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We present the minimal supersymmetric standard model with general brogarity, focusing on minimal
supergravity(MSUGRA). We discuss the origins of lepton number violation in supersymmetry. We have
computed the full set of coupled one-loop renormalization-group equations for the gauge couplings, the su-
perpotential parameters, and for all the soft supersymmetry breaking parameters. We provide analytic formulas
for the scalar potential minimization conditions which may be iterated to arbitrary precision. We compute the
low-energy spectrum of the superparticles and the neutrinos as a function of the small set of parameters at the
unification scale in the general basis. Specializing to MSUGRA, we use the neutrino masses to set new bounds
on theR-parity violating couplings. These bounds are up to five orders of magnitude stricter than the previ-
ously existing ones. In addition, new bounds on Raparity violating couplings are also derived demanding a
nontachyonic sneutrino spectrum. We investigate the nature of the lightest supersymmetric particle and find
extensive regions in parameter space whereribighe neutralino. This leads to a novel set of supersymmetric
signatures, which we classify.
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I. INTRODUCTION renormalization-group equation®GES9. This is the most
widely used model for extensive phenomenological and ex-
The most widely studied supersymmetric scenario is theperimental tests of supersymmetry. It is the purpose of this
minimal supersymmetric standard mod@®ISSM) with con-  paper to create an analogous model in the case of supersym-
served Rparity [1-3]. The unification of the three Standard metry with broken Rparity (R,): the R-parity violating
Model gauge couplingg;, at the scaléVy=0(10'°GeV)  minimal supergravity model®, MSUGRA).
[4], is a strong indication that supersymmetBUSY) is em- The MSUGRA model with universal boundary conditions
bedded in a unified model. In the simplest such mdd&l a5 first extended to include biline, by Hempfling[6],
SUSY breaking occurs in a hidden sectdecoupled from ¢4 ,sing on the neutrino sector. A further detailed analysis in
the Standard Model gauge interactipnand is communi- s framework was performed by Hirseh al.[7]. de Carlos
cated to our visible sector via gravit§]. The scale of SUSY o4 \white were the first to go beyond biline&g and con-
breakging in the visible sector is thus the Planck scM®,  giger the full set ofR, couplings[8,9]. However, they re-
=10"GeV. ) ) . stricted themselves to the third-generation Higgs-Yukawa
The large number of parameters in the MSSM is resmCteQ:ouplings and used an approximate method to minimize the

by making well-motivated simplifying assumptions at the gcaar potential. We detail below how we go beyond this
unification scale. In the special case of the minimal superg,qk.

gravity model(MSUGRA,), there are five parameters beyond  \ye shall consider the chiral superfield particle content
those of the Standard Model:

Mo,Ml/z,Ao,tan,B,Sgr(M). (1) QT(, le, U:(, L?, E" Ha, Hazl (2)

These are the universal scalar mikg, gaugino mas 4,

and trilinear scalar coupling,, respectively, as well as the

ratio of the Higgs vacuum expectation valué¢Ev's),  Herei=1,2,3 is a generation index=1,2,3, anca=1,2 are

tanB, and the sign of the bilinear Higgs mixing parameter,SU(3) andSU(2) gauge indices, respectively. In supersym-

w. Given these five parameters at the unification scale, wenetry, the lepton doublet superfieltd§ and the Higgs dou-

can predict the full mass spectrum as well as the couplings dilet superfield coupling to the downlike quarks,, have the

the particles at the weak scale via the supersymmetrisame gauge and Lorentz quantum numigens is an essen-
tial feature in our discussion belgwWhen appropriate, we
shall combine them into the chiral superfields,_, = 3

*Permanent address: Institute for Particle Physics Phenomenot=(H?,L{, , 5. The gauge quantum numbers of the chiral
ogy, University of Durham, DH1 3LE, United Kingdom. superfields and the vector superfields are given in Table I.
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A. R-parity violation TABLE I. The particle content of the MSUGRR, model in
terms of superfields and their decomposition into components with
their SU(3).X SU(2),. X U(1)y quantum numbers, X are SU3)
representation and generator indicasA are SU2) representation
R = (_1)zs+ 3B+L 3) and generator indicea=0, . . ., 3 is the familyindex of the lepton

P superfield, and =1, . .. ,3 theusual family index of quarks, lep-

tons, and their superpartners. The fermionic components of the su-

whereS s the spin,B the baryon number, and the lepton  perfields are two-component Wey! spinors.
number of the particle. All Standard Model particles includ-

R parity is defined as the discrete multiplicative symmetry
[10]

ing the two scalar Higgs doublets haRg= +1; their super- ~ Chiral SU(3)cXSU(2) xU(1)y Components
partners haveR,= —1. When allowing forR-parity viola- superfields
tion, the full renormalizable superpotential is given[lt] ax 1 -
i (325) (UL) (UL>
W= eaf (Ye); LEHPE, + (Y;);; Q¥HED, - _ 4/t
abl EJijitl1 D/ij i 1Y jx Df (31’%) a’éde
by —
+(YU)|]QaXH ij] Uy (3 1,- 3) EEvUR
1 — ., — L5={HT L7} (12,-3) 7 ho\ [ %
+ €ap E)\ijkl-iaLJbEk'i_)\ijkLiaQ}(kax I (f“) |( _),(~ )
o (\M/ ey
1 Nz a a Vo F'(l) Vi
+26Xyz I]kU D Dy— €apl uH H2+KL H2] (4) =7
a_a hI €
E (1,1,2) & e
Here Ygpy are 3x3 matrices of Yukawa couplings; Ha L e
Nij Nj M are Yukawa couplings ands; are mass- 2 (1.2.3) ho | [h,
dimepsion-l parametersab ande,,, are the totally antigym- )\
metric tensors, withe;,= €105= + 1. The terms proportional
to N,A',N\", andk; violate R parity explicitly and it is their
effect that we investigate in detail in this paper. The termsveCtor SU)ex SU2) = U(L)y Components
" superfields
proportional to\” violate baryon number, whereas the terms
proportional tox,\’, andk; violate lepton number. Baryon- Vv, (1,10 B, B
and lepton-number violation cannot be simultaneouslyy, (1,3,0) WA W)
present in the theory, otherwise the proton will decay rap|dly (8.1,0) =) G(ﬁ)
[12,13. We discuss in detail in Sec. Il how this can be guar- Vs T g7, Gi

anteed.

When extending MSUGRA to allow foR-parity viola- o4 eement. Furthermore, where relevant, they agree with pre-

':jlp_n, thle_ partlclg Cor?te”; remains the ;ellme but we flwlave aGjious (subsets ofresults which have been computed by the
itional interactions in the superpotential, £4), as well as -\ qarq methofB,17].

the soft-breaking scalar potentiaf. Eq. (30)]. Thus within Given the RGEs. we can com
, pute the full model at the

the R, MSUGRA the RGEs must be modified. The running e, scale, including the mass spectrum and the couplings

of the gauge couplings is only affected at the two-loop Ievelof all the particles as a function of our unified scaM y)

and the effects_have been discussed in Ref]. Reference boundary conditions. In our numerical results for the

[14] also contains thdR, two-loop RGEs for the superpo- R, MSUGRA, we extend the parameters given in Eq.by

tential parameters. Here we restrict ourselves to the one-log

RGEs. In order to fix the notation, we present the RGEs fo(E)nly one R, coupling. We thus have

the superpotential couplings as well as the gauge couplings (NN N, Mg, My, Ag, tans, sgr( i) (5)

in Appendix A. Due to the flavor indices, the RGEs for the

soft supersymmetry breaking terms are highly coupled tas our free parametershty . {\,\',\"}; indicates that only
each other. In Appendix B, we discuss a very elegant methodneRR, coupling is nonzero a1y . We note that through the
developed by Jack and Jongkb] to derive the full set of coupled RGEs many couplings can be nonzerdat and
RGEs for the soft-supersymmetry breaking terms and applshis is taken into account in the numerical implementation of
it to the case of th&k, MSUGRA. As we discuss, Jack and our RGEs.

Jones’ method is more easily implemented in a numerical Due to existing experimental bounds on the X',\")
computation. We also independently calculate fhéunc-  [18,19, the couplings are typically small and we thus expect
tions of the theory by using the formulas from REif6]. The  the deviations from MSUGRA due 8, to be small. How-
resulting RGEs for the soft-supersymmetry breaking termver, besides the RGEs discussed above, there are four im-
are given explicitly in Appendix C. We have checked that ourportant aspects where there are significant changes and
results for theB functions in Appendixes C and D are in full which we discuss in detail in this papei) the origin of
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lepton number violation(ii) minimizing the scalar potential, determined in Sec. VII A and are very strict for the specific
(i) neutrino masses, an@) the nature of the lightest su- MSUGRA point SPS1a, but are fairly sensitive to the precise
persymmetric particléLSP). choice of parameters &y . The bounds are summarized in
(i) Since the discovery of neutrino oscillations, we know Table Ill. In Refs.[8,23], it was argued that such bounds
that leptonflavor is violated. If the observed neutrinos have exist, however no explicit bounds were determined and the
Majorana masses, then leptoonmberis violated as well. In  full flavor effects were also not considered. Here we present
theR, MSSM, the lepton number is naturally violated in the for the first time a complete analysis of the corresponding
superpotential by the Yukawa couplings,{’) as well as bounds. In a future publication we will address the possibil-
the mass terms; . In Sec. Il, we discuss the origin of these ity of solving the atmospheric and solar neutrino problems
terms in high-energy unified theories and argue that they areithin our framework.
just as well motivated as in tHe-parity conserving case. For (iv) In the MSSM and MSUGRA, the LSP is stable due to
this we reanalyze the seminal work @3 and Z; discrete  conservedR parity. It can thus have a significant cosmologi-
gauge symmetries by lbanez and R4&€]. We find a cal relic density{29—31]. Observational bounds require the
slightly different set of allowed operators, but the conclu-LSP to be charge- and color-neutfall] with a strong pref-
sions remain the same. erence for the lightest neutraling. In R, the LSP is not
We argue that within supergravity, with gravity-mediated stable and thus not constrained by the observational bounds
supersymmetry breaking, it is natural to have betk 0 and  on relic particles[32]. Therefore, any supersymmetric par-
D;=0 at the unification scaléMx . This has not been taken ticle can be the LSP,

into account in previou®R, RGE studies[Here D, is the

corresponding soft supersymmetry breaking bilinear term to = 0 T+ e ‘

«;, cf. Eq.(30).] This reduces the number of parameters we 9ox X Gene bic e Vimi2a (D)

must consider to the set given in E&). At the weak scale, o

however, in generak;,D,#0, but these are then derived Wherex?,x; denote the lightest neutralino and chargino,

quantities. andg; ,€;",v; denote the right- and left-handed squarks and
(i) Since the lepton doublet superfieldd have the same charged sleptons as well as the left-handed sneutrinos, re-

gauge and Lorentz quantum numbers as the downlike Higgspectively.

doubletH,, we effectively have a five-Higgs-doublet model = Depending on the nature of the LSP, the collider phenom-

for which we must minimize the scalar potential. Within our enology will be completely differeriB4]. It is not feasible to

RGE framework, this must be done in a consistent approacktudy the full range of signatures resulting from the different

while maintaining the value of ta given at the weak scale possible LSPs in Eq7) or the different possible mass spec-

and also obtaining the correct radiative electroweak symmeéia. It is thus mandatory to have a well-motivated mass spec-

try breaking[21]. In Ref. [7] (bilinear R-parity violation),  trum, including the LSP, as in the MSSM and MSUGRA.

points were tested to see if they minimize the potential forBelow, in Sec. VI, we determine the nature of the LSP as

the casein their notation B=D;=A,— 1. We have directly Well as the rest of the mass spectrum as a function of our

minimized the potential and do not make the latter additional"Put parameters. In the no-scale supergravity models, we

assumption_ |nstead’ we determé:v)i via electroweak ra- find Significant ranges where thEIE the LSP. In Sec. VIII
diative breaking. If we obtain a point with radiative breaking we discuss the phenomenology of-d.SP.
of color or electric charge, we disregard it. We also go be- The case of a stau LSP, to our knowledge, was first dis-
yond the numerical approximations made in H&f.to ob-  cussed in Ref[35] in the framework of third-generation bi-
tain the full result. The technical details of the iterative pro-linear R-parity violation. In Ref.[36], the case of trilinear
cedure are given in Sec. IV. R, was considered, with the focus on the comparison be-

(iii) Due to the coupledR, RGEs, a nonzera. or N\’ tween charged Higgs and stau-LSP phenomenology. We go
together withu(My)#0 will generate nonzera;'s at the  beyond this to present a systematic analysis of all possible
weak scal€8,22,23. The «;’s lead to mixing between the stau decays depending on the domin&yt coupling and
neutrinos and neutralinos resulting in one nonzero neutringlassify the resulting signatures. For a recent analysis on
mass at tree levgR4—-26. Thus one or more nonvanishing charged slepton LSP decays in the presence of trilinear or
(N,\") at My will result in one massive neutrino at the weak bilinear R, couplings, see Ref37]. There, only two-body
scale via the RGEs and the. Requiring this neutrino to be decays are considered and the parameters are restricted to the
less than the cosmological bound on the sum of the neutrineimultaneous solution of the solar and atmospheric neutrino
masses determined by the Wilkinson Microwave Anisotropyproblems. In Sec. VIII we present the general analysis.
Probe (WMAP) Collaboration[27] using their data com- Very recently, in Ref[38], the nature of the LSP in cor-
bined with the 2 dimensional Far Galaxy Red-Shift Surveyrelation with the neutrino properties was studied in bilinear
(2DFGRS data[28], Ry, i.e., the trilinear couplingsj ,Ajj ,Ajjx are all set to
zero by hand. Since also the dependence on the supersym-
metry breaking parameters is not the focus of the investiga-
tion, this work is complementary to ours.

A stau LSP withR-parity conservationon the lab scale,
thus gives a bound on tha. (\') at My. These bounds are i.e., the stau is stable in collider experiments, has been dis-

> m,<0.71 eV, (6)
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cussed in Ref.39]. For completeness we mention that within  In string theories, we need not have a simple GUT gauge
R-parity conservation several authors have considered thgroup. Thus models exist for both lepton- and baryon-

case of a gluino LSIP40]. number violation[41], and there is no preference f&,
conservation ofR,. However, discrete symmetries can be
B. Outline problematic when gravity is included. Unless it is a remnant

L of a broken gauge symmetry, the discrete symmetry will be
_In Sec. Il, we present the motivation for supersymmetryp oken by quantum gravity effecié2]. The requirement that
with broken R parity and discuss the possible origins of ihe griginal gauge symmetry be anomaly-free can be trans-
baryon- and lepton-number violation. We focus in particularateq into a set of conditions on the charges of the discrete
on the origin of the_;H, mixing. In Sep. III,'We present the symmetry[20,43. Considering the complete set @ and
full set of parameters and interactions in the MSUGRAZ ' giscrete symmetries, and the particle content given in
model with brokenR parity, including the SUSY breaking 1,pje I, only thez, symmetryR parity, R,, and theZ,

parameters. In Sec. IV we discuss the radiative eIectroweag;g/mmetr _ ; N
S . S yB3;=R;L3 [44] are discrete gauge anomaly-free
symmetry breaking including the full minimization of the %20]_ B, is 3bary36n3 parity and allows for the interactions

LE,LQD, andLH, but prohibitsUDD.
This, however, does not completely solve the problem of

Higgs potential. In Sec. V we determine the complete mas
spectrum as a function of our parameters. In Sec. VI w

discuss the boundary conditions we imposé/gt and their
gproton decay. In supersymmetry, there are also dangerous

numerical effect. In Sec. VIl we present our main result i ion-5 ¢ hich violate lept b
including the bounds we obtain on tRg Yukawa couplings Imension-> operators which violate fepton or baryon num-
ber. The complete list is

from the WMAP constraint on the neutrino masses. In Sec.
VIII we discuss the phenomenology of the stau LSP, classi-

fying possible final-state signatures at colliders and comput- 0:=[QQQLJr, O;=[UUDE],
ing the stau decay length. We offer our summary and con-
clusions in Sec. IX. _ _ _ 0;=[QQQH,], O,=[QUEH,]¢,
We present two methods for computing these equations in
Appendixes A, B, and C. We present the complete set of Os=[LLH,H,]r, Og=[LHH,H,]¢, 9)

RGEs at one loop in Appendix C. In Appendix D we com-
pute the four-body decay of the stau. - _
O;=[UD*E]p, Og=[H;H;Elp,
II. ORIGINS OF LEPTON- AND BARYON-NUMBER
VIOLATION 0g=[QUL*]p, 01=[QQD*]p,

In this section, we investigate general aspects of the origin o
of baryon- and lepton-number violation in supersymmetryWhere we have dropped gauge and generation indices. The

and thus the motivation foR-parity violation[12]. We then ~ SubscriptsF,D refer to taking theF or the D term of the
discuss in more detail the origin of theL;H, terms in the  9iven product of superfields. We differ from R¢20] in that

context of only lepton-number violation. In particular, for the & have dropped the operafdd,H,e" o, which vanishes
following, we would like to know under what conditions identically, and we included the operaf@@Qd" Jp. As in
after supersymmetry breaking we can rotate away both th&kef. [20], we have systematically studied whid or Z5

xiLiH, terms and the corresponding soft breaking termsymmetry allows for which dangerous dimension-5 opera-
B1.H tors. Our results are summarized in Table Il. We find some
ikifz.

slight discrepancies with Ref20]. Furthermore, we have
. . added the bilinear superpotential tewyl;H, (« term) not
A. Discrete symmetries presented in Refl20]. As expected, the, term and thex
In the MSSM in terms of the resulting superpotentl, term go hand in hand in generalized baryon parity models
parity is equivalent to requiring invariance under the discretd GBP) but the opposite is true for the generalized matter
symmetry matter paritj12]. If instead we require invariance (GMP) or lepton (GLP) parity models: since the. term

under baryon parity, should, phenomenologically, be a nonzero parameter, the
GMP or GLP models containing the term are experimen-
(Q,U, _) — —(Q,U,E), tally excluded. The requirement of neutrino masses excludes
— — also the GMP and GLP models which do not allow for the
(L.EH1,Hy) = (L,EHy1,Hy), (®) AL=2 term:LLH,H,. These models do not have any other

_ _ source within perturbation theory to incorporate neutrino
we allow for the termd.LE, LQD, andLH, in the super- masses. From the models left, ig&MP : R,; GLP :L,,Lg;
potential, while maintaining a stable proton. Similarly, leptonGBP : R,L,,RsL3] only two can be induced from broken
parity only allows for theUDD terms. Thus when allowing and anomaly-free gauge symmetries: these are the GRJIP:
for a subset oR-parity violating interactions which ensure (the usualR-parity cas¢ and the GBPB;=R3L 5.
proton stability, we must employ a discrete symmetry which Thus what we see from Table Il is that although the
treats quark and lepton superfields differently. In grand uniMSSM R parity is capable of eliminating the dimension-4
fied theoriegd GUTS) this is unnatural, as we discuss below. operators, it is1ot capable of eliminating those of dimension
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TABLE Il. In the left column we have the complete list of independénandZ discrete symmetries as [R0]. GMP, GLP, GBP denote
generalized matter parity, lepton parity, and baryon parity, respectively. In the top row we have the complete list of dimension-5 operators
which violate baryon or lepton numbjsf. Eq.(9)]. We have also included the operatdyH,. The symbol; denotes that the corresponding
operator is allowed by that discrete symmetry. There are a few discrepancies compared 20|Ref.

HiH, LH; QQQL uubpE QQQH QEHl LLH2H,;  LHiHzH, H’;HlE QUL* UD*E QQB*

GMP:

R,

AzR>
Rs

R3A; N N N N N N N N
RsAsL3 N N N N
Rsl3

Ag

AsL3

GLP:

L,
AL,

Ls N N N
RsAZL;

ReASLS J N J J J J J

GBP:

Ry,

R2AzL
Rals

AszL; J

R3AsL 3

5. Both dimension-4 and dimension-5 baryon-number violatchange sign prohibits both terms in E§O) and guarantees
ing operatorsare not allowed if the Z;-discrete symmetry thatR, terms are not generated onS&J(5) is broken.

B;=RsL 3 is imposed instead of tHe-parity (R,) symmetry. Alternative (discrete symmetries can also be considered.
In this paper, we study the phenomenology of the modeln Ref. [24], a discrete fivefoldR symmetry is constructed
based on the discret®; symmetryB;=R;L 5 [45]. which prohibits the terms in Eq10). However, after break-
ing SU(5)—SU(3)XSU(2)xU(1) and integrating out the
B. Grand unified models heavy fields, the operatoks¥;® 5 are generated, resulting in

] ) bilinear R-parity violation. The size of the coupling depends
In GUTSs, quarks and leptons are in common multipletsypy the vacuum expectation values of the large dimensional
and this simple approach does not suffice. We consider thﬁiggs field representations which bre&U(5). Similar

case of the gauge groussJ(5) andS((10) separately. symmetries can also be constructed to obtain trilinear
R-parity violation. This was done in the case of “flipped”
1. SU() SU(5)xU(1) in Ref.[46] and is easily transferred to the
In SU(5) models, the trilinear and bilined&-parity vio-  case ofSU(5). The question of whether it is possible to

lating terms are given, respectively, by obtainR, in GUTs with a largeAL/AB hierarchy was also
addressed in Ref47] employing a modified version of the
hij Vi VX, kWPs, (100  minimal SU(5), where a built-in Peccei-Quinn symmetry is

broken at an intermediate scale.
where V¥ is the 5* representation containing tHe and L
superfields X is the 10 representation containing tr@,U, 2. S0(10)
and E superfields, andbs is the Higgs superfield in ths In SO(10) GUTs[48], B-L is a gauge symmetry and thus
representation. h;, are Yukawa couplings andk; R parity is congerved._ Ex_pI|C|tIy, the matter f|elds of a family
dimension-1 couplingsi,j,k are generation indices. Unless &€ combined in dspinoria) 16 representation and the op-
hij <1013, this leads to unacceptably rapid proton decay&"at0rs
Thus this term must be forbidden by an additional symmetry.
The generalization of matter parity where noWw and X Rijk=16-16;- 16 (13)

115002-5



ALLANACH, DEDES, AND DREINER PHYSICAL REVIEW D69, 115002 (2004

are notSO(10) invariant.(Again, i,j,k are generation indi- renormalization-group equatiori$,22,23. However, if k;
ces) As in theSU(5) case, one would now expect to gener-and D; are aligned after supersymmetry breaking, then we
ateR-parity violating terms after breakingO(10) andB—L. can choose a basis wheke=D,=0 at the supersymmetry

However, as shown in Ref49], surprisingly, this depends oa1ing scale. At the electroweak scale, we then have a

[ he Hi i h f he . . ~ -
Etr?;lgr?/gon the Higgs representations chosen to perform t Sredlctlonfor both k; and D; through the renormalization-
If we include a 16,-Higgs representation to break 970UP equationsRGES$, given the initial choice of basis. We

SO(10), as well as higher dimensional Higgs representafire thus interested in the conditions for alignment after su-

tions, we have the nonrenormalizable operators persymmetry breaking in various unification scenarios, in or-

, der to predictx;(M5) andD;(M;).

Nijkn=16-16,- 16,- 164- G(H), (12 We first consider the general superpotential of ),
restricted for the casp = k;=0. It is invariant under a dis-

whereG(H) is a function of the higher-dimensional Higgs creteR symmetry[53], where the chirasuperfieldshave the
representations. When the Higgs fields get vacuum expectgollowing R-quantum numbergs4]:

tion values SO(10) is broken and in generBparity violat-

ing operators will be generated. The exact nature of the ret. E Q u. D. H, H,
sulting R-parity violation depends on the employed Higgs ' : :

fields and can be consistent with proton decay experiment3 -2 -1 -1 -1 0 0
[50].

Instead, we can explicitly exclude 5, representation
and brealS(10) by a126-Higgs representatiop9]. Since  The yector superfields have zero charge. Each term in the

Rijk i_s an odd product of spinorial representati_ons, itis itselfsuperpotential must have charge-2, which is canceled by
a spinorial representation. Without6, there is now no  he charges of the Grassman coordinates. Thus all trilinear
spinorial Higgs representation and thus $6(10) invariant terms exceptUDD are allowed. Note that since this is &n

combination symmetry, the fermionic components of the chiral and vector
Rij-G'(H), (13) superfields have a different charge than the superfield. In
particular, theR-parity even components of the chiral super-
whereG’ (H) is a general tensor product of Higgs represenfields have the quantum numbers of the conventional lepton
tations. Thus after spontaneous symmetry breaking the ogumber. With this somewhat unusual symmetry, we have en-
eratorsRyj, cannot be generated and there is no explicitsured lepton-numbegonservatiorfor the SM fields[56].
R-parity violation in the theory. However, in principR par- However, the phenomenology of this superpotential is un-

ity can still be broken spontaneously witv)#0 or (»°) ~ acceptable. Below we show that if,; ,B,D;=0, the CP-

=0, wherer® is a right-handed neutrinavhich in this paper ©dd Higgs boson mass, =0 and the lightest chargino mass
is only included in this discussion d0O(10)]. With the M;(lrSO(SO GeV), both in disagreement with observation.
absence of 46, it was shown in Ref[49] thatF flatness at m,=0 due to the Peccei-Quinn symmetry of the superpoten-

the GUT scale require&°)=0. This is also stable under the tial- We thus demandc;, . #0, in order to get consistent
renormalization-group equations. At the GUT scale we musPU(2)xU(1) breaking and a sufficiently heavy chargino.
also have(7)=0, otherwiseSU(2), would be broken at This in turn introducesepton-number violatiorior the low-

N ~ energy SM fields.
Mgur. Similarly at the weak scale, we must demapng The parameters; and u are dimensionful and in prin-

=0 in order to avoid an unobserved Majoran. Thus in thisgip|e present before supersymmetry breaking. The only mass
modelR parity is conserved at all energies and guaranteed b¥ e in the theory is the Planck scald{), and we thus
a gauge symmetri9]. . . . expectk;,u=O(Mp). Experiment requireg.=O(M5) and

We conclude thaa priori there is no preference in super- <\ (The latter strict requirement is due to neutrino
symmetric GUTs for or againdR-parity violation. Finally, masses, as we discuss in detail bejoRhis is the well-

we note in passing that there exist few attempts in the "teraknown 4 problem[58], modified by the presence of the
ture to construct superstring models which accommodate thﬁ,] the following, we discuss the origin of the weak-sca.le

lepton-numbei,, couplings[51]. andk; terms and their corresponding soft terms. We can then

determine under what conditions tkeandD; can be simul-

taneously rotated away at the unification scale. We begin by
It is well known that through a field redefinition of the  discussing supergravity theories where there are several pro-

andH; fields, thek; terms in the superpotential E) can  posed solutions to th@ problem[55,58—6Q. We review

be rotated away at any scd@4]. The full rotation matrix in  them here in light of the additional; terms.

the complex case was only given recently in R&2]. After

supersymmetry breaking, however, they can only be rotated )

away jointly with the corresponding soft breaking terms D. Supergravity

DiLiH,, if x; andD; are aligned22,26. Even if they are We consider a set of real scalar fieldsfor the hidden
aligned at a given scale, this alignment is not stable under theector and a sst, for the observable sectft]. Collectively

C. Origin of the ;L ;H, terms
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we denote thenZ,. The supergravity Lagrangian dependsthen the soft-breaking term(y) is a linear combination of

only on the dimensionless scalar functigtahler potential

[61],
G(2,2%:Ya,y™) = —d(z,2%ya,y**)IM3
—log(f(z;;ya)/M3). (14

Hered determines the Kaer metric and is the superpoten-

tial, which is a holomorphic function. The scalar potential is .

given by

1
V=—Mgexp —9)[3+Ga(G 5G]+ 5D.D*

d(Zs, 2
ZEX[(L [(d_l)éFATFB

2
P

1

—3fT(zA*)f(zA)/M§]+EDaDa. (15)

Here GA=0dGldZ,, and

52 -1
(G He=—", (16)

° ZNIZB*

_0f(Zp) _,0d(Zp,Z%)

A=z, +M Tf(ZA)a (17

the superpotentia(y) andy,dg(ya.)/dy, [62] and thus each
term is proportional to the corresponding termgity). The
condition (19) is quite natural. If thez; all transform non-
trivially under only the hidden-sector gauge group andythe
transform nontrivially only under the observable sector
gauge group, then combined with the requirement of renor-
malizability we obtain the conditiofil9).

We now consider theobservablesector superpotential
given in Eq.(4). If our superpotential at the unification scale
satisfies Eq(19), the D; will be aligned with thex; after
supersymmetry breaking and they can be simultaneously ro-
tated away. Or looked at differently, before supersymmetry
breaking we can always rotate the field$, such thatx;

=0. If we then break supersymmetry at this scale, while
obeying Eq.(19), we automatically obtairD;=0 as well,
since the coefficients im(y,) are proportional to those in
g(y,). Thus in the case of a renormalizable superpotential
we expect universah andB terms and thus an alignment of

x; andD; at the unification scale.

E. Implementing a solution to the u problem

The most widely discussed solution to theproblem is to
prohibit theuHH, in the superpotential via a symmetry, for
example, arR symmetry, and instead introduce a nonrenor-
malizable term into the Kaer potential G, which results in
the u term after supersymmetry breaking. By using the mass
scale inherent in supersymmetry breaking, one then obtains
u=0O(Mj3). This was first proposed by Kim and NillgS8],

and D“ is the auxiliary field of the vector superfield. The who introduced the nonrenormalizable term into the super-

derivatives ofd ! are defined analogously.

potential f. The R symmetry was global and the resulting

The most general form of the low-energy scalar potentiabixion was phenomenologically acceptable. Giudice and

after supersymmetry breaking [i62]

ﬂg(y))T( ag(y)
IYa Ya

) +m3,SanYaYh
T 1 [e3 o
+mg L h(y)+h'(y)]+ ED D“. (18

Here g(ya) is the superpotential for theow-energyfields

Masiero [59] introduced a nonholomorphic term into the
Kahler metric functiond instead, also invoking aR symme-
try to prohibit terms in the superpotential. The details of the
axion were not considered. In certain cases, the two mecha-
nisms are equivalend63]. In the following, we briefly con-
sider the implications of Ref58] for the «; terms and ex-
tend this to Ref[59].

In the context oR-parity violation, we have both a and
a k; problem. As an example, we introduce the following

and the last terms are the ustaland D-term contributions

to the scalar potential. The second and third terms arise from

supersymmetry breaking. The general constant maigix

1
f'=M—(a2122H1H2+ biZ3Z4LiH2), (20)
P

has in principle arbitrary entries, i.e., the soft scalar masses

can be nonuniversal.

h(y) is a superpotential, i.e., a holomorphic function of

assuming them to be invariant under the symmetries of the
model. In general, we could have higher powers ofzhelf

the Va- In the renormalizable case, it is at most trilinear inthe Peccei-Quinr[64] Charges which prohibit the bilinear

the fieldsy, and contains the supersymmetry breakingnd

terms in the superpotential are lepton-flavor blind but distin-

B terms[63]. g(y) andh(y) are superpotentials of the same g ish 4, and L;, then we would expect the general form
fields and due to gauge invariance thus contain the samg,own abovea,b, are dimensionless constants. Due to the

terms. However, in general, the coefficients are independeri}t“jependent fields.
and thus in particular th& andB terms need not be propor- L

tional to the corresponding terms g(y). But if the super-
potential satisfies

f(zi1ya) =11(z) + fa(ya), (19

we cannot rotate away tHg terms.
After supersymmetry breaking, we get

(214(22)
M

=0(Mp), (21)
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(23)(Z4)
K=y =O0(Mz). (22 e g2
: A% K%-i‘ K% Y K§+ K%
If the fields z; are hidden-sector fields arfd mixes the K1 K3+ K3
hidden and observable sectors, then the soft supersymmetry Cy= , Sp=m——), (26)
bilinears are in general not aligned with tkesince there are \/E \/E

now the additional terms

1 [of of ~ Ca= = 37 =
W 8—2411 )+ a—zi<24> biliH,, (23) s pP+ i?

Here we have introduced the notatieA=3;x>. The more
rgeneral case of complex parameters is given in B&; we
all restrict ourselves to real parameters here. After the
ove field redefinition, the only remaining superfield bilin-
ear term is

which have independent coefficients from the purely hidde
sector. Here we have made use of the hidden-sector functio?{;
f, of EqQ. (19). The resultingk; terms are stillO(My). If a
df119z,_, »,3,~0, then we have alignment.
Alternatively, the Peccei-Quinn .ch-arges can be such that wHH, (27)
H, has the same charge as the This is exactly the case of
theB;=R3L 5 discrete symmetry we discussed in some detai
in Sec. Il A and that we follow in this paper. The charge of
H, and thel; under this symmetry is-2/3. In this case,
Z,Z,=232, In EQ. (20) and thek; terms can be rotated away
beforesupersymmetry breaking. NB; soft terms are gener- 16 23 T TR TR 29
ated in supersymmetry breaking then and we hayeD; T TR, T T R Yy
=0 at the high scale.
We conclude that it is possible to have alignment of thewhere at one loop the anomalous dimension mixingand
bilinear terms at the supersymmetry breaking scale but ndt'1 is given by
necessary. The eventual answer will depend on the underly- -
ing unified theory. We shall assume that we can rotate away y[’_1= y';;l* = —3)\ijk(YD)jk—)\i’jk(YE),-k, (29
the «; terms before supersymmetry breaking. '

(Ni'[h w"=\u?+k? andH}=L}. This will be our starting
bilinear superpotential term 8y in our RGE studies below.
The RGEs for theg; are given by(see Appendix A

with a summation ovey,k implied. (The remaining anoma-
lous dimensions are given in Appendix)A herefore, given

. THE MINIMAL ~ R-PARITY VIOLATING u#0 at My and a nonzero. or \’, we will in general
SUPERSYMMETRIC STANDARD MODEL generate a nonzerg; (M) [8,14,22,23 Below we discuss
The model we consider has the particle content given isP€cial ((jaxcept;pnalll C?SGS where this is nolt the cadse. ‘
Table | and the superpotential given in Eg). Within this In order to fix all the parameters, we also need to know

superpotential, we shall make the assumption that at the unj® general soft-supersymmetry breaking Lagrangian which

fication scaleMy=10' GeV, the termsc;L;H, have been W€ denote

rotated to zero. For real parameters the orthogonal rotation B _ A2y T 2 it 2o 20

on the fieldsZ,, which accomplishes this is given by Lsot= Lo ME) aplptmiy HoHo+QN(Me)Q
+E(mE"+D(m3)DT+U(mZ)UT

L:a: OaB‘C,B ’ (24) 1

(hy)jj iaHkZJUj+ 5

~ambe=
+€ab haﬁk‘c’z‘cﬁEk

and explicitly in components

+h, L3QPDy— b, LAHS+ H.c.

H, C3 -s3 0 0 Lo
/ 1 _—
Li| | CSs €€ —s, 0 |[L; + 5 6y UIDID+Hee.
L2 018283 018203 C]_CZ - Sl £é '
L3 $1S:83 $18:€3 $1C2  Cy [ | Lj + 1 M, BB+ 1 MV OO
(25) 2 2

1 e
+§M39(R)Q(R)+H.c.. (30)

wherec;=cos#é ands;=siné,, and
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Here,E e [Q,ﬁ,S,EZ] denote the scalar component of the whereAV denotes higher-order correctiof&7]. In order to
corresponding chiral superfieldnz2 are the soft-breaking minimize this potential, it is convenient to write the complex
scalar masses. Note that these are33matrices for the neutral scalar fields in terms @P-evenx,,r, and CP-odd

squarks and for the lepton singlets. Howevenz{) ,z; is a  Y2:ta real field fluctuations,

4><:'r ~matrix. (Bw)ij ,haﬁk,h;.jk, a.r?d hii, as m@ll asb, hO=x,+ iy, (35
=(B,D;) are the soft-breaking trilinear and bilinear terms,
respectively. ~

p y V=T tit,. (36)

The RGEs for théD; are given at one loop by
At the minimum the scalar fields thus take on the values

dD, ~ ~ o~ L . (Xg)=vy, (ry)=v [v,=(vg,v1,02,03)], and (y,)
2 ' Lix| Hosii Li L 2 us a ar a dvY1,V2,V3) 1 Y2
167" [7(D'+7y2D'1+Byy —2u(y)y =(t,)=0. The minimization conditions foW e,z Can be
L ho written as
_2[(?’1)L:K +(7’1)H§K'], (31
‘?Vneutral _ ﬁvneutra -0 (37)
with the anomalous dimensiong and the functions ¢,) X2 i ' N | min ’

defined in Appendixes B and C, respectively. These RGEs

are clearly distinct from those fot; above. It is thus clear Wwhere “min” refers to setting the scalar fields to their values
that givenx;(My) =D;(My) =0, we will lose alignment be- at the minimum. We then derive the following five minimi-
tween the two at the electroweak sciel4,22,23 In order ~ Zation conditions, Wherev',,B.z 0,1,2,3 and there is an im-

to describe the weak-scale physics, we thus require the fuRfied sum over repeated indices:

set of parameters given in Eq4) and(30).
RE (M%)t 1 g1V o REb R,

IV. ELECTROWEAK SYMMETRY BREAKING 1 _ ) ) 1 JAV
o ~ 2@ @) o= v st 5 Z—=0,
The full scalar potential is given by dug
2 2
VscalarZVSUSY+Vsoﬂa (32) (mH2+|’ua| )vu_Rdbﬁ)vﬁ

. . . 1 1 0AV
with the supersymmetrie-term andD-term scalar potential + (g% + 9%)(|vu|2— lv|Pv,+ = —=0. (38)

given by[65] 4 2 vy

Here Re denotes the real value and we have written

\/ =V+V
susy= TR D (JAVIIr )| min @S JAVIGv, and @EAV/X)|mn as

owl2 3 g% 2 dAV/dv, . Next, we solve this system of equations. We start
:; B +;1§2A (% DT A n) : by defining[68]
33 v
33 tanﬂzv—u (39
d
respectively, and/soq= — Leore- IN EQ. (33), the fields®, ,
denote the scalar fields in the theory, agd.;, 3 are the and
gauge couplings witly; for U(1)y, g, for SU(2), , andgs
for the SU(3): gauge group. In order to simplify the expres- . 3 ) ZM\ZN
2_ —
sions, we shall use the couplirg=+/2g;. m,n, ... and v =UquUdJrzl vi = @ (40)
- 2

A,B, .... arerepresentation and gauge generator indices,
respectively. The explicit expressions fég andV can be
found in Ref.[66].

In the following, we shall focus on the complex neutral

where in our conventiow =174 GeV. Then the VEV's4
andv, can be written

scalar fieldsh),v,=(hY,7,_,, 4. For these the scalar po- 3
tential is given by U(Zj:coszg(UZ—E UIZ) (41)
=
VneutraI:(maz_l_|Ma|2)|hg|2+[(m%)aﬁ"'p‘z#/}]’;’z;ﬁ 3
2 2 2
~ ~ =sir? - el 42
— (b, 7, h+bE RS v B(” 2 ) 42
1 . . . s
Lo 20 n02_ [T (232 with v; being the three sneutrino VEV’s. The advantage of
N 8(g T2 (|2l *=[v,[)*+Av, (34) using the definition given in Eq$39), (40) is that tang is
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the same in theR-parity conservedRPQ and R, models. In order to solve the above equations, we first deyiven
This facilitates the direct comparison, in particular whenterms ofv,, vq, andv; from Egs.(43) and (45). It is ob-
vilv<l. tained after solving the quadratic equation

Using these definitions and the notatiarf=3v?, the
five minimization conditions in Eq(38) can be written as
(again there is an implied sum over repeated indices

. Au?+Bu+I'=0, (46)
(MG, + #?)og+[(ME )+ i uloi—Buy+ 5 Mcos Bug
with
1 9AV
+z (g2+g2)sm2,8vd(v )+ 5 _o, (43)
~ _ _ kUi
[(mal[i)Jrﬂ*Ki]Ude[(m"E)ji+Kj*Ki]Uj_DiUu A=tarff-1, B=-x vy’ (47
1 2 1 2 A 2
+ 5 Mzcos 28vi+ 5 (g +g3)sintBu;(v?) .
I={|m3 +|,<|2—(g +92)(v )2-B, L tarPB
1 9AV 4 Hy o 1T 2 : vy
E (9U| — Yy ( )
1
, , , L 1, —[mﬁlJr(m ) +§M§(tanz,8—l). (48)
(Mg, + u + | kil )vu—Bvd—Divi—EMZCOSZBvu
- —(gz+gz)SIn2ﬁvu(v )+ 1 &AVZO‘ (450  The solution to Eq(46) can be written in a more familiar
Uy form,
|
x» Vil | 2 1o o o & Ui
my +(m|_H )_ ks My, + | &l —5(9°+g2)vi—Di—= tarf
|M 2: u — —M% (49)
tarfB—1 2
|
We recover the fa~miliar gninimization conditidi®9] in the — 1 JAV
RPC limit «;, v;, By, (Mf , )—0. My, =My, 20q4 dvg (52)
Equation(46), or equivalently Eq(49), has two solutions
for the parametef: ,U,>O and,u<0 We thus retain the Slgn Equat|on(44) can now be cast in the form
of u as a free parameter. Furthermore, the fagfdfv; /v 4)
that multiplies theu parameter in Eq(49) is small since, as 1 9AV
we show below,y;<v4 to obtain a small neutrino mass, (M%)ijvj:_[(mfilt.)+/’“* Ki]vd+5ivu_§Wr
m,=<0(eV). ' i
We can now expresB in terms ofu,v,,v4,v; from Egs. ®3
(43) and (45),
where
~ sin28|( — —
B=—— | [mi, +mi,+2|u|?+ k| i ) 1
(M’;)ij:(mt)ji'f'KiKik"r‘§M§C03285ij
+[(mLH)+K /-l’:l__‘-Ij v (50) (gz+gZ)
u
+ Tzsinzﬁ(vz—vﬁ—vg)&j . (59
where in both Eqs(48) and (50) we have introduced the

simplifying notation

Here we outline the iterative numerical procedure we fol-
i JAV (51) low to obtain the minimum of the potential for a given value
2vu, dv,’ of tanp.

2 _ 2
=m? +
mi,=mi,
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(i) We start in the RPC limit withv;=0 and thus obtain the generic basis, where all VEV'S can be nonzero,
from Egs.(41), (42) initial values forv, anduvq (in vy,Uq,0iF0. We shall strictly follow the conventions of
terms of tang). Grossman and Habé66] which in the R-parity conserved

(i)  We solve Eq(46) [or Eq.(49)] and Eq.(50) also first  limit coincide with those of Haber and Karjg]. We list in
in the RPC limit,p; = 0,;=D; = (m? - )=0, and thus turn the mass matrices and show how they depend on our

o Hali ’ basic parameters, as well as the minimum of the potential
we obtain initial values fop. andB. determined in the previous section. It is then straightforward

(i) We treat,,vq andu,B as known and solve the sys- OF the reader to choose his/her favorite basis or to work with

tem of Eq.(53) in terms of thev,. This system is the basis-independent spectrum given below.

linear and a lengthy analytical expression of the solu-

tion exists. i i i
(iv) We return to the first step and compute the corrected 'O completeness and in order to fix our notation below,

values ofv,,vq including thev;'s using Eqs.(41), we write here the masses of tieand W~ gauge bosons,

(42). The reader should note that t@ruv /vy re- , 1, .,

mains exactly the same as in tReparity conserving M= 592(vy+v5), (55)

MSSM case[see Eqs(41),(42)]. This is the advan-

tage of this formulation—developed for the first time A

in Ref.[68]—and is used throughout this paper. In our Mz=5(9"+g2)(vytvy), (56)

calculation, we include the full one-loop corrections

and the dominant two-loop ones as they have beetwhere agair2=v3+=7_;vf. The photon and the gluons

calculated in the RPC case in Rdb9] but not are of course massless. The reader should note the participa-

R-parity violating loop correctionf67]. tion of the sneutrino VEV'y; in the masses of th&- and

(v)  We repeat the second step but use the nonzero valud -gauge bosons.
of v; as well as the newly computed valuesugf,vg.

At this point we now also include the nonzero values
of «;,D;. The latter could have been included from From Eq.(34), we see that after electroweak symmetry

the beginning but it is computationally more conve- Preaking, the sneutrinosy;, mix with the Higgs bosons

A. Gauge boson masses

B. CP-even Higgs-sneutrino masses

nient to do this in the second iteration. h3,hi{=w,. If CPis conserved, the mass eigenstates separate
(vi) We now iterate the procedure until convergence ofinto CP-even andCP-odd states. Following Grossman and
©,B,0,,0q,v; is reached. Haber[66], let us denote withv, (v_) the CP-even(CP-

odd sneutrino mass eigenstates.Rfparity is broken, the

We have explicitly checked that our iteration procedure jg oSS ofv is in general different from the mass of , i.e.,

very robust, and for all the initial parameters we display inthere IS a sneutrino-antisneutrino mass splitting. T

: ; : even Higgs-sneutrino mass eigenstates are denoted b
our numerical results we have found the iteration procedure 99 9 y

to converge. h%,HO 7', where the maskl,,0<M ,o. They are obtained in
Finally, it is well known that the MSSM provides a the generic basis after the diagonalization of 4% mass
mechanism of breaking radiatively the electroweakMatrix
SU(2) . xU(1)y symmetry down toU(1)., [21]. Elec- 1 X
. . 2
trc;weak_symmetry breaking in the MSSM occurs when £:_§(X2,H)M%P_e\le< ) (57)
mH2<O in Eq. (45). This is indeed realized in the MSSM r

since mﬁz is driven to negative values by the large top where
Yukawa coupling once we employ the RGEs. As we see fromM 2
Eqg. (C18 the R, couplings do not affect directly the “run- CP-even

H n 2 . .
ning” of mg,. However, they do affect the running mﬁl in b,v, (gz+g§) ) (gz+g§)
Eq. (C17 through the mixed wave functiod;—L;. These v, + 2 Uu T T
corrections turn out to be small, sinmfiHl is small, in the = (0?+g?) (0?+q?) ,
minimal supergravity scenario we assume in this paper. Con- —b,— Mvuv ) (mg)yﬁ Mvm
cluding, the radiative electroweak symmetry breaking in the 2 : 2
R, case works in exactly the same way as in the RPC case. (58)

UyUs

with
V. PARTICLE AND SUPERPARTICLE MASSES y 2
. . i . 2 2 (g +92)
In the literature, it is common to make a~specn°|c basis (M) ,z=[(M%) s+ ,u’;,uﬁ]— T(vﬁ—vi)@ﬁ,
choice for theCP-even neutral scalar fieldsy,v,, in par- (59
ticular the basis where only,,v4#0 andv;=0. We shall s
present our results for particle and superparticle masses &nd whereuiziyvzy. Recall thatb,,=(B,D;).
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C. CP-odd Higgs-antisneutrino masses

The CP-odd Higgs-sneutrino mass eigenstates' (and

the massless Goldstone boson in the unitary gaage ob-
tained in the generic basis after the diagonalization of a

X5 mass matrix,

1 Y2
L=— E(yZ'yy)M éP-odd( ) , (60)

Ys

where
b
ava b(s

MEpos=| Vv , : (61)

by (m;)y(‘i

PHYSICAL REVIEW D69, 115002 (2004

Herenr;, is the one-generation version of E§9). Notice the
tanB enhancemerfreduction of the sneutrindHiggs) mass
is due exclusively to amR-parity violating contribution. For

§~31—>0 we havenr;, =nm;, and M,Z_\oz 2B/sin 28 as it should
be

The generalization of the Higgs mass sum rmrefo
+M? Mf\o+ M2 in the RPC case is written here as

HO™
Tr(M %P—ever‘) =M §+ Tr(M %P—odd)' (64)

This is easily verified from the matrix forms o125 e,
and M 25 44 given above. Equatiof64) leads to the follow-
ing Higgs mass sum rule in tHR,, scenario:

3 3

MZo+ Mﬁ,o+21 M%L=Mio+M§+El MZ . (65
i= i= -

For one generation, we obtain two nonzero eigenvalues with

the eigenstates identified as the sneutrino andGReodd
Higgs, respectively,

, 1{ ., 28

m =—{m+—
-2 7V sin2B
\/ , 2B \* P
+ — +4D7(1+ta , (62
v sin2p 1 B) |, (62
1 2B
2] 7 sin2g
\/ , 2B \* p
- m-— +4Df{(1+tal . (63
v sin2p 1 B)|. (63
(m?)1,+D
M gharged: b7+ D:
)\’ﬁcakIU/av,B
with
(M?)g=m + |l (68)
1 2 2 2 2 1 2 2
D=7(02+9) (v [val)+ 500val* (69
1 2
Dgzigzvuvg, (70
(M?) 5= (M) 5+ s (7D)

b5 +Ds
(m2)5y+)\ayl)\ﬁé‘lvavﬂ+ D'y&

*
ha&kva_ N g sk aUy

This sum rule is valid only at tree level and is altered by
radiative corrections. If the heavy Higgs mass st&®snd
HO are degenerate and also the sneutrino-antisneutrino mass
difference is small, then the light Higgs boson mags
would be very close to th&-boson mass.

D. Charged Higgs bosons-sleptons

The charged Higgs bosons mix with the charged sleptons,

o~ o~ *
L=~(hy veLyveRk)Mgharge eLé . (66)

In the basis-independent notation, th& 8 mass matrix is
given by

Npal eV g
ha'ylva_)\a'yll*l’zvu

2
(M) i+ N g ayi gv 4+ Dy

: (67)

1 1
D,s=7(85- ) (vi—vi) s+ 505005 (72

1
(D)|kE§92(Uﬁ_Ui)5|k- (73

The remaining parameters are given in E@d. and (30).
Upon diagonalization of the mass mat(#&7), we obtain the
mass eigenstate@*,H™,€,_; . ¢ Itis not hard to prove
that the determinant of Ed67) is zero and the Goldstone
boson corresponds to the eigenvecter(, ,v,,0,0,0).
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E. Squarks

1. Down squarks

The down squark mass eigenstatels,i=1,...,6 are given by diagonalizing the following mass matrix:

a,

L=—( ti’ EHS)Mgown 3 ) (74)
Ri+3

where in the{d, ,dg } basis we have
2 Ikoy ! 1 2 1 2 2 2 1% 1%
(MR)ij AL jv a0, + 2927 159 (vy— V%) 6ij hGijva= Nij Lol
M Gown= (75)

*

The * denotes the complex conjugate of

The up-squark mass eigenstatesi =1,
{uL,,ug ,} basis:

where

2
(Mg +(YuYh)jivi-
M=

F. Quarks
The down-quark masses are given by

(Mg)ij=NyijVas
the up-quark masses are

(my)ij=(Yu)ijvu,

and the coupling constants are defined in &q.

G. Neutrinos-neutralinos

1
2 ! !
(M) + Nalihpiv v g+ 587050 2) 6
the transposed matrix element, i.e., in the abovetdase { -

2. Up squarks

...,6 aredetermined by diagonalizing the following mass matrix given in the

( up.
2 J
up| ~

URj,s

|

_ (T Tk
L= (uLi,uRi+3)M (76)
1 2 1 2 2 2 * *
7192739 (vi—v2) 5 (h)ijvu=(Y3)ijrav1
1 (77)
* (M3 + (YEYu)oi-30°wi-vh)s,
|
The neutrino-neutralino mass matrixX7 for three genera-
tions of neutrinos in the (—iB,—iW® h% v,) basis is
given by
(78)
~iB
1 —inw®
79 L= Z(—iB-iWORvoMy| |, (80
2 hO
2
Vg

The neutrinos mix with the neutralinos resulting in one
massive neutrino at tree level and four massive neutralinosvhere[70]
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M 0 M Sy M Sy
1 zSw —MzSw——
0 M Mo Mycy—
2 —MzCw—— Cw——
2 2
MN: ) (81)
M Sy M Gy 0
zSw —MzCw — Mg
Ua va O
—Mzsw——= Mztyw—= ~ Ma af
|
with M% given in Eq.(56) andsy,=sin 6, is the electroweak 3
mixing angle. The matrix81) has five nonzero eigenvalues, ,u(Mlg§+ Mzgz)Z Ai2
i.e., four neutralinos and one neutrino. We denote the mass m. = =1 (86)
eigenstatef which are obtained upon diagonalization of the " o wg(Mga+Mog?) —2uM M,
matrix asy) . 4vi-1 . s With the massesvi;o<M3o
<Mg<Mﬁ. with
SinceM,M,,Mz>v;, the matrix Eq.(81) is suggestive
of the well-known seasaw formula, Ki
AiEUi_Ud—. (87)
My m K
= , 82
M=l 1 (82

A redefinition of the phases of the gaugino fielfsaind W
together with the gaugino universality assumptdn=M,
=M, can makeM, and M, real and positive and so the
numerator of Eq(86) cannot be fine-tuned to zefprovided
u#>0(100 GeV)]. According to the universality assump-
tion, the one-loop unification gaugino masses at the elec-
scale are M;=3(a2/a3,)M1, and M,

where M7 is the 4<4 neutralino mass matrix with mass
eigenvalues typically M3 =0O(10 GeV) [71]. The off-

diagonal entrymis a 3xX 4 matrix with entries of ordegv; ,

or i . In Sec. VI, we show and below we estimate that
=0(1 MeV) and thusn<My; . The analogy with the Majo-
rana seesaw mechanism is then obvious under the replacieweak

ments = (a3l aiy)My, where agyr=0g3,/47m=0.041 is the
grand unified coupling constant. Taking into account that
M3=Msusy= Mg v v g< My, which we find in our numerical results below,
we arrive with an excellent approximation at a simple for-
gui £ Mpjrac- (83 mula for the tree-level neutrino mass,
In addition, the 33 zero mass matrix in Eq82) can be 3
filled by finite, loop low-energy threshold corrections in the z A2
R, MSSM as opposed to possible Higgs triplet contributions 16magyri=1
in other neutrino mass models. Therefore, neutrino masses m="""""M (89)
will roughly be given by vz
m? gzvi2 This impliesA;=1 MeV for M,<1 TeV. One can obtain a
m,~ my” susy51 ev. 84 smallA; even withv;~ x;~v but that requires a cancellation

of one part in 18. So the question arises, how can one natu-
For the last inequality, we have imposed the bound fronfally obtain a smallA;, i.e., v;~x;=O(1 MeV)? We will
WMAP in Eq. (6). Bearing in mind possible accidental can- come to this point in Sec. VII.

cellations(see below, we obtain

H. Leptons-charginos

vi,ki=1 MeV for Mge=S1 TeV.

susy~ (85)

The charged leptons mix with the charginos. The La-
A complete calculation of the one neutrino mass eigenvalugrangian contains the (65 for three generations of leptons
at tree level readfs8,75 lepton-chargino mass matrix §86]
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—iw* When determining the mass spectrum, in order to further
5 _ simplify the number of input parameters we will restrict our-
L=—(—1W",e  )Mc hy +H.c., (89 selves to a particular supergravity scenario called “no-scale”
: et supergravity[77]. This scenario predicts a definite relation
Rk betweenA, andM,, namely
where the mass eigensta@ﬁz,(f:(e,ﬂ,r) are given upon
the diagonalization of the matrix, Ag=M(=0 GeV. (99

[ Mz gvy O

C o.M Nkl 90 The “no-scale” scenario, t_he simplest MSUGRA scenario, is
experimentally excluded in the RPC case, but as we show

below, it is allowed in theR, case. Our results for the

bounds on thdk, couplings from neutrino masses should be

Due to the large number of parameters in the supersyninaffected by this assumption providedg,|Ao|)/My,
metry breaking sectdicf. Eq. (30)], we shall focus on the <10. This is becaus&,;, dominates the renormalization-
case of minimal supergravity models. These have a mucBroup behavior.
simplified structure at the high scale, which we assume here In this paper, we only address gravity-mediated supersym-
to be the unification scale of the gauge couplings,  Metry breaking and do not consider other scenarios, such as

=Mgur=0(10'). At this scale, the soft SUSY breaking 92uge{GMSB) [78] or anomaly-mediatetAMSB) [79] su-

VI. BOUNDARY CONDITIONS AT My

scalar masses have a common vaMg; persymmetry breaking. Although the low-energy spectrum
formulas we displayed in the previous section are un-
ma(Mx) =mgy(My) =mg(My) changed, the results for the bounds on Bye couplings or
. the LSP content change dramatically from one model to the
=mp(My) =mg(My)=Mol, (91)  other, as we will see shortly. We hope that this paper serves
as a basis to study the phenomenology of other SUSY break-
My, (Mx) =my, (My)=Mo, (92 ing models.

wherel is the 3x 3 unit matrix in flavor space. Motivated by
the discussion of Sec. lll, we shall assume that we can rotate VIl. RESULTS

away thex; terms before supersymmetry breaking andxno In the following numerical analysis, we use a version of

or (m%iHl) terms are generated through supersymmetrsorrsusy [80] which has been augmented with
breaking at the unification scaM, R, couplings. The beta functions for tHe, MSSM cou-
plings and masses contain the full one-lo@g and RPC
ki(My)=0, ﬁi(MX)z(m%H )(My)=0.  (93)  contributions. The beta functions for the RPC MSSM cou-
t plings and masses also contain the two-loop pure RPC cor-
At the scaleMy, we shall assume one nonzdkg coupling rections. As discussed in Sec. V, small neutrino masses imply
at a time, i.e., one coupling from thaF the sneutrino VEV’_s must _be small. Although we _derlve
their values from the minimization of the scalar potential, we
Nij(My) #0, )\i,jk(MX);éO, )\;’jk(Mx);ao_ (94) neglect them in the calculation of sparticle masses. This is a
good approximation, valid t®(v;/Mgysy<<1, when con-
Due to the CKM quark mixing, tha.’ RGEs are coupled. sidering only the spectrum of sparticles and not the small
Thus in the case of a singke’(Mx) #0 we will have more  mixing induced byR,, couplings. We have checked that the
than one\’ (M) #0 at the weak scale. MSUGRA assump- error induced in the sparticle masses is much smaller than the
tions lead to the same prefactofg,, of the supersymmetry current theoretical uncertainty in the RPC part of the calcu-

breaking trilinear coupling®;j =AY , lation[81-83. TheR, contribution to the SM Yukawa cou-
plings and fermion masses, however, is taken into account as
Au(Mx)=Ap(Mx)=Ag(Mx) described in Sec. V. Radiative electroweak symmetry break-

ing and the determination of sneutrino VEV’s follows the

discussion in Sec. \soFTsusyadds one-loop RPC thresh-

. old corrections to the sparticle and Higgs masses, and takes

A common massM,,, for the gauginos completes the . .

. one-loop RPC threshold corrections into account when cal-

MSUGRA boundary conditions a#ly, . . ;

culating the Yukawa and gauge couplings. For further details
M1(My)=M,(My)=Ms(My)=M . (96) on the RPC part of the calculation, consult Ref0]. Nu-

merical results from the augmented version of the program

No assumption for quark or lepton Yukawa unification hasSOFTSUSY i.e., beta functions, neutrino masses, electroweak

been made in our analysis. We thus have the six parameteR§eaking, the mass spectrum, bounds on the couplings, etc.,
have been carefully checked with an independey®TRAN

Ag,Mg,Mypp,tanB,sgrip) NN, N} (97)  code[84].

=AMy =A, (My)=A(My)=A,1. (95
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We use the input parameters85] m,=174.3 GeV, ’yElOC(YEAE"—YDAD)! (100
MS(M) 0.1172, and m,(m,)MS=4.25 GeV, corre- i

spondlng tomP®®=5.0 GeV at the three-loop level. Other
SM MS masses input aren,(2 GeV)=3.0x10 3 GeV,
mc(my) =1.2 GeV, my(2 GeV)=6.75x10 3, and
m¢(2 GeV)=0. 1175 GeV. The pole lepton masses are takerfYeAg+ YpAp). Throughk;, D; ,(mH I_)a»éO at the weak

as me=5.11x10 * GeV, m,=0.105 66 GeV, andm, scale, we obtain nonzero sneutrino VEVs as can be seen
= 1'?27 GeV2 The .Ferml constant Gg=1. 1667317 from Eq.(53). This in turn gives us a nonzero neutrino mass
X107 GeV'*, the fine-structure constanta(0) as seen in Eq88). In order to estimate the resulting neutrino
:_137'035 99976, anN’Iz:91.1876_GeV are used to deter- mass, we naively integrate the RGEs assuming constant pa-
mine the electroweak gauge couplings. rameters and insert our result into £§8). We obtain

ki(M3), Di(My), and (ma I )(Mz) are also proportional to

A. Bounds on lepton-number violating couplings

2 3

1. Procedure 16macgyr| vg Mgur|?
. . . m,=— In 2 (3)\|Jq YD)jq
We first use the numerical analysis of the RGEs to set 5Myp | 1672 M2 i-1
bounds upon the lepton-number violating couplings
(Nijk ,)\i’jk) from the cosmological neutrino mass bound and 2 ) AS B
requiring the absence of negative mass-squared scalars other ~ +\ijq* (Ye)jq) — i tang |, (10D
than the Higgs bosons and sneutrin@his does not refer to 0 'V' Ma

the physical mass and thus does not constitute a tachyon.
Neutrinos contribute to the hot dark matter and as such can
free-stream out of smaller-scale fluctuations during mattewheref is a complicated dimensionless function of the SUSY
domination in the early universe. This changes the shape gfarameters with typical valugs(10). A similar result was
the matter power spectrum and suppresses the amplitude obtained some years ago by Naf@s3]. In Eq. (101), we
fluctuations. Combining the 2dFGRS d&g8] together with  explicitly see the dependence of the induced neutrino mass
the WMAP measuremeri27], one can thus set a bound on on the product oR, and Higgs-Yukawa couplings from Eq.
the neutrino mass at 95% C.L., (100. Given a neutrino mass bound, e.g., E89), we can
thus derive bounds on thR,, couplings. In the case where
the downlike quark or the charged lepton mass matrix are
E m, <0.71 eV. (99) diagonal, only theR , couplings)\i’kior \ikk iInduce neutrino
i ' masses. Thus in the case of theE operators, since we do
not include lepton mixing, we only obtain bounds By,
Scalar mass squared values can be driven negative durirg. Table IV. For the quarks we include the CKM mixing and
the RG evolution between the GUT and the weak scale, agus obtain bounds on all’, cf. Table Ill.
happens to the Higgs boson in radiative electroweak symme- Equation(101) works as an order of magnitude estimate.
try breaking. But if any of the electrically charged or color Setting ag,r=0.041, M,,=250 GeV, taB=10, Y,

MSSM scalar fields develop negative mass squared values;0.18, andf=10 and using the WMAP bound E(9), we
QED or QCD would be broken, in conflict with observation. gptain

We therefore reject such values 0f\’.

Neutrino mass and charge- and color-breaking minima
bounds depend not only upon tig couplings, but also on 3
the RPC SUSY breaking parameters. For a definite quantita- 2 3\ - (Yo)
tive analysis, we therefore take an example set of SUSY < ijg"\ 'D
breaking parameters. We choose the SPS1a MSUGRA point
[86] which has the following parameter valued,

=100 GeV, M1,=250 GeV, and trilinear coupling®o  \ith v,=0.18, we thus obtain the single bounds<3
= —100 GeV atMy. tan(Mz) =10 andu>0 are alsoim- . 14-5 " £\ numerical integration shows that 5,,<6

posed. 6 : .
As stated in Sec. |, a single nonzeRy coupling atMx i>r<1 %r?e fuﬁl;tiir;[?at the only tapy dependence in E101) is

will generate through the coupled RGEs nonzef¢My), Another interesting remark arises from E@.01): the

= 2 . .. .
Di(Mz), and my 7 )(Mz). This is seen explicitly in the nigher the ultraviolet scale iéhere denoted ablgy), the
RGEs in Eqs(28), (29), (B3), and(B16), where the anoma- larger the resulting neutrino mass and the stronger the bound

lous dimensiony/* couplesw and «; as well as the soft- on theA’,\. Therefore, for the MSUGRA scenarit gyr

i =2x 10" GeV, the bounds are stronger than for the GMSB
model whereM g, must be taken at the intermediate ener-
anomalous dimension gies 16! Gev.

Nijg- (YE)jq]<2X1075. (102

breaking sfermion masses, e.@%, with (mali). Since the
|
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TABLE IIl. Upper bounds upon trilineax’ couplings for SPS1a in the quark mass eigenbasis at the weak
scaleM; and in the weak eigenbasis at the GUT sddlg,r. The quark mixing assumption is shown in the
first row for each case. Input parameters are given in the text. A supersctipt dénotes the fact that the
strongest bound comes from the absence of tachyons or the neutrino mass constraint, respectively.

No mixing Up mixing Down mixing
MGUT MZ MGUT |VIZ |v'GUT MZ
Nt 1.3x10°% 4.3x10°° 1.3x10°%" 4.2x10°8 7.2<10°% 2.3x10°°
N1 1.3x10°% 4.3x10°3 1.3x10°% 42x10°3 7.2x10° 4 2.3x10°3
Nig 1.3x10°% 4.3x10°° 1.3x10°%" 4.1x10°8 7.1x10°% 2.3x10°°
Mot 0.13 0.39 0.13 0.38 3.6<10° % 1.1x1073
Mooy 0.13 0.39 0.18 0.38 3.6<10° % 2.3x10°°
Nor 0.13 0.39 0.13 0.38 3.5¢10°% 1.1x1073
Nia1 0.18 0.40 0.1% 0.40 6.4 104" 1.8x10°2
Nz 0.18 0.40 0.1% 0.40 6.4<10° 4 1.8x1073
Niar 0.18 0.40 0.1% 0.40 6.4 104" 1.8x10°3
N2 0.13 0.39 0.13 0.38 3.6<10° % 1.1x1073
Nio 0.13 0.39 0.13 0.38 3.6<10° 4 1.1x10°3
N31p 0.13 0.39 0.1% 0.38 351074 1.1x10°3
No2 7.5x107%" 2.5x10°° 7.2x107%" 2.4x1074 7.4x107% 2.4x1074
Moo 7.5x10°%" 2.5x10°° 7.5x10° %" 2.4x10°* 7.4<10°% 2.4x10°4
Moo 7.5x 1075 2.5x10°° 7.5x107%" 2.4x1074 7.3x107%” 2.3x1074
Nig2 0.18 0.40 1.7 1072 5.1x1072 5.4x 105" 1.4x10°*
Nbgo 0.18 0.40 1.7 1072 5.1x10°2 5.4x 1075 1.5x1074
Niz2 0.18 0.40 1710 5.0x 1072 5.3x10°%" 1.5x10°4
Mis 0.13 0.39 3.%x10°% 1.0x1072 5.7x 1074 1.8x1073
Nbis 0.13 0.39 3.%x10°% 1.0x10°2 5.7x10° 4 1.9x10°3
Nis 0.13 0.39 3.410°% 1.0x1072 5.7x 1074 1.9x1073
N2z 0.13 0.39 4.6<10°%" 1.4x10°3 4.8x10°% 1.6x10°4
Noos 0.13 0.39 4.6<10°% 1.4x1073 4.8x107%" 1.6x1073
Nios 0.13 0.39 4.5¢10"%" 1.4x10°3 4.8x10°% 1.6x1074
Miss 2.2x10°% 6.3x10°° 2.6x10°° 3.9x10°° 2.2x10°% 6.3x10°°
N33 2.2x10°%" 6.3x10°° 2.2x107%" 1.4x1073 2.2x10°% 6.3x107°
N3 2.1x10°% 6.2X10 6 2.1x10°% 6.2x10 ¢ 2.1x10°% 6.2x10 ¢

We also have to remark here on another independerRefs.[66,87]. Since the mixing in the first and second gen-
source for neutrino masses in tiis, MSUGRA scenario eration is negligible and also sleptons are almost degenerate,
coming from finite threshold effects involving squark-quark the finite neutrino effects of Eq103) are not significant for
or slepton-lepton loops. The resulting neutrino masses arte heaviest neutrino as compared to the ones induced from

given by[66,87 Eq. (101). For the third generation we find
m;, mg,
1
(ml,?()p)ij: z 7\ik|)\j|km esin 2(;') fln In—
3272 ki K K me mlo°P g
(sz = 2 . 210*2. (104)
2 m, agur3my | Meyr|”
n; In f
3 ’ ' de: d dll M1/2 ™ Ile
T > Nika N i sin 2¢In—-—,
327° k|l G
2

The above estimate shows that bounds derived from Eg.
(101) are stronger than those derived from E#03) [89].
Thus the new bounds on th&, couplings presented in
Table Il are determined using the constraint B9), the full
solution to the one-loop RGEs, and an accurate numerical
ton (squark mass eigenstat¢88]. More details are found in diagonalization of the neutralino/neutrino mass matrix.

(103

with m{ (mE) the lepton(down-quark massesg’ (¢%) the
slepton(squark mixing angles, ananj (nig ) are the slep-
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2. Quark bases (a) D.r=1, U r=1,

Before discussing our results, we must insert a discussion (b) D.r=Vekm: ULr=1,
on bases. In our initial parameter set at the GUT sfefle U ' _v D ’ _1 113
Eq. (97)], the R, couplings are given in the weak-current (© LR™ YCKM»  HLR™ = (113

eigenstate basis. Similarly, the Higgs-Yukawa coupling may, these three scenarios, the mass matrices at the weak scale
tricesYe,Yp,Yy and_thg co_rrespondlng mass matrices arenq in the weak current basis are then given by
also given in this basis, i.e., in general they are not diagonal.

The matrices are diagonalized by rotating the left- and right{a) My(Mz)=[Mylgiag M2),
handed charged lepton and quark fields from the weak basis
(w) to the mass basign), my(Mz) =[Mylgiad M2),
(€'R)i=(ELr)ij(e'R); s (105 (b Mg(M2) =V [Maldiag M2) -V »
My)= iadMz),
(Ul = (Ueg)yy (Ul'g), (106 MutM2) =Myl M2)
- N (©) Ma(Mz) =[Mgldiad M2),
(d{r)i=(DLRr)ij(d R); - (107

My(Mz)=Vem-[Myldiag M2) - Vi -
In general, the rotation of the left-handed fielésg.,U,) is (114

different from the right-handed field4Jg). In the weak ba-

sis, due to .the nondlagona}l elementsYi,Yp,Yy, th.e Thus in each scenario, the matriceg(M,),m,(M,) are
RGEs for differentR, couplings are coupled. Thus given getermined uniquely in terms of their eigenvalues and the
one coupling atMy in the weak basis, we will in general cxm matrix.

generate an entire set lst, (in the weak basijs In order to The Higgs-Yukawa matrice¥,, , are proportional to the
perform this computation, we must know the explicit form .45 matrices. Therefore, in each scenario of EtE3),

for the Higgs-Yukawa matrices. However, experimentally all(114) the RGEs are fully determined. Given a set of

we know is the CKM matrix at the weak scale, R, couplings atMy (of which we will only choose one here
+ to be nonzerp we can then compute tH,, couplings(in-
Vekm =U Dy, (108 cluding «;) at the weak scale in the weak current basis.

. . . . Given the full set of parameters Bt,, we can diagonalize
as well as the diagonal matrices in the mass eigenstate basife neutrino/neutralino mass matrix in E§1) and compute
the neutrino mass. For a check this neutrino mass should be

[Mg]giad Mz) = diagmg ,mg,my) (Mz), (109 identical with the one derived in E¢86). We can then use
the experimental bound on the neutrino mass, @§), to
[My]diag Mz) = diagmy,mc,m)(Mz). (110  determine a bound on tfR, coupling,in the weak current
basis
For Vexw » We use the central values of the mixing angles in  FOr comparison with experiment we must rotate to the
the “standard” parametrization detailed in RE85], quark mass eigenstate bases in scendisand (c), Eq.

(113. To do this, we follow the procedure of R¢B0|. For
$,=0.2195, 5,,=0.039, s,,=0.0031. (111 scenario(b), with all the mixing in the down-quark sector,
we obtain theR, interactions for the superfields in the quark

We neglect theCP-violating phases;5=0. mass eigenbasis,

In order to perform the computation, we shall make the
following simplifying assumptions.

(i) Due to the uncertainty concerning the neutrino masses 1
and mixings, we shall assume here thfatis diagonal in the + N v (vi UD.D.
weak current basis and thus ik (Vermdmi(Veru)ndiDnDo

WERagDRi,jk(Vg:KM)mllNi(VCKM)il Dy EiUi]Sm

(119

Referring to Eq.(115, we define the rotation of the cou-

) _ _ ) plings to the quark mass bag@genoted with a tildg
We shall return to the discussion of massive neutrinos and

(ELR)ij= 6ij - (112

their mixings in our framework in a future publication. Xi’jk:?\i'jm(V’éKM)mk, (116
(il) We shall assume thaf , are real and symmetric.
ThusU, =Ug andD; =Dg. Xgljk:)\i”mn(V’éKM)mj(VéKM)nk' (117

(i) When determining bounds below, we consider three
extreme caseqa) no-mixing, (b) the mixing is only in the For scenario(c), with all mixing in the up sector, and the
down quark sector(c) the mixing is only in the up-quark superfields in the quark mass eigenstate basis, the superpo-
sector. This corresponds to tential terms are
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TABLE IV. Upper bounds upon trilineax couplings for SPSla log, AT
at the weak scalbl, and at the GUT scal®l . Input parameters 50 ‘ : ‘ '
are given in the text. A superscript ofv denotes the fact that the 45/ L -5

strongest bound comes from the absence of tachyons or neutrino

masses, respectively. 401 no model

35- i -55

Meur Mz 301

o B
Nio1 0.080 0.12 §251 o 0
Nias 0.080 0.12 201
Noai 0.58 0.61 .
N122 4.4x10° % 6.7x10°4 ®
132 0.58 0.61 10 » £
_ _ D-

N232 4.4x<10° % 6.6x10°4 5 4
Mag 0.50 0.58 200 400 g()\? 800 1000
N133 2.6x10°°%" 3.9x10°5 M, »(GeV)
Noz3 2.6x10° 5" 3.9x10°°

FIG. 1. Upper bound uponj;{Mgyr) as a function of the
no-scale MSUGRA parameter point, assuming all quark mixing re-
sides in the down sector at the weak scale. The background color
displays the bound as measured by the bar on the right-hand side.
Contours of isobound are also shown. In the top left-hand white

Wg)gg)\iljk[NiDj - EiU|(VI:KM)j|]5k

1, S region there is no tachyon-free model for any value of the coupling.
+ 5hi(Vekm)iiUiDjDyc. (118
tachyons, and allow large couplings of around 0.4vat.
This implies the rotation oR, couplings, However, for\{;; , the diagonal components ¥}, produce a
nonzerox through the RGEs, which in turn generates a neu-
Xi’jk:)\ﬁk(V’éKM)J‘l , (119  trino mass. These bounds are much stronger and are of order
O(10 3—109). It should be noted that the neutrino bounds
M= Mie(Vexm)ir (120  are sensitive to the down-quark mass inputs, because the

RGEs generate proportional toY. When the CKM mix-
where in the first term we have taken the rotation of theing is assumed to be in the up-quark seciqdsg,\{;5, and
EUD term. \{3, acquire stronger bounds coming from neutrino masses

Another set of bounds applied on tiRg, couplings)\i’j,< because the larger up-quark Yukawa couplingsyin also
arises from the requirement of no sneutrino tachyons, i.e., wbegin to mix theYp through the RGEs. When all down
require the physical masmfzo. The resulting bound has quarks are mixed aM,, any )\i’jk producesk terms and
been observed first by de Carlos and WHié and can be therefore a nonzero neutrino mass. In this case, all of the

estimated as bounds are strongd(10 3—107°).
Table IV shows the equivalent bounds for theparam-
m3+0.5M3,+ 3 M2cos 28 eters. These bounds anet sensitive to assumptions about
> Mic(My) < . quark mixing because the RGE generation «oforoceeds
ik 13m3+49M2,— 2 AgM 1 ,— 12A2 through the charged-lepton Yukawa couplings, which we

(121)  have assumed to be diagonal in the weak basi®lat
_ ) Changing this assumption should drastically change the pre-
For the SPSla benchmark scenario this bound 88ts gented results. We see that three of the nineouplings are
Nijk(Mx) to be less than 0.13, in good agreement with thenot very strongly constrained; they are allowed to®).
exact numerical solutions of the RGEs in Table Il below. |t the Ye were strongly mixed, this would no longer be
the case and the neutrino mass constraint would provide
stronger constraints, which we expect to be at the level of
Table Il displays the strongest upper bounds upon trilin-O(10™1)—0(10°), similar to the six couplings that are
ear\’ couplings coming either from the neutrino mass con-constrained by neutrino masses in Table V.
straint or the absence of tachyons at MSUGRA point SPS1a We may ask how much the bounds in Tables Ill and IV
as described in Sec. VIIA 1 above. The different boundsdepend upon the supersymmetry breaking parameters. In or-
coming from altering the quark mixing assumption are dis-der to investigate this issue, we scan over the parameters of
played. In each case, the upper boundvig§r is shown in  the no-scale MSUGRA[77], a simple hypersurface of
the weak eigenbasis, and the corresponding bound is oBMSUGRA parameter space whemg=A,=0. The remain-
tained when the couplings and masses of the MSSM are ruing parameters (ta@ andM 4;,) are varied in Fig. 1 and the
down toM, and rotated to the quark mass eigenbasis as imaximum possible value of Ip§334 M gy7)] is displayed as
Egs.(116), (117), (119, and(120). Neglecting quark mixing, the background color, as referenced by the bar on the right-
we see that some of the bounds come from the absence h&nd side. The white region marked “no model” has tachy-

3. Discussion of the bounds
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FIG. 3. No-scale supergravity in tHeparity conserved limit.
Labeled constraints coming from tachyons are shown. The back-

FIG. 2. Upper bound upomz3(Meur) as a function of the round color displays the LSP mass, which can be read off from the

no-scale MSUGRA parameter point. The background color display - . .
the bound as measured by the bar on the right-hand side. Contou%s?r on the right-hand side. Dashed contours are contours of lightest

of isobound are also shown. In the top left-hand white region theryiggsomass. The white line delineates the labeled regionsl&P
is no tachyon-free model for any value of the coupling. andy; LSP.

ons for any value of 4;;and so is not valid. White contours COUPIINGS:\ 122, 525,M 133, A 233. Sneutrino tachyons do not
of Ajs{max)=10"°, 10°53 10755 and 105 are shown set better limits in this case. Comparison of the quark mixing

from bottom to top, respectively. The strongest bound Comegases(b) or (¢) of Egs.(113), .(1.14) derived in Table. Il with
from the neutrino mass constraint, and we see a variation of2P!€ IV of Ref.[18] show similar orders of magnitude, but
two orders of magnitude on the bound across the paramet&fronger bounds for some of the couplings.

space, the strongest bounds coming from the My, re-

gion. The reader should note thé,, dependence of the B. LSP content in the no-scale model
neutrino mass in the simple formula E@8). This strong As outlined in the Introduction, iR, MSUGRA the

variation of the n.eutrino'bound is also apparent fpr the casgep couplings can affect the weak-scale particle mass spec-
of other\’ couplings. Figure 2 shows the variation of the g \ia the RGEs. They can also affect the interpretation of
upper bound OM a3y (Mgyr) with the no-scale MSUGRA 0 requiting spectrum, since wifR, the LSP is no longer
parameter point. The strongest bound comes from the NQsiapie and thus no longer subject to cosmological constraints
tachyon constraint, and we see only a small variation of the | <iable relics. In th®, MSUGRA the LSP need not be

pound across .the paramgter space, the strongest bounds COéna'ctrically and color-neutral. Before discussing Rye case,
ing from the high tarB region, at lowM,,,. [Recall theM 1/, we briefly review the RPC case.

sensitivity in Eq.(121).] The behavior of small variation in
the tachyon bound with supersymmetry breaking parameters 1. The RPC case
is replicated for other lepton-number violating couplings. . .
The weak bound 0f=0.5 over much of the parameter space 10 Pegin with, we perform the scan in the free parameters
is dependent upon the no-charged lepton mixing atMhe M2 @nd tans in R-parity conserved no-scale MSUGRA.
assumption. T_he LSP mass and contours of equal I|ghtesF—H|ggs mass are
It is instructive to compare the bounds derived here in dliSPlayed in Fig. 3. The background color displays the LSP
representative scenario of MSUGRA in Tables Ill and v Mass according to the scale on the right-hand side of the plot.
with the 20 bounds atM, collected in Table 1 in Ref.18] The region disallowed by tachyons is shown in black. In the
for a rather generi®-parity violating scenario. For compari- Pottom left-hand side of the plot is a white line which shows
son we choose the no-mixing scenario, i.e., d@seén Egs. the poundary of th(_a LSP identity. Below. the line, th_e LS!D is
(113, (114 and squark and slepton masses of order of 10 he lightest neutralino, wheregs above it _the LSI.D is a right-
GeV in the latter. For thai'jkLinﬁk couplings, we obtain anded stau. A charged LSP is ruled out in Baparity con-

_ ) served scenario from cosmological constraints, and so the
here a one order of magnitude improvement Xgi,, tWo  giire region above the white line is ruled out. This bound

orders of magnitude fokz;,A15,, three orders of magni- comes from limits on abundances of anomalously heavy iso-
tude for\ 133, four orders of magnitude fak;,,,A 3,5, five  topes[31]. LEP2[91] places a lower bound on the Standard
and up to six orders of magnitude forjss N333. The  Model Higgs mass ofn,>114.4 GeV. This can also be ap-
sneutrino tachyon constraint of E.21) sets slightly stron-  plied to the MSSM Higgs boson when sin{ 8)~1, which

ger bounds on the couplings},s,X223,M 530, 132, 33;- INis the case in all of our results. The theoretical uncertainty
the case of thdR, couplingsh;jxL;LjEy we obtain two or- upon the lightest Higgs mass is estimated to -8 GeV

der of magnitude stronger bounds than in H&8] for the [92], so we place a cautious lower bound s0OFTSUSYS
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FIG. 4. LSP content of no-scale MSUGRA foMq; tan B

=500 GeV,\,3; nonzero aMgyr, and weak-scale mixing entirely FIG. 5. LSP content of no-scale MSUGRA foM,

in the down quarks. The mass of the LSP is displayed in the back= g GeV,\}s;, Nonzero aM g7, and weak-scale mixing entirely

ground and corresponds to the bar on the right-hand side. Regions the up quarks. The logarithm of the mass of the heaviest neutrino

ruled out by the presence of tachyons are in black. The white lings gisplayed in the background and corresponds to the bar on the

delineates labeled regions of different LSP contenfiof selectrons right-hand side. Regions ruled out by the presence of tachyons are

andr for staus. The dashed lines display contours of equal lightestin pjack. The white line delineates labeled regions of different LSP

Higgs mass. content. The dashed lines display contours of equal lightest Higgs
mass.

prediction of 111 GeV. Even so, we see from Fig. 3 that there

is no parameter space left with both a heavy enough Higgthe LSP in Fig. 4, we observe that the scalar tau LSP is

and a neutral LSP. Thus no-scale supergravity is ruled out fofavored for tan3=4 unless the above laboratory bound is

the R-parity conserved MSSM. However, even a very tiny evaded by takingv ;,,>500 GeV.

R, coupling will make the LSP unstable on cosmological In Fig. 5, we show the variation of the nonzero neutrino

time scales and the neutral LSP constraint is then no longeanass in the ta—\5,(Mgyr) plane. Neutrino masses pro-

applicable. For small couplings O(0.1), the spectrum can vide the upper bound upoky,, for mixing in the up-quark

be approximated by thR-parity conserved case, and so Fig. sector[case(c) in Eqgs.(113), (114)], as assumed here. For

3 can still be used. We see that the entire region above thgrger values of\55,~0.15, neutrino masses @(0.1 eV)

Higgs mass contour of 111 GeV would be allowed, for staure possible. In this case, above the white line, the LSP is a

LSP masses above 96 G¢93]. tau sneutrino, and below it the LSP is the stau. The labora-
tory bound for the coupling\jg,(Mgyr) reads[18,94):

2. The R, case

We now map out some parts of no-scale MSUGRA for 0.7
M4,,=500 GeV. Because we wish to show the effects of

R-parity violation on the spectrum, we pick cases where the e
upper bound on th&,, trilinear coupling is weak. This ob- 05
viously occurs when the tachyon bound is the stronger of the m, ;=500 o

two we have shown in Tables Il and IV. We display one 0.4 é‘

\-type coupling(Fig. 4), one of type\’ (Fig. 5), and one of 2>
type \” (Fig. 6). a3

Figure 4 shows the variation of the nature of the LSP with 02
tanB andA,3:(Mgyr). The casgb) of Egs. (113, (114) is

considered. FoM,=500 GeV, as assumed here, we see 0.1 " ) 60
from the equal Higgs mass contours that the lower bound of N

111 GeV on th_e lightest-Higgs mass does not pose a very 0 i 55 a5 e mLS4P/%eV
severe constraint for tgf>3. The LSP mass varies up to tan B

190 GeV in the plane, but this value is a functionMf,.
The diagonal white line separates regions of selectron LSp FIG. 6. LSP content of no-scale MSUGRA oM,
(above the white lineand stau LSRbelow the white ling =500 GeV,Azp3 nonzero aMgyr, and weak-scale quark mixing

Note that there is an independento(2bound for the cou- in the down sector. The mass of the LSP is displayed in the back-

. . — ground and corresponds to the bar on the right-hand side. Regions
pling A3 from the known ratiosR,=I'(7—evv)/T(7  (ieq out by the presence of tachyons are in black. There is a stau
—uvv) corresponding to[18,94: \3(Mgyr)<0.046  LSP throughout all of the parameter space. The dashed lines display

X (mg,R/100 GeV). Comparing this bound with the nature of contours of equal lightest Higgs mass.
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Njai(Mgur) <0.057% (i /100 GeV), and since we find relevant bounds from the neutrino masses. In this model, the
- stau is the LSP. We first calculate the sneutrino mass squared

that for the inputs of Fig. 5 the bottom squark mass is about
glfference

1.2 TeV, the laboratory bound is evaded: the stronger boun
on \ 53,comes from the sneutrino tachyon, as is shown in the

upper half of Fig. 5. AP m% —m%
Finally, we investigate the case of baryon number viola- Am=—~r= — -, (1249
tion. The caséb) of Eqs.(113), (114) is considered. Figure 6 2nm, 2n;

shows how the no-scale MSUGRA LSP mass varies with
tanB and N3,{Mgyr). There is little variation with the wheren; is the average mass aof; . The sneutrino mass

Ry, coupling, contrary to the lightest Higgs mass, which isdifference has been calculated in R&8] in a general basis-
displayed in the form of contours. The previous bound onindependent manner. With our choiké,, we generate at the
\323 (see Table IV of bound18]) apart from the theoretical electroweak scale the nonzeroR,-parameter —set:
perturbativity bound comes from the leptoriewidth ratio Ulv"bbl’(maltl)- The otherR, parameters remain zero

and is A\ 5,4 Mgyr)<0.015 for quark mixing solely in the Y ) ,

down-quark sector, and with a little variation fravhy,. We [99]. This simplifies our calculation for the sneutrino mass

observe from Fig. 6 that the stau is again the LSP. splitting, since we can use the case of one sneutrino genera-
We have exhibited, in Figs. 3—6, viable regions of Mssmtion [the other two decouple from the mass matrices Egs.

parameter space where the LSP is the selectron, the stau, @) (6D]. The sneutrino mass splitting rea®s]

the stau sneutrino. Different LSP content drastically alters

the collider signatures of the models. The analysis above 2B2M2nr; sir? B sirf 6

showed a preference to the stau being the LSP. We discuss Anm,=— , (125

this in some more detail in Sec. VIII, below. (Mao—né)(Mﬁo—Wé)(Mio—Wé)

C. Sneutrino-antisneutrino mixing with stau LSP with

Models which violate lepton number by two unital( ~ -
=2) and generate neutrino masses also result in a mass split- lvgB+v1D4
ting of scalar neutrinos and antineutrinos of the same flavor COSo=*———— . (126
. . . . . (U +v )12(82+D )12
usually referred to in the literature as sneutrino-antisneutrino d "1 1
mixing [95-97. If the sneutrino mass differencAn; . _
=m;_—nm,_is large and the sneutrino branching ratio into aNotice that Eq.(125 does not depend on the superpotential

charged lepton is experimentally significant, then a like signﬁalra]{nle;[ersv int}:ontraSt to tfre nleutrir(l)ofmatshs in(B6). Ittis
dilepton signal ine*e” —7_7, with 71 +X could be ¢ Pl f0 S€€ e humericar va UpBO0)] for the parameters

observed95]. Like the B-meson mass splitting, the observ- at the electroweak scale starting from the no-scale model

ability of the sneutrino mixing effects depends on the ratio defined by My,=500 GeV, Earﬂzzo, and A 1,4 Mgur)
=7.5x10"% We obtain B(M,)=33238 GeV, n,

An =357 GeV, Mp=91GeV, Myo=816GeV, Mo
— (122 =816 GeV, v4(M5)=8.7 GeV, v,;(M;)=—0.0012 GeV,
v D,=-0.74 GeV, and (maltl)=2.5 Ge\t. Applying these

L ids -8
whereT; is the total sneutrino decay rate. As we have al-values to Eqs(129, (126, we obtain sif=1.3x10"° and

ready seen from Figs. 4—6, in the no-scale scenario the staé,TZz'StheV' Tr;e, sneutrino bTa'ISSdSF”ttmg is of thefsame
7, is the LSP when th&®, couplings are small. In thiGp- order as the neutrino mass obtained from €, since for

. e = =3.5x10"4
proximately RPQ case, the specific flavort =(e,u) /r;(zli)z 2\1/7[1(3%\/ andiy(Mz) =3.5<107" GeV we have
sneutrinov, decays, via charginos and neutralinos, imo ‘In order to calculate the probabilitP(¢*¢*) we stil
—¢ v, andv,—v,7" 7". In this case, the probability of need the total sneutrino decay rate and the branching ratio

tagging a like-sign dilepton in the process—| 7'v.is  B(v,—€ 7" v,). In the above scenario, the right-handed se-

XT=

14

PULT)=PLT€)+P(£ €) with [95] lectron of the third generatiofwe call it stau here, although
it is in fact an admixture of the three charged sleptons with
2 the charged Higgs boson statés the LSP with a masar;
P =—"[B(ve—t 7" v)]% (123 =162 GeV. The rates for the chargino- and neutralino-
2(1+x%) mediated sneutrino decagghich we assume to be the domi-

14

nant onesare[95]
We investigate below the magnitude of this probability in the

no-scale model witiM ;,,=500 GeV and tap= 20 and with B B gém%mf tanz,BfX+(rré/m§)
one dominantR, coupling \j,{Mgyr) =7.5X10 °. Fur- C(v—€ 77v,)= o >
thermore, we consider no-quark mixing in determining the 1536m°(M{y sin28—Mpu)
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B o g4m~ifxo(rré/m;2/) A. Stau decays
C(vy—ver )= i (127 The following discussion of the stau LSP is somewhat
3072m"My analogous to the discussion in RE34] for the x§ LSP. In
with determining the final-state signature, it is important to know
how the stau LSP decays. We shall assume that there is a
fX+(x)=(1—x)(1+10x+x2)+6x(1+x)lnx, hierarchy among th&p-coupling constants with one dpmi-
nant coupling, similar to the SM Yukawa couplings in the
on(x)=1—8x+8x3—x4—12><2In X. (129 ~ mass eigenstate basis. We furthermore assume the mixing

due tok; is small, as seen in the previous sections of this

In the no-scale model under consideration, we obtairP@Per. Then there are two important distinct cases.
M;(M;) =206 GeV andVl,(M,) =411 GeV with the gauge (i) The stau couples to the dcinlnant ope@fbhe dgml-
couplingsg(Mz) =0.3574 andy,(M ;) =0.6525. Thus from nant operator is in the s¢t ,L.Ee , ,,LeL ,E,,L ,QiD;}.

Eq. (127) we obtainT (v,—¢ 7tv,)=210 eV andl'(», In this case, the stau simply decays via the two-body mode.

St r)=12x10°eV. So x,=2x10°° and B(7, For the dominant operatdr,Q,D,, for example, we then

—{€ 771.)=1.7x10"%. We conclude that in this numerical obtain[102]

example the probability for like-sign dileptons, E423), is - NL2.M~

P(£€*)=6%x1015 far too small to be observable. Of I(7 —u+d)= —at T

course this result depends on the parameter space and the 167

probability P(¢=€~) is bigger for smaller values o1,

and larger tag8 values[see Eq(127)]. However, if we take whereN.=3 is the number of colors. The complete list of

into account the current experimental dai,;,= 200, then Ry, two-body decays is given in Ref102]. For a recent

P(£*€7)=<10"°. We obtain similar results for the other treatment of two-body stau decays, also §8€. For the

R, couplings. above two-body decay mode, the decay length is given by
The above benchmark computation can be helpful to the

reader in order understand the typical magnitude of the pa- 10-%\ 2/ 100 Ge

rameters we are dealing with in this paper. cr=3.3x10° 1 m( ) v \)) (130

(129

A,
VIII. STAU-LSP PHENOMENOLOGY s
As discussed in Sec. |, in the case®f, the LSP need which in an experiment must be multiplied by the relevant
not be the lightest neutralingy. In the previous section we Lorentz boost factory, of the stau. Only for very small
have investigated the nature of the LSP in the MSUGRAcoupling (<10 ") is the decay length relevant.
scenario and have found regions in parameter space with (i) The stau does not couple to the dominant operator.
different LSP’s. In Fig. 4, we have a selectron or stau LSP, inThe  dominant  operator ~ is in  the  set
Fig. 5 we have found a tau sneutrino or a stau, and in Fig. §LcL ,E. ,,L¢ ,QiD;,U;D;D,}. In this case ther decays

we have found a stau LSP. The bounds in Table Il imply that;iz a four-body mode. For the operatby,Q,D; there are
if there is any appreciable CKM mixing in the down-quark foyr decay modes via the neutralino,

!

sector at the weak scalgy, must be very small. We also see
some strict bounds upon thgj in Table IV. If the

R, couplings are very small, the spectrum has negligible pu-+utd
perturbation from théR-parity conserved case, the LSP con- ut tu+d
tent of which is displayed in Fig. 3. The allowed parameter T+ () + _ (132
space withm,o>111 GeV in Fig. 3 then leads to a stau LSP. v,+d+d
Thus we see a preference for a stau LSP in many no-scale S ided
R-parity violating scenarios. Vi '
In the RPC MSSM, the collider phenomenology relies
crucially on thex? LSP, with all produced sparticles decay- @nd three decay modes via the chargino,
ing in the detector tg(} plus otherR,-even particles. This
results in missing transverse energy as a typical signature for wo+ d+d
all production processes. In tie, MSSM, the RGEs and -~ ~ s B —
thus the spectrum are altered. This changes the decay chains. T —vt (X)) = o tutu (132
Since typically all decay chains end in the LSP, the nature of VM+d+E

the LSP is essential in determining the supersymmetric sig-

natures. A detailed investigation is beyond the scope of this -
paper. We shall focus here on a classification of the signaAs an example, we compute here the degayr u ud.
tures for the main production processes in the case of a stathe details of the computation, in particular the four-body
LSP. phase space, are given in Appendix D. The result is
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_ . K N A /2| a~r| 2 o o ) .
(77wt ud)= ————M([b,[>+|b,*+[ag? & e/
25m5M2m* T '
X 5 =, XO
—b,b} +b,a% +b,a}) qR,L J M0
KN\ '§* ~ 0
~— = M (133 [ — 1 X12
287°Mim* T ’
. - =
where K=1/(720<2°)=1/23040.4a,4,b,, are neutralino 127 VT
coupling constants given in Appendix D, is the neu- 0
tralino mass andh is the universal scalar fermion mass. We X —T7T
. . 1,2
have assumed massless final-state particles and neglected the
momenta compared tMX,Fn. In the last step, we have set ’NC - ..
the couplingsa, 4=b, ,=g, the weak-coupling constant. If J]
the four-body decay is the dominant decay mode, the decay
length can be estimated as 1 ljj
2
1073 M 2 "
- 6 X TVvjj
c7.=6.210 m( N ) (100 Ge\)
FIG. 7. Possible dominant links in a sparticle decay chain with a
m 4 100 Ge ! stau LSP andR-parity violation. The two-body decay mode of the
X i i -
100 GaV e (134 LSP is shown first, followed by two four-body modes.

. . . Mg, > Mg > M > M= > N0 > M, 13
For reasonable supersymmetric masses and couplings, this 97 T T Ty Xp© T (137

could lead to detached vertices in the detector. This is a very
promising signature for the stau LSP. which we typically obtain(with or without R,) within

If the two-body decay is allowed, i.e., the relevant cou-MSUGRA. If there are no near-degenerate particles, a pro-
pling is not suppressed, it usually dominates over the fourduced supersymmetric particle will dominantly cascade in
body decay. In order to estimate the required hierarchy ofWo-particle decays down the mass chéli37). We display

couplings for the four-body decay to be relevant, we considefis decay chain in Fig. 7. We have added at the end both
the ratio two- (first value and four-particlg(last two valuepsstau de-

cays. Final state quarks are denoted lpy/to indicate a jet.

We can use this decay chain to determine a qualitative pic-
) ~1. (135 ture of the possible final-state signatures. Note that due to the

strict bounds on theR,, couplings which we have deter-

mined, we only expect these to be relevant in the stau-LSP

Assuming the sparticle masses are roughly equal, this corrél€c@y. Furthermore, in determining signatures we shall as-

sponds to\” »;4/\4: = O(10%) for the four-body decay mode sume that either the two-body or the four-body stau decay

to dominate ovegruthe two-body one. If, for examp dominates. We do not consider the case of comparable partial
~ L X decay widths.

o~ 2 .y , . .

=m=2M3, we obtain\'5;;/A5;=0(10%), which is not an At the Tevatron and CERN Large Hadron CollideHC),

R Il
=0

Fz(;—)ad) )\’%ij 7T4|V|)2(Ff14

unreasonable hierarchy between generations. the largest production cross sections are for gluinos and
) ) squarks. If we consider, for examplgzgr production, then
B. Collider signatures the dominant decay mode for the squark is
At a collider, the main supersymmetric pair production 5 o
processes are Qr—ixi—jr (139

99, qq, €77, XY, xix; . x’x; . (136  and the final-state signature will be

Here we investigate the possible signatures for these pro- 6j+7 7" for 7—jj
cesses in the case of a stau LSP. In order to determine the _ .. - y
final state within the detector, we must know the decay pat- ~ ~ 6j+€f+2(777) for 7—7(jj

terns of the particles. This depends_strong_ly on the supersym-  4rAR— 6j+vv+2(7 %)
metric spectrum and thus upon which point in SUSY break- 5
ing the parameter space is being studied. For this first study, 6jtvl+2(r"77) for T7—r(v,0)jj.

we shall assume the mass ordering (139

for 7— TVjj
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Here, any charge combination for the leptdhss allowed, 4j+ 757" for
since they result from the decay of a virtsajorana neu-

tralino (cf. Appendix D. This can give us a like-sign dilep- ~0~0
ton signature. Otherwise, we see that we have a large number X1X17—
of jets in the final state independent of the decay mode of the

stau.(This would be reduced for dominant operataisE.) Aj+ve+2(r777) for 7o r(v,0)jj,
This makes it more difficult to observe isolated high (143
charged leptons. We can obtain missing transverse mome
tum from the final-state neutrinos, but it will be extremely
diluted due to the many-body decays. The most promisin%
signatures are like-sign dileptons together with the direct de
tection of 7's [103], which is of course difficult.

Forq,q, production, we expect a larger likelihood for the _ _
cascade decay through the heavier neutralinos and also. - Aj+€+vw +rir for 7ol
through the charginos. This can lead to a trilepton signature X1 X1~
[104] which can be extended by tralditional 7’s. This re-
quires a detailed analysis, but we expect this to be more 4i+vl+vv +7 7 for T (v, 0)jj,

promising than thejzqg outlined above. (144
The gluino decays via the squarks adding an extra jet to

the final state. In this case, it might be more promising toassuming the chargino decays directly to the stau LSP. If we

consider nondominant decay modes, including a possible dgroduc:ah the Eet?\\”el'r ﬁiectrowegk gaug:jnos_,, we can chascactjje
rect R, decay of the neutralino. An estimate of the relative ec;az rlgurgth ?‘ Igtr ?iLgavl\J/gmhosv pror urﬁlin?nm(;:eltci:l aftg‘;
rates for a pura\-ino neutralino is eptons. ror the neutralino we have promising multilepto

signatures, whereas for the chargino we expect a significant
amount of missing- .
In summary, as promising signatures in the case of the
=3X10"7 (140  stau LSP, we havé) a detached vertex from the long-lived
stau, particularly in the case of the four-body stau deGay;

) , multilepton final states; an@ii ) multi-tau final states, requir-
for \’<107%, and where we have neglected the stau massng efficient tau tagging.

This is hopeless, unless the neutralino and the stau are nearly The four-body decay of the stau results in more final-state

degenerate. _ _ leptons than the two-body decay and is thus possibly more
At the Tevatron and LHC, the pair production of sleptonsyromising.

is about two to three orders of magnitude lower than the
production of squarks or gluinos, for equal mass. However,
we expect the mass to be lowef. Eq. (137)], and also the
signal cleaner. At a future linear collidef e~ facility this is We have investigated for the first time the general
typically an ideal mode for searches or the measurement qfap MSSM in the context of MSUGRA. We have studied in
MSSM parameters. As we can see from the decay chain isome detail the origin of lepton-number violation and have

7]
Aj+ee+2(r7) for 71l

4j+vv+ 2(7‘i Tt) for '-7'-—>ijj

r(?i_epending on the decay of the stau-LSP decay, which in turn
epends on the dominam, coupling. For chargino pair
roduction we have

dji+v, v, for 7—jj

4j+vv+v v +777 for PN Tvjj

~ , .\ 4
IC—pu+2j) 302 My

r3—rn  327°\ m

IX. SUMMARY AND CONCLUSIONS

Fig. 7, the slepton dominantly decays as found that with respect to the dimension-5 operators, baryon
parity is preferred oveR parity. We have then shown that in
A A P A (14)  a wide class of models, both andD; are zero after super-
symmetry breaking at the unification scale. We have taken
We then obtain the final-state signatures this as our boundary conditions lslty in order to investigate
the resulting model in considerable detail.
Aj+ 0+ 757" for 7—jj In order to embed the model within the unification pic-
] .. ~ ture, we have computed the full set of renormalization group
77 4j+2(€6)+2(7 1)  for r—7fjj equations in the Appendixes. We have used two methods,
=\ 4 + _+ ~ . including a novel method of Jones al, which is particu-
Ajrtltvvt2(rr) for i larly conducive to the numerical implementation. We then
4j+Le+ve+2(r7 1) for 7o 7(v,0)jj. developed an iterative algorithm which solves the RGEs,

(142 minimizes the potential of the five neutral, scal@R-even
fields, while implementing weak-scale Yukawa and gauge
In the second case, the sign of the charge of the two leptorisoundary conditions. The algorithm is stable and has been
from the stau decays is arbitrary due to the intermedie  checked by an independent program. This is one of the main
jorana neutralino. Thus we can have like-sign trileptons,technical advances in this paper. Given the minimum, we

which is a very promising signature. determined the complete supersymmetric spectrum, includ-
Similarly, using the results from Fig. 7, we expect theing also the mass of the heaviest neutrino.
as-dominant signatures for neutralino pair production We have then shown that th®, couplings in this model
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are severely constrained by the upper bound on the neutrind/e denote ar8U(3) color index of the fundamental repre-
masses, as summarized in Tables Il and IV. Thus when ensentation byx,y,z=1,2,3. TheSU(2), fundamental repre-
bedding theR, MSSM in MSUGRA, the neutrino mass sentation indices are denoted &yb,c=1,2 and the genera-
bound is the strictest and most universal, i.e., it applies to alfion indices byi,j,k=1,2,3. We have introduced the twelve
lepton-number violating couplings. This is one of the main3x 3 matrices
results of this paper.

We have then looked in detail at the nature of the LSP. We Ye, Yo, Yu, Aegk Apk Ay,  (A3)
have found solutions with a selectron, tau sneutrino, and stau , L i
LSP besides the usual neutralino LSP, with the stau modPr @l the Yukawa couplings. This implies the following con-
favored in the no-scale MSUGRA model. This significantly Ventions in the Martin and VaugHi6] notation:
affects collider phenomenology. We present a first discussion
of this broad topic in Sec. VIIl. We have also studied the
phenomenology of sneutrino-antisneutrino mixing in this

a~bxy an bx N a~bx bx, an
YL Q) Pry=YLiPryQ" = YPiyLi Q) = Y Q) LiPiy

model, but we do not expect any significant effect. = YO Dk f = YDy xLiaz(ADk)ijeab%
We conclude that th&, MSSM is as viable as the RPC- ) v

MSSM. As we show, it differs considerably both conceptu- =\jjk €ab0y » (A4)

ally and phenomenologically from the RPC. The intimate e —b = b

connection with neutrino masses is an outstanding feature YhitiBe= YHEG = YELTL = (A ) €ap

which we shall discuss in more detail in a forthcoming pub-

lication. =~ (Agk)ji €ab=Nijk €ab> (A5)

UixE' 5z— 5 le5 z—= S 5zUix— i
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+[(he)iTiHLE,; + (hp)QiHD; + (hy); QiHU;

+ (hegk)ij LiLEx+ (hpk)ij LiQ Dy + (hyi)jxUiD;Dy

APPENDIX A: NOTATION AND ANOMALOUS +H.cl], (A7)

DIMENSIONS
where we have introduced the soft SUSY breaking trilinear
The chiral superfields of theR, MSSM and the couplings

R, MSSM have the following Ggy=SU(3).xXSU(2)_
X U(1)y quantum numbers: he, hp, hy, hgk hpk, hyi, (A8)

L (1,2- %), E: (1LY, Q: (3,21), defined analogously as the Yukawa couplings in E44)—
(AB).

In general, the one-loop renormalization-group equations

- 2 n- 1 . 1
U: (315, D (Bl-3), Hiz (1.2-3), for the Yukawa couplings are given §$6]

Hyoo (1,23). (A1) d . ‘
Y=yl —— okl (kesi) + (ko)) (A9)
The R, MSSM superpotential is then given by dt 16m
W= e[ (Ye); LEHPE, + (Yp);; Q¥H®D, and the anomalous dimensions are
a ijti ] 1< JX
by b, i b o1 . .
+(Y )i QP HRU jx] — €apl wHIHZ+ «'L7H?] ygzzvipquq_w{; 92C,(i). (A10)

+ean[ 7 (Aghj) L?LFEK+(ADk)ijL?Q}<b5kx] ' o
O We have denoted b§,(f) the quadratic Casimir of the rep-
+ 3 €y AAyi) KU DYDi. (A2)  resentatiorf of the gauge groufs,. For details, see Appen-
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dix A of Ref. [14]. All equations in this section are valid in d Ul " o
the DR renormalization scheme. 1@772a(Yu)ij :(Yu)ik'}’u:('l'(YU)ij7H§+(Yu)kj YQy

The one-loop anomalous dimensions are given by (A21)
[14,109

'yt;:(YEYE)ij +(AgaALa)ij +3(ApaApo) ,d Ex Li Ui
167 2 (Ae)ij = (Aen)ij e+ (Aei v+ (Ye)iknd,

(3 3
_5[(_ 2, % 2>, All i i

] 1091 292 (AL1) _(AEk)i'yt:_(YE)jkyhll’ (A22)
Bi_ ooyl AgiAl) -8 ° g
YEj_Z(YEYE)ji+Tr( eAg)~ 9] 591 (A12) d D Qj Li
16wza(ADk)ij=(AD|)ijYD:‘+(ADK)H7’Q:+(ADK)I]7L:
fyg;:(YDYE)ij+(YUY6)ij+(ABqADq)]i

—(Yo)pri, (A23)
—5i-(ig2+ §92+ 992) (A13)
i\30%1" 2927 393
D, T t t 167722(A Die= (AU i Y2+ (Au) e Y2+ (A iyl
'yD}:Z(YDYD)ji+2 Tr(ApiApi) +2(AyaAo)ij dt Yk ulit ¥, utikYp, ulikYy,
(A24)
—5;(3g§+ §g§>, (A14)
15917 3

Heret=In(Q), andQ is the renormalization scale. The RGEs
for the bilinear terms are

. [ 8 8
70l =20YLY )i+ THAGAG) — 01(1—59% ggé),

(A15) 2 d Hi,  Ho i H1
. . 16 a/’“:/’“{yHl_" yH2}+K i (A25)
y:izTr(3YDYE+YEYE)— (1—Og§+ Egg) , (A16)
H, + 3, 3, leTZgKi=KiyEZ+prti+,uyhi. (A26)
Ne=3 T(YuY () —| 591t 592, (A17) dt 2 p 1
Hi_  Lisx_ * . *
Y =R, = ~3(ApaYp)ig~ (AgaYEiq- (A18)  APPENDIX B: AMETHOD TO DERIVE THE SOFT SUSY

BREAKING RGE
Note that hereH, ,,L,Q represent the fieldsi?,, L%, Q%

wherea is the index of the fundamental representation of A Straightforward way to derive the RGEs for the soft
SU(2) (i.e., no factors of,, are factoregl The 8 functions SUSY breaking couplings and masses is by a direct use of
for the Yukawa coupling§14] and for the bilinear superpo- the explicit formulas at one loop given iri6]. This is a
tential couplings are combinations of the above anomalou$emewhat tedious job. A very elegant method which is also
dimensions(A1)—(A18). The two-loop anomalous dimen- V€Y helpful for numerical calculations is the one described
sions in theR, MSSM can be found ifi14]. We present the in Ref. [15]. All tr_]e soft_ SUSY RGEs can be de.rlved from
one-loop beta functions for the superpotential couplings and® @homalous dimensioria11)—(A18) by the action of an

masses for completeness. operator which is given beloyi06]. The method works not
The RGEs for the Yukawa coupling®cluding full fam- only at one loop but it has also been proven to all orders in
ily dependenceare given by perturbation theory15]. In principle, one could apply the

operators(B1)—(B5) below to the two-loop anomalous di-

d . y " mensions derived in Ref14] and write down the full two-
16W2a(YE)ij =(Ye)ikve, T (Ye)ij vy, — (Aediv, loop coupled RGEs in the most general case. However, here
we restrict ourselves to the one-loop case. In particular, the

+(Ye)y; YtL (A19)  soft g functions for the bilineab”, trilinear 'k, and scalar

masses mz)} soft SUSY breaking terms can be read from

d D; H H
16772a(YD)ij :(YD)ik'yDL+(YD)ij'yHi_(ADj)ki'yLkl bil

16m* = b+ b =2yl = 2(y)lw’,

+ (Yo v, (A20) (B1)
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dhik . ) . d(hp)ix
1677 — = K+ o (T =2 ()Y 167 = va (o) + 7 (N )i — ¥ (o
—2(yDf Y =20y Y, (82) + 75(ho)i = 2(y1) 3 (Yol
d(mz)J 9 P _2(')’1):1(YD)ik+2(71):1(AD'<)H
16m2 200* +2MM* g2 — +¥ mn o — 5
dt oga  Yimn =207 (Yo)ir, (89)
¥Imn J J ) ( )
+Y +Xa y], B3 d(hy)ix _
ay'mn " %ag, 1 2%= 7’8:(hu)|k+ 7:§(hu)ik+ 73f(hu)n
where =20y (Yo 2(v) Yok
i Lo —2(y)y (Yo, (810
(71)]20711 0= aga__h | ) ( 4)
992 gy'mn
d(hEk)i' . . .
2 J_ L L L
o o - = yi(hek);; — 10 (he) j+ ¥ (hew),
Y'lk:Y'lk(mz)HY“k(mz){+Y'J'(m2)l‘, (B5) dt 7L|( E)|J 7H1( E)]k yLl( )il

L, E L
+ v (hg)ik+ y=X(hg)i; —2 (AN
and repeated indices are summed over. At one loop, the last Y, (et Ye(henij = 2(ya)  (Aew)

term,X,, in Eq. (B3) is not relevant. It4scheme-dependent
form is given, for example, in the last reference of Ré&b]
[see their Eq(2.11)]. The RGE9B1)—(B3) are valid as long L E
as we do not eliminate the(tl) Fayet-lliopoulogFl) D term. B 2(71)H11(Y5)ik_2(71)E:<(AE')” ., (B1D
The RGE running of the FI term can then be written inde-

pendently. It is known that for universal boundary conditions d(hpi)

this term is not renormalized down to low energies and weg;2— 2>~ — Vti(th)lj — 7hi (hD)ijrij(th)”

do not discuss its RGE here. On the other hand, if we elimi- dt : ! Rl

nate the FID term by using its equation of motion, then this
renormalization gives rise to additional contributions propor-
tional to the W1l) gauge coupling(see theS term in the

+ 20704 (Ye) 2070 (Aed)y

+ 75(honi; = 2(y1) (A

Li _ Q; )
RGEs for the soft SUSY breaking masses in Appendjx C T20y0u, (Yol 2(v1) g (Aoki
Now from Eq. (B1) the RGEs for the bilinear soft SUSY Dy
breaking masses in tfR, MSSM are —2(7v1)p(Apl)ij (B12)
d~B Hy, Hypp, = H H H d(hyi)j - -
16m*-=Bly !+ v 21+ Div = 2ul (v0) g1+ (7)) 167 — =75 (hudjct 7! (hudit vpiChu);
H : .

2ei(vaLf (B6) =200 (g i 2070 g Ay ik

~2(y1)p(Au)j - (813

,dD;
1672 —I['yL'D +7H2D ]+ByH

L Ho L The RGEs for the soft SUSY breaking masses in the
—2[(y) &'+ (v’ T=2u(7)y.  (B7) R, MSSM can be obtained from E¢B3),

The RGEs for the trilinear soft SUSY breaking masses in the

R, MSSM can be read from E(B2), Zd(mE)E ,d(m E)J. n
1672 —— =162 —=—=4(hthe);; +2 Tr(hghl;)

(h ) L H H
2 I 1 . 1 .
167 — == v, (hedict v (he)it v H(hei +2(YIYe);

24
5Ij( 5 gl|M1|2

+ 765 (he)i—2(v2) ([ (Yehk—2(v2) (Y L — —
+THAGAL) +2(YLY p)ji + Tr(AgAL),

—2(y) A =200 (Yeu, (B8 (B14
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d(r lL)L d(m?);;
2 i 2 L/
167 at =167 at

=2(hghf+ ththJr 3thh;q)ij
91| M |2+ 603|My|? |+ (YeYL £)ij

+(KE"JAEq)ij + S(ADquq)ij + (YEYE)ij
+ (AEqAEq)ij +3(ADqATDq)ij \ (B15)

d(m?)!' d(m? )
2 L =167 L

dt dt

—6(h5ahp)ig— 2("Eghe)iq = 3(A5eYp)ig

167

—(AfYe)ig— (AgqYE)ia

(B16)

3(A5eYp)ig™

2.0
d(mé)Qj d(mQ)lj
dt G

=2(hph}+ huhL)ij + 2(thth)ji

2 32
— & 1—5§l§|'\/|1|27L 605/ M,| %+ §9§|M3|2

+ (YDY )IJ + (YUYIJ)U + (ADqADq)JI
+H(YpY )i+ (YuY )i+ (AbeApa);i
(B17)

d(mD)D . d(mD)JI

2
167 at 4 at

=4(hbhp);i+4 Tr(hl;hon +4(hyahl o),
8 32
= &jj E9§|M1|2+ §9§|M3|2
+2(YDYp);i+2 THAL Ap)
+2(AgaAlij+2(YDYp);
+2 THAL Ap) +2(AgeAg)ij,  (B19)

d(mu)u zd(m%)ji

TR

1672

=4(hljhy);i +2 Tr(hyih! )

3 32
— bij 1—59%|M1|2+ ?g§|M3|2

PHYSICAL REVIEW D 69, 115002 (2004

+2(Y{[Y )5+ TrAGAL) +2(Y (Y )

+THAGAL), (B19)
g,
16772T=Tr(6hDhTD+2hEhE)
6 __
[ S sgiimf| + 3 TiTav)
FTHY YD) +3 THY oY D) + Tr(YeY D),
(B20)
dmy,
16w T:6Tr(huha) (59§|M1|2+69§|M2|2)
+3THYLYL) +3 THY YY), (B21)
where from Eq(B4) we have
(yo)) =~ (NeYD)ij — (NesA )iy ~ 3(Npapa);
(3 3
— 9 Migi+ 5 Mzgza (B22)
Ei t i 6
(71)Ej:—2(YEhE)ji (hE'AEJ) S 191
(B23)

Qi _ t 1 2
(71)Qj (hDY )Ij (hUYU)Ij (AthDq)jl OMlgl

3 2 8 2
+5Mago+ 3 Ma0s), (B24)
(yD)o=—2(Y]hp)ii —2 THAL hp) — 2(hyaAl0);;
Y1 D, p'IDJji pi'lDi uaAyalij
(2 8
= Migi+ 5 Msgs (B25
(yl)ul=—2(v*hu),, Tr(hyiAl))
(8 8
=6 Mqgi+ Msgs (B26)
<7l>:1=—Tr<3hDY$+hEY£>
3 2 3 2
- EM191+§M292 : (B27)
3 3
(?’1):22_3 Tr(huYL)_(EMlgi+§Mzg§)!
(B28)
(YD1 = (1) * =3(Afho)iq + (Afahe)iq (829
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and from Eq.(B5) Numerically we follow the following procedurda) Define
. 5 ) 5 the anomalous dimensions in Eqa11)—(A18); (b) define
(Ye)i=(Ye)w(mp)i + (Ye)miy, + (A (my 1) (71)] from Egs.(B22—(B29); (c) define Eqs(B30)—(B35)
, and(d) plug (a,b,9 into Egs.(B6)—(B21). This is much sim-
+(Ye) (M), (B30)  pler than inserting the explicit formulas of Appendix C be-
low.

(Yo)w=(Yo)w(mgu— (Ao (m}, )

+(YD)ikmﬁl+(YD)“(m%)|k, (B31) APPENDIX C: EXPLICIT RGE FOR THE SOFT
SUPERSYMMETRIC BREAKING TERMS

m)ikz(YU)lk(mé)il +(Yu)ikmﬁlz+(YU)il(m%)lky

(B32) The explicit RGEs for the soft supersymmetric breaking
terms have appeared also before in RE3s107]. Reference
(’KE’k)ij :(AEk)”(mﬁ)“ —(YE)jk(m*E_H ) [107] contains _the full se_(aside from the a}forementior)eii
i term), but we disagree with several terms in the equations for
2 2 . . .
+(AEk)”(m§)“ +(YE)ik(m§jHl) (mHlti) and (mz);; . Referencd8] is restricted to contribu-
5 tions of the third-generation quarks and leptons. We arrange
+(Ag)ij (M) ks (B33)  here the explicit formulas of the fulhot flavor dominance
assumeflRGEs. As a cross check, we have calculated them
(ADk)ij=(ADk)”(m§)” —(YD)jk(m%.H ) by first using the explicit formulas of Ref16] and second
T by using the method described in Appendix B. We found
+(ADk)iI(mé)jl +(Apij (M3, (B34)  agreement using both methods. Thus the RGE for the bilin-
earu andk; terms of the superpotential parameters is given
(AU = (Au) (M) + (Ag)i(mp) by
+(Au)j (M) (B35)
zd'u“ t t T 3 2 2 * *
16’77 E:,LL 3 TI’(YUYU)+TI’(3YDYD+YEYE)— 591—392 - KP[AE”YE+ 3ADnYD]pn1 (Cl)
2 R N 2 t T t
167 E: K 3 Tr(YuYU)_ 591_392 + KD[YEYE+ AEnAEn+ 3AD”ADn]ip

— [ AenYE+3ApnY5Jin. (C2

Similarly, the RGEs for the soft SUSY breaking bilinear terms can be read from

16772d—B:'é 3THY Y +3TrYLY ) +Tr(YLY )—E 2_3g3
dt uYu DYD EVE 591 0>

+u

6
6 Tr(Y(;hy)+6 Tr(Ypho) +2 Tr(YEhe) + £giMy+ 69§M2}

—D [ A Ye+3A%Yplin— k[ 2A%he+6A5hp ], (C3

+Ki

6
6 Tr(hyY () + £ 9iM1+6g3M,

o 3
1672 ——= Di[3 TrY Y () - §g§—3g§

—

+ D [YeY i+ ApnA L+ 3A0nA LTy + 2k [heY L+ henA Ly +3hpnA L,
—2u[henYE+3hpnY 5 lin— B[ AenYE+3ApnYE Tin . (C4)
The RGEs for the soft SUSY trilinear couplings are given by
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1672

1672

1672

167

d(hg);;

2 _
167 at

d(hp)ij _
dt

d(hy)i;
dt

d(hew)ij
dt

Zd(th)ij:
dt

(he)al2(YLEYe) + TrAL AN T+ (he)y [YEY L+ ApnAfn+ 3ApeALLT;

+(h i T _9 2_ 2 . _A* _ *
(hg)ij| Tr(YgYg)+3 Tr(YpYp) 591 395 |+ (he)i[ —AenYe—3ApnYplin

+(Ye)u[4(YLhe)y+2 THALhg) 1+ (Ye)[2heY L+ 2hen AL+ 6hpa AL T;

+(Ae)il — 2(Agahe) = 6(AGhp) Jin

t t 18 , 2
+(Yg)ij| 2 Tr(Yghg) +6 Tr(Yphp) + gglM 1+6g5M,

(ho)u[20Y5Yp)i+2 THAL Api) + 2(AunAln) ;i 1+ (ho) [Yo YS+ YU Y{T;

+(hp) i [ALApnlii + (hp)ii| TrYEY ©) +3 Tr(Y LY —12—32_52
(hp)ij[ ApnApn]ii + (hp)ij| Tr(YEYE) "(YpYp) 1591 9> 393

+(hpi)i[ (AgYE)

+3(A5nYp) lint (YD)i|[4(YEhD)|j +4 Tr(AglhDJ) +4(hU”ALn)jI]+ (YD)Ij[ZhDYB—i_ 2hyY (T

+(Yp)ii[2AL shonlsi + (Yp)iil 2 Tr(YEhg) +6 Tr(Yih )+E 2M, +692M +3—2 2M
D)Ij pnpnlji D)ij ENE oMb 15911 gz2M> 3933

+(Ap) il 2(ALshe) + 6(AEhp) i,

(ho)ul20Y LY )i+ TrAL AU T+ (o) LY oY D+ (Yo YD)+ (Al aApn) ]
13 16

3THY(Yy)— 1291303 5 03

+(hy)jj +(YQ)ulA(YShy)y +2 TrHA by ]

+(Yu)[2(hg Y +2(hp Y5+ 2(Alahpn)y ]

+(Yu)ij

26 32
6 Tr(Y {hy) + 79T M1+ 6g3M o+ = g5M 3}.

(heNi [20YEY )i+ THAL AR T+ (he) il AenYE +3ApnY 5 Tin

+(hew il = YeY i~ AenALn—3ApnAL Ty + (he [ YeY L+ ApnAl,+3ApnAL;
+ (he)i = AgnYE = 3ApnY 5 1jn+ (Ag); [4(Y Ehe) i +2 TrAL hgn)]
+(Ye)j[ 2henYE +6hpnY 5 Tin+ (Agk)ji[ — 2heY £ — 2hen AL — BhpnA ] 1,

+(Agn[2heY L+ 2henA L+ Bhon AL 5 + (Ye)ud — 2henY £ —BhpnY 5 1;,

9, 2 18 , 2
—(hgn)j; 3914'392 + (Agk)jj gglMl"‘ngMz )

(hoDi[20YBY )it 2 THAL A + 2( Al nAun)id + (ho)y [YEY L+ AgnA L+ 3ApeA L,

+(hp)jk[AgnYE+3ApnYplint (th)n[(YDYE)u + (YUYL)N + (ATDHAD”)Ij]
+(Ap)i[4(Y Shp) i+ 4 Tr(ALihpo) + 4(A]shyn)id + (Apk)y [ 2heY £+ 2henA L+ 6hpnA LT,

+(Yp)jk[2hgnYE +6hpnY 5 Jin + (Apk); [Z(hDYE)n + Z(huYL)n + Z(Agnhon)u]

7 5 5 16 5 14 5 5 32 5
— (hpK)j; 1_591+392+§93 + (ApK)jj 1_591'\/'1+692M2+ ggsMs ,
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d(hyi) i

2
167 at

=(hu)i[20YEY p)ict 2 THAL Ap) + 2( AL mAum)nd + (hun) il L 20Y EY O + TrA A

+(hyial = 2(Y5Yp)1; =2 THAL Api) — 2(AlnAyn); ]
+(Ay));i[4(Y Shp) i+ 4 TrALihoo) + 4(A] whum)ud + (A i [4(Y Sy )i +2 TrA iy ]

Ayl Sg2M, + 1692M
(Auijk 591 1+16g3M3|.

(C10

4
+ (Audial = 4(Ybho)y =4 THA o) = 4(Afahyn)y 1= (hu) | £ 97+ 805

The RGEs for the gaugino masses are not affected biRtheouplings up to one loop. The RGEs for the SUSY soft breaking
masses are given by

zd(mé)ii t 2 t 2 2 t 2 t
16w dt :Z(YEYE)in(mE)nj+Tr(AEiAE“)(mE)nj+2(mE)in(YEYE)nj+(mE)inTr(AEnAEi)
ALY )y M, +ACYEAR) i (M), 1)+ 4 THMDAGAG]+4AME | (ALY e
T (m?2 t Th 24 22 8 5
+4[Ye(m7)Yelij+4(hghg)ij+2 Tr(hgihgi) — §|M1| 91— 5915 Sij » (C1y
d(m ij
1677 — = (MD)in(Y EYDM—(m%iHle;qYE)m(m§>m(AEqAEq>nj+(YEYDm(m%)n,»
_(AEqYE)Iq( ) (AEqAEq)|n(mL)n]+2(YEY )IJmH +2(AEP)|r(YE)p](m )
_3(ADQY )Iq(mH 1L )+3[(mL)ADqA q]lj B(ADQYD)]q(mLH )+3[ADQADq(mL)]|J
+Z(YE)ip(AEp)qj(m[qu)"'Z(AEp)ir(m[)qr(AEp)qj+Z(YE)ir(mE)rq(YE)qj
+ 2 Agn)ip(M2) rg(Afa) pjF+ 6(Apr)in(MB) g Ape)pj+B(Apk)it (ME) mi( Abdm;
+2(hehd)i; +2(heahfo)i; + 6(hpaht)i; — 5gl|M1|2+692|M2|2 5g iS|5y, (C12
d(malti) T 2 t 2 2 + * 2
167TZT:(AEQYE)iqu1+(AEqAEq)in(mHl[n)_(mHl]:n)(YEYE)ni_3(ADQYD)iqu1
+3(ADqATDq)n|(mH o) Ty YD) +3 Tr(Y] YD)](mH )
+(m[)ni(AEqYE_3A;qYD)nq+2(AEp)iq(m[)qr(YE)rp+Z(AEQYE)ir(m?E)rq
—6(ApaYD)ir (M5)rq = 6(ASp)i(MG)gr(Yo)rp— [2hEahe +6hfdholig (c13
d(mQ)” T T T T
16m° dt =[YpYp+Yy Yu]nj(mQ)m+(ADqADQ)Jn(mQ)|n+[Y Yp+Yy Yu]m(mQ)n]

+(M3)nj( AbaApa)ni+2(Yo)ir (MB)rg(Y]) g+ 2(Yp Y L)ym?,
+2(Abp) g(ME)r( Ape)ri +20Y 0)ir (Mg (Y ) gj + 20Yy Y mi,

+ 2(AfoApn)ji (ME)rg = 2(M, 1) (Apki(Y D)k~ 2(Y )i Ada) (M 4y )
t T t 2 2 2 2 2 32 2 2_ 1
+2[hphp +hyhyJij +2(hgghpa)ji — 1—591|M1| +605|M,| +3(‘313|'V|3| 5915 i (C14
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d(m%)ij
16w — == 2(Y5Y 0)in(Mg)ny + 2 THAL Apn) (ME)ny + 2(Ayad a) i ME)ny + 2(YEY p)a(MB)in
+2 TH(ApiA D) (M3)in+ 2(AupA ) in(ME)in+4(Y L)ig(MB)ar( Y o) +4(Y L)ip(Y ) pmé,
+A(Api AL rg(ME)gr T4 AL Api) gr(ME)gr+ 4(A o) gi( Aus) s (M3)rg + A AUIA L) i (ME)1q
+4(hbho)ij +4 TrChinon) +4(hushle)j = 4(AS Yo )i (M, ¢ )= 4(AoiYE)u(my, 1)
8 32 2
- 1—59i|'\/|1|2+ §9§|M3|2— ggis Sij » (C19
2d(m123)” t 2 t 2 t 2 t o m2
167 T:Z(YUYU)in(mD)nj+Tr(AUiAU”)(mD)nj+Z(YUYU)nj(mD)in+Tr(AUiAUn)(mD)in
+A(Y))ig(ME) g Yu)r F4(YEY )M+ A(A iAW) (M) g +4(hThy )i +2 Tr(hlihys)
32 32 4
—| 29iIMa P+ S g5IM3*+ £ 01| 8. (C16
deal t 2 t 2 t 2 * 2
167~ =2 THYEYe)m +6 TH(YEYo)mp + (YEAga)an(my, £ )= 3(ApKYB)qd My, 7 )
~3(AGYD)qdME 1)+ (AgaYednaME 1)+ 2(YEY)qr(MErg + 2(YEYB)ra(M gy
+6(Y}Y0)qrME) g+ 6(YoY b)rg(M)gr+ 2 Trhihg) + 6 Tr(hihp)
6 2 2 2 2 3 2
- 591|M1| +603| M| +§915 Sij » (C1y
dmﬁ|2 , ,
16m% == 6 TrY[ Y )M +6(Y (Y u)qrMg)rg+ (YUY ()rg(Mg)qrt+ 6 Tr(hihy)
6 2 2 2 2 3 2
- 591|M1| +693| M| _5918 Sij » (C18
[
where tation of Ref.[108], the three amplitudes corresponding to
) ) Fig. 8 are given by
(my ) =(mg )%, (C19
and 2iN"by, _
M=+ = 5 (dPu)
S=m? —mZ + T mg2—mr2—2mg?+ ma2+mg?] (=M= MY
H, Hy Q L U D E I —
(CZO) X{T[aTPL—FbTPR](*—FMx)PLlu}a (Dl)
APPENDIX D: FOUR-BODY 7 DECAY
In this appendix, we compute the four-body decay 2iN"by —
o b oo My= - (dPyp)

—7 p*ud via the R, operator\’L,Q,D;. The relevant N (i]z—mi)(xz— M?2)
Feynman diagrams are given in Fig$a)8-8(c). We neglect

the contributions from the heavier neutralinos. Using the no- x{r{a,P +b,Pr}( ¥+ M,)P_uf, (D2)
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FIG. 8. Feynman diagrams for the decay— r(x9)*
— 7(unud) via the operatot. ,Q,D; .
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cT T T~ 2 S UF L u
(2= m2) (x>~ M?2)

X{?{aTPL—FbTPR}(X_{—M)()PLd}' (D3)

Here the four-momenta are denoted by the particle symbol.
The momentay, U, d,xy flow along the corresponding

propagators from left to right. We use below that x+u
+d as well as the notatioN,= =p? mp for the denomina-

;
tors in the propagators. We have assumed there is no mixing 2R (MpM )=
in the scalaru, u, andd sectors. However, we allow for

mixing in the stau sectop, , U, , dg are the only sparticles

PHYSICAL REVIEW D69, 115002 (2004

that couple to thdR-parity violating operators. The coupling

constants are given Hy,66,108
g sirfo,N13 )

1 7 I%
a,= |—21< eNy; coso
w

9N12( ! —sirf e )

b=—-L7\eN,+
T 11 11 cosé,,

; (D4)

1
g Niz( 5= eusinzaw)

cosé,,

, (D5)

geySinfo,Nix

—— N/*
€& cosé,,

(D6)

The total matrix element squared is given by
|M|2: Nc[|M a|2+ |M a|2+ |M a|2
+2 REM M+ MM+ MM, (D7)

whereN.= 3 is the color factor and

2 )\,2|b“|2 2pn 12 2
(M|*= ————d-u[|a]*M}7 u+[b|*g(7.x, 1. x)],
X
g (D8)
2 )\,2|b“|2 2012 2
| b| :Z—NZdMHaA MXT'U+|bT| g(T!Xlu!X)]l
x'Nu
(D9)
2 161 "%|aql” 2p12 2
|M | :WU'M[|aT| MXT'd+|bT| g(TadeaX)],
X' Vd
(D10)
; 16\ "2b b
2R(M M b):_m[la °M2g(7,u,d,u)
+]b|*f (7, x,4,d,u,x)], (D11)
; 16\ "2b 8 20
2%(MaMc)——[|a | Xg(T m,u,d)

N2N;N;

+|b, |2 (7, x,p,u,d,x)], (D12)
16 b [I 2M2g( d)
——||a 7,U,
+|b7|2f(7,x,u,u,d,x)]. (D13)
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The functions are given by and we thus obtain
g(a,b,c,d)=a-bc-d—a-cb-d+a-db-c, ‘K
Alff iHlE54(N—U—d)(T',LL)(U'OI)
= |

f(7,x,a,b,c,x)=—x%g(r,a,b,c)+27 xg(x,a,b,c).
(D14) aT d37' d3M -
) . . =—j— —(r-u)(7— 17— )2 (D18)
The squared amplitude in EgD7) can be used in Monte 4) 2E,) 2E,
Carlo simulation programs to generate events with a decay- ) ) o
ing stau. We are interested here in an analytic approximatiol! the rest-frame of the decaying stau with thexis in the
for the total decay width. To this end, we shall assugge direction of the 3-momentum of the,
<M)2(. This is equivalent above to setting.=0. Further-
more, we assume that all scalar propagators are dominate
by their mass terms and the scalar fermion mass is universal:

m,=mg=mg=m. In this simplified case, the amplitude Performing the integrals ovei(), andd¢,,
squared is given by

3=(M;,o,o,o, 7=E,(1,0,0,D, u=E,(1,sin6,0,c080).
(D19)

A—W—3 dE.| dE, | d cos#E?E2(1—cosé
1=5 . " COSHETE; (1—cosh)

,eaNe 2
|M| :Tub"‘l d-UT~/_L+|bu| d~,LLT-LI )
MXm ><[M;—ZM}ET—ZM;EM-FZE#ET(J.—COSG)].
+|agl?u- wr-d—b,b}g(7,1,d,u) (D20)

+bMa’gg(r,,u,u,dHbua’gg(r,u,,u,d)]. (D15) It is convenient to change to dimensionless varialiies
=3Mzz, E,=31M7y, and 1-cosf=2w [109]. Implement-

The total width is given by109,11Q ing the integral boundaries given in Ref$09,11(Q, leads to
the result
_ 4
(2mw)"8 d3k; -~
= [T S ko ks—kol M2 M o
T (D16) A1=—f dz f dyf dw+j dyf dw}
25 Jo 0 0 1-z (y+z-1)lyz

wherek, =7, k,=pu, ks=u, k,=d. After the simplification, 308
our matrix element squared consists of three kinds of terms Mz o1

2,,2 o _
which depend on the final-state four-momenta: «)(u X[Zyw(l=z=y+yzw] 25

-d), (7-u)(m-d), and (r-d)(w-u). As can be seen from

the phase-space integral, these all contribute the same; thgye thus have for the total width
simply correspond to a relabeling. We thus explicitly inte-

grate only the first term. Using E¢4) from Ref.[109] with

X—. D21
720 (bz1)

= ke - _  KN'?a,)?
N=7—k;—k,, we see that I —r utud)= ¢ ~ MZ(|b,u|2+|bu|2+|ad|2
2°7m°MZm* 7
d3k, d3k ~
f 8 ) A N=—u—d)= Z (5= 7= )2, —b,b% +b,a}+ba}), (D22)
2E, 2E4 4
(D17)  whereK = 1/(720x 2°) = 1/23040.
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