51,2,3. TheSU(2)L fundamental repre-
sentation indices are denoted bya,b,c51,2 and the genera
tion indices byi , j ,k51,2,3. We have introduced the twelv
333 matrices

YE , YD , YU , LEk, LDk, LUi, ~A3!

for all the Yukawa couplings. This implies the following con
ventions in the Martin and Vaughn@16# notation:

YLi
aQj

bxD̄ky5YLi
aD̄kyQj

bx
5YD̄kyLi

aQj
bx

5YQj
bxLi

aD̄ky

5YQj
bxD̄kyLi

a
5YD̄kyQj

bxLi
a
5~LDk! i j eabdx

y

[l i jk8 eabdx
y , ~A4!

YLi
aL j

bĒk5YLi
aĒkL j

b
5YĒkLi

aL j
b
5~LEk! i j eab

52~LEk! j i eab[l i jkeab , ~A5!

YŪixD̄ jyD̄kz5YD̄ jyŪixD̄kz5YD̄ jyD̄kzŪix5exyz~LUi ! jk

52exyz~LUi !k j[exyzl i jk9 . ~A6!

The soft SUSY breaking Lagrangian is given by

2L5mH1

2 H1
†H11mH2

2 H2
†H21L̃†~mL̃

2
!L̃1Lĩ

†~mL̃ iH1

2
!H1

1H1
†~mH1L̃ i

2
!L̃1Q̃†~mQ̃

2
!Q̃1 Ẽ̄~mẼ

2
!Ẽ̄†1 D̃̄~mD̃

2
!D̃̄†

1 Ũ̄~mŨ
2

!Ũ̄†2@B̃H1H21D̃ iL ĩH21H.c.#

1@~hE! i j L ĩH1Ēj
˜1~hD! i j QĩH1D̄ j

˜1~hU! i j QĩH2Ū j
˜

1~hEk! i j L ĩL j̃ Ēk
˜1~hDk! i j L ĩQj̃ D̄k

˜1~hUi ! jkŪ i
˜ D̄ j
˜ D̄k
˜

1H.c.#, ~A7!

where we have introduced the soft SUSY breaking triline
couplings

hE , hD , hU , hEk, hDk, hUi, ~A8!

defined analogously as the Yukawa couplings in Eqs.~A4!–
~A6!.

In general, the one-loop renormalization-group equatio
for the Yukawa couplings are given by@16#

d

dt
Yi jk5Yi jpF 1

16p2
gp

kG1~k↔ i !1~k↔ j ! ~A9!

and the anomalous dimensions are

g i
j5

1

2
YipqYjpq22d i

j(
a

ga
2Ca~ i !. ~A10!

We have denoted byCa( f ) the quadratic Casimir of the rep
resentationf of the gauge groupGa . For details, see Appen
2-26
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dix A of Ref. @14#. All equations in this section are valid i
the DR renormalization scheme.

The one-loop anomalous dimensions are given
@14,105#

gL j

Li 5~YEYE
† ! i j 1~LEqLEq

†
! i j 13~LDqLDq

†
! i j

2d j
i S 3

10
g1

21
3

2
g2

2D , ~A11!

gEj

Ei 52~YE
†YE! j i 1Tr~LEiLEj

†
!2d j

i S 6

5
g1

2D , ~A12!

gQj

Qi 5~YDYD
† ! i j 1~YUYU

† ! i j 1~LDq
†

LDq! j i

2d j
i S 1

30
g1

21
3

2
g2

21
8

3
g3

2D , ~A13!

gD j

Di 52~YD
† YD! j i 12 Tr~LD j

†
LDi !12~LUqLUq

†
! i j

2d j
i S 2

15
g1

21
8

3
g3

2D , ~A14!

gU j

Ui 52~YU
† YU! j i 1Tr~LUiLU j

†
!2d j

i S 8

15
g1

21
8

3
g3

2D ,

~A15!

gH1

H15Tr~3YDYD
† 1YEYE

† !2S 3

10
g1

21
3

2
g2

2D , ~A16!

gH2

H253 Tr~YUYU
† !2S 3

10
g1

21
3

2
g2

2D , ~A17!

gLi

H15gH1

Li * 523~LDq* YD! iq2~LEq* YE! iq . ~A18!

Note that here,H1,2,L,Q represent the fieldsH1,2
a , La, Qa,

where a is the index of the fundamental representation
SU(2) ~i.e., no factors ofeab are factored!. Theb functions
for the Yukawa couplings@14# and for the bilinear superpo
tential couplings are combinations of the above anomal
dimensions~A1!–~A18!. The two-loop anomalous dimen
sions in theR” p MSSM can be found in@14#. We present the
one-loop beta functions for the superpotential couplings
masses for completeness.

The RGEs for the Yukawa couplings~including full fam-
ily dependence! are given by

16p2
d

dt
~YE! i j 5~YE! ikgEk

Ej 1~YE! i j gH1

H12~LEj !kigLk

H1

1~YE!k jgLk

Li , ~A19!

16p2
d

dt
~YD! i j 5~YD! ikgDk

D j 1~YD! i j gH1

H12~LD j !kigLk

H1

1~YD!k jgQk

Qi , ~A20!
11500
y

f

s

d

16p2
d

dt
~YU! i j 5~YU! ikgUk

U j 1~YU! i j gH2

H21~YU!k jgQk

Qi ,

~A21!

16p2
d

dt
~LEk! i j 5~LEl ! i j gEl

Ek1~LEk! i l gLl

L j1~YE! ikgH1

L j

2~LEk! j l gLl

Li2~YE! jkgH1

Li , ~A22!

16p2
d

dt
~LDk! i j 5~LDl ! i j gDl

Dk1~LDk! i l gQl

Qj1~LDk! l j gLl

Li

2~YD! jkgH1

Li , ~A23!

16p2
d

dt
~LUi ! jk5~LUi ! j l gDl

Dk1~LUi ! lkgDl

D j1~LUl ! jkgUl

Ui.

~A24!

Heret5 ln(Q), andQ is the renormalization scale. The RGE
for the bilinear terms are

16p2
d

dt
m5m$gH1

H11gH2

H2%1k igLi

H1, ~A25!

16p2
d

dt
k i5k igH2

H21kpgLp

Li 1mgH1

Li . ~A26!

APPENDIX B: A METHOD TO DERIVE THE SOFT SUSY
BREAKING RGE

A straightforward way to derive the RGEs for the so
SUSY breaking couplings and masses is by a direct us
the explicit formulas at one loop given in@16#. This is a
somewhat tedious job. A very elegant method which is a
very helpful for numerical calculations is the one describ
in Ref. @15#. All the soft SUSY RGEs can be derived from
the anomalous dimensions~A11!–~A18! by the action of an
operator which is given below@106#. The method works not
only at one loop but it has also been proven to all orders
perturbation theory@15#. In principle, one could apply the
operators~B1!–~B5! below to the two-loop anomalous d
mensions derived in Ref.@14# and write down the full two-
loop coupled RGEs in the most general case. However, h
we restrict ourselves to the one-loop case. In particular,
soft b functions for the bilinearbi j , trilinear hi jk , and scalar
masses (m2) j

i soft SUSY breaking terms can be read from

16p2
dbi j

dt
5g l

ibj l 1g l
jbi l 22~g1! l

im j l 22~g1! l
jm i l ,

~B1!
2-27
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16p2
dhi jk

dt
5g l

ihjkl1g l
jhikl1g l

khj i l 22~g1! l
iY jkl

22~g1! l
jY ikl22~g1! l

kY j i l , ~B2!

16p2
d~m2! j

i

dt
5S 2OO* 12MM* ga

2
]

]ga
2

1Ỹ lmn

]

]Y lmn

1Ỹ lmn
]

]Y lmn
1Xa

]

]ga
D g j

i , ~B3!

where

~g1! j
i 5Og j

i , O5S Maga
2

]

]ga
2

2hlmn
]

]Y lmnD , ~B4!

Ỹ i jk5Y l jk~m2! l
i1Y l ik~m2! l

j1Y l j i ~m2! l
k , ~B5!

and repeated indices are summed over. At one loop, the
term,Xa , in Eq. ~B3! is not relevant. Its~scheme-dependen!
form is given, for example, in the last reference of Ref.@15#
@see their Eq.~2.11!#. The RGEs~B1!–~B3! are valid as long
as we do not eliminate the U~1! Fayet-Iliopoulos~FI! D term.
The RGE running of the FI term can then be written ind
pendently. It is known that for universal boundary conditio
this term is not renormalized down to low energies and
do not discuss its RGE here. On the other hand, if we eli
nate the FID term by using its equation of motion, then th
renormalization gives rise to additional contributions prop
tional to the U~1! gauge coupling~see theS term in the
RGEs for the soft SUSY breaking masses in Appendix!.
Now from Eq. ~B1! the RGEs for the bilinear soft SUSY
breaking masses in theR” p MSSM are

16p2
dB̃

dt
5B̃@gH1

H11gH2

H2#1D̃ igLi

H122m@~g1!H1

H11~g1!H2

H2#

22k i~g1!Li

H1, ~B6!

16p2
dD̃i

dt
5@gLl

LiD̃ l1gH2

H2D̃ i #1B̃gH1

Li

22@~g1!Ll

Lik l1~g1!H2

H2k i #22m~g1!H1

Li . ~B7!

The RGEs for the trilinear soft SUSY breaking masses in
R” p MSSM can be read from Eq.~B2!,

16p2
d~hE! ik

dt
5gLl

Li~hE! lk1gH1

H1~hE! ik1gLl

H1~hEk! i l

1gEl

Ek~hE! i l 22~g1!Ll

Li~YE! lk22~g1!H1

H1~YE! ik

22~g1!Ll

H1~LEk! i l 22~g1!El

Ek~YE! i l , ~B8!
11500
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16p2
d~hD! ik

dt
5gQl

Qi~hD! lk1gH1

H1~hD! ik2gLl

H1~hDk! l i

1gDl

Dk~hD! i l 22~g1!Ql

Qi~YD! lk

22~g1!H1

H1~YD! ik12~g1!Ll

H1~LDk! l i

22~g1!Dl

Dk~YD! i l , ~B9!

16p2
d~hU! ik

dt
5gQl

Qi~hU! lk1gH2

H2~hU! ik1gUl

Uk~hU! i l

22~g1!Ql

Qi~YU! lk22~g1!H2

H2~YU! ik

22~g1!Ul

Uk~YU! i l , ~B10!

16p2
d~hEk! i j

dt
5gLl

Li~hEk! l j 2gH1

Li ~hE! jk1gLl

L j~hEk! i l

1gH1

L j ~hE! ik1gEl

Ek~hEl ! i j 22~g1!Ll

Li~LEk! l j

12~g1!H1

Li ~YE! jk22~g1!Ll

L j~LEk! i l

22~g1!H1

L j ~YE! ik22~g1!El

Ek~LEl ! i j , ~B11!

16p2
d~hDk! i j

dt
5gLl

Li~hDk! l j 2gH1

Li ~hD! jk1gQl

Qj~hDk! i l

1gDl

Dk~hDl ! i j 22~g1!Ll

Li~LDk! l j

12~g1!H1

Li ~YD! jk22~g1!Ql

Qj~LDk! i l

22~g1!Dl

Dk~LDl ! i j , ~B12!

16p2
d~hUi ! jk

dt
5gUl

Ui~hUl ! jk1gDl

D j~hUi ! lk1gDl

Dk~hUi ! j l

22~g1!Ul

Ui~LUl ! jk22~g1!Dl

D j~LUi ! lk

22~g1!Dl

Dk~LUi ! j l . ~B13!

The RGEs for the soft SUSY breaking masses in
R” p MSSM can be obtained from Eq.~B3!,

16p2
d~mẼ

2
!Ej

Ei

dt
[16p2

d~mẼ
2
! j i

dt
54~hE

†hE! j i 12 Tr~hEihEj
†

!

2d i j S 24

5
g1

2uM1u2D12~YE
†YẼ! j i

1Tr~LEi˜ LEj
†

!12~YE
†̃YE! j i 1Tr~LEiLEj

†̃
!,

~B14!
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16p2
d~mL̃

2
!L j

Li

dt
[16p2

d~mL̃
2
! i j

dt

52~hEhE
†1hEqhEq

†
13hDqhDq

†
! i j

2d i j S 6

5
g1

2uM1u216g2
2uM2u2D1~YẼYE

† ! i j

1~LEq̃LEq
†

! i j 13~LDq̃LDq
†

! i j 1~YEYE
†̃ ! i j

1~LEqLEq
†̃

! i j 13~LDqLDq
†̃

! i j , ~B15!

16p2
d~m2!Li

H1

dt
[16p2

d~mH1L̃ i

2
!

dt

526~hDq* hD! iq22~hEq* hE! iq23~LDq* YD̃! iq

2~LEq* YẼ! iq23~LDq*̃ YD! iq2~LEq*̃ YE! iq ,

~B16!

16p2
d~mQ̃

2
!Qj

Qi

dt
[16p2

d~mQ̃
2

! i j

dt

52~hDhD
† 1hUhU

† ! i j 12~hDq
† hDq! j i

2d i j S 2

15
g1

2uM1u216g2
2uM2u21

32

3
g3

2uM3u2D
1~YD̃YD

† ! i j 1~YŨYU
† ! i j 1~LDq

†
LDq̃! j i

1~YDYD
†̃ ! i j 1~YUYU

†̃ ! i j 1~LDq
†̃

LDq! j i ,

~B17!

16p2
d~mD̃

2
!D j

Di

dt
[16p2

d~mD̃
2
! j i

dt

54~hD
† hD! j i 14 Tr~hD j

† hDi !14~hUqhUq
†

! i j

2d i j S 8

15
g1

2uM1u21
32

3
g3

2uM3u2D
12~YD

† YD
˜ ! j i 12 Tr~LD j

†
LDi
˜ !

12~LUq̃LUq
†

! i j 12~YD
†̃ YD! j i

12 Tr~LD j
†̃

LDi !12~LUqLUq
†̃

! i j , ~B18!

16p2
d~mŨ

2
!U j

Ui

dt
[16p2

d~mŨ
2
! j i

dt

54~hU
† hU! j i 12 Tr~hUihU j

†
!

2d i j S 32

15
g1

2uM1u21
32

3
g3

2uM3u2D

11500
12~YU
† YU
˜ ! j i 1Tr~LUi

˜ LU j
†

!12~YU
†̃ YU! j i

1Tr~LUiLU j
†̃

!, ~B19!

16p2
dmH1

2

dt
5Tr~6hDhD

† 12hEhE
† !

2S 6

5
g1

2uM1u216g2
2uM2u2D13 Tr~YD̃YD

† !

1Tr~YE
˜ YE

† !13 Tr~YDYD
†̃ !1Tr~YEYE

†̃ !,

~B20!

16p2
dmH2

2

dt
56 Tr~hUhU

† !2S 6

5
g1

2uM1u216g2
2uM2u2D

13 Tr~YU
˜ YU

† !13 Tr~YUYU
†̃ !, ~B21!

where from Eq.~B4! we have

~g1!L j

Li 52~hEYE
† ! i j 2~hEqLEq

†
! i j 23~hDqLDq

†
! i j

2d j
i S 3

10
M1g1

21
3

2
M2g2

2D , ~B22!

~g1!Ej

Ei 522~YE
†hE! j i 2Tr~hEiLEj

†
!2d j

i S 6

5
M1g1

2D ,

~B23!

~g1!Qj

Qi 52~hDYD
† ! i j 2~hUYU

† ! i j 2~LDq
† hDq! j i 2d j

i S 1

30
M1g1

2

1
3

2
M2g2

21
8

3
M3g3

2D , ~B24!

~g1!D j

Di 522~YD
† hD! j i 22 Tr~LD j

† hDi !22~hUqLUq
†

! i j

2d j
i S 2

15
M1g1

21
8

3
M3g3

2D , ~B25!

~g1!U j

Ui 522~YU
† hU! j i 2Tr~hUiLU j

†
!

2d j
i S 8

15
M1g1

21
8

3
M3g3

2D , ~B26!

~g1!H1

H152Tr~3hDYD
† 1hEYE

† !

2S 3

10
M1g1

21
3

2
M2g2

2D , ~B27!

~g1!H2

H2523 Tr~hUYU
† !2S 3

10
M1g1

21
3

2
M2g2

2D ,

~B28!

~g1!Li

H15~g1!H1

Li * 53~LDq* hD! iq1~LEq* hE! iq , ~B29!
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and from Eq.~B5!

~YẼ! ik5~YE! lk~mL̃
2
! i l 1~YE! ikmH1

2 1~LEk! i l ~mH1L̃ l

2
!

1~YE! i l ~mẼ
2
! lk , ~B30!

~YD̃! ik5~YD! lk~mQ̃
2

! i l 2~LDk! l i ~mH1L̃ l

2
!

1~YD! ikmH1

2 1~YD! i l ~mD̃
2
! lk , ~B31!

~YŨ! ik5~YU! lk~mQ̃
2

! i l 1~YU! ikmH2

2 1~YU! i l ~mŨ
2
! lk ,

~B32!

~LEk˜ ! i j 5~LEk! l j ~mL̃
2
! i l 2~YE! jk~mL̃ iH1

2
!

1~LEk! i l ~mL̃
2
! j l 1~YE! ik~mL̃ jH1

2
!

1~LEl ! i j ~mẼ
2
! lk , ~B33!

~LDk˜ ! i j 5~LDk! l j ~mL̃
2
! i l 2~YD! jk~mL̃ iH1

2
!

1~LDk! i l ~mQ̃
2

! j l 1~LDl ! i j ~mD̃
2
! lk , ~B34!

~LUi˜ ! jk5~LUl ! jk~mŨ
2
! l i 1~LUi ! lk~mD̃

2
! l j

1~LUi ! j l ~mD̃
2
! lk . ~B35!
11500
Numerically we follow the following procedure:~a! Define
the anomalous dimensions in Eqs.~A11!–~A18!; ~b! define
(g1) j

i from Eqs.~B22!–~B29!; ~c! define Eqs.~B30!–~B35!
and~d! plug ~a,b,c! into Eqs.~B6!–~B21!. This is much sim-
pler than inserting the explicit formulas of Appendix C b
low.

APPENDIX C: EXPLICIT RGE FOR THE SOFT
SUPERSYMMETRIC BREAKING TERMS

The explicit RGEs for the soft supersymmetric breaki
terms have appeared also before in Refs.@8,107#. Reference
@107# contains the full set~aside from the aforementionedS
term!, but we disagree with several terms in the equations
(mH1L̃ i

2 ) and (mẼ
2) i j . Reference@8# is restricted to contribu-

tions of the third-generation quarks and leptons. We arra
here the explicit formulas of the full~not flavor dominance
assumed! RGEs. As a cross check, we have calculated th
by first using the explicit formulas of Ref.@16# and second
by using the method described in Appendix B. We fou
agreement using both methods. Thus the RGE for the b
earm andk i terms of the superpotential parameters is giv
by
16p2
dm

dt
5mF3 Tr~YUYU

† !1Tr~3YDYD
† 1YEYE

† !2
3

5
g1

223g2
2G2kp@LEn* YE13LDn* YD#pn , ~C1!

16p2
dk i

dt
5k iF3 Tr~YUYU

† !2
3

5
g1

223g2
2G1kp@YEYE

†1LEnLEn
†

13LDnLDn
†

# ip

2m@LEnYE* 13LDnYD* # in . ~C2!

Similarly, the RGEs for the soft SUSY breaking bilinear terms can be read from

16p2
dB̃

dt
5B̃F3 Tr~YU

† YU!13 Tr~YD
† YD!1Tr~YE

†YE!2
3

5
g1

223g2
2G

1mF6 Tr~YU
† hU!16 Tr~YD

† hD!12 Tr~YE
†hE!1

6

5
g1

2M116g2
2M2G

2D̃ l@LEn* YE13LDn* YD# ln2k l@2LEn* hE16LDn* hD# ln , ~C3!

16p2
dD̃i

dt
5D̃ iF3 Tr~YUYU

† !2
3

5
g1

223g2
2G1k iF6 Tr~hUYU

† !1
6

5
g1

2M116g2
2M2G

1D̃ l@YEYE
†1LEnLEn

†
13LDnLDn

†
# i l 12k l@hEYE

†1hEnLEn
†

13hDnLDn
†

# i l

22m@hEnYE* 13hDnYD* # in2B̃@LEnYE* 13LDnYD* # in . ~C4!

The RGEs for the soft SUSY trilinear couplings are given by
2-30
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16p2
d~hE! i j

dt
5~hE! i l @2~YE

†YE! l j 1Tr~LEl
†

LEj !#1~hE! l j @YEYE
†1LEnLEn

†
13LDnLDn

†
# i l

1~hE! i j FTr~YE
†YE!13 Tr~YD

† YD!2
9

5
g1

223g2
2G1~hEj ! i l @2LEn* YE23LDn* YD# ln

1~YE! i l @4~YE
†hE! l j 12 Tr~LEl

† hEj !#1~YE! l j @2hEYE
†12hEnLEn

†
16hDnLDn

†
# i l

1~YE! i j F2 Tr~YE
†hE!16 Tr~YD

† hD!1
18

5
g1

2M116g2
2M2G1~LEj ! i l @22~LEn* hE!26~LDn* hD!# ln , ~C5!

16p2
d~hD! i j

dt
5~hD! i l @2~YD

† YD! l j 12 Tr~LDl
†

LD j !12~LUnLUn
†

! j l #1~hD! l j @YDYD
† 1YUYU

† # i l

1~hD! l j @LDn
†

LDn# l i 1~hD! i j FTr~YE
†YE!13 Tr~YD

† YD!2
7

15
g1

223g2
22

16

3
g3

2G1~hD j ! l i @~LEn* YE!

13~LDn* YD!# ln1~YD! i l @4~YD
† hD! l j 14 Tr~LDl

† hD j !14~hUnLUn
†

! j l #1~YD! l j @2hDYD
† 12hUYU

† # i l

1~YD! l j @2LDn
† hDn# l i 1~YD! i j F2 Tr~YE

†hE!16 Tr~YD
† hD!1

14

15
g1

2M116g2
2M21

32

3
g3

2M3G
1~LD j ! l i @2~LEn* hE!16~LDn* hD!# ln , ~C6!

16p2
d~hU! i j

dt
5~hU! i l @2~YU

† YU! l j 1Tr~LUl
†

LU j !#1~hU! l j @~YUYU
† ! i l 1~YDYD

† ! i l 1~LDn
†

LDn! l i #

1~hU! i j F3 Tr~YU
† YU!2

13

15
g1

223g2
22

16

3
g3

2G1~YU! i l @4~YU
† hU! l j 12 Tr~LUl

† hU j !#

1~YU! l j @2~hUYU
† ! i l 12~hDYD

† ! i l 12~LDn
† hDn! l i #

1~YU! i j F6 Tr~YU
† hU!1

26

15
g1

2M116g2
2M21

32

3
g3

2M3G , ~C7!

16p2
d~hEk! i j

dt
5~hEl ! i j @2~YE

†YE! lk1Tr~LEl
†

LEk!#1~hE! jk@LEnYE* 13LDnYD* # in

1~hEk! j l @2YEYE
†2LEnLEn

†
23LDnLDn

†
# i l 1~hEk! i l @YEYE

†1LEnLEn
†

13LDnLDn
†

# j l

1~hE! ik@2LEnYE* 23LDnYD* # jn1~LEl ! i j @4~YE
†hE! lk12 Tr~LEl

† hEk!#

1~YE! jk@2hEnYE* 16hDnYD* # in1~LEk! j l @22hEYE
†22hEnLEn

†
26hDnLDn

†
# i l

1~LEk! i l @2hEYE
†12hEnLEn

†
16hDnLDn

†
# j l 1~YE! ik@22hEnYE* 26hDnYD* # jn

2~hEk! i j F9

5
g1

213g2
2G1~LEk! i j F18

5
g1

2M116g2
2M2G , ~C8!

16p2
d~hDk! i j

dt
5~hDl ! i j @2~YD

† YD! lk12 Tr~LDl
†

LDk!12~LUn
†

LUn! lk#1~hDk! l j @YEYE
†1LEnLEn

†
13LDnLDn

†
# i l

1~hD! jk@LEnYE* 13LDnYD* # in1~hDk! i l @~YDYD
† ! j l 1~YUYU

† ! j l 1~LDn
†

LDn! l j #

1~LDl ! i j @4~YD
† hD! lk14 Tr~LDl

† hDk!14~LUn
† hUn! lk#1~LDk! l j @2hEYE

†12hEnLEn
†

16hDnLDn
†

# i l

1~YD! jk@2hEnYE* 16hDnYD* # in1~LDk! i l @2~hDYD
† ! j l 12~hUYU

† ! j l 12~LDn
† hDn! l j #

2~hDk! i j F 7

15
g1

213g2
21

16

3
g3

2G1~LDk! i j F14

15
g1

2M116g2
2M21

32

3
g3

2M3G , ~C9!
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16p2
d~hUi ! jk

dt
5~hUi ! j l @2~YD

† YD! lk12 Tr~LDl
†

LDk!12~LUm
†

LUm! lk#1~hUl ! jk@2~YU
† YU! l i 1Tr~LUl

†
LUi !#

1~hUi !kl@22~YD
† YD! l j 22 Tr~LDl

†
LD j !22~LUn

†
LUn! l j #

1~LUi ! j l @4~YD
† hD! lk14 Tr~LDl

† hDk!14~LUm
† hUm! lk#1~LUl ! jk@4~YU

† hU! l i 12 Tr~LUl
† hUi !#

1~LUi !kl@24~YD
† hD! l j 24 Tr~LDl

† hD j !24~LUn
† hUn! l j #2~hUi ! jkF4

5
g1

218g3
2G1~LUi ! jkF8

5
g1

2M1116g3
2M3G .

~C10!

The RGEs for the gaugino masses are not affected by theR” p couplings up to one loop. The RGEs for the SUSY soft break
masses are given by

16p2
d~mẼ

2
! i j

dt
52~YE

†YE! in~mẼ
2
!n j1Tr~LEi

†
LEn!~mẼ

2
!n j12~mẼ

2
! in~YE

†YE!n j1~mẼ
2
! inTr~LEn

†
LEj !

14~YE
†YE! i j mH1

2 14~YE
†LEj ! ir ~mH1L̃r

2
!14 Tr@~mL̃

2
!LEi

†
LEj #14~mL̃qH1

2
!~LEi

† YE!q j

14@YE
†~mL̃

2
!YE# i j 14~hE

†hE! i j 12 Tr~hEi
† hEj !2S 24

5
uM1u2g1

22
6

5
g1

2SD d i j , ~C11!

16p2
d~mL̃

2
! i j

dt
5~mL̃

2
! in~YEYE

† !n j2~mL̃ iH1

2
!~LEq* YE! jq1~mL̃

2
! in~LEqLEq

†
!n j1~YEYE

† ! in~mL̃
2
!n j

2~LEqYE* ! iq~mH1L̃ j

2
!1~LEqLEq

†
! in~mL̃

2
!n j12~YEYE

† ! i j mH1

2 12~LEp! ir ~YE
† !p j~mH1L̃r

2
!

23~LDqYD* ! iq~mH1L̃ j

2
!13@~mL̃

2
!LDqLDq

†
# i j 23~LDq* YD! jq~mL̃ iH1

2
!13@LDqLDq

†
~mL̃

2
!# i j

12~YE! ip~LEp
†

!q j~mL̃qH1

2
!12~LEp! ir ~mL̃

2
!qr~LEp

†
!q j12~YE! ir ~mẼ

2
!rq~YE

† !q j

12~LEr ! ip~mẼ
2
!rq~LEq

†
!p j16~LDr ! ip~mD̃

2
!rq~LDq

†
!p j16~LDk! i l ~mQ̃

2
!ml~LDk

†
!m j

12~hEhE
† ! i j 12~hEqhEq

†
! i j 16~hDqhDq

†
! i j 2S 6

5
g1

2uM1u216g2
2uM2u21

3

5
g1

2SD d i j , ~C12!

16p2
d~mH1L̃ i

2
!

dt
5~LEq

† YE! iqmH1

2 1~LEq
†

LEq! in~mH1L̃n

2
!2~mH1L̃n

2
!~YEYE

† !ni23~LDq* YD! iqmH1

2

13~LDqLDq
†

!ni~mH1L̃n

2
!1@Tr~YEYE

† !13 Tr~YD
† YD!#~mH1L̃ i

2
!

1~mL̃
2
!ni~LEq

† YE23LDq* YD!nq12~LEp
†

! iq~mL̃
2
!qr~YE!rp12~LEq

† YE! ir ~mẼ
2
!rq

26~LDq* YD! ir ~mD̃
2
!rq26~LDp* ! iq~mQ̃

2
!qr~YD!rp2@2hEq* hE16hDq* hD# iq , ~C13!

16p2
d~mQ̃

2
! i j

dt
5@YDYD

† 1YUYU
† #n j~mQ̃

2
! in1~LDq

†
LDq! jn~mQ̃

2
! in1@YDYD

† 1YUYU
† # in~mQ̃

2
!n j

1~mQ̃
2

!n j~LDq
†

LDq!ni12~YD! ir ~mD̃
2
!rq~YD

† !q j12~YDYD
† ! i j mH1

2

12~LDp
†

! jq~mL̃
2
!qr~LDp!ri 12~YU! ir ~mŨ

2
!rq~YU

† !q j12~YUYU
† ! i j mH2

2

12~LDq
†

LDr ! j i ~mD̃
2
!rq22~mH1L̃ l

2
!~LDk! l i ~YD

† !k j22~YD! iq~LDq
†

! jk~mL̃kH1

2
!

12@hDhD
† 1hUhU

† # i j 12~hDq
† hDq! j i 2S 2

15
g1

2uM1u216g2
2uM2u21

32

3
g3

2uM3u22
1

5
g1

2SD d i j , ~C14!
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16p2
d~mD̃

2
! i j

dt
52~YD

† YD! in~mD̃
2
!n j12 Tr~LDi

†
LDn!~mD̃

2
!n j12~LUqLUq

†
!ni~mD̃

2
!n j12~YD

† YD!n j~mD̃
2
! in

12 Tr~LD jLDn
†

!~mD̃
2
! in12~LUpLUp

†
! jn~mD̃

2
! in14~YD

† ! iq~mQ̃
2

!qr~YD!r j 14~YD
† ! ip~YD!p jmH1

2

14~LD jLDi
†

!rq~mL̃
2
!qr14~LDi

†
LD j !qr~mQ̃

2
!qr14~LUp

†
!qi~LUp! j r ~mD̃

2
!rq14~LUlLUq

†
! j i ~mŨ

2
! lq

14~hD
† hD! i j 14 Tr~hDi

† hD j !14~hUphUp
†

! j i 24~LDi* YD! l j ~mH1L̃ l

2
!24~LD jYD* ! l i ~mH1L̃ l

2
!

2S 8

15
g1

2uM1u21
32

3
g3

2uM3u22
2

5
g1

2SD d i j , ~C15!

16p2
d~mŨ

2
! i j

dt
52~YU

† YU! in~mŨ
2
!n j1Tr~LUi

†
LUn!~mŨ

2
!n j12~YU

† YU!n j~mŨ
2
! in1Tr~LU jLUn

†
!~mŨ

2
! in

14~YU
† ! iq~mQ̃

2
!qr~YU!r j 14~YU

† YU! i j mH2

2 14~LUi
†

LU j !qr~mD̃
2
!rq14~hU

† hU! i j 12 Tr~hUi
† hU j !

2S 32

15
g1

2uM1u21
32

3
g3

2uM3u21
4

5
g1

2SD d i j , ~C16!

16p2
dmH1

2

dt
52 Tr~YE

†YE!mH1

2 16 Tr~YD
† YD!mH1

2 1~YE
†LEq!qn~mH1L̃n

2
!23~LDkYD* !qk~mH1L̃q

2
!

23~LDk* YD!qk~mL̃qH1

2
!1~LEq

† YE!nq~mL̃nH1

2
!12~YE

†YE!qr~mẼ
2
!rq12~YEYE

† !rq~mL̃
2
!qr

16~YD
† YD!qr~mD̃

2
!rq16~YDYD

† !rq~mQ̃
2

!qr12 Tr~hE
†hE!16 Tr~hD

† hD!

2S 6

5
g1

2uM1u216g2
2uM2u21

3

5
g1

2SD d i j , ~C17!

16p2
dmH2

2

dt
56 Tr~YU

† YU!mH2

2 16~YU
† YU!qr~mŨ

2
!rq16~YUYU

† !rq~mQ̃
2

!qr16 Tr~hU
† hU!

2S 6

5
g1

2uM1u216g2
2uM2u22

3

5
g1

2SD d i j , ~C18!
no

to
where

~mH1L̃ i

2
!5~mL̃ iH1

2
!* , ~C19!

and

S5mH2

2 2mH1

2 1Tr@mQ̃
22mL̃

222mŨ
21mD̃

21mẼ
2#.

~C20!

APPENDIX D: FOUR-BODY t̃ DECAY

In this appendix, we compute the four-body decayt̃2

→t2m1ūd via the R” p operatorl8LmQ1D̄1 . The relevant
Feynman diagrams are given in Figs. 8~a!–8~c!. We neglect
the contributions from the heavier neutralinos. Using the
11500
-

tation of Ref.@108#, the three amplitudes corresponding
Fig. 8 are given by

Ma51
2il8bm̃

~ m̃22mm̃
2
!~x22Mx

2!
~ d̄PLu!

3$t̄@atPL1btPR#~x”1Mx!PLm%, ~D1!

Mb52
2il8bũ

~ ũ22mm̃
2
!~x22Mx

2!
~ d̄PLm!

3$t̄$atPL1btPR%~x” 1Mx!PLu%, ~D2!
2-33



bo

xi
r

g

ALLANACH, DEDES, AND DREINER PHYSICAL REVIEW D69, 115002 ~2004!
Mc52
2il8ad̃

~ d̃22mm̃
2
!~x22Mx

2!
~ ūPLm!

3$t̄$atPL1btPR%~x” 1Mx!PLd%. ~D3!

Here the four-momenta are denoted by the particle sym
The momentam̃, ũ, d̃,x flow along the corresponding
propagators from left to right. We use below thatx5m1u
1d as well as the notationNp5p22mp

2 for the denomina-
tors in the propagators. We have assumed there is no mi
in the scalarm, u, and d sectors. However, we allow fo
mixing in the stau sector.m̃L , ũL , d̃R are the only sparticles

FIG. 8. Feynman diagrams for the decayt̃→t(x̃1
0)*

→t(mud) via the operatorLmQ1D̄1 .
11500
l.

ng

that couple to theR-parity violating operators. The couplin
constants are given by@2,66,108#

at5L21
t S eN118* 2

g sin2uwN128*

cosuw
D ,

bt52L11
t S eN118 1

gN128 S 1

2
2sin2uwD

cosuw

D , ~D4!

bm52eN118 2

gN128 S 1

2
2sin2uwD

cosuw
,

bu5eeuN118 1

gN128 S 1

2
2eusin2uwD

cosuw
, ~D5!

ad52eedN118* 1
ged sin2uwN128*

cosuw
. ~D6!

The total matrix element squared is given by

uMu25Nc@ uM au21uM au21uM au2

12 Re~MaM b
†1MaM c

†1MbM c
†!#, ~D7!

whereNc53 is the color factor and

uM au25
16l82ubmu2

Nx
2Nm̃

2
d•u@ uatu2Mx

2t•m1ubtu2g~t,x,m,x!#,

~D8!

uM bu25
16l82ubuu2

Nx
2Nũ

2
d•m@ uatu2Mx

2t•u1ubtu2g~t,x,u,x!#,

~D9!

uM cu25
16l82uadu2

Nx
2Nd̃

2
u•m@ uatu2Mx

2t•d1ubtu2g~t,x,d,x!#,

~D10!

2R~MaM b
†!52

16l82bmbu*

Nx
2Nm̃Nũ

@ uatu2Mx
2g~t,m,d,u!

1ubtu2f ~t,x,m,d,u,x!#, ~D11!

2R~MaM c
†!5

16l82bmad*

Nx
2Nm̃Nd̃

@ uatu2Mx
2g~t,m,u,d!

1ubtu2f ~t,x,m,u,d,x!#, ~D12!

2R~MbM c
†!5

16l82buad*

Nx
2NũNd̃

@ uatu2Mx
2g~t,u,m,d!

1ubtu2f ~t,x,u,m,d,x!#. ~D13!
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The functions are given by

g~a,b,c,d!5a•bc•d2a•cb•d1a•db•c,

f ~t,x,a,b,c,x!52x2g~t,a,b,c!12t•xg~x,a,b,c!.
~D14!

The squared amplitude in Eq.~D7! can be used in Monte
Carlo simulation programs to generate events with a dec
ing stau. We are interested here in an analytic approxima
for the total decay width. To this end, we shall assumex2

!Mx
2 . This is equivalent above to settingbt50. Further-

more, we assume that all scalar propagators are domin
by their mass terms and the scalar fermion mass is unive
mm̃5mũ5md̃[m̃. In this simplified case, the amplitud
squared is given by

uMu25
16l82uatu2Nc

Mx
2m̃4

@ ubmu2d•ut•m1ubuu2d•mt•u

1uadu2u•mt•d2bmbu* g~t,m,d,u!

1bmad* g~t,m,u,d!1buad* g~t,u,m,d!#. ~D15!

The total width is given by@109,110#

G5
~2p!28

2M t̃
E )

i 51

4
d3ki

2Ei
d4~ t̃2k12k22k32k4!uMu2,

~D16!

wherek15t, k25m, k35u, k45d. After the simplification,
our matrix element squared consists of three kinds of te
which depend on the final-state four-momenta: (t•m)(u
•d), (t•u)(m•d), and (t•d)(m•u). As can be seen from
the phase-space integral, these all contribute the same;
simply correspond to a relabeling. We thus explicitly int
grate only the first term. Using Eq.~4! from Ref. @109# with
N5 t̃2k12k2 , we see that

E d3ku

2Eu

d3kd

2Ed
~u•d!d4~N2u2d!5

p

4
~ t̃2t2m!2,

~D17!
l.
s.
f
.B

p

11500
y-
n

ted
al:

s

ey
-

and we thus obtain

A1[E )
i 51

4
d3ki

2Ei
d4~N2u2d!~t•m!~u•d!

5
p

4E d3t

2Et
E d3m

2Em
~t•m!~ t̃2t2m!2. ~D18!

In the rest-frame of the decaying stau with thez axis in the
direction of the 3-momentum of thet,

t̃5~M t̃,0,0,0!, t5Et~1,0,0,1!, m5Em~1,sinu,0,cosu!.
~D19!

Performing the integrals overdVt anddfm ,

A15
p3

2 E dEtE dEmE d cosuEt
2Em

2 ~12cosu!

3@M t̃
2
22M t̃Et22M t̃Em12EmEt~12cosu!#.

~D20!

It is convenient to change to dimensionless variablesEm
5 1

2 M t̃z, Et5 1
2 M t̃y, and 12cosu52w @109#. Implement-

ing the integral boundaries given in Refs.@109,110#, leads to
the result

A15
p3M t̃

8

25
E

0

1

dzF E
0

12z

dyE
0

1

dw1E
12z

1

dyE
(y1z21)/yz

1

dwG
3@z2y2w~12z2y1yzw!#5

p3M t̃
8

25
3

1

720
. ~D21!

We thus have for the total width

G~t̃2→t2m1ūd!5
KNcl82uatu2

25p5Mx
2m̃4

M t̃
7
~ ubmu21ubuu21uadu2

2bmbu* 1bmad* 1buad* !, ~D22!

whereK51/(720325)51/23040.
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